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Abstract: Acute kidney injury is a heterogeneous set of disorders distinguished by a sudden de-
crease in the glomerular filtration rate, which is evidenced by an increase in the serum creatinine
concentration or oliguria and categorized by stage and cause. It is an ever-growing health problem
worldwide, with no reliable treatment. In the present study, we evaluated the role of Clitoria ternatea
combined with mesenchymal stem cells in treating cisplatin-induced acute kidney injury in rats.
Animals were challenged with cisplatin, followed by 400 mg/kg of Asian pigeonwing extract and/or
mesenchymal stem cells (106 cells/150 g body weight). Kidney functions and enzymes were recorded,
and histopathological sectioning was also performed. The expression profile of IL-1β, IL-6, and
caspase-3 was assessed using the quantitative polymerase chain reaction. The obtained data indicated
that mesenchymal stem cells combined with the botanical extract modulated the creatinine uric acid
and urea levels. Cisplatin increased the level of malondialdehyde and decreased the levels of both
superoxide dismutase and glutathione; however, the dual treatment was capable of restoring the
normal levels. Furthermore, all treatments modulated the IL-6, IL-1β, and caspase-3 gene expression
profiles. The obtained data shed some light on adjuvant therapy using C. ternatea and mesenchymal
stem cells in treating acute kidney injury; however, further investigations are required to understand
these agents’ synergistic mechanisms fully. The total RNA was extracted from the control, the positive
control, and all of the therapeutically treated animals. The expression profiles of the IL-6, IL-1β, and
caspase-3 genes were evaluated using the real-time polymerase chain reaction. Cisplatin treatment
caused a significant upregulation in IL-6. All treatments could mitigate the IL-6-upregulating effect
of cisplatin, with the mesenchymal stem cell treatment being the most effective. The same profile
was observed in the IL-1β and caspase-3 genes, except that the dual treatment (mesenchymal stem
cells and the botanical extract) was the most effective in ameliorating the adverse effect of cisplatin; it
downregulated caspase-3 expression better than the positive control.
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1. Introduction

Acute kidney injury (AKI) is an emerging global healthcare issue without effective
therapy [1,2]. It is characterized by a sudden rise in the blood creatinine or urine output.
AKI occurs in around 10% to 15% of hospitalized patients, but more than 50% of intensive
care patients have been found to have the condition [2]. It is one of a range of conditions
summarized as acute kidney diseases and disorders (AKD). Because AKI can be lethal,
kidney replacement therapy is frequently required [3,4]. The management of a patient with
AKI depends on the clinical situation and the availability of resources. However, the efficacy
of several frequently used treatments is still controversial. The evidence is significantly
increased over the past decade when interventions are being combined [5]. Egypt and
Saudi Arabia have a major chronic renal disease problem. Over 20,000 individuals are on
dialysis in the Kingdom of Saudi Arabia, while 9810 are awaiting kidney transplants [6]. It
is projected that 294.3 people out of every million inhabitants in Saudi Arabia are receiving
some kind of renal replacement treatment.

Drug-induced nephrotoxicity is a significant and growing cause of AKI; it is the cause
of AKI in approximately 20% of hospitalized patients with the disorder [7]. Cisplatin is
a chemotherapeutic medication often used to treat solid tumors, such as ovarian, head
and neck, and testicular germ cell malignancies. Cisplatin therapy is well known to cause
AKI. Understanding the core pathophysiology of cisplatin-induced AKI is critical for
creating less nephrotoxic cancer treatments. Using rodent models, the pathophysiology of
cisplatin-induced AKI has been addressed mechanistically [8].

Several botanical extracts have been used to treat AKI, including Cordyceps cicadae [9],
hesperetin [10], and curcumin [11], as well as Clitoria ternatea L. [12]. C. ternatea, commonly
known as butterfly pea, has traditionally been used in Ayurvedic medicine. Various
phytochemicals such as kaempferol, quercetin, myricetin glycosides, and anthocyanins
have been isolated from the flowers. The plant’s flower is a good option for functional
food applications due to its vast array of pharmacotherapeutic qualities and its safety
and efficacy [13]. Its extracts are antibacterial, antipyretic, anti-inflammatory, analgesic,
diuretic, local anesthetic, antidiabetic, insecticidal, blood platelet aggregation inhibiting,
and smooth muscle relaxing [14]. This plant has been reported to have anti-inflammatory
and antioxidant effects, and it has prevented l-NAME-induced renal injury and dysfunction
in rats [12].

After sustaining a range of renal traumas, the kidney can heal itself. Mesenchymal
stem cells (MSCs) have been proven to repair tissue damage caused by kidney injuries and
illnesses [15,16]. MSC-induced regeneration is predominantly mediated by the paracrine
release of soluble substances and extracellular vesicles such as exosomes and microvesi-
cles [17]. Hypoxic mesenchymal stem cells (HMSCs) have become an innovative cell-based
therapy in AKI. HMSCs, or HMSC-conditioned medium (HMSC-CM), can mitigate renal
injury via modulating the tubular autophagy [18,19]. It is important to weigh out the chal-
lenges of obtaining MSCs in therapeutic settings, as well as the number of cells available
and ethical constraints, before employing them to treat patients. Several researchers have
tried different strategies to boost MSCs’ effectiveness. Enhancing MSCs’ immunomodu-
latory potential is crucial for increasing their therapeutic efficacy [20]. Medicinal plant
extracts and MSCs show promise in stem cell and regenerative medicine. Medicinal plants
may boost MSC cell treatment for noninfectious and infectious disorders [21].

In Saudi Arabia, butterfly pea flower tea is a common caffeine-free herbal tea, or tisane,
beverage made from a decoction or infusion of the flower petals or even the whole flower
of Clitoria ternatea (blue tea flowers or Asian pigeonwings). However, treating cisplatin-
induced AKI with a dual treatment composed of Asian pigeonwing extract and MSCs has
infrequently been discussed in contrast to other topics. Therefore, this is an important
topic to study. Here, we aim to explore the effect of C. ternatea crude extract or MSCs, or a
combination of them, on the amelioration of cisplatin-induced AKI in rats.
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2. Results
2.1. Phytochemical Analysis

In the present study, Asian pigeonwing extract was used to mitigate cisplatin-induced
renal injury in rats. The chemical composition of Asian pigeonwing samples performed
using HPLC chromatograph and the GC-TSQ mass spectrometer is stated in Figure S1. The
phytochemical analysis of the ethanolic extract is shown in Table 1.

Table 1. The phytochemical analysis of the Asian pigeonwing plant.

Total phenol (mg/g extract) 31.3

Flavonoid (mg/g extract, as quercetin) 5.2

FRAP assay reduction power (mg/g extract, as ascorbic acid) 25.8

2.2. Kidney Functions

Albino rats were treated with cisplatin to induce kidney injuries for 10 days. During
the induction period, animals were also treated with either Asian pigeonwing extract
(400 mg/kg), MSCs (106 cells/150 g BW), or both to alleviate the inflammatory effect
of cisplatin. The kidney function was analyzed, emphasizing the creatinine, urea, and
uric acid as indicators of the organ’s functionality. The data in Figure 1 indicate that the
creatinine levels were significantly elevated when animals were challenged with cisplatin.
Meanwhile, the treatments (BM-MSCs or Asian pigeonwing) after the induction of the
kidney injuries revealed a significant decrease in the creatinine levels. The combined
treatment of BM-MSCs plus Asian pigeonwing was the most effective treatment, followed
by stem cells alone and the Asian pigeonwing extract. For the urea, the same profile was
obtained. Although the stem cells alone or combined with the botanical extract significantly
decreased the uric acid levels, the sole botanical extract did not show a significant decrease
in its levels.
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Figure 1. Kidney functions; creatinine, urea, and uric acid. C: control, Cispl.: positive control,
Cispl. + MSC: cisplatin with mesenchymal stem cells, Cispl. + A.P extract: cisplatin with Asian
pigeonwing extract, Cispl. + MSC + A.P: cisplatin with mesenchymal stem cells and Asian pigeonwing
extract. (A) Creatinine, (B) urea, and (C) uric acid. Values are shown as mean ± SD and ns (p > 0.05),
* (p < 0.05), ** (p < 0.01), *** (p < 0.001) compared to the corresponding value in the control group.

2.3. Oxidative Stress Markers

To evaluate the oxidative stress upon cisplatin administration followed by different
treatments, kidney malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione
(GSH) were measured in all animals. Rats challenged with cisplatin showed significantly
elevated levels of MDA as compared with the control. Meanwhile, treating cisplatin-
induced kidney injuries in rats with either the pigeonwing extract, stem cells only, or stem
cells combined with the botanical extract showed a significant decrease in MDA levels.
The MSCs combined with the botanical extract was the most effective treatment. SOD is a
well-known enzyme that catalyzes the partitioning of superoxide radicals into molecular
oxygen and hydrogen peroxide. The accumulation of superoxide causes severe damage to
cells. Our data indicated that MSCs combined with the botanical extract caused a significant
increase in the levels of SOD. The pigeonwing extract also showed a substantial increase
in its levels, while the stem cells alone showed a nonsignificant increase. Glutathione can
prevent damage caused by reactive oxygen species (ROS); therefore, it was a target of
increase. The administration of cisplatin caused a severe reduction in the GSH levels in
animals. In contrast, treatments caused a significant increase in their levels, with the dual
hit being the most effective treatment (Figure 2).

2.4. Gene Expression Profiling

The total RNA was extracted from the control, positive control, and all therapeutically
treated animals. The expression profiles of the IL-6, IL-1b, and caspase-3 genes were
evaluated using the real-time polymerase chain reaction (RT-PCR) (Figure 3). Cisplatin
treatment caused a significant upregulation in IL-6 (12-fold). All treatments were able to
mitigate the IL-6-upregulating effect of cisplatin, with the MSC treatment being the most
effective. The same profile was observed in the IL-1b and caspase-3 genes, except that
the dual treatment (MSCs and the botanical extract) was the most effective treatment in
ameliorating the adverse effect of cisplatin, wherein it downregulated caspase-3 expression
compared with the positive control.

2.5. Histopathological Sectioning

In the present study, treated and untreated animals were anesthetized, sacrificed, and
dissected according to the standards for laboratory animal care. The kidneys were removed,
and histopathological sections were performed. Cells were stained with hematoxylin and
eosin (H&E) staining (Figure 4). Figure 4a shows a normal kidney cortex. Figure 4b shows
the positive control group (which received cisplatin) with necrotic renal tubules. Figure 4c
shows the positive control group with interstitial nephritis with cystically dilated tubules
in the renal cortex (arrows). Figure 4d shows animals treated with MSCs with interstitial
nephritis. Figure 4e shows the Asian pigeonwing group with severely cystically dilated



Pharmaceuticals 2022, 15, 1396 5 of 14

renal tubules associated with interstitial nephritis. Finally, Figure 4f depicts animals treated
with the plant extract and stem cells with an apparently normal renal cortex.
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Figure 2. Oxidative stress markers MDA, SOD, and GSH. C: control, Cispl.: positive control,
Cispl. + MSC: cisplatin with mesenchymal stem cells, Cispl. + A.P extract: cisplatin with Asian
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wing extract. (A) MDA, (B) SOD, and (C) GSH. Values are shown as mean ± SD and ns (p > 0.05),
* (p < 0.05), ** (p < 0.01) compared to the corresponding value in the control group.
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Figure 3. Gene expression profiles of IL-6, IL-1β, and caspase-3. C: control, Cispl.: positive control,
Cispl. + MSC: cisplatin with mesenchymal stem cells, Cispl. + A.P extract: cisplatin with Asian
pigeonwing extract, Cispl. + MSC. + A.P: cisplatin with mesenchymal stem cells and Asian pigeon-
wing extract. (A) IL-6, (B) IL-1β, and (C) caspase-3. Values are shown as mean ± SD (p > 0.05),
* (p < 0.05), ** (p < 0.01), *** (p < 0.001) compared to the corresponding value in the control group.
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Figure 4. Histopathological analysis of kidneys of treated and untreated animals. (a) Photomicro-
graph of the kidney of the control group showing normal renal cortex. (b) Positive control group
(received cisplatin) showing necrotic renal tubules. (c) Positive control group showing interstitial
nephritis with cystically dilated tubules in the renal cortex (arrows). (d) The mesenchymal stem cell
group showing interstitial nephritis. (e) The Asian pigeonwing group showing severe cystically di-
lated renal tubules associated with interstitial nephritis. (f) The Asian pigeonwing with mesenchymal
stem cell group showing normal renal cortex.

3. Discussion
3.1. Renal Functions

Renal function was evaluated by assessing the levels of different markers, including
creatinine, urea, and uric acid [22,23]. It is well established that cisplatin can cause acute
kidney injury (AKI) and premature renal senescence [8,24,25]. The leading indicator of
AKI is turbulence in the renal parameters, such as creatinine, uric acid, and urea. In the
present study, these parameters were analyzed as indicators of chronic kidney disease
(CKD) onset and progression. The data clearly showed a significant elevation of creatinine,
uric acid, and urea in rats that were challenged with cisplatin. Animals were treated
with the Asian pigeonwing extract, and this treatment caused a significant decrease in the
levels of the three parameters assessed. Asian pigeonwing (C. ternatea) flower extract has
been reported to have anti-inflammatory and antioxidant effects, as it was able to prevent
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L-NG-nitroarginine-methyl-ester-induced AKI in rats [26]. The proposed mechanism of
action might be related to the downregulation of Nox4 expression and other oxidative
stress events in rats [12]. Furthermore, MSCs can be seen as a novel approach to treating
several diseases thanks to their high content of miRNAs [27,28].

Rat MSCs were administered to rats previously challenged with cisplatin to induce
AKI in the present study. Our results indicated that stem cells modulated the renal function
with significant values compared with the challenged animals. Studies have suggested that
treating rats with urine-derived stem cells (USCs) decreased creatinine levels and renal
tubular cell death, prevented inflammatory cell infiltration, and protected renal function.
Additionally, exosomes isolated from USCs protected rats from ischemia/reperfusion-
induced kidney injury [25]. Furthermore, MSCs alleviated AKI and reduced renal tubular
injury, and when administered systemically, this treatment showed preferential homing to
the proximal tubules in ischemic AKI rats [29]. A dual hit was tested to gain the most data
on both treatments, and the results indicated its potent lowering effect on the parameters
measured, which were creatinine, uric acid, and urea.

3.2. Renal Enzymes

As a reliable indicator of renal injury, we analyzed three renal enzymes, namely, SOD,
GSH, and MDA, in treated and untreated animals. Cisplatin caused a significant decrease
in the levels of SOD and GSH. At the same time, treatments with Asian pigeonwing extract
or MSCs, or a combination of both treatments, restored the SOD and GSH levels somewhat
toward normal. Although none of the treatments could restore the normal levels, the
combined treatment was the most effective one, with significant differences compared with
the cisplatin treatment.

It has been indicated that MSCs can alleviate AKI and damage in the renal interstitial
capillary endothelial barrier via upregulation of AQP1 in the kidney [10].

Moreover, placental MSCs can alter the inflammatory environment by modulating the
polarization of CD4+ T cells and macrophages, suppressing the pro-inflammatory factors
IFN- and IL-17 and upregulating the expression of the anti-inflammatory factors TGF-
and IL-10, ultimately resulting in kidney protection. Such functions may be mediated by
the paracrine activity of placental-mesenchymal-stem-cell-derived extracellular vesicles
(PMSC-EVs) [30].

Moreover, bone-marrow-derived MSCs can inhibit cell death in the kidney via up-
regulating SIRT1/parkin and activating mitophagy, ultimately mitigating AKI [31]. Other
reports indicated that MSCs can protect against renal fibrosis caused by obstruction via
downregulating STAT3 and upregulating STAT3-dependent MMP-9. These results demon-
strated that they protected against obstruction-induced renal fibrosis, in part, by decreasing
STAT3 activation and STAT3-dependent MMP-9 production [32].

It is believed that the paracrine effects of MSCs on renal healing, optimization of
the microenvironment for cell survival, and inhibition of inflammatory responses result
from their interaction with the injured kidney environment [33]. HMCSs may inhibit renal
tubular apoptosis and mitigate renal impairment in rats with renal injury. This can provide
additional mechanistic support for HMSC therapy and its evaluation in clinical studies of
ischemic AKI [1].

Meanwhile, Asian pigeonwing extract also has a modulatory effect on cisplatin-
induced renal injury. This extract was believed to prevent the production of fluorescent
advanced glycation end products (AGEs) and protein oxidation in the bovine serum albu-
min/methylglyoxal (BSA/MG) system by decreasing the protein carbonyl concentration
and avoiding protein thiol depletion. It also inhibited the oxidative breakage of DNA in the
MG/lysine and 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH) systems
by preventing superoxide anion and radical hydroxyl production. It is suggested that the
fundamental processes responsible for preventing protein glycation and oxidative DNA
damage are the direct carbonyl trapping ability and free radical scavenging activity of the
extract [34]. Moreover, anthocyanins in Asian pigeonwings exhibit substantial in vitro and
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cellular antioxidant activity [35]. In the current study, we found that the protective effects of
Asian pigeonwing extract related to the renin–angiotensin system (RAS). Asian pigeonwing
extract inhibited RAS activation by directly decreasing ACE activity and increasing NO
availability [36]. In vitro, the carboxylate and hydroxyl groups of phenolic compounds, the
primary components in Asian pigeonwing extract, interact with the zinc ion at the ACE
active site to suppress ACE function [37].

It is well known that damage to the structures of the kidneys may lead to a diminished
level of renal function [38]. NO and Ang II regulate mesangial cell proliferation and
death in glomerular microcirculation [39]. In addition, it has been shown that Ang II
signaling is responsible for inducing renal ECM buildup through ROS activation [40]. This
finding lends credence to the theory that oxidative stress plays a significant part in both the
development of hypertension and the process that leads to kidney damage [41]. In addition,
the putative molecular pathways implicated in the action of Asian pigeonwing extract
on renal fibrosis might be mediated via the NF-αB pathway. Co-treatment with Asian
pigeonwing extract seemed to inhibit the development of renal fibrosis and the buildup
of glomerular extracellular matrix, according to the findings of the current investigation.
According to a prior publication, this effect may have something to do with the ACE
inhibitory action of the compound [42]. On the basis of our findings, administration of
Asian pigeonwing extract to rats resulted in a decrease in Ang II levels. The extract from
Asian pigeonwings lowered levels of an enzyme called Ang II, which in turn decreased
production of another enzyme called Nox4 and oxidative stress.

4. Materials and Methods
4.1. Plant Sample Collection

Plant samples were collected and dried in the Aljouf region, Saudi Arabia. Samples of
dried plants were ground into powder. Plant species were identified as C. ternatea, which
belongs to the Fabaceae family, at the Faculty of Science of Aljouf University.

4.2. Preparation of Aqueous Extract

Five grams of powder from the plants’ leaves was extracted by 100 mL of distilled
water at room temperature for 24 h. The distillate was centrifuged at 3000 rpm for 15 min
and evaporated to near dryness, and the resulting viscous powder was dissolved in distilled
water to obtain a stock solution [43].

4.3. Phytochemical Analysis and Assessment of Antioxidant Activity

The extract was phytochemically characterized by subjecting it to HPLC and gas
chromatography–mass spectrometry (GC-MS) analysis. Then, we estimated the total
phenolic compounds (TPCs) and total flavonoid compounds (TFCs) [44]. The TPCs, TFCs,
and antioxidant power were estimated in the plant extracts. The TPCs were determined
using the Folin–Ciocalteu reagent according to Singleton [45] and stated in milligrams per
gram (mg/g) of gallic acid equivalent (GAE). The determination of flavonoids was carried
out by the aluminum chloride method. The flavonoid contents were measured as the
quercetin equivalent; it was used as the standard [46]. The ferric ion-reducing antioxidant
power (FRAP) was determined to estimate the antioxidant power of each plant extract [47];
ascorbic acid was utilized as a positive reference standard.

4.4. Animals and Research Design

Twenty-five albino rats (150 to 200 g) were enrolled in the present study. Animals
were grown under standard laboratory conditions with food and water offered ad libitum.
Healthy males were randomly selected and divided into five groups (five rats each) as
follows (Figure 5):

1. The control group received saline.
2. The cisplatin group was injected with a single dose of cisplatin of 7 mg/kg intraperi-

toneally (IP) to induce liver damage.
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3. The BM-MSC group (bone-marrow-derived MSCs group) was injected with a single
dose of cisplatin of 7 mg/kg IP, and on the next day began receiving 2× 106 BM-MSCs
per day in phosphate buffer solution (PBS) by intravenous (IV) injection for 21 days.

4. The Asian pigeonwing group was injected with a single dose of cisplatin of 7 mg/kg
IP, and on the next day began receiving 400 mg/kg of Asian pigeonwing extract (by
oral gavage for 21 days).

5. The BM-MSC plus Asian pigeonwing group (combinational treatment group) was
injected with a single dose of cisplatin of 7 mg/kg IP, and on the next day began
receiving 2 × 106 BM-MSCs in PBS by IV injection plus 400 mg/kg/day of Asian
pigeonwing by oral lavage for 21 days.
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Treatments were carried out for 21 consecutive days with BM-MSCs and/or Asian
pigeonwing before the animals were sacrificed.

4.5. Stem Cells

Rat bone marrow MSCs were obtained from the Biochemistry and Molecular Biology
Unit, Faculty of Medicine, Cairo University. The cell count per milliliter was adjusted to
the rats’ body weight to reach the optimal dose of 106 cells/150 g BW.

4.6. Blood and Tissue Sampling

Rats were euthanized by pentobarbital overdose (300 mg/kg body weight). Blood
samples were collected, and the serum and kidney tissues were separated and used for
further biochemical tests. Kidney tissue was quickly removed and divided into three
sections. The first section was stored in Trizol reagent for real-time gene expression analysis
at−80 ◦C. The second section was immersed in 15% formaldehyde solution for pathological
examination. The third section was used to prepare a tissue homogenate and was stored
at −80 ◦C. For the biochemical analyses, the tissue homogenate and blood serum were
prepared immediately before starting the measurements.
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4.7. Biochemical Analyses

Creatinine was measured using a creatinine (rat) ELISA Kit (Biovision, Catalog # E4370-
100). Uric acid was estimated in blood serum using the uric acid enzymatic colorimetric
method (Biodiagnostic kit, Cat. No. UA2120). MDA, SOD, and GSH were measured using
tissue homogenate according to the manufacturer’s instructions in the biodiagnostic kit
(Cat. No. MD2529, SD2521, and GR2511, respectively).

4.8. Histological Analysis

Formalin-fixed specimens were routinely dehydrated in ascending series of alcohol,
cleared in xylol, and finally embedded in paraffin. Then, 4–5 µm thick tissues were
sectioned and processed for H&E staining (Bancroft and Gamble 2008). Tissue slides were
examined and were compared to their corresponding controls.

4.9. Gene Expression Analyses

Total RNA was extracted from treated and untreated animals, and one gram was
converted to cDNA. The expression profiles of IL-1β, IL-6, and caspase-3 genes were
analyzed. Primers used in the present study are presented in Table 2.

Table 2. The primer sequences used in the present study.

Genes Forward (5′–3′) Reverse (5′–3′) Size

IL-1β CAGCAGCATCTCGACAAGAG AAAGAAGGTGCTTGGGTCCT 123 bp
IL-6 AGTTGCCTTCTTGGGACTGA CCTCCGACTTGTGAAGTGGT 126 bp
Caspase-3 GAGACAGACAGTGGAACTGACGA TG GGCGCAAAGTGACTGGATGA 147 bp
β-Actin GTGACATCCACACCCAGAGG ACAGGATGTCAAAACTGCCC-

The expression of these genes was compiled using the StepOnePlus thermal cycler,
and the thermal profile was 35 cycles composed of 45 s at 90 ◦C, 60 s at 58–60 ◦C, and 45 s at
72 ◦C. The cycles were followed by a 10 min of extension at 72 ◦C. The PCR products were
determined by melting curve analysis for each primer pair to specify the amplification.
β-Actin gene expression was measured as the internal housekeeping gene. The 2∆∆CT
method was used to analyze the obtained data. Results were presented as fold change
(RFC) relative to the negative control.

4.10. Statistical Analysis

All treatments were performed in triplicate, and data were analyzed by analysis of
variance (one-way ANOVA test) using Tukey’s post hoc test; SPSS version 21 software was
used for statistical analysis tests. Values were presented as mean ± SD.

5. Conclusions

AKI is a severe disease that has no reliable treatment. Several factors can initiate AKI.
Herbal medicine could be one of the well-studied options to tackle such health issues,
especially when it is combined with a naturally occurring biological agent such as the
MSC. The treatment of AKI is ultimately the goal, wherein adjuvant therapy is the most
promising approach. The present study indicated that using the combinatory therapy of
Asian pigeonwing and MSCs restored the standard functions in cisplatin-treated rats. This
approach suggests an important topic to study because of the promising results of the
treatment. The limitation of this study is that the model is that cisplatin kidney injury
may not be generalizable to other forms of acute kidney injury (e.g., secondary to sepsis
or hypotension) and the number of samples have to be greater. However, further detailed
studies are required for a more comprehensive understanding of the actual mechanism of
action of the stem cells with such a botanical extract.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ph15111396/s1, Figure S1: The chemical composition of Asian pigeonwing.
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