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Abstract: Chlamydia trachomatis is an evasive pathogen that can prompt severe clinical manifestations
in humans such as vaginitis, epididymitis, lymphogranuloma venereum, trachoma, conjunctivitis
and pneumonia. If left untreated, chronic infections with C. trachomatis can give rise to long-lasting
and even permanent sequelae. To shed some light on its widespread nature, data from original
research, systematic reviews and meta-analyses from three databases was collected and analyzed
in the context of chlamydial infection, related symptoms and appropriate treatment modalities.
This review describes the bacterium’s pervasiveness on a global scale, especially in developing
countries, and suggests ways to halt its transmission and spread. Infections with C. trachomatis often
go unnoticed, as many individuals are asymptomatic and unaware of their diagnosis, contributing to
a delay in diagnosis and treatment. The high prevalence of chlamydial infection highlights the need
for a universal screening and detection method enabling immediate treatment at its onset. Prognosis
is favorable with antibiotic therapy and education for high-risk groups and their sexual partners.
In the future, a quick, easily accessible, and inexpensive test should be developed to diagnose and
treat infected individuals early on. Along with a vaccine against C. trachomatis, it would halt the
transmission and spread of the pathogen worldwide.

Keywords: Chlamydia trachomatis; clinical symptoms; genital infections; trachoma; lymphogranuloma
venereum; diagnosis; treatment

1. Introduction

Chlamydia is a major bacterial pathogen that infects humans and a wide range of
animals, including marsupials, birds, cats, pigs, cattle and sheep [1]. In humans, C. tra-
chomatis is an obligate intracellular pathogen responsible most notably for causing sexually
transmitted infections (STIs) and is considered the most common cause of curable STIs
worldwide [2]. C. trachomatis genital infections are a global health concern that cause
substantial morbidity, especially in women [3]. Oftentimes, infected individuals are asymp-
tomatic, but pelvic pain, vaginal discharge, urethral discharge and lower abdominal pain
are noted in those with symptoms. If left untreated, severe complications can develop, such
as pelvic inflammatory disease (PID) and perihepatitis in women and reactive arthritis in
men. In addition to these clinical manifestations, C. trachomatis precipitates the formation
of trachoma, mostly in those residing in developing countries, and is a leading cause of
conjunctivitis and pneumonia in neonates [4].

C. trachomatis credits its infectivity to a whole host of virulence factors, enabling
it to invade and replicate within host cells. These include its cell wall which inhibits
phagolysosomal fusion in phagocytes, a type III secretion system (T3SS) which facilitates
the entry of pathogenic proteins into the host cell directly [5], and chlamydia protease-like
activity factor (CPAF), a serine protease responsible for cleaving host cell proteins [6].
Furthermore, the pathomechanism by which C. trachomatis infects a host is unique in that
the organism passes through two developmental forms [7], each with its own form and
function, with the ultimate goal of gaining entry into the host cell, disrupting its defenses
and overwhelming its machinery.
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Diagnosis of chlamydial infection is often delayed; this is related to a small sample
size or short follow-up time, lack of information on sexual risk behavior or lifestyle factors
and misclassification of chlamydia status, as it is primarily based on incidence (nucleic acid
amplification tests (NAATs)) [8]. Screening young adults who are sexually active for genital
C. trachomatis infections is promoted in many high-income countries all over the world,
but its effectiveness at the population level is debated [9]. Because of these challenges in
clinical practice, it is imperative to possess knowledge regarding epidemiological status,
clinical symptoms, complications and therapeutic methods in order to treat this infection
and prevent serious complications effectively. This manuscript discusses all of these aspects
in the context of more effective screening, available standard antimicrobial therapies and
alternative treatments, along with methods aimed at preventing the transmission and
spread of C. trachomatis infections.

2. Materials and Methods

PubMed, Scholar and Cochrane databases of systematic reviews were analyzed from
database inception to 31 December 2022. Our search strategy consisted of search strings
composed of terms targeting five major areas: (1) epidemiology, (2) transmission path-
ways (including possible routes and pathomechanism), (3) clinical symptoms (in various
gender and age groups), (4) diagnostic methods and (5) treatment and prevention. The
combination of the following groups of each area mentioned above with C. trachomatis
was used. We searched through titles, abstracts and medical subject headings (MeSH).
Non-original research articles (e.g., commentaries, editorials, case reports) and studies
written in languages other than English were excluded. Original research, systematic
reviews and meta-analyses were selected, which reported on community-based or hospital
research studies regarding chlamydial aspects.

3. Results

An extensive literature review was conducted to learn more about the epidemiology
of C. trachomatis and its clinical manifestations, complications, pathomechanism and key
virulence factors. This was performed to shed light on the pervasiveness of the organism
around the globe and to pinpoint strategies to stop its transmission and spread in the
human population.

3.1. Epidemiology

C. trachomatis is the most common cause of bacterial STIs in the world. Epidemi-
ological and clinical data on chlamydial infection rates are difficult to ascertain due to
limitations in screening and reporting of infections. Massive screening measures have not
been implemented worldwide (mainly in developing countries), contributing to inaccu-
racies when estimating and calculating prevalence and incidence rates [10]. Furthermore,
asymptomatic individuals unknowingly spread the disease to their sexual partners, and,
despite treatment, reinfection is common [11]. It is estimated that about 75% of women
and 50% of men are asymptomatic [10]. Under these circumstances, obtaining reliable data
regarding infection rates is difficult, and prevalence rates are presumably higher than what
is recorded in the literature.

Despite these limitations, epidemiological studies have drawn some formidable con-
clusions. C. trachomatis is the most common sexually transmitted pathogen in high-income
countries [9], and nearly 130 million infections were reported worldwide in 2012 [12].
Chlamydia affects 4.0% of women of reproductive age and 2.8% of men [12]. In the Nether-
lands, C. trachomatis prevalence among women between the ages of 16 and 34 reaches
3% [13]. Recent data showed that 10–30% of women experience one or more chlamydia
episodes during their lifespan [14,15]. Tubal factor infertility (TFI) develops in approxi-
mately 1% of women after chlamydial infection [16]. In populations where C. trachomatis
is prevalent, TFI results in a considerable number of infertile women. In the Netherlands,
TFI is considered a childlessness factor in nearly 11% of infertile couples [17]. In the
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United Kingdom, the risk of PID (symptomatic or asymptomatic) following an untreated C.
trachomatis infection is 17.1%, while the risk of salpingitis is 7.3% [18].

C. trachomatis is the most common STI etiology among sexually active males 14 to
35 years of age [19]. This pathogen is also the most common cause of nongonococcal
urethritis (NGU), accounting for 20% to 40% of NGU cases [20,21]. In males, NGU is
characterized by dysuria and pruritus, urethral discharge, elevated polymorphonuclear
leukocytes (PMNs) in the urethra, and the absence of Neisseria gonorrhoeae [22]. Like
many females, many males do not know that they are infected; approximately 50% of C.
trachomatis infections in men are asymptomatic [23,24]. Nevertheless, severe complications
caused by C. trachomatis have been reported, such as acute epididymitis observed in men
younger than 40 years old (28% of patients) [25].

Infection rates are highest among adolescents and those aged 15–24 [11]. This age
group accounts for two-thirds of new infections, with females being predominantly af-
fected [26]. Some reports suggest that one in twenty sexually active young females aged
14–24 has chlamydia [27].

Trachoma is endemic to certain geographic regions in the world, and approximately
1.2 billion people are estimated to reside in trachoma-endemic areas [28]. Active trachoma
is detected mainly in Africa, the Mediterranean Region, Southeast Asia, the Western Pacific
and the Americas [29]. About 41 million people suffer from active trachoma [28], and the
disease process is responsible for blindness or visual impairments in about 1.9 million
individuals worldwide [30].

3.2. Chlamydial Biovars and Serovars

Symptoms related to chlamydial activity largely depend on specific biovars and
serovars. There are three main human biovars—trachoma, genital tract, and lymphogranu-
loma venereum (LGV)—characterized by specific clinical symptoms (Figure 1). Immunolog-
ical data and protection implications identified 15 major C. trachomatis serovars [31,32]. The
trachoma biovar is subdivided into serovars A–C, leading to trachoma, the most common
cause of infectious blindness in developing countries [7]. The genital tract biovar splits
into serovars D–K, responsible for genital tract infections and severe complications in both
sexes if left untreated. Women can experience cervicitis, urethritis, PID, or perihepatitis [4].
Infertility and ectopic pregnancy represent long-lasting sequelae of infection [2]. In men,
urethritis, epididymitis, prostatitis, proctitis, or reactive arthritis may develop [4]. Serovars
D–K are also implicated in neonatal infections, of which ophthalmia neonatorum (con-
junctivitis) and pneumonia constitute the most common clinical findings [33]. The last
biovar, LGV, is sectioned into serovars L1–L3, which cause invasive urogenital or anorectal
infections [7,34]. These serovars also contribute to the development of genital ulcers. Other
complications of LGV include lymphadenopathy and fibrosis [35].

3.3. Modes of Transmission/Pathomechanism

C. trachomatis can be transmitted through a variety of means. Infection can occur
after oral, anal, or vaginal sex, but can also be passed on from mother to offspring during
childbirth [33]. Trachoma can be acquired through person-to-person contact with infected
ocular and nasal passages, through fomites, or via eye-seeking flies [28]. The manner
in which Chlamydia infects and replicates within a host cell is distinct (Figure 2). The
bacterium assumes two developmental forms, the elementary body (EB) and the reticulate
body (RB) [4]. The EB, which is metabolically inactive and infectious, enters the host
mucosal cell, binding with the help of a trimolecular bridge formed between bacterial
adhesions, host cell receptors, and host heparan sulfate proteoglycans (HSPGs). From
there, pre-synthesized T3SS effectors are infused inside the host cell, promoting the EB’s
internalization process and formation of an anti-apoptotic state. The EB is introduced into
the host cell via endocytosis and is stored within a membrane-bound compartment called
an inclusion. Inside the inclusion, bacterial proteins are synthesized and the EB transforms
into an RB, which is metabolically active and non-infectious. Newly synthesized inclusion
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membrane proteins (Incs) aid in the process of obtaining nutrients by diverting vesicles
secreted from the Golgi apparatus meant for the plasma membrane to the inclusion [7,36].
As a result, Incs can promote fusion with host-cell nutrient-rich compartments, inhibit
fusion with degradative organelles, and take over host cell machinery to disrupt pathways
native to the host, generating new complexes with functions benefiting the pathogen [37].
The inclusion is then transported to the centrosome [7,36]. There, the RB can replicate at
an alarming rate, depleting the host’s energy supply in the process [4]. Following several
rounds of replication, the RB retransforms back into an EB, which is released from the host
cell, capable of entering more cells and carrying on the infective and replicative cycles [7].
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Figure 1. Serological and clinical characteristics of Chlamydia trachomatis. Characteristics of C.
trachomatis serovars and clinical symptoms. Serovars can infect and survive in diverse host niches
causing wide spectrum urogenital (serovars D–K, Da, Ia, Ja) and ocular symptoms (serovars A–C). The
lymphogranuloma venereum (LGV) serovars (L1–L3) invade macrophages and spread systemically
through lymph nodes.
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Figure 2. The Chlamydial Developmental Cycle. (1) Early phase: Adhesion of C. trachomatis elemen-
tary bodies (EBs; ∼0.3 µm in diameter) to the epithelial host cell. EBs are the small, infectious and
non-replicative form. They adhere to the surface of host cells, triggering the delivery of T3SS effectors
and enabling chlamydial invasion. As a result, chlamydial internalization and inclusion (formation
of a membrane-bound compartment) is observed and this process lasts about 0 to 2 h post-infection.
Then, the EBs differentiate into RBs (RBs; ∼1 µm in diameter) about 2–8 h post-infection. (2) Midcycle
phase: Intravacuolar RBs begin replicating and cause a large inclusion occupying most of the host
cell cytoplasm (∼6–24 h post-infection). (3) Late phase: The RBs re-differentiate asynchronously
into EBs (∼24–48 h post-infection). (4) Spread to new cell: The inclusion is then filled with EBs (the
infectious progeny), and a few lasting RBs are released by the host cell lysis or extrusion (∼48–72 h
post-infection). From there, the infectious progeny can infect neighboring cells.

3.4. Virulence Factors

C. trachomatis possesses virulence factors which contribute to its pathogenicity and
infectivity. These factors include various surface antigens [5,38] type III and type IV
secretion systems [39–41], chlamydial plasmids [42], and genetic variations, which impact
variability and expression of virulence factors [34,43,44]. Its atypical developmental cycle
and intracellular life forms [41,45,46], along with its ability to stimulate apoptosis [45],
contribute to the virulence of this pathogen.

The surface antigens include outer membrane proteins, lipopolysaccharide, heat shock
proteins and polymorphic membrane proteins (Pmps) responsible for the essential first step
in infection [5,38]. In addition to these surface antigens, the chlamydial cell wall has the
ability to inhibit phagolysosome fusion in phagocytes, promoting survival in the host cell.

Furthermore, the T3SS is crucial for the bacterium’s survival and virulence. It is
a non-flagellar system acting like a “molecular syringe,” delivering anti-host bacterial
“effector” proteins directly into a host cell in a contiguous process [47,48]. These injected
proteins have been known to promote the bacterium’s viability in the host cell by blocking
host cell signaling pathways and overwhelming host cell machinery [49]. T3SS effectors
may function as structural determinants of the membrane or as scaffolds to interface with
various cell pathways in the host [50]. The T3SS allows C. trachomatis protein products
to enter the host cell’s cytoplasm directly, bypassing host lysosomes and assisting in
invasion and replication [5]. In addition to the stimulation of effector proteins [50,51],
T3SS also boasts immunostimulatory capability [52]. T3SS effectors are regulated by CPAF
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(chlamydial protease-like activity factor). CPAF is also responsible for cleaving host cell
proteins, maintenance of inclusion membrane proteins (Incs), and evasion of caspase-1-
dependent cell death in epithelial cells, consequently establishing an anti-apoptotic state in
cells targeted by C. trachomatis [53].

The virulence factors belonging to C. trachomatis have been shown to induce various
mechanisms which enable the bacterium to manipulate host functions. These include
surface antigens responsible for stable adhesion to host cells and possibly host cell immune
escape, membrane proteins, lipopolysaccharide, heat shock proteins and Pmps [5,38]. Pmps
are monomeric proteins that can function as toxins, proteases, lipases, or mono-adhesive
adhesins [54]; they are localized on the surface of the chlamydial cell, where most of them
are proteolytically processed [38]. They constitute the largest chlamydial protein family,
with 9 members (subdivided into six subtypes) in C. trachomatis [55].

Another virulence factor is chlamydial cytotoxin for epithelial cells, such as putative
large cytotoxin. It is transiently present in infected cells during the period of cytotoxicity.
Putative large cytotoxins are detected in the EB and are delivered to host cells early on
in infection. Their cytotoxic activity causes morphological and cytoskeletal changes in
epithelial cells that are indistinguishable from those mediated by clostridial toxin B [56].

Crucial for C. trachomatis virulence are chlamydial plasmids [57], which contain both
noncoding RNAs and eight open reading frames (ORFs) [57–59]. All ORFs are conven-
tionally called plasmid glycoproteins 1–8 or pGP1–8 [60] and are expressed in infected
cells [61,62]. In murine models, these plasmids can enhance proinflammatory cytokine
stimulation through the involvement of Toll-like receptors (TLR) [63]. In vivo, infections
with plasmid-deficient organisms either are asymptomatic or exhibit significantly reduced
pathology [64,65]. In animal models, plasmid-deficient C. trachomatis do not cause trachoma
but induce strong protective immunity to fully virulent plasmid-bearing bacteria. Thus,
plasmid-deficient organisms can be used to lay the foundation for the novel live-attenuated
chlamydial vaccine [64].

Several types of genetic variation are found in C. trachomatis that impact the variability
and expression of virulence factors. Recent data suggest that a few genetic features are
involved in phenotypic dissimilarities in C. trachomatis infections. They include recombina-
tion and point mutations of Incs and T3SS effectors [34]. These genetic variations promote
chlamydial intracellular survival and influence disease severity. For example, the Tarp gene
variation (locus ct456) alters the number of actin-binding domains and the internalization
rate of the pathogen [43]. Subtle variations in the amino acids of a subset of Inc proteins
and the expression of Inc genes contribute to the unique tropism and invasiveness of C.
trachomatis LGV strains [44].

3.5. Clinical Signs and Symptoms

Many patients with chlamydia remain asymptomatic, but a minority of individuals
develop symptoms that depend on the location of infection [4]. Infected females, males,
and neonates can present with characteristic findings.

3.5.1. Females

In females, the cervix is the site most often colonized by C. trachomatis [4]. Conse-
quently, cervicitis can occur, and women may experience mild symptoms such as vaginal
discharge, bleeding, abdominal pain and dysuria [66]. Some women may present with
mucopurulent cervicitis, endocervical bleeding and postcoital or intermenstrual bleeding.
If the infection ascends from the cervix into the upper reproductive tract, patients expe-
rience abdominal or pelvic pain, and the infection advances to PID [4]. Apart from the
pain, other symptoms have been reported, including nausea, vomiting, fever, chills, low
back pain, dysuria, dyspareunia or pain during sexual intercourse, and postcoital bleed-
ing [67]. Patients diagnosed with PID may develop Fitz–Hugh–Curtis syndrome (FHCS),
or perihepatitis, a condition in which the liver and surrounding peritoneal surfaces become
inflamed, prompting right upper quadrant (RUQ) or pleuritic pain [4]. FHCS is frequently
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associated with symptoms of PID (fever, lower abdominal pain, vaginal discharge) [68];
however, it can be complicated by long-term sequelae such as infertility, ectopic pregnancy
and chronic pelvic pain [69]. In addition to this, PID (particularly if untreated) may lead to
tubal scarring due to an intense and chronic inflammatory response [70]. Tubal scarring
may result in TFI [71].

Other complications of untreated or long-standing chlamydial infection in the re-
productive tract, particularly in the fallopian tubes, can lead to infertility and ectopic
pregnancy [72]. In pregnant women, chlamydial infection has been associated with adverse
pregnancy outcomes such as premature rupture of membranes (PROM), preterm birth,
low birth weight, growth restriction and neonatal death [73]. While uncommon, females
infected with C. trachomatis can experience urethritis, where urinary frequency and dysuria
are the chief complaints [4].

3.5.2. Males

Symptomatic males may exhibit a combination of urogenital and extragenital man-
ifestations. Urogenital infection in males can present with epididymitis, in which males
note unilateral testicular pain and tenderness with associated swelling of the epididymis.
Urethritis is also a common sign of chlamydial infection in males; patients experience
dysuria and often observe a white, gray urethral discharge. Prostatitis is evidenced by
dysuria, pelvic pain, urinary dysfunction and dysorgasmia [4].

Extragenital findings include proctitis and reactive arthritis. Proctitis, or rectal inflam-
mation, is painful when caused by serovars L1–L3, and patients suffer from rectal discharge,
bleeding, fever and malaise. This condition is almost exclusively limited to males who have
sex with males [4]. Reactive arthritis is another established manifestation of chlamydial
infection. It is estimated that 1% of males with urethritis caused by C. trachomatis develop
reactive arthritis [74]. On physical examination, asymmetric oligoarthritis, usually of the
lower extremities, and sausage-shaped finger, toe, or heel pain, are demonstrated. Patients
may also develop a triad of arthritis, urethritis, and uveitis, a condition formerly known as
Reiter syndrome [75].

3.5.3. Males and Females
Lymphogranuloma Venereum

LGV and trachoma are clinical manifestations of chlamydial infection that are spotted
in both sexes. LGV is classified as an ulcerative disease of the genital region [76]. The
disease follows a three-stage course [77,78]. The formation of painless genital ulcers marks
the first or primary stage. These often go unnoticed due to their size and location and may
heal spontaneously. The development of tender inguinal and/or femoral lymphadenopathy
usually follows and sets the secondary stage of infection in motion. During this stage,
patients may experience a proctocolitis-like illness defined by dysuria, dyschezia or diffi-
culty passing stool, abdominal, rectal, and anal pain, and tenesmus, or a frequent urge to
pass stool. Constitutional symptoms such as fever, headaches and body aches have been
described. The final late stage of infection appears when the disease is left untreated and is
characterized by strictures, fibrosis, fistula formation in the anogenital area, and necrosis in
and rupture of the affected lymph nodes [78]. Overall, males present early on in the disease
course when acute symptoms are present, while females present during the later stages of
infection when complications arise [79].

Trachoma

Trachoma is a leading cause of blindness in the world today. Common features upon
presentation include redness, itching and irritation of the eyes and eyelids [80]. Discharge,
swelling, pain and photophobia are also exhibited. Two forms of trachoma have been
described: the active form and the chronic cicatricial form. Active trachoma is more
common in children and is characterized by mixed follicular and papillary conjunctivitis.
The condition is associated with mucopurulent discharge, superior epithelial keratitis and
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corneal vascularization. In severe cases, papillary hypertrophy may develop. Recurrent
infection gives rise to the cicatricial form of trachoma, seen in middle-aged adults. This
chronic stage is marked by scarring, particularly in the upper tarsal plate, along with
corneal vascularization, trichiasis and distichiasis. Over time, the destruction of goblet
cells in the conjunctiva and ductules of the lacrimal glands precipitates dryness in the eyes.
This process and the development of corneal opacification and blindness are hallmarks of
permanent damage [81].

3.5.4. Neonates

Neonates may become infected with C. trachomatis from their mothers when passing
through the vaginal canal during childbirth. Interactions with infected genital secretions
can result in conjunctivitis, or ophthalmia neonatorum, in the newborn, characterized by
erythema and edema of the eyelids, palpebral conjunctivae and conjunctival discharge [82].
Conjunctivitis is considered the most common clinical manifestation of chlamydia in
newborns [4]. Symptoms typically appear in one eye 5–14 days after delivery and the
second eye usually becomes inflamed following another 2–7 days [83,84]. The discharge is
watery at the beginning but then becomes purulent after a few days [85]. If left untreated,
reports of corneal and conjunctival scarring have been documented [86].

Aspiration of infected genital secretions during childbirth may result in pneumonia in
the newborn [84]. Symptoms appear between 4 and 12 weeks of age. Patients are usually
afebrile, produce a paroxysmal staccato cough, and may have tachypnea [4]. In addition to
these clinical signs, nasal congestion and thick nasal secretions are common [87]. A chest
X-ray will reveal diffuse pulmonary infiltrates along with hyperinflation [85]. Rales may
also be heard on auscultation during physical examination [4]. If left untreated, infants are
more susceptible to developing chronic pulmonary disease, including asthma [85].

3.6. Clinical Complications

Each diagnosed infection should be treated because a lack of therapeutic management
may result in disease progression and complications characterized by long-lasting sequelae
[Table 1].

Table 1. Clinical complications of Chlamydia trachomatis infection.

Risk Group Possible Complications References

Females

• Pelvic inflammatory disease
• Fitz-Hugh-Curtis syndrome
• Chronic pelvic pain syndrome
• Ectopic pregnancy
• Infertility (including tubal factor infertility)
• Probable ↑ risk of HPV co-infection→ ↑ risk of cervical cancer

[70,71,88]

Pregnancy

↑ risk of pregnancy complications:

• Premature rupture of the membranes
• Premature birth
• Low birth weight
• Miscarriage
• Neonatal death

[89]

Males
• Epididymitis
• Orchitis
• Infertility

[90]

Females and Males
• ↑ susceptibility to HIV infection
• Risk of developing Reiter’s syndrome (aseptic arthritis, nongonococcal

urethritis, conjunctivitis)
[91–93]
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The most severe complications are related to ineffective management and treatment of
chlamydial infections. For example, the prevalence of PID following chlamydial infection
was found to be between 3.0% and 30.0% [18,94,95]. Ectopic pregnancy was also reported
in 0.2% to 2.7% of infected women [18,96,97], while TFI was detected in 0.1% to 6.0% of
infected women [18,98].

3.7. Screening for Chlamydia

The United States Preventive Services Task Force (USPSTF) recommends that all
sexually active females 24 years or younger be screened for chlamydia annually. Similar
protocols should be implemented in females 25 years old and over who are at increased
risk of infection (new sexual partner, more than one sexual partner, a sexual partner with
multiple concurrent sexual partners, or a sexual partner with a diagnosed STD) [99]. In
addition, pregnant women under the age of 25 and those over 25 who have an increased
risk of infection (new sexual partner, more than one sexual partner, a sexual partner with
multiple concurrent sexual partners, or a sexual partner with a diagnosed STD) should
be screened at their first prenatal visit. Those at an increased risk at that time should be
retested during the third trimester [100].

The Centers for Disease Control and Prevention (CDC) also recommends screening
certain male populations, mainly sexually active males in high-prevalence areas and popu-
lations. Annual screening should be performed in males who have sex with males; however,
more frequent testing is advised in groups who engage in high-risk sexual behaviors or if
sexual partners are found to have multiple other partners. Transgender individuals should
be screened based on their sexual participation and respective anatomies. Moreover, the
CDC recommends screening for females under 35 years of age and males under 30 years of
age at the time of entering a correctional facility [100].

In all of the aforementioned situations, patients should likewise be screened for gonor-
rhea, which often coexists with chlamydia [99]. In cases of a chlamydial or a gonococcal
infection, the patient ought to be retested three months after the initiation of treatment
(regardless of the infective status of their sexual partner/partners) [100].

3.8. Diagnostics/Sampling

Nucleic acid amplification tests (NAATs) are deemed the most sensitive for detecting
chlamydia [8]. They have since replaced culture as the diagnostic gold standard of choice.
Antigen tests, such as enzyme immunoassays, direct fluorescent antibody (DFA) assays,
and rapid diagnostic tests, which were once utilized for detection and diagnosis, are also no
longer recommended because of inaccuracies in the diagnostic workup procedure [101,102].
There are a multitude of reasons for this exchange. First, because NAATs do not rely
on infectious or viable pathogens, specimens can be easily collected and transported [8].
Furthermore, non-invasive samples such as urine can be analyzed, screening for infections
in asymptomatic individuals who would otherwise go undiagnosed and untreated. This
proves advantageous since the majority of chlamydial infections in the female population
and a cohort in the male population are asymptomatic [2]. Lastly, because most of the
NAATs rely on polymerase chain reaction (PCR) and fluorescently labeled probes to locate
amplified sequences in real-time, the testing process is more efficient, and the test duration
time is reduced. Results are thus ascertained quickly, often within a few hours [8].

In order to diagnose genital chlamydia using a NAAT, vaginal swabs are collected
in females and urine is collected in males (Figure 3). For rectal or pharyngeal chlamydial
infections, testing at the exposure site is warranted [33]. Chlamydial ophthalmia in neonates
should be diagnosed by both tissue culture and nonculture tests (e.g. DFA tests and NAATs).
Both methods are sensitive and specific [100]. DFA is the only nonculture FDA-cleared
test for detecting chlamydia from conjunctival swabs (NAATs are not cleared by FDA
for detecting chlamydia from conjunctival swabs). For culture and DFA, specimens must
contain conjunctival cells (obtained from the everted eyelid), not exudate alone [82,100].
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In addition to using NAATs and DFA tests, chlamydia-specific antibodies can be
detected in the patient’s serum. The two major antibodies in genital secretions that may
prevent C. trachomatis transmission are IgG against C. trachomatis, the predominant isotype,
and polymeric secretory IgA [103,104]. Both antibodies are mainly synthesized by local
plasma cells in the upper female genital tract (FGT) [105]. Both of these antibody isotypes
prevent infection caused by C. trachomatis by blocking the entry of bacteria into the host cell.
They entrap the bacteria in mucus in the lumen of the FGT [106] or neutralize intracellular
pathogens within columnar epithelial cells during transport [107,108]. Antibodies enhance
chlamydial opsonophagocytosis and degradation, curbing the infective process (which
would have otherwise relied on interferon-gamma (IFN-γ) synthesis) [109]. Plasma cells
that synthesize IgG against C. trachomatis are found in the FGT, but genital IgG is mainly
derived from circulation [110]. In contrast, subepithelial plasma cells produce genital IgM
and IgA [111,112], and nearly 70% of the IgA is locally produced in women [113].

IgA and IgM classes are known to react quickly to acute reinfections. The main location
of the production of secretory IgA is in the cervix [114]. Similarly, secretory IgA is the
predominant isotype secreted by the intestinal mucosa, but in the FGT, a greater IgG to
secretory IgA ratio has been observed [115,116]. Human longitudinal studies showed that
chlamydia-specific CD4 T-cell IFN-γ responses (but not IgG titers) can reduce the risk of
reinfection in highly exposed women [117,118]. The high IgG titers are a marker of repeated
and/or prolonged chlamydial exposure, but they do not protect from reinfection [119,120].
Serum titers of anti-EB IgG are associated with reduced cervical burden and an overall
decrease in the risk of endometrial infection [117]. The role of anti-IgG antibodies is
inconclusive. Some data suggest that anti-EB IgG is ineffective at limiting endometrial
ascension [121]. In contrast, others report that anti-chlamydia IgA (but not IgG) might limit
ascension and prevent the formation of salpingitis [122].
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3.9. Treatment

Overall, treatment is indicated to suppress the development of complications associ-
ated with chlamydial infection, reduce the risk of transmission of the organism, and aid in
the resolution of ongoing symptoms [4]. The antibiotic regimen administered depends on
the severity of the infection, the types of symptoms, and the patient’s age [Table 2].

Table 2. Treatment of various forms of chlamydial infection.

Chlamydia trachomatis Infection

Chlamydia Infection Type of Infection Standard Treatment Alternative Regimens

Genitourinary system
[4,100,123–125]

Uncomplicated

• 1 g azithromycin p.o.
single dose

or

• Doxycycline 2 × 100 mg p.o. for
7 days; (equally effective as
azithromycin)

• Abstain from sexual activity
until recovery

• Erythromycin 4 × 500 mg for 7 days
(erythromycin causes
gastrointestinal adverse effects more
often than other alternative drugs)

• Erythromycin ethyl succinate
4 × 800 mg for 7 days

• Levofloxacin 1 × 500 mg for 7 days
• Ofloxacin 2 × 300 mg or 1 × 600 mg

for 7 days

Complicated
(e.g., PID or
perihepatitis)

• Combined therapy ceftriaxone
1 g IV every 24 h or doxycycline
100 mg orally or IV every 12 h

with

• Metronidazole 500 mg orally or
IV every 12 h

• Symptomatic adhesiolysis requires
laparoscopy

• Severe symptoms—laparotomy

Pregnancy
[4,126]

• Azithromycin 1 g one-time oral
dose (standard treatment
of choice)

or

• 500 mg oral amoxicillin three
times daily for 7 days

• Erythromycin 4 × 500 mg for 7 days
or 4 × 250 mg for 14 days

• Erythromycin ethyl succinate
4 × 800 mg for 7 days or 4 × 400 mg
for 14 days

• (Similar efficacy of all drugs, but
azithromycin has fewer side effects
than erythromycin or amoxicillin)

Male [4]

Uncomplicated
• Genital chlamydial

infections—the same as that
for females

• Same treatment as females

Complicated

• Anorectal chlamydial infections
(mainly MSM)

• 100 mg oral doxycycline twice
daily for 7 days (preferred
treatment)

or

• One-time 1 g oral dose of
azithromycin

• N/A

Chronic ReA [75,91,92]

• NSAIDS (the standard treatment
of choice in severe symptoms)

• Antibiotic therapy for three to
six months (Doxycycline
2 × 100 mg together with
rifampicin 1 × 300 mg for
6 months)

• DMARDs, e.g., sulphasalazine

• Azithromycin 1 × 500 mg for
5 days, then 500 mg every 2 weeks,
together with rifampicin 1 × 300 mg
for 6 months
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Table 2. Cont.

Chlamydia trachomatis Infection

Chlamydia Infection Type of Infection Standard Treatment Alternative Regimens

Ophthalmia neonatorum or chlamydial
neonatal pneumonia
[83,85,127]

• Erythromycin base or ethyl
succinate 50 mg/kg body
weight/day orally, divided into
4 doses daily for 14 days

or

• Azithromycin 20 mg/kg/day
for 3 days

• Adverse effect of erythromycin or
azithromycin: IHPS or intestinal
obstruction among infants aged
<6 weeks

Conjunctivitis in adults [128,129] • Doxycycline 2 × 100 mg for
1–3 weeks

• Erythromycin 4 × 250 mg for
1–3 weeks

Trachoma [83,130]
• Azithromycin (starting at

20 mg/kg up to 1 g) p.o,
(single dose)

• Erythromycin 500 mg p.o. twice
daily for 14 days

or

• Doxycycline 100 mg p.o. for 10 days
• 1% tetracycline ointment topically
• Severe stage (trichiasis)→ surgery

Lymphogranuloma Venereum
[11,76,84,131]

• Doxycycline 100 mg orally twice
daily for 21 days

• Azithromycin 1 g orally once
weekly for 3 weeks (NAAT after
4 weeks of a regiment should be
carried out to confirm bacterial
eradication because the regimen
with azithromycin has not
been validated)

or

• Erythromycin base 500 mg orally
4 times/day for 21 days

Additional procedures:

• Aspiration and drainage of the
ulcers

• Empirical treatment of sexual
partners (100 mg oral doxycycline
twice daily for 7 days or a one-time
dose of 1 g oral azithromycin)

p.o.—per os, orally; MSM—men who have sex with men; ReA—reactive arthritis; NSAIDs—non-steroidal
anti-inflammatory drugs; DMARDs—disease-modifying anti-rheumatic drugs; IHPS—infantile hypertrophic
pyloric stenosis.

3.9.1. Females

Uncomplicated genital chlamydial infections in females are most commonly treated
with a one-time oral dose of 1 g azithromycin. Oral doxycycline at a dose of 100 mg
twice daily for 7 days may be substituted [4]. Patients should abstain from sexual activity
until they complete treatment [33]. For complicated cases which have progressed to
PID, the conventional parenteral antibiotic regimen consists of ceftriaxone 1 g IV every
24 h, doxycycline 100 mg orally or IV every 12 h and metronidazole 500 mg orally or IV
every 12 h. The transition to oral therapy can usually begin within 24–48 h of clinical
improvement of symptoms. Treatment for PID should include coverage for Neisseria
gonorrhoeae [100]. Furthermore, adding metronidazole to the PID regimen protects against
anaerobic organisms in the upper genital tract [124]. If perihepatitis is diagnosed, treatment
is similar to that of PID, but hospitalization may be required if patients are pregnant or
are immunocompromised, if a pelvic abscess is detected on imaging, or if patients fail to
improve after 72 h of therapy. Surgical intervention such as laparoscopy may be deemed
necessary for symptomatic adhesiolysis and a laparotomy may be performed in cases of
surgical emergencies [125].
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Pregnant women infected with C. trachomatis are advised to take a one-time oral dose
of 1 g azithromycin. Alternative treatment regimens include 500 mg oral amoxicillin three
times daily for 7 days or 500 mg oral erythromycin twice daily for 7 days. Azithromycin
remains the standard treatment of choice [4]. In comparison to erythromycin, azithromycin
has been shown to cause significantly fewer gastrointestinal side effects in expecting
mothers [132].

Women with TFI planning conception may need medical assistance, for example,
in vitro fertilization (IVF), to become pregnant [133]. Unfortunately, successful IVF ending
in a live birth occurs in about only approximately 42% after three complete IVF cycles [134].

3.9.2. Males

The treatment of uncomplicated genital chlamydial infections in males is the same
as that for females. For anorectal chlamydial infections, often seen in men who have sex
with men [MSM], a regimen containing 100 mg oral doxycycline twice daily for 7 days is
preferred over a one-time 1 g oral dose of azithromycin [4]. Side effects such as nausea,
vomiting, and diarrhea were reported with ingestion of both antibiotics [135].

Treating reactive arthritis in males, on the other hand, has been challenging. In recent
years, non-steroidal anti-inflammatory drugs (NSAIDs), antibiotic therapy, and disease-
modifying anti-rheumatic drugs (DMARDs) were studied for their ability to manage
chlamydia-induced reactive arthritis successfully. The purpose of therapy is twofold: to
alleviate symptoms of reactive arthritis while also preventing the development of chronic
complications. NSAIDs remain the standard treatment of choice in acute settings, while
DMARDs, such as sulphasalazine, are prescribed in both acute and chronic conditions or
when NSAIDs are ineffective. Antibiotics are administered for three to six months when
an infectious agent, such as Chlamydia, is the cause of symptoms. In addition to these
therapies, patients are advised to exercise and perform stretching exercises to prevent
muscle wasting [75].

3.9.3. Lymphogranuloma venereum

Administration of doxycycline 100 mg orally twice daily for 21 days is the recom-
mended antibiotic regimen for treating LGV. Alternatively, 500 mg of oral erythromycin can
be prescribed four times daily for 21 days [131]. In addition to antibiotic therapy, aspiration
and drainage may be required to inhibit the formation of ulcers [11]. All patients suspected
of having LGV, along with any of their sexual partners, should be treated empirically. This
regimen includes either 100 mg oral doxycycline twice daily for 7 days or a one-time dose
of 1 g oral azithromycin. Testing for LGV and chlamydial infection should be performed,
and if either of those tests returns with a positive result, treatment should be carried out for
a total of 21 days. If the results are negative, treatment can be discontinued after 7 days [76].

3.9.4. Trachoma

A single dose of oral azithromycin (starting at 20 mg/kg up to 1 g) is the standard
treatment of choice for individuals diagnosed with trachoma as well as for those exposed.
Alternatively, 500 mg oral erythromycin can be administered twice daily for 14 days or
100 mg oral doxycycline daily for 10 days. An amount of 1% tetracycline ointment can be
applied topically, but oral treatment is preferred. Surgical intervention may be necessary for
severe symptoms such as trichiasis [81]. Since trachoma is considered a global syndrome,
the World Health Organization (WHO) started the Global Elimination of Trachoma (GET
2020) initiative to eliminate blinding trachoma by 2020. Community-wide control interven-
tions were developed, known as the ‘SAFE’ strategy: Surgery to treat those suffering from
trachomatous trichiasis, massive drug administration (MDA) with Antibiotics, promotion
of Facial cleanliness, and Environmental improvement to reduce prevalence and trans-
mission of the causative agent [136]. After the implementation of the SAFE strategy, the
population prevalence of trachomatous trichiasis and trachomatous follicular inflammation
in 1 to 9-year-olds decreased to <0.1% and below 5%, respectively [80,137].
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3.9.5. Neonatal Infections

Treatment of ophthalmia neonatorum consists of either a regimen of erythromycin
50 mg/kg/day for 14 days or azithromycin 20 mg/kg/day for 3 days [127]. Erythromycin
is also used to manage chlamydial pneumonia in infants [85]. A second antibiotic course
is usually prescribed because 20% of cases recur; eradicating the organism in this patient
population has been challenging. However, complications arose when treating chlamydial
infection in such young patients. Pyloric stenosis was observed in infants less than 6 weeks
old who were previously treated with erythromycin [127]. Patients should consequently be
monitored for any signs of intestinal obstruction [4].

3.9.6. Antibiotic Resistance

Multidrug resistance (MDR) has increased worldwide and is considered a public
health threat. Several recent investigations have reported the emergence of multidrug-
resistant bacterial pathogens from different origins, showcasing the necessity for proper
use of antibiotics. There have been a few documented reports of antibiotic resistance in
C. trachomatis; however, recent data point to some possible mechanisms responsible for
bacterial growth during antibiotic exposure [138]. These are outlined in Table 3.

Table 3. The mechanisms of antibiotic resistance in C. trachomatis infection.

Antibiotic Resistance in C. trachomatis Infection

Antibiotics Mechanism of Action Mechanism of Antibiotic Resistance/Available Data References

Tetracyclines (TET)

Block bacterial protein
synthesis by preventing
aminoacyl tRNAs from
interacting with ribosomes

• Genes encoding TET efflux pumps
• Ribosomal protection proteins
• Host enzyme inactivation

[139]

• Presence of foreign genomic islands (ranging in size
from 6 to 13.5 kb) that integrates into the chlamydial
chromosome

[140]

Rifamycins (RIF)

Interact with the
β-subunit of RNA
polymerase to inhibit
bacterial transcription

• Resistance to C. trachomatis after exposure to
subinhibitory concentrations of drug in vitro

[141]

• Resistance development through nucleotide changes
in the RNAP β-subunit gene, rpoB

[142]

• Strain TW-183 develops resistance to rifalazil when
passaged in subinhibitory concentrations of the drug

• Acquired mutations in rpoB
[143]

Fluoroquinolones
Inhibit DNA gyrase and
DNA topoisomerase IV

• C. trachomatis can develop quinolone resistance
in vitro when exposed to subinhibitory
concentrations of the antibiotic

[144]

• Quinolone-resistant strains are characterized by a
point mutation in the
quinolone-resistance-determining region of gyrA

[145]

Aminoglycosides
Interfere with translation
initiation by interacting
with the 30S ribosome

• Resistant strains carry mutations in the 16S rRNA
gene at the KSM binding site (KSM—kasugamycin;
antibiotics used to generate aminoglycoside-resistant
chlamydial strains)

[146]

• Spectinomycin-resistant C. trachomatis L2 mutants
encode two nearly identical copies of rRNA operons
and drug target sites

[146]
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Table 3. Cont.

Antibiotic Resistance in C. trachomatis Infection

Antibiotics Mechanism of Action Mechanism of Antibiotic Resistance/Available Data References

Sulfonamide and
trimethoprim
(SFM-TMT)

Interferes with bacterial
folate synthesis, which is
critical for DNA synthesis,
repair and methylation

• Stable trimethoprim-resistant mutants are infrequent
in cultured C. trachomatis in vitro in subinhibitory
concentrations of the antibiotic

[147]

• Specific insertions, repeats, and point mutations in
the folP gene (dihydropteroate synthase) confer
stable resistance to sulfa drugs

• Mutations in the folA gene (dihydrofolate reductase)
confer resistance to trimethoprim

[148]

Azithromycin
(a front-line drug for the
treatment of chlamydia
infections)

Macrolide, which causes
bacterial protein synthesis
inhibition

• C. trachomatis L2 strain was selected in lower
concentrations of AZM

[146]

• AZM-resistant strains were isolated after exposure to
inhibitory concentrations of AZM, while the
modestly resistant (AZM tolerant) C. trachomatis
strain was isolated only after exposure to
subinhibitory concentrations of the antibiotic

[138]

• The AZM-tolerant C. trachomatis strain harbored a
mutation in rplD that encodes the ribosomal
protein L4

[149]

• The drug-tolerant C. trachomatis strain did not grow
well in the absence of antibiotics, formed smaller
plaques, and produced fewer infectious particles
than wild-type parent strains

[146]

Lincomycin

Lincosamide; a
bacteriostatic protein
synthesis inhibitor, which
causes premature
dissociation of
peptidyl-tRNA from
the ribosome

The resistant mutants carried mutations in both 23S
rRNA genes [147]

TET—tetracyclines; RNA—ribonucleic acid; tRNA—transfer RNA; RIF—rifamycins; RNAP—RNA polymerase;
DNA—deoxyribonucleic acid; rRNA—ribosomal RNA; KSM—kasugamycin; SFM-TMT—sulfonamide trimetho-
prim; AZM—azithromycin.

Multiple antibiotic-resistance genes can be readily recombined between Chlamydia
spp. The possibility of recombinant transfer of TET resistance from C. suis to C. trachomatis
and C. muridarum strains is one of the mechanisms which can participate in antibiotic
resistance [141]. Recombination in Chlamydia spp. occurs naturally; therefore, clinical
resistance might spread rapidly in patients. Another mechanism that can contribute to
antibiotic resistance is the transformation via electroporation in chlamydia using SPC and
KSM [146]. The C. suis TET-resistant strains and the in vitro results with the other antibiotics
(described above) create a possibility of developing antibiotic resistance. Fortunately, there
is no genetic evidence of antibiotic resistance leading to treatment failure in humans.

Only a few reports describe the isolation of antibiotic-resistant C. trachomatis strains from
patients, but only a small portion of the population (<1–10%) expressed resistance [150,151]. All
described above isolates display ‘heterotypic resistance,’ a form of phenotypic resistance
in which a small proportion of an infecting microbial species can express resistance at any
time. Heterotypic resistance is not typical for Chlamydia spp., but is also reported in the
case of Staphylococcus spp. infection [152,153].
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4. Discussion
4.1. Prognosis

Since C. trachomatis causes acute and chronic chlamydial infections all over the
world [4], as well as trachoma, mainly in countries with poor sanitary conditions [154],
there is an urgent need for effective protection against the pathogen. Prognosis depends on
hygiene, education, socioeconomic status and access to healthcare. Antibiotics are the only
treatment currently available. Unfortunately, screening and antibiotics treatment programs
have not resulted in a reduction in infection rates. Antibiotic therapy presumably results in
a halted natural immune response that would have otherwise facilitated reinfection [155].
However, high rates of reinfection show that there is a need to develop a vaccine against
Chlamydia [1]. An analysis of the major outer membrane protein (MOMP) in sequences
of C. trachomatis showed the presence of variable domains (VD), regions of DNA unique
to each serovar [156]. The serovar/serocomplex protection elicited during the trachoma
vaccine trials was due to MOMP [157]. Therefore, it was hypothesized that a polyvalent
vaccine formulated with the senior serovar of each complex would protect against all the
individual serovars [158].

4.2. Prevention

Certain public health policies have been endorsed in order to prevent infection with
and transmission of STDs, such as Chlamydia. In addition to these policies, safe sexual
practices are encouraged, e.g., primary prevention tactics such as sexual health educa-
tion [159]. Behavioral counseling interventions adopted by primary care physicians aim
to provide individuals with information on STDs, assess patients’ risks for developing an
STD, advocate for the use of condoms and discuss safe sexual habits [160]. Monogamy is
one such habit [161]. Aside from these steps, screening for asymptomatic infections can
halt the transmission and spread of an STD as well [162].

Prevention of reinfection is also a public health priority. Some measures to prevent
reinfection in individuals are notifying, testing and treating sexual partners from the last six
months [159]. Moreover, sexual partners should abstain from condomless sexual activity
until all involved parties are treated accordingly and any symptoms present at the time of
disease are resolved [100].

5. Conclusions

Chlamydia continues to be a global health concern. Asymptomatic infections and
a lack of universal screening and diagnostic procedures have made the organism easy
to transmit but difficult to detect. Those most at risk include males who have sex with
males, young, sexually active females, pregnant women and neonates. Treatment is usually
effective, but reinfection is common. If untreated, individuals may develop a whole host of
severe complications, including PID, FHCS and infertility (TFI). Prevention of chlamydial
infection is crucial, and education should be provided to those at risk along with their sexual
partners. These factors prompt the need for a quick, easily accessible and inexpensive
test for those at risk worldwide. In this way, diagnosed individuals can seek treatment
early on. Future studies should pilot such a method and map out plans for a vaccine
protecting against chlamydia. Combined therapy and prevention would curb the spread
and transmission of the pathogen globally.
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