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Abstract: Marine biogenic skeletal production is the prevalent source of Ca-carbonate in today’s
Antarctic seas. Most information, however, derives from the post-mortem legacy of calcifying
organisms. Prior imagery and evaluation of Antarctic habitats hosting calcifying benthic organisms
are poorly present in the literature, therefore, a Remotely Operated Vehicle survey was carried out
in the Ross Sea region Marine Protected Area during the 2013–2014 austral summer. Two video
surveys of the seafloor were conducted along transects between 30 and 120 m (Adelie Cove) and
230 and 260 m (Terra Nova Bay “Canyon”), respectively. We quantified the relative abundance of
calcifiers vs. non-calcifiers in the macro- and mega-epibenthos. Furthermore, we considered the
typology of the carbonate polymorphs represented by the skeletonized organisms. The combined
evidence from the two sites reveals the widespread existence of carbonate-mixed factories in the
area, with an overwhelming abundance of both low-Mg and (especially) high-Mg calcite calcifiers.
Echinoids, serpulids, bryozoans, pectinid bivalves and octocorals prove to be the most abundant
animal producers in terms of abundance. The shallower Adelie Cove site also showed evidence of
seabed coverage by coralline algae. Our results will help in refining paleoenvironmental analyses
since many of the megabenthic calcifiers occur in the Quaternary record of Antarctica. We set a
baseline to monitor the future response of these polar biota in a rapidly changing ocean.

Keywords: Antarctica; Ross Sea region MPA; remotely operated vehicles; carbonate factories; benthos;
carbonate polymorphs

1. Introduction

The majority of studies concerning Antarctic marine carbonates rely upon outcrop,
seafloor and core sediment sample evidence (e.g., [1–10]). On the contrary, little visual
information on their source factories is available and this is particularly true regarding
deep-sea habitats. Seafloor imagery (photos and videos) documenting benthic habitats
within the reach of scuba diving abound (e.g., [11–19]), whilst considerably fewer studies
imaged habitats from 50 m down to bathyal depths [20]. The geo-referenced transects
by means of towed cameras are equally scant (e.g., [21–24]). The utilization of Remotely
Operated Vehicles (ROV) and other robots to study Antarctic benthic habitats, although
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still limited to date (e.g., [13,25,26]), represents one of the best options for investigating the
deep seabed.

Polar marine biota are predominantly non-calcifying organisms; however, the mineralized
parts of calcifying organisms endure a higher level of preservation post-mortem. This repre-
sents a taphonomic bias when attempting to reconstruct former benthic environments since
paleoecological interpreations are by large necessarily based upon skeletal remains ([10,27,28]).

Calcified invertebrates and plants play an important role in carbon cycling and storage
in Antarctic waters [29]. Bryozoans, mollusks, echinoderms, cnidarians together with
barnacles, forams and serpulids are among the major contributors to the past and today
Antarctic calcifier fauna [5]. In terms of CaCO3 production rates, Antarctic echinoderms are
abundant from the shelves to the deep-sea [30], and incorporate high-Mg calcite showing
standing stocks 15 times higher than those measured in the Arctic [29]. Bryozoans represent
another major calcifier component in Antarctic waters with a wide range of carbonate
mineralogies, from completely aragonitic, mixed, and to entirely calcitic, and producing
800 up to 23,700 mg CaCO3/year under near-freezing conditions [31]. Further calcifiers
that abundantly colonize the Antarctic seafloor are cnidarians, which can be composed of
aragonite (scleractinians [32]) or calcite/aragonite (gorgonians and stylasterids [33,34]),
and crustose coralline algae whose tissue skeletons contain high-Mg calcite [35].

With the aim to document the relative role of calcifiers in Antarctic benthic communi-
ties, we conducted two Remotely Operated Vehicle (ROV) surveys during the 2013–2014
austral summer in shelf areas of Terra Nova Bay area (Ross Sea, Antarctica) in proximity of
the Italian research station “Mario Zucchelli”.

One dive explored the Adelie Cove from 30 m down to 120 m, while the second
surveyed the shallower portion of an elongated depression in the Terra Nova Bay (TNB) in
a depth range of 230–260 m, which is informally referred to as “TNB Canyon” [36]. From
the deeper parts of this depression, which seems to act as a natural sink for the abundant
organic matter produced during the summer phytoplanktonic bloom, new species of
polychaetes were also recently described [37,38].

Here, we present the results of such ROV explorations with a focus on the calcifying
component. The scope of this paper is to provide (i) the first ROV study on benthic
ecosystems in this sector of the Ross Sea region Marine Protected Area, (ii) an assessment
of the relative abundance of calcifiers in the macro- and mega-epibenthos and (iii) the
typology of carbonate polymorphs secreted by the calcifiers identified along the transects.

2. Materials and Methods
2.1. Study Area

The Ross Sea region Marine Protected Area (RSRMPA) was established in December 2017
under Conservation Measure 91-05 (2016) [39]. After several years of laborious negotiations
that have resulted in a significant reduction in area for protection, the MPA finally reached a
consensus in 2016. By now, the RSRMPA encompasses a surface of ca. 1.55 million km2, which
represents the world’s largest marine protected area established under an international
agreement to date.

The Ross Sea is counted amongst the least human-impacted marine environments
worldwide due largely to its remoteness, intense seasonality and extensive ice cover [24]. In
the 19th and 20th centuries, commercial hunting of whales and seals was in force, resulting
in the loss of thousands of individuals [40]. Between the 20th and 21st centuries, intensive
fishing of toothfish resulted in over-exploitation and depletion of stocks [41,42] until 1996,
when CCAMLR initiated a program to reduce the Antarctic toothfish biomass exploitation
by fishing activities by 50% within 35 years [43].

Human activity in the area is strictly regulated after the establishment of the RSRMPA,
encompassing a vast area (1.12 million km2) under full protection (General Protection Zone,
GPZ) where commercial fishing is prohibited, a special research zone (SRZ) where the krill
and commercial toothfish research fishery is regulated and a zone where research for krill
is regulated (krill research zone, KRZ, Figure 1) [44].
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Figure 1. The Ross Sea region Marine Protected Area (RSRMPA). Map of the RSRMPA established
in 2017. The Marine Protected Area is composed by (i) the General Protection Zone (GPZ), a fully
protected area where no fishing is permitted; (ii) a Special Research Zone (SRZ), where the research
fishing for krill and toothfish is limited; a (iii) Krill Research Zone (KRZ), with controlled research
fishing for krill.

Terra Nova Bay is a coastal marine area of ca. 30 km2 located between the Adélie Cove
and Tethys Bay within the RSRMPA and is part of the no-take General Protection Zone
(GPZ) of the RSRMPA (Figure 1). There, the Italian summer station “Mario Zucchelli” is
located on a small rocky peninsula along the coast of northern Victoria Land between the
tongues of the Campbell and Drygalski glaciers (74◦42′ S, 164◦07′ E, Figures 1 and 2).

Minerals 2021, 11, 833 4 of 20 
 

 

 

Figure 2. Location of visual benthic surveys. Map showing the location of ROV benthic surveys and of the extracted frames 

used for taxonomical identification at Terra Nova Bay “Canyon” and Adélie Cove. 

Since 1986, the area has been the focus of a variety of biological studies on benthic, 

nektic and pelagic aspects of resident communities (Table 1). Systemic biological research 

in TNB resulted in the discovery of a variety of taxa new to science, including am-

pharetids, amphipods, Porifera and coralline algae (e.g., [37,38,45–49]). Checklists of spe-

cies from TNB are systematically published and updated by the Italian national Antarctic 

Museum (MNA, Section of Genoa) [49–53]. The evidence of high diversity at both species 

and community levels fuelled the establishment of the Antarctic Specially Protected Area 

(ASPA) No. 161 of Terra Nova Bay (a coastal marine area encompassing 29.4 km2 between 

Adélie Cove and Tethys Bay immediately to the south of the Italian Mario Zucchelli Sta-

tion, MZS) and ASPA No. 173, which encompassed Cape Washington and Silverfish Bay 

in the northern Terra Nova Bay (a reproduction site for the for Antarctic silverfish Pleu-

ragramma antarctica Boulenger, 1902). 

Due to intrinsic difficulties, scant visual information is available about resident ben-

thic communities in the RSRMPA, especially those that are out of reach by scuba diving. 

Only fragmentary information has been provided by cameras and, in later times, by ROV 

and other devices [15–19,50,54–59]. 

Rocky cliffs alternating with occasional beaches characterize the coastline of TNB. 

Offshore the Mario Zucchelli Station, the seafloor is mostly composed of granitic rocks, 

with patches of gravels, coarse sands and muddy sediments. A large incision (“TNB Can-

yon”) following the shoreline at ca. 0.4 km from the coast characterizes the seafloor geo-

morphology (Figure 2). 

The benthic associations populating the coastal hard bottoms down to ~20 m are gov-

erned mainly by ice disturbance and melting. Here, macroalgae (mainly Iridaea cordata 

(Bory de Saint-Vincent, 1826) and Phyllophora antarctica (A. Gepp and E.S. Gepp, 1905)), 

polychaetes, molluscs and peracarid crustaceans dominate the substrate [60–64]. Further 

south, the coastline is indented by an embayment known as Adelie Cove (Figure 2), which 

Figure 2. Location of visual benthic surveys. Map showing the location of ROV benthic surveys and of
the extracted frames used for taxonomical identification at Terra Nova Bay “Canyon” and Adélie Cove.



Minerals 2021, 11, 833 4 of 21

Since 1986, the area has been the focus of a variety of biological studies on benthic,
nektic and pelagic aspects of resident communities (Table 1). Systemic biological research
in TNB resulted in the discovery of a variety of taxa new to science, including ampharetids,
amphipods, Porifera and coralline algae (e.g., [37,38,45–49]). Checklists of species from TNB
are systematically published and updated by the Italian national Antarctic Museum (MNA,
Section of Genoa) [49–53]. The evidence of high diversity at both species and community
levels fuelled the establishment of the Antarctic Specially Protected Area (ASPA) No. 161
of Terra Nova Bay (a coastal marine area encompassing 29.4 km2 between Adélie Cove
and Tethys Bay immediately to the south of the Italian Mario Zucchelli Station, MZS) and
ASPA No. 173, which encompassed Cape Washington and Silverfish Bay in the northern
Terra Nova Bay (a reproduction site for the for Antarctic silverfish Pleuragramma antarctica
Boulenger, 1902).

Due to intrinsic difficulties, scant visual information is available about resident benthic
communities in the RSRMPA, especially those that are out of reach by scuba diving. Only
fragmentary information has been provided by cameras and, in later times, by ROV and
other devices [15–19,50,54–59].

Rocky cliffs alternating with occasional beaches characterize the coastline of TNB.
Offshore the Mario Zucchelli Station, the seafloor is mostly composed of granitic rocks,
with patches of gravels, coarse sands and muddy sediments. A large incision (“TNB
Canyon”) following the shoreline at ca. 0.4 km from the coast characterizes the seafloor
geomorphology (Figure 2).

The benthic associations populating the coastal hard bottoms down to ~20 m are
governed mainly by ice disturbance and melting. Here, macroalgae (mainly Iridaea cordata
(Bory de Saint-Vincent, 1826) and Phyllophora antarctica (Gepp, A. and Gepp, E.S. 1905)),
polychaetes, molluscs and peracarid crustaceans dominate the substrate [60–64]. Further
south, the coastline is indented by an embayment known as Adelie Cove (Figure 2), which
is the home of the Adélie penguin Pygoscelis adeliae (Hombron and Jacquinot, 1841) rookery
hosting more than 7000 breeding pairs (Figure 2). Here, the seafloor is mostly constituted
by coarse sands and muddy sediments [65,66].

Table 1. Scientific literature reporting information on the biological components investigated and sampling methods for
Terra Nova Bay. NA was used when sampling method was not recovered. SCUBA is the acronym for Self-Contained
Underwater Breathing Apparatus.

Area Method Research Target Reference

Terra Nova Bay Grab Foraminifera [4]
Terra Nova Bay Grab/SCUBA Nudibranchia [67]
Terra Nova Bay ROV Shallow- and deep-water benthic communities [68]
Terra Nova Bay Fishing gears Fish fauna [69]
Terra Nova Bay SCUBA Phytobenthos [60]
Terra Nova Bay SCUBA Phytobenthos [61]
Terra Nova Bay SCUBA Phytobenthos [70]
Terra Nova Bay Grab/Dredge Coastal benthic communities [71]

Antarctica NA Demospongiae [72]
Terra Nova Bay Grab Shallow- and deep-water mollusc communities [73]
Terra Nova Bay ROV Benthic communities [54]
Terra Nova Bay SCUBA Shallow-water benthic communities [64]
Terra Nova Bay Grab Coastal soft bottoms communities [74]

Terra Nova Bay Trammel and gill nets, bottom
longlines and traps

Trematomus bernacchii T. centronotus (Pisces,
Nototheniidae) [75]

Terra Nova Bay Grab/Dredge Benthic shallow-water communities [76]
Terra Nova Bay Ice-core Sympagic algae [77]

Terra Nova Bay SCUBA Iridaea cordata (Gigartinaceae,
Rhodophyta) [62]

Terra Nova Bay Grab Adamussium colbecki [16]
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Table 1. Cont.

Area Method Research Target Reference

Terra Nova Bay Grab Shallow-water soft-bottom Polychaeta [78]

Terra Nova Bay Hauls
Trematomus hansoni

Trematomus loennbergii
(Pisces, Nototheniidae)

[79]

Terra Nova Bay ROV Benthic communities [55]
Terra Nova Bay Grab/Dredge Adamussium colbecki [80]
Terra Nova Bay Planktonic net Pleuragramma antarcticum [81]
Terra Nova Bay Grab/Dredge/SCUBA Benthic Polychaeta [82]
Terra Nova Bay Grab/Dredge, SCUBA, ROV Benthic littoral communities [83]
Terra Nova Bay Grab/Dredge Shallow- and deep-water mollusc [84]
Terra Nova Bay SCUBA Asteroidea [85]
Terra Nova Bay SCUBA/Grab/Dredge Macrophytobenthos [86]
Terra Nova Bay Hauls Trematomus newnesi (Pisces, Nototheniidae) [87]
Terra Nova Bay Trammel and gill nets Coastal Fish Fauna [88]

Terra Nova Bay SCUBA/Dredge Adamussium colbecki, Sterechinus neumayeri,
Odontaster validus [89]

Terra Nova Bay Grab Sea urchins, sea stars and brittle stars [90]
Terra Nova Bay Box corer Benthic bacterial community [65]

Ross Sea Camera Tows Benthic megafauna community [91]
Terra Nova Bay SCUBA Epiphytic diatom communities [66]
Terra Nova Bay Mooring and cages Seawater temperature [92]
Terra Nova Bay SCUBA/Grab/Dredge/ROV Porifera [50]
Terra Nova Bay SCUBA/Grab/Dredge/ROV Bryozoa [59]
Terra Nova Bay Grab Macrobenthic invertebrates [93]

Ross Sea Towed-camera transect, multi-corer Macro- and Mega-faunal Community [24]

2.2. Benthic Visual Surveys

During the 2013–2014 austral summer, three ROV dives were performed in TNB in
the frame of the XXIX Antarctic Italian expedition. The first one aborted due to bad meteo-
marine conditions, while the following two were successful. The visual benthic surveys
explored the seafloor offshore the Adélie Cove up to 120 m depth and TNB “Canyon” (a
depressed segment of the seafloor) between 220 and 300 m depth (Table 2). The activities
were performed onboard the “Malippo” and “Skua” motor vessels when the weather
conditions were favorable.

Table 2. Benthic surveys metadata. The table reports the technical information on the ROV surveys performed at Terra
Nova Bay.

ROV Date Site Latitude Longitude Duration h.mm Length Depth Range

Dive 2 01February 2014 Terra Nova Bay “Canyon” 74◦41.319′ S 164◦08.549′ E 03.15 2372 m 230–260 m
Dive 3 03 February 2014 Adélie Cove 74◦46.399′ S 164◦01.405′ E 02.52 1954 m 30–120 m

Video footage and still photographs were acquired using a ROV Pollux III (max
working depth 500m) equipped with an underwater acoustic tracking system (USBL,
Linkquest, TrackLink 1500 MA) which was connected to a Trimble dual-antenna system
providing position and heading depth every 1 s. Three laser beams spaced 10 cm apart
provided the scale bar on the videos. The ROV was equipped with a digital camera (Canon
EOS 550, Canon EF-S 10–22mm f/3.5–4.5 USM lens with double Speedlite 270EX flash,
Canon, Tokyo, Japan) and a high-definition video camera (SONY HDR-HD7, Tokyo, Japan).

2.3. Taxonomical Identification and Habitat Characterization

High-resolution images were collected with a digital camera during the surveys and
analyzed for the taxonomic composition of biological communities. A total of 169 images were
examined for Dive 2 and 148 for Dive 3. When necessary, the images were coupled with
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low-definition video recording to improve taxonomic identification efficiency. Macrofauna
and megafauna were identified to the lowest possible taxonomic rank by considering
previous knowledge established in more than 35 years of research activities in the area and
the large collection of museum vouchers curated by the Italian National Antarctic Museum
(MNA, Section of Genoa; online database available at: https://steu.shinyapps.io/MNA-
generale/(accessed on 27 July 2021)). Organisms unidentifiable at the genus or species
level were categorized as morpho-species or morphological categories. The abundances of
taxa along the exploration tracks were calculated and mapped by counting the number of
taxa in each frame. Information about the different substrates and habitat explored was
reported as a percentage of bottom covering. These percentages were converted to aerial
extensions by considering that each image displayed 3 m (width) × 2 m (height) of seabed
on average, which corresponded to 6 m2.

3. Results
3.1. Adélie Cove

Dive 3 explored ca. 2000 m of seafloor in length characterized by hard substrate between
30 m and 120 m depth. Along the entire transect, more than 7400 specimens belonging to
79 different taxa and 10 Phyla were classified (Table 3). Up to 100 m depth, the seafloor was
characterized by a dense coverage from coralline algae of the order Hapalidiales (Figure 3A–C)
with an extent of 351.6 m2. Below 100 m, patches of hard substrate started to alternate
with soft substrate. Among the most abundant taxa, we noticed that the regular echinoid
Sterechinus neumayeri (Meissner, 1910) and the pectinid Adamussium colbecki (Smith, 1902)
counted to 3046 and 521 specimens, respectively (Figure 3). Below 70 m depth, sponges and
soft cnidarians were the dominant faunal components. Up to 30 different taxa of Porifera
were identified along the ROV track. The morpho-species belonging to the genus Haliclona
were common, counting over 290 specimens. Isodictya erinacea (Topsent, 1916) (134 ind.),
Dendrilla membranosa (Pallas, 1766) (84 ind.) and Isodictya kerguelenensis (Ridley and Dendy,
1886) (27 ind.) were also identified (Figure 3B,E,F). An individual of the Demospongia
Stylocordyla chupachups (Uriz, Gili, Orejas and Pérez-Porro, 2011) was also recorded.

https://steu.shinyapps.io/MNA-generale/(accessed
https://steu.shinyapps.io/MNA-generale/(accessed
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Table 3. Summary of the taxa identified. List of taxa identified in the ROV dives. The number of individuals counted and the skeleton mineralogy of calcifier organisms are also reported.
AC refers to the “Adelie Cove” site; TNB refers to the “Terra Nova Bay” site.

Phylum Class Order Family Genera Species AC (ind.) TNB (ind.) ind. Mineral

Rhodophyta Florideophyceae Hapalidiales Hapalidiales spp. Calcite

Porifera

Calcarea Calcarea sp. 1 35 0 35 Calcite

Demospongiae

Dendroceratida Darwinellidae Dendrilla Dendrilla membranosa (Pallas, 1766) 84 0 84

Haplosclerida Chalinidae Haliclona

Haliclona scotti (Grant, 1841) 5 0 5
Haliclona sp. 1 269 1 270
Haliclona sp. 2 1 0 1
Haliclona sp. 3 10 23 33
Haliclona sp. 4 6 37 43
Haliclona sp. 5 4 0 4

Phloeodictyidae Calyx Calyx arcuarius (Topsent, 1913) 6 61 67

Poecilosclerida

Cladorhizidae Lycopodina Lycopodina vaceleti (van Soest and Baker, 2011) 0 2 2
Coelosphaeridae Inflatella Inflatella belli (Kirkpatrick, 1907) 0 3 3

Isodictyidae Isodictya Isodictya erinacea (Topsent, 1916) 160 62 222
Isodictyidae Isodictya Isodictya kerguelenensis (Ridley and Dendy, 1886) 37 0 37

Latrunculiidae Latrunculia Latrunculia (Latrunculia) biformis (Kirkpatrick, 1908) 6 5 11
Mycalidae Mycale Mycale sp. 1 1 5 6
Tedaniidae Tedania Tedania (Tedaniopsis) oxeata (Topsent, 1916) 0 15 15

Polymastiida Polymastiidae Polymastia Polymastia invaginata (Kirkpatrick, 1907) 3 0 3

Suberitida Stylocordylidae Stylocordyla Stylocordyla chupachups (Uriz, Gili, Orejas and
Pérez-Porro, 2011) 1 1 2

Suberitida Suberitidae Suberites Suberites caminatus (Ridley and Dendy, 1886) 10 8 18

Demospongiae sp. 1 5 9 14
Demospongiae sp. 2 0 61 61
Demospongiae sp. 3 134 0 134
Demospongiae sp. 4 6 5 11
Demospongiae sp. 5 0 1 1
Demospongiae sp. 6 0 1 1
Demospongiae sp. 7 0 1 1
Demospongiae sp. 8 1 2 3
Demospongiae sp. 9 0 5 5

Demospongiae sp. 10 0 1 1
Demospongiae sp. 11 3 0 3
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Table 3. Cont.

Phylum Class Order Family Genera Species AC (ind.) TNB (ind.) ind. Mineral

Hexactinellida Lyssacinosida Rossellidae Rossella

Rossella fibulata (Schulze and Kirkpatrick, 1910) 0 25 25
Rossella nuda (Topsent, 1901) 2 0 2

Rossella racovitzae (Topsent, 1901) 0 1 1
Rossella sp. 1 0 28 28
Rossella sp. 2 0 5 5
Rossella sp. 3 0 1 1

Rossella villosa (Burton, 1929) 0 3 3

Porifera sp. 1 0 1 1
Porifera sp. 2 0 5 5
Porifera sp. 3 0 7 7
Porifera sp. 4 2 0 2
Porifera sp. 5 0 40 40
Porifera sp. 6 0 10 10
Porifera sp. 7 0 8 8
Porifera sp. 8 0 8 8
Porifera sp. 9 5 0 5
Porifera sp. 10 0 4 4
Porifera sp. 11 0 4 4
Porifera sp. 12 4 0 4
Porifera sp. 13 0 2 2
Porifera sp. 14 2 0 2
Porifera sp. 15 2 0 2
Porifera sp. 16 1 0 1
Porifera sp. 17 1 0 1
Porifera sp. 18 1 0 1
Porifera sp. 19 0 1 1
Porifera sp. 20 0 1 1

Cnidaria Anthozoa

Actiniaria Actiniaria sp. 1 2 0 2

Alcyonacea

Alcyoniidae Alcyonium Alcyonium antarcticum (Wright and Studer, 1889) 258 27 285
Alcyonium sp. 1 3 0 3

Isididae
Primnoisis Primnoisis (Delicatisis) delicatula (Hickson, 1907) 2 858 860 Calcite

Isididae sp. 1 1 9 10 Calcite

Nephtheidae Gersemia Gersemia antarctica (Kükenthal, 1902) 0 17 17

Primnoidae

Arntzia Arntzia gracilis (Molander, 1929) 82 81 163
Fannyella Fannyella rossii (Gray, 1872) 103 1 104

Thouarella

Thouarella pendulina (Roule, 1908) 73 206 279
Thouarella sp. 1 0 2 2
Thouarella sp. 2 258 223 481
Thouarella spp. 1 0 1
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Table 3. Cont.

Phylum Class Order Family Genera Species AC (ind.) TNB (ind.) ind. Mineral

Alcyonacea sp. 1 145 421 566
Alcyonacea sp. 2 0 38 38
Alcyonacea sp. 3 8 246 254

Hydrozoa Hydrozoa sp. 1 0 1 1
Hydrozoa sp. 2 18 13 31

Mollusca

Bivalvia Pectinida Pectinidae Adamussium Adamussium colbecki (Smith, 1902) 521 0 521 Calcite

Gastropoda

Nudibranchia
Tritoniidae Tritoniella Tritoniella belli (Eliot, 1907) 0 1 1
Dorodidae Doris Doris sp. 4 0 4

Gastropoda sp. 1 1 0 1
Gastropoda sp. 2 1 0 1

Neogastropoda Buccinidae Neobuccinum Neobuccinum eatoni (Smith, E.A. 1875) 2 0 2 Aragonite

Mollusca sp. 1 0 1 1 Calcite
Mollusca sp. 2 0 5 5 Calcite

Annelida Polychaeta
Sabellida Sabellidae

Perkinsiana
Perkinsiana magalhaensis (Kinberg, 1867) 44 67 111

Perkinsiana sp. 1 22 27 49
Serpula Serpula narconensis (Baird, 1864) 603 823 1426 Calcite

Serpulidae sp. 1 1 0 1

Terebellida Flabelligeridae Flabegraviera Flabegraviera mundata (Gravier, 1906) 1 4 5

Arthropoda
Malacostraca Decapoda Crangonidae Notocrangon Notocrangon antarcticus (Pfeffer, 1887) 0 50 50 Calcite

Hippolytidae Chorismus Chorismus antarcticus (Pfeffer, 1887) 1 174 175 Calcite

Pycnogonida Pycnogonida sp. 1 16 0 16

Bryozoa

Gymnolaemata Cheilostomatida
Bugulidae Klugella Klugella buski (Hastings, 1943) 1 50 51

Phidoloporidae Reteporella Reteporella sp. 1 21 92 113

Stenolaemata Cyclostomatida
Frondiporidae Fasciculipora Fasciculipora ramosa (d’Orbigny, 1842) 4 0 4

Horneridae Hornera
Hornera sp. 1 2 30 32
Hornera sp. 2 2 5 7

Bryozoa sp. 1 37 57 94
Bryozoa sp. 2 7 6 13

Echinodermata Asteroidea

Forcipulatida Asteriidae Marthasterias Marthasterias sp. 1 10 0 10 Calcite

Valvatida Odontasteridae Odontaster Odontaster validus (Koehler, 1906) 24 0 24 Calcite

Asteroidea sp. 1 25 20 45
Asteroidea sp. 2 0 1 1
Asteroidea sp. 3 0 1 1
Asteroidea sp. 4 0 1 1
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Table 3. Cont.

Phylum Class Order Family Genera Species AC (ind.) TNB (ind.) ind. Mineral

Crinoidea Comatulida Antedonidae
Anthometrina Anthometrina adriani (Bell, 1908) 1 38 39 Calcite

Promachocrinus Promachocrinus kerguelensis (Carpenter, 1879) 0 2 2
Notocrinidae Notocrinus Notocrinus virilis (Mortensen, 1917) 2 8 10 Calcite

Echinoidea Camarodonta Echinidae Sterechinus Sterechinus neumayeri (Meissner, 1900) 3046 57 3103 Calcite

Holothuroidea Holothuroidea spp. 1022 208 1230

Ophiuroidea

Euryalida Gorgonocephalidae Astrotoma Astrotoma agassizii (Lyman, 1875) 0 1 1

Ophiurida Ophiuridae
Ophiacantha Ophiacantha vivipara (Ljungman, 1871) 0 1 1 Calcite

Ophiura Ophiura sp. 1 151 291 442 Calcite
Ophiura sp. 2 60 69 129 Calcite

Hemichordata Graptolithoidea Cephalodiscoidea Cephalodiscidae Cephalodiscus Cephalodiscus densus (Andersson, 1907) 1 7 8

Chordata

Ascidiacea Stolidobranchia Styelidae Cnemidocarpa Cnemidocarpa sp. 1 7 3 10
Cnemidocarpa verrucosa (Lesson, 1830) 2 0 2

Tunicata
Tunicata sp. 1 3 0 3
Tunicata sp. 2 1 0 1
Tunicata sp. 3 3 4 7
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Figure 3. Benthic assemblages at Adélie Cove. (A) Hard substrate with pebble and boulders encrusted by coralline
algae (Hapalidiales spp.) at 76 m with the echinoid Sterechinus neumayeri (s) and the serpulid Serpula narconensis (sn);
(B) Assemblage dominated by the sponges Isodyctia erinacea (ie), Isodyctia kerguelensis (ik) and specimens belonging to
the genus Haliclona (hc) colonizing hard substrate covered by coralline algae at 82 m, with the subordinate presence
of Serpula narconensis (sn), cnidarians such as Fannyella rossii (Gray, 1872) (f), specimens of the genus Thouarella (t) and
Unbranched gorgonians (ug) and individuals of Holothutoidea spp. (h). (C) The portion of seafloor at 99 m dominated by
cnidarians of genus Thouarella (t) and Alcyonium antarcticum (aa), with polychaetes Serpula narconensis (sn) and Perkinsiana
magalhaensis (p), echinoderms such as Ophiacantha vivipara (Ljungman, 1871) (ov), Ophiuroidea sp. (o) and Holothuroidea sp.
(h) and Chelicerata pycnogonida sp. (py); note the presence of the sponge Latrunculia biformis (l) (D) assemblage dominated
by cnidarians at 100 m including Fannyella rossii (f), Alcyonium antacticus (aa) and specimens of genus Thouarella (t) and
subordinately by sponges represented by Rossella nuda (rn), Haliclona sp. (h) and individuals of class Calcarea (c), with
the presence of the serpulid Serpula narconensis (sn), bryozoans belonging to genus Reteporella (r), Ophiuroidea such as
Ophiacantha vivipara (ov) and Ophiuroidea sp. (o) and Holothuroidea sp. (h); (E) aggregations of the echinoid Sterechinus
neumayeri (s) and the pectinid Adamussium colbecki (a) at 82 m with sponges Dendrilla membranosa (d) and Haliclona sp. (hc);
(F) seafloor dominated by sponges at 112 m comprising D. membranosa (d) and specimens of genus Haliclona (hc) and class
Calcarea (c), with sporadic presence of cnidarians of genus Thouarella (t) and echinoderms belonging to Ophiuroidea (o) and
class Holothuroidea (h); observe the lack of coralline algae (Hapalidieles spp.) cover. Yellow letters refer to calcifier fauna.



Minerals 2021, 11, 833 12 of 21

Cnidarians were mostly represented by octocorals of the genus Thouarella (332 ind.),
together with the soft coral Alcyonium antacticum (Wright and Studer, 1889) (258 ind.,
Figure 3, Table 3). Bryozoans were sporadic along the track with 74 individuals censused.

Beside S. neumayeri, echinoderms were abundant in the surveyed area. Holothurians
were largely represented (Figure 3C,D,F) and amounted to more than 1000 individuals;
however, they cannot be confidently determined from images as their taxonomy largely
depends on microscopic features, i.e., the shape of the calcareous ossicles. Ophiuroids and
asteroids were also very frequent with more than 270 specimens identified.

The serpulid polychaete Serpula narconensis (Baird, 1864) was recurrently observed to
colonize both hard substrates and fouling other megafauna, amounting to 603 specimens
(Figure 3).

Sources of biogenic carbonates were different at Adélie Cove site. Firstly, the seafloor
was characterized by the coralline algae of the order Hapalidiales belonging to a new
genus and new species (I. Moro, pers. comm. 2021) in course of description. Secondly, a
noticeable portion of the benthic community included calcifiers, with 13 taxa and more
than 4450 individuals counted, which corresponded to ca. 60% of the identified organisms.
The major contributors were S. neumayeri, S. narconensis and A. colbecki, amounting to
4170 individuals. Other echinoderms such as ophiuroids, asteroids and crinoids also
concurred to the calcifiers component, with 6 different taxa and 248 individuals. A smaller
contribution was provided by sponge specimens of the class Calcarea (35 ind.) and by
octocorals belonging to the family Isidiidae (3 ind.).

3.2. Terra Nova Bay “Canyon”

Dive 2 explored over 2300 m of seabed between 230 m and 260 m depth, transiting an
area of hard substrate covered by a thin layer of soft sediment and sporadic segments of
mobile substrate with patches of organic matter in degradation (Figure 4).

In total, 10 Phyla, 86 different taxa and more than 4700 specimens were identified
and mapped (Table 3). The sessile megafauna was dominated by cnidarians and sponges
that densely colonized the hard substrates. The octocorals of family Isididae (bamboo
coral), such as Primnoisis (Delicatisis) delicatula (Hickson, 1907), dominate the assemblages
in the investigated area, with over 850 individuals counted and mapped (Table 3). A
total of 11 morpho-species of alcyonaceans were identified, corresponding to more than
1200 individuals. Among these, the most frequent taxa in the whole investigated area
included the genus Thouarella (420 ind.), Arntzia gracilis (Molander, 1929) (81 ind.) and
Alcyonium antarcticum (27 ind., Figure 4).

The phylum Porifera comprised 39 different taxa with 473 organisms detected. Isodictya erinacea
and Calyx arcuarius (Topsent, 1913) were abundant, with 62 and 61 individuals recognized,
respectively. Specimens belonging to the hexactinellid genus Rossella were also frequent
(53 ind.). One individual of Stylocordyla chupachups was also identified.

Erect bryozoans occurred consistently along the transect, with the genera Reteporella
(Busk, 1884) and Hornera (Lamouroux, 1821) and the species Klugella buski (Hastings, 1943)
as main representatives (92, 35 and 50 individuals, respectively).

The echinoderms were less common when compared to the Adélie Cove site, with
Ophiuroidea representing the most abundant taxa (360 ind.). Holothurians colonizing
the substrate and epibionts on cnidarians were also frequently observed (Figure 4). The
echinoid S. neumayeri was occasionally present, counting 57 individuals (Figure 4). Crinoids
were also a consistent presence.

The polychaete S. narconensis and specimens of the genus Perkinsiana (Knight-Jones,
1983) were recurrent, amounting to 823 and 94 individuals, respectively (Figure 4, Table 3).

The site presented high densities of the Antarctic shrimps of the species Chorismus antarcticus
(Pfeffer, 1887) (174 ind., Figure 5B).
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Figure 4. Benthic assemblage at Terra Nova Bay “Canyon”. (A) Seafloor at 245 m characterized by hard substrates with a
prevalence of the calcifier cnidarian Primnoisis (Delicatisis) delicatula (pd), specimens of genus Thouarella (t) and unbranched
gorgonian (ug); other macrobenthic organisms included the polychaetes Serpula narconensis (sn) and Perkinsiana magalhaensis
(p), the echinoid Sterechinus neumayeri (s) and the crustacean Chorismus antarcticus (c); (B) assemblage at 265 m comprising
the sponges Calyx arcuarius (ca), Isodyctia erinacea (ie) and Suberites caminatus (sc); the cnidarians Primnoisis (Delicatisis)
delicatula (pd); and specimens of genus Thouarella (t), Serpula narconensis (sn) and Ophiacantha vivipara (ov); (C) hard substrate
at 248 m with high densities of unbranched gorgonians (ug), Primnoisis (Delicatisis) delicatula (pd), Alcyonium antarcticus (aa)
and Thouarella sp. (t); other noticeable components are Serpula narconensis (sn), Sterechinus neumayeri (s), ophiuroids such as
Ophiancantha vivipara (ov) and Ophiura sp. (o) and the Chorismus antarcticus (c), these latter all concurring to the calcifier
fauna; (D) assemblage at 267 m composed by the sponges Rossella sp. (r) and Rossella nuda (rn), cnidarians represented
by the calcifier Primnoisis (Delicatisis) delicatula (pd) and specimens of the genus Thouarella (t), together with bryozoans as
Reteporella sp. (re); Sterechinus neumayeri (s) and Chorismus antarcticus (c) represent the vagile fauna; (E) bottom at 272 m
colonized by Primnoisis (Delicatisis) delicatula (pd), Thouarella sp. (t), unbranched gorgonians (ug) and sponges Haliclona sp.
(hc); among the calfiers, individuals of Serpula narconensis (sn) fouling the bryozoan Hornera sp. (ho) and the crustancean
Chorismus antarcticus (c) were observed; note whitish patches of decaying organic matter; (F) hard bottom at 281 m colonized
by sponges Haliclona sp. (hc), Primnoisis (Delicatisis) delicatula (pd), Thouarella sp. (t) and unbranched gorgonians (ug); note
the serpulids Perkinsiana magalhaensis (p) and Serpula narconensis (sn), the crinoid Notocrinus virilis (Mortensen, 1917) (n) and
Chorismus antarcticus (c). Yellow letters refer to calcifier fauna.
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Figure 5. Composition of biological assemblages and depth profile of the visual surveys. Percentage composition of benthic
community (bars) and depth (lines) of frames extracted from video recordings performed in the Adélie Cove (A) and the
Terra Nova Bay Canyon (B). Colors refer to the different calcifiers groups. “Decapods” class represents an abundance of
Chorismus antarcticus and Notocrangon antarcticus. Black lines refer to bathymetric profile of frames. In A, colored depth
profile segments represent portions of seafloor characterized by coralline algae (Hapalidiales spp.) covering.

4. Discussion
4.1. Adélie Cove

The shallow situation observed in Adélie Cove reveals the occurrence of four main
calcifiers in the order of relative abundance: Hapalidiales coralline algae, which predom-
inates in the shallower part of the transect (30–100 m, Figure 5) (which belong to a new
genus and a new species, currently under study); S. neumayeri, A. colbecki and S. narconensis.
Algal thalli calcify by large in the polymorph high-Mg calcite. S. neumayeri is characterized
by a high-Mg exoskeleton (mean 9.58 mol% MgCO3 [30]). S. narconensis is equally made
up of high-Mg calcite [36]. The shell of Adamussium colbecki possesses low-Mg calcite [92],
with minor presences of myostrocal aragonite [94,95].

Subordinate to such main skeletal carbonate producers, other mega-epibenthic com-
ponents representing a minor contribution of post-mortem carbonates were observed in
the ROV frames. For instance, high-Mg calcitic ossicles and spicules derive from other
echinoderm groups such as asteroids, ophiuroids, crinoids and holothuroids (e.g., [30]); bry-
ozoans produce particles of mixed mineralogy, but with a net prevalence of calcite at polar
latitudes [6,95]; the calcareous sponges shed spicules (actines) composed of Mg-calcite [96].
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Only one aragonite producer was identified by the ROV survey, i.e., two individuals of the
gastropod Neobuccinum eatoni. This species was repeatedly documented in the Terra Nova
Bay area between 15–100 m of depth, as documented by MNA vouchers (Schiaparelli, S.
pers. comm.).

4.2. Terra Nova Bay “Canyon”

The carbonate-producing organisms were ca. 50% (>2300 ind., Figure 5) of the overall
benthic community, with the bamboo coral P. delicatula and S. narconensis as main contrib-
utors (858 and 828 ind., respectively). Octocorals such as the Primnoisis contribute to the
carbonate sediment by shedding calcified internodes post-mortem, which is made up of
high-Mg calcite [97] together with the serpulids, as mentioned above.

The erect calcitic bryozoans Reterporella spp., Hornera spp. and (although only lightly
calcified) K. buski contribute significantly (ca. 10%) to the TBN carbonate-mixed factory.

Although minor producers in absolute terms, other octocorals, ophiuroids (high-
Mg calcite) and decapods (low-Mg calcite: [98]), which are represented by the shrimps
Notocrangon antarcticus and Chorismus antarcticus, were also a noticeable component among
calcifiers, amounting to 50 and 174 individuals (Figure 5, Table 3). A minor high-Mg calcite
contribution was accounted by the sporadic presence of S. neumayeri (57 ind.) and of the
crinoid Anthometrina adriani (Bell, 1908) (38 ind.).

4.3. Ross Sea Carbonate Factories: Traits, Legacy and Future

The ROV surveys disclosed the supremacy of calcitic megabenthos over other calcifiers
inside the carbonate-mixed factories of shallow to relatively deep settings in the Ross Sea.
The taphonomic resilience of calcite polymorphs finds confirmation in the paleontological
legacy of Quaternary Antarctica. By referring only to megabenthic organisms, shallow-water
deposits are often enriched by A. colbecki shells [7], while more distal and deeper situations
document their richness in bryozoans, isidids, serpulids and echinoids [1,5,10,27,99].

The mega-epibethos carbonate-mixed factories only accounts for part of the total
carbonate biogenic production in the study context. Therefore, these results are conserva-
tive and somewhat biased in terms of carbonate polymorphs. It does not account for any
additional skeletal input derived by infauna, which could be relevant especially at shallow
depths (such as the aragonitic bivalves Aequiyoldia eightsii (Jay, 1839) and Laternula elliptica
(King, P.P. 1832)), relative to the holopelagic input (mainly aragonitic pteropods), the
occasional aragonitc and vateritic otolith shed by fishes (e.g., [100]), but mostly the impor-
tant contribution provided by macrobenthos (such as molluscs, which are predominantly
aragonitic) and microbenthos (mainly calcitic foraminifers and subordinate ostracods and
serpulids). Furthermore, our case studies deal with intermediate water situations in the
range of 30–260 m, but do not account for other important factories in the Ross Sea, i.e., the
very shallow ones [101] which are significantly represented in the fossil record [1,7] as well
as the offshore banks [5,20]; all of these are meritable for exploration in the future.

The current structure of marine communities inhabiting the Ross Sea region Marine
Protected Area as described here could well change some traits in the near future under
the pressure of global climatic perturbations. Indeed, Antarctic organisms are exposed to
increasing pressure from multiple stresses, including seawater warming (e.g., [102,103])
and freshening [104], changes in sea ice dynamics and productivity (e.g., [105,106]) and
ocean acidification (e.g., [107]). In particular, ocean acidification and the decrease in
seawater pH and carbonate ion concentration due to the absorption of large amounts of
CO2 by the oceans are expected to be the most critical changes facing Antarctic waters
(e.g., [108–111]). Antarctic calcifying organisms, which are already living close to aragonite
and calcite undersaturation, may not be able to cope with the projected changes, resulting
in potential cascading consequences that might ultimately affect food webs and higher
trophic levels. However, the responses of Antarctic marine calcifiers to ocean acidification
may vary among taxa depending on their ability to actively control seawater chemistry at
the site of calcification, with some species being more vulnerable than others. Additional
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studies on the physiology of marine calcifiers living at high-latitudes in the Southern Ocean
are required to understand their long-term ability to adapt to ocean acidification and other
climate-related changes.

5. Conclusions

Our study recognized the relative abundance and typology of macro- and mega-
epibenthic calcifiers from two sectors of the Ross Sea of contrasting bathymetric setting. As
expected from carbonate factories located at high latitudes, calcitic taxa (mainly high-Mg
calcite) present an almost total dominance.

With the exception of the shallow depths of Adélie Cove where coralline algae strongly
prevailed, calcifiers equalize and are, on occasion, quantitatively comparable to other non-
calcifying megabenthic taxa. Many such calcifiers are among the more common taxa
encountered in the Quaternary record of Antarctica. As shown by ROV imagery, the
original living carbonate factories are far more diverse than resulting fossil assemblages.
This suggests an obvious taphonomic loss of important ecological information with respect
to the structure and diversity of the original communities.

The ROV transects represent an important in situ photographic documentation of the
current situation of carbonate-mixed factories in the Ross Sea. They provide, therefore,
a geo-referenced and replicable baseline that is useful for monitoring future effects of
progressive ocean acidification and global warming, both in terms of the hypothesized
decline of calcifying vs. non-calcifiying mega and macrobenthos, and of a selective taxon-
based resilience.
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