

Article



# Multi-Locus Phylogeny and Morphology Reveal Two New Species of *Hypoxylon* (Hypoxylaceae, Xylariales) from Motuo, China

An-Hong Zhu 1,2,3, Zi-Kun Song 1,4, Jun-Fang Wang 1,4, Hao-Wen Guan 1,5 and Hai-Xia Ma 1,6,7,\*

- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China;
   18289679317@163.com (A.-H.Z.); michellesong2021@yeah.net (Z.-K.S.); 15379730137@163.com (J.-F.W.);
   17725357096@163.com (H.-W.G.)
- <sup>2</sup> School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- <sup>3</sup> Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- <sup>4</sup> College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- <sup>5</sup> School of Life Science, Liaoning University, Shenyang 110036, China
- <sup>6</sup> Haikou Key Laboratory for Protection and Utilization of Edible and Medicinal Fungi, Haikou 571101, China
- <sup>7</sup> Hainan Key Laboratory of Tropical Microbe Resources, Haikou 571101, China
- \* Correspondence: mahaixia@itbb.org.cn

**Abstract**: Hypoxylaceous fungi are abundant in China, but their discovery and report are uneven in various provinces, with more fungi in Yunnan and Hainan and fewer fungi in Tibet. During the investigation of macro-fungi in Motuo county, Tibet Autonomous Region, we collected a number of xylarialean specimens. Six hypoxylaceous specimens growing on dead angiosperm were collected from the forests of Motuo county, and they were described and illustrated as two new species in *Hypoxylon* based on a combination of morphological characters and molecular evidence. *Hypoxylon diperithecium* was characterized by its bistratal perithecia, purple-brown stromatal granules, citrine to rust KOH-extractable pigments, and light brown to brown ascospores ellipsoid-inequilateral with conspicuous coil-like ornamentation. *Hypoxylon tibeticum* was distinct from other species by having pulvinate and applanate stromata, surface vinaceous, with orange granules, orange KOH-extractable pigments, and brown ascospores with inconspicuous ornamentation. The multi-gene phylogenetic analyses (ITS-LSU-RPB2-TUB) supported the two new taxa as separate lineages in the genus *Hypoxylon*. A key to all known *Hypoxylon* taxa from China is provided.

Keywords: Ascomycota; multigene phylogeny; new species; taxonomy; Xylariales

## 1. Introduction

Motuo county, between 27°33′–29°55′ N and 93°45′–96°05′ E, is located in the southeastern Tibet Autonomous Region of southwestern China, and it covers an area of 34,000 square kilometers [1–3]. The area enjoys the tropical monsoon rainforest and subtropical humid monsoon climate and is one of the most abundant regions of light, heat and water [4,5]. Its complex topography and diverse habitat abound with different kinds of biological resources, and the area has long been reputed as the "world's biological gene bank". There are extremely abundant animal and plant resources, and more than 3000 plant species, 850 genera and 230 families have been reported in the county (http://www.motuo.gov.cn/, accessed on 18 September 2023) [6–10]. Due to severe climatic conditions and inconvenient transportation, few investigations and studies of macro-fungi diversity have been carried out in Motuo county. In the past, about 200 species of macro-fungi have been reported in Motuo county [11–18], among which four species are pyrenomycetous fungi [12]. In recent years, some new species and new records of pyrenomycetous fungi have

Citation: Zhu, A.-H.; Song, Z.-K.; Wang, J.-F.; Guan, H.-W.; Ma, H.-X. Multi-Locus Phylogeny and Morphology Reveal Two New Species of *Hypoxylon* (Hypoxylaceae, Xylariales) from Motuo, China. *Microorganisms* **2024**, *12*, 72. https://doi.org/10.3390/ microorganisms12010072

Academic Editor: Mohamed Hijri

Received: 8 November 2023 Revised: 12 December 2023 Accepted: 28 December 2023 Published: 29 December 2023



**Copyright:** © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/). been discovered in the area, e.g., *Eutypella motuoensis* Hai X. Ma & Z.E. Yang, *Hypoxylon damuense* Hai X. Ma, Z.K. Song & Y. Li, *H. medogense* Hai X. Ma, Z.K. Song & Y. Li, *H. zangii* Hai X. Ma, Z.K. Song & Y. Li, *Annulohypoxylon leptascum* (Speg.) Y.M. Ju, J.D. Rogers & H.M. Hsieh, *Daldinia bambusicola* Y.M. Ju, J.D. Rogers & F. San Martín, *H. sublenormandii* Suwann., Rodtong, Thienh. & Whalley, and so on [19–21].

In order to further understand the diversity of macro-fungi in Motuo county, we carried out a field survey focusing on xylarialean fungi in September 2021. We collected a number of xylarialean specimens, including Annulohypoxylon, Daldinia, Diatrype, Eutypella, Neoeutypella, Hypoxylon, Jackrogersella, and Xylaria. Hypoxylon Bull. (Hypoxylaceae, Ascomycota) was established by Bulliard in 1791 and typified with H. fragiforme (Pers.) J. Kickx f. [22,23]. The type genus is the largest genera in the family Hypoxylaceae, with more than 200 species accepted [24-26] and 1188 epithets in the Index Fungorum (http://www.indexfungorum.org/Names/Names.asp, accessed on 22 September 2023). Most taxa of the genus are mainly associated with angiosperm wood as saprotrophs and endophytes, and degrade cellulose and lignin, which play a key role in the substance circulation of a forest ecosystem [24,27–31]. Currently, the placement of Hypoxylon and related genera in Hypoxylaceae is confusing because many are polyphyletic [32-36]. In order to further understand the species diversity and phylogeny of Hypoxylaceae, we carried out complete morphological and multi-gene phylogenetic studies on these specimens from Motuo county. In this study, two new species are introduced based on morphological and phylogenetic evidence.

## 2. Materials and Methods

#### 2.1. Morphological Studies

The studied specimens were deposited at the Fungarium of the Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (FCATAS). Morphological observations and measurements in this study followed Ma et al. (2018) [24] and Song et al. (2022) [37]. The morphology of stromata and perithecia were observed and measured by a VHX-6000 microscope (Osaka, Japan). Microscopic characteristics, measurements and photographs of the teleomorph were made from slide preparations of fresh stromata mounted in water, 10% KOH and Melzer's reagent. Sections were observed at a magnification up to ×1000 by using an Olympus IX73 inverted fluorescence microscope (Olympus, Tokyo, Japan). The ornamentation of ascospores were observed with a scanning electron microscope (SEM) (Phenom Corporation, Rotterdam, The Netherlands). The colors were described based on the color-codes by Rayner (1970) [38]. The following abbreviations were used: KOH = 10% potassium hydroxide, n = number of measuring objects, M = average of sizes of all measuring objects.

# 2.2. DNA Extraction and Sequencing

Total genomic DNA was extracted from fresh stromata using a rapid plant genome extraction kit (Aidlab Biotechnologies, Beijing, China) following the manufacturer's instructions. Four loci, including nrITS, nrLSU, RPB2, and beta-tubulin (TUB), were amplified and sequenced using primers pairs ITS4/ITS5 [39], LR0R/LR5 [40], fRPB2-7CR/fRPB2-5F [41], and T1/T22 [42], respectively. The PCR procedures for ITS, LSU, RPB2 and betatubulin followed Ma et al. (2022) [35] in the phylogenetic analyses. Purification and sequencing were performed by the Beijing Genomics Institute (Shenzhen, China), and newly generated sequences were deposited in GenBank.

#### 2.3. Phylogenetic Analysis

Phylogenetic analyses for *Hypoxylon* and related genera including *Annulohypoxylon*, *Jackrogersella*, *Parahypoxylon*, *Pyrenopolyporus*, *Rhopalostroma* and *Thamnomyces* were performed with maximum likelihood (ML) and Bayesian inference (BI) analyses based on the combined ITS-nrLSU-RPB2-TUB dataset (Table 1). *Biscogniauxia nummularia* (Bull.) Kuntze and *Xylaria hypoxylon* (L.) Grev. were used as outgroups [19].

The sequences were aligned using the online MAFFT tool (http://mafft.cbrc.jp/alignment/server/, accessed on 23 August 2023), and edited using BioEdit 7.0.5.3 [43] and ClustalX 1.83 [44]. Maximum likelihood (ML) analysis was conducted by raxmlGUI 2.0 using rapid bootstrapping with 1000 replicates, and GTRGAMMA+G as a substitution model [35]. Bayesian inference (BI) analysis was implemented in MrBayes 3.2.6 [45] using jModelTest 2 to conduct model discrimination. Six simultaneous Markov chains were run for 4,000,000 generations, from which every 100th generation was sampled as a tree. Phylogenetic trees were viewed in FigTree 1.4.2.

Table 1. GenBank accession numbers of sequences used in phylogenetic analyses are presented.

| Species Name                | Specimen No.              | Locality    | GenBank Accession No. |               |               |            |                               |
|-----------------------------|---------------------------|-------------|-----------------------|---------------|---------------|------------|-------------------------------|
|                             |                           |             | ITS                   | LSU           | RPB2          | β-tubulin  | <ul> <li>Reference</li> </ul> |
| Annulohypoxylon annulatum   | CBS 140775                | USA         | KU604559              | KY610418      | KY624263      | KX376353   | [33,46,47]                    |
| A. truncatum                | CBS 140778                | USA         | KX376329              | KY610419      | KY624277      | KX376352   | [33,47]                       |
| Biscogniauxia nummularia    | MUCL 51395                | France      | KY610382              | KY610427      | KY624236      | KX271241   | [33]                          |
| Hypomontagnella barbarensis | STMA 14081                | Argentina   | MK131720              | MK131718      | MK135891      | MK135893   | [34]                          |
| Hy. monticulosa             | MUCL 54604                | Guiana      | KY610404              | KY610487      | KY624305      | KX271273   | [33]                          |
| Hy. submonticulosa          | CBS 115280                | France      | KC968923              | KY610457      | KY624226      | KC977267   | [24,33]                       |
| Hypoxylon addis             | MUCL 52797                | Ethiopia    | KC968931              | -             | -             | KC977287   | [24]                          |
| H. anthochroum              | YMJ 9                     | Mexico      | JN660819              | -             | -             | AY951703   | [24]                          |
| H. aveirense                | CMG 29                    | Portugal    | MN053021              | -             | -             | MN066636   | [48]                          |
| H. baihualingense           | FCATAS 477                | China       | MG490190              | -             | -             | MH790276   | [37]                          |
| H. baruense                 | UCH 9545                  | Panama      | MN056428              | -             | -             | MK908142   | [49]                          |
| H. begae                    | YMJ 215                   | USA         | JN660820              | -             | -             | AY951704   | [32]                          |
| H. bellicolor               | UCH 9543                  | Panama      | MN056425              | -             | -             | MK908139   | [49]                          |
| H. brevisporum              | YMJ 36                    | Puerto Rico | JN660821              | -             | -             | AY951705   | [32]                          |
| H. carneum                  | MUCL 54177                | France      | KY610400              | KY610480      | KY624297      | KX271270   | [33]                          |
| H. cercidicola              | CBS 119009                | France      | KC968908              | KY610444      | KY624254      | KX271270   | [24,33]                       |
| H. chrysalidosporum         | FCATAS 2710               | China       | OL467294              | OL615106      | OL584222      | OL584229   | [35]                          |
| H. crocopeplum              | CBS 119004                | France      | KC968907              | KY610445      | KY624255      | KC977268   | [33]                          |
| H. cyclobalanopsidis        | FCATAS 2714               | China       | OL467298              | OL615108      | OL584225      | OL584232   | [35]                          |
| H. damuense                 | FCATAS 4207               | China       | ON075427              | ON075433      | ON093251      | ON093245   | [19]                          |
| H. dieckmannii              | YMI 89041203              | China       | IN979413              | -             | -             | AY951713   | [32]                          |
| H. dinerithecium            | FCATAS 4226               | China       | ON178671              | ON350864      | ON365561      | ON365565   | This study                    |
| H. diperithecium            | FCATAS 4323               | China       | ON178672              | ON350865      | ON365562      | ON365566   | This study                    |
| H. duranii                  | YMI 85                    | China       | IN979414              | -             | -             | AY951714   | [32]                          |
| H erythrostroma             | YMI 90080602              | China       | IN979416              | _             | -             | AY951716   | [32]                          |
| H. eurasiaticum             | MUCL 57720                | Iran        | MW367851              | -             | MW373852      | MW373861   | [50]                          |
| H fendleri                  | DSM 107927                | USA         | MK287533              | MK287545      | MK287558      | MK287571   | [51]                          |
| H ferrugineum               | CBS 141259                | Austria     | KX090079              | -             | -             | KX090080   | [52]                          |
| H fragiforme                | MUCL 51264                | Germany     | KM186294              | KM186295      | KM186296      | KM186293   | [51]                          |
| H fraxinonhilum             | MUCL 54176                | France      | KC968938              | -             | -             | KC977301   | [24]                          |
| H fulvosulnhureum           | MFLUCC 13-0589            | Thailand    | KP401576              | _             | -             | KP401584   | [53]                          |
| H fuscum                    | CBS 113049                | France      | KY610401              | KY610482      | KY624299      | KX271271   | [33]                          |
| H oibriacense               | MUCL 52698                | Germany     | KC968930              | -             | -             | -          | [24]                          |
| H oreiderae                 | BRIP 72533                | USA         | NR 182619             | OP598062      | -             | _          | [=+]                          |
| H griseohrunneum            | CBS 331 73                | India       | KY610402              | MH872399      | KY624300      | KC977303   | [24 33 55]                    |
| H quilanense                | MUCL 57726                | Iran        | MT214997              | MT214992      | MT212235      | MT212239   | [21,00,00]                    |
| H haematostroma             | MUCL 53301                | Martinique  | KC968911              | KV610484      | KV624301      | KC977291   | [34]                          |
| H hainanense                | FCATAS 2712               | China       | OI 467296             | OI 616132     | OI 584224     | OI 584231  | [35]                          |
| H hinnuleum                 | MUCL 3621                 | USA         | MK287537              | MK287549      | MK287562      | MK287575   | [50]                          |
| Н розреднит                 | MUCL 47599                | Cermany     | Δ M749928             | KV610448      | KV624258      | KC977277   | [31]                          |
| H himowiltum                | MUCL 51845                | Cuadaloupo  | KV610403              | KV610440      | KV624200      | KY2712/7   | [24,00,07]                    |
| H invadens                  | MUCL 51475                | France      | MT809133              | MT809132      | MT813037      | MT813038   | [55]                          |
| H inspections               | CBS 118183                | Malayeia    | KC968925              | KV610450      | KV624259      | KC977270   | [34]33]                       |
| L isobellinum               | STMA 10247                | Martiniqua  | KC968925              | K1010450      | K1024239      | KC977270   | [24,00]                       |
| II. isubellinum             | JIMA 1024/<br>IE12027     | Sri Lanka   | KC700700              | -             | -             | KC9//290   | [∠ <del>4</del> ]<br>[24]     |
| п. jukittschit              | JE 10037                  | оп Lanka    | NIVIO10290            | -             | -             | AV051721   | [24]                          |
| п. jecorinum                | 1 IVIJ 37<br>EA CATA 6945 | China       | JIN7/9429             | -<br>M7020707 | -<br>M7047260 | A1701731   | [32]<br>[26]                  |
| п. junjengense              | FACA1A5045                | China       | 111117984340          | IVIZ.029/0/   | IVIZ.047200   | IVIZ04/204 | [36]                          |

| H. larissae                               | FACATAS844     | China           | MW984548              | MZ029706              | MZ047258              | MZ047262             | [36]                            |
|-------------------------------------------|----------------|-----------------|-----------------------|-----------------------|-----------------------|----------------------|---------------------------------|
| H. laschii                                | MUCL 52796     | Germany         | JX658525              | -                     | -                     | -                    | [59]                            |
| H. lateripigmentum                        | MUCL 53304     | Martinique      | KC968933              | KY610486              | KY624304              | KC977290             | [24,33]                         |
| H. lenormandii                            | CBS 135869     | Cameroon        | KY610390              | KY610453              | KY624262              | KM610295             | [33,60]                         |
| H. liviae                                 | CBS 115282     | Norway          | NR155154              | -                     | -                     | KC977265             | [24]                            |
| H. lividicolor                            | YMJ 70         | China           | JN979432              | -                     | -                     | AY951734             | [32]                            |
| H. lividipigmentum                        | YMJ 233        | Mexico          | JN979433              | -                     | -                     | AY951735             | [32]                            |
| H. macrosporum                            | YMJ 47         | Canada          | JN979434              | -                     | -                     | AY951736             | [32]                            |
| H. medogense                              | FCATAS 4061    | China           | ON075425              | ON075431              | ON093249              | ON093243             | [19]                            |
| H. munkii                                 | YMJ 90080403   | China           | JN979436              | -                     | -                     | AY951738             | [32]                            |
| H. musceum                                | MUCL 53765     | Guadeloupe      | KC968926              | KY610488              | KY624306              | KC977280             | [24,33]                         |
| H. notatum                                | YMJ 250        | USA             | JQ009305              | -                     | -                     | AY951739             | [32]                            |
| H. olivaceopigmentum                      | DSM 10792      | USA             | MK287530              | MK287542              | MK287555              | MK287568             | [51]                            |
| H. perforatum                             | CBS 115281     | France          | KY610391              | KY610455              | KY624224              | KX271250             | [33]                            |
| H. petriniae                              | CBS 114746     | France          | NR155185              | KY610491              | KY624279              | KX271274             | [33]                            |
| H. pilgerianum                            | STMA 13455     | Martinique      | KY610412              | -                     | KY624308              | KY624315             | [33]                            |
| H. porphyreum                             | CBS 119022     | France          | KC968921              | KY610456              | KY624225              | KC977264             | [24,33]                         |
| H. pseudofendleri                         | MFLUCC 11-0639 | Thailand        | KU940156              | KU863144              | -                     | -                    | [61]                            |
| H. pseudofuscum                           | 18264          | Germany         | MW367857              | MW367848              | MW373858              | MW373867             | [50]                            |
| H. pulicicidum                            | CBS 122622     | Martinique      | JX183075              | KY610492              | KY624280              | JX183072             | [33,62]                         |
| H. rickii                                 | MUCL 53309     | Martinique      | KC968932              | KY610416              | KY624281              | KC977288             | [33]                            |
| H. rubiginosum                            | MUCL 52887     | Germany         | KC477232              | KY610469              | KY624266              | KY624311             | [33,63]                         |
| H. rutilum                                | YMJ 181        | France          | -                     | -                     | -                     | AY951752             | [32]                            |
| H. samuelsii                              | MUCL 51843     | Guadeloupe      | KC968916              | KY610466              | KY624269              | KC977286             | [24,33]                         |
| H. shearii                                | YMJ 29         | Mexico          | EF026142              | -                     | -                     | AY951753             | [32]                            |
| H. spegazzinianum                         | STMA 14082     | Argentina       | KU604573              | -                     | -                     | KU604582             | [64]                            |
| H. sporistriatatunicum                    | UCH 9542       | Panama          | MN056426              | -                     | -                     | MK908140             | [49]                            |
| H. suboilvum                              | YMI 88113007   | China           | IO009315              | -                     | -                     | AY951755             | [32]                            |
| H. sublenormandii                         | IF 13026       | Sri Lanka       | KM610291              | -                     | -                     | KM610303             | [60]                            |
| H. teeravasati                            | PUFD4          | India           | KY863509              | MF385274              | MG986895              | MG986894             | [65]                            |
| H texense                                 | DSM 107933     | USA             | MK287536              | MK287548              | MK287561              | MK287574             | [51]                            |
|                                           |                |                 |                       |                       |                       |                      | This                            |
| H. tibeticum                              | FCATAS4022     | China           | OR654146              | OR654303              | ON254302              | ON230084             | study                           |
|                                           |                |                 |                       |                       |                       |                      | This                            |
| H. tibeticum                              | FCATAS4371     | China           | OR654263              | OR654304              | QQ303928              | QQ303964             | studv                           |
|                                           |                |                 |                       |                       |                       |                      | This                            |
| H. tibeticum                              | FCATAS4212     | China           | OR654264              | OR654305              | ON254308              | ON254275             | study                           |
|                                           |                |                 |                       |                       |                       |                      | This                            |
| H. tibeticum                              | FCATAS4373     | China           | OR654265              | OR654306              | QQ303933              | QQ303965             | study                           |
| H ticinense                               | CBS 115271     | France          | IO009317              | KY610471              | KY624272              | AY951757             | [32,33]                         |
| H trugodes                                | MUCL 54794     | Sri Lanka       | KF234422              | NG066380              | KY624282              | KF300548             | [24.33]                         |
| H ulmonhilum                              | YML 350        | Russia          | IO009320              | -                     | -                     | AY951760             | [32]                            |
| H vinosonulvinatum                        | YMI 90080707   | China           | IO009321              | _                     | _                     | AY951761             | [32]                            |
| H vooesiacum                              | CBS 115273     | France          | KC968920              | KY610417              | KY624283              | KX271275             | [33]                            |
| H muijangense                             | GMBC0213       | China           | MT568854              | MT568853              | MT585802              | MT572481             | [66]                            |
| H muzhishanense                           | FCATAS 2708    | China           | OI 467292             | OI 615104             | OI 584220             | OI 584227            | [35]                            |
| 11. шиглизнинензе<br>Н ганоні             | FC ATAS 6092   | China           | 00316425              | 00348528              | 00303910              | 00303948             | [55]                            |
| II. Lungu<br>Iackrogersella cohaerens     | CBS 119126     | Cermany         | KV610396              | KV610497              | KV624270              | KV624314             | [17]                            |
| I multiformis                             | CBS 119016     | Cermany         | KC477234              | KV610477              | KV624270              | KX271262             | [24 33]                         |
| J. mutiformis<br>Darahumorulon nanillatum | ATCC 58729     | LISA            | NR155153              | KV610454              | KV624220              | KC077258             | [24,33]                         |
| Purenonolunorus hunteri                   | MUCL 52672     | Lyory Coast     | KV610491              | KV610404              | KV621200              | KU150520             | [24,00]<br>[33,47]              |
| Du laminocue                              | MUCL 52205     | Martinique      | KT010421<br>KC068024  | K10104/2<br>KV610485  | KV624202              | KC077202             | [33, <del>4</del> 7]<br>[34 22] |
| r y.iuminosus<br>Du micara cucucio        | CRS 117720     | Burking East    | NC700734              | K 1010483<br>VV610480 | N 1024303<br>VV624207 | KC9//292             | [24,00]                         |
| ry. nicuruguensis                         | CBS 11//39     | Durkina Faso    | AW1/49922<br>VV610420 | K1010489              | N 10243U/             | KC9//2/2<br>KV071077 | [24,33,57]<br>[22]              |
| Knopulosiroma angolense                   | CD3 120414     | Eronah          | K1010420              | K1010439              | N 1024228             | ΝΛΖ/1Ζ//             | [33]                            |
| Thamnomyces dendroidea                    | CBS 123578     | Guiana          | FN428831              | KY610467              | KY624232              | KY624313             | [33,67]                         |
| Xylaria hypoxylon                         | CBS 122620     | Sweden          | KY610407              | KY610495              | KY624231              | KX271279             | [33]                            |
|                                           | Species in he  | ld woro dorivod | from this stur        | ty " " are not        | available             |                      |                                 |

4 of 17

Species in bold were derived from this study. "-" are not available.

## 3. Results

#### 3.1. Phylogenetic Analysis

The phylogeny of *Hypoxylon* and related genera based on a combined ITS-nrLSU-RPB2-TUB dataset included 98 ITS, 64 nrLSU, 65 RPB2 and 95 TUB sequences from 97 specimens representing 93 taxa. There were 2852 character positions for ITS alignment, 3462 character positions for LSU alignment, 1288 character positions for RPB2 alignment, and 2225 character positions for TUB alignment. The dataset of four DNA loci had an aligned length of 3538 characters, of which 1520 characters were parsimony informative.

The topologies from BI and ML analyses are highly similar; the BI tree is shown in this study. Branches that received bootstrap support for maximum likelihood (ML) higher than or equal to 70% (ML-BS) and Bayesian posterior probabilities (BPP) higher than or equal to 0.95 (BPP) were showed in topologies. In phylogenetic analysis, the two new species were clearly separated from other sampled species of *Hypoxylon*. The two strains of *H. diperithecium* were closely related to *H. anthochroum* Berk. & Broome and *H. griseobrunneum* (B.S. Mehrotra) J. Fourn., Kuhnert & M. Stadler with high support (BS = 98, PP = 1.00, Figure 1), and four strains of *H. tibeticum* clustered with *H. pseudofendleri* D.Q. Dai, K.D. Hyde with high support (BS = 94, PP = 1.0, Figure 1).



**Figure 1.** BI phylogenetic tree of the genus *Hypoxylon* inferred from multi-gene alignment of ITS-LSU-RPB2-TUB. ML bootstrap support (BS)  $\geq$  70% and Bayesian posterior probabilities (PP)  $\geq$  0.95 are given at the nodes in this order. New species in this study are indicated in bold.

3.2. Taxonomy



# Hypoxylon diperithecium Hai X. Ma, Z.K. Song & A.H. Zhu, sp. nov., Figure 2.

**Figure 2.** *Hypoxylon diperithecium* (holotype, FCATAS 4226). (**a**,**b**). Stromata; (**c**,**d**). Stroma in vertical section showing the perithecia and tissue below the perithecial layer; (**e**,**o**). Ascus in water; (**f**,**g**). Ascospore in water; (**h**). Ascospores and germ slit; (**i**,**j**). Ascospore in 10% KOH; (**k**). Ascospores under SEM; (**l**). KOH-extractable pigments; (**m**). Apical apparatus; (**n**). Ascus in Melzer's reagent. Scale bars: (**a**) = 1 mm; (**b**–**d**) = 200  $\mu$ m; (**e**–**j**,**m**–**o**) = 10  $\mu$ m; (**k**) = 5  $\mu$ m.

MycoBank: MB850560

**Diagnosis.** Differs from *H. griseobrunneum* in its two layers of perithecia, smaller perithecia and asci with shorter stipes. Differs from *H. subgilvum* in its perithecial layer and color of KOH-extractable pigments and ascospores.

**Etymology.** The epithet *diperithecium* (Lat.) refers to the species has bistratal perithecia.

**Holotype.** China: Tibet Autonomous Region, Motuo County, Damu Township, Kabu Village, 29°38′42″ N, 95°37′44″ E, alt. 1280 m, saprobic on the bark of dead wood, 2 October 2021, Haixia Ma & Zikun Song, FCATAS 4226 (XZ226).

**Teleomorph.** Stromata pulvinate,  $1.4-5 \times 0.4-1.3$  cm  $\times 0.8-1.2$  mm thick; with inconspicuous to conspicuous perithecial mounds; surface livid purple (81) to bay (6), exposing

black subsurface layer when colored coating worn off; with purple-brown granules immediately beneath the surface and between perithecia; yielding citrine (13) to rust (39) KOH-extractable pigments; tissue below the perithecial layer dark brown, 0.1–0.7 mm thick. Perithecia ovoid to tubular, bilayer, black, 0.1–0.3 × 0.25–0.45 mm. Ostioles opening higher than the stromatal surface. Asci cylindrical with eight obliquely uniseriate ascospores, 78–139 µm total length, the spore-bearing portion 56–73 × 5.2–7.6 µm, and stipes 23–77 µm long, with amyloid apical apparatus bluing in Melzer's reagent, discoid, 0.7–0.8 × 1.9–2.1 µm. Ascospores light brown to brown, unicellular, ellipsoid-inequilateral, with narrowly rounded ends, 9.2–11.6 × 4–5.7 µm (n = 60, M = 10.2 × 4.8 µm), with straight spore-length germ slit on the convex side; perispore dehiscent in 10% KOH, with conspicuous coil-like ornamentation in SEM; epispore smooth.

Additional specimens examined. China: Tibet Autonomous Region, Motuo County, Damu Township, Kabu Village, 29°37′45″ N, 95°37′50″ E, alt. 1300 m, saprobic on the bark of dead wood, 2 October 2021, Haixia Ma & Zikun Song, Col. XZ323 (FCATAS 4323).

**Note.** Some stromata of *Hypoxylon diperithecium* have two layers of perithecia visible, and the upper and the lower may be same species according to morphology of ascospore and perithecia; this feature is similar to *H. subgilvum* Berk. & Broome. *Hypoxylon subgilvum* has three stromatal layers with the basal layer an effete *Biscogniauxia*, and other two layers are considered the same species [23,68]. Morphologically, *H. subgilvum* can be distinguished from *H. diperithecium* by its orange red stromatal granules, KOH-extractable pigments orange, and brown to dark brown ascospores [23]. Moreover, molecular evidence supported *H. diperithecium* as a distinct species from *H. subgilvum* (Figure 1).

Although *H. anthochroum* and *H. griseobrunneum* were grouped with *H. diperithecium* (Figure 1), they differ from the new species proposed here because the former has only one layer of perithecia instead of two layers and has dull reddish brown or blackish granules immediately beneath surface and between perithecia, yielding isabelline (65), olivaceous (48), gray olivaceous (107), greenish olivaceous (90), or amber (47) KOH-extractable pigments [23]. While some stromata of *H. griseobrunneum* tend to develop multiple perithecial layers, it can be distinguished from *H. diperithecium* by having larger perithecia, with KOH-extractable pigments Fawn (87), and longer stipes of asci (76–86 µm) [24]. Therefore, *H. diperithecium* is proposed as a new species.

Hypoxylon tibeticum Hai X. Ma, Z.K. Song & A.H. Zhu, sp. nov., Figure 3.



**Figure 3.** *Hypoxylon tibeticum* (holotype, FCATAS 4226). (**a**,**b**). Stromata; (**c**). Stromatal surface; (**d**). Stroma in vertical section showing the perithecia and tissue below the perithecial layer; (**e**). KOH-

extractable pigments; (f). Ascus in water; (g,h). Ascus and apical apparatus in Melzer's reagent; (i– l). Ascus in water; (m–p). Ascospore in water; (q,r). Ascospores in 10% KOH; (s,t). Ascospores under SEM. Scale bars: (a,b,e) = 1 cm; (c,d) = 200  $\mu$ m; (f) = 20  $\mu$ m; (g–t) = 10  $\mu$ m.

#### MycoBank: MB850558

**Diagnosis.** Differs from *H* pseudofendler in its smaller perithecia and slightly larger ascospores. Differs from *H. wuzhishanense* in its brown vinaceous stromatal surface with orange granules between perithecia and perispore dehiscent in KOH. Differs from *H. pil-gerianum* in its larger ascospores.

**Etymology.** The epithet *tibeticum* (Lat.) refers to the locality (Tibet Autonomous Region) of the type specimens.

**Holotype.** China: Tibet Autonomous Region, Motuo County, Damu Township, Kabu Village, the large bend of Linduo, 29°27′51″ N, 95°26′39″ E, alt. 781 m, saprobic on the stems of dead bamboo, 24 September 2021, Haixia Ma & Zikun Song, FCATAS 4022 (XZ22).

**Teleomorph.** Stromata effused-pulvinate, applanate,  $1.4-11.1 \times 0.2-1.5$  cm  $\times 0.2-0.35$  mm thick, irregularly elongate, often coalescent; surface brown vinaceous (84) or dark vinaceous (85), pruinose, with inconspicuous to slightly conspicuous perithecial mounds; with orange granules immediately beneath the surface and between perithecia; yielding orange (7) KOH-extractable pigments; the tissue beneath the perithecia dark brown, 0.05-0.15 mm thick. Perithecia spherical, black, 0.1-0.23 mm diam. Ostioles umbilicate, opening lower than the stromatal surface, mostly fringed with white material forming a disc. Asci cylindrical, with eight obliquely uniseriate ascospores, 75-101 µm total length, the sporebearing portion  $64-91 \times 7.8-11.5$  µm, and stipes 9-17 µm long, with amyloid apical apparatus bluing in Melzer's reagent, discoid,  $0.89-1.54 \times 2.1-2.95$  µm. Ascospores brown, unicellular, ellipsoid-inequilateral, with narrowly to broad rounded ends,  $9.8-13 \times 5.1-6.9$  µm (n = 60, M =  $11.34 \times 6.21$  µm), with straight spore-length germ slit on the convex side; perispore dehiscent in 10% KOH, with faint inconspicuous coil-like ornamentation in SEM; epispore smooth.

Additional specimens examined. China: Tibet Autonomous Region, Motuo County, Damu Township, Kabu Village, the large bend of Linduo, 29°27′51″ N, 95°26′39″ E, alt. 780 m, saprobic on the stems of dead bamboo, 24 September 2021, Haixia Ma & Zikun Song, FCATAS 4371 (XZ324); Kabu Village, 29°37′45″ N, 95°37′50″ E, alt. 1280 m, saprobic on dead bamboo, 2 October 2021, Haixia Ma & Zikun Song, FCATAS4212 (XZ212), FCATAC4373 (XZ326).

**Note.** Based on the phylogenetic analyses, four species of *Hypoxylon* growing on dead bamboo culms grouped together (Figure 1), including *H. pilgerianum* Henn., *H. pseudofendleri* D.Q. Dai & K.D. Hyde, *H. wuzhishanense* Hai X. Ma & Z.K. Song, and the new species *H. tibeticum*.

In the phylogenetic tree (Figure 1), *H. tibeticum* is the sister species of *H. pseudofendleri* from Thailand with strong support values (BS = 94, PP = 1). Morphologically, both *H. tibeticum* and *H. pseudofendleri* have effused-pulvinate and purplish-brown stromata, with orange granules beneath the surface and between perithecia. However, *H pseudofendleri* differs in its larger perithecia ( $0.5-0.85 \times 0.35-0.5 \text{ mm}$ ), ostioles slightly higher than the stromatal surface, and slightly smaller ascospores ( $9-11.5 \times 4.5-6.5 \mu \text{m}$ ,  $M = 10.2 \times 5.7 \mu \text{m}$ ) [61]. *Hypoxylon wuzhishanense* from Hainan tropical rainforest of China has similar stromatal morphology and ascospores size, but it has rust (39), livid purple (81) to dark brick (60) stromatal surface, with yellowish-brown granules beneath the surface and between perithecia, and most of perispore indehiscent in 10% KOH [35]. *Hypoxylon pilgerianum* was first described from Brazil on culms of *Chusquea* [69]; subsequently, many specimens on culms of dead bamboo were found from China, Madagascar, Malaysia, Papua New Guinea, and Trinidad [23,68]. *Hypoxylon pilgerianum* s. Ju & Rogers is similar to *H. tibeticum* in stromatal morphology, but it differs in having shorter [8.5–12 (–13.5) µm] and narrower

| ascospores [4–5 (–5.5) μm] [23]. Moreover, the phylogenetic analyses (Figure 1) showed that they are different species. <b>Dichotomous key to</b> <i>Hypoxylon</i> <b>species from China</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Stromata on bamboo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1. Stromata on dicot wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2. Most perispore indehiscent in 10% KOH H. wuzhishanense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2. Perispore dehiscent in 10% KOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3. KOH-extractable pigments ochreous (44), honey (64) or amber (47); ascospores 8.5–12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $(-13.5) \times 4-5 (-5.5)$ um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3. KOH-extractable pigments orange (7): ascospores 9.8–13 × 5.1–6.9 u <i>H. tibeticum</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4. Stromatal surface dark cvan blue or olivaceous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4. Stromatal surface other colors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5. Stromatal surface dark cvan blue: ascospores 11.5–13.5 × 5–6 µm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5. Stromatal surface olivaceous or isabelline: ascospores $9-13 \times (4-) 45-6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Im H musceum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6 Ascospores equilateral or nearly equilateral 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6 Ascospores inequilateral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7 Octicles higher than the strematal surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7. Ostioles lower than the stromatal surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8 Stromata glomorate to pulvinate with very conspiguous parithecial mounds; KOH ev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| tractable nigmante icabelling ((E) or basel (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <sup>8</sup> Streame te graduine te swith in seneral means paritheorial means de KOLL systematelle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8. Stromata pulvinate, with inconspicuous perimecial mounds; KOH-extractable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Deries on debiesent in 10% KOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9. Perispore dehiscent in 10% KOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>9. Perispore dehiscent in 10% KOH</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9. Perispore dehiscent in 10% KOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9. Perispore dehiscent in 10% KOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>9. Perispore dehiscent in 10% KOH</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>9. Perispore dehiscent in 10% KOH</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>9. Perispore dehiscent in 10% KOH</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>9. Perispore dehiscent in 10% KOH</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>9. Perispore dehiscent in 10% KOH</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>9. Perispore dehiscent in 10% KOH</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>9. Perispore dehiscent in 10% KOH</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>9. Perispore dehiscent in 10% KOH</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9. Perispore dehiscent in 10% KOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9. Perispore dehiscent in 10% KOH. <i>H. hypomiltum</i> 9. Perispore indehiscent in 10% KOH.1010. Perithecia tubular to long tubular.1110. Perithecia obovoid1311. Stromatal surface fulvous (43), rust (39), sinna (8), ochreous (44), or apricot (42); KOH-<br>extractable pigments orange (7) <i>H. cinnabarinum</i> 11. Stromatal surface sepia (63) or chestnut (40)1212. KOH-extractable pigments greenish yellow (16), dull green (70), or dark green (21);<br>ascospores 6.5–9.5 (–10) × 3–4.5 µm <i>H. investiens</i> 12. KOH-extractable pigments livid violet (79), violaceous gray (113), or violet slate (99);<br>ascospores (10.5–) 11–16 × (4.5–) 5–6.5 µm <i>H. sclerophaeum</i> 13. Without apparent KOH-extractable pigments or dilute grayish sepia1414. Without apparent KOH-extractable pigments or dilute grayish sepia (106); ascospores15 |
| 9. Perispore dehiscent in 10% KOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| 15. KOH-extractable pigments hazel (88); ascospores 7–8.5 × 4–4.5 μm.                                                  | H. gilbertsonii                    |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 16. Stromata hemispherical to spherical                                                                                |                                    |
| 16. Stromata pulvinate to effused-pulvinate                                                                            | 23                                 |
| 17. Ascospore length up to 20 μm                                                                                       |                                    |
| 17. Ascospore length less than 20 μm                                                                                   |                                    |
| 18. Ascospores 18–28 × 6–10 μm                                                                                         |                                    |
| 18. Ascospores 8–20 × 4–8 μm                                                                                           |                                    |
| 19. Perithecia tubular                                                                                                 | 20                                 |
| 19. Perithecia spherical to obovoid                                                                                    | 21                                 |
| 20. Stromata with orange red granules, with KOH-extractable pigmer                                                     | nts orange (7) or                  |
| scarlet (5); ascospores 13.5–18 (–19) × 7–8 (–8.5) µm                                                                  | H. haematostroma                   |
| 20. Stromata with dark reddish brown or blackish granules, with KO                                                     | H-extractable                      |
| pigments olivaceous (48), greenish olivaceous (90), isabelline (65),                                                   | or dull green (70);                |
| ascospores 8.5–18.5 × 4.5–8 (–8.5) μm                                                                                  | H. placentiforme                   |
| 21. KOH-extractable pigments amber (47) with greenish yellow (16) t                                                    | one, or greenish                   |
| yellow (16) with citrine (13) tone; ascospores (8–) 9–12 (–13) × 4–6 µ                                                 | m H. perforatum                    |
| 21. KOH-extractable pigments orange (7)                                                                                |                                    |
| 22. Ascospores (10.5–) 11–15 × 5–6.5 (–7) μm, with straight germ slit                                                  | H. fragiforme                      |
| 22. Ascospores 7–9.5 (–10) × 3–4.5 $\mu$ m, with slight sigmoid germ slit                                              | H. howeianum                       |
| 23. Ostioles at the same level or higher than the stromatal surface                                                    |                                    |
| 23. Ostioles lower than the stromatal surface                                                                          | 29                                 |
| 24. Perithecia tubular, ascospores 6–7.5 × 3–3.5 μm                                                                    | H. lienhwacheense                  |
| 24. Perithecia spherical to obovoid                                                                                    | 25                                 |
| 25. KOH-extractable pigments orange (7), scarlet (5) or amber (47)                                                     |                                    |
| 25. KOH-extractable pigments with other colors                                                                         |                                    |
| 26. Stromata with red or scarlet granules; as cospores $7.5-9.5 \times 3.5-4.5$                                        | um <i>H. rutilum</i>               |
| 26. Stromata with orange granules                                                                                      | 27                                 |
| 27. Ascospores 8–10 × 3.5–4.5 μm                                                                                       | H. laschii                         |
| 27. Ascospores 9.9–12.8 × 4.6–7 μm                                                                                     |                                    |
| 28. KOH-extractable pigments hazel (88), sienna (8), cinnamon (62), f                                                  | ulvous (43), umber                 |
| (9), or ochreous (44); ascospores 9.5–15 (–16) × 4–6.5 (–7) $\mu m$                                                    | H. lenormandii                     |
| 28. KOH-extractable pigments pale vinaceous (85) to livid vinaceous                                                    | (83) and vinaceous                 |
| purple (101); ascospores 6.1–9.6 × 3.2–5 $\mu m$                                                                       | H. hainanense                      |
| 29. Without apparent KOH-extractable pigments; ascospores (12-) 13                                                     | –16 × 5–6 μm                       |
|                                                                                                                        |                                    |
|                                                                                                                        | retzschmarioides                   |
| 29. With KOH-extractable pigments                                                                                      | etzschmarioides<br>30              |
| <ul> <li>H. kr</li> <li>29. With KOH-extractable pigments</li> <li>30. Most ascospore length less than 8 μm</li> </ul> | etzschmarioides<br>30<br>31        |
| <ul> <li>H. kr</li> <li>29. With KOH-extractable pigments</li></ul>                                                    | retzschmarioides<br>30<br>31<br>33 |
| <ul> <li>H. kr</li> <li>29. With KOH-extractable pigments</li></ul>                                                    | <i>etzschmarioides</i><br>         |
| <ul> <li><i>H. kr</i></li> <li>With KOH-extractable pigments</li></ul>                                                 | <i>etzschmarioides</i><br>         |
| <ul> <li>H. kr</li> <li>29. With KOH-extractable pigments</li></ul>                                                    | etzschmarioides<br>                |

| 32. Perithecia spherical to ovoid; ascospores 6.5–8.5 × 4–5 μm                                         | e      |
|--------------------------------------------------------------------------------------------------------|--------|
| 33. Asci with apical apparatus highly reduced or lacking, not bluing in Melzer's reagent               |        |
| 33. Asci with apical apparatus bluing in Melzer's reagent                                              | 9      |
| 34. KOH-extractable pigments orange tone                                                               | 5      |
| 34. KOH-extractable pigments other colors                                                              | 7      |
| 35. Ascospores with inconspicuous coil-like ornamentation, (9–) 9.5–12 × 5–6 μm                        | <br>a  |
| 35. Ascospores with conspicuous coil-like ornamentation                                                | 6      |
| 36. KOH-extractable pigments orange (7), sienna (8), or amber (47); ascospores 9.2–15.6                | ×      |
| 5.5–7.5 μm, with spore-length straight germ slit                                                       | ?      |
| 36. KOH-extractable pigments luteous (12); ascospores 12–14 × 5.5–6.5 (–7) μm <i>H. shear</i>          | ii     |
| 37. Ascospores with inconspicuous coil-like ornamentation, (11–) 12–16 × (5.5–) 6–7.5 μm.              |        |
|                                                                                                        |        |
| 37. Ascospores with conspicuous coil-like ornamentation                                                | 3      |
| 38. Ascospores 8–10.6 (–11.1) × 4.1–6.3 (–7.1) μm, with conspicuously straight spore-lengt germ slit   | h<br>n |
| 38. Ascospores 11–15.2 × 5.1–7 $\mu$ m, with more sigmoid to less straight spore-length germ           | ı      |
| slit                                                                                                   | s      |
| 39. Ascospores with conspicuous coil-like ornamentation                                                | 0      |
| 39. Ascospores smooth or with inconspicuous coil-like ornamentation                                    | 4      |
| 40. Most perispore indehiscent in 10% KOH; ascospores 8.2–10.5 × 4.1–5.5 μm                            | ••     |
|                                                                                                        |        |
| 40. Perispore dehiscent in 10% KOH                                                                     | 1      |
| 41. Ascospores with straight germ slit                                                                 | 2      |
| 41. Ascospores with straight to slightly sigmoid germ slit                                             | 3      |
| 42. Perithecia bilayer; ascospores 9.2–11.6 × 4–5.7 μm                                                 | n      |
| 42. Perithecia monolayer; ascospores 10.3–13.6 × (4.2–) 4.7–6.1 μm                                     | e      |
| 43. KOH-extractable pigments orange (7) or scarlet (5); ascospores (9) 9.5–12 × 4.5–5 μm               | ••••   |
| H. retpela                                                                                             |        |
| 43. KOH-extractable pigments is<br>abelline (65) or amber (47); as<br>cospores 9.5–13 (–14.5) $\times$ |        |
| 4.5–6.5 μm                                                                                             | ii     |
| 44. Ascospore length up to 15 μm                                                                       | )      |
| 44. Ascospore length less than 15 μm                                                                   | )      |
| 45. Stromatal surface cinnamon (62), fulvous (43), apricot (42), sienna (8), rust (39), or ba          | y      |
| (6); ascospores (9–) 9.5–15 (–17.5) × 4–7 (–7.5) μm                                                    | n      |
| 45. Stromatal surface rust (39), sienna (8), fulvous (43), or bay (6); ascospores 15.5–22.9 (-         | -      |
| 23.6) × 7.3–10.6 μm                                                                                    | e      |
| 46. Ascospores with sigmoid germ slit                                                                  | 7      |
| 46. Ascospores with straight, straight or slightly sigmoid germ slit4                                  | 8      |
| 47. KOH-extractable pigments orange (7); ascospores (8–) 9–12 × 4–5.5 μm                               | ri     |

| 47. KOH-extractable pigments vinaceous purple (101); as<br>cospores 9.5–12.5 $\times$ 5–6 $\mu$  |            |
|--------------------------------------------------------------------------------------------------|------------|
| H. f                                                                                             | fuscoides  |
| 48. Ascospores with straight germ slit                                                           | 49         |
| 48. Ascospores with straight to slightly sigmoid germ slit                                       | 53         |
| 49. KOH-extractable pigments orange tone                                                         | 50         |
| 49. KOH-extractable pigments other colors                                                        | 51         |
| 50. Stromata with orange granules; as<br>cospores (10–) 10.5–11.5 (–12.5) $\times$ 5–6.5 $\mu m$ |            |
|                                                                                                  | H. dengii  |
| 50. Stromata with yellowish brown or brown granules; as<br>cospores (8–) 9–12 $\times$ 4–5       | .5 μm      |
| H. rubi                                                                                          | ginosum    |
| 51. Perithecia obovoid to tubular; ascospores 8–11 × 3.5–4.5 $\mu$ mH.                           | trugodes   |
| 51. Perithecia spherical, ovoid to obovoid                                                       | 52         |
| 52. Stromatal surface brown vinaceous; ascospores 11–13 × 5–6 μm <i>H. vinosopu</i>              | lvinatum   |
| 52. Stromatal surface livid red and vinaceous; as cospores 10.9–14.6 $\times$ 4.8–6.4 $\mu m$    | H. zangii  |
| 53. KOH-extractable pigments orange                                                              | 54         |
| 53. KOH-extractable pigments other colors                                                        | 55         |
| 54. Asci with apical apparatus bluing to faintly bluing in Melzer's iodine reage                 | ent, 0.3–1 |
| $\mu m$ high × 1.5–2.2 $\mu m$ broad; ascospores 7–11 × 3.5–5 $\mu m$                            | ubgilvum   |
| 54. Asci with apical apparatus bluing in Melzer's iodine ragent, 0.2–0.5 $\mu m$ hig             | h × 1–1.5  |
| $\mu m$ broad; ascospores 8–9.5 (–11) × 4–5 $\mu m$                                              | corinum    |
| 55. Perithecia tubular; ascospores 11–12.5 × 4.5–5 $\mu$ mH. <i>lia</i>                          | vidicolor  |
| 55. Perithecia subglobose or obovoid to tubular                                                  | 56         |
| 56. Perithecia obovoid to tubular; as cospores $8.5-13.5 \times 4-6 \ \mu m$                     | ochroum    |
| 56. Perithecia subglobose; ascospores 8.5–10 × 4.5–6 μm                                          | iangensis  |

# 4. Discussion

Currently, the genus *Hypoxylon* is still considered a paraphyletic group in Hypoxylaceae based on a single-region (ITS sequences) or multi-locus phylogeny involving both proteincoding and rDNA genes [33,70–72]. In this study, two species of *Hypoxylon* from Tibet of China, *H. diperithecium* and *H. tibeticum*, are proposed as new species based on morphological features and multi-gene (ITS-LSU-RPB2-TUB) phylogenetic analyses. Fifty-five species of *Hypoxylon* have been reported and described in China [19,35,36,66,73,74], and this study expanded the numbers of *Hypoxylon* species to 57 around China. However, studies in China are still few and the relationships amongst *Hypoxylon* species remain unresolved. Therefore, more comprehensive studies on the diversity, phylogeny, and evolution of the genus *Hypoxylon* depend on more collections and data from poorly sampled areas. With the in-depth investigation of *Hypoxylon* in Tibet, an increasing number of new species and new records will be discovered, and the species diversity will be richer.

**Author Contributions:** A.-H.Z., Z.-K.S. and H.-X.M. prepared the samples; Z.-K.S. made morphological examinations and performed molecular sequencing; J.-F.W. and H.-W.G. performed phylogenetic analyses; A.-H.Z. and H.-X.M. wrote the manuscript; H.-X.M. conceived and supervised the work. All authors have read and agreed to the published version of the manuscript.

**Funding:** This study was financed by the Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences (No. 1630032022001), the National Natural Science Foundation of China (No. 31972848), the Collection, preservation, identification and evaluation of tropical crop germplasm resources in the remote tropical area (NON-YNCBKFSXM2023-2025). Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

**Data Availability Statement:** All sequences newly generated were deposited in GenBank (https://www.ncbi.nlm.nih.gov/genbank/ (accessed on 16 October 2023); Table 1). All new taxa were deposited in MycoBank (https://www.mycobank.org/ (accessed on 18 October 2023); MycoBank identifiers follow new taxa).

Acknowledgments: We gratefully acknowledge Zhen Liu (Motuo Forestry and Grassland Administration) and Zhu-Nian Wang, Qing-long Wang, Hu-Biao Yang, Shi-Song Xu (Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences) for help during field collections. Special thanks to Xiao-Wei Qin (Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences) and Xiao-Peng Wu (Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences) for assistance in micrographs produced by SEM.

Conflicts of Interest: The authors declare no conflicts of interest.

#### References

- 1. Fu, D.F.; Song, Q.G.; Li, D.J. Analysis of forest vegetation biomass and carbon storage in Motuo county of Tibet. *Hunan For. Sci. Technol.* **2015**, *42*, 67–72. https://doi.org/10.3969/j.issn.1003-5710.2015.04.015.
- 2. Peng, B.Z. Some problems of vertical zonation in MT. Namjagbarwa area. Acta Geogr. Sin. 1986, 41, 51–58.
- 3. Feng, M.; Zhu, R.J.; Zhao, G.F. Utilization of wild plant resources and development suggestions of agricultural industry in Motuo tropical area of Tibet. *Chin. J. Trop. Agric.* 2022, *42*, 38–41. https://doi.org/10.12008/j.issn.1009-2196.2022.02.006.
- 4. Chen, P.; Li, B. Analysis of water vapour transport characteristics and implications in Southeast Tibetan Plateau. *South China Agric*. 2018, *12*, 124–125. https://doi.org/10.19415/j.cnki.1673-890x.2018.09.066.
- Wang, J.; De, Q.; Dan, Z.; Wang, Y.; De, J.; Chen, G.Y. Characteristic and causal analysis of concentrated and frequently occurring intense rainfall in Tibet in 2012–2018. *Meteorol. Sci. Technol.* 2021, 49, 211–217. https://doi.org/10.19517/j.1671-6345.20200119.
- 6. Wu, Z.Y. Flora of Tibet; Science Press: Beijing, China, 1983; Volume 1, 791p.
- 7. Wu, Z.Y. Flora of Tibet; Science Press: Beijing, China, 1985; Volume 2, 956p.
- 8. Wu, Z.Y. Flora of Tibet; Science Press: Beijing, China, 1986; Volume 3, 1046p.
- 9. Wu, Z.Y. Flora of Tibet; Science Press: Beijing, China, 1985; Volume 4, 1021p.
- 10. Wu, Z.Y. Flora of Tibet; Science Press: Beijing, China, 1987; Volume 5, 955p.
- 11. Wang, Y.C.; Zang, M.; Ma, Q.M.; Kong, H.Z.; Mao, X.L.; Qi, Z.T.; Sun, Z.M.; Shen, R.X.; Ying, J.Z.; Li, M.X.; et al. *Fungi of Tibet*; Science Press: Beijing, China, 1983; 224p.
- 12. Mao, X.L.; Jiang, C.P.; Ouzhu, C.W. Economic Fungi of Tibet; Science Press: Beijing, China, 1993; 651p.
- 13. Ge, Z.W.; Yang, Z.L.; Vellinga, E.C. The genus *Macrolepiota* (Agaricaceae, Basidiomycota) in China. *Fungal Divers.* **2010**, 45, 81–98. https://doi.org/10.1007/s13225-010-0062-0.
- 14. Li, G.J.; Zhao, D.; Li, S.F.; Wen, H.A.; Liu, X.Z. *Russula chiui* and *R. pseudopectinatoides*, two new species from southwestern China supported by morphological and molecular evidence. *Mycol. Prog.* **2015**, *14*, 1–14. https://doi.org/10.1007/s11557-015-1054-y.
- 15. Wu, F.; Chen, J.J.; Ji, X.H.; Vlasák, J.; Dai, Y.C. Phylogeny and diversity of the morphologically similar polypore genera *Rigidoporus*, *Physisporinus*, *Oxyporus*, and *Leucophellinus*. *Mycologia* **2017**, *109*, 749–765. https://doi.org/10.1080/00275514.2017.1405215.
- 16. Song, J.; Sun, Y.F.; Ji, X.; Dai, Y.C.; Cui, B.K. Phylogeny and taxonomy of *Laetiporus* (Basidiomycota, Polyporales) with descriptions of two new species from western China. *MycoKeys* **2018**, *37*, 57–71. https://doi.org/10.3897/mycokeys.37.26016.
- 17. Wang, P.M.; Yang, Z.L. Two new taxa of the *Auriscalpium vulgare* species complex with substrate preferences. *Mycol. Prog.* **2019**, *18*, 641–652. https://doi.org/10.1007/s11557-019-01477-3.
- Liu, S.; Chen, Y.Y.; Sun, Y.F.; He, X.L.; Song, C.G.; Si, J.; Liu, D.M.; Gates, G.; Cui, B.K. Systematic classification and phylogenetic relationships of the brown-rot fungi within the Polyporales. *Fungal Divers.* 2023, 118, 1–94. https://doi.org/10.1007/s13225-022-00511-2.
- 19. Song, Z.K.; Zhu, A.H.; Liu, Z.D.; Qu, Z.; Li, Y.; Ma, H.X. Three new species of *Hypoxylon* (Xylariales, Ascomycota) on a multigene phylogeny from Medog in Southwest China. *J. Fungi* 2022, *8*, 500. doi.org/10.3390/jof8050500.
- Zhu, A.H.; Gao, Y.; Tang, K.; Song, Z.K.; Yang, Z.E.; Ma, H.X. Newly recorded species of *Hypoxylaceae* (Ascomycota) from Medog in China. *Chin. J. Trop. Crops* 2022, 43, 2268–2274. https://doi.org/10.3969/j.issn.1000-2561.2022.11.011.
- Ma, H.X.; Yang, Z.E.; Song, Z.K.; Qu, Z.; Li, Y.; Zhu, A.H. Taxonomic and phylogenetic contributions to Diatrypaceae from southeastern Tibet in China. *Front. Microbiol.* 2023, 14, 1073548. https://doi.org/10.3389/fmicb.2023.1073548
- 22. Miller, J.H. A Monograph of the World Species of Hypoxylon; University Georgia Press: Athens, Greece, 1961; 158p.
- 23. Ju, Y.M.; Rogers, J.D. A Revision of the Genus Hypoxylon; American Phytopathological Society Press: St. Paul, MN, USA, 1996; 365p.
- Ma, H.X.; Qiu, J.Z.; Xu, B.; Li, Y. Two *Hypoxylon* species from Yunnan Province based on morphological and molecular characters. *Phytotaxa* 2018, 376, 27–36. https://doi.org/10.11646/phytotaxa.376.1.3.

- Kuhnert, E.; Fournier, J.; Peršoh, D.; Luangsa-ard, J.J.; Stadler, M. New *Hypoxylon* species from Martinique and new evidence on the molecular phylogeny of *Hypoxylon* based on ITS rDNA and b-tubulin data. *Fungal Divers.* 2014, 64, 181–203. https://doi.org/10.1007/s13225-013-0264-3.
- Wijayawardene, N.N.; Hyde, K.D.; Rajeshkumar, K.C.; Hawksworth, D.L.; Madrid, H.; Kirk, P.M.; Braun, U.; Singh, R.V.; Crous, P.W.; Kukwa, M.; et al. Notes for genera: Ascomycota. *Fungal Divers.* 2017, *86*, 1–594. https://doi.org/10.1007/s13225-017-0386-0.
- Hyde, K.D.; Norphanphoun, C.; Maharachchikumbura, S.S.N.; Bhat, D.J.; Jones, E.B.G.; Bundhun, D.; Chen, Y.J.; Bao, D.F.; Boonmee, S.; Calabon, M.S.; et al. Refined families of Sordariomycets. *Mycosphere* 2020, *11*, 305–1059. https://doi.org/10.5943/my-cosphere/11/1/7.
- 28. Whalley, A.J.S. The Xylariaceae: Some ecological considerations. *Sydowia* **1985**, *38*, 369–382.
- 29. Rogers, J.D. Thoughts and musings on tropical Xylariaceae. *Mycol. Res.* 2000, 104, 1412–1420. https://doi.org/10.1017/S0953756200003464.
- U'Ren, J.M.; Miadlikowska, J.; Zimmerman, N.B.; Lutzoni, F.; Stajich, J.E.; Arnold, A.E. Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of *Xylariaceae* (Sordariomycetes, Ascomycota). *Mol. Phylogenet. Evol.* 2016, 98, 210–232. https://doi.org/10.1016/j.ympev.2016.02.010.
- Daranagama, D.A.; Hyde, K.D.; Sir, E.B.; Thambugala, K.M.; Tian, Q.; Samarakoon, M.C.; McKenzie, E.H.C.; Jayasiri, S.C.; Tibpromma, S.; Bhat, J.D.; et al. Towards a natural classification and backbone tree for Graphostromataceae, Hypoxylaceae, Lopadostomataceae and Xylariaceae. *Fungal Divers.* 2018, *88*, 1–165. https://doi.org/10.1007/s13225-017-0388-y.
- Helaly, S.E.; Thongbai, B.; Stadler, M. Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. *Nat. Prod. Rep.* 2018, 35, 992–1014. https://doi.org/10.1039/C8NP00010G.
- 33. Hsieh, H.; Ju, Y.M.; Rogers, J.D. Molecular phylogeny of Hypoxylon and closely related genera. Mycologia 2005, 97, 844–865.
- Wendt, L.; Sir, E.B.; Kuhnert, E.; Heitkämper, S.; Lambert, C.; Hladki, A.I.; Romero, A.I.; Luangsaard, J.J.; Srikitikulchai, P.; Per, D.; et al. Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales. *Mycol. Prog.* 2018, *17*, 115–154. https://doi.org/10.1007/s11557-017-1311-3.
- Lambert, C.; Wendt, L.; Hladki, A.I.; Stadler, M.; Sir, E.B. *Hypomontagnella* (Hypoxylaceae): A new genus segregated from *Hypoxylon* by a polyphasic taxonomic approach. *Mycol. Prog.* 2019, *18*, 187–201. https://doi.org/10.1007/s11557-018-1452-z.
- Ma, H.X.; Song, Z.K.; Pan, X.Y.; Li, Y.; Yang, Z.E.; Qu, Z. Multi-gene phylogeny and taxonomy of *Hypoxylon* (Hypoxylaceae, Ascomycota) from China. *Diversity* 2022, 14, 37. https://doi.org/10.3390/d14010037.
- Song, Z.K.; Pan, X.Y.; Li, C.T.; Ma, H.X.; Li, Y. Two new species of *Hypoxylon* (Hypoxylaceae) from China based on morphological and DNA sequence data analyses. *Phytotaxa* 2022, 538, 213–224. https://doi.org/10.11646/phytotaxa.538.3.4.
- 38. Rayner, R.W. A Mycological Colour Chart; Commonwealth Mycological Institute, London, UK, 1970.
- White, T.J.; Bruns, T.D.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics-science direct. PCR Protoc. 1990, 18, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1.
- 40. Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. *J. Bacteriol.* **1990**, *172*, 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990.
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerse II subunit. *Mol. Biol. Evol.* 1999, 16, 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092.
- 42. O'donnell, K.; Cigelnik, E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus *Fusarium* are nonorthologous. *Mol. Phylogenet. Evol.* **1997**, *7*, 103–116. https://doi.org/10.1006/mpev.1996.0376.
- Hall, T.A. Bioedit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. https://doi.org/10.1021/bk-1999-0734.ch008.
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Franois, J.; Higgins, D.G. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Res.* 1997, 25, 4876–4882. https://doi.org/10.1093/nar/25.24.4876.
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Hőhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. *Syst. Biol.* 2012, *61*, 539–542. https://doi.org/10.1093/sysbio/sys029.
- Granmo, A.; Hammelev, D.; Knudsen, H.; Læssøe, T.; Whalley, A.J.S. The genera *Biscogniauxia* and *Hypoxylon* (Sphaeriales) in the Nordic countries. *Opera Bot.* 1989, 100, 59–84.
- Kuhnert, E.; Sir, E.B.; Lambert, C.; Hyde, K.D.; Hladki, A.I.; Romero, A.I.; Rohde, M.; Stadler, M. Phylogenetic and chemotaxonomic resolution of the genus *Annulohypoxylon* (Xylariaceae) including four new species. *Fungal Divers.* 2017, *85*, 1–43. https://doi.org/10.1007/s13225-016-0377-6.
- Vicente, T.F.L.; Goncalves, M.F.M.; Brandão, C.; Fidalgo, C.; Alves, A. Diversity of fungi associated with macroalgae from an estuarine environment and description of *Cladosporium rubrum* sp. nov. and *Hypoxylon aveirense* sp. nov. *Int. J. Syst. Evol. Micr.* 2021, 71, 004630. https://doi.org/10.1099/ijsem.0.004630.
- Cedeño-Sanchez, M.; Wendt, L.; Stadler, M.; Mejía, L.C. Three new species of *Hypoxylon* and new records of Xylariales from Panama. *Mycosphere* 2020, 11, 1457–1476. https://doi.org/10.5943/mycosphere/11/1/9.
- Sir, E.B.; Becker, K.; Lambert, C.; Bills, G.F.; Kuhnert, E. Observations on Texas hypoxylons, including two new *Hypoxylon* species and widespread environmental isolates of the *H. croceum* complex identified by a polyphasic approach. *Mycologia* 2019, 11, 832–856. https://doi.org/10.1080/00275514.2019.1637705.

- 51. Daranagama, D.A.; Camporesi, E.; Tian, Q.; Liu, X.Z.; Chamyuang, S.; Stadler, M.; Hyde, K.D. *Anthostomella* is polyphyletic comprising several genera in Xylariaceae. *Fungal Divers.* **2015**, *73*, 203–238. https://doi.org/10.1007/s13225-015-0329-6.
- 52. Friebes, G.; Wendelin, I. Studies on *Hypoxylon ferrugineum* (Xylariaceae), a rarely reported species collected in the urban area of Graz (Austria). *Ascomycete.org* **2016**, *8*, 83–90.
- 53. Sir, E.B.; Kuhnert, E.; Surup, F.; Hyde, K.D.; Stadler, M. Discovery of new mitorubrin derivatives from *Hypoxylon fulvosulphureum* sp. nov. (Ascomycota, Xylariales). *Mycol. Prog.* **2015**, *14*, 28. https://doi.org/10.1007/s11557-015-1043-1.
- 54. Tan, Y.P.; Shivas, R.G. Index of Australian Fungi No. 1; Cardwell: Queensland, Australia, 2022.
- 55. Vu, D.; Groenewald, M.; Vries, M.; Gehrmann, T.; Stielow, B.; Eberhardt, U.; Al-Hatmi, A.; Groenewald, J.Z.; Cardinali, G.; Houbraken, J.; et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. *Stud. Mycol.* 2019, *92*, 135–154. https://doi.org/10.1016/j.simyco.2018.05.001.
- 56. Pourmoghaddam, M.J.; Lambert, C.; Surup, F.; Khodaparast, S.A.; Krisai-Greilhuber, I.; Voglmayr, H.; Stadler, M. Discovery of a new species of the *Hypoxylon rubiginosum* complex from Iran and antagonistic activities of *Hypoxylon* spp. against the Ash Dieback pathogen, *Hymenoscyphus fraxineus*, in dual culture. *MycoKeys* **2020**, *66*, 105–133. https://doi.org/10.3897/myco-keys.66.50946.
- Bitzer, J.; Læssøe, T.; Fournier, J.; Kummer, V.; Decock, C.; Tichy, H.V.; Piepenbring, M.; Peršoh, D.; Stadler, M. Affinities of *Phylacia* and the daldinoid Xylariaceae, inferred from chemotypes of cultures and ribosomal DNA sequences. *Mycol. Res.* 2008, 112, 251–270. https://doi.org/10.1016/j.mycres.2007.07.004.
- Becker, K.; Lambert, C.; Wieschhaus, J.; Stadler, M. Phylogenetic assignment of the fungicolous *Hypoxylon invadens* (Ascomycota, Xylariales) and investigation of its secondary metabolites. *Microorganisms* 2020, *8*, 1397. https://doi.org/10.3390/microorganisms8091397.
- Stadler, M.; Læssøe, T.; Fournier, J.; Decock, C.; Schmieschek, B.; Tichy, H.V.; Peršoh, D. A polyphasic taxonomy of *Daldinia* (Xylariaceae). *Stud. Mycol.* 2014, 77, 1–143. https://doi.org/10.3114/sim0016.
- Kuhnert, E.; Surup, F.; Sir, E.B.; Lambert, C.; Hyde, K.D.; Hladki, A.I.; Romero, A.I.; Stadler, M. Lenormandins A–G, new azaphilones from *Hypoxylon lenormandii* and *Hypoxylon jaklitschii* sp. nov., recognised by chemotaxonomic data. *Fungal Divers.* 2015, 71, 165–184. https://doi.org/10.1007/s13225-014-0318-1.
- 61. Dai, D.Q.; Phookamsak, R.; Wijayawardene, N.N.; Li, W.J.; Bhat, D.J.; Xu, J.C.; Taylor, J.E.; Hyde, K.D.; Chukeatirote, E. Bambusicolous fungi. *Fungal Divers.* **2017**, *82*, 1–105. https://doi.org/10.1007/s13225-016-0367-8.
- Bills, G.F.; González-Menéndez, V.; Martín, J.; Platas, G.; Fournier, J.; Peršoh, D.; Stadler, M. Hypoxylon pulicicidum sp. nov. (Ascomycota, Xylariales), a pantropical insecticide-producing endophyte. PLoS ONE 2012, 7, e46687. https://doi.org/10.1371/journal.pone.0046687.
- 63. Stadler, M.; Kuhnert, E.; Peršoh, D.; Fournier, J. The Xylariaceae as model example for a unified nomenclature following the "One Fungus-One Name" (1F1N) concept. *Mycology* **2013**, *4*, 5–21.
- 64. Sir, E.B.; Kuhnert, E.; Lambert, C.; Hladki, A.I.; Romero, A.I.; Stadler, M. New species and reports of *Hypoxylon* from Argentina recognized by a polyphasic approach. *Mycol. Prog.* **2016**, *15*, 42. https://doi.org/10.1007/s11557-016-1182-z.
- Phookamsak, R.; Hyde, K.D.; Jeewon, R.; Bhat, D.J.; Jones, E.B.G.; Maharachchikumbura, S.S.N.; Raspé, O.; Karunarathna, S.C.; Wanasinghe, D.N.; Hongsanan, S.; et al. Fungal diversity notes 929–1035: Taxonomic and phylogenetic contributions on genera and species of fungi. *Fungal Divers*. 2019, 95, 1–273. https://doi.org/10.1007/s13225-019-00421-w.
- Pi, Y.H.; Zhang, X.; Liu, L.L.; Long, Q.D.; Shen, X.C.; Kang, Y.Q.; Hyde, K.D.; Boonmee, S.; Kang, J.C.; Li, Q.R. Contributions to species of Xylariales in China—4 *Hypoxylon wujiangensis* sp. nov. *Phytotaxa* 2020, 455, 21–30. https://doi.org/10.11646/phytotaxa.455.1.3.
- 67. Stadler, M.; Fournier, J.; Laessøe, T.; Chlebicki, A.; Lechat, C.; Flessa, F.; Rambold, G.; Peršoh, D. Chemotaxonomic and phylogenetic studies of *Thamnomyces* (Xylariaceae). *Mycoscience* **2010**, *51*, 189–207. https://doi.org/10.1007/S10267-009-0028-9.
- 68. Fournier, J.; Lechat, C.; Courtecuisse, R. The genus *Hypoxylon* (Xylariaceae) in Guadeloupe and Martinique (French West Indies). *Ascomycete.org* **2016**, *7*, 145–212.
- 69. Hennings, P. Fungi Matogrossenses a Dr. R. Pilger collecti 1899. *Beibl. Hedwig.* 1900, 39, 134–139.
- Sanchez-Ballesteros, J.; Gonzalez, V.; Salazar, O.; Acero, J.; Portal, M.A.; Julián, M.; Rubio, V.; Bill, G.F.; Polishook, J.D.; Platas, G.; et al. Phylogenetic study of *Hypoxylon* and related genera based on ribosomal ITS sequences. *Mycologia* 2000, 92, 964–977.
- 71. Triebel, D.; Peršoh, D.; Wollweber, H.; Stadler, M. Phylogenetic relationships among *Daldinia, Entonaema* and *Hypoxylon* as inferred from ITS nrDNA analyses of Xylariales. *Nova Hedwig*. **2005**, *80*, 25–43. https://doi.org/10.1127/0029-5035/2005/0080-0025.
- Cedeño-Sanchez, M.; Charria-Girón, E.; Lambert, C.; Luangsa-ard, J.J.; Decock, C.; Franke, R.; Brönstrup, M.; Stadler, M. Segregation of the genus *Parahypoxylon* (Hypoxylaceae, Xylariales) from *Hypoxylon* by a polyphasic taxonomic approach. *MycoKeys* 2023, 95, 131–162. https://doi.org/10.3897/mycokeys.95.98125.
- 73. Chi, S.Q.; Xu, J.; Lu, B.S. Three New Chinese Records of Hypoxylon. J. Fungal Res. 2016, 14, 218–221. https://doi.org/10.13341/j.jfr.2014.1138.
- 74. Guo, L. Flora Fungorum Sinicorum. Volume 64. Annulohypoxylon, Hypoxylon, Rosellinia; Science Press: Beijing, China, 2022; 155p.

**Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.