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Abstract: The roots of Peucedanum japonicum (Apiaceae) have been used as an alternative to the
roots of Saposhnikovia divaricata (Apiaceae) to treat common cold-related symptoms in Korea. How-
ever, a variety of Peucedanum species, including the roots of P. praeruptorum or Angelica decursiva
(=P. decursivum), have been used to treat phlegm–heat-induced symptoms in China. Hence, as there
are differences in the medicinal application of P. japonicum roots between Korea and China, chemo-
taxonomic classification of P. japonicum was evaluated. Sixty samples derived from P. japonicum,
P. praeruptorum, A. decursiva, and S. divaricata were phylogenetically identified using DNA barcoding
tools, and chemotaxonomic correlations among the samples were evaluated using chromatographic
profiling with chemometric analyses. P. japonicum samples were phylogenetically grouped into the
same cluster as P. praeruptorum samples, followed by S. divaricata samples at the next cluster level,
whereas A. decursiva samples were widely separated from the other species. Moreover, P. japonicum
samples showed higher chemical correlations with P. praeruptorum samples or A. decursiva samples,
but lower or negative chemical correlations with S. divaricata samples. These results demonstrate
that P. japonicum is more genetically and chemically relevant to P. praeruptorum or A. decursiva and,
accordingly, the medicinal application of P. japonicum might be closer to the therapeutic category of
these two species than that of S. divaricata.

Keywords: Peucedanum japonicum; Peucedanum praeruptorum; Angelica decursiva; Saposhnikovia divaricata;
genetic authentication; chemotaxonomic correlation

1. Introduction

Bang-Pung (Saposhnikoviae Radix), a traditional herbal medicine, has been used to
treat common cold-induced disorders and relieve pain, and it originates from the roots
of Saposhnikovia divaricata (Turcz.) Schischk. (Apiaceae) in Korean and Chinese phar-
macopieas [1,2]. The roots of Peucedanum japonicum Thunb. (Apiaceae) are exclusively
registered as “Sik-Bang-Pung” (Peucedani Japonici Radix; “Sik” means cultivated) in the
Korean herbal pharmacopeia [3]. As the roots of P. japonicum are recognized as an alter-
native to Bang-Pung (the roots of S. divaricata), it is interesting that two different herbs
belonging to two separate genera are used for the same medicinal purpose. Another
notable issue is that the plant P. japonicum and its roots are botanically and medicinally
named “Bin-Hae-Jeon-Ho” (bin hai qian hu; “Bin-Hae” means the plant lives near coastal
areas), a type of “Jeon-Ho” in the Chinese literature [4,5]. Jeon-Ho, a medicinal name of
Peucedani Radix, has been used to treat phlegm- and heat-induced respiratory disorders
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and it originates from the roots of P. praeruptorum Dunn (Baek-hwa-Jeon-Ho; “Baek-Hwa”
means a white flower) or Angelica decursiva (Miq.) Franch. & Sav. (=P. decursivum (Miq.)
Maxim.) (Ja-Hwa-Jeon-Ho; “Ja-Hwa” refer to a purple flower) [2,3]. Hence, whether the
roots of P. japonicum can be used for different therapeutic purposes in Korea and China is
controversial. This is because the roots of P. japonicum are used for treatment of common
cold-related symptoms in Korea, while different Peucedanum species, including P. japonicum,
are currently used to treat phlegm- and heat-induced respiratory symptoms in China [5].
Therefore, it is necessary to classify the roots of P. japonicum for medicinal purposes. More-
over, an investigation of the chemical relationship between P. japonicum and S. divaricata,
P. praeruptorum, and A. decursiva can be crucial to estimate the therapeutic efficacy-based
medicinal categorization of P. japonicum.

There are several types of adulterants still distributed in the market for various reasons,
contributing to confusion owing to the differences in origin species depending on the
country and morphological similarity, and misunderstandings also originate from common
names of plants and their medicinal names. Various research methods have been applied to
prevent this confusion. DNA-based genetic analysis is one such approach. This molecular
biological research method targeting genomic DNA is not affected by the environment, and
the reliability is high because of the clarity and reproducibility of the analyzed results [6].

In previous studies using DNA-based approaches for S. divaricata, P. japonicum, and
Glehnia littoralis, restriction fragment length polymorphism analysis was performed using
the international transcribed spacer (ITS) primer for genomic DNA [7], and random ampli-
fied polymorphic DNA (RAPD) analysis-based sequence characterized amplified region
markers were developed [8]. DNA barcode sequence (ITS and chloroplast DNA region)
analysis has also been reported [9]. For Peucedani Radix, several DNA-based approaches,
RAPD analysis [10], and ITS nucleotide analysis [11,12] have already been performed.
Recently, the chloroplast genome has been used to understand the identities, phylogeny,
genetic populations, and evolution of plants using next-generation sequencing [13,14].
These results demonstrated that DNA-based gene differentiation is an efficient and accu-
rate method for applications. Therefore, DNA barcode analysis, comprising ITS combined
with four chloroplast DNA regions, was performed for the identification of samples used
in this study.

Chemotaxonomic classification of the four aforementioned species using the chromato-
graphic profiling method with chemometric analysis is a logical approach to investigate the
chemical relationship between P. japonicum and the remaining three species. The chemical
classification of S. divaricata and P. japonicum was performed by metabolic profiling analysis
using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrom-
etry and multivariate analysis [15]. S. divaricata root and its substitute, P. ledebourielloides
root, have previously been distinguished using liquid chromatography/mass spectrometry-
based metabolomics [16]. A high-performance liquid chromatography/photodiode array
detector was used for the quantitative analysis of the marker compounds and the chemical
differentiation between S. divaricata and P. japonicum roots and between A. decursiva and
P. praeruptorum roots [17,18]. However, in contrast with diverse genetic studies, no studies
have investigated the chemotaxonomic relationship between P. japonicum, S. divaricata,
P. praeruptorum, and A. decursiva. Moreover, the P. japonicum, S. divaricata, P. praeruptorum,
and A. decursiva samples used in the aforementioned articles were limited in their chemical
analysis and were not apparently authenticated at the species level.

The genetic authentication-based chromatographic profiling method is an emerging
technique that is mainly performed by DNA-barcoding hyphenated chromatographic
analysis. The combined method provides species-level accuracy of herbal samples, and
therefore, a more reliable classification of those samples can be acquired by chemical
analysis [19]. This technique has been applied to the chemical classification of diverse herbal
medicines, such as Arnebia [20], Fritillaria [21], Phellodendron [22], and Daphne [23] species.
Our group has also previously developed a ‘genetic authentication-based chromatographic
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profiling’ method for chemically distinguishing between Atractylodes species and Amomum
species, using ITS sequencing, HPLC analysis, and chemometrics [24–26].

In this research, we collected samples of the aforementioned four species and con-
firmed their genetic authentication using ITS sequence-based DNA barcoding analysis to es-
tablish the chemotaxonomic relevance of P. japonicum (PJ), S. divaricata (SD), P. praeruptorum
(PP), and A. decursiva (AD). Thereafter, chemical profiling of the samples was carried out
using an HPLC–diode array detector (HPLC–DAD) and chemotaxonomic classification
was performed by chemometric analysis.

2. Results and Discussion
2.1. Internal Transcribed Spacer Regions of Nuclear Ribosomal Cistron

The nucleotide sequences of the ITS (ITS1, ITS2, include 5.8 s) were used for iden-
tification of the species of distributed Peucedani Radix, Peucedami Japonici radix and
Saposhnikoviae Radix. Around 689–693 bp amplified nucleotide sequences were deter-
mined, based on the samples listed in Tables 1 and 2. The determined sequences were
confirmed using the Blast in NCBI GenBank data. In total, 44 site differences were ob-
served among the four species shown in Tables 1 and 2 (Table 3). A difference in 37 sites
was observed between two species of Peucedani Radix (PJ and AD) with a 0.94 sequence
identity matrix (Table S1). The two same genus samples, PP and PJ, had 16 site differences
(sequence identity matrix 0.975; Table S1). SD and PJ had nine different sites (sequence
identity matrix 0.986; Table S1). The results indicated that the ITS could be used as a clear
and useful tool to identify the species of medicinal herbs in Tables 1 and 2.

Table 1. Species identification of the samples using the combined five DNA barcode analysis.

Code Species
Identification Geographic Origin Code Species

Identification Geographic Origin

PJ-01 Peucedanum
japonicum - PP-15 P. praeruptorum China

PJ-02 P. japonicum Yeongcheon, Gyeongbuk, Korea PP-16 P. praeruptorum Zhejiang, China
PJ-03 P. japonicum - PP-17 P. praeruptorum Zhejiang, China
PJ-04 P. japonicum Yeongju, Gyeongbuk, Korea PP-18 P. praeruptorum Zhejiang, China
PJ-05 P. japonicum - PP-19 P. praeruptorum Zhejiang, China
PJ-06 P. japonicum Gyeongbuk, Korea PP-20 P. praeruptorum Zhejiang, China
PJ-07 P. japonicum Gyeongbuk, Korea PP-21 P. praeruptorum China
PJ-08 P. japonicum Yeongju, Gyeongbuk, Korea PP-22 P. praeruptorum -
PJ-09 P. japonicum Gyeongbuk, Korea PP-23 P. praeruptorum -
PJ-10 P. japonicum Yeongju, Gyeongbuk, Korea PP-24 P. praeruptorum -
PJ-11 P. japonicum Korea PP-25 P. praeruptorum China
PJ-12 P. japonicum Hwasun, Jeonnam, Korea PP-26 P. praeruptorum Yunnan, China
PJ-13 P. japonicum Bonghwa, Gyeongbuk, Korea PP-27 P. praeruptorum Zhejiang, China
PJ-14 P. japonicum Yeongju, Gyeongbuk, Korea AD-01 Angelica decursiva -
PJ-15 P. japonicum Bonghwa, Gyeongbuk, Korea AD-02 A. decursiva -
PJ-16 P. japonicum Korea AD-03 A. decursiva -
PP-01 P. praeruptorum China AD-04 A. decursiva -
PP-02 P. praeruptorum China AD-05 A. decursiva -
PP-03 P. praeruptorum China AD-06 A. decursiva -
PP-04 P. praeruptorum China AD-07 A. decursiva China

PP-05 P. praeruptorum China SD-01 Saposhnikovia
divaricata Neimenggu, China

PP-06 P. praeruptorum China SD-02 S. divaricata Hebei, China
PP-07 P. praeruptorum China SD-03 S. divaricata China
PP-08 P. praeruptorum China SD-04 S. divaricata -
PP-09 P. praeruptorum China SD-05 S. divaricata Neimenggu, China
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Table 1. Cont.

Code Species
Identification Geographic Origin Code Species

Identification Geographic Origin

PP-10 P. praeruptorum China SD-06 S. divaricata Neimenggu, China
PP-11 P. praeruptorum China SD-07 S. divaricata Neimenggu, China
PP-12 P. praeruptorum China SD-08 S. divaricata Jilin, China
PP-13 P. praeruptorum China SD-09 S. divaricata China
PP-14 P. praeruptorum China SD-10 S. divaricata China

‘-’: unknown.

Table 2. List of standard reference samples used for the genetic identification in this study.

No. Accession Code Scientific Name Medicinal Name

1 PR-PP01

Peucedanum praeruptorum Dunn

Peucedani Radix

2 PR-PP02

3 PR-PP03

4 PR-PP04

5 PR-PP05

6 PR-AD01

Angelica decursiva (Miq.) Franch. et Sav.
(=Peucedanum decursivum Maxim.)

7 PR-AD02

8 PR-AD03

9 PR-AD04

10 PR-AD05

11 PJR-PJ01

Peucedanum japonicum Thunberg Peucedani Japonici Radix

12 PJR-PJ02

13 PJR-PJ03

14 PJR-PJ04

15 PJR-PJ05

16 SR-SD01

Saposhnikovia divaricata Schischkin Saposhnikoviae Radix

17 SR-SD02

18 SR-SD03

19 SR-SD04

20 SR-SD05

Table 3. Amplicon size of plastid loci and nuclear barcode regions in species of Tables 1 and 2 samples
and sequence characteristics, namely single and different multi-locus combinations.

Barcode Target Amplicon
Size (~bp)

Aligned
Length (bp)

Conserved
Sites

Variable
Sites

Parsimony
Informative Sites

Singleton
Site

ITS 700 689–693 648 44 2 42
matk 930 933 920 13 4 9
rbcL 670 670 664 6 1 5

psbA-trnH 320 311–345 323 17 none 16
trnL-F intergenic sapcer 440 444 440 4 none 4

matk + rbcL 1603 1584 19 5 14
psbA-trnH +

trnL-F intergenic spacer 755–789 763 21 none 20

mark+rbcL+ psbA-trnH 1914–1948 1907 36 5 30
Mark + rbcL+

trnL-F intergenic spacer 2047 2024 23 5 18

Four plastid
targets 2358–2392 2347 40 5 34
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2.2. Chloroplast Genome-Based DNA Barcode Sequence Analysis

Four chloroplast DNA barcode regions (rbcL, marK, psbA-trnH, and trnL-F intergenic
spacer) were analyzed to supplement the results of the ITS. The psbA-trnH region had the
most variable sites among the four plastid barcode regions (except the ITS region). On the
other hand, the trnL-F intergenic spacer was the most conserved region among all of the
analyzed DNA barcode regions (including ITS).

Although four analyzed plastid loci had less abundant variable sites and were highly
conserved compared to the ITS region, it could be useful to separate the species used in
this study.

To obtain more detail, a 390F/1326R primer set was used to amplify the matK, and
the 933-base partial nucleotide sequences were determined. The total number of variable
sites was 13; however, some of them were highly conserved. In particular, there were
only two site differences between PP and PJ. Nevertheless, matK could distinguish four
species sufficiently.

For the rbcL with a rbcL a-f/724R primer set, 670-base partial nucleotide sequences
were determined in all samples listed in Tables 1 and 2. Six variable sites were found, which
was a well-conserved region among the five DNA barcode regions. The sequence identity
matrix of rbcL was 0.992–1.000. In the rbcL region, PP and PJ showed identical nucleotide
sequences (sequence identity matrix 1, Supplementary Materials Table S1). Except for this
case, other species could be identified by comparing rbcL nucleotide sequences.

The psbA-trnH with a trnH2/psbAF primer set showed different lengths of amplified
product dependent on the species, and around 311–345 base partial nucleotide sequences
were determined. The psbA-trnH had the shortest aligned length among the five DNA
barcode regions but showed the most variable sites (17) among the four chloroplast barcode
regions, and had several indel sequences. Therefore, the sequence identity matrix ranged
from 0.904 to 0.944. Between PP and PJ, the closest result was 0.944.

A trnL-e/trnL-f primer set was used for the trnL-F intergenic spacer, and 444-base
nucleotide sequences were identified. As mentioned earlier, the trnL-F intergenic spacer
was the most conserved region, and the sequence identity matrix ranged from 0.99 to 1.00.
Four variable sites were observed in AD alone, and the other three species showed the
same sequence.

A single region chloroplast DNA barcode analysis approach and be inaccurate in deter-
mining the species’ identity. Therefore, the Consortium for the Barcode of Life (CBOL)-Plant
working group also recommends two- or more locus combinations to initiate the barcode
process for plant species. The recommended standard combination locus is rbcL-matK,
because this combination is a practical solution to the complex balance between univer-
sality, sequence quality classification, and cost. [27]. However, this combination is not
always efficient and, in this case, three- or more locus analyses are necessary. Therefore,
the psbA-trnH and trnL-F intergenic spacer regions were additionally selected for analysis
in this study. Both loci were quite short, which suggests that they could practically be
used for the analysis of processed distributed samples. Unfortunately, the trnL-F intergenic
spacer regions of the four species shown in Tables 1 and 2 were highly conserved. In
contrast, the psbA-trnH is already known as one of the most variable genome segments in
the angiosperm chloroplasts. As expected, it had most variable sites in this study, but it
also had many indel sequences. Therefore, single-locus analysis was not efficient.

2.3. Phylogenetic Analysis

To analyze the genetic relationship among the four species used in this study, the
PhyML + SMS (Maximum likelihood-based inference of phylogenetic trees with Smart
Model Selection) program was performed with concatenated nucleotide sequences of ITS
and four chloroplast DNA barcodes. Four species commonly located in the Selineae tribe
of the Apiacae family are clustered into two groups, genus Angelica and genus Peucedanum
(including genus Saposhnikovia) (Figure 1). The results of genetic flexibility analysis of the
four species show that PP and PJ are very close. Comparing the results with the plants of
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genus Peucedanum, PP and PJ, shows that they are not only the same genus, but genetically
closer to other species. AD is located in the genus Angelica group and is relatively far in
genetic distance compared to the other three species.Molecules 2022, 26, x FOR PEER REVIEW 7 of 17 
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Figure 1. Maximum likelihood-based inference of phylogenetic tree with Smart Model Selec-
tion, constructed based on the combined five DNA barcode regions (ITS and four plastids).
PJ: Peucedanum japonicum, PP: P. praeruptorum, AD: Angelica decursiva, SD: Saposhnikovia divaricata.
‘*’ represents the NCBI Genbank data combination.

2.4. Chromatographic Profiling of PJ, PP, AD, and SD Samples

HPLC analytical conditions, including the mobile phase modifier, mobile phase com-
position, and UV detection wavelength, were optimized for the chromatographic analysis
of the samples. The addition of 0.1% trifluoroacetic acid (TFA; v/v) in water with acetoni-
trile was chosen owing to better inter-peak separation and clearer detection of peaks under
the acidic mobile phase in the mobile phase without TFA. The UV detection wavelengths
were selected based on the optimal absorbance of each peak as follows: 4 peaks at UV
235 nm, 13 peaks at UV 250 nm, 14 peaks at UV 275 nm, 4 peaks at UV 300 nm, 10 peaks
at UV 310 nm, 46 peaks at UV 325 nm, 7 peaks at UV 323 nm, and 2 peaks at UV 350 nm
(Supplementary Materials Table S2).

The intraday precision of the sample was <0.2% for retention time and <4.0% for the
absolute peak area, and interday precision was <0.1% for retention time and <3.0% for the
peak area (Supplementary Materials Table S3).

The overlapping intra-species chromatograms showed similar patterns within the
samples of each species, except for a few outliers in the AD and SD samples, whereas
those of inter-species comparisons showed slightly different patterns among PJ, PP, and
AD samples, with a few identical peaks for PJ and AD samples after a retention time of
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40 min. The chromatographic patterns of the SD samples were distinguishable from those
of the PJ, PP, and AD samples over the entire retention time (Figures 2 and S1).

Molecules 2022, 26, x FOR PEER REVIEW 8 of 17 
 

 

The intraday precision of the sample was <0.2% for retention time and <4.0% for the 

absolute peak area, and interday precision was <0.1% for retention time and <3.0% for the 

peak area (Supplementary Materials Table S3). 

The overlapping intra-species chromatograms showed similar patterns within the 

samples of each species, except for a few outliers in the AD and SD samples, whereas 

those of inter-species comparisons showed slightly different patterns among PJ, PP, and 

AD samples, with a few identical peaks for PJ and AD samples after a retention time of 40 

min. The chromatographic patterns of the SD samples were distinguishable from those of 

the PJ, PP, and AD samples over the entire retention time (Figures 2 and S1). 

 

Figure 2. Overlapping chromatograms of representative samples of Peucedanum japonicum ((A) 

PJ01–10), P. praeruptorum ((B) PP01–10), Angelica decursiva ((C) AD01–07), and Saposhnikovia divari-

cata ((D) SD01–10) at a detection wavelength of 325 nm. 

Among the peaks commonly occurring in more than two species, the average peak 

areas of many peaks were significantly different between two species as follows: 26 peaks 

between PJ and AD samples (peaks 1, 3, 4, 14, 17, 18, 23, 33, 46, 47, 49, 52, 53, 54, 64, 69, 70, 

76, 88, 90, 91, 92, 95, 97, 99, and 100); 15 peaks between PJ and PP samples (peaks 2, 4, 6, 

14, 17, 18, 23, 39, 70, 76, 88, 92, 93, 95, and 100); 4 peaks between PJ and SD samples (peaks 

2, 18, 36, and 45); 27 peaks between PP and AD samples (peaks 1, 6, 11, 12, 13, 17, 23, 39, 

49, 53, 61, 64, 70, 76, 79, 81, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 95, and 100); 17 peaks between 

PP and SD samples (peaks 6, 12, 15, 17, 18, 22, 36, 45, 57, 61, 62, 66, 73, 81, 83, 85, and 92); 

Figure 2. Overlapping chromatograms of representative samples of Peucedanum japonicum ((A) PJ01–
10), P. praeruptorum ((B) PP01–10), Angelica decursiva ((C) AD01–07), and Saposhnikovia divaricata
((D) SD01–10) at a detection wavelength of 325 nm.

Among the peaks commonly occurring in more than two species, the average peak
areas of many peaks were significantly different between two species as follows: 26 peaks
between PJ and AD samples (peaks 1, 3, 4, 14, 17, 18, 23, 33, 46, 47, 49, 52, 53, 54, 64, 69,
70, 76, 88, 90, 91, 92, 95, 97, 99, and 100); 15 peaks between PJ and PP samples (peaks 2,
4, 6, 14, 17, 18, 23, 39, 70, 76, 88, 92, 93, 95, and 100); 4 peaks between PJ and SD samples
(peaks 2, 18, 36, and 45); 27 peaks between PP and AD samples (peaks 1, 6, 11, 12, 13, 17, 23,
39, 49, 53, 61, 64, 70, 76, 79, 81, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 95, and 100); 17 peaks
between PP and SD samples (peaks 6, 12, 15, 17, 18, 22, 36, 45, 57, 61, 62, 66, 73, 81, 83, 85,
and 92); 10 peaks between AD and SD samples (peaks 18, 45, 56, 79, 81, 82, 83, 84, 85, and
92) (Figure S2).

2.5. Clustering Analysis of the Samples Using Chemometric Statistical Methods

The chemotaxonomic correlations between PJ samples and PP, AD, and SD samples
were measured using chemometric clustering tools, principal component analysis, and
k-means clustering analysis. As shown in Figure 3, the samples of each species formed
distinct clusters based on their own origins in the principal component (PC) scores, PC1
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and PC2, which explained 21.7% and 18.7% of the total variance, respectively. PJ, PP, and
AD samples were densely located in their own species groups which were clearly separated
from each other. Although the SD samples also formed clusters, they were distributed
widely in the SD group, resulting in the interruption of a few samples (SD02 and SD03) in
the PP group. The PJ samples were located closer to the PP samples than to the SD samples,
whereas the AD samples were exceptionally different from the other sample groups in
terms of PC1 and PC2 scores.
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Figure 3. Score plot of principal components (PC1 vs. PC2) based on the variables (abso-
lute area of reference peaks) with Peucedanum japonica, P. praeruptorum, Angelica decursiva, and
Saposhnikovia divaricata samples based on a 99% confidence ellipse. PC1 and PC2 represent 21.7%
and 18.7% of the total variance, respectively. PJ: Peucedanum japonicum, PP: P. praeruptorum,
AD: Angelica decursiva, SD: Saposhnikovia divaricata.

In the k-means clustering analysis, four clusters were selected as the optimal number
of clusters, which was determined using the silhouette method (Figure S3). The distribution
of samples according to their dimension scores was consistent with those in the PC plot.
However, the grouping of samples was different, as follows: PP01, PP26, SD02, and SD05
samples were contained in the PJ cluster and PP27 was contained in the SD cluster. Hence,
the PJ cluster was intruded by the PP cluster which also slightly overlapped with the SD
cluster. The AD cluster also showed a distinct distance from the other clusters, as shown in
the PC plot (Figure 4).
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The results of clustering analyses demonstrate that the PJ samples showed better
chemical proximity with the PP samples than the SD samples due to the PC (=dimension
score in k-means) scores of the PJ samples being closer to those of the PP samples than the
SD samples [28,29].

2.6. Evaluation of Similarity between the Samples Using Pearson’s Correlation Coefficient

The similarity among the PJ, PP, AD, and SD samples was evaluated using Pearson’s
correlation coefficient (r), which ranged from −1 to +1 (Table S4). In the correlation plot,
the PJ samples showed a higher correlation with the AD samples (r = 0.791 for mean
and 0.976 for median), followed by most PP samples (r = 0.029 for mean and 0.021 for
median), and were negatively correlated with the SD samples (r = −0.099 for mean and
−0.097 for median). The correlations between the PP and AD samples (r = −0.011 for mean
and −0.014 for median), PP and SD samples (r = −0.038 for mean and median), and AD
and SD samples (r = −0.061 for mean and −0.060 for median) were not different. The
mean and median r values also showed that the intra-species relationships were as follows:
PJ–PJ > PP–PP = AD–AD > SD–SD. Meanwhile, inter-species relationships were as follows:
PJ–AD > PJ–PP > PP–AD > PP–SD > AD × SD > PJ–SD (Figure 5 and Table 4).
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Table 4. Pearson’s correlation coefficients among PJ, PP, AD, and SD samples.

Sample Value PJ PP AD SD

PJ

Mean 0.957
Median 0.966

Max 0.991
Min 0.849

PP

Mean 0.029 0.791
Median 0.021 0.976

Max 0.321 0.999
Min −0.058 −0.034

AD

Mean 0.791 −0.011 0.872
Median 0.976 −0.014 0.932

Max 0.999 0.103 0.995
Min −0.034 −0.057 0.563

SD

Mean −0.099 −0.038 −0.061 0.764
Median −0.097 −0.038 −0.060 0.822

Max −0.072 0.036 −0.044 0.982
Min −0.155 −0.079 −0.084 0.330

PJ: Peucedanum japonicum, PP: P. praeruptorum, AD: Angelica decursiva, SD: Saposhnikovia divaricata.
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The average r values of the samples of each species relative to the individual samples
of other independent species exhibited diverse intra- and inter-sample variations compared
to the rest of the species samples, that is, higher correlations for PP01–PJ samples, PP01– and
PP27–AD samples, and PP26–SD samples and lower correlation for AD01–PJ samples, PP01–
PP samples, AD01–PP samples, AD01–AD samples, and SD10–SD samples (Figures S4–S7).

Positive and higher coefficient (r) values between the PJ and the AD samples indicate
a stronger inter-species correlation, as compared with the weaker inter-species correlation
between the PJ and the PP samples, with lower r values. Negative and weaker r values
between the PJ and the SD samples indicated that their inter-species similarity was lower
than those with positive r values [30,31].

The chemotaxonomic classification of PJ, PP, AD, and SD samples based on phyloge-
netic authentication was successfully evaluated using chromatographic profiling combined
with chemometric analysis, and their chemical characteristics were clearly reflected by their
own species. The chemical correlation between PJ and the other three species was also
investigated, and it was observed that PJ had a strong chemical relationship with PP and
AD, depending on the measured chemometric analyses; however, its chemical relationship
with SD was less or even negligible.

As the therapeutic activity of herbal medicines can possibly be explained by their
chemical constituents, the chemotaxonomic closeness between PJ and PP or AD might
provide evidence for their analogous medicinal application to reduce phlegm and heat-
induced respiratory symptoms. Meanwhile, the chemotaxonomic distance between PJ and
SD presumably indicates their therapeutic dissimilarity with respect to relieving common
cold-induced disorders. Further pharmacological and clinical studies are required to
confirm these chemotaxonomic results.

Nonetheless, there are a few limitations to this study, as follows: (1) sample numbers
for AD or SD were insufficient, mainly owing to difficulties in collecting genuine species;
(2) intra-species chemical variation in SD samples was prominent, presumably owing to
diverse habitats [32,33], and this could be caused by environmental factors, including
temperature, dryness/humidity, rainfall, soil conditions, and altitude, which definitely
affect the production of secondary metabolites in herbal plants [34–36]; (3) insufficient
research on chemical classifications among the aforementioned four species.

3. Materials and Methods
3.1. Plant Materials and Reagents

Methanol, water, and acetonitrile (HPLC grade) were purchased from J. T. Baker
(Phillipsburg, NJ, USA). TFA was purchased from Sigma-Aldrich (St. Louis, MO, USA).
Prim-O-glucosyl-cimifugin (peak 10), cimifugin (peak 19), ubelliferone (peak 21), sec-
O-glucosyl-hamaudol (peak 34), psoralen (peak 42), xanthotoxin (peak 44), bergapten
(peak 45), oxypeucedanin (peak 48), imperatorin (peak 57), decursin (peak 66), praeruptorin
A (peak 73), praeruptorin B (peak 92), and praeruptorin C (peak 98) were purchased from
ChemFaces (Wuhan, China).

Sixteen samples of PJ, twenty-seven samples of PP, seven samples of AD, and ten
samples of SD were collected from agricultural plantations, natural habitats, and markets
in Korea and China, and were also supplied by the Korea Institute of Oriental Medicine
(Table 1). The collected samples were morphologically authenticated by the authors (J.H.
Kim and G. Lee). For genetic identification, 20 additional voucher samples were used as
standard reference samples (Table 2). All voucher specimens (code No. PNUKM-2021-
PJ01–PJ16, PP01–PP27, AD01–AD07, and SD01–SD10) and extracted genomic DNA were
deposited at the herbarium of the College of Korean Medicine in Wonkwang University
and at the School of Korean Medicine, Pusan National University.

3.2. Preparation of Genomic DNA

A NucleoSpin® Plant II kit (Macherey-Nagel, Dueren, Germany) with PL1 lysis buffer
was used to extract the genomic DNA of the samples in Tables 1 and 2. Some samples
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required extra steps to treat 10% cetyltrimethylammonium bromide with 0.7 M NaCl added
to remove high levels of phenolic compounds and/or polysaccharides.

3.3. PCR Amplification for DNA Barcode Analysis

For DNA barcode analysis, PCR amplification was performed using a T-personal cycler
(Biometra, Jena, Germany). Briefly, 1X AccuPower® GoldHotStart Taq PCR PreMix (Bioneer,
Daejeon, Korea) with 600 nM primer set and 30 ng of genomic DNA were used for each
PCR amplification. The primer set ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4
(5′-TCCTCCGCTTATTGATATGC-3′) [37] were used to amplify the ITS include 5.8 s. For
the chloroplast DNA barcodes, rbcL a–f (5′-ATGTCACCACAAACAGAGACTAAAGC-3′)
/724R (5′-TCGCATGTACCTGCAGTAGC-3′) and 390F (5′-CGATCTATTCA TTCAATATTTC-
3′) /1326R (5′-TCTAGCACACGAAAAGTCGAAGT-3′) primer sets were used for rbcL
and matK amplification, respectively [38–40]. For the trnL-F intergenic spacer, the trnL-e
(5′-GGTTCAAGTCCCTCTTATCCC-3′)/trnL-f (5′-ATTTGAACTGGTGACACGAG-3′) set
and the primer set trnH2 (5’-CGCGCATGGTGGATTCACAATCC-3’)/psbAF (5’-GTTATGCA-
TG AACGTAATGCTC-3’) were used for the psbA-trnH regions [27,41]. The amplified prod-
ucts were separated and confirmed by electrophoresis by using 1.5% agarose gel added with
Safe-ViewTM (abm, Richmond, VA, Canada).

3.4. Determination of DNA Sequences of PCR Product

All of the PCR products were sub-cloned after being separated from agarose gels by
use of a TOPcloner™ TA Kit (Enzynomics, Daejeon, Korea). The DNA sequences were
then determined through an interpretation performed by Bioneer (Daejeon, Korea). To
improve the accuracy of the results, the DNA barcode analysis was repeated three times,
independently from the genomic DNA extraction stage.

3.5. Analysis of DNA Sequences and Preparation of Dendrogram

The determined DNA sequences were first analyzed using Bioedit’s ClustalW multiple
sequence alignment (Bioedit, v7.0.9; available from http://www.mbio.ncsu.edu/BioEdit/
page2.html, accessed on 28 November 2021) and reconfirmed with multiple sequence align-
ment using MAFFT (MAFFT, v7; available from https://mafft.cbrc.jp/alignment/server/,
accessed on 29 November 2021) [42]. To confirm the polymorphism represented by IUPAC
symbols, all sequences were identified at least twice using a chromatogram of nucleotide
sequences provided by the Bioneer sequencing service. The phylogenetic tree for the ITS
region was analyzed using MAFFT (multiple alignment, v7.407_1), BMGE (alignment
curation, v.1.12_1) [43] and PhyML (tree inference based on the maximum-likelihood,
v.3.1_1) [44,45] workflow (PhyML/OneClick, available from https://ngphylogeny.fr/,
accessed on 3 December 2021). Phylogenetic analysis of the combined five DNA bar-
codes (ITS and four plastid regions) was followed by the PhyML+SMS/OneClick method,
which was performed in accordance with MAFFT, BMGE, and PhyML+SMS (maximum
likelihood-based inference of phylogenetic trees with Smart Model Selection, available
from https://ngphylogeny.fr/, accessed on 8 December 2021) [46]. All sequence results
completed in the analysis were compared and confirmed with the NCBI GenBank us-
ing Blast [47]. The reference data ITS nucleotide sequences for analysis of the genetic
relationships comes from NCBI Genbank and were represented by the accession num-
ber in phylogenetic tree. The Chloroplast barcode data were also collected from NCBI
Genbank, including MT671397.1, NC033344.1, OL362112.1, MW436378.1, MW820164.1,
MW900177.1, MT921980.1, MT921.997, and KX352468.1. Two species, Eryngium planum
(EU169002, EU0706969, MT561039.1) and Sanicula canadensis (EU070746.1, KP642834.1,
KP643255.1, KJ773865.1), were used as the outgroup [48].

3.6. Preparation of Samples for HPLC Analysis

The pulverized PJ, SD, PP, and AD samples were homogenized using a 500 µm testing
sieve (Chunggyesanggong-sa; Gunpo, Gyeonggi, Korea). The extraction was performed

http://www.mbio.ncsu.edu/BioEdit/page2.html
http://www.mbio.ncsu.edu/BioEdit/page2.html
https://mafft.cbrc.jp/alignment/server/
https://ngphylogeny.fr/
https://ngphylogeny.fr/
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using a powder of 500 mg with 5 mL of methanol using an ultrasonic extractor (Power Sonic
520; Hwashin Tech, Daegu, Korea) for 30 min. The extract, filtered through a 0.2 µm syringe
filter (BioFact, Daejeon, Korea), was evaporated using a nitrogen-blowing concentrator
(MGS2200; Eyela, Miyagi, Japan) and was re-dissolved in HPLC-grade methanol at a
concentration of 20,000 µg/mL prior to HPLC injection.

3.7. HPLC Conditions for Chromatographic Profiling

Chromatographic analysis was performed using an Agilent 1200 liquid chromatog-
raphy system (Agilent Technologies; Palo Alto, CA, USA) consisting of an autosampler,
degasser, solvent pump, and DAD. Data were processed using ChemStation (Agilent Tech-
nologies). The chemical constituents, including 13 marker compounds, were separated
on a Capcell Pak Mg II C18 column (4.6 mm × 250 mm, 5 µm; Shiseido, Tokyo, Japan) at
35 ◦C with 1 mL/min flow rate and 10 µL injection volume. The mobile phase consisted of
water containing 0.1% TFA (A) and acetonitrile (B), with the following gradient elution:
15% (B) over 0–2 min, 15–50% (B) over 2–30 min, 50% (B) over 30–32 min, 50–75% (B) over
32–55 min, 75% (B) over 55–58 min, and then re-equilibrated to 15% (B) until the end of the
analysis. Detection was performed using a UV detector at wavelengths of 235, 250, 275,
300, 310, 325, 335, and 350 nm.

The precision of the analytical methods was determined by analyzing the retention
times and absolute areas of selected peaks of PJ samples within one day (intraday precision)
and over three consecutive days (interday precision). Precision was represented as relative
standard deviations (RSDs), where RSD (%) = ((standard deviation/mean value) × 100).

3.8. Chemometric Statistical Analysis

The genetically identified samples of PJ, PP, AD, and SD were analyzed using HPLC,
and the chemical relationship between the samples was evaluated using chemometric tools,
that is, principal component analysis, k-means cluster analysis, and Pearson’s correlation
analysis. In total, 100 peaks were selected as profiling peaks, which were >1.0% of the total
peak area. Sixty samples and the absolute area of each profiling peak were used as a matrix
for construction of the PC plot, the k-means cluster plot, and for the calculation of Pearson’s
correlation coefficient. The difference between the absolute area of each peak from the
samples of independent species was evaluated using Tukey’s test, with significance at
p < 0.05, p < 0.01, and p < 0.001. Chemometric analyses and Tukey’s test were conducted
using the open source software R (v. 4.1.2; The R Foundation for Statistical Computing).

4. Conclusions

Overall, 60 samples of PJ, PP, AD, and SD were phylogenetically authenticated using
ITS and chloroplast genome-based DNA barcoding analysis at the species level. Chemotax-
onomic classification of PJ and its chemical correlation with the remaining three species
were investigated using chromatographic profiling with chemometric analyses. PJ samples,
which showed the closest phylogenetic relationship with PP samples, showed a stronger
chemical correlation with PP or AD samples but a weaker or even negative chemical
correlation with SD samples. The results from the phylogenetic analysis-hyphenated
chemotaxonomic correlation suggested the transfer of PJ from SD to the category of PP
or AD for medicinal applications. Further pharmacological and clinical study would be
necessary to support the chemical re-categorization of PJ.

Supplementary Materials: The following supporting information can be downloaded online,
Figure S1: Chromatograms of the samples of Peucedanum japonicum, P. praeruptorum, Angelica de-
cursiva, and Saposhnikovia divaricata; Figure S2: Multiple comparison of absolute peak areas among the
samples; Figure S3: Silhouette plot; Figures S4–S7: Average Pearson’s correlation coefficients among
the samples; Table S1: Sequence identity matrix; Table S2: Retention times and detection wavelengths
of profiling peaks; Table S3: Precision of profiling peaks; Table S4: Pearson’s correlation coefficients
among the samples.
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