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Abstract: The Euterpe genus (mainly Euterpe oleracea Martius, Euterpe precatoria Martius, and Euterpe
edulis Martius) has recently gained commercial and scientific notoriety due to the high nutritional
value of its fruits, which are rich in polyphenols (phenolic acids and anthocyanins) and have potent
antioxidant activity. These characteristics have contributed to the increased number of neuropharma-
cological evaluations of the three species over the last 10 years, especially açaí of the species Euterpe
oleracea Martius. The fruits of the three species exert neuroprotective effects through the modulation
of inflammatory and oxidative pathways and other mechanisms, including the inhibition of the
mTOR pathway and protection of the blood–brain barrier, all of them intimately involved in several
neuropathologies. Thus, a better understanding of the neuropharmacological properties of these
three species may open new paths for the development of therapeutic tools aimed at preventing and
treating a variety of neurological conditions.

Keywords: Amazon; neuroprotection; Euterpe; Euterpe oleracea; Euterpe edulis; Euterpe precatoria; açaí;
juçara; CNS; brain

1. Introduction

Diets rich in fruits and vegetables are beneficial for the central nervous system (CNS).
Such benefits are attributed to the richness and diversity of micronutrients, macronutrients, and
phenolic compounds, which are important for brain homeostasis and neuroprotection [1–4].

There has recently been a significant increase in scientific production aimed both at
identifying the phytochemical composition and at evaluating the pharmacological effects
of the fruits and seeds of the species Euterpe oleracea Martius (EO), Euterpe precatoria Martius
(EP), and Euterpe edulis Martius (EE) through preclinical and clinical studies [5–12].

Although Euterpe species are not endemic to Brazil, they are found in different states
and phytogeographic domains [13–15]. EO palm is found in Venezuela, Guyana, and the
Brazilian Amazon (in the estuary of the Amazon River), in the northern and northeastern
states, and is popularly known as açaí-do-Pará [13,16–18]. Like EO, the occurrence of EP
palm has been confirmed in northern Brazil and is popularly known as açaí-do-Amazonas
or açaí-da-mata. This palm can also be found in countries such as Equator, Peru, and
Bolivia [14,16,18]. The fruits derived from these two species are known as açaí, a black-
purple fruit. EO and EP species are scientifically and commercially recognized for the açaí
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pulp or juice produced from their fruits [16,19–21]. In this work, açaí derived from EO will
be identified as AEO, and açaí pulp from EP will be designated as AEP.

EE species is a palm known in Brazil as juçara, palmiteiro, or palmito-juçara [8,10].
Unlike the previous species that are recognized for their fruits, EE palm is recognized
mainly for the heart of palm; however, the fruits of EE (which in this work will be called
juçara fruit or JF) are similar to those of AEO and AEP, being spherical purple fruits,
with similar sensory characteristics and high antioxidant activity. EE has no confirmed
occurrence in the Amazon, with the Cerrado and the Atlantic Forest as its characteristic
phytogeographic domains, with confirmed occurrence in the northeastern, midwestern,
southeastern, and southern areas of Brazil [10,15,22–24].

Considering that the fruits of these three species are exotic with proven beneficial
health effects due to their nutritional properties and the presence of a wide variety of
phenolic compounds, these fruits received the status of “superfruits”, a term representing a
marketing strategy that has contributed to increasing their popularity and high consump-
tion in Brazil and worldwide [5,25–28]. The fruits of these three species have a similar
polyphenolic profile, and the presence of these bioactive substances has aroused scientific
interest [7,10,18,23,27,29,30]. The particular scientific interest in these natural compounds
is related to the neuroprotective activity of many flavonoid and non-flavonoid molecules,
which exert effects through a combination of multiple mechanisms of action that protect
the CNS from neuroinflammation and damage induced by oxidative stress [7,10,18,25,31].

Oxidative stress is the imbalance between the generation of reactive oxygen (ROS) and
nitrogen (RNS) species and the antioxidant defense capacity. Faced with the inefficiency
of antioxidant defense systems, ROS (e.g., superoxide, hydroxyl, and hydrogen peroxide)
and RNS (e.g., nitric oxide and peroxynitrite) might promote the oxidation of biomolecules
(proteins, carbohydrates, lipids, and nucleic acids), homeostatic imbalance, and tissue
damage [32–35]. Regarding the CNS, it is important to highlight that the brain is the
target organ of oxidative damage and that oxidative stress is involved in the pathogenesis
of many disorders affecting the nervous system due to the induction of neuronal death,
neuroinflammation, and neurodegeneration [33,36–38].

Neuroinflammation is also a hallmark of the pathogenesis of some CNS diseases, char-
acterized by the involvement of microcirculation, cellular components (e.g., microglial cells
and astrocytes), and inflammatory mediators [39–41]. Oxidative stress can induce a neu-
roinflammatory state through the activation of signaling cascades leading to glial reactivity.
These cells contribute to oxidative stress and neuroinflammation through overproduction
and release of cytokines and oxigen species, which may represent a risk if maintained
in long-term [42]. This intimate relationship raises questions about the interdependence
between oxidative stress and inflammatory response and the need to develop new therapies
aimed at both preventing and mitigating pathological outcomes [43].

Oxidative stress and inflammation are involved in the pathogenesis of several diseases
that affect the CNS (e.g., epilepsy and depression) [44,45], and even in MeHg-induced
neurotoxicity [46,47]. Scientific evidence demonstrates the rich phytochemical composition
and the potent antioxidant and anti-inflammatory effects of the fruits of EO, EP, and EE
species, and there is no synthesis review providing all the compiled knowledge on the
neuroprotective properties of fruits and other plant organs of these three species of the
genus Euterpe. Thus, it is important to identify and describe the evidence available so far
on such properties. In this sense, this article sought to gather information (mechanistic
and methodological) to generate a broad, consistent, and understandable overview of the
neuroprotective effects of açaí and juçara.

2. Materials and Methods

This scoping review was performed according to the PRISMA guidelines for scoping
reviews [48]. The systematic search was performed in the PubMed/Medline, SCOPUS,
EMBASE, and Web of Science databases on 31 January 2023, without restriction of language
or year of publication. The terms used for the bibliographic search in the databases were as
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follows: Euterpe AND neuroprotective, açaí AND brain, Euterpe AND brain, Euterpe AND
astrocytes, Euterpe AND microglia, Euterpe AND neuroprotection, açaí AND Nrf-2, açaí
AND neurodegenerative disorders, and Euterpe AND neurodegenerative disorders. These
terms were searched in the title, abstract, and keywords fields of the referred databases.
The inclusion criteria were original article, experimental studies (in vivo and in vitro), and
studies that evaluated the pharmacological effects of Euterpe species (E. oleracea, E. precatoria,
and E. edulis) in the CNS (tissue and/or cells-neurons and glia). Were excluded non-
original and/or non-experimental articles, book chapters, summaries, reviews, patents,
conference abstract, meeting abstract, editorial and articles that did not investigate the
neuropharmacological action of the Euterpe species in in vivo or in vitro studies. Duplicate
studies were excluded (Figure 1). The articles were independently revised by two different
authors. When in doubt, the full article was consulted. The extracted data included year of
publication, part of the plants used in in vitro or in vivo assays and cell lines intended for
neuropharmacological evaluation.
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3. Results and Discussion
3.1. Features of Selected Studies

A total of 394 articles were found, but only 30 studies were included based on the
inclusion/exclusion criteria (Figure 1). Studies evaluating the pharmacological effects
of AEO, AEP, and JF on the CNS are relatively recent, with the first evidence published
in 2009 demonstrating, through an in vitro study, that AEO pulp reduced the oxidative
damage induced by H2O2 in proteins and lipids of the cerebral cortex, hippocampus,
and cerebellum in vitro [49]. Subsequently, from 2010 to 2015, only seven articles were
published, six of which had the main objective of evaluating the neuropharmacological
actions of AEO. Interestingly, since 2016, there has been a considerable increase in the
number of studies evaluating the pharmacological actions of the three Euterpe species on
the CNS. In 2022, five articles were published focusing on the assessment of AEO in the
CNS (Figure 2).

In addition to the number of studies, Figure 2 shows the differences between the
number of publications among the three Euterpe species. Only one study analyzed the
pharmacological effects of AEP on the CNS, two studies evaluated the effects of JF, three
studies (10% of selected items) investigated both AEO and AEP, and a total of 24 studies
(80% of the selected items) evaluated the fruits and seeds of EO species. Therefore, EO is
clearly the most frequently studied species at the present time.
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Neuropharmacological studies with AEP and JF are recent and scarce, which indicates
the great inequality of studies published in relation to the three different species of Euterpe
evaluated in this study. A possible explanation for the greater number of scientific studies
with AEO is related to the increase in the consumption, production, and market of AEO,
both in Brazil and internationally [28,50], which favors the access of populations to açaí
pulp, as well as products of AEO, such as energy drinks. This wide international access
to pulp AEO drew the attention of the scientific community because it is a fruit rich in
bioactive compounds with high antioxidant and anti-inflammatory activities; that is, the
“scientific popularity” is not only associated with its nutritional properties but mainly to
a variety of biological activities and their potential beneficial health effects [5,18,29,51,52].
The imbalance between the number of studies with AEP and JF compared to studies with
AEO indicates that there is a gap in the literature and a much to be explored by studies that
can evaluate the biological activities of fruits and other plant parts of the EE and EP species
in the CNS and even in other biological systems.

As AEO, AEP and JF also play neuroprotective roles in experimental models (Table 1).
The greater number of studies with AEO is well justified, but according to the data in Table 1,
there is evidence to suggest that AEP and JF deserve greater attention from the scientific
community, as the fruits of these plant species have a rich phytochemical composition
and particular characteristics related to neuroprotection. When compared to AEO, AEP is
richer in phenolic compounds and has superior antioxidant capacity, while JF has a higher
total phenolic content than that found in AEP and AEO [23,53,54]. These data are relevant
and would justify greater attention from the Brazilian and international consumer market
regarding EP and EE fruits, with sustainable exploitation, in addition to a greater density
of scientific studies.
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Table 1. Experimental models and the main results of the studies selected in this scoping review.

In Vivo Assays

Species
Experimental

Model/Part of the
Plants Used

Outcomes References

Euterpe
oleracea Mart.

Model of MeHg
intoxication in

mice—fruit

- EO ↓MDA and nitrite levels in the brain;
- EO prevented the reduction of the TERT RNA expression in

the brain.
[46]

Depressive-like
Behavior induced by

LPS in mice—fruit

- Antidepressive effect;
- EO ↓MDA levels in the hippocampus, striatum and

prefrontal cortex;
- EO ↓ nitrite levels in the hippocampus;
- EO ↑ expression of TERT mRNA in the brain of animals with

depressive-like behavior;
- Prevented neuronal death in the hippocampus.

[55]

Seizure induced by
PTZ in mice—fruit

- Anticonvulsive effect;
- EO ↓MDA levels in the cerebral cortex;
- EO ↓ electrical alterations caused by seizures.

[56]

Pentylenetetrazole
(PTZ)-induced

seizures in fish—fruit
- Anticonvulsive effect; [57]

Seizure induced by
PTZ in Rat—Stone - Anticonvulsive effect via the GABAA receptor; [58]

Anxiety induced by
periodic maternal

separation (PMS) in
rats—seed

- Anti-anxiety effect;
- EO ↓MDA and carbonyl levels in the brainstem. [59]

Hepatic
encephalopathy in

rats—fruit

- EO prevented the increase of the cytokines IL-1b, IL-18 and TNF-a
in cerebral cortex, hippocampus and cerebellum of rats. [60]

Hepatic
encephalopathy in

rats—fruit

- EO prevented the inhibition of creatine kinase activity (CK) in the
cerebral cortex, hippocampus and cerebellum of rats;

- EO prevented the enhance of TBARS (cerebral cortex and
cerebellum) and carbonyl levels (cerebral cortex, hippocampus
and cerebellum);

- EO ↑ catalase (CAT) activity in hippocampus and cerebellum;
- EO ↑ superoxide dismutase (SOD) activity in the hippocampus.

[61]

Anorexia-cachexia
syndrome induced by
Walker-256 tumor in

rats—seed

- EO ↓ diameter of the tumor. [62]

Evaluation of the
effects of EO on

learning and memory
in rats

- EO improved damaged memory. [63]

Infection by
Plasmodium berghei

ANKA strain—fruit

- EO prevented blood–brain barrier (BBB) dysfunction in animals
infected with Plasmodium berghei ANKA. [64]
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Table 1. Cont.

In Vivo Assays

Species
Experimental

Model/Part of the
Plants Used

Outcomes References

Experimental model of
Parkinson’s disease

(PD) MPTP-Induced in
mice—Fruit

- EO ↓ degeneration in the brain of animals treated with MPTP;
- EO restored dopamine transporter (DAT) levels in the striatum;
- EO ↓ expression of Iba-1;
- EO ↓ GFAP expression;
- EO ↓ release of cytokines TNF-α, IL-1b and IL-6;
- EO ↓MDA levels in the brain;
- EO ↑ Nrf2 expression;
- EO ↑ HO-1 expression;
- EO ↑ SOD expression;
- EO ↑ CAT expression;
- EO ↑ GPx expression;
- EO ↑ GSH expression;
- EO ↓ neuronal death.

[31]

Model of Vascular
dementia (VaD) in

mice—Fruit

- EO ↓ neuronal death in the hippocampus (CA1 and CA3);
- EO ↑ Nrf2 expression in CA1 and CA3;
- EO ↑ HO-1 expression in CA1 and CA3;
- EO modulated apoptosis and autophagy in the hippocampus of

animals submitted to the Model of Vascular dementia (VaD).

[65]

Euterpe
oleracea Mart.
and Euterpe
Precatoria

Mart.

Açaí-enriched
diet—fruit

- EP supplementation attenuated NADPH-oxidoreductase-2 (NOX2)
expression in rat hippocampus;

- EO and EP ↓ expression of phospho-NF-κB expression;
- EO and EP ↑ Nrf2 expression in the hippocampus and

frontal cortex;
- EO and EP ↑ GST expression in the frontal cortex;
- EP ↑ GST expression in the hippocampus;
- EO and EP ↑ SOD expression in frontal cortex and hippocampus;
- EP ↓ levels of mTOR in hippocampus;
- EP ↑ beclin1 expression in frontal cortex and hippocampus;
- EO ↑ beclin1 expression in the frontal cortex;

[51]

Euterpe
precatoria

Mart.

Caenorhabditis
elegans—fruit

- EP scavenged the cation radical ABTS
(2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid);

- Decreased the number of polyQ aggregates.
[66]

Euterpe edulis
Mart. High-Fat Diet—fruit

- EE ↓ levels of Tumor necrosis factor-α (TNF-α) and IL-6 in
the hypothalamus. [67]

In Vitro Assays

Species Experimental Model
and Part of Plant Outcomes References

Euterpe
oleracea Mart.

Tissues treated with
hydrogen peroxide

(H2O2)—fruit
- EO ↓ damage in lipids and proteins; [49]

Neuronal-like cells
SHSY5Y—fruit

- EO ↓ ROS production;
- EO reversed rotenone-induced mitochondrial

complex I dysfunction;
- EO ↓ lipid peroxidation.

[68]
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Table 1. Cont.

In Vitro Assays

Species Experimental Model
and Part of Plant Outcomes References

Euterpe
oleracea Mart.

human neuroblastoma
cell line

SH-SY5Y—fruit
- Hydroethanolic extracts from EO protected cells against H2O2. [69]

Primary hippocampal
neurons and HT22

mouse hippocampal
cells—fruit

- EO and EP ↓ accumulation of autophagic vacuoles in HT22 mouse
hippocampal neurons;

- EO and EP ↓ levels of pospho-mTOR in the HT22 mouse
hippocampal neurons.

[54]

Rat
phaeochromocytoma
cells (PC12 cell)—fruit

- EO inhibited the loss of cell viability. [70]

C-6 rat brain
carcinoma cells—fruit

- EO ↓ proliferation of C-6 cells;
- EO induced DNA fragmentation. [71]

Primary Cultures of
Rat Astrocytes—fruit - EO protected cells against lipid peroxidation; [72]

Immortalized rat
astrocytes (DI
TNC1)—fruit

- EO inhibited the NF-κB activity LPS-induced;
- EO ↑ Antioxidant Response Element (ARE) activity;
- EO ↑ Expression of Nrf2 and HO-1.

[73]

Primary cultures of
cortical neurons and

astrocytes—fruit

- EO ↓ [3H]TBOB binding on the GABAA receptor in
cortical neurons;

- EO ↑ [3H]flunitrazepam binding on the GABAA receptor in
neuronal cultures;

- EO inhibited GABA uptake in both cortical neurons and astrocytes;

[74]

BV-2 microglia cell
line—fruit

- EO ↓ cell proliferation;
- EO ↓ ROS production;
- EO ↓ expression of pro-inflammatory cytokines (IL-1β,

IL-6, TNF-α);
- EO ↓ expression of caspases (Casp1, Casp3 and Casp8).

[75]

Microglia EOC 13.31
cell line—fruit - EO ↓ expression of IL-1β; [76]

BV-2 microglia cell
line—fruit

- EO ↓ iNOS expression;
- EO ↓ release of the cytokine TNF-α;
- EO attenuated p38-MAPK phosphorylation;
- EO ↓ the phosphorylation of NF-κB;
- EO ↓ COX-2 expression.

[77]

Euterpe edulis
Mart.

Mouse hippocampal
HT22 cells—fruit

- EE protected hippocampal cells against
glutamate-induced oxytosis. [78]

In Vitro and In Vivo Assays

Species Experimental Model Outcomes References

Euterpe
oleracea Mart.
and Euterpe

precatoria
Mart.

Dietary
supplementation with

EO and
EP—in vivo—fruit

BV-2 cells were treated
with blood serum from
both EO- and EP-fed
rats—in vitro—fruit

- Microglial cells treated with blood serum from EO-fed animals
produced less NO;

- iNOS expression was attenuated in microglial cells treated with
blood serum from animals fed EO and EP;

- The production of TNF-α was attenuated in microglial cells treated
with blood serum from animals fed with EO and EP.

[79]

Abbreviations: EO: Euterpe oleracea Mart.; EE: Euterpe edulis Mart.; and EP: Euterpe precatoria Mart.
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The neuropharmacological evaluation of the three Euterpe species was carried out
through preclinical studies (in vivo and in vitro assays) (Figure 3), assays that are crucial
for the development of new drugs [80]. Based on the analysis of the selected articles, we
summarized the experimental models and the main neuroprotective actions of the AEO,
AEP, and JF (Table 1). Clinical studies with AEO and JF published so far do not assess the
effects of these species on the CNS in humans; however, these studies in humans demon-
strate that the fruits of these species are able to modulate the inflammatory response related
to overweight and obesity and to improve the antioxidant defense. The neuroprotective
effects described in Table 1 and the protective effects already demonstrated by clinical
studies (modulation of the inflammatory response, improved HDL-c levels, and antioxidant
defense) are relevant to the point of justifying investments in clinical studies directed at
the CNS [9,67,81,82].
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Most of the selected studies (26 studies) were performed by using the fruits, and
only three studies were performed with seeds. Among the selected studies, only the
study by Yildirim et al. (2020) does not indicate which part of the plant was used in their
experiments. The frequent use of the fruits in pharmacological evaluations is possibly
justified by human consumption of the fruit in the form of açaí juice (AEO, AEP) and juçara
juice [8,18,52], besides the wide availability of data on the phytochemical composition of
the fruits [5,7,10,18,29]. Considering these aspects, there is a “trend” of carrying out studies
about the fruits, which provides a better association of the results concerning human health.

However, an important fact to be considered in future studies with the three Euterpe
species is the possibility of using other organs besides the fruit, since traditional Amazonian
populations use organs such as the root and seed of EP and EO in folk medicine to treat
clinical conditions including malaria [83,84], urinary tract infection, diarrhea, intestinal
infection [85–87], verminosis [88], hemorrhoids, and varicose veins [89]. Data from these
ethnopharmacological studies are strengthened by other scientific studies showing that
EO seeds are rich in proanthocyanidins, compounds with several beneficial effects, in-
cluding anti-inflammatory and antioxidant actions. These pharmacological actions are
important and may justify the use of seeds in future preclinical studies on the nervous
system [90–93]. In addition to seeds, roots, leaflets, flowers, and spikes of EO can also be
targets for future neuropharmacological studies. Brunschwig et al. (2016) evaluated the
phytochemical composition and antioxidant activity of EO roots and leaflets and demon-
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strated that these organs have antioxidant activity and are rich in compounds such as
hydroxycinnamic acids and flavones, compounds with anti-inflammatory and antioxidant
activity [94,95]. The flowers and spikes of EO were able to inhibit the production of NO
and the expression of inducible nitric oxide synthase (iNOS) in RAW 264.7 cells; however,
as they are monocyte/macrophage-like cells, similar results have already been observed in
neuropharmacological evaluations with the fruits of EO and EP in the BV-2 microglia cell
line (see Table 1) [77,79,96]. In general, these results are representative and strengthen the
idea that future research should be carried out with the aim of studying the phytochemical
composition and subsequently the neuropharmacological activity of other plant organs of
the EO, EP, and EE species, in addition to the fruits.

3.2. Experimental Models to Study Neuroprotection

Regarding the types of preclinical research selected, 13 studies performed in vitro
assays, 16 studies were conducted through in vivo assays, and only one study performed
both in vitro and in vivo assays simultaneously (Figure 3).

Different from in vivo studies, in vitro experiments allow the isolation of the effects on
one specific type of neural cell (neurons and glia). In this review, of the thirteen in vitro
studies selected, only three studies were conducted using primary cultures (culture of
neurons and astrocytes), while ten studies were performed using cell lines, which were
as follows: microglia (EOC 13.31 cell line, BV-2), astrocytes (DI TNC1), neuronal-like cells
(SHSY5Y), hippocampal neurons (HT22) and rat phaeochromocytoma cells (PC12). Primary
cell cultures derive from the isolation of cells directly from the host tissue and have a finite
lifespan and physiological characteristics similar to those of cells in vivo, whereas cell lines
derived from subcultures of primary cells have a longer lifespan than primary cells and
longer growth capacity. The likely explanations for the greater number of studies with
secondary cell culture are the easy cultivation, the lower risk of contamination as compared
to primary cultures and the challenge of performing the cultivation of neuronal cells, which
once mature are not capable of undergoing cell division [30]. Another important aspect
to be highlighted in relation to the selected in vitro studies is that they were performed in
2D cell cultures, with predominance of the use of microglia cells, astrocytes and scarcity of
studies with neurons (Figure 4). As in in vivo studies, EO continued to be the main plant
species studied and in vitro research that sought to evaluate the neuropharmacological
actions of EP and EE remains scarce.
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Interestingly, a question to be asked in light of these characteristics is the follow-
ing: Why did the vast majority of studies use glial cells? These cells play a key role in
neuroinflammation, oxidative stress, and the recycling of neurotransmitters. From the
analysis of the selected articles, one can observe that AEO and AEP were able to reduce the
inflammatory response (an effect observed mainly in cultures of microglial cell lines—EOC
13.31 and BV-2) and regulate the antioxidant response and even the GABA uptake in as-
trocytes [73,74,76,77,79]. It is important to highlight that microglia and astrocytes exert
functions beyond neuroinflammation and oxidative stress; e.g., together, these cells par-
ticipate in the regulation of neuronal activity and are components of the neurovascular
unit [97]. Microglial functions reach further than CNS immunosurveillance and defense, or-
chestrating, together with other cells, brain homeostasis, adult neurogenesis, and synaptic
plasticity, strongly influencing animal cognition and behavior [98,99]. Similarly, astrocytes
play crucial roles in this homeostasis, including synaptic formation, maintenance and
elimination, maintenance of the blood–brain barrier, and recycling of neurotransmitters, to
name a few [100]. Considering the modulatory effects that AEO and AEP exert on these
glial cells, it would be interesting if further studies could verify whether açaí (from EO and
EP species) is capable of modulating homeostatic functions of microglia and astrocytes,
such as neurogenesis.

When analyzing the experimental models and the main results of the in vivo studies
selected in this scoping review (see Table 1), one can observe great diversity and hetero-
geneity between the experimental models used to evaluate the neuroprotective effects of
the three Euterpe species. In these studies, models were used that mimic clinical conditions
such as seizures, depressive behavior, anxiety, and hepatic encephalopathy, as well as a
model of intoxication by the neurotoxicant MeHg—i.e., despite the different experimental
models (in vivo and in vitro) used in the studies selected, the main conclusions observed
refer to neuroprotection.

Among the neuroprotective effects of açaí from EO, one is particularly interesting,
as it does not refer to the prevention of a disease that affects the CNS but rather to the
prevention of the neurotoxicity induced by MeHg through the reduction of the malondi-
aldehyde (MDA) and nitrite levels in the brain; that is, the antioxidant property of AEO
was responsible for the neuroprotective effect [46]. This is a very expressive result for
vulnerable populations (e.g., riverine inhabitants) of the Amazon, where human exposure
to MeHg (organic compound of mercury) is an important public health problem associated
with the intake of contaminated fish by riverine populations living in areas of artisanal and
small-scale gold mining (ASGM) [101–104]. Considering that the antioxidant property of
AEO was responsible for the neuroprotective effect against MeHg intoxication and that
AEO is easily obtained and consumed regularly by these populations, it is possible to
suggest that açaí is an excellent option to protect Amazonian riverine populations exposed
to MeHg.

Although the antioxidant property of EO is well established [7,105,106], it was sug-
gested that treatment with the EO seed extract could be pro-oxidant in a model of can-
cer [62], but methodological issues (such as the lack of a group treated only with the
extract) prevent these results from being conclusive. All other studies presented in Table 1
demonstrated that the fruits and seeds of EO protected the CNS against oxidative stress
by reducing biochemical parameters associated with both lipid peroxidation and nitric
oxide production (malondialdehyde and nitrite levels) [46,55], increasing the activity of
antioxidant enzymes (catalase, superoxide dismutase, and heme oxygenase-1) [61,73] and
increasing the expression of Nrf2 (critical element in antioxidant defense) [51].

Another interesting aspect was the identification of some mechanisms of action
through which the fruits and seeds of EO and fruits of EP and EE exerted a neuroprotective
effect. From the analysis of the articles included in this review, we observed that the
neuroprotection effects of these three Euterpe species were mainly due to anti-inflammatory
and antioxidant mechanisms, in addition to other mechanisms that are listed in Figures 5–7.
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A characteristic of the studies selected in this scoping review is that there is no study
designed to evaluate the synergistic effect resulting from the combination of AEO, AEP,
and JF, even in studies where there was a neuropharmacological evaluation of the two
species [51,54,79]. It would be interesting for future neuropharmacological studies to assess
the synergistic activity of AEO, AEP, and JF. From this type of evaluation, one would be
able to verify whether the neuroprotective effect of the species could be potentiated since
AEO, AEP, and JF share some neuroprotective mechanisms (Figure 8).
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3.3. Oxidative Stress and Neuroinflammation in the Brain

Oxidative stress and neuroinflammation are interconnected pathological events, im-
portant in the pathogenesis of several neurodegenerative diseases, as they compromise
the integrity of neurons, glial cells, the blood–brain barrier (BBB), and synaptic transmis-
sion [34,39,107,108].

Oxidative stress is a consequence of the imbalance between cellular antioxidant defense
mechanisms and the generation of pro-oxidant compounds, resulting in the overproduction
of free radicals, e.g., reactive oxygen species, reactive nitrogen species, reactive sulfur
species (RSS), and electrophiles. Free radicals are atoms or molecules that may contain one
or more unpaired electrons and that are characterized by their (1) ability to independently
exist, (2) instability, and (3) high reactivity. An important aspect to be highlighted about free
radicals is that they can play a dual role depending on their concentration. Physiologically,
free radicals are generated from aerobic respiration, and at low or moderate levels, they
participate in physiological processes such as the regulation of vascular tone, immune
response, and synaptic plasticity [34,35,109,110].

On the other hand, the contribution of free radicals to the development of pathologies
is related to their high concentrations since, considering that they are unstable and highly
reactive molecules, they can damage living cells through damage to macromolecules (lipids,
proteins, RNA, and DNA), leading to lipid peroxidation, denaturation, and loss of function
in proteins. In the nervous system, the sum of all these effects can result in synaptic
dysfunction and neuronal damage [32,34,36,108,111,112].

Oxidative neuronal damage is one of the main mechanisms involved in the pathogen-
esis of several neurological disorders, including cerebrovascular and neurodegenerative
pathologies, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), stroke, epilepsy,
and depression [34,36,112,113]. The significant contribution of oxidative damage to the
pathogenesis of these diseases is due to the brain’s particular susceptibility to oxidative
stress, which can be explained by factors such as (1) the organ’s chemical composition, (2)
the high oxygen consumption, and (3) the brain’s low antioxidant defense when compared
to other organs. Regarding its chemical composition, the brain is rich in compounds that
participate in the generation of free radicals such as iron ions (an important catalyst for the
generation of free radicals, such as the hydroxyl radical through the Fenton reaction) and
in polyunsaturated fatty acids of the neuronal cell membrane, which are easily oxidized.
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Another important aspect to be considered is that the maintenance of cerebral homeostasis
demands large amounts of ATP, and this explains why the brain is a voracious consumer
of oxygen because, even though it is an organ that represents only 2% to 3% of the body
weight, the brain is responsible for consuming 20% of the body’s oxygen and for receiving a
volume of blood that corresponds to 15% of the total cardiac output. It is in this scenario that
the ambiguity of oxygen is revealed because, even though it is essential for the production
of ATP, its high consumption by the brain favors the excessive generation of ROS. Thus,
the high levels of free radicals, the limited antioxidant capacity of the brain (low content of
antioxidant enzymes, such as catalase content and low cytosolic GSH), the auto-oxidation
of neurotransmitters (e.g., dopamine) and the above-mentioned particular conditions make
the brain the target organ of oxidative damage [36,38,111,112,114–120].

Excessive free radical production can result in damage to cellular structures and
neuroinflammation, a tissue response characterized by the participation of neurons, glial
cells, and BBB dysfunction and by the massive production and release of inflammatory
mediators (e.g., cytokines and chemokines) by neurons, glial cells (mainly microglia and
astrocytes), tissue damage, and neurodegeneration [39,40,121–125]. This diversity of cells
and inflammatory mediators results in neuronal death, astrocytic dysfunction, alteration
of neuronal excitability, BBB damage and induction of microglial reactivity, and other
morphological and functional impairments to the CNS. The inflammatory response is
recognized as a common pathway in the etiopathogenesis of a number of neurological
disorders (e.g., epilepsy and multiple sclerosis) and neuropsychiatric disorders, such as
depression [125–127].

Considering that neuroinflammation and oxidative stress are closely related and can
be found in many neurological disorders, both events are strategic pharmacological targets
for the development of new drugs and/or adjuvant therapies to conventional allopathic
treatments [39,43,107,123,125]. According to this idea, our group has recently demonstrated
that açaí was able to potentiate the antidepressant activity of imipramine in a model of
neuroinflammation [55]. Imipramine is a tricyclic antidepressant whose main mechanism
is blocking the monoamine transporters in the nerve endings, resulting in increased con-
centrations of serotonin and norepinephrine in the synaptic cleft. Considering the possible
synergism between açaí and imipramine, it is reasonable to suggest that açaí could have
some influence on the monoaminergic system. This hypothesis is reinforced by the mod-
ulatory effects that some açaí compounds—such as ellagic acid, ferrulic acid, gallic acid,
apigenin, rutin, and resveratrol—can be exerted on the monoaminergic system [128–134].
Additionally, other mechanisms such as the inhibition of GABA uptake and antiaging ef-
fects by increased TERT mRNA expression in the brain (suggesting neuroprotection against
long-term age-related disorders) have recently been demonstrated for AEO (Figure 5).

Figure 5 shows that there is great AEO variability mechanism of action; however,
the mechanistic studies with AEP and JF showing possible pathways other than neuroin-
flammation and oxidative stress are extremely scarce (Figures 6 and 7). Certainly, the vast
knowledge about the mechanisms through which AEO exerts neuroprotection is linked to
the large amount of research about this plant species. If further studies are carried out with
EE and EP species, there is the possibility of discovering new mechanisms of action since
the fruits of these species are as rich in phenolic compounds as AEO.

3.4. Signaling Pathways Targeted by Euterpe Species Associated with Neuroprotection

This article does not intend to describe in detail the pathways or mechanisms involved
in neuroprotection by extracts or other products derived from the fruits or seeds of açaí
and JF, but rather to identify, map and present a holistic view of the diversity of pathways
and mechanisms described in selected articles. This panoramic view of pathways and
mechanisms can contribute to the development of studies focused on specific pathways
(such as Nrf2) or focused on other signaling pathways that contribute to neuroprotection,
but which have not yet been the subject of studies with these species of the Euterpe genus.
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3.4.1. Anti-Inflammatory Mechanisms

Neuroinflammation is a target of the three Euterpe species for neuroprotection. The
mechanisms of action and the brain areas protected by AEO, AEP, and JF are shown in
Table 1 and Figures 5–7. From the analysis of the extracted data, one can observe that (1)
AEO can reduce inflammation by several inflammatory pathways, an expected variability
due to the greater number of studies with OS; (2) cytokines were the main pharmacological
targets of the fruits or seeds of the three studied species. The fruits and seeds of EO were
able to reduce phosphorylation and NF-κB activity, the expression of COX-2, and the
expression and release of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α). EP and EE
fruits exert neuroprotection by decreasing the production of cytokines (TNF-α and IL-6)
and expression of NF-κB.

The pro-inflammatory cytokines are promising pharmacological targets since they
can favor drug resistance and, at the same time, play a crucial role in the progression of
neurological disorders [127,135–139]. In addition to cytokines, it is important that new
preclinical and clinical research studies investigate the pharmacological effects of EP and EE
(species little explored in relation to their anti-inflammatory effects) on COX-2 and NF-κB.

The knowledge and understanding of the mechanisms of action of these plant species
have the potential to create a major impact on the conventional therapy of diseases that
affect the nervous system. Some of these diseases (e.g., epilepsy) share high rates of refrac-
toriness to the currently available pharmacological arsenal [140]; in addition, treatments
are difficult to access for vulnerable and isolated populations, such as those that exist in
the Amazon.

3.4.2. Antioxidant Mechanisms

The antioxidant mechanisms are one of the main pharmacological targets of current
neuroprotection research. The antioxidant mechanisms of AEO, AEP, and JF to mitigate
oxidative stress are diverse, as they act on complex antioxidant pathways and increase the
expression of antioxidant enzymes in the brain.

The analysis of Table 1 shows that AEO and AEP protect the nervous system through
several traditional antioxidant mechanisms (increased expression of antioxidant enzymes
or free radical scavenger), but in addition to these mechanisms, AEO and AEP induce
neuroprotection through the upregulation of transcription nuclear factor erythroid factor
2–related factor 2 (Nrf2), a promising therapeutic target against oxidative stress. This
transcription factor regulates the expression of antioxidant genes by binding to the antiox-
idant response element (ARE) region in DNA, which is considered as a key regulator of
antioxidant response [111,141–147]. In the brain, where it is widely expressed, Nrf2 exerts
influence on carbohydrate metabolism, proteostasis, and redox metabolism. The Nrf2
upregulation increases levels of antioxidant enzymes (HO-1, SOD, CAT, among others) that
are important for brain protection [141].

Regarding redox metabolism, it is important to emphasize the data of the five studies
(see Table 1) that evaluated the effects of the species of the genus Euterpe on Nrf2. From
the analysis of these manuscripts, we observed that AEO (four studies evaluated the
effects of AEO on Nrf2) and AEP increased the expression of Nrf2 in the brain of animals
and in cultures of astrocytes, thus inducing antioxidant protection. It is likely that the
increase in Nrf2 expression induced neuroprotection through other antioxidant mechanisms
observed in these five studies, highlighting the increased expression of GST, SOD, HO-1,
and increased antioxidant response element (ARE) activity [31,51,65,72,73]. The increase
in Nrf2 expression by AEO and AEP is a very relevant pharmacological effect, as Nrf2
has become a pharmacological target of interest for the treatment of neurodegenerative
diseases [141,148–150].

AEO and AEP induce neuroprotection through different antioxidant mechanisms (see
Table 1, Figures 5 and 6), ranging from increased expression and activity of antioxidant
enzymes to reduced levels of nitrites, lipid peroxidation, and protein oxidation. Based on
the available literature on the phytochemical composition of the fruits of the EO and EP
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species, the protection of the nervous system against oxidative stress was already expected
since several studies proved that the fruits and even other plant parts (seeds, roots, and
leaflets of EO) of these species have a wide diversity of bioactive compounds (e.g., cyanidin
3-glucoside, cyanidin-3-O-rutinoside, resveratrol, apigenin, and luteolin) [18,96,151], but
there is an inconsistency when we observed the results, or rather, the absence of neuropro-
tection by JF based on its already-described antioxidant property [8,10]. It is worth noting
that JF is rich in phenolic compounds, has potent antioxidant activity, and is sometimes
called a “super food”; hence, it is likely that if there is still no description of neuroprotection
associated with antioxidant mechanisms, it is because there is a gap in mechanistic studies
with EE species that can be exploited.

4. Future Directions

• Corroborating data from preclinical studies, the protective effects of açaí and JF on
inflammation and oxidative stress were also observed in clinical studies. Studies in
humans with the fruits of the three species of the genus Euterpe selected are limited;
however, it is worth noting that the clinical studies already published evaluated only
the effects of the fruits of EO and EE. So far, there are no studies evaluating the
pharmacological effects of EP fruits in humans. Clinical studies with AEO and JF
demonstrate that these species are able to reduce inflammatory markers (IL-6, INF-γ)
and oxidative stress (8-isoprostane) and increase the activity of antioxidant enzymes
(catalase, glutathione peroxidase) in the plasma and serum [9,12,81,152]. Although
these effects were observed in clinical conditions unrelated to the CNS, they are
important because they demonstrate the protective effects of these fruits in humans
and consequently support the need for additional scientific studies, including clinical
studies. Furthermore, the multiple mechanisms of action of the Euterpe species to exert
neuroprotection also support the importance of future research to study the possible
application in neurological disorders.

• It would be interesting if future scientific studies addressed, in their experimental de-
signs, in addition to the pharmacodynamic aspects, the evaluation of pharmacokinetic
properties (passage through BBB, absorption, distribution, metabolism, and excretion)
of products derived (e.g., beverages) from EO, EE, and EP. An important pharma-
cokinetic property to be investigated in studies with fruits that have a vast phenolic
composition is bioavailability since polyphenols have low bioavailability [153–155].
In this sense, it would be important to know the pharmacokinetic characteristics of
products from EO, EE, and EP so that new discussions and eventual pharmaceuti-
cal solutions can be developed to overcome the problems with the bioavailability
of polyphenols.

• Considering the data demonstrating that AEO and AEP are able to regulate microglial
and astrocytic functions and that these cells perform homeostatic and immune func-
tions in the CNS, it would be relevant to investigate not only the protective functions of
AEO, AEP, and JF against brain injury or stimuli to mimic neuroinflammation but also
to develop new research that can assess whether AEO, AEP, and JF are able to regulate
brain functions under physiological conditions acting on microglia and astrocytes.
That is, could EO, EP, or EE contribute to the maintenance of cerebral homeostasis?
Could AEO, AEP, or JF modulate neurogenesis? These important questions, as well as
others, are still unknown and can certainly contribute to the development of future
therapies for brain health.

5. Conclusions

• The fruits of EO, EP, or EE species and EO seed extract protect the CNS using mech-
anisms that reduce/limit the neuroinflammatory process and oxidative stress, and
because they are fruits with nutritional and functional appeal and are rich in phenolic
compounds and anthocyanins, compounds that exert protective effects through mech-
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anisms common to CNS pathologies, açaí (EO, EP) and juçara (EE) have the potential
to impact conventional therapy or even prevent pathologies that affect the CNS.

• EO, EE, and EP species have neuroprotective activity, but this effect is better consoli-
dated in the literature for EO due to the greater amount of in vitro and in vivo studies.

• The neuroprotection exerted by EO, EE, and EP involves a series of molecular path-
ways: inhibition of GABA uptake, anti-aging effects, reduction of expression, produc-
tion, release of inflammatory mediators, potentiation of antioxidant defenses via in-
creased activity and expression of enzymes antioxidants, and reduced ROS production.

• The demand for new knowledge is necessary for the three Euterpe species, but based
on the available literature evaluated in this article, it is essential that new neurophar-
macological studies be directed to EP and EE species, as these two species are rich in
phenolic compounds such as flavonoids and phenolic acids.

• In addition to new preclinical studies, there is also a need to carry out clinical studies
aimed at evaluating the neuropharmacological activity of these three Euterpe species
since, to date, there are no clinical studies aimed at evaluating the neuropharmaco-
logical activity of EO, EE, and EP. The protection already described in clinical studies
with EO and EE (antioxidant and anti-inflammatory effects) is encouraging and may
support new clinical studies targeting the CNS.

• It would be relevant if future preclinical and clinical studies were to verify the bioavail-
ability of antioxidant molecules from açaí and juçara pulp or juice in the CNS, which
would help determine the effectiveness of these beverages in reducing oxidative stress
in the brain and neuroinflammation.

• Despite the low number of studies, one can suggest that açaí and juçara fruit have the
potential to impact the therapy of diseases that affect the CNS because they induce
neuroprotection through interaction with key pathways (e.g., neuroinflammation and
oxidative stress) and alternatives (as autophagy) for the pathogenesis of diseases of
the CNS.
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