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Abstract: Unique finer-grained interstitial textures, occurring as small blocks or irregular shapes of
0.15–10 mm, were found merging in the coarse-grained textures of Kazakhstan jadeitite. According
to the mineral content, the interstitial texture could be classified into two types: Type I, consisting
of almost all jadeite crystals, minor omphacite, and little analcime, and Type II, comprising mainly
omphacite and analcime, with minor jadeite crystals. They both showed no obvious preferred orienta-
tion and have distinct boundaries with the coarse-grained textures but appear more transparent, with
finer grain sizes and higher degrees of idiomorphism. The coarse-grained textures include granitoid
textures and radial clusters. The granitoid textures formed by euhedral to subhedral prismatic grains
usually show rhythmic zoning patterns and parallel intergrowths. Furthermore, fluid inclusions
contain H2O and CH4, and it was supposed that the coarse-grained textures were formed by the
precipitation of jadeitic fluids. However, perhaps due to the insufficient supply of the fluids or
sufficient space, some interspaces were left among the coarser-grained jadeitite. Afterward, these
interspaces were filled with precipitation of the successor H2O-richer fluids under a different P–T
condition from that of the former coarser-grained jadeitite, and consequently, two kinds of interstitial
textures formed. Such interstitial textures seem to appear only in Kazakhstan and therefore could
serve as a typical visual identification feature of Kazakhstan jadeitite.

Keywords: Kazakhstan; jadeitite; microstructure; coarse-grained texture; interstitial texture

1. Introduction

Jadeitite, a rock composed almost entirely of jadeite and related pyroxenes, is found
in the serpentinite mélange and is associated with high-pressure and low-temperature
metamorphic rocks such as eclogite and blueschist. It is rare worldwide and found only
at ~19 locations distributed in the Caribbean orogenic belt, Alpine–Himalayan orogenic
belt, Caledonia orogenic belt, and Circum Pacific orogenic belt, including the southern
and northern Motagua Fault Zone in Guatemala [1–3], Cuba [4], Dominica [5], Japan
(Itoigawa–Omi [6], Osayama [7], Oya–Wakasa [8], Nishisonogi [9], Kamuikotan Gorge
area [10], America (New Idria [11]; Ward Creek [12]), Papua New Guinea [13], Greece [14],
Italy [15], Iran [16], Myanmar [17,18], Russia [19], and Kazakhstan (Kenterlau–Itmurunda–
Arkharsu) [20]. However, due to its scientific significance and commercial importance,
jadeitite has always attracted the attention of geologists, gemologists, mineral enthusiasts,
and jewelry consumers. Tsujimori and Harlow (2012) categorized jadeitite genesis into two
types: P-type (precipitation) and R-type (replacement) [21,22]: Na–Al–Si-rich fluids can
precipitate in serpentinized peridotite fractures or low-temperature, high-pressure meta-
morphic rocks; do not exhibit characteristics of protolithic rocks or minerals; or alternatively,
replace protolith such as plagiogranite and metagabbro to generate jadeite, with visible
protolith textures [1,23–26]. Rhythmical zoning patterns, euhedral to subhedral prismatic
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textures, and fluid inclusions commonly occur in the P-type jadeitite [27], while the R-type
can show evidence of the replacement of precursor rocks [21]. Jadeitite recrystallizes as
a result of dynamic metamorphism, forming varying degrees of deformed textures. This
process has a positive influence on the compositional homogeneity, and reduction in the
grain size of the jadeite aggregate and a significant number of recovery textures, such as
serrated high-angle sutured boundaries and fine grains with a high degree of preferred
orientation, can be seen in icy and glassy jadeitite from Myanmar [27,28]. Following the
formation of jadeitite, the application and withdrawal of various stresses, as well as the
lowering of temperature, can result in rock cracks. The fluids then flow in and crystallize,
forming filling textures such as comb-like structures and jadeite veinlets [27]. Such observa-
tions of jadeitite microstructures, which are closely related to features visible to the unaided
eye, have some implications for genetic studies and the determination of its locality.

In this work, partial jadeitite domains with unique finer interstitial textures within
coarse jadeitite from Kazakhstan are found and scrutinized. This kind of texture, enhanc-
ing the partial transparency, might have potential implications for genetic studies and
distinguishing the Kazakhstan jadeitite from that of other localities.

2. Geological Setting

Kazakhstan jadeitite is found in Karaganda, where it meets Early to Middle Ordovi-
cian pelagic sediments. The Kazakhstan plate is a part of the Central Asian orogenic belt,
which was produced by subduction as well as reduction in the Paleo-Asian Ocean [29]. The
microcontinents and island arcs are divided by suture zones that consist of Neoproterozoic
to Early Silurian deep, marine, volcanic, sedimentary formations and ophiolites [29,30],
and the microcontinents are primarily Paleoproterozoic basement and Neoproterozoic to
Early Paleozoic cover [30]. In the Late Silurian, the Kazakhstan plate was collaged into
a composite arc [30–33] (Figure 1). The Kazakhstan jadeitite deposit formed in the Early
Paleozoic Junggar Balkhash fold system at ~450 Ma and is one of the world’s oldest jadeitite
occurrences [21,34,35] (Figure 1). The studied deposit occurs as inclusions in Chuerkulam’s
shattered and schistositized serpentine mélange near Balkash Lake. Sorensen et al. (2006)
discovered a massive amount of compositional zoning patterns in Kazakh jadeitite via
cathodoluminescence (CL), indicating that the jadeitite is primarily of P-type origin [36].
The most typical mineral assemblage in this location is jadeite + albite + analcime + om-
phacite, which can be found in block and water drop shapes with varying degrees of
albitization. The blackwall is located at the boundary between jadeitite and serpentine,
which is composed of chlorite and actinolite [37–41].

The classic occurrence of Kazakhstan jadeitite was detailed and introduced by Harlow
and Sorensen (2005) [37]. Three different jadeitite rock types can be seen in this area
(Figure 2): (1) white jadeitite rock can be seen in the middle of the rock block; (2) colored
jadeitite with albite; and (3) altered (dark green) jadeitite rock: the edge of the jadeitite rock
was altered and may contain mica, garnet, and other minerals [37].

Commercially, the majority of the jadeitite in this region is generally coarse-grained,
usually white, gray, or lavender, and the ground exhibits a porcelain-like luster and coarse-
grained textures at a size of 0.2–4.0 mm. Omphacitite in dark green occurs as veins. Vivid
green jadeitite can be seen in patches and veins between the omphacitite and porcelain-
white jadeitite. The jadeitite from Kazakhstan also exhibits a weathered yellow hue, similar
to that from Myanmar [42].
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3. Materials and Methods

In this article, 19 polished samples from Kazakhstan, handed over by a local mine
owner to 1 coauthor, JHZ, were observed and found to have a number of much more
transparent domains (MTDs) with distinctive, angular borders included within the coarser-
grained jadeitite. These MTDs can reach ~20 mm and occur separately in light green
jadeitite or, randomly, porcelain-white jadeitite. These domains are finer-grained, more
compact and thus graded as higher quality. In order to characterize this observation,
two representative samples (labeled K01 and K02) were selected for petrographic and
gemological studies (Figure 3).

Raman spectroscopy (Horiba HR Evolution confocal laser Raman spectrometer) and
specific gravity analysis, which was measured using the hydrostatic weighting method,
were performed in the Experimental Teaching Center of Gemmology, School of Gemmol-
ogy, China University of Geosciences, Beijing (CUGB). The Raman spectrometric analysis
(laser beam diameter: ~2 µm) was performed using a 532 nm laser source, 100 µm slit
width, 600 gr/mm grating, 3 s scanning time, integration number = 1–3, and a collection
range of 200–4000 cm−1. Optical observation was observed using an OLYMPUS BX53
polarizing microscope. The cathodoluminescence photos and polarized photos were taken
at Resources Exploration Laboratory, CUGB, using a cathodoluminescence meter under
13–15 kV, 250 µA, and 0.003 bar. An electron probe instrument test and BSE images acqui-
sition were done at the Institute of Minerals Resources, Chinese Academy of Geological
Sciences using a JXA-8230 electronic probe microanalyzer under the conditions of accel-
eration voltage 15 KV, current 10 nA, electron beam diameter less than 10 µm, and using
the ZAF correction procedure. The standard samples were determined from the following
minerals: andradite (Si and Ca), rutile (Ti), corundum (Al), hematite (Fe), chromite (Cr),
rhodonite (Mn), nickel (Ni), magnesia (Mg), albite (K), and barite (Ba) measures.
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Figure 3. (a) Photos of the studied samples: smaller-grained, more transparent domains (MTDs) could
be observed among the coarser-grained basement of the polished samples. (b–d) Local magnification
of several MTDs in (a).

4. Results

Using still-water weight measurement, the specific gravity of the two samples was
3.23, which is slightly lighter than that of jadeitite from Myanmar [27].
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4.1. Texture/Microstructure of Coarser-Grained Jadeitite

The coarser-grained jadeitites display granitoid or mosaic textures with parallel in-
tergrowths and rhythmic zoning patterns (Figures 4 and 5). In granitoid textures, the
jadeites (Jd-I) are typically prismatic and radial (with a length of 0.2–4 mm), with the
majority being euhedral or subhedral with cleavages. The grain boundaries are flat. Under
cross-polarized light, parallel intergrowths exhibit nearly identical interference colors and
extinction positions between two single crystals.

Minerals 2023, 13, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 4. The jadeite grains display euhedral to subhedral prismatic crystal habits (under cross-
polarized light). 

The rhythmical zoning patterns of coarser-grained jadeite crystals are visible under 
cathodoluminescence. The jadeite grains contain 5 to 15 or even more bands. Zoned jade-
ites often have dark green layers and inert areas at the cores, with alternating brilliant pink 
and inert layers around the cores. Each layer ranges from 5 to 30 µm in size (Figure 5). The 
rhythmic zoning patterns indicate a P-type origin for jadeite formation [18,22,27]. 

There are fluid inclusions in jadeite grains that are approximately 3–20 µm long. Gas-
eous bubbles can also be observed. The inclusions are primary and mostly elongated along 
the c-axis of the jadeites (Figure 6a). 

 
Figure 5. Rhythmic zoning patterns (RZPs). (a) Photo under cross-polarized light. (b) The same parts 
show clear RZPs under cathodoluminescence. 

Figure 4. The jadeite grains display euhedral to subhedral prismatic crystal habits (under cross-
polarized light).

Minerals 2023, 13, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 4. The jadeite grains display euhedral to subhedral prismatic crystal habits (under cross-
polarized light). 

The rhythmical zoning patterns of coarser-grained jadeite crystals are visible under 
cathodoluminescence. The jadeite grains contain 5 to 15 or even more bands. Zoned jade-
ites often have dark green layers and inert areas at the cores, with alternating brilliant pink 
and inert layers around the cores. Each layer ranges from 5 to 30 µm in size (Figure 5). The 
rhythmic zoning patterns indicate a P-type origin for jadeite formation [18,22,27]. 

There are fluid inclusions in jadeite grains that are approximately 3–20 µm long. Gas-
eous bubbles can also be observed. The inclusions are primary and mostly elongated along 
the c-axis of the jadeites (Figure 6a). 

 
Figure 5. Rhythmic zoning patterns (RZPs). (a) Photo under cross-polarized light. (b) The same parts 
show clear RZPs under cathodoluminescence. Figure 5. Rhythmic zoning patterns (RZPs). (a) Photo under cross-polarized light. (b) The same parts
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The rhythmical zoning patterns of coarser-grained jadeite crystals are visible under
cathodoluminescence. The jadeite grains contain 5 to 15 or even more bands. Zoned jadeites
often have dark green layers and inert areas at the cores, with alternating brilliant pink and
inert layers around the cores. Each layer ranges from 5 to 30 µm in size (Figure 5). The
rhythmic zoning patterns indicate a P-type origin for jadeite formation [18,22,27].
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There are fluid inclusions in jadeite grains that are approximately 3–20 µm long.
Gaseous bubbles can also be observed. The inclusions are primary and mostly elongated
along the c-axis of the jadeites (Figure 6a).
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4.2. Texture/Microstructure of More Transparent Domains (MTDs)

The more transparent domains fill the interspaces of the coarser-grained jadeite and
are outlined by large, flat jadeite grains. As their grains are much finer than those of
the host jadeite aggregate, it is easy to distinguish them. According to mineral content,
the domains can be categorized into two types: jadeite-dominated domains (Type I) and
jadeite–omphacite–analcime domains (Type II).

Type I MTDs consists predominately of jadeite crystals (~90 vol.%), with minor om-
phacite (~9 vol.%) and analcime (~1 vol.%). The jadeite in Type I MTDs is subhedral to
anhedral prismatic with a length of 0.02–0.10 mm, occupying the interspaces within the
coarser-grained jadeite hosts. The filling jadeite grains do not show a preferred orienta-
tion. Some grains have boundaries with 120◦ quasi-triple junctions (Figure 7a). The filling
phases in the domains have green CL luminescence, in contrast to the inert and bright
pink luminescence of the coarser host grains (Figure 7b). Some fragments from coarser
grains with visible bright pink CL luminescence occur among the finer aggregates with
green CL luminescence. The omphacites in the domains are anhedral and occur around the
finer-grained jadeites (Figure 7c). Fluid inclusions with sizes of ~5 µm can also be found
(Figure 6b).

Type II MTDs contains jadeite (~30 vol.%), omphacite (~40 vol.%), and analcime
(~30 vol.%). The composed mineral grains are smaller than 0.05 mm in size and are
randomly oriented. Jadeite and omphacite occur as euhedral prisms, and some of the om-
phacite is found around the jadeite. Analcime occurs as anhedral fillings in the interspaces
among finer pyroxenes (Figure 8), showing a formation sequence from jadeite to omphacite
to analcime.

Under CL images, the filled grains appear as multiple-layer zonings, with the majority
of the bands being bright pink to blueish purple, thin, and straight. The cores of the coarser
grains appear inert. The dark purple luminescent filling phase is interspersed with several
finer grains (green CL luminescence) in the interspaces (Figure 8b). It is difficult to find
fluid inclusions in Type II grains because of their tiny size.

In both types of MTDs, many host jadeite crystals have overgrowths with wide widths
from 5.0 to 65 µm across (Figures 7c and 8c). The overgrowths appear similar in brightness
to the filling jadeite under the BSE images and grow along the outlines of host crystal
clusters.

Type I and Type II domains can be present in the same coarser-grained jadeitite
interspace (Figure 9). The grains in Type I domains are much larger than those in Type II. In
addition, the obvious cataclasis can be observed in coarse grains of the whole thin section.
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degree of compactness. (b) Cathodoluminescence picture of (a), the rhythmic zoning patterns (RZPs)
visible in the coarser grains. (c) BSE image of (a) shows clearly overgrowths on the outlines of coarser
grains and the relationship between the filling jadeite, omphacite, and analcime in Type I interstitial
textures (Jd—Jadeite, Omp—Omphacite, and Anl—Analcime).

4.3. Raman Spectra and Chemical Compositions of Minerals

The minerals in the interstitial textures were tested using Raman spectroscopy. The
host jadeite shows very strong Raman peaks at 200, 287, 371, 505, 696, 984, and 1035 cm−1,
and the peaks of jadeite in MTDs are at 144, 202, 254, 373, 431, 573, 699, 987, and 1038 cm−1.
Peaks at ~1110 and 1606 cm−1 of analcime also exist (Figure 10a). Analcime shows dis-
tinct peaks at 299, 381, 484, 637, 821, 1110, 1184, 1229, 1295, 1462, 1606, and 3548 cm−1

(Figure 10b); omphacite shows prominent Raman peaks at 272, 301, 339, 374, 682, 823, and
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1015 cm−1, with analcime peaks at 484, 1110, and 1606 cm−1 (Figure 10c). CH4 (gas) and
H2O (liquid) in the fluid inclusions of jadeite are detected (Figure 10d).
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((a) under plane-crossed polarized light and (b) under cross-polarized light).
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Figure 10. (a) Raman spectra of host jadeite and jadeite in domains. (b,c) Raman spectra reveal that
the component of the filling grains in Type II is jadeite (a), analcime, and omphacite. (d) The fluid
inclusions show distinct methane peak at ~2916 cm−1 and peaks of H2O (Gum—Canadian gum on
the thin section and Anl—analcime).

Jadeite contains 92%–100% Jd with Ca–Mg–Fe pyroxene (Quad) of 0%–8%. Omphacite
has 43%–50% Jd, 45%–53% Quad, and up to 6% Ae (Table 1, Figure 11).

Table 1. The chemical compositions of jadeite, omphacite, and analcime in samples.

Test Sections Host Jadeite
Jadeite in MTDs Omphacite in MTDs

Analcime
Type I Type II Type I Type II

SiO2 60.24 60.84 60.62 60.83 60.78 60.82 58.16 58.35 58.52 58.38 56.97 60.46
TiO2 0.04 0.00 0.00 0.01 0.01 0.01 0.21 0.28 0.06 0.18 0.00 0.01

Al2O3 22.97 24.87 24.40 25.21 25.20 25.10 11.63 10.41 12.00 11.62 24.99 25.59
FeOT 0.24 0.08 0.03 0.00 0.00 0.08 0.76 0.80 0.72 0.64 0.01 0.01
Cr2O3 0.01 0.00 0.00 0.00 0.02 0.01 0.01 0.05 0.02 0.00 0.09 0.01
MnO 0.00 0.06 0.00 0.02 0.00 0.00 0.02 0.05 0.05 0.05 0.01 0.07
MgO 1.25 0.26 0.48 0.01 0.00 0.03 8.72 9.53 8.44 8.95 0.05 0.05
CaO 1.84 0.43 0.70 0.15 0.11 0.25 12.31 13.58 12.16 12.67 0.09 0.05
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Table 1. Cont.

Test Sections Host Jadeite
Jadeite in MTDs Omphacite in MTDs

Analcime
Type I Type II Type I Type II

Na2O 13.38 14.27 14.13 14.44 14.74 14.31 7.16 6.31 7.27 7.04 8.62 6.68
K2O 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.02 0.00
NiO 0.00 0.04 0.00 0.00 0.00 0.00 0.06 0.01 0.02 0.00 0.00 0.00
Total 99.97 100.85 100.37 100.67 100.87 100.62 99.04 99.37 99.27 99.53 90.85 92.93

Si 2.03 2.02 2.03 2.02 2.02 2.02 2.04 2.05 2.05 2.04 32.79 33.58
Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00

AlIV 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AlVI 0.91 0.97 0.96 0.99 0.99 0.99 0.48 0.43 0.49 0.48 16.95 16.75

Fe 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.00 0.00
Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
Mg 0.06 0.01 0.02 0.00 0.00 0.00 0.46 0.50 0.44 0.47 0.04 0.04
Ca 0.07 0.02 0.03 0.01 0.00 0.01 0.46 0.51 0.46 0.47 0.06 0.03
Na 0.87 0.92 0.92 0.93 0.95 0.92 0.49 0.43 0.49 0.48 9.62 7.19
K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00

Total 3.95 3.95 3.95 3.95 3.96 3.94 3.96 3.95 3.95 3.97 59.51 57.62
Jd 92.30 98.60 97.20 100.00 99.70 99.90 48.60 43.60 50.00 47.80
Ae 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 0.00 0.00

Quad 7.70 1.40 2.80 0.00 0.30 0.10 45.40 56.40 50.00 52.20
Name Jd Jd Jd Jd Jd Jd Omp Omp Omp Omp Anl Anl

Note: The cations were calculated with 6 O as standards in pyroxenes and 96 O in analcime (FeOT: Total
iron as FeO. AlIV: Tetrahedral coordination. AlVI: Octahedral coordination. Jd—Jadeite, Omp—omphacite,
Anl—analcime, Ae—aegirine, and Quad: Ca–Mg–Fe pyroxene).
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5. Discussion
5.1. The Formation of Interspaces within the Coarser Hosts

The interspaces among the coarser grains provide space for the crystallization of
the later fluid and are, therefore, essential for the formation of the interstitial textures.
According to this observation, a hypothesis for the earlier stage crystallization process was
proposed (Figure 12).
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Figure 12. Schematic diagram of the formation process of interstitial textures (from left to right):
(1) fluid enters serpentinized peridotite cracks and crystallizes into jadeites; (2) coarse-grained jadeites
stop growing and form interspaces and interspaces; (3) relict or later-stage hydrothermal fluids enter
the interspaces and form Type I filling grains in the respectively larger space; (4) crystallization
continues in the narrow space to form anhedral Type II filling grains, and then analcime forms in
crystal interstices, fractures, and hollows.

The majority of the jadeite found in Kazakhstan is P-type. The Na–Al–Si-rich fluid
penetrates and precipitates in the fractures of serpentinized peridotite or low-temperature,
high-pressure metamorphic rocks [21]. It is hypothesized that the formation space for
host jadeite was sufficient, or the fluid was insufficient as interspaces among the coarser
grain exist. Only a few crystal nuclei can form when combined with the low undercooling
rate and poor fluid nucleation rate [45,46]. The fluid then steadily crystallized, generating
coarser jadeite grains. After the crystals reached a specific size, however, due to sufficient
space or insufficient fluid supply, the crystallization paused, leaving interspace among the
existing jadeite crystals [46].

Such a pause might end if fluids are resupplied. A later stage of fluid supply would
lead to the overgrowth of some coarser grains and the formation of the MTDs as the fluids
enter the interspace.

After the coarse grains grow, the rocks may go through brittle deformation and form
a lot of cataclasis. These cataclases provide the necessary channels for fluids to enter and
form the domains.

5.2. The Formation of the Domains

According to mineral morphology and contact relationship observations, finer grains
formed later than euhedral coarser-grained crystals. In addition, the fluid inclusions
containing methane and water suggest that both hosts and MTDs are P-type and formed in
an extremely reductive environment. After the interspaces formed, the fluid crystallized
along the outlines of the host jadeite, forming the overgrowths. Meanwhile, the filling
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crystals might start to grow. According to the crystal growth theory, small crystals are
more likely to form when supersaturation is high or the crystallization speed is fast [47],
and viscosity and volatile substances affect the nucleation rate of crystals. The lower
the viscosity, the easier the nucleation; the higher the volatile contents, the more difficult
the nucleation [47,48]. The morphology of the filling crystals suggests that they had
a high nucleation rate. During the formation of the interstitial textures, it is possible
that the environment of crystallization changed rapidly, thus resulting in numerous tiny
crystals [48,49]. Furthermore, as there was not enough room for so many crystal nuclei to
crystallize, subhedral to anhedral pyroxenes occurred.

The majority of the analcime in Type II interstitial textures was found in the cracks of
jadeite and omphacite, which was determined to be of a later phase. Thus, it is proposed
that jadeite might undergo a hydration reaction to form analcime [1,18], and the following
reaction might occur:

jadeite + water = analcime (1)

The analcime might form from the fluids, as in the samples, because analcimes do not
show obvious replacement features.

The presence of two types of mixed textures (Figure 9) implies that the crystallization
process is probably as follows: First, the coarser-grained jadeite precipitated from fluid
and interspaces were left among them. Afterwards, the two types of interstitial textures
began to crystallize. Since the grain size of Type I is much larger than that of Type II, it
is assumed that Type I crystallized earlier than Type II in the mixed textures. After the
formation of Type I, relict space still remained, and the fluid then continued to be batched
in the remaining narrow space under a suitable environment, forming finer anhedral finer
grains (Type II) (Figure 12).

5.3. Significance of Interspace Domains among the Coarser Hosts

Similar phases have been reported worldwide, but all different from those in Kaza-
khstan (Table 2). In Myanmar, anhedral hyalophane and hydrated barium aluminum
silicate occur interstitially in jadeite and amphibole [23]. In Guatemala, mica, ablite, and
analcime occur as interstitial phases and inclusions in the jadeite matrix [50,51]. In Japan,
the tiny euhedral jadeite crystals are interstitially filled by grossular, natrolite, matsub-
araite, and barian feldspars [6,22,52–54]. In Cuba, albite crosscuts massive jadeite to form
lighter green veins associated with omphacite; anhedral biotite occurs in the jadeite matrix,
and allanite in contact with epidote is associated with chlorite at the interstitial textural
position [55]. In Dominica, albite is interstitial in the jadeite matrix [56]. In the Polar
Urals, omphacite is vein-like in jadeite, and clinochlore is seen as euhedral flakes in amphi-
bole [57]. Phengite and analcime in pre-Columbian jadeitite artifacts occur as interstitial
anhedral monominerals in jadeite [58]. However, none of those have been found in relation
to jadeitite’s local transparency of jadeitite.

The interstitial textures are very common in Kazakhstan and are visible to the naked
eye. These textures have a significant effect on the local transparency of jadeitite, and other
sources do not have this effect. Moreover, the interstitial texture in Kazakhstan is unique in
size, mineral assemblage, and microstructure.

The main sources of jadeitite supply into the Chinese market now are Myanmar and
Guatemala. Shi et al. [27] discovered that dynamic metamorphism has significant im-
pacts on the transparency of jadeite jade. Large-scale metamorphism and recrystallization
can homogenize the chemical composition of jadeite, improve grain boundary migration
(GBM), shrink the size of crystal grains, and enhance the preferred orientation (mainly
the shape preferred orientation (SPO) and crystal preferred orientation (CPO)). Further-
more, the recovery textures (foam texture) formed by recrystallization can greatly improve
the transparency of jadeitite as well, making it appear as an icy or glassy species [27,59].
Shearing may improve the local transparency of jadeitite as well. Jadeitites from Myan-
mar and Guatemala both experienced sheering. Some jadeite grains around the micro
shear zones are finer and highly preferred due to being oriented SPO and CPO under a
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microscope. Fine-grained jadeitite causes the light transmission path to approach a straight
line, reducing light loss and forming high-transparency jadeitite [60–64]. When comparing
Kazakhstan jadeitite with that from Myanmar and Guatemala, the most noteworthy feature
is that only the domains are more transparent than the matrix, which can be used as a key
identifying feature of Kazakhstan jadeitite.

Table 2. Interstitial phases occurring in jadeitite from different localities and their mineral assemblages.

locality mineral assemblages and appearance in jadeitite

Myanmar [23] hyalophane and hydrated barium aluminum silicate: sometimes
crosscutting the jadeite

Guatemala [1,50,51] albite, analcime, white-to-tan mica(s): appearing as interstitial phase
or inclusions, micrometer to multi-millimeter in size

Osayama, Japan [22] grossular: appearing as interstitial phase or inclusions

Itoigawa-Ohmi, Japan [6,52–54] natrolite, matsubaraite, Sr-bearing minerals and barian
feldspars:occurring as aggregates and hollow crystals with tiny size

Eastern Cuba [55] albite: crosscutting massive jadeite, togethering with omphacite results
in lighter green viens.

Dominican Republic [56] albite: showing anhedral monomineralic grains

Polar Urals [57] omphacite, jadeite, clinochlore: pyroxenes are vien-like and clinochlore
are visible as euhedral flakes

Pre-Columbian jadeitite artifacts from Caribbean [58] phengite: coarser than surrounding minerals

6. Conclusions

In this study, interstitial textures were found to commonly occur within the coarse-
grained textures of Kazakhstan jadeitite.

The interstitial textures have distinct boundaries and higher transparency than the
matrix to the naked eye. Within the interstitial textures, subhedral to anhedral jadeite
grains mainly form Type I MTDs, while euhedral to subhedral jadeite and omphacite,
and anhedral analcime form Type II MTDs. The finer grains in the interstitial textures are
suggested to be related to the improvements in partial macro-transparency.

The interstitial textures are more likely to form under different temperatures, pressures,
and/or fluid conditions from the coarse-grained textures.

The interstitial textures in Kazakhstan are easily recognizable to the naked eye and
have a significantly higher transparency than the coarse-grained jadeitite matrix, which
makes it unique. The macroscopic MTDs have not yet been found in jadeitites from
other localities, so exclusive origin significance, together with the mineral assemblage and
textures, can help distinguish Kazakhstan jadeitite from other jadeitites both with the naked
eye and via microscopic observation.
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