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Abstract: Lagerstroemia caudata is a rare aromatic species native to southeastern China, but its floral
scent properties and release dynamics remain unclear. This study is the first systematic analysis
of spatial-temporal variation in volatile organic compounds (VOCs) emitted from L. caudata by
headspace solid-phase microextraction (HS-SPME) with gas chromatography–mass spectrometry
(GC-MS). Thirty-two VOCs were identified, 20 of which were detected for the first time. Aldehydes,
alcohols, and monoterpenoids were the main VOC categories, each with different releasing rhythms.
Total emission of VOCs was much higher in the full-blooming stage (140.90 ng g−1min−1) than in
the pre-blooming (36.54 ng g−1min−1) or over-blooming (24.92 ng g−1min−1). Monoterpenoids,
especially nerol, geraniol, and linalool, were the characteristic VOCs for full-blooming flowers. Daily
emissions of nine compounds (nerol, geraniol, linalool, citronellol, β-citral, (E)-citral, phenylethyl
alcohol, 2-heptanol, 2-nonanol) correlated closely with the opening of L. caudata, presenting an
apparent diurnal pattern of scent emission. Tissue-specific emission was found in most isolated floral
parts. Stamen was the most significant source of floral VOCs, considering its high emission levels of
total VOC (627.96 ng g−1min−1). Our results extend the information on floral VOCs of Lagerstroemia
and provide a theoretical basis for breeding new cultivars with desirable floral scents.

Keywords: Lagerstroemia caudata; flower fragrance; emission rhythm; SPME-GC-MS

1. Introduction

The aroma released by flowers is an important aspect of the quality of ornamental
plants and is an important feature of complex plant–pollinator communication [1]. Individ-
ual flowers emit volatile organic compounds (VOCs) in diverse proportions, which give
flowering plants their characteristic fragrances [2,3]. Therefore, many studies have been
carried out with the purpose of identifying compositions responsible for the characteristic
aromas of flowering plants. The overall number of identified flower VOCs is enormous
(more than 1700 in 90 different families) [4], and, interestingly, they are mainly derived
from three biochemical networks (terpenoid, benzenoid/phenylpropanoid, and fatty acid
pathways). Previous research has shown that tissue-specific emission of floral VOCs was a
typical trait of numerous species. Scent substances varied between different flower organs
(petals usually release the highest amounts), which were conducive to facilitating pollinator
orientation [5,6]. In addition, emissions of flower VOCs varied over a day and usually
matched the activity pattern of the respective pollinators [7].

The genus Lagerstroemia L., a member of the Loosestrife family (Lythraceae) comprises at
least 62 species and is noted for its value as a landscape tree/shrub or a container/bedding
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plant because of its diverse growth habits, flower size, and flower/leaf color [8]. Therefore,
most of the breeding objectives for the common crape myrtle concentrated on flower shape,
flower color, and flowering time. Unfortunately, flower scent has been neglected as a
significant feature in traditional breeding programs [9]. Although many Lagerstroemia
flowers are almost scentless, L. caudata is considered to release a strong fragrance and some
hybrids of L. caudata and L. indica emit pleasant fragrances [10–12].

Gas chromatography-mass spectrometry (GC-MS) is currently the preferred method
for the determination of volatile substances [13]. Because of the complicated compositions
and low concentrations of volatile components, detection by GC-MS requires a suitable
pretreatment method for the isolation and concentration of the original sample. However,
after such pretreatment steps, which may be tedious and time-consuming, the VOC profile
is often changed [14]. In contrast, solid-phase micro extraction (SPME) in headspace mode
(HS) represents a simple, quick, and efficient alternative that combines sampling, extraction,
and concentration processes. The method is also solvent-free, provides good sensitivity,
and has low detection limits [15]. Recently, this technique was used to develop a powerful
method for analysis of flower VOCs in numerous species [16]. However, to date, the
identification of VOCs in Lagerstroemia with HS-SPME-GC-MS has only been reported in
one study [17].

The main purpose of this study was to provide a theoretical framework for elucidating
the chemical mechanism of flower fragrance emission and to evaluate flower scent quality.
Specifically, this work aimed to identify characteristic VOCs and explore the temporal-
spatial rhythmicity of scent emission of L. caudata flowers by HS-SPME-GC–MS analysis.
This work used the following approach: (1) optimization of sample preparation conditions
(fiber coating, extraction time/temperature, sample amount, and desorption time) and
concentration for subsequent GC analysis; (2) identification of VOCs and characteristic
compositions; (3) investigation of the temporal pattern (day/night and through a flower’s
lifespan) of scent emission; (4) determination of among-organ (within flower) differences
in VOC emission. It is expected that this work will assist the generation of fragrant
Lagerstroemia cultivars with future breeding programs.

2. Results
2.1. Optimization of SPME Parameters

The optimum sampling conditions of HS-SPME for L. caudata flowers were determined
by the variation of fibers, sample amount, extraction time, extraction temperature, and
desorption time and their analysis in an L16 (45) orthogonal test (Table 1). Using range
analysis based on the peak area (Table 2), the fiber was regarded as having the greatest
effect on the HS-SPME technique, followed by extraction temperature, sample amount,
extraction time, and desorption time. The following sampling conditions (A4B3C2D4E1)
were considered optimal: sample weight, 0.4 g; fiber, 50/30 µm DVB/CAR/PDMS-2 cm;
extraction temperature, 50 ◦C; extraction time, 40 min; desorption time, 2 min.

Table 1. Optimization of HS-SPME parameters with L16 (45) orthogonal test.

Level

Factors

Fiber (A)
Extraction

Temperature
(B ◦C−1)

Extraction Time
(C min−1)

Sample
Amounts
(D g−1)

Desorption
Time (E min−1)

1 65 µm PDMS/DVB 30 30 0.1 2
2 100 µm CAR/PDMS 40 40 0.2 3
3 50/30 µm DVB/CAR/PDMS 50 50 0.3 4
4 50/30 µm DVB/CAR/PDMS-2 cm 60 60 0.4 5
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Table 2. Optimized results of HS-SPME parameters by an L16 (45) orthogonal test.

Code Fibers (A) Adsorption
Temperature (B)

Adsorption
Time (C)

Sample Weight
(D)

Desorption
Time (E) Peak Area

1 1 1 1 1 1 3.97 × 106

2 1 2 2 2 2 6.70 × 106

3 1 3 3 3 3 9.70 × 106

4 1 4 4 4 4 1.08 × 107

5 2 1 2 3 4 4.96 × 105

6 2 2 1 4 3 1.04 × 106

7 2 3 4 1 2 1.74 × 106

8 2 4 3 2 1 7.05 × 105

9 3 1 3 4 2 3.95 × 106

10 3 2 4 3 1 6.06 × 106

11 3 3 1 2 4 1.05 × 107

12 3 4 2 1 3 7.80 × 106

13 4 1 4 2 3 2.35 × 107

14 4 2 3 1 4 1.77 × 107

15 4 3 2 4 1 9.51 × 107

16 4 4 1 3 2 6.19 × 107

k1 7.80 × 106 7.99 × 106 1.94 × 107 7.81 × 106 2.65 × 107

k2 9.94 × 105 7.88 × 106 2.75 × 107 1.04 × 107 1.86 × 107

k3 7.08 × 106 2.93 × 107 8.02 × 106 1.95 × 107 1.05 × 107

k4 4.96 × 107 2.03 × 107 4.66 × 106 2.77 × 107 9.89 × 106

R 4.86 × 107 2.14 × 107 2.29 × 107 1.99 × 107 1.66 × 107

Optimization
level A4B3C2D4E1

2.2. Phenotypic Space of VOCs in Three Flowering Stages

A total of 37 VOCs were detected by HS-SPME-GC–MS analysis. Among them,
31 VOCs (83.78%) were identified. Over the three stages of flowering, 29 VOCs were
emitted during the full-blooming period (T2), 17 were emitted during the over-blooming
period (T3), and 11 during the pre-blooming period (T1). The main chemical categories
of flower scent in the three flowering stages were aliphatic alcohols, aliphatic alkanes,
benzenoids, monoterpenes, and irregular terpenes. Flowers released mostly monoter-
penes (11), followed by aliphatic alcohols (6) and aliphatic alkanes/aldehydes (3). Among
the 31 identified compounds, eight aliphatic compounds were present in all three flowering
stages, albeit in markedly different proportions (Figure 1, Table S1).
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T1: pre-blooming stage; T2: full-blooming stage; T3: over-blooming stage.

Aldehydes accounted for 89.95% of the total amount of aroma substances and were
the most abundant aroma components at the pre-blooming stage (T1). They also accounted
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for 34.14% in the over-blooming stage (T3), but made up only 6.02% of the total aroma
content during full-blooming stage (T2). Alcohols were one of the main aroma compo-
nents during the flowering stage of L. caudata. Among them, 2-nonanol (20.86%) had the
highest content in the full-blooming period and the content of 1-hexanol (32.23%) was the
highest at the over-blooming stage. Interestingly, the content of monoterpenes (38.22%)
in the full-blooming stage was apparently higher than that in the over-blooming stage
(3.12%) and the pre-blooming stage (0.00%) (Figure 2). The main monoterpenes were nerol
(17.36%), geraniol (6.32%), and linalool (5.34%). Of the 16 monoterpenoids detected, 11
were detected only in the full-blooming stage. This showed that monoterpenoids were the
key to distinguishing the components in bloom from those in the pre-blooming stage and
the over-blooming stage (Figure 3). The total amount of aromatic substance released during
the blooming period of L. caudata was 140.90 ng g−1min−1, which is significantly higher
than that during the pre-blooming stage (36.54 ng g−1min−1) and the over-blooming period
(24.92 ng g−1min−1). From the pre-blooming stage to the over-blooming stage, the total
amount of volatile compounds released showed an initial increase followed by a decrease.
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2.3. Daily Emission Patterns of Major Volatile Compounds

According to observation of its blooming habit and fragrance phenotypes, the single
flower of L. caudata plants follows a specific pattern of daily opening: (I) the calyx starts to
unfold around midnight with no odor; (II) the calyx continues to open and petals extend
outward with observable stamens and pistil (2 am); (III) flowers fully open with little
fragrance (4 am); (IV) flowers remain open and anthers are dehisced with rich fragrance
(6 am); (V) calyx, petals, and stamens start to contract with scarcely any fragrance; and (VI)
stamens curl up completely with a light odor that is different from earlier odors (6 am the
next day).

We selected 14 aroma substances with the highest relative content (accounting for
more than 95% of the total aroma release) to study the daily variation in a single-flower
opening of L. caudata in a 48-h period (Figure 4). The results indicated that emission of
all nine major VOCs (nerol, geraniol, linalool, citronellol, β-citral, (E)-citral, phenylethyl
alcohol, 2-heptanol, and 2-nonanol) started at midnight after the calyx began to crack,
generally increased as the flower opened (2-nonanol showed slight decrease between 2 am
and 4 am), reached a maximum after the flower fully opened, and steadily decreased until
the next day. The emission pattern of the second 24 h was similar to that observed in the
first 24 h, but the total amounts were lower.
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Five other VOCs (1-hexanol, leaf alcohol, cis-2-hexen-1-ol, trans-2-hexenal, and hex-
anal) showed an emission trend that was totally different from that of the nine compounds
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mentioned above (Figure 4b). The total amounts of the five compounds were generally
high and they were detected at multiple points across the 48-h sampling period. However,
there was no obvious evidence that the emission of the five compounds had a close rela-
tionship with the opening of L. caudata flowers. Analyses of tissue-specific emissions of
these VOCs (see Section 2.4) may partly explain this result, given that their main emission
was from calyces.

2.4. Among-Organ Differences of VOC Emission

The VOC emission (especially aliphatic alcohols and monoterpenes) from the stamens
of L. caudata was greater than the other floral parts (28,653.62 ng/40 min) (Figure 5, Table S1).
Thirty VOCs were identified from five isolated flower parts and were grouped by their
biochemical synthesis pathways as shown in Table S1. Stamens released the most VOCs,
reaching 20, followed by petals with 15. Flower pedicels emitted the fewest number of
VOCs (4). The scent composition based on the relative amounts varied greatly within
flowers (Figure 6). The stamen fragrance was characterized by high levels of aliphatic
alcohols (44.43%) and monoterpenes (44.61%), which were similar to the fragrance of the
whole flower. Petals had relatively high amounts of benzenoid-alcohols (e.g., phenylethyl
alcohol; 36.71%) and irregular terpenes (e.g., p-anisaldehyde; 34.01%). The calyx aroma
was relatively rich (59.11%) in aliphatic alcohols (e.g., leaf alcohol), whereas the pedicel
mainly released benzenoid-esters (44.89%). Pistils also emitted compounds that originated
from the three main biosynthesis pathways.
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Figure 5. Total emission amounts of VOCs emitted from L. caudata flowers and their isolated flo-
ral parts.
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Figure 6. Venn analysis of VOCs identified from five floral organs in L. caudata. P1, stamen; P2, petal;
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For the composition of scent, eight VOCs, mainly monoterpenes, were detected only
in the stamens (isopulegol; lavandulol; r-cyclogeraniol; nerol; geraniol; 2-undecanol; 2-
heptanol; and 2-nonanone). Four compounds (p-anisaldehyde, benzeneacetaldehyde,
citronellal, and eicosane) were only emitted from petals. Lipoxygenase products or “green
leaf volatiles,” such as trans-2-hexenal, leaf alcohol, cis-2-hexen-1-ol, and 1-hexanol, were
mainly expressed specifically from the calyces. Linalool was the only VOC that was
released only from pistils; it was not detected from pedicels. The daily emission patterns
of 2-heptanol, nerol, and linalool were presumed to be closely related to the opening of
flowers in L. caudata. These compounds are likely to act as cues to pollinators in L. caudata.
Another six compounds had no obvious tissue specificity (mainly found in stamen and
petal) (Figure 7).
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2.5. Difference Analysis of VOCs in Different Flower Parts and Flowering Stages Based on
Bray−Curtis Dissimilarity Analysis and Principal Component Analysis

The BrayCurtis dissimilarity index is often used to compare the degree of dissimilarity
between two samples [18]. Larger values of the index suggest greater differences between
samples (low similarity) [19]. The Bray−Curtis dissimilarity index across the three flower
stages ranged from 0.6333 to 0.8611 (Table 3), which indicated that the floral release com-
pounds changed considerably during the flowering time. For all identified compounds
in the five floral organs, the index ranged from 0.4084 to 0.9943 (Table 4). The pistil and
pedicel showed some similarity (dissimilarity index 0.4084), whereas there were significant
differences between other parts (dissimilarity indexes greater than 0.7608).

Table 3. Bray–Curtis dissimilarity index among different flowering stages of L. caudata.

Flowering Stage T1 T2 T3

T1 0
T2 0.8611 0
T3 0.6333 0.7271 0

Note: T1, pre-blooming stage; T2, full-blooming stage; T3, over-blooming stage.
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Table 4. Bray−Curtis dissimilarity index among five floral organs in L. caudata.

Organs P1 P2 P3 P4 P5

P1 0
P2 0.8827 0
P3 0.9943 0.9676 0
P4 0.9843 0.9561 0.7764 0
P5 0.9889 0.9719 0.7608 0.4084 0

Note: P1, stamen; P2, petal; P3, calyx; P4, pistil; P5, pedicel.

To identify compounds that contribute significantly to the variation in VOC profiles of
five floral organs from L. caudata, a principal components analysis (PCA) was performed.
Three components accounting for 78.80% of the total variance was extracted. PC1, PC2
and PC3 explained 42.90%, 23.50% and 12.40%, respectively (Table 5). The first principal
component displays positive loadings for lavandulol (0.246), 1,7-Octadien-3-ol (0.246), nerol
(0.246) and geraniol (0.246). The second principal component was highly correlated to
citronellal and eicosane, with negative loadings of −0.296 and −0.295, respectively. The
two compounds that had the highest relevance to the three principal components were
trans-2-hexenal (−0.369) and leaf alcohol (−0.410).

Table 5. Principal component loading for the three principal compounds.

ID PC1 (42.9%) PC2 (23.5%) PC3 (12.4%)

Hexanal −0.106 −0.232 −0.165
trans-2-Hexenal −0.069 −0.010 −0.369

(Z)-2-methylbutanal oxime 0.107 −0.258 0.052
Leaf alcohol −0.090 −0.010 −0.410

trans-2-Hexen-1-ol −0.070 −0.010 −0.370
2-Heptanol 0.244 0.000 −0.045

D-Limonene 0.245 0.002 −0.050
Benzeneacetaldehyde −0.048 −0.293 0.176

2-Nonanone 0.245 0.000 −0.054
1-Nonen-4-ol −0.051 −0.271 0.167

2-Nonanol 0.245 0.000 −0.052
Citronellal −0.048 −0.296 0.175
Isopulegol 0.244 −0.002 −0.052
Lavandulol 0.246 −0.022 −0.040

1,7-Octadien-3-ol, 2,6-dimethyl- 0.246 −0.013 −0.041
r-Cyclogeraniol 0.245 −0.001 −0.053

Nerol 0.246 0.003 −0.047
Geraniol 0.246 −0.004 −0.043

p-Anisaldehyde −0.051 −0.294 0.179
(E)-Citral 0.114 −0.256 0.121

2-Undecanol 0.236 −0.003 −0.064
Methylgeranate 0.245 −0.014 −0.040

Hexadecane 0.033 0.197 0.274
Diethyl phthalate 0.019 0.238 0.258

Octadecane 0.078 0.215 0.247
Eicosane −0.049 −0.295 0.178

Dibutyl phthalate 0.106 0.275 0.097

The variance explained by each compound is indicated in parentheses. Only com-
pounds with a loading ≥|0.23| in at least one principal component are present.

According to PCA of the VOCs in the stamen, petal, calyx, pistil, and pedicel, the
components were clearly separated, with PC1 and PC2 accounting for 66.4% of the total
variance (Figure 8). PC1 accounted for 42.9% of the total compounds and represents the
difference in the VOCs of the stamen from those of the other parts. Linalool made a
large contribution to the positive direction of PC2, which accounted for 23.5% of the total
variance, and was the main volatile component detected in pistils and pedicels. Hexanal
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and citronellol made high contributions to the negative direction of PC2 and had a positive
correlation with petals. The distribution of flower fragrance released from different tissues
was inconsistent and no aggregation was observed.
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3. Discussion
3.1. Establishment and Optimization of SPME Method for L. caudata

Authors should discuss the results and how they can be interpreted from the perspec-
tive of previous studies and of the working hypotheses. The findings and their implications
should be discussed in the broadest context possible. Future research directions may also be
highlighted. SPME overcomes many of the shortcomings of traditional sample pretreatment
methods and shows good retention of aroma substances [20,21]. However, establishment
of the method for L. caudata flowers required the optimization of several extraction parame-
ters/conditions, including the fiber coating, extraction temperature and time, desorption
time, and sample size. Our study showed that the 50/30 µm DVB/CAR/PDMS-2 cm
extractive tip was the most suitable for the adsorption of aroma substances from the flowers
of L. caudata. It showed good adsorptive effects for alcohols, aldehydes, alkanes, ketones,
terpenoids, and benzene compounds, which was consistent with the results reported for
apple samples [22]. Considering that SPME extraction is based on reaching equilibrium
between the analyte concentration in the polymeric phase of the fiber and that in the
headspace of the sample, extraction temperature and time were additional critical factors
in HS-SPME sampling. The analysis revealed that the optimal condition to extract the
aroma compounds of L. caudata flower was extraction at 50 ◦C for 40 min. Previous studies
have shown that the selection of extraction conditions varies with plant materials. The
best adsorption effect of Chimonanthus praecox was achieved by adsorption at 70 ◦C for
45 min [23]. The best adsorption condition for coriander was 40 min at 70 ◦C, while the
best extraction condition for Muscat grape was 40 min at 30 ◦C [24,25].

3.2. Differential Characteristic Aroma Components of L. caudata

Plant aroma is the objective form of the quality and quantity of VOCs in space. Fragrant
compounds from the flowers of different plants may be different, and VOCs may interact
in different proportions to give a unique odor. The presence of specific compounds may
also contribute to the unique flower scent of each plant [19]. To date, more than 2000 flower
fragrance compounds from nearly 100 plant families have been identified.

Our study showed that fatty alcohols and aliphatic aldehydes were the basic compo-
nents of aroma substances in different growth and development stages, whereas monoter-
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penoids (especially nerol, geraniol, and linalool) were the main characteristic components
of floral phenotypes that distinguished the full-blooming period from the other flowering
stages. These results were similar to those of previous studies [10–12]. Through optimized
HS-SPME-GC–MS analysis, we identified 20 aroma substances that had not been detected
in the blooming flower of L. caudata before. Although previous published studies had used
HS-SPME-GC–MS analysis to determine the aroma substances of L. caudata, the extraction
and quantitation methods were dissimilar, resulting in different final results. In addition,
different times of flower collection and different stages of flowering would also cause
variation across these studies. Nerol and geraniol have a sweet rose odor, while linalool
smells sweet and woody [26,27], all of which formed the pleasant aroma of L. caudata.

3.3. Release Dynamics of the Floral Scent of L. caudata

Floral volatile profiles vary across different plants and across different growth stages [28].
Such variation depends not only on the physiological levels of plants, but also on their
growth and reproduction strategies [29]. Our results indicated that the opening of L. caudata
flowers was closely related to the emission of volatile compounds, resulting in a diurnal
pattern in scent emission. During the blooming period (5:00–7:00 am), when the flowers of L.
caudata were ready for pollination, the total release of aroma substances reached a maximum
before gradually declining. This pattern was also found for other day-flowering plants
such as grape, Petunia axillaris, and some Silene species [30,31]. Rhythmicity of floral scent
emission has been observed in numerous species and is usually related to the activity of
specific pollinators [32]. In general, emission amounts of volatile compounds were highest
when flowers were ready for pollination and then adaptively decreased after pollination to
reduce the likelihood of attracting consumers [33,34]. In this study, nine aroma substances
(nerol, geraniol, linalool, citronellol, β-citral, (E)-citral, phenylethyl alcohol, 2-heptanol,
2-nonanol) were strongly released during the day to attract daytime pollinating insects.
However, the specific contribution of each component and the relationship between the
floral scent emission pattern and the respective pollinator visitation pattern remains unclear
because of a lack of related data for Lagerstroemia plants.

3.4. Tissue Specificity of Aroma Release

Tissue specificity is a typical feature of the release of plant aroma substances, which
can help pollinators to accurately locate the pollination zone and maximize the pollination
attraction [35,36]. In general, petals are the main source of aroma substances of plants, al-
though other flower organs and tissues (stamens, pistils) also make important contributions
to the fragrances of certain plants [37]. In this study, the total amount of aroma substances
released from the stamens was 627.96 ng g−1min−1, which was significantly higher than
the other four separated flower organs. The difference in the spatial release between the
stamen and the other parts of the flower (petals, pistils, sepals, and pedicels) results in a
noticeable gradient of aroma substances from the stamen to the surroundings, which was
also observed in plum flowers [38]. Through the guidance of this concentration gradient,
the pollinators will be better attracted, thus improving the pollination efficiency [39].

4. Materials and Methods
4.1. Plant Materials

Three L. caudata plants were used in parallel in the experiment. The plants were the
same age and were grown in the nursery of the National Engineering Research Center
for Floriculture (Changping District, Beijing, China) (40◦150 N, 116◦446 E). Flowers were
divided into three stages according to the degree of blooming: the pre-blooming stage
(T1), full-blooming stage (T2), and the over-blooming stage (T3) (Figure 9). Fresh flowers
with the same weight were collected over a 48-h lifespan period (2-h intervals in first
24 h, 6-h intervals in second 24 h). Flowers at the full-blooming stage were harvested and
immediately divided into stamens (P1), petals (P2), calyces (P3), pistils (P4), and pedicels
(P5) (Figure 10). The different flower organs were separately placed into a sealed headspace
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vial for latter analysis. The sampling was repeated three times, and the weight of each
sample was 0.4 g.
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4.2. HS-SPME-GC-MS Procedures

Before first use, the fiber equipped with a manual SPME holder (both purchased
from Supelco, Bellefonte, PA, USA) was conditioned according to the manufacturer’s
recommendation in the GC injector, and blank analyses were conducted. Fresh individual
flowers collected at random were excised carefully and sealed in a 20-mL headspace
vial (Supelco). After 20 min at room temperature (22 ± 3 ◦C), the fiber was exposed to
the headspace of the vial for sampling. Subsequently, the fiber was transferred to the
injection port for GC–MS analysis (GC-MS QP2010 coupled with single quadrupole triple-
axis detector, Shimadzu, Kyoto, Japan). The HS-SPME procedure was set to the optimal
conditions established in the orthogonal test (Table 1) and GC–MS analysis was conducted
according to the conditions in Table 6. A blank sample was used as a control. Linear
retention indices (LRI) of the volatile compounds were calculated using an alkane series
standard (C7-C33) (Restek, Bellefonte, PA, USA) under the same conditions.

Table 6. Detailed GC-MS conditions.

GC

Column DB-5MS column (30 mm × 0.25 mm × 0.25 µm)
Injector T = 200 ◦C; 2 min
Flow constant flow rate (1.375 mL min−1); helium (99.99%) carrier gas
Temperature program 40 ◦C for 2 min; 5 ◦C min −1 up to 200 ◦C; hold at 200 ◦C for 6 min
Transfer line temperature 250 ◦C

MS

Ion source temperature 200 ◦C
Ionization energy 70 eV
Mass scan range 30–500 amu
Ion mode electron ionization
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4.3. Qualitative and Quantitative Analysis of VOCs

Volatile compounds were tentatively identified from computerized libraries (NIST
27 and Wiley 139 library) and were further confirmed based on direct comparison of GC
retention data and mass spectra with those of available authentic standards or published
data. Twelve standards of interest, divided into three groups based on GC data from the
Pherobase database (http://www.pherobase.com/, accessed on 15 August 2016) were used
to establish the calibration curve by plotting peak areas against different concentrations in
triplicate with the help of the HS-SPME-GC-MS technique (Table 7, Figure S1). Standard
mixtures were prepared in a solution of pure n-hexane (chromatographically pure com-
pound) at different ratios (0.1 ppm, 0.2 ppm, 0.5 ppm, 0.8 ppm and 1.0 ppm, respectively).
Reagents and standards were obtained from Sigma-Aldrich, unless otherwise stated.

Table 7. Basic information and calibration curve characteristics of 12 standards used.

Compounds CAS Number Formula Regression
Equation a r2 (n = 3)

2-Nonanol 628-99-9 C9H20O y = 2.41 × 107x 1.000
Nerol 106-25-2 C10H18O y = 1.41 × 107x 1.000

β-Citral b 106-26-3 C10H16O y = 5.26 × 106x 1.000
(E)-Citral b 141-27-5 C10H16O y = 8.44 × 106x 1.000

Linalool 78-70-6 C10H18O y = 6.70 × 106x 1.000
Citronellal 106-23-0 C10H18O y = 6.29 × 106x 1.000
Citronellol 106-22-9 C10H20O y = 6.15 × 106x 0.999
Geraniol 106-24-1 C10H18O y = 1.36 × 107x 1.000

2-Heptanol 543-49-7 C7H16O y = 2.56 × 107x 1.000
2-Nonanone 821-55-6 C9H18O y = 1.81 × 107x 0.998

Phenylethyl alcohol 60-12-8 C8H10O y = 2.84 × 107x 0.999
p-Anisaldehyde 123-11-5 C8H8O2 y = 2.37 × 107x 0.998

a y is the peak area count and x is the concentration (µg mL−1) of each sample. b isomers of standard sample of
2,6-octadienal, 3,7-dimethyl-, (CAS number: 5392-40-5).

The relative contribution of volatile components was calculated based on the integrated
area of particular peaks relative to the total integrated area for the different flowering
stages or flower organs. The mean response of all available authentic standards was used
for quantification.

Total amounts are given as the following formula: content of each component
(ng g−1) = peak area of each component/peak area of external standard × concentration of
external standard (ng µL−1) × volume of external standard (µL)/fresh weight of sample
(g). Total amounts are given as integrated areas of peaks normalized to external standard
ng/g/40 min.

4.4. Cluster Analysis and PCA

Cluster analysis of the different flower organs was achieved using R version 3.5.1
with the relative contents of the volatile compounds identified (Table S1) while PCA was
performed based on their total emission amounts.

5. Conclusions

A total of 32 volatile compounds were identified from flowers of L. caudata using
HS-SPME-GC–MS. The main groups of the compounds were aliphatic alcohols, aliphatic
alkanes, benzenoids, monoterpenes, and irregular terpenes previously described in plants.
Qualitative and quantitative changes in scent emission varied significantly during different
flowering stages and times, as well as within different flower organs. The full-blooming
stage showed the highest emission of VOCs and was rich in aliphatic alcohols (e.g., 2-
nonanol, 1-hexanol) and monoterpenes (e.g., nerol and geraniol). In addition, nine com-
pounds (including nerol, geraniol, and linalool) correlated with the flower opening process.
Tissue-specific VOC variation was also found in L. caudata. Compared with other isolated

http://www.pherobase.com/
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floral parts, the stamen had the highest levels of total emissions. Our findings provide
a theoretical basis for the development and utilization of L. caudata and will exploit new
routes for breeding varieties with pleasant odors.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28020478/s1, Figure S1: Calibration curve of 12 standards
used; Table S1: Volatile compounds emitted by L. caudata.
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