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Abstract: The Giraúl granitic pegmatite field in Angola is composed of five pegmatite types, the 
most evolved belong to the beryl-columbite, beryl-columbite-phosphate and spodumene types. 
Pegmatites are concentrically zoned with increased grain size toward a quartz core; the most 
evolved pegmatites have well-developed replacement units. These pegmatites are rich in Nb-Ta 
oxide minerals and the field has a moderate interest for critical elements such as Ta and Hf. 
Tourmaline, garnet and micas occur as accessory minerals. The abundance of Zr and Nb-Ta minerals 
increases with the evolution of the pegmatites, as well as the proportions of beryl and Li-rich 
minerals. The Ta/(Ta + Nb) ratio in Nb-Ta oxide minerals and the Hf/(Hf + Zr) ratio in zircon also 
increase with the evolution of the pegmatites and within each pegmatite body from border to inner 
zones, and especially in the late veins and subsolidus replacements. Textural patterns and 
occurrence of late veins with Ta-rich minerals suggest that Nb and especially Ta can be enriched in 
late hydrothermal fluids exsolved from the magma, along with Hf and other incompatible elements 
as Sn, U, Pb, Sb and Bi. 

Keywords: pegmatites; columbite-group minerals; pyrochlore supergroup; niobium; tantalum; 
beryllium; hydrothermal; Angola 

 

1. Introduction 

Granitic pegmatites present a broad diversity of mineral species of great economic interest, and 
are an important source of rare metals, such as Li, Rb, Cs and Ta. In addition, they have been 
considered a potential source of other rare metals, such as Ga, Be, Sn, U, Nb, Hf, among others [1]. 
Pegmatites are, in addition, a source for high-quality industrial minerals (mainly feldspars, kaolinite, 
quartz, micas, and spodumene for ceramics) or gemstones such as topaz, tourmaline, aquamarine, 
spodumene, among others [2]. 
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The study of Nb-Ta minerals is of great interest from both economic and scientific point of view. 
New technologies, especially those for the manufacture of electronic devices of small dimensions, 
have caused an increase in the need for tantalum [3,4]. The geochemical evolution of the Nb-Ta 
minerals is quite characteristic in granites and pegmatite rocks and gives us information about their 
petrogenesis [5,6]. However, controversy persists regarding the mechanisms responsible for the 
concentration of Nb and Ta. The similar characteristics of the atoms of Nb and Ta cause both elements 
to have a similar geochemical behaviour: both are highly incompatible elements in magmatic 
systems. However, in highly evolved systems these elements follow different paths. Usually, the 
tendency followed in granitic pegmatites ranges from compositions rich in Nb and Fe to compositions 
rich in Ta and Mn [7]. However, anomalous behaviour of this trend can be produced by coeval 
crystallisation of other mineral phases that host some Nb and Ta, such as micas [8–11]. Therefore, a 
strong knowledge of the processes that generate the source rocks of these rare elements is necessary 
to understand the mechanisms of transport and accumulation of Nb-Ta oxides. Niobium and 
tantalum concentrate during the magmatic crystallisation by fractionation processes [12,13]. 
However, in the late processes of pegmatite evolution, such as those that form albitites, a Ta-
enrichment is usually produced together with a high increase in the amount of Nb-Ta oxide minerals 
[11]. This enrichment has been explained considering strictly magmatic processes by extreme 
fractionation during crystallisation process [2,9,14–17]. However, late hydrothermal fluids exsolved 
during the late stages of magmatic crystallisation were also considered as responsible for the Ta-
richest mineralisation in pegmatites and rare-metal granites [18–20]. Textural evidences play an 
important role to the validation of these hypotheses [20,21]. 

The Giraúl pegmatite field (Angola) outcrops in a desert area, and the outcrops are exceptional. 
It is an excellent place to study the relation of pegmatites with granites and host rocks, their internal 
structure and the mineral distribution. In addition, a mining company explored some mineralised 
pegmatites for muscovite and beryl during the Portuguese colonial times, up to the 1980s but wars 
prevented any operation during decades. In this contribution we aim to describe the characteristics 
of the Giraúl pegmatites in Angola with special emphasis on their structure, distribution of critical 
minerals, mineralogy and mineral chemistry of Nb-Ta minerals in order to discuss about the 
processes that control the enrichment in critical elements. 

2. Geology 

2.1. Regional Geology 

The outermost pegmatite outcrops occur about 15 km East of Namibe, a town located 600 km 
south of Luanda and the pegmatite field outcrops in a belt 20 × 8 km trending WNW-ESE in the Giraúl 
desert. The Giraúl pegmatite field is included in the Angola shield, in the SW part of Angola, near 
the fault contact with the Perioceanic Depression, which is filled with sedimentary rocks of Lower 
Cretaceous age and Quaternary sediments. The Giraúl pegmatites (Figure 1) are mainly hosted in an 
Upper Archean greenstone belt comprising layers of muscovite-biotite schists interbedded with thick 
units of volcanic rocks. The ensemble was been affected by a regional metamorphism to the 
amphibolite facies and deformed by two Precambrian stages of folding. The main direction of folds 
and the main cleavage are NW-SE. These materials were intruded by small stocks of Late Eburnean 
pyroxenites to gabbro-norites, followed by a sequence of granitic rocks ranging from diorites to 
biotite-muscovite leucogranites and, finally, the pegmatites. Granitic outcrops were emplaced in the 
axis of the folds and pegmatites along the regional cleavage. Some of the pegmatites intrude these 
granites or surround them. The pegmatite field is cut by NE-SW and NW-SE strike-slip fault systems, 
which distort the zoning and favour the emplacement of Cretaceous diabase dykes. Both fracturing 
and late magmatism are associated with the opening of the South Atlantic. All these rocks are affected 
by erosion of Lower Cretaceous age and unconformably covered by Cretaceous conglomerates, 
sandstones and, locally, basic volcanic rocks [22]. The faults have a critical importance in the structure 
of the pegmatite field: they compartmentalize it into blocks. Consequently, they distort the original 
zonation of the field, by bringing into contact highly evolved and less evolved areas. Therefore, this 



Minerals 2019, 9, 580 3 of 38 

 

distribution must be taken into account when thinking about a strategy to explore rare elements in a 
zoned pegmatite field. 
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Figure 1. Geological map of the Giraúl pegmatite field. 
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About 600 pegmatite bodies outcrop in the pegmatite field. Most of them are lens-shaped, 
although some of them have a droplet shape; they can be from 5 m up to 1 km in length. The 
pegmatite dykes are arranged WNW-ESE following the regional foliation. The contacts between 
pegmatites and the host rocks, including most of the igneous rocks, are generally sharp. However, 
the contacts between pegmatites and the hosting leucogranite are gradational, thus indicating that 
these pegmatites may well be produced by fractionation of the most evolved granite magmas. 

2.2. Pegmatite Types 

The Giraúl pegmatite field is composed of a wide variety of pegmatites, which can be 
differentiated each other using structure and mineralogy. Along with field criteria, we adopt the 
following the classification of [23,24], into five types of pegmatites in the Giraúl pegmatite field, all 
of them corresponding to the lithium-cesium-tantalum LCT family (Figure 2). 

 
Figure 2. Google Earth satellite image showing the distribution of the Giraúl pegmatite types. Type-
II pegmatites occur over all the area. Circles indicate outcrops of mined pegmatites. 

Type I are microcline-bearing intrabatholitic pegmatites; type II are microcline-bearing 
peribatholitic pegmatites; type III are beryl-columbite pegmatites; type IV are beryl-columbite-
phosphate pegmatites, and type V are petalite-bearing pegmatites. Figure 3 shows some field images 
of these types of pegmatites. 
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Figure 3. Outcrops from the Giraúl pegmatites. (a) type-II pegmatites, (b) large type II pegmatite, (c) 
subhorizontal dykes of type-III pegmatites, (d) general view of a type III pegmatite, (e) Quartz-
muscovite vein of the type-III pegmatite, (f) general view of a type-V pegmatite. 

2.2.1. Type-I Pegmatites 

Type-I pegmatites are lensoidal or tabular bodies hosted in leucogranite with a single internal 
structure and mineralogy (Figure 4). They do not have border zone, and the contact with the host 
leucogranite is gradational. The first intermediate zone resembles a coarse-grained granite, and a 
second intermediate zone is constituted by blocky K-feldspar intergrown with quartz. Tourmaline 
and garnet are abundant accessory minerals. The most abundant mica is muscovite, but biotite can 
also occur and usually it is replaced by epitactic crystals of muscovite. Other accessory minerals are 
zircon, fluorapatite, monazite, xenotime and uraninite. Euhedral crystals of green beryl are common 
in the contact with the quartz core, which can be of the rose variety. These pegmatites are almost 
devoid of minerals with rare elements, except for zircon. 
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Figure 4. Conceptual scheme (not to scale) with the various pegmatite units in type-I pegmatites, 
showing the distribution of the most significant minerals. 

2.2.2. Type-II Pegmatites 

Type-II, or beryl-columbite pegmatites, are the most abundant in the Giraúl field; more than 400 
bodies belonging to this category are hosted in the metamorphic Precambrian rocks and in 
intermediate to basic plutonic rocks. They are distributed throughout the field, although the highest 
density of dykes occurs as concentric rings surrounding the leucogranite stocks at the NW of the area. 
They have variable dimensions, usually more than 200 m long and several tens of meters wide (Figure 
2). The contact between pegmatites and host rocks is sharp at the outcrop scale, although in detail 
metasomatism can be present in the metamorphic host rocks, typically consisting of tourmalinisation, 
biotitisation and muscovitisation. 

The structure of type-II pegmatites includes five concentric zones: border, wall, first 
intermediate, second intermediate and quartz core (Figure 5). The five outermost zones are made up 
of graphic intergrowths of quartz and microcline, with minor albite, skeletal micas (muscovite and 
biotite) and apatite. Black tourmaline and garnet occur in minor amounts, and beryl is rare and only 
occurs in the second intermediate zone in contact with the core. These pegmatites are also poor in 
minerals of rare elements, with the exception of some scarce crystals of the columbite-group minerals 
(CGM) and zircon. The processes of metasomatic replacement of the primary minerals are almost nil, 
except in some slightly more evolved pegmatites of the group, where fine albite veins appear and 
replacement of K-feldspar by albite occurs at the microscopic scale. 
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Figure 5. Conceptual scheme (not to scale) showing the pegmatite units in type-II pegmatites and the 
distribution of the most significant minerals. 

2.2.3. Type-III Pegmatites 

Type-III pegmatites occur in a distal position related to the leucogranite body, mainly following 
fractures in the hosting ultramafic rocks. Muscovite and tourmaline appear in the exocontact. Their 
structure (Figure 6) is similar to type II-pegmatites, but their mineralogy is more complex. Thus, for 
first time, significant amounts of CGM appear in the field, as well as other minerals of Nb-Ta and 
rare elements. Other common accessory minerals are blue apatite, beryl, zircon and yellowish 
muscovite. In addition to the five concentric zones, a third intermediate zone can be distinguished in 
these pegmatites. This zone has similar composition than the other intermediate zones but a larger 
grain size. Albitisation is not generalised but it is more abundant than in type-II pegmatites. Thin 
albite veins crosscut the intermediate zones. 
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Figure 6. Conceptual scheme (not to scale) of the various pegmatite units in type-III pegmatites and 
distribution of the most significant minerals. 

2.2.4. Type-IV Pegmatites 

Type IV, or beryl-columbite-phosphate granitic pegmatites are evolved and rare-element-rich. 
They are hosted by amphibolites and diorites. Small pegmatites can show a simple structure; 
however, in most cases, the structure consists of the same units described in type-III pegmatites with 
the addition of well-developed advanced subsolidus replacement phenomena (Figure 7). On the 
other hand, a new characteristic in type-IV pegmatites is the existence of late veins cutting all the 
zoned units of the pegmatite but never crossing the contact with the host rock. These veins are from 
1 mm to several tens of cm wide. Two types of veins are distinguished: the albite veins, which are 
associated with wide spread hydrothermally albitized areas and quartz-muscovite veins, formed 
later than the albitites. Hydrothermal alteration phenomena in the exocontact are strong in most of 
these pegmatites: holmquistite (Li amphibole) is formed in cases of pegmatite emplacement in 
amphibolites; tourmaline and muscovite are produced in case of emplacement in schists or granitic 
rocks. 
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Figure 7. Conceptual scheme (not to scale) of the various pegmatite units in type-IV pegmatites and 
distribution of the most significant minerals. 

They are also composed of quartz and microcline, along with large amounts of muscovite and 
moderate contents of garnet, tourmaline, Li-rich phosphates, beryl, cassiterite and a significant 
amount of Nb-Ta minerals. The border zone is coarse grained and consists of quartz, K-feldspar, 
oligoclase, muscovite, tourmaline, almandine and blue apatite. The first intermediate zone (coarse 
grained) mainly consists of reddish K-feldspar, quartz, albite, muscovite, green beryl and schorl; it 
contains skeletal crystals of phosphates (triphylite, ferrisicklerite, heterosite), and small amounts of 
Nb-rich members of the columbite-group minerals (CGM). The second intermediate zone contains 
similar minerals, but the phosphates tend to develop euhedral crystals up to several meters in length. 
Green beryl and CGM are also very abundant in these zones. The third intermediate zone is mainly 
made up of blocky white K-feldspar and white beryl, with lesser amounts of muscovite. Finally, some 
late veins, filled with quartz, albite, muscovite, tantalite, elbaite and montebrasite, crosscut all the 
previously mentioned units, producing the replacement of these. No quartz cores have been found 
so far. 

2.2.5. Type-V Pegmatites 

Type V, or petalite-bearing pegmatites, are the most evolved in the Giraúl field, at present, only 
one pegmatite of this type has been identified. This pegmatite intrudes in a very distal position in 
relation to the leucogranite stock and is located in schists of intermediate metamorphic grade (Figures 
1 and 2). It is a 100 m-long drop-like body that crosscuts the foliation of the host rocks. This pegmatite 
has abundant Li-rich silicates and phosphates, and is of interest as a source of rare elements. It does 
not have a well-defined zonal structure (Figure 8). The of the earlier zones is similar to that mentioned 
for the less evolved pegmatites. However, in a late blocky unit is a Li-rich paragenesis, comprising 
spodumene, petalite, lepidolite, pink or green elbaite and amblygonite. Cassiterite and tantalite also 
are abundant. 
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Figure 8. Conceptual scheme (not to scale) of the various pegmatite units in the type-V pegmatite and 
distribution of the most significant minerals. 

3. Analytical Methods 

Petrographic and mineralogical characterisations were carried out by X-ray powder diffraction 
(XRD), optical microscopy and scanning electron microscopy. The XRD spectra were measured on 
powdered samples in a Bragg-Brentano PANAnalytical X’Pert Diffractometer (graphite 
monochromator, automatic gap, Kα-radiation of Cu at λ = 1.54061 Å, powered at 45 kV–40 mA, 
scanning range 4–100° with a 0.017° 2θ step scan and a 50 s measuring time. Identification and 
Rietveld semiquantitative evaluation of phases was made on PANanalytical X’Pert HighScore 
software (Version 2.0.1, PANanalytical, Almelo, The Netherlands). 

The compositional zoning of Nb-Ta minerals was examined by scanning electron microscopy 
with energy-dispersive X-ray spectroscopy (SEM-EDS) used in the back-scattered electron mode 
(BSE). The SEM-EDS equipment was an ESEM Quanta 200 FEI, an XTE 325/D8395 (Thermo Fisher 
Scientific, Waltham, MA, USA) equipped with an INCA Energy 250 EDS microanalysis system) was 
used. Mineral chemistry was obtained using electron-microprobe analyses (EMPA) carried out with 
a CAMECA SX-50 (Gennevilliers Cedex – France) located at the Scientific and Technological Centers 
of the University of Barcelona. Analyses were conducted at an accelerating voltage of 20 kV, an 
electron beam current of 20 nA, and a beam diameter of 2 μm. Standards used were: Li2Nb2O6 (Nb, 
Lα), Li2Ta2O6 (Ta, Lα), W (W, Kα), rutile (Ti, Kα), cassiterite (Sn, Kα), YAG (Y, Lα), U (U, Mα), ThO2 
(Th, Mα), Sb6 (Sb, Mα), Bi6 (Bi, Mα), Pb (Pb, Mα), Sc (Sc, Kα), periclase (Mg, Kα), hematite (Fe, Kα), 
rhodonite (Mn, Kα), wollastonite (Ca, Kα), albite (Na, Kα), Sr (Sr, Kα), baryte (Ba, Lα), orthoclase (K, 
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Kα). Detection limits for trace elements were 0.01 wt.%. The structural formulae of the CGM were 
calculated on the basis of 24 atoms of oxygen and 12 cations per unit cell (apfu) for CGM. The number 
of cations was fixed by a method of charge balance by conversion of part of Fe2+ to Fe3+ as proposed 
by Ercit et al. [7]. The structural formula of tapiolite and cassiterite were calculated on the basis of 6 
and 4 atoms of oxygen per formula unit, respectively. The structural formula of pyrochlore-
supergroup minerals was calculated on the basis of a fully occupied B site (Nb + Ta + W + Ti = 2 apfu), 
and OH− was calculated by charge-balance to an anion total of 7 [25]. 

4. Mineralogy of the Giraúl pegmatites 

4.1. Mineralogical Composition and Textural Patterns 

There are considerable variations in the mineralogical composition of the Giraúl pegmatites 
throughout the field, from type-I to type-V pegmatites. The variation in the mineral composition 
affects both the major and accessory minerals, in particular, the rare-element-rich minerals. 

Plagioclase from the first intermediate zone of type-I pegmatites has an intermediate 
composition, which is evidence of a low degree of evolution. The composition of this plagioclase 
resembles that present in the host leucogranites, which demonstrate the genetic relationship of the 
pegmatites with their host granites. However, in the second intermediate zone, the composition of 
the plagioclase attains the compositional domain of albite, and this, for the rest of the pegmatite field. 
The mineral composition of the pegmatite is very simple in the two intermediate units, with quartz, 
albite and microcline (Figure 9a). 

In addition, an important difference of type-I pegmatites in relation to the others is the presence 
of rose quartz in the pegmatite core (Figure 9b). This core has not a homogenous colour. The pink 
colouring of quartz has been attributed to the presence of nano-sized fibers of dumortierite [26–28]. 
In pegmatites this borosilicate usually appears in grains of less than 1 μm. 

Accessory minerals in type-II pegmatites include small amounts of CGM, scarce biotite, and 
widespread green apatite crystals. The presence of biotite, although limited to less evolved type-II 
pegmatites located closest to leucogranites, is very significant, since this mineral is absent in the 
parental leucogranites and, in type-I pegmatites, where muscovite is found exclusively. This indicates 
that Fe and Mg necessary to form this mineral come from the contamination of the pegmatite by the 
host rocks. This biotite is unstable and often it is replaced by muscovite. The other novel aspect, the 
appearance of Nb-Ta minerals respect to more primitive pegmatites, occurs to a relatively 
insignificant extent, as these minerals are confined to the late stages of crystallisation, and are found 
in extremely low proportions. 

In type-III pegmatites, abundant CGM appear, as well as late replacements of them by 
pyrochlore-supergroup minerals. 

Type-IV pegmatites have higher contents of minerals of critical elements: primary lithium 
phosphates (Figure 9c), elbaite, cassiterite and Ta- and Mn-rich members of the CGM. The most 
characteristic aspect of these pegmatites is the appearance of large crystals of phosphates, they are 
essential minerals in the intermediate zones, particularly in the second intermediate zone. These 
minerals occur as skeletal crystals in the first units, and form more regular crystals toward the 
innermost units. The presence of skeletal phosphates (Figure 9d) is common in pegmatites worldwide 
[29–31]. Not only phosphates have this type of crystallisation but, in general, all the minerals of the 
intermediate zones of all the pegmatites, being especially shown in tourmaline, muscovite, garnet 
and feldspars (Figure 9f) and this texture has been attributed to rapid growth in undercooled melts 
[32]. The primary phosphate phases identified are montebrasite and ferrisicklerite, which are 
replaced by heterosite, suggesting that primary triphylite may have existed. Remnants of this 
primary triphylite have been found, although they are completely replaced by secondary phosphates. 
Therefore, these minerals are part of the known sequence initially described by Quensel [33] and 
Mason [34] in the pegmatites of Varuträsk (Sweden), and later located in most of the pegmatite fields 
containing phosphates, such as Tsaobismund in Namibia [35], Albera in the French Pyrenees [36], 
and in Jocão, Minas Gerais, Brazil [37]. 
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An important aspect in these pegmatites is change of coloration of K-feldspar, from the first 
intermediate zones (reddish owing to minute hematite inclusions) to the third ones (white). 
Therefore, an important aspect of these pegmatites is the high proportion of Fe in the first 
intermediate zones, which drastically decrease in the third. Possibly this is due to the crystallisation 
of large amounts of Fe phosphates in the early units. 

Another remarkable aspect of these pegmatites is the appearance of giant crystals of white beryl 
in the third intermediate zones, at that the stage at which there is no availability of Fe. Finally, Ta-
poor CGM occur in the intermediate zones the crystallisation, which completes the typical association 
of beryl-columbite-phosphate. 

 
Figure 9. Textural patterns in pegmatites: (a) Microscope image of an intergrowth of microcline and 
quartz from the First intermediate zone of type-I pegmatites. (b) Large quartz core in type-I pegmatite, 
in which some areas with pink quartz are distinguished in a predominantly white core. (c) Skeletal 
crystals (or graphic intergrowths) of altered triphylite (dark) with reddish K-feldspar, in the first 
intermediate zone of a type-IV pegmatite. (d) Replacement of ferrisicklerite (orange) by heterosite 
(red); the whole is cut by alluaudite (greenish yellow). Thin section, PPL. (e) Skeletal intergrowths of 
triphylite altered to secondary phosphates; the interstitial material is albite. Thin section, PPL. (f) 
Skeletal crystals of tourmaline, strongly zoned, in graphic intergrowths with quartz, in the first 
intermediate zone of a type-IV pegmatite. Thin section, PPL. 
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The most significant aspect of these pegmatites is the appearance of albite veins and veins of 
quartz-muscovite-elbaite. Intensive phenomena of albitisation of the primary K-feldspar of the 
intermediate zones are produced in the vicinity of these veins; K-feldspar can often be completely 
replaced. In addition, the hydrothermal fluids associated with this episode produce the substitution 
of primary phosphates by alkali-rich phosphates of the alluaudite group. These veins are strongly 
enriched in fine-grained crystals of tantalite-(Fe) and tantalite-(Mn). 

The quartz-muscovite-elbaite veins are not very common, but they are significant as they 
indicate that there is, even in the late stages of crystallisation, a hydrothermal phase that carries Li. 
Elbaite formed by the replacement of primary lithium phosphates, suggesting that possibly Li is 
remobilised during the replacement of the primary phosphates. In these veins, a high activity of 
fluorine is registered, as suggests the presence of minerals rich in this element, such as amblygonite. 

Type-V pegmatites are the most evolved in the field. Although important amounts of 
spodumene associated with amblygonite-montebrasite appear in the third intermediate zone of these 
pegmatites, the rest of the pegmatite is very similar to the type-III pegmatites, as it does not contain 
primary phosphates in the first intermediate zone, and lithium seems to have concentrated in the 
third intermediate zone. The large spodumene crystals are primary, but a second generation has been 
produced by the replacement of petalite, where a symplectitic spodumene-quartz intergrowth (SQU) 
is formed. This is formed by a typically retrograde reaction [38], and is common to many pegmatite 
fields, such as at Lake Khibara, in Natal, South Africa [39], and Tanco in Manitoba, Canada [40]. 

In the late veins of these pegmatites, the micas show compositional zoning, evolving toward 
their rim to mica rich in Li, Rb and Cs. In the final stages, nanpingite replaces muscovite. This mineral 
is very rare and is considered an indicator of fractionation [41,42]. In the pegmatites of Oktyabrskaya, 
in Transbaikalia (Russia), nanpingite appears in melt-fluid inclusions, which could represent a 
transition from magmatic to hydrothermal state [43]. At Giraúl the formation of nanpingite is 
attributed to the partition of Cs to the late fluid phase. In addition, these late veins contain most of 
the elbaitic tourmaline, as well as cassiterite, Ta-rich CGM, and gahnite. 

4.1.1. Textural Patterns of Zircon 

Zircon crystals of type-I pegmatites are fine grained, in the order of 70 μm, and rare. In type-II 
pegmatites, zircon is also rare and, in thin section, presents dirty, greyish colorations due to 
metamictisation. These are idiomorphic crystals of prismatic habit, with dipyramidal faces. Zircon 
has a concentric zoning, and is almost invariably isotropic because of metamictisation, especially in 
the core of the crystal. 

In type-III pegmatites, also zircon can occur in the wall and in the three intermediate zones as 
fine-grained euhedral crystals, strongly metamict (Figure 10a–c). 

Zircon crystals are very unevenly distributed in type-IV pegmatites; they are fine-grained and 
are moderately zoned; on the other hand, they are usually metamict (Figure 10d–g). They are 
relatively common in the second intermediate zone of type-IV pegmatites. These are idiomorphic 
crystals with a short prismatic habit, 1–2 mm long, composed of a prism and a tetragonal dipyramid. 
They have a concentric zonation and are very altered, with isotropic metamict areas. In most cases, 
zircon occurs as inclusions in other minerals, or in quartz veins that cut primary phosphates. 

Zircon is a common mineral in the type-V pegmatite, although generally it has very small grain-
size; the larger crystals reach about 100 μm, although they are generally smaller than 1 μm, only 
distinguishable by their radioactive aureoles where they are included in phyllosilicates. Zircon 
crystals are euhedral with prism and bipyramid forms, commonly corroded. They are included in 
other minerals, such as columbite-tantalite. They present a concentric zoning, although distorted by 
alteration, since this mineral is usually metamict (Figure 10h,i), which removes all possibilities to use 
in dating. 
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Figure 10. Textural patterns of zircon in type-III pegmatites. (a) Transmitted optical microscope image 
of zircon crystal included in plagioclase showing radial fractures produced during metamictisation, 
PPL. (b) Euhedral zoned zircon crystals. SEM image, BSE mode. (c) zircon crystal with convoluted 
zoning. SEM image, BSE mode. (d–g) Textural patterns of zircon in type-IV pegmatites. (d) 
Transmitted optical microscope image of a zoned zircon crystal with metamict core, XPL. (e) Zoned 
zircon crystal with high content in Hf (bright areas) and poorer (dark) areas. SEM image, BSE mode. 
(f) Zircon crystal with small inclusions of uraninite, cut by apatite vein in an association with 
triphylite, heterosite and quartz. SEM image, BSE mode. (g–i) Textural patterns of zoned zircon from 
type-IV pegmatites. SEM images, BSE mode. 

4.1.2. Textural Patterns of the Nb-Ta Oxide Minerals 

The variety and abundance of Nb-Ta rich oxide minerals increase from type-II to type-V 
pegmatites. In type II pegmatites, Nb-Ta oxides are very rare and limited to CGM located in the 
second intermediate zone, especially in contact with the quartz core. They form scarce unzoned 
hemihedral crystals of less than 50 μm in size, and do not seem zoned. 

In type-III pegmatites, most of Nb-Ta oxides are CGM, but there are also some minerals of the 
pyrochlore supergroup, tapiolite, stibiocolumbite and stibiotantalite groups. The CGM can appear 
with two different aspects (Figure 11a,b): (a) euhedral crystals up to 1 mm in length that have a 
convoluted zoning, with Ta- and Nb-rich areas, and (b) euhedral crystals, up to 0.5 cm in size, where 
no zonation is observed (Figure 11c). Pyrochlore supergroup minerals occur in fine veinlets within 
the non-zoned columbite-(Fe) crystals (Figure 11c,d). 
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Figure 11. Textural patterns of CGM from type III pegmatites. (a,b) Columbite and tantalite with 
convoluted zoning. (c) Unzoned columbite crystal with late pyrochlore replacements. (d) detail of the 
area from image c with replacements by pyrochlore-supergroup minerals (Pc). Col, FC, columbite-
(Fe); FT, tantalite-(Fe). 

Beryl-columbite-phosphate pegmatites (type IV) are rich in Nb-Ta oxides. In all of the studied 
pegmatite bodies, these minerals belong mainly to the columbite group, with minor amounts of rutile, 
tapiolite and members of the stibiotantalite and pyrochlore supergroup. The Nb-Ta minerals 
generally are less than 200 μm across, but they reach sizes up to 5 cm in the second intermediate zone. 
Crystals of the CGM present slight compositional zoning or a moderately marked convoluted zoning. 
In the first intermediate zone, these minerals form euhedral homogeneous crystals or with a weak 
zoning, whereas in the second intermediate zone, crystals with a strongly convoluted zoning can 
occur (Figure 12). Pyrochlore-supergroup minerals replace CGM crystals, generally in veinlets, 
although rare euhedral crystals may occur (Figure 12i). 

In the spodumene-type pegmatite (type V), the Nb-Ta oxides are found in the first, second and 
third intermediate zones. They are mainly formed by minerals of the CGM and pyrochlore 
supergroup. Stibiocolumbite and stibiotantalite, although present, are scarce. The CGM are abundant 
in the third intermediate zone, where they form euhedral tabular crystals 2–5 cm in size. As in the 
type-IV pegmatites, these crystals present a complex patchy zoning (Figure 13a,b), with abundant 
complex replacements by late fluids rich in Ta. On the other hand, they are fractured and replaced 
by generations of other Nb-Ta minerals and cassiterite (Figure 13c,d). Tantalite is abundant in the 
albite veins unit as euhedral crystals 1–2 mm in size. 
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Figure 12. Textural patterns of Nb-Ta minerals from type-IV pegmatites, SEM images, mode BSE, (a) 
columbite-(Fe) crystal (FC) with a narrow tantalite-(Mn) rim (MT). (b) columbite-(Fe) crystal (FC) 
replaced by tantalite-(Mn) (MT), (c) tantalite-(Mn) crystal (MT) with minor columbite-(Fe) (FC) relict 
areas. (d) columbite-(Fe) (FC) partly rimmed by tantalite-(Mn) (MT) with a small grain of 
stibiocolumbite (SC), (e) columbite-(Fe) crystals with convoluted complex zoning, (f) detail of the 
above columbite crystal with convoluted zoning, with bands richer in Ta (lighter) and in Nb (darker). 
(g) columbite crystals with patchy complex zoning and replacements, (h) detail of image g, where 
replacements of patchy zoned columbite-(Fe) (FC) by stibiomicrolite (SM) and tapiolite (TP) in 
veinlets are more visible, (i) columbite-(Fe) crystal (FC) replaced by microlite (Micr) and Bi-rich 
microlite (Bi-Micr). 

The petalite-bearing pegmatite (V) is rich in a wide variety of the pyrochlore-supergroup 
minerals. These minerals appear in the second and, mainly, in the third intermediate zones. Microlite 
is a rare mineral in this pegmatite, having been identified only as a product of late replacement of the 
CGM, in which it fills small veinlets of a few μm wide (Figure 13), where it is associated with other 
Ta-poor minerals. Microlite occurs here usually as anhedral grains, with a round appearance, 
although occasionally euhedral crystals can be developed. 
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Figure 13. Textural patterns of Nb-Ta minerals from type-V pegmatites. SEM images, mode BSE. (a) 
fine-grained microlite (bright dot areas) in veins developed in a CGM crystal with patchy zoning, 
with Ta-rich areas (Tan) and Nb-rich ones (Col). (b) detail of a late replacement of columbite (col) by 
tantalite (tan), (c) microlite (Micr) and tantalite (tan) veins in CGM crystal with patchy zoning (col, 
columbite; tan, tantalite); (d) detail of the vein filling and replacement of a columbite crystal (Col) by 
tantalite (tan), microlite (Micr) and Ta-poor columbite (Col). 

Finally, tapiolite occurs in the most evolved pegmatites filling veinlets or pore space in all the 
minerals of the pegmatite (Figure 14a,b), although it is more common replacing CGM crystals in 
veinlets or rimming them (Figure 14c,d), in some cases along with minerals of the pyrochlore 
supergroup. 

 
Figure 14. Textural patterns of tapiolite from type-IV pegmatites. (a) Tapiolite (Tp) filling fractures in 
quartz. (b) Tapiolite (Tp) filling a void in quartz produced by dissolution of a pre-existing mineral. 
(c,d) Replacement of columbite-(Fe) (FC) by tapiolite (TP) and stibiocolumbite (SC). 

4.1.3. Textural Patterns of Cassiterite 
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Cassiterite appears only in type-IV and type-V pegmatites. In type-IV pegmatites, it is scarce and 
forms homogeneous hemihedral crystals in albite veins, up to 200 μm in size. Cassiterite is abundant 
in all zones of type V pegmatite as idiomorphic crystals up to 1 mm in size; in this case, under the 
microscope, an oscillatory zoning is frequently observed. Some crystals are twinned to form the 
typical peak twin (Figure 15). 

 
Figure 15. Cassiterite from type-V pegmatites. (a) Zoned crystal of cassiterite associated with quartz 
and albite in albite veins; (b) Twinned crystal of cassiterite associated with columbite and tantalite. 

4.2. Mineral Chemistry 

4.2.1. Zircon 

Representative zircon compositions are presented in Table 1. The Hf content in type-I pegmatites 
is low, and appears relatively homogeneous within the crystal, ranging from about 2 to 4 wt.% HfO2 
(Figure 16a). These values are typical of slightly evolved granitic melts. The content in Th and U, is 
significant, thus explaining the metamict character to these zircon crystals. 

Zircon crystals from granitic rocks in the study area are Hf-poor, although the Hf content 
increases from Ca-rich granitic rocks (less than 2 wt.% HfO2) to the most evolved leucogranites (up 
to 4 wt.% HfO2). Similar values are recorded in type-I pegmatites (less than 3 wt.% HfO2). Hf contents 
are also low in zircon of the type-II pegmatites in the range 1–4 wt.% HfO2). The content in Hf 
increases from the first to the second intermediate zone (Figure 16b). The zircon crystals of type-III 
pegmatites have relatively low Hf contents, as is typical in poorly evolved granitic magmas. Hafnon 
appears to be relatively homogeneously distributed within the crystal. The content in Hf increases 
from the earlier to the latest units, and their values are between 1–6% by wt.% HfO2 (Figure 16c). 

The composition of zircon in type-IV pegmatites varies according to the unit of the pegmatite. A 
complete sampling allows to appreciate the progressive decrease of the Zr/Hf ratio as the pegmatite 
crystallizes, that is, from the border zone to the third intermediate zone. In this way, zircon has values 
close to 1 wt.% HfO2 in the border zone, to close than 4 wt.% in the first intermediate zone and, finally, 
up to about 12 wt.% HfO2 in the second intermediate zone (Figure 16c). On the other hand, at the 
crystal level, the Hf content tends to increase slightly from the core to the rim. The Th content is below 
the detection limit of the electron microprobe. The content of U is maximum in the second 
intermediate zone; where the largest proportion of zircon is found. In addition, the content of U is 
also variable according to the zonation of the crystal; the highest values are located in the central part 
of the crystals, which is usually the most strongly metamict area. 

In type-V pegmatites, the zircon crystals show a marked enrichment from the contact of the 
pegmatite with the host rock and the intermediate zones. In the intermediate zones, the Hf content 
increases considerably. These values are among the highest in the pegmatite field, indicating a 
moderate degree of fractionation (Table 1, Figure 16d). Zircon crystals are slightly zoned, with a 
slightly higher proportion of Hf toward the rim. 



Minerals 2019, 9, 580 20 of 38 

 

Table 1. Representative chemical composition (wt.%) of zircon from the Giraúl pegmatites. 

Type I II III III III IV IV IV V V 
Zone 1st I 1st I 1 st 2nd I 3rd I Border 1 st 2nd I Border 3rd I 

Sample X2B GP13 Ibep3 I + 4B pa8–4  a21–10 a6a A10ap17 k100q K100C 
SiO2 31.22 31.57 32.27 31.67 30.91 31.13 31.75 31.15 31.21 31.03 
TiO2 0.02 0.00 0.01 0.02 0.00 0.03 0.05 0.04 0.03 0.00 
ZrO2 61.38 65.86 65.29 63.17 63.71 64.72 60.33 56.93 67.05 56.12 
HfO2 2.56 2.15 1.39 3.32 4.69 1.68 5.66 11.89 1.38 11.54 
ThO2 0.00 0.00 0.07 0.04 0.08 0.00 0.00 0.04 0.09 0.00 
Al2O3 0.53 0.00 0.00 0.00 0.00 0.05 0.25 0.02 0.00 0.00 
Y2O3 0.29 0.17 0.10 1.38 0.00 0.21 1.31 0.00 0.00 0.00 
U2O3 0.88 0.12 0.16 0.00 0.35 0.17 0.00 0.01 0.00 0.00 
CaO 0.05 0.01 0.02 0.03 0.00 0.10 0.21 0.00 0.03 0.09 
FeO 2.07 0.07 0.26 0.01 0.03 0.42 0.15 0.00 0.16 0.09 
Total 99.91 99.95 99.57 99.64 99.77 98.51 99.71 100.08 99.95 98.87 

     Apfu *      

Si 0.53 0.98 1.00 0.99 0.97 0.98 1.00 1.00 0.97 1.00 
Zr 0.51 1.00 0.98 0.96 0.98 0.99 0.92 0.89 1.01 0.89 
Hf 0.01 0.02 0.01 0.03 0.04 0.02 0.05 0.11 0.01 0.11 
Al 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 
Y 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.00 
U 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 
Fe 0.03 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

Zr/Hf 40.96 52.33 80.24 32.50 23.21 65.81 18.21 8.18 83.00 8.31 
* Calculated on the basis of 2 cations pfu. 

 
Figure 16. Zr/Hf vs HfO2 in the Giraúl pegmatites (a) type I, orange, and II, grey, (b) type III, (c) type 
IV, (d) type V. 

4.2.2. Columbite-Group Minerals 
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Columbite-group minerals from type-II pegmatites present an intermediate composition, with a 
Ta/(Ta + Nb) ratio from 0.52 to 0.64 and limited variation in the Mn/(Mn + Fe) ratio from 0.30 to 0.50 
(Table 2). 

Table 2. Representative chemical composition of CGM from the Giraúl pegmatites. FT, Tantalite-(Fe); 
MC, columbite-(Mn); FC, columbite-(Fe); MT, tantalite-(Mn). 

Type II III III III IV IV IV IV V V V V V 
Zone 2nd I 3rd I 3rd I 3rd I 1st I 1st I 2nd I 2nd I 1st I 1st I 2nd I 3rd I 3rd I 

Sample GP1 PA8 P8 P8 D1e A41c A9Db A10F k40 k40 K100C K100L K100R 
Mineral FT MC MC MT MT FC MT FC FC FC FC FC FC 

WO3 0.30 2.40 0.52 0.40 n.a. 1.49 0.35 0.00 0.67 0.50 n.a. 1.03 1.08 
Ta2O5 53.32 10.81 24.61 56.93 52.26 9.28 58.75 12.65 26.35 42.03 39.97 26.62 11.86 
Nb2O5 27.08 65.53 54.93 25.06 29.34 68.25 24.29 67.16 52.86 39.65 41.70 52.20 64.86 
TiO2 0.29 1.70 0.95 0.51 1.23 1.23 0.26 0.22 0.87 0.33 0.32 1.05 1.77 
UO2 0.02 0.13 0.00 0.03 n.a 0.12 n.a. 0.08 0.07 n.a. 0.00 n.a. n.a. 
Y2O3 0.00 n.a. n.a. n.a. 0.01 0.09 n.a. 1.02 n.a. n.a. 0.37 0.73 0.72 
SnO2 0.10 0.38 0.20 0.26 0.01 0.14 0.21 0.05 0.57 0.17 0.16 0.24 0.07 
Fe2O3 0.63 0.00 0.00 0.00 0.01 0.00 0.00 0.06 0.00 0.00 0.00 0.70 1.71 
FeO 8.13 9.00 8.75 7.48 7.79 14.48 2.71 14.04 13.24 9.43 10.49 14.19 14.53 
MnO 7.57 10.28 9.11 7.74 8.46 4.65 12.71 5.50 4.79 7.60 6.90 3.59 3.69 
MgO 0.00 0.03 0.03 0.16 n.a. 0.06 0.03 n.a. 0.04 0.00 n.a. 0.13 0.18 
Sb2O3 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.06 0.00 0.00 0.00 0.00 0.00 
PbO 0.00    0.18         

Total 97.44 100.26 99.10 98.57 99.29 99.81 99.31 100.78 99.46 99.71 99.91 100.48 100.47 
     Atomic contents        

W6+ 0.023 0.019 0.034 0.031 - 0.090 0.027 - 0.044 0.035 - 0.067 0.065 
Ta5+ 4.268 0.699 1.675 4.556 4.046 0.589 4.715 0.808 1.806 3.092 2.904 1.805 0.750 
Nb5+ 3.604 7.049 6.214 3.334 3.776 7.196 3.240 7.132 6.024 4.848 5.037 5.883 6.822 
Ti2+ 0.064 0.304 0.179 0.113 0.263 0.216 0.058 0.039 0.165 0.067 0.064 0.197 0.310 
U4+ 0.001 0.007 0.000 0.002 - 0.006 - 0.004 0.004 - 0.000 - - 
Y3+ 0.000 - - - 0.002 0.011 - 0.128 - - 0.053 0.097 0.089 
Sn4+ 0.012 0.036 0.020 0.034 0.001 0.013 0.025 0.005 0.057 0.018 0.017 0.024 0.006 
Fe3+ 0.140 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.131 0.299 
Fe2+ 2.001 1.791 1.831 1.841 1.855 2.824 0.669 2.758 2.791 2.133 2.344 2.958 2.827 
Mn2+ 1.887 2.072 1.931 1.929 2.040 0.919 3.177 1.094 1.023 1.741 1.562 0.758 0.727 
Mg2+ 0.000 0.018 0.019 0.116 - 0.035 0.022 - 0.025 0.000 0.000 0.080 0.104 
Sb3+ 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.006 0.000 0.000 0.000 0.000 0.000 
Pb2+ 0.000 0.000 0.000 0.000 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

CATSUM 12.000 11.994 11.901 11.955 12.000 11.901 11.932 11.974 11.940 11.935 11.981 12.000 12.000 
Ta/(Ta + Nb) 0.542 0.090 0.212 0.577 0.517 0.076 0.593 0.102 0.231 0.389 0.366 0.235 0.099 
Mn/(Mn + Fe) 0.469 0.536 0.513 0.512 0.523 0.245 0.826 0.284 0.268 0.449 0.400 0.197 0.189 

n.a.: not analysed. 

Zoned crystals of columbite-group minerals from type-III pegmatites correspond to columbite-
(Fe) and tantalite-(Fe), reaching locally to be tantalite-(Mn) (Figure 17). In this case, the Ta/(Ta + Nb) 
ratio varies between 0.13 and 0.58, and the Mn/(Mn + Fe) ratio between 0.39 and 0.58. The non-zoned 
crystals consist of columbite-(Fe), with Ta/(Ta + Nb), between 0.8 and 0.11, whereas the Mn/(Mn + Fe) 
ratio ranges between 0.34 and 0.54. The content of TiO2 usually ranges from 1.2 to 2.11 wt.%. The 
amount of WO3 is between 0.22 and 2.31 wt.%, SnO2 is less than 0.6 wt.% and MgO is in the rang 0.01–
0.16 wt.%. Other elements such as Y and Sb are below the detection limit. 

Type-IV pegmatites have a large compositional range in the contents of Nb and Ta, as observed 
in the columbite quadrilateral, where the composition of these minerals has been represented (Figure 
17). Crystals of CGM in some of these pegmatites are euhedral, up to 5 cm in length, with no zonation 
observable. Its chemical composition is very homogeneous, consisting of columbite-(Fe) poor in Ta 
and Mn; the Mn/(Mn + Fe) ratio is 0.04 and Ta/(Ta + Nb) is in the range 0.08–0.09. They contain 
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between 0.8 and 1.2 wt.% TiO2 and up to 0.4 wt.% PbO. Other components (W, Sn, U, Y, Sb) at low 
levels. 

 
Figure 17. Composition of the CGM (dots) and tapiolite (square) from the Giraúl pegmatites in terms 
of the columbite quadrilateral (atomic ratios). 

Columbite-group minerals from the largest mined type-IV pegmatite are characterized by 
intermediate composition both in the Ta/(Ta + Nb) ratio and in the Mn/(Mn + Fe) ratio (Figures 16 
and 18a). They can have up to 2.7 wt.% TiO2. Other components, as in the type-III pegmatites, are 
very low. In this pegmatite the CGM occur in the first and second intermediate zones. Crystals of the 
CGM from the first intermediate zone have values of Ta/(Ta + Nb) between 0.2 and 0.3; Mn/(Mn + Fe) 
values range between 0.18 and 0.8, therefore extend into the columbite-(Mn) field. In the vicinity of 
the contact with the second intermediate zone, the crystals present a zoning characterized by a Ta-
rich rim (Figure 9b), with values of Ta/(Ta + Nb) between 0.11 and 0.28; the ratio Mn/(Mn + Fe) ranges 
from 0.23 to 0.35. The highest values in Ta/(Ta + Nb) and in Mn/(Mn + Fe) ratios were found in crystals 
of the second intermediate zone. In this zone, the Nb-Ta crystals have distinct characteristics in terms 
of composition. Three groups can be established. A first group are columbite-(Fe) crystals with a 
homogeneous composition poor in Ta; the Ta/(Ta + Nb) ratio is 0.06–0.15, and the Mn/(Mn+Fe) ratio, 
0.21–0.30. The second are crystals with a convoluted zoning and composition ranging from 
columbite-(Fe) to tantalite-(Fe); the Ta/(Ta + Nb) ratio is from 0.24 to 0.57 and Mn/(Mn + Fe) ratio is 
in the range 0.34–0.44 (Figure 9c,d). The third are crystals with a convoluted zoning in the central 
part, surrounded by a rim with concentric oscillatory zones, with a composition ranging from 
columbite-(Fe) to columbite-(Mn); the (Ta/(Ta + Nb) ratio is 0.29 to 0.59 and Mn/(Mn + Fe) ratio is 0.72 
to 0.89 (Figure 9e,f). Late overgrowths of CGM have the highest Ta/(Ta + Nb) and Mn/(Mn + Fe) 
values, up to 0.65 and 0.9, respectively. 

In other cases of type-IV pegmatites, TiO2 tends to behave inversely to that of the Ta/(Ta + Nb) 
ratio. However, the CGM of a pegmatite body are characterized by higher TiO2 contents than those 
that should be expected for its content in Ta (Figure 11). 

Columbite-group minerals in type-V pegmatite have Ta/(Ta + Nb) values oscillating mostly 
between 0.10 and 0.24, whereas the Mn/(Mn + Fe) ratios are between 0.16 and 0.45 (Figures 16 and 
18b). There is a single exception in an analysis corresponding to the third intermediate zone, where 
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the Mn/(Mn + Fe) reaches 0.65 and, therefore, it is columbite-(Mn). Amounts of WO3, TiO2 and SnO2 
are usually less than 1 wt.%; Sb, Pb, Ca, Mg and Bi are found in trace concentrations. 

 
Figure 18. Composition of the Nb-Ta rich minerals plotted in the columbite quadrilateral (atomic 
ratios) of (a) type IV pegmatites; blue, first intermediate zone and red, second intermediate zone; (b) 
type-V pegmatites. Dashed lines represent the composition of different areas in the same crystal. 

4.2.3. Stibiocolumbite and Stibiotantalite 

In type-IV pegmatites, stibiocolumbite and stibiotantalite are present in small veins replacing 
other Nb-Ta oxides. These minerals are characterized by Ta contents higher than the Nb-Ta oxides 
that they replace. However, they have very low contents in Mn; their Mn/(Mn + Fe) values are similar 
to those of the replaced Nb-Ta oxides. This higher content in Ta is contrary to that found in other 
locations, where the values of both groups of minerals are similar [44]. The content of Sb2O3 varies 
between 40 and 48 wt.%; Y2O3 is in the range 2.6–3.4 wt.% and Bi2O3 is less than 0.08 wt.%. 

4.2.4. Pyrochlore Supergroup 

The pyrochlore supergroup can be described by the general formula A2–m B2 X6–w Y1–n [45]. The B 
site can be occupied by Ti, Nb and Ta; Nb and Ta are the dominant cations in the Giraúl suite. 
According to the B site occupancy, in all cases of type_III pegmatites and most of the type-IV 
pegmatites, pyrochlore-supergroup minerals belong to pyrochlore ss, although the Ta/(Ta + Nb) in 
pyrochlore is invariably higher than that of the host replaced columbite. On the contrary, microlite is 
the dominant pyrochlore-group mineral in type-V pegmatites (Figure 19), where it occurs as crystals 
included in tantalite with the composition in Mn/(Mn + Fe) highest of the entire pegmatite field. 

The amount of TiO2 oscillates between 1.5 and 3.2 wt.% except in some pyrochlore minerals of 
type-IV pegmatites, where it ranges between 4.2 and 6.2 wt.%. In type-V pegmatites, TiO2 can attain 
up to 10 wt.%, and WO3 attains up to 2.6 wt.%. 
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Figure 19. Nb-Ta-Ti compositional plot of the pyrochlore-supergroup minerals from the Giraúl 
pegmatites. Black solid lines after [45]. 

The A site can be occupied mainly by Na, Ca, Bi, U, Pb, REE and vacancies. The Y position is 
occupied by O, OH, F and vacant positions. In type-III pegmatites, Bi, U and Pb are dominant with 
respect to Ca and Na, which are the most abundant in type-V pegmatites (Figure 20). The members 
of this supergroup are classified according to the occupancy of the B, A and Y positions [45]. A wide 
variety in the cations of A site occurs in the Giraúl pegmatites (Table 3). 

The Bi content is only significant in type-III pegmatites, where it reaches up to 21.0 wt.% Bi2O3. 
Bismuth is the dominant cation at the A position, approaching it to the bismutocolumbite end-
member. Where there are high contents in Bi, the sum of the total of oxides is less than 89 wt.%. 
However, in the presence of any other element was not detected in the EDS spectra, which suggests 
the presence of high contents of H2O. This is probable, as in the holotype of bismutocolumbite from 
the Mika pegmatite, in the Pamirs Mountains, the amount of H2O is close to 14.6 wt.% [46]. 

 
Figure 20. Compositional plot of the pyrochlore-supergroup minerals from the Giraúl pegmatites. (a) 
U + Nb – Bi – Ca + Sr + Na; (b) U + Nb – Sb – Ca + Sr + Na. 

The content in UO2 is variable, up to 36.5 wt.%. The content of PbO oscillates between 7 wt.% 
and 46.11%. In detail, there is a negative correlation between Pb and U, as can be seen in the 
distribution map of elements (Figure 21). 
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Table 3. Chemical composition, wt.%, of pyrochlore-supergroup minerals from the Giraúl 
pegmatites. 

Type III III III IV IV V V V V 
Mineral OBP HPP OUP HPP HKP FNM ONM FNM HSP 
Sample P-5 P-10 P-11 A33b A11A K100-20 K100C46 K100C32 K100L 

WO3 0.00 2.59 0.79 1.10 4.14 n.a. n.a. n.a. 1.19 
Nb2O5 35.04 16.37 30.16 26.59 45.49 18.53 11.24 25.40 24.23 
Ta2O5 5.23 22.86 5.32 18.20 17.80 58.29 55.74 48.42 19.45 
TiO2 1.88 5.70 2.96 4.40 1.11 0.40 0.71 0.30 10.51 
SnO0 0.31 0.72 0.38 0.17 0.24 0.19 3.08 0.29 0.72 
ThO2 0.00 n.a. n.a. 0.07 0.00 n.a. n.a. n.a. 0.00 
UO2 8.39 0.00 36.31 1.90 0.08 0.15 14.88 0.25 0.00 
Sc2O3 0.00 0.06 0.11 0.10 0.36 n.a. n.a. n.a. 0.32 
Y2O3 0.23 0.00 0.00 n.a. 0.80 0.00 0.00 0.31 0.00 
Sb2O3 0.34 0.60 0.00 0.48 19.98 0.55 0.65 0.92 25.92 
Bi2O3 21.04 0.00 0.00 n.a. 0.00 0.04 0.20 0.00 0.00 
CaO 1.73 1.07 2.19 0.03 0.00 9.50 5.65 10.45 0.03 
MnO 0.56 0.69 0.48 0.15 0.11 0.17 0.00 0.14 0.10 
FeO 4.35 1.56 1.84 1.09 0.55 0.65 0.04 0.40 1.32 
SrO 0.00 0.00 0.00 n.a. 0.00 2.71 0.85 1.96 0.81 
BaO 0.13 n.a. n.a. 0.14 0.00 n.a. n.a. n.a. 0.00 
PbO 3.06 46.11 8.37 44.56 0.29 0.09 1.34 0.08 9.34 
Na2O 0.05 0.22 0.20 0.14 3.72 5.52 3.87 6.47 0.56 
K2O 0.16 0.00 0.19 0.03 0.14 0.00 0.01 0.05 0.00 

F 0.01 0.00 0.30 0.23 0.00 5.23 0.79 5.84 0.16 
OH  1.19 0.00 2.12 2.79 0.00 0.18 0.00 1.95 
O=F −0.01 0.00 −0.15 −0.12 0.00 −2.62 −0.40 −2.92 −0.08 
Total 82.51 99.74 89.45 101.38 97.60 99.40 98.84 98.36 96.53 

     apfu     

W6+ 0.000 0.077 0.025 0.030 0.084 - - - 0.027 
Nb 1.696 0.795 1.555 1.168 1.501 0.683 0.489 0.923 0.895 
Ta 0.152 0.668 0.165 0.481 0.353 1.292 1.460 1.059 0.432 
Ti 0.151 0.460 0.254 0.321 0.061 0.025 0.051 0.018 0.646 

ΣB site 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 
          

Sn4+ 0.015 0.035 0.019 0.007 0.008 0.007 0.132 0.010 0.026 
Th 0.000 - - 0.002 0.000 - - - 0.000 
U 0.200 0.000 0.922 0.041 0.001 0.003 0.319 0.004 0.000 
Sc 0.000 0.006 0.011 0.008 0.023 - - - 0.023 
Y 0.013 0.000 0.000 0.000 0.031 0.000 0.000 0.013 0.000 
Sb 0.015 0.027 0.000 0.019 0.601 0.018 0.026 0.030 0.873 
Bi 0.581 0.000 0.000 0.000 0.000 0.001 0.005 0.000 0.000 
Ca 0.198 0.123 0.268 0.003 0.000 0.830 0.583 0.900 0.003 

Mn2+ 0.051 0.063 0.046 0.012 0.007 0.012 0.000 0.010 0.007 
Fe2+ 0.389 0.140 0.176 0.089 0.034 0.044 0.003 0.027 0.090 
Sr 0.000 0.000 0.000 - 0.000 0.128 0.047 0.091 0.038 
Ba 0.006 - - 0.005 0.000 0.000 0.000 0.000 0.000 
Pb 0.088 1.333 0.257 1.165 0.006 0.002 0.035 0.002 0.205 
Na 0.010 0.046 0.044 0.026 0.527 0.873 0.723 1.009 0.089 
K 0.022 0.000 0.028 0.004 0.013 0.000 0.001 0.005 0.000 

ΣA site 1.589 1.772 1.770 1.382 1.250 1.917 1.874 2.102 1.354 
F 0.003 0.000 0.108 0.071 0.000 1.348 0.241 1.485 0.041 

OH 0.000 0.853 0.000 1.375 1.360 0.000 0.116 0.000 1.064 
oxygen 6.997 6.147 7.492 5.554 5.640 5.807 6.644 5.871 5.895 
ΣYsite 7.000 7.000 7.600 7.000 7.000 7.155 7.000 7.356 7.000 

OBP, “oxybismutopyrochlore”; HPP, “hydroplumbopyrochlore”; OUP, “oxyuranpyrochlore”; HKP, 
hydrokenopyrochlore; FNM, fluornatromicrolite, ONM, oxynatromicrolite; HSP, “hydrostibiopyrochlore”. 
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In these cases, CaO and Na2O are significantly low. The contents in Sb, Y and Sr are negligible; 
BaO, Na2O and K2O are generally less than 0.2 wt.% and there is a high proportion of vacant positions 
in the A site. These characteristics are typical of secondary pyrochlore [47]. Similar values were 
reported in pyrochlore supergroup minerals that were partly transformed to liandratite [48]. Low Ca 
and alkali contents in secondary pyrochlore can also be coupled with enrichments in Sb, up to 25.1–
25.9 wt.% Sb2O3. Thorium and Y occur invariably in minor amounts. Manganese and Fe generally 
present values lower than 1 wt.% except one grain of pyrochlore, with 8 wt.% Fe2O3. 

 
Figure 21. BSE images and elemental maps for a zoned grain of microlite replacing columbite. U-rich 
microlite is replaced by Pb-rich microlite. 

Finally, the Y site can be mainly occupied by F, OH and oxygen. The F content is between 0 and 
6.16 wt.% in the Giraúl pegmatites, being high only in the microlite group from type V pegmatites. 
Microlite from the Giraúl pegmatites is mainly fluornatromicrolite in type-V and oxynatromicrolite 
in the rest (Table 3). 

Two generations of microlite are distinguished in type-V microlite with a marked difference 
between the compositions of the two. One of them is rich in Ca (9.5–11.0 wt.% CaO), Na (5.5–6.5 wt.%) 
and fluorine (4.9–6.2 wt.%). The other is rich in U, with 13.0–16.0 wt.% UO2, up to 3 wt.% PbO, and 
up to 1.5 wt.% F. 

4.2.5. Rutile Group 

Minerals of the rutile group only occur in type-IV pegmatites, where niobian rutile appears in 
the second intermediate zone of some pegmatites. The Ta/(Ta + Nb) can be high enough to be named 
as tantalian rutile (Table 4). The ratio Mn/(Mn + Fe) is usually very low may reach up to 0.33. The Fe 
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and Mn contents are correlated with Nb and Ta. The WO3 content can be high, up to 3.36 wt.% WO3. 
Similar contents have been reported in pegmatites from the Písek region, Czech Republic [49]. 

Table 4. Representative chemical composition (wt.%) of niobian rutile (Nbrt) and tantalian rutile 
(Tart) from the Type-IV pegmatites. 

Zone 1st I 2nd I 
Sample A33a A33b D1E D1E D1E D1E 
Mineral Nbrt Nbrt Nbrt Nbrt Nbrt Tart 

WO3 n.a. n.a. 3.36 1.89 1.08 2.40 
Nb2O5 7.35 10.32 21.56 13.32 16.79 9.78 
Ta2O5 6.90 8.94 33.47 19.87 10.54 26.14 
TiO2 79.94 74.20 28.48 55.81 62.88 49.17 
SnO2 0.00 0.00 0.00 0.04 0.00 0.05 
UO2 0.00 0.00 0.12 0.01 0.09 0.05 
Y2O3 0.00 0.00 0.04 0.00 0.14 0.43 
MgO 0.00 0.00 0.10 0.02 0.02 0.15 
MnO 0.02 0.03 4.35 0.31 0.33 1.19 
Fe2O3 4.80 5.33 9.85 9.72 9.18 10.23 
Total 99.01 98.82 101.33 100.99 101.05 99.59 

   apfu    

W6+ - - 0.052 0.025 0.014 0.034 
Nb 0.144 0.207 0.542 0.288 0.344 0.224 
Ta 0.081 0.108 0.506 0.259 0.130 0.360 
Ti 2.601 2.473 1.192 2.008 2.140 1.875 

Sn4+ 0.000 0.000 0.000 0.001 0.000 0.001 
U4+ 0.000 0.000 0.001 0.000 0.001 0.001 
Y3+ 0.000 0.000 0.001 0.000 0.003 0.012 
Mg 0.000 0.000 0.008 0.001 0.001 0.011 

Mn2+ 0.001 0.001 0.205 0.013 0.013 0.051 
Fe3+ 0.156 0.178 0.413 0.350 0.313 0.391 

Cat.Sum 2.983 2.966 2.921 2.945 2.958 2.960 

4.2.6. Cassiterite 

Cassiterite, in addition to Sn, contains Ta, Ti, Fe, Mg, and in smaller amounts, Nb and Mn (Table 
5). Tin can be replaced by Nb, Ta and Ti. Niobium always is scarce; the most important minor element 
is Ta, which can reach up to 5.53 wt.% Ta2O5. Ti content is significant in type-IV pegmatites and in 
some crystals of the third intermediate zone of type-V pegmatites (Figure 22). The content in Fe is 
invariably higher than that of Mn; the Mn/(Mn + Fe) ratio in most cases is less than 0.20. 

The contents of these elements were interpreted by some authors as due to micro-inclusions of 
Nb-Ta minerals that are the product of exsolution processes or trapped crystals [50]. In order to verify 
if this is what happens in cassiterite [51,52], use the scheme of substitution (Fe, Mn)2+ + 2(Nb, Ta)5+ ↔ 
3(Sn, Ti)4. This is the case of most cassiterite from type-V pegmatites the Giraúl field. However, in the 
third intermediate zone of type IV pegmatites, Ti has the same behaviour as Nb and Ta. The 
substitution would be (Fe, Mn)2+ + 2(Nb, Ta, Ti) ↔ 3Sn4+ (Figure 22c). The correlation between these 
groups of elements defines a (Fe + Mn)/(Ta + Nb + Ti) ratio of 1:2, which is the value of the ideal 
columbite-group composition. The micro-inclusions in the case of type-IV pegmatites can be 
attributed to ilmenite and tantalian rutile, whereas in the cassiterite of type-V pegmatite, they mainly 
are tantalian rutile and tapiolite (Figure 22d). 
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Table 5. Representative chemical composition (wt.%) of cassiterite from the Giraúl pegmatites. 

Type IV V 
Zone 2nd I 1st I 2nd I 3rd I 

Sample A11a i4 + b K40 K40 K100B K100B K100d kK00d K100L 
WO3 0.04 0.00 0.00 0.00 n.a. n.a 0.3 0.53 0.19 

Nb2O5 0.37 0.05 0.37 0.37 1.04 0.11 0.00 0.44 0.00 
Ta2O5 0.79 0.38 2.32 1.79 5.53 3.38 0.98 3.76 0.19 
TiO2 0.23 1.32 0.2 0.26 0.13 0.08 0.08 0.12 0.27 
SnO2 98.59 98.48 96.53 97.32 91.63 95.51 99.48 95.68 99.36 
UO2 0.11 0.06 n.a n.a n.a. n.a n.a 0.00 0.00 
MgO 0.20 0.18 0.05 0.08 0.09 0.05 0.17 0.12 0,14 
MnO 0.08 0.04 0 0 0.04 0.07 0.05 0.06 0.00 
Fe2O3 0.47 0.45 0.52 0.43 1.32 0.79 0.2 0.86 0.16 
Total 100.88 100.97 99.99 100.25 99.78 99.99 101.26 101.57 100.31 

     apfu     
W6+ 0.001 0.000 0.000 0.000 - - 0.004 0.007 0.003 
Nb 0.008 0.001 0.008 0.008 0.024 0.003 0.000 0.010 0.000 
Ta 0.011 0.005 0.032 0.024 0.076 0.046 0.013 0.051 0.003 
Ti 0.009 0.049 0.008 0.010 0.005 0.003 0.003 0.004 0.010 

Sn4+ 1.948 1.927 1.930 1.938 1.842 1.917 1.963 1.888 1.974 
U4+ 0.003 0.001 - - - - - 0.000 0.000 
Mg 0.015 0.013 0.004 0.006 0.007 0.004 0.013 0.009 0.010 

Mn2+ 0.003 0.002 0.000 0.000 0.002 0.003 0.002 0.003 0.000 
Fe2+ 0.018 0.017 0.020 0.016 0.050 0.030 0.008 0.032 0.006 

Cat, Sum 2.015 2.015 2.002 2.003 2.004 2.006 2.006 2.003 2.006 

 
Figure 22. Cassiterite composition from the Giraúl pegmatites. (a) Fe + Mn – Nb + Ta − Ti diagram. 
(b) Fe + Mn – Sn + Ti – Nb + Ta diagram. (c) Sn + Ti vs Ta + Nb. (d) Ta/(Ta + Nb)/(Mn/(Mn + Fe) 
quadrilateral. 
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4.2.7. Uraninite 

Uraninite occurs as micrometric inclusions in minerals of the columbite group in type-III and 
type-IV pegmatites, frequently together with minerals of the pyrochlore-supergroup. The 
compositional characteristics are similar in both cases. The content in UO2 ranges between 76 and 87 
wt.% by weight; the PbO between 4.6 and 10 wt.%, the Nb2O5 is 0.5–6.8 wt.%, Ta2O5, 0.8–1.5 wt.%. 
CaO up to 3.2 wt.%, Bi2O3 up to 0.9 wt.% and Th2O3 up to 1.7 wt.%. 

5. Discusion 

5.1. Evolution of Zircon in the Giraúl Pegmatites 

Zircon is common to all pegmatites and granites of the area. In these minerals, the substitution 
of Zr by Hf can occur in variable proportions. The Hf contents in Giraúl pegmatites can be relatively 
high in some pegmatites, up to 12 wt.%, although never reaching proportions close to the field of 
hafnon (HfSiO4) and clearly lower than those from other evolved pegmatite fields [53,54]. Extremely 
Hf-rich contents were reported with up to more than 48 wt.% Hf in the rare-metal pegmatites of the 
Vasin-Mylk deposit, in the Kola peninsula [55]. The content of Hf in zircon usually is correlated with 
the content of Ta in the CGM with which it is associated, thus, it is a good criterion in the exploration 
of rare elements [15,56–58]. Following this criterion, the potential for Ta of the Giraúl field is 
moderate. 

However, in the Giraúl pegmatite field, the zircon crystals present wide variations depending 
on the pegmatite. In pegmatites of type I, II and III the maximum Hf contents are significantly lower 
than in type IV and V (Figure 23). Moreover, the zircon composition varies depending on the stage 
of crystallisation of the pegmatites. In every pegmatite type, the Hf/Zr ratio increases from the earliest 
to the latest crystallisation zones (Figure 16), which is in accordance with the higher solubility of Hf 
compared with Zr in pegmatite-forming melts [14,59]. 

 
Figure 23. Evolution of the composition of the zircon crystals from the granitic rocks towards the most 
evolved pegmatites. 

5.2. Evolution of the Nb-Ta Oxide Minerals in the Giraúl Pegmatites at Crystal Scale 

Columbite-group minerals from the less evolved pegmatites of the Giraúl suite do not exhibit 
zoning. They may well represent growth from the melt phase. In other cases, the CGM crystals from 
the granitic pegmatites present a great variety of zoning patterns. Both in type-III and type-IV 
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pegmatites, the presence of a convoluted zoning in these crystals is frequent. In some cases a 
combination between convoluted zoning and oscillatory zoning occurs. Crystals with a concentric 
zoning around the convoluted zone seem to have formed at a late stage (Figure 12a–d). According to 
[60], this zonation can be due to an incomplete miscibility of the solid solution. In this case the total 
composition would be located in the immiscibility gap [61] of the CGM quadrilateral, and the 
minerals in contact should be columbite or tantalite and tapiolite [62]. 

Oscillatory zoning is common and Lahti [63] attributed this zoning to the growth dynamics of 
the crystals, changes in the concentration of the main elements and successive pulses of the magma 
According to Putnis et al. [64] where the solubility of two end members of a solid solution is 
significantly different, the supersaturation threshold for the nucleation of supersaturated solutions 
facilitates the oscillatory zoning, even in the absence of oscillations in the intensive parameters. 

The convoluted zoning often occurs where CGM are affected by the action of late fluids. This 
replacement occurs at the rim of the crystals or through microfractures, producing a partial 
dissolution followed by a later crystallisation [28,63,65,66]. In some cases, as in the Cap de Creus 
pegmatites [28] and in the Penouta rare-element leucogranite [21], such convoluted zoning is 
attributed to metasomatism produced by late Na-rich fluids exsolved from the melt by an unmixing 
process. In other cases, external metamorphic fluids are involved, for example in the pegmatites of 
Marsikov, Czech Republic [67]. 

Where Nb-Ta oxide minerals occur in pegmatites that do not have a zonal internal structure, the 
Ta/(Ta + Nb) and Mn/(Mn + Fe) ratios are more constant. These pegmatites are characterized by high 
contents of CGM with limited variations of Mn, (Mn/(Mn + Fe) is around 0.5. This could be due to 
the fact that these pegmatites present high Ti contents, which, together with the CGM, form minerals 
of the rutile group, which preferably incorporate Fe into their structure, producing a buffer effect in 
the Mn/(Mn + Fe) ratio in the pegmatite fluid from which the CGM will precipitate. This effect 
explains the compositions of Nb-Ta minerals in some pegmatites from Separation Rapids, Canada 
[63]. The high content in Ti could be due to a contamination by the host rock. This has been suggested 
in other pegmatite fields [68,69]. Such contamination would have a more marked effect on the 
composition of a few number of pegmatites in the Giraúl field. Other components of these minerals, 
such as Sb and Bi, could also have been incorporated from the host rock 

In the pegmatites with a complex internal structure Nb-Ta minerals are characterized by the 
increase in the complexity of the mineralogy as the successive units are formed. First, the number of 
crystals increase and the textural complexity also increases, evolving from non-zoned or poorly-
zoned crystals in the first intermediate zone to convoluted zonation in the second intermediate zone. 

Second, the chemical composition becomes more complex, and the range of values in the Ta/(Ta 
+ Nb) and Mn/(Mn + Fe) ratios increases. The lowest values in these relationships are found in the 
crystals of the first intermediate zone. Other crystals in this zone have values of Ta/(Ta + Nb) and 
Mn/(Mn + Fe) similar to those of the second intermediate zone. The highest values in these ratios 
occur in the late CGM generations, which are associated in addition with Ta-rich members of the 
rutile group, stibiotantalite, and pyrochlore supergroup. The last two also show a proportional 
increase in Ta/(Ta + Nb) ratio with respect to that found in the replaced columbite. 

5.3. Evolution in the Composition of the Nb-Ta Oxides at Field Scale 

One of the most important aspects in the study of Nb-Ta minerals in granitic pegmatites is that 
the composition of these minerals follows a trend with the evolution of the pegmatite that indicates 
its degree of evolution [65,68,70], The evolution of the different types of rare-element pegmatites 
follows a characteristic trend in the composition, which is represented in the quadrilateral of CGM. 

In the Giraúl pegmatites, there is a tendency to increase the content of Nb-Ta minerals with the 
degree of evolution of the pegmatite, from type II to V. The Ta/(Ta + Nb) ratio does not vary 
significantly with the type of pegmatite (Figure 15). 

In the case of type-II pegmatites, the activity of Nb and Ta is sufficiently high to form minerals 
only during the very late stages of formation of these pegmatites; therefore, the Ta/(Ta + Nb) and 
Mn/(Mn + Fe) ratios are relatively high in these cases. 
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Another important aspect in the Giraúl field is the development, even at the microscale, of 
minerals of the pyrochlore supergroup, all of them formed at very late stages of crystallisation and 
by replacement of the CGM. Although the Ta/(Ta + Nb) value is similar for pegmatites of types III, 
IV and V, and even somewhat higher in some type IV crystals, the minerals of the pyrochlore 
supergroup are enriched in Ta in the case of Type-V pegmatites, where they correspond to microlite 
(Figure 24). 

 
Figure 24. Composition of CGM, pyrochlore supergroup, stibiocolumbite and stibiotantalite of 
selected crystals of type-IV pegmatites from Giraúl plotted in the CGM quadrilateral. 

The high fugacity of fluorine in this type of pegmatite, evidenced by the high F content in some 
phosphates and silicates, can be expected to modify the mineralogy of Nb-Ta oxides in favour of 
microlite [68,71,72]. Fluorine has been considered to carry out an important role in the fractionation 
of Nb-Ta minerals, as this element increases the solubility of Nb and Ta [73,74]. However, other 
experimental studies have shown that F has a limited control, being more important the temperature 
and the aluminium saturation in the precipitation of the CGM [75]. In cases where fluorine is scarce, 
columbite-(Fe) is mainly formed and evolves to tantalite-(Fe), ixiolite and ferrotapiolite. Examples are 
the pegmatites of Yellowknife, Northwest Territories, Canada [76], the pegmatites of Cap de Creus, 
Catalonia, Spain [31] and the pegmatites of Bastar-Malkangiri, India [77]. 

Members of the pyrochlore supergroup are the dominant Nb-Ta oxide minerals in the last stages 
of crystallisation of the most evolved pegmatites and replace the CGM minerals. Their occurrence 
could be due to cases with a high activity of F in the magma. The higher this activity, the higher will 
be the formation of fluoride complexes in the magma; in consequence, at least part of Ta and Nb do 
not precipitate in the magmatic stages but remain in the exsolved residual fluid. In addition, an 
increase in the alkalinity of this residual fluid would cause the crystallization as pyrochlore during 
postmagmatic sodic metasomatism. This mechanism has been proposed for the albitic apical granites 
of Kaffo, in the Ririwai complex, Nigeria, where pyrochlore is the main Nb-rich mineral and appears 
in the late stages of albitisation [78]. 

The increase in Ta with respect to Nb with the evolution is observed in granitic rocks not only 
on the scale of the Nb-Ta oxides but also in whole rock [18]. 

5.4. Comparison of the Nb-Ta Fractionation Trend with other Pegmatite Fields 
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The trend of Ta enrichment in the field at Giraúl produces only moderate enrichments, as rarely 
do the compositions of the crystals plot in the compositional fields of tantalite-(Fe) or tantalite-(Mn). 
The few analyses that plot in these fields correspond to partial replacements of other larger crystals, 
much richer in Nb. This enrichment trend shows a low range when compared to the evolutionary 
trends of other classic pegmatites from the beryl-columbite-phosphate subtype, such as Cap de Creus 
(Catalonia), Yellowknife or Greer Lake (Canada). Columbite crystals of Giraúl are much richer in Mn, 
but less enriched in Ta (Figure 25). In all these fields, the trend is more complete. A Ta enrichment 
trend reflecting the evolution across the intermediate zones has been clearly observed in Giraúl only 
in type V pegmatites (Figure 18) and do not exhibits simultaneous enrichments in Ta and Mn, 
indicative of the higher evolution found in other strongly evolved pegmatites [79]. The simultaneous 
enrichment trends in Mn and Ta have also been explained by fractionation of these elements towards 
residual Li- and F- enriched magmas [72]; however, in Giraúl the highest enrichments are only 
observed in the crystals of stibiotantalite and in the strongly replaced crystals. Hence, these textural 
data are better explained by interaction of the exsolved hydrothermal fluids with the above-formed 
CGM crystals, rather than as a result of an evolved magmatic trend. In summary, this low evolved 
trend suggests that the Giraúl field only presents moderate enrichments in rare elements. 

 
Figure 25. Comparison of the evolution trend of the chemical composition of CGM from the pegmatite 
field of Giraúl (thick line) with other evolved pegmatite fields. CC, Cap de Creus [31]; SR, Separation 
Rapids pluton [68]; PL, Pakeagama Lake [80]; YKN, Yellowknife [77]; NA, North Aubry [81]; GL, 
Greer Lake [72]. 

5.5. Mechanisms of Concentration of Nb and Ta 

The increase in the ratio Ta/(Ta + Nb) with the evolution, observed in the pegmatites of Giraúl 
and in most of the pegmatite fields, is attributed to a higher solubility of the final member tantalite 
compared to that of columbite in the pegmatite melt [14,82]. The final columbite-(Fe) member is an 
order of magnitude more soluble than that of columbite-(Mn) [83]. The variation in the ratio Mn/(Mn 
+ Fe) normally also increases with fractionation. However, this ratio shows a weak increase with the 
evolution in the Giraúl pegmatites. This can be explained because this ratio depends fundamentally 
on the relationship of these minerals and others that contain Fe and Mn that coexist with them [62–
83]. There is currently a strong controversy over the transport mechanism of rare elements, and in 
particular, of Zr, Hf, Nb and Ta. The most accepted hypothesis is that these elements are not mobile 
in hydrothermal systems, and that their concentration occurs exclusively during magmatic episodes 
[15,84]. However, in the last episodes of magmatic crystallisation, the unmixing process between a 
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fluid phase and the melt has been recorded in fluid inclusion studies [85–87]. In this hydrothermal-
magmatic transition a deuteric silicate liquid was described as a transitional phase between a magma 
and an aqueous fluid [88]. The hydrogen isotopic composition of micas from the Varuträsk rare-
element pegmatite was also used as an argument to the occurrence of mica-rich metasomatic 
replacements by an aqueous fluid exsolved from the magma [89]. 

According to experimental studies, during this separation Nb and Ta are partitioned into the 
magma [11,15,90]. However, according to [91], magmatic fractionation alone cannot explain the 
formation of leucogranites with high Ta/(Ta + Nb) ratios. Instead, they propose that these values can 
be explained by the fractional crystallisation together with a subsolidus hydrothermal remobilisation. 

Some Ta-rich minerals, particularly minerals of the pyrochlore supergroup, crystallised in late 
cavities. In the case of the most evolved and Ta-rich pegmatites of Giraúl, columbite is often partly 
replaced by Ta-rich phases. These replacements could perhaps occur partly by diffusion in the solid 
state, but without any doubt they are produced at least in Giraúl as fracture fillings, in which microlite 
tend to form idiomorphic crystals. The mineral association found in these replacements suggests that 
they have formed at the latest stages of crystallisation of pegmatite, in association with muscovite. 
All this shows that these elements can be transported or, at least, remobilised, by the late 
hydrothermal fluids. 

Other argument that supports that Ta can be transported by exsolved fluids is the occurrence of 
high Ta contents in metasomatised host rocks of the Cape Cross–Uis pegmatite belt, Namibia [92]. 

In addition, the composition of the pyrochlore supergroup in the Giraúl pegmatites has a wide 
range, with a Ta/(Ta + Nb) values higher than that of the hosting minerals of the CGM where they 
are hosted. This increase in the Ta/(Ta + Nb) values was also found in other pegmatite fields [93,94]. 
This fact and the richness in U, Sb, Pb, Ca, Sr suggest that these minerals have been formed from the 
reaction of a hydrothermal fluid rich in these elements with the previous Nb-Ta minerals. This fluid 
likely leaves the pegmatite body in convection-driven cells, interacts with the country rocks, and re-
enters the pegmatite [95]. This enrichment in Ta suggests that not only Ta but also minor Nb were 
transported in the hydrothermal fluids. However, in other cases similar Ta/(Ta + Nb) values were 
observed between the minerals of the pyrochlore supergroup and their precursors [25,41], indicating 
that Nb and Ta show a very limited mobility in the hydrothermal alteration of these granitic 
pegmatites. However, in other cases, such as in the Giraúl pegmatites, these elements show a certain 
mobility. Niobium is considered immobile during these replacements, whereas Ta, Y, U, and Zr can 
be mobilised during the late hydrothermal fluids exsolved from pegmatite-forming melts [96]. 

What kind of fluids are able to carry these metals? The answer lies in the composition of the late-
forming minerals of the pegmatite, in particular, those of the series montebrasite-amblygonite, micas 
and tourmaline group. All these minerals are formed in several stages of the crystallisation of the 
pegmatite, but all of them have in common that in the first stages (crystallisation of the intermediate 
zones) they are poor in F, whereas the crystals that have formed during the late processes (notably, 
the quartz-muscovite-elbaite veins) are highly enriched in F, indicating a high activity of F in the later 
fluids. The presence of large amounts of phosphorus and lithium in the magma plays a determining 
role in the pegmatite petrogenesis, since it further reduces the liquidus temperature [97]. Therefore, 
these results point to an enrichment in F in the later stages of crystallisation, which facilitates the 
transport of Ta. Other highly incompatible elements of the HFSE type such as Sn, Sb, U, and in part 
Pb and Bi are present in this association. These elements usually indicate a high degree of 
fractionation [25]. 

6. Conclusions 

Hafnon shows a clear but moderate enrichment trend in zircon, from the less evolved pegmatites 
towards the most evolved pegmatites; moreover, there is an increase in the ratios Hf/(Zr + Hf) from 
every pegmatite as the crystallisation process becomes more advanced. An identical behavior at the 
scales of field and pegmatite, but also crystal, is observed in the Ta/(Ta + Mn) values. The Nb-Ta 
crystals of the Giraúl pegmatites follow an evolutionary trend represented by variations in the Ta/(Ta 
+ Nb) ratio, whereas the variation in the Mn/(Mn + Fe) ratio is limited. This evolution is attributed to 
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a higher solubility of the tantalite end-member respect to columbite in the evolved pegmatite-forming 
melts, at the field scale, and to remobilisation by hydrothermal exsolved fluids, at the scale of body, 
at least in the late episodes. 

The Mn/(Mn + Fe) value increases markedly during the late stages of replacement in type-IV 
pegmatites. Variation in this ratio depends on the other (Fe, Mn)-bearing minerals that coexist with 
these minerals. Oscillatory zoning, present in most of columbite-group crystals, indicates a growth 
under disequilibrium conditions. Crystals with convoluted patterns formed by metasomatic 
processes. Stibiocolumbite, bismutocolumbite and members of the pyrochlore supergroup, as well as 
other Ta-rich minerals as tapiolite also formed as late minerals such as indicated by their location in 
veins. They formed from the reaction of hydrothermal fluids with previous Nb-Ta oxide minerals. 

Pyrochlore-supergroup minerals exhibit a wide compositional variation. The Nb-Ta content is 
similar to that of neighbouring CGM in U-dominant pyrochlore but it is higher in Pb and Sb-
dominant pyrochlore. This fact and the richness in U, Sb, Pb, Ca, Sr indicate the metasomatic origin 
of these minerals. Thus, pyrochlore-supergroup minerals formed from the reaction of hydrothermal 
fluids with the pre-existing Nb-Ta oxides. Nevertheless, the Ta enrichment suggests that Nb and Ta 
were transported in the hydrothermal fluids. 

As a whole, the relatively low enrichment of Hf in zircon and the moderate enrichments of Mn 
and Ta n the most evolved pegmatites suggest that the Giraúl field has only a moderate potential as 
resource for critical elements. 
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