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Abstract: Since its discovery in 1987, the Early Bronze Kestel Mine has been a topic of archaeological
and geological controversy. The initial interpretation of the extensive marble-hosted galleries as
the oldest known tin mine was challenged due to the low tin grade in remaining hematite-quartz
veins, and it was suggested that Kestel was more likely mined for gold. Mineralogical analysis of
the remaining mineralization was compared to a heavy mineral concentrate extracted from the soil
preserved within the mine. The compositionally complex, arsenate-rich mineral assemblage from the
mine sediment, contrasts with that of the remaining surface mineralization. Thus, the outcropping
veins do not represent the nature of the extracted ore. Only one grain of gold was found in the
heavy mineral concentrate, whereas cassiterite composed 1.5% of the sample. Cassiterite occurs in
complex assemblages with arsenates, clays, hematite, quartz, and dolomite, bearing resemblance to
hematite-arsenate tin mineralization that occurs near Kayseri, 60 km to the northeast. These findings
indicate that although gold was a trace component of the Kestel ore, cassiterite was the mineral of
interest to the Early Bronze Age miners, and that Kestel represents the earliest evidence thus far for
an emerging pattern of local tin exploitation.

Keywords: geoarchaeology; Bronze Age; cassiterite; arsenates; Turkey; Niğde Massif

1. Introduction

Archaeologists continue to seek to identify the sources of tin ore that supplied the
extensive bronze production of the eastern Mediterranean during the Bronze Age. Given
that the region lacks major cassiterite deposits, researchers have focused on distant sources
such as the English deposits of Cornwall, the Bohemian ores of the Erzgebirge, and mines
of Central Asia (Tajikistan, Afghanistan, Pakistan) [1–4]. An early second-millennium BC
cuneiform tablet excavated from the Central Anatolian trading center of Kültepe describes
tin being brought to the city of Assur in northern Iraq from an unknown location in the east,
and then transported to Turkey by donkey caravans, consistent with a Central Asian origin
of the metal [1]. However, tin bronzes existed 1000 years before the abovementioned texts
during the Late Chalcolithic/Early Bronze Age. Others have concluded that a single source
model is untenable, and that smaller tin deposits that would be considered subeconomic by
modern standards likely contributed significantly to the prehistoric metal economy [5–8].

The ancient mining site of Kestel in the Central Taurus Mountains of Turkey (35 km
southeast of the city of Niğde; Figures 1 and 2) presents the most compelling archaeological
evidence for early tin production proximal to the Eastern Mediterranean. Following the
General Directorate of Mineral Research and Exploration’s discovery of placer cassiterite
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in the Kuruçay stream, near the town of Celaller (Figure 1), open pit mines and collapsed
gallery entrances were discovered over 2 km2 on the adjacent hillside [5]. To date, archae-
ologists have documented 1.5 km of underground workings totaling more than 4500 m3

of galleries at the Kestel mine [9]. Ore was mined predominantly from a marble host, but
also from quartzite and pegmatite dikes [9]. Open pit workings were first exploited at the
beginning of the Early Bronze Age, around 3000 BC [10]. Ceramic typology and carbon
dating of charcoal from within the mine indicate that construction of the underground
shaft and gallery network was begun shortly after, and that mineral processing at the site
reached its height towards the end of the Early Bronze Age (ca. 2000 BC) [10].

Hematite-quartz veins in the wall of the mine chambers were found to contain up
to 7900 ppm Sn and approximately 0.5 g/ton gold; both native gold and cassiterite were
found in veins and soils within the mine [11]. Pieces of hematite vein materials with low
tin content were discarded in the mine and downslope, and Sn-barren hematite veins
remain unmined. Furthermore, Earl and Özbal [11] noted that hematite lumps that were
excavated from the ore processing site of Göltepe, 2 km southeast of the Kestel mine,
contained three times the average Sn concentration of vein material from Kestel, 647 and
2080 ppm respectively; powdered hematitic ore found in ceramic containers at the same
site were even more enriched, with 4464 ppm tin, suggesting that ore was being treated to
concentrate tin [11]. In addition, over one ton of ceramic crucible fragments were excavated
from Göltepe [10]. Vitrified surfaces on the inner surfaces of these fragments contain up to
4% tin [9]. Based on these findings, the archaeological team led by K.A. Yener concluded
that Kestel was worked for its tin ore.
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1.1. The Controversy

Publication of the initial findings at Kestel initiated a heated debate in the archaeo-
logical literature as to the veracity of Yener’s conclusions. Muhly [13] conducted his own
petrographic analysis of a sample taken from an unmined vein above the Kestel mine
entrance. He observed no cassiterite in polished section, and only trace cassiterite in the
heavy mineral fraction, indicating a total Sn content of only 26ppm. However, the sample
contained several 50µ grains of native gold, leading Muhly [13] to suggest that Kestel was
a ferruginous gold deposit, and that gold was the mined commodity, not tin.
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Figure 2. Geology of the Niğde Massif and surrounding area [14].

A similar argument was voiced by Hall and Steadman [15], who referred to cassiterite
as a trace mineral at Kestel, as well as by Pernicka et al. [16] (p. 95) who described cassiterite
at the site to be “mineralogically very interesting, but economically marginal”. Ultimately
Muhly et al. [13,17], Steadman and Hall [15], and Pernicka et al. [16] agreed that it is not
self-evident that Kestel had been a tin mine, and more likely is the remnants of a gold
deposit. Iron oxide copper gold ores (IOCG) are widely distributed across Turkey [18–20],
and an unpublished mining exploration map included in Muhly [13] identify seven oc-
currences of gold in the immediate vicinity of Kestel. Thus, the true nature of the ore has
remained uncertain.

A mine is abandoned only when ore can no longer be extracted profitably due to
either a decrease in the value of the commodity, or the exhaustion of all economically
viable mineralization. Both tin and gold maintained their value for millennia. Therefore,
it is reasonable to conclude that the ore at Kestel was exhausted, and that the presently
observed mineral assemblages and metal concentrations characterize waste rather than
ore. Therein lies the problem in interpreting the nature of the Kestel mine. As stated by
Hall and Steadman [15] (p. 218) “tin could have existed in higher concentrations and been
mined to its present levels through time, but speculation on this matter is fruitless until
more geological and archaeological data are presented”.

Whether tin or gold had been the metal of interest, it seems assured that the original
ore grade will remain a mystery. However, insights into the nature of the ore and the
commodity of interest may be recorded in the fine detrital mineral grains that were derived
from the mining and crushing of the ore and are preserved in the soils both within and
downslope of the mine [5,11].

Archaeological surface survey identified ore dressing sites mainly located near mine
openings, including one on the roof of the main chamber of the Kestel mine immediately
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above the entrance [21]. The marble platform has 216 circular mortar-like depressions
(Figure 3) that are interpreted to have been used for ore crushing. They range in size
from 5–9 cm in diameter and with depths of 1–4 cm [21]. Based on the topography of the
immediate area, material from this ledge would wash toward the mine entrance, which
then slopes inward. Thus, during the mining and ore dressing activities traces of the
fine-grained, crushed ore would have accumulated in the soils/sediments within the Kestel
chambers, thereby preserving a record of the mineralogical composition of the extracted
ore. This paper documents the ore minerals contained in soils at the mouth and just within
the entry chamber of the Kestel mine and compares this assemblage to that of remnant
hematite-quartz vein mineralization in order to further characterize the Kestel deposit.
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1.2. Regional and Local Geology

The Niğde Massif (Figure 2) of the Central Anatolian Crystalline Complex is a
migmatite-cored structural dome that was exhumed in the Late Cretaceous [14]. The
high-grade metamorphic core of the western belt is composed of metapelitic rocks and
calc-silicate rocks, marble, and amphibolite of the Gümüşler Formation [14]. The Eastern
Belt, in which the Kestel mine is located, is a lower-grade marble-dominated sequence
that is more extensively overprinted by late brittle faulting [14]. The Gümüşler Formation
is intruded by the Late Cretaceous (85–92 Ma) Üçkapılı granitoid [22] (Figure 2). This
pluton is composed of peraluminous granites and granodiorites derived from crustal
melting, as well as tholeiitic mafic enclaves derived from a subduction-modified mantle
source [23]. These researchers interpret the Üçkapılı granitoid as having formed as a re-
sult of post-collisional magmatism associated with lithospheric delamination and mafic
magma underplating. Rapid emplacement of the granite to <10 km depth occurred during
extensional exhumation of the Niğde Massif [14].

Regionally, mineralization is spatially and genetically associated with Üçkapılı intru-
sive rocks. This includes Fe-skarns [24], and vein-deposits of Fe [25] and Sb-Hg [26]. The
Madsen Sb-Hg deposit, 1 km north-northeast of Çamardı (Figure 2), consists of quartz-
stibnite ± pyrite veins along foliation planes, fold crests, and marble-gneiss contacts in
the Gümüşler Formation, and is associated with silicification, sericitization, and chloritiza-
tion [26]. Iron mineralization is irregularly distributed throughout the supracrustal unit of
the Niğde Massif in the form of lenses, breccias, and veins composed predominantly of
hematite [26]. Tumuklu et al. [25] also notes the presence of lesser goethite-limonite, mag-
netite, and copper minerals (mainly chalcopyrite, with secondary malachite, native copper,
covellite, and chalcocite) comprise <1% of the ore; trace gold is also present; kaolinitization
accompanies Fe mineralization.
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The mineralization currently exposed at Kestel exhibits similarities to the iron deposits
of the region. East-west-striking hematite quartz veins and quartz-tourmaline veins up to
several centimeters thick cut marble, gneiss, and kaolinized and sericitized Üçkapılı-type
granitic rocks [27] (Figure 1). Tin grade in these veins varies between 0.15 and 0.6 wt%
and cassiterite crystals are <0.8 mm [27]. Carbonate minerals (calcite, dolomite, siderite,
ankerite) are the only other abundant minerals within these veins. Trace amounts of pyrite,
native bismuth, arsenopyrite, pyrrhotite, and native gold were observed; primary chalcocite
has been replaced by covellite and malachite, and arsenopyrite is partially replaced by
scorodite [27].

2. Materials and Methods

In order to characterize the residual (waste) mineralization in the field, the composition
of in situ hematite-quartz veins and loose hematite vein material were analyzed in the field
with an Olympus Innov-X Delta Classic DC-4000 (with 3-Beam Soil software) portable X-
ray fluorescence (pXRF) hand-held apparatus. Three cobble-sized samples of this rock were
collected from the hillside downslope of the Kestel mine to further characterize the residual
(waste) mineralization. Polished thin sections were produced for analysis. Reconnaissance
x-ray mapping of Fe, Cu, As, Sb, W, Sn, Au, Pb, and Bi was conducted across the polished
sections to identify phases of interest. X-ray mapping and point analyses for mineral
identification and textural characterization were conducted on three polished sections and
one rough, unprepared surface on the Hitachi TM3030Plus scanning electron microscope
(Brooklyn College, Brooklyn, USA) operating at 15 kV and an Oxford Instruments AZtec
energy dispersive spectrometer with the Oxford Instruments AZtecOne software platform.

A bulk soil sample taken from the main chamber near the entrance of the Kestel
mine was sieved to remove material greater than 2 mm, and then washed and floated
to remove the organic and clay components. The residual sediment was then panned to
produce a black sand concentrate. Samples were subsequently dried and the heavy mineral
concentrate was further purified by extracting light minerals (<2.9 g/cm3) using flotation
separation with a solution of sodium polytungstate (3Na2WO4·9WO3·H2O), resulting in a
26.5 g sample. The heavy mineral assemblage was then fed through a Frantz Isodynamic
Magnetic Separator after magnetite was removed using a hand magnet. Subsamples were
taken at 0.4 A, 0.5 A, 0.75 A, 1.0 A, 1.5 A, 2.0 A and the remaining non-magnetic fraction.
Each fraction was weighed and mounted on aluminum stubs with carbon tape for analysis.

All heavy mineral grains were identified and characterized using the Hitachi TM3030Plus-
Aztec system as described above. Reconnaissance x-ray mapping for heavy metals (Ti, Cr,
Mn, Fe, Ni, Cu, Zn, As, Ag, Sn, Sb, Ba, W, Au, Hg, Pb, Bi) was conducted to target analysis
and identification of ore suite minerals. Semi-quantitative point analyses were used to
define the major element components of mineral grains and determine approximate molar
proportions from which mineral formulae/identities were deduced stoichiometrically.
Physical features observable under the scanning electron microscope (form, cleavage) and
binocular microscope (color, luster) were also noted and used for mineral identification.
Point counts were conducted on representative samples of each magnetic fraction to
determine the modal composition.

3. Results
3.1. In Situ Veins and Surface Finds

pXRF analysis of the sub-horizonal in situ hematite-quartz veins (Figure 4) was
consistent with published results; much of the material was barren, but Sn values of up to
0.5% were recorded. Other than Fe and Sn, no other metals were present at >100 ppm. The
10 cm wide vein that outcrops above the mine entrance (Figure 4A) displays a scar from
channel sampling (Figure 4B). It is likely that this is the site of the “trench samples [that]
were taken from a mineralized vein in the vicinity of the mine entrance at Kestel” [16]
(p. 94) that were taken by Muhly. This sample was reported to contain 26 ppm Sn and trace
Au [13]. Tin was below the detection limit of the pXRF (<150 ppm) at the prior sample site
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in the vein, consistent with published results [13]. However, the 0.5m length of reddish
vein material immediately to the left of the sample site (Figure 4B) contains 0.2–0.5% Sn.
pXRF spot analyses of loose hematite-quartz waste rock ranged from undetectable to as
high as 4% Sn, with no other metals present at concentrations >150 ppm, aside from iron.
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exposed in wall of collapsed mine entrance.

Petrographic and SEM analysis of the mineralized samples indicate that composition
varies. Figure 5 illustrates an example of hematite-quartz matrix with minor tourma-
line, as has been described by Çağatay and Pehlivan [27]. In hand-sample, reddish-brown
cassiterite can be seen set in a matrix of black hematite and red quartz (Figure 5A). The cassi-
terite is concentrated in late veinlets and micro-breccias with hematite matrix (Figure 5C–F).
These breccias incorporate clasts of older tin-mineralized rock in which cassiterite is hosted
by quartz (Figure 5G,H). No additional ore minerals were observed in this sample using
both reflected light microscopy and SEM analysis.
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Table 1. Minerals identified in heavy mineral separate and hand samples.

Mineral Name Abbreviation in Text Formula

Native Antimony Sb Sb
Native Bismuth Bi

Native Gold Au
Arsenopyrite Apy FeAsS

Cinnabar HgS
Wittechinite CuBiS3

Hematite Hem Fe2O3
Magnetite Fe3O4
Ilmenite FeTiO3

Chromite FeCr2O4
Cassiterite Cst SnO2

Rutile TiO2
Damaraite Pb3O2(OH)Cl

Beyerite Bey Ca(BiO2)(CO3)2
Calcite Cal CaCO3

Cerussite Cer PbCO3
Dolomite Dol MgCa(CO3)2

Barstowite Bst Pb4Cl6(CO3) · H2O
Barite BaSO4

Apatite Ap Ca5(PO4)3(F,Cl,OH)
Monazite Mnz (Ce,La,Nd,Th)PO4

As-Monazite As-Mnz (Ce,La,Nd,Th)(As,P)O4
Phosphohedyphane Ca2Pb3(PO4)3Cl

Plumbogummite PbAl3(PO4)(PO3OH)(OH)6
Fluorcalcioroméite (Ca,Na,�)2Sb5+

2(O,OH)6F
Arsenoflorencite (Ce,La,Nd)Al3(AsO4)2(OH)6

Berzeliite Brz (NaCa2)Mg2(AsO4)3
Chernovite YAsO4
Mimetite Pb5(AsO4)3Cl
Sewardite Sew CaFe3+

2(AsO4)2(OH)2
Hydrotungstite Htu WO3 · H2O

Raspite Ras PbWO4
Garnet (Fe,Mg,Ca)3Al2(SiO4)3
Titanite CaTi(SiO4)O
Zircon ZrSiO4

Tourmaline Tur Na(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Diopside CaMgSi2O6

Hornblende (Ca,Na)2–3(Mg,Fe,Al)5(Al,Si)8O22(OH,F)2
Chlorite (Mg,Fe)5Al(Si3Al)O10(OH)8
Quartz Qz SiO2

Figure 6 illustrates another form of brecciated mineralization in which clasts of
hematite and calcite are set in a matrix of quartz and mixed-layer clays, with minor
apatite. Cassiterite occurs as the fill of microbreccias and veinlets within the quartz-clay
intergrowths (Figure 6B–D). Trace As-monazite [(Ce,La,Nd,Th)(As,P)O4] occurs in the
quartz-clay matrix (Figure 6D,E), and trace native bismuth is present in both quartz-clay
matrix and clasts of hematite.
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Figure 5. Hematite-Quartz-Cassiterite vein breccia. Mineral abbreviations listed in Table 1. (A) Pho-
tograph of ore; (B) Backscatter electron (BSE) image of (A); (C) Hem-Cst veinlet cutting quartz-rich
breccia; (D) quartz clasts in Hem-Cst matrix; (E) close-up of Hem-Cst matrix in (C); (F) BSE image
of (E); (F) close-up of Qz-Cst clast in Hem-Cst in (C); (H) X-ray map of (G). Hem: Hematite; Cst:
Cassiterite; Qz: Quartz; Tur: Tourmaline.
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Figure 6. Hematite-Quartz-Calcite vein breccia. (A) Photograph of polished thin section; (B) Breccia
with Cst-bearing clay-rich matrix; (C) X-ray map of (B); (D) Breccia with Cst-bearing clay-rich matrix
with apatite and As-monazite; (E) X-ray map of (D). Cal: Calcite; Ap: Apatite; As-Mnz: As-Monazite.

3.2. Heavy Mineral Concentrate

Hematite and magnetite are the predominant minerals, comprising 61% and 21% of
the concentrate, respectively. Ilmenite (5%), tourmaline (2%), diopside (2%), and cassiterite
(1.5%) are the only other minerals present at >1% based on point count analysis. The
sample contained one grain of gold, 350µ in length.

The complete list of minerals that comprise the heavy mineral fraction is presented
in Table 1. In addition to diopside and tourmaline, common silicates included garnet,
hornblende, chlorite, titanite, and zircon. Sulfide minerals were rare; arsenopyrite was
most abundant; single grains of cinnabar and wittechinite (CuBiS3) were identified. Barite
is the only sulfate mineral present.

Arsenates are the most diverse mineral group in the Kestel heavy mineral assem-
blage. Mimetite (Pb5(AsO4)3Cl) is the most abundant and occurs as rounded grains
of radiating yellow resinous acicular crystals (Figure 7A). Blocky, subhedral, colorless
berzeliite ((NaCa2)Mg2(AsO4)3) (Figure 7B) is rarer, as is deep red, vitreous sewardite
(CaFe3+

2(AsO4)2(OH)2) which occurs in platy and subhedral blocky forms (Figure 7C),
as well as within composite grains with cassiterite, hematite, quartz, clay, and dolomite.
Two rare earth element-bearing arsenates were documented, arsenoflorencite (Ce,La,Nd)-
Al3(AsO4)2(OH)6 (Figure 7D) and chernovite (YAsO4) (Figure 7E). Both occur as euhedral
crystals, dipyramidal and scalohohedral, respectively. One subhedral, angular grain of a
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Cu-Ca-bearing arsenate was found with micro-veinlets of cassiterite (Figure 7F), but its
red-brown color is inconsistent with known Cu-arsenates.
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Apatite is the most abundant phosphate, but two Pb-bearing phosphates are also
present: Clusters of micron-scale crystals of plumbogummite (PbAl3(PO4)(PO3OH)(OH)6)
occur embedded in a clay matrix (Figure 8A); yellow, vitreous phosphohedyphane. (Ca2Pb3-
(PO4)3Cl) occurs as granular masses (Figure 8B). Fluorcalciroméite (Ca,Na,�)2Sb5+

2(O,OH)6F
is the only antimonate identified in the Kestel soil. It occurs as honey-yellow, vitreous
euhedral crystals with octahedral form (Figure 8C) that in some cases are set in a clay matrix.
In addition to calcite and dolomite, the sample contains two other carbonate minerals:
Beyerite (Ca(BiO2)(CO3)2) was observed as individual anhedral grains (Figure 8D), as
well as within composite grains intergrown with clay, cassiterite, and hematite; cerussite
(PbCO3) occurs as smooth, rounded grains that are colorless or white (Figure 8E). The
colorless Pb-chloride damaraite (Pb3O2(OH)Cl) forms rounded, anhedral grains with a
vitreous luster (Figure 8E).Minerals 2021, 11, x FOR PEER REVIEW 12 of 17 
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Figure 8. BSE images, EDS spectra, and photograph triplets of carbonates, antimonates, and halides in
the heavy mineral concentrate. (A) Plumbogummite; (B) Phosphohedyphane; (C) Fluorcalcioroméite;
(D) Beyerite; (E) Cerussite; (F) Damaraite.
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The heavy mineral concentrate contains several irregularly shaped, rounded grains
composed of very fine-grained intergrowths of Pb, W, and Sb-bearing minerals, including
barstowite (Pb4Cl6(CO3)·H2O), raspite (PbWO4), hydrotungstite (WO3·H2O), and native
antimony (Figure 9). In one example, raspite and hydrotungstite encrust the surface of a
grain of cerussite (Figure 9E–H), suggesting that these grains are the product of late-stage
weathering processes.
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Figure 9. Composite Pb-W-Sb Grains. (A) BSE image of fibrous composite grain; (B) photograph
of Grain (A); (C) BSE image of close-up on Grain (A) showing platy barstowite, bladed respite,
and native Sb; (D) X-ray map of (C); (E) BSE image of cerussite grain with raspite on the surface;
(F) photograph of Grain (E); (G) X-ray map of closeup of Grain (E); (H) X-ray map of closeup of
image (G) showing bladed hydrotungstite. Bst: Barstowite; Sb: Native Antimony; Cer: Cerussite;
Ras: Raspite; Htu: Hydrotungstite.
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Composite grains that include cassiterite indicate that the original ore was miner-
alogically more complex than what remains on surface. In addition to assemblages of
Cst-Hm-Qtz (Figure 10A), and Cst-Hm-Clay (Figure 10B) that are typical of the remnant
mineralization, cassiterite occurs in assemblages with arsenates (sewardite, berzeliite, and
a Cu-Ca arsenate) and the Bi-bearing carbonate beyerite (Figure 10C–F), and clay is a
common constituent of the matrix of the associated composite grains.
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Figure 10. Cassiterite-bearing composite grains. (A) Cst-Hem-Qz; (B) Cst-Hem-Clay; (C) Cst-Hem-
Qz-Sew-Clay; (D) Cst-Hem-Dol-Brz-Clay; (E) Cst-Hem-Bey-Clay; (F) Cst-(Cu-Ca Arsenate). Sew:
Sewardite; Cst: Cassiterite; Qz: Quartz Brz: Berzeliite; Dol: Dolomite; Bey: Beyerite.
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4. Discussion

Examination of the hematite-rich material remaining as outcropping veins and as loose
material on the surrounding hillside confirms the findings of Çağatay and Pehlivan [27] that
this material is mineralogically simple, consisting primarily of hematite, quartz, carbonate
minerals, and minor cassiterite. However, the ore is highly variable on a centimeter scale
with cassiterite concentrated in late fractures and breccia matrix. Within a single hand
sample, pXRF spot analyses for Sn varied from undetectable to 4%.

One previously undocumented feature of the ores is the association of clay with
cassiterite-bearing assemblages in both surface samples and composite grains in the soil of
the Kestel mine. The presence of clay in ore assemblages has implications for ore dressing.
A clay-rich matric would be easier to crush, and facilitate the separation of ore minerals
from the matrix.

Other than hematite and cassiterite, Çağatay and Pehlivan [27] documented few ore
minerals: Chalcocite, arsenopyrite, native bismuth, and gold; rutile and titanite were
present, but were interpreted to have been sourced from the local gneisses. The presence of
gold and arsenopyrite were confirmed by Muhly et al. [13]. These compositionally simple
assemblages lie in sharp contrast to the diversity of minerals and heavy metal elements
found within the soil inside the mine. A total of 27 heavy metal-bearing minerals were
identified in the heavy mineral concentrate, including minerals containing Ti, Cr, Fe, Cu,
As, Y, Sn, Sb, La, Ce, Nd, W, Au, Hg, Pb, and Bi.

Most of the ore minerals occur as phosphates, arsenates, carbonates, antimonates, and
tungstates. No such minerals have been found in surface finds. Based on their textures it
is likely that some of these minerals (native antimony, barstowite, hydrotungstite, phos-
phohedyphane, raspite) formed during post-depositional weathering processes. However,
many of the remaining minerals display euhedral to subhedral forms, and can be found in
assemblages intergrown with cassiterite, hematite, dolomite, and clay within composite
grains. Thus, they appear to be primary components of the ore.

Only a single grain of gold was found in the mine soil sample, indicating that although
present, gold was not a major component of the extracted ore. Based on descriptive criteria
outlined by Williams et al. [28], Kestel is clearly not an IOCG deposit: It lacks copper
mineralization and pervasive alkali metasomatism, as well as many components of the
distinct set of IOGC-associated elements (F, Co, Ni, Mo, Ag, U). Cassiterite is the only
non-ferrous ore mineral that is present at <0.1%, and so was the most likely mineral that
was extracted in the Early Bronze Age at Kestel, as was initially suggested by Yener et al. [5].
It would seem to be a variant of the iron mineralization that is common in the Niğde Massif,
rather than an example of IOGC ore.

The contrast between the elemental and mineralogical composition of detritus within
the mine compared to the surface exposures and waste rock demonstrates that the extracted
ore was significantly different in composition and character from the remaining cassiterite-
bearing hematite-quartz veins. Given that such exposed veins were left unmined attests to
them having been recognized as waste by the prehistoric miners. Accordingly, the grade
and character of the existing veins cannot be used to extrapolate the quality, composition,
or physical properties of the ore that was mined.

Interestingly, the association of cassiterite and hematite with an arsenate (yazganite,
NaFe2

3+(Mg,Mn)(AsO4)3·H2O) has been documented at Hisarcik, near Kayseri, approxi-
mately 60 km to the northeast (Yazgan, 2005). In this case, the ore occurs as coatings on
near-surface extension veins in andesitic pyroclastic rocks of the Erciyes volcanic complex
and are interpreted to have formed through condensation in a fumarole [29,30]. Many of
these veins are found in ancient mining galleries that can be dated to the Early Bronze Age
by associated pottery [6]. Thus, this unusual form of tin-arsenate mineralization must have
contributed to the development of the bronze economy of Central Anatolia, if not beyond,
and may account for common ternary bronzes (Cu-Sn-As) in some of the earliest bronze
artifacts of the region.
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5. Conclusions

1. Remnant exposures of Kestel mineralization are composed of mineralogically simple
assemblages (Hem + Qz ± Cst ± Tur ± Cal ± Clay) with trace Apy, Bi, and Au.

2. The heavy mineral assemblage preserved in sediments within the mine are far more
complex than that of surface veins, with 27 heavy-metal bearing minerals identified,
and the additional elemental components Sb, REEs, W, Hg, and Pb. Thus, the remnant
mineralization is not representative of the ore that was extracted.

3. Arsenates are the most diverse group of minerals within heavy mineral fraction, and
they are directly associated with cassiterite.

4. The scarcity of Cu, Au, and the lack of elements including Co, Ni, U, and F indicate
that Kestel is not an OICG deposit. Rather the shallowly emplaced Hem + Qz +
Cst + Arsenates ores appear to be a regional feature, occurring both at Kestel and at
Hisarcık, and so may represent a new target for tin exploration in Central Turkey.

5. With cassiterite being the only non-ferrous ore mineral present at <1%, and the paucity
of gold both in mine sediments and surface veins it is clear that Kestel was a large-scale
tin mine in the Early Bronze Age.

6. Activities at Kestel represent the earliest evidence thus far for an emerging pattern
of local tin exploitation that may continue into the Late Bronze Age. More defini-
tively, this evidence demonstrates that Central Turkey was a significant tin producer
in the Early Bronze Age, a millennium before nearby Kültepe-Kanesh arose as an
administrative trade center that is known to have imported tin from Central Asia.
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