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Abstract: The number of databases of natural products (NPs) has increased substantially. Latin
America is extraordinarily rich in biodiversity, enabling the identification of novel NPs, which has
encouraged both the development of databases and the implementation of those that are being
created or are under development. In a collective effort from several Latin American countries, herein
we introduce the first version of the Latin American Natural Products Database (LANaPDB), a public
compound collection that gathers the chemical information of NPs contained in diverse databases
from this geographical region. The current version of LANaPDB unifies the information from six
countries and contains 12,959 chemical structures. The structural classification showed that the most
abundant compounds are the terpenoids (63.2%), phenylpropanoids (18%) and alkaloids (11.8%).
From the analysis of the distribution of properties of pharmaceutical interest, it was observed that
many LANaPDB compounds satisfy some drug-like rules of thumb for physicochemical properties.
The concept of the chemical multiverse was employed to generate multiple chemical spaces from
two different fingerprints and two dimensionality reduction techniques. Comparing LANaPDB with
FDA-approved drugs and the major open-access repository of NPs, COCONUT, it was concluded
that the chemical space covered by LANaPDB completely overlaps with COCONUT and, in some
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regions, with FDA-approved drugs. LANaPDB will be updated, adding more compounds from each
database, plus the addition of databases from other Latin American countries.

Keywords: chemical multiverse; chemical space; chemoinformatics; databases; diversity; drug
discovery; Latin America; natural products; virtual screening

1. Introduction

Historically, natural products (NPs) have been the biggest source of bioactive com-
pounds for medicinal chemistry. For instance, in cancer research, in the lapse of time from
1946 to 1980, seventy-five small molecules were approved worldwide, of which 53% were
unaltered NPs or natural product (NP) derivatives. Moreover, from 1981 to 2019, of the
185 small molecules approved to treat cancer, 64.9% were unaltered NPs and synthetic
drugs with a NP pharmacophore [1]. Another example is the actual development of new
promising antibiotics against drug-resistant bacteria from NPs [2]. Furthermore, in a recent
review, it was shown that 697 natural steroidal alkaloids were isolated and characterized
with various biological activities, from 1926 to 2021 [3]. The bioactive compounds encom-
pass marine [4,5], fungal [6,7], bacteria [8], plants [9] and endogenous substances produced
by human and animal sources [10], including venoms and poisons produced by different an-
imals [11]. Even, as recently reviewed, the fruit peels are a source of bioactive compounds,
which, in many instances, display better biological and pharmacological applications than
the compounds of other sections of the fruit [12].

There are several approaches to the drug discovery process for NPs. The information
of the therapeutic effects or even the side effects can serve as a starting point [10]. The
stress-driven growth of plants and microorganisms stimulates the production of secondary
metabolites with biological activities different to the primary metabolites produced under
normal conditions [13]. Drug repositioning of NPs is another option, which offers lower
development costs and shorter time frames [14]. Moreover, NPs are a rich source of
“privileged scaffolds”, structures capable of providing useful ligands for more than one
receptor [15]. Privileged scaffolds are useful because they can serve as a core structure
to construct compound libraries around them [1]. Some examples of privileged scaffolds
that are actually used for drug design purposes are the alkaloid, terpenoid polyketide and
phenylpropanoid structures [16]. Furthermore, the preparation of biologically relevant
small-molecule libraries through unprecedented combinations of NP fragments to afford
novel scaffolds that do not occur in nature is an approach that involves the preparation of
molecules named “pseudo-natural products” (pseudo-NPs) [17]. The pseudo-NPs retain the
biological relevance of NPs, yet exhibit structures and bioactivities not accessible to nature
or through the use of existing design strategies. Pseudo-NPs may display unexpected
bioactivities that differ from the activities of the NPs from which their fragments are
derived. That is why their bioactivity should be monitored in a wide biological space
through different biochemical and biological assays. Most of the pseudo-NP collections
fall within the “Lipinski rule of 5” (Ro5) space, showing advantageous physicochemical
“drug-like” properties. For the design of pseudo-NP libraries, it is important to consider
that the combination of biosynthetically unrelated NP fragments may be beneficial for
novel bioactivity, maximizing the biological relevance of the resulting pseudo-NP scaffold.
Chromopynones, indotropanes, pyrrotropanes and pyrroquinolinones are part of pseudo-
NP collections that have been developed for the first time, an unprecedented combination
of these scaffolds, resulting in totally new chemical entities [18,19].

Over time, NPs have been a source of compounds with therapeutical effects and
many of them, later, end up converting into approved drugs. Some of them have been
approved as drugs without suffering a structural modification. In other cases, they serve
as starting points that, later, with further structural modifications, are approved as drugs.
Sometimes, bioactive molecules from NPs lack suitable physicochemical properties, and
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their synthetic complexity may hinder their direct use as therapeutics. In this case, to be
developed as drug candidates, NPs need to go through an optimization process that usually
involves structural modifications to improve one or more of the following characteristics:
potency, selectivity, solubility, metabolic and chemical stability; and the removal (or at least
significant reduction) of toxicity [20]. This is usually done by decreasing the molecular size,
eliminating the unnecessary functional groups and chiral centers and introducing nitrogen
atoms if they are needed, because in the NPs the presence of nitrogen is limited.

To date, the discovery process of more than seventy commercialized drugs has in-
cluded the rational use of at least a computational method [21]. Computer-aided drug
design (CADD) has the potential to reduce the cost and decrease the time required for the
drug design process, e.g., the hit identification rate for high-throughput screening (HTS) to
discover novel inhibitors for the enzyme protein tyrosine phosphatase-1B is only 0.021%
and the one for molecular docking is 34.8% [22]. Some crucial resources in CADD are the
databases of chemical compounds, including NP databases. From the compound databases,
it is possible to identify potential hit molecules through several virtual screening (VS) tech-
niques [23,24], including the training of artificial intelligence (AI) algorithms [25]. When the
compound databases are annotated with biological activity (or other property of relevance),
it is possible to use the data to measure structure–activity (property) relationships and
develop predictive models.

VS techniques are usually classified into two major categories: structure-based (SBVS)
and ligand-based (LBVS). In general, SBVS is more suitable for finding structurally novel
ligands, and is the preferred method when the three-dimensional (3D) structure of the
target protein has been characterized experimentally [23]. When the structure of the target
is unknown, or its prediction by structure-based methods is challenging, LBVS is the
choice [24]. LBVS is based on the assumption that molecules with similar structures exhibit
similar behavior. Among the LBVS techniques are the quantitative structure–activity
relationship (QSAR) [23] and quantitative structure–property relationship (QSRP) [26]
studies. QSAR/QSPR studies aim to find a mathematical association between the molecule
structure and a given property, such as biological activity [24]. In this sense, the bioactivity
and chemical information (i.e., chemogenomic) databases are crucial to allow the creation
of QSAR/QSPR models that predict certain pharmacological activity or properties of
pharmaceutical interest for a determined molecule or set of analog molecules.

Another important application of the databases in the drug discovery process is
the training of AI algorithms. AI encompasses a set of computational algorithms that
allow computers to simulate human cognitive abilities, such as learning from experience
and solving problems [27]. Among the LBVS is the AI-based QSAR, the creation and
training of these models relies on the data found in the bioactivity databases. AI can
be applied to the SBVS; specifically, to the docking of the protein-ligand complexes [25].
AI-based scoring functions have shown better performance in benchmark studies [28,29].
The creation of AI-based scoring functions depends on the availability of the required
data in the database to train the model. AI algorithms have already been applied in the
drug discovery process from NPs. To name a few: data-mining into traditional medicines
and peer-reviewed articles, prediction of chemical structures from microbial genomes,
automation of NPs dereplication process, encoding NPs into molecular representations,
vectorization of NPs with molecular descriptors, mapping of NPs in the chemical space,
engineering likeness scores, deorphanization and de novo generation of natural product-
inspired compounds [30]. The report on using AI to create models that allow for the
prediction of biological effects from NPs has been rising in recent years. The application of
AI models to predict biological effects of molecules, toxicity, drug–target and drug–drug
interactions has been reviewed [31].

From 2003 to 2018, 104 research articles reported the identification of potential drug
candidates from NP databases by using computational tools [32]. Moreover, during the
current pandemic outbreak, NPs have been a rich source for discovering potential lead
compounds against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [33–36].
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Nonetheless, the computational methods, such as the VS techniques, are valuable tools and
should be implemented together with the in vivo or in vitro assays to increase the success
rate in the identification of bioactive molecules. Recently (August 2022), the outperformance
of combining the computational methods with the biological assays was shown [37]. There
are still many challenges in the identification of bioactive compounds from the screening of
large collections of compounds. In the HTS approach, a common problem is the presence
of frequent hitters: compounds that would form aggregates, react with proteins or interfere
in screening assays, leading to false positives [38]. Combining the HTS approach with
computational methods can lead to the identification and elimination of the frequent hitters
prior to the start of the HTS study.

Between 2000 and 2019, one hundred and twenty-three commercial and public NP
databases have been published. Among them, ninety-eight are still somehow accessible
(online or under request access), ninety-two are free access and only fifty contain molecular
structures that can be retrieved for a chemoinformatic analysis [39]. Examples of the
most representative open-access NP databases include: The Collection of Open Natural
Products (COCONUT) [40], which is a major repository containing more than 411,000 NPs
collected from 50 open access NP databases. The Universal Natural Product Database [41]
is a compilation that tries to gather all the known NPs—it has more than 229,000 NPs.
It is not yet accessible through the link in the original publication, nevertheless, it is
contained and maintained on the ISDB website [42]. The SuperNatural 3.0 [43] database
contains over 449,048 NPs—it provides a bulk download and has information on pathways,
mechanism of action, toxicity and vendor information if available. The ZINC [44] database
has over 80,000 NPs, approximately 48,000 purchasable. Moreover, it contains some NP
databases that are no longer accessible through the link provided in the original publication,
e.g., the Herbal Ingredient Targets [45] and the Herbal Ingredients In Vivo Metabolism
database [46], which mostly contain NPs from Chinese plants. A practical application of the
public molecular databases that exemplifies their utility in the drug discovery area is the
recent identification of inhibitors of the human immunodeficiency virus-1 from 1.6 million
commercially available drug-like compounds from the ZINC database. Moreover, there are
NP databases that contain compounds isolated and characterized in certain geographical
areas. That is the case of China, where multiple compound databases containing only NPs
from this country have been published [47–53], of which, TCM@Taiwan [54] is the largest,
containing 58,000 compounds. There are two databases of NPs from India, IMPPAT [55],
composed of approximately 10,000 phytochemicals extracted from 1700 medicinal plants,
and MedPServer [56], containing 1124 NPs. Regarding NPs from Africa, there are several
NP databases [57–62], of which, AfroDB [63] is the most extensive, containing over one
thousand NPs. Recently, Phyto4Health was published [64], an NP database with 3128 NPs
isolated from medicinal plants of Russia.

Latin America contains at least a third of the global biodiversity [65]; in fact, half
of the countries have been classified as megadiverse: Bolivia, Brazil, Colombia, Costa
Rica, Ecuador, Mexico, Peru and Venezuela) [66]. Therefore, Latin America represents a
large source of bioactive molecules and potential drug candidates (Figure 1). There have
been published databases containing NPs from some Latin American countries, such as
NaturAr [67] (Argentina), NuBBEDB [68,69], SistematX [70,71], UEFS [72] (Brazil), CIF-
PMA [73,74] (Panama), PeruNPDB [75], (Peru), UNIIQUIM [76] and BIOFACQUIM [77,78]
(Mexico). Recently, the present state of the art in developing Latin American NP databases
and their practical applications to the drug discovery area were reviewed [79]. Multiple
drug candidates have been identified from the Latin American NP databases as therapeutic
agents for diseases caused by infectious agents (Chagas disease [80,81], tuberculosis [82],
Leishmaniasis [83,84], schistosomiasis [85], coronavirus disease [86], human immunodefi-
ciency virus infection and acquired immunodeficiency syndrome, hepatitis B and C) [87],
pain [88], obesity, diabetes, hyperlipoproteinemia, cancer and age-related diseases [89,90].
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Figure 1. Active compounds of representative medicinal plants from Latin American countries and
some of their therapeutic effects described in the literature. Brazil (gallic acid [91] and casearin x [92]),
Costa Rica (acetogenin squamocin [93]), El Salvador (Genkwanin [94]), Mexico (3α-hydroxy mas-
ticadienoic acid [95] and mescaline [96]), Panama (furoquinoline alkaloid [97]) and Peru (mitra-
phylline [98] and benzylglucosinolate [99]).

The long-term goal of the project is to collect, unify and standardize the Latin American
NP collections available in the public domain into one public database. In this study, we
report significant advances towards this goal through the assembly of the first version
of the unified database, herein called the Latin American Natural Products Database
(LANaPD). We report its curation, standardization and a comprehensive analysis of nine
compound databases, totaling 12,959 unique molecules. As part of this study, we analyzed
the structural content and determined some physicochemical properties of pharmaceutical
interest of the compounds in LANaPDB. We also represent coverage in the chemical space
of compounds in LANaPDB using the concept of a chemical multiverse [100]. The database
is freely available at https://github.com/alexgoga21/LaNaPDB (accessed on 28 September
2023).

2. Results and Discussion
2.1. Bioactive Compounds from Latin American Natural Product Databases

Bioactive compounds have been identified from Latin American NP databases. Ten
compounds against Trypanosoma cruzi [80] have been identified from the NuBBEDB database.

https://github.com/alexgoga21/LaNaPDB


Pharmaceuticals 2023, 16, 1388 6 of 21

Moreover, 13 compounds against Mycobacterium tuberculosis were identified in another
study from NuBBEDB [82].

Several bioactive compounds have been identified from five VS studies from the
SistematX database. The bioactive compounds found include 1306 sesquiterpene lactones
with potential activity against Trypanosoma cruzi [81]. In another VS study, 13 promising
antileishmanial compounds were identified [83]. In the third VS study, the researchers
looked for compounds against Schistosoma mansoni; from this, five compounds were iden-
tified with potential schistosomicidal activity [85]. In the fourth VS study, 19 compounds
were identified as potential SARS-CoV-2 inhibitors [86]. In the last VS study, two promising
compounds were identified for the treatment of Alzheimer’s disease [90].

The compounds of CIFPMA have been tested in over 25 in vitro and in vivo bioassays
for different therapeutic targets, including anti-HIV (human immunodeficiency virus),
antioxidants and anticancer [73].

In the UNIIQUIM database, molecules were found with potential analgesic activ-
ity [88].

In the BIOFACQUIM database, eight beta-glucosidase inhibitors were identified. The
pharmacological applications of these compounds include obesity, diabetes, hyperlipopro-
teinemia, cancer, HIV and hepatitis B and C [87]. In another study, three compounds were
identified to prevent and improve multiple adverse outcomes related to age [89]. The
identified compounds from Latin American NP databases are in the Table 1.

Table 1. Bioactive compounds found from the Latin American Natural Products Databases.

Database Name Disease or Symptom Number of Identified Compounds Reference

NuBBEDB Chagas disease 10 [80]
Tuberculosis 13 [82]

SistematX Chagas disease 13 [81]
Leishmaniasis 13 [83]

Schistosomiasis 5 [85]
Coronavirus disease 2019 19 [86]

Alzheimer’s disease 2 [90]

UNIIQUIM Pain 6 [88]

BIOFACQUIM Obesity 8 [87]
Diabetes

Hyperlipoproteinemia Cancer
HIV/AIDS *

Hepatitis B and C.
Age-related diseases 3 [89]

* Human immunodeficiency virus infection and acquired immunodeficiency syndrome (HIV/AIDS).

2.2. Dataset Curation

From nine Latin American NP databases of six different countries (Table 2), the first
version of LANaPDB, which currently contains 12959 compounds in total, was constructed.
The number of unique and overlapping compounds is shown in the Figure 2. The number
of unique compounds is proportionally similar to the number of compounds contained in
the databases that comprise every country.
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Table 2. Latin American Natural Product Databases analyzed in this work.

Database Name
(Country)

Number of
Compounds a Source General Description References

NuBBEDB
(Brazil) 2223

Plants
Microorganisms

Terrestrial and marine
animals

Natural products of Brazilian biodiversity.
Developed by the São Paulo State University

and the University of São Paulo.
[68,69]

SistematX
(Brazil) 9514 Plants

Database composed of secondary metabolites
and developed at the Federal University of

Paraiba.
[70,71]

UEFS
(Brazil) 503 Plants

Natural products that have been separately
published, but there is no common publication

nor public database for it. Developed at the
State University of Feira de Santana.

[72]

NAPRORE-CR
(Costa Rica) 359 Plants

Microorganisms
Developed in the CBio3 and LaToxCIA

Laboratories of the University of Costa Rica. *

LAIPNUDELSAV
(El Salvador) 214 Plants

Developed by the Research Laboratory in
Natural Products of the University of El

Salvador.
*

UNIIQUIM
(Mexico) 1112 Plants

Natural products isolated and characterized at
the Institute of Chemistry of the National

Autonomous University of Mexico.
[76]

BIOFACQUIM
(Mexico) 553

Plants
Fungus
Propolis

Marine animals

Natural products isolated and characterized in
Mexico at the School of Chemistry of the

National Autonomous University of Mexico
and other Mexican institutions.

[77,78]

CIFPMA
(Panama) 363 Plants

Natural products that have been tested in over
twenty-five in vitro and in vivo bioassays for

different therapeutic targets. Developed at the
University of Panama.

[73,74]

PeruNPDB
(Peru) 280 Animals

Plants
Created and curated at the Catholic University

of Santa Maria. [75]

The URL of the websites where the natural product databases of Latin America are allocated is in the Supplemen-
tary Material (Table S1). a Number of compounds contained in each database previous to the curation process.
* Actually, there is not a publication associated with the database.
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2.3. Structural Classification

The compounds were classified in a total of seven different pathways, fifty-three
superclasses and three hundred and thirty-six classes (Figure 3). The three predominant
pathways are terpenoids (63.2%), shikimates and phenylpropanoids (18%) and alkaloids
(11.8%). The main superclasses are diterpenoids (34.3%), sesquiterpenoids (17.6%) and
flavonoids (10.3%). The prevalent classes are kaurane and phyllocladane diterpenoids
(6.99%), colensane and clerodane diterpenoids (5.91%) and germacrane sesquiterpenoids
(5.36%). The results are in accordance with expectations because the terpenoids are the
most diverse group of secondary metabolites derived from natural sources [101].
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2.4. Physicochemical Properties

The violin plots show the distribution of six physicochemical properties of phar-
maceutical interest: SlogP [102], molecular weight (MW), topological polar surface area
(TPSA) [103], rotatable bonds (Rb), hydrogen bond acceptors (HBA) and hydrogen bond
donors (HBD) (Figures 4 and 5). In the violin plots, the limits of the following rules of thumb
of drug-likeness are marked with a horizontal line: Lipinski’s rule of 5 (Ro5) [104,105],
Veber’s rules [106], GlaxoSmithKline’s (GSK) 4/400 rule [107] and Pfizer 3/75 rule [108]
(Table S2). Physicochemical properties in the limits of either Lipinski’s, Veber’s or GSK
rules is usually related with a good oral bioavailability. The fulfillment of these rules of
thumb is associated with the improvement of the following parameters: aqueous solubil-
ity and intestinal permeability (Lipinski’s Ro5); passive membrane permeation (Veber’s
rules); absorption, distribution, metabolism, excretion and toxicity (ADMET) profile (Glax-
oSmithKline’s 4/400 rule); and toxicity (Pfizer 3/75 rule).

NPs contain complex structures and are large and diverse; therefore, compared with
synthetic drugs, it is not easy for them to satisfy most of the criteria of Lipinski’s Ro5 [109]
or the other drug-likeness parameters mentioned above. Nevertheless, it is shown in the
violin plots that a broad range of the LANaPDB compounds satisfy most of the rules of
thumb of Table S2 for the physicochemical properties of pharmaceutical interest. The
LANaPDB and COCONUT compound distributions of the physicochemical properties are,
in general, similar (Figure 4). Additionally, as expected, COCONUT covers the broadest
area of the chemical space, because it is the largest database (411,000 compounds) (Figure 6).
Many compounds of LANaPDB fulfill the rules of thumb associated with drug-likeness
(Figure 4) and part of the LANaPDB chemical space overlaps with the chemical space
comprised by the approved drugs (Figure 6).
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pharmaceutical interest of LANaPDB and its comparison with COCONUT and approved drugs. The
chemical space was generated with (A) principal component analysis (PCA), the first two principal
components capture 89.3% of the total variance; (B) t-distributed stochastic neighbor embedding
(t-SNE).

The distribution of the physicochemical properties of the NPs in the countries with
more compounds (Brazil and Mexico) is, in general, more focused in certain regions,
compared with the NPs from countries with less compounds (Costa Rica, El Salvador,
Panama and Peru) which are more broadly distributed (e.g., SlogP, Brazil vs Peru from
Figure 5). Panama and Peru show similar distributions in all the physicochemical prop-
erties, which may be due to the similar distribution of the dominant structural features
in both datasets (Panama: 42% shikimates and phenylpropanoids and 34.3% terpenoids;
Peru: 29.6% shikimates and phenylpropanoids and 39.2% terpenoids). In general, the dis-
tributions of physicochemical properties of the Latin American countries and the approved
drugs are focused in the same regions (Figure 5). The chemical space represented by the
six physicochemical properties is overlapped among the NPs from the six Latin American
countries (Figure 7). In the principal component analysis (PCA), the first two principal
components are enough to represent most of the explained variance percentage: 89.3% in
the LANaPDB, COCONUT and approved drugs comparison (Figure 6A) and 84.6% in the
Latin American countries comparison (Figure 7A). Moreover, TPSA, MW, HBD and HBA
are the descriptors with greater contributions to principal component 1. The descriptors
with greater contributions to principal component 2 are SlogP and Rb (Table S3).
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embedding (t-SNE).

2.5. Molecular Fingerprints

Figures 8 and 9 show the visual representation of the chemical multiverse of LANaPDB
generated with t-distributed stochastic neighbor embedding (t-SNE) and tree MAP
(TMAP) [110] and two fingerprints of different designs: MACCS keys (166-bits)
(Figures 8A and 9A) and MAP4 (Figures 8B and 9B). As discussed recently, the chemi-
cal multiverse can be defined as a group of chemical spaces, each generated with a diverse
set of descriptors [100]. A chemical multiverse is a natural extension of the concept of
chemical space and its advantage is that it provides a more complete description of the
chemical space of a set of compounds as opposed to using only one representation. More-
over, substructure fingerprints perform best for small molecules, such as drugs, while
atom–pair fingerprints are preferable for large molecules. Given that it is common to see
large molecules among the NPs, MAP4 fingerprint was chosen because it is suitable for
both small and large molecules by combining substructure and atom–pair concepts [111].
The MACCS keys (166-bits) [112] fingerprint was employed to compare the results obtained
with the MAP4 fingerprint with a well-known substructure fingerprint.
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Based on the visual representation of the chemical multiverse, it is concluded that
t-SNE has a better performance with MACCS keys (166-bits) fingerprint over MAP4 finger-
print, separating the NPs on clusters according to the structural features (Figure 8). The
efficacy of TMAP to separate compounds in clusters from MACCS keys (166-bits) and
MAP4 fingerprints is similar with both fingerprints (Figure 9). Moreover, TMAP performed
better than t-SNE in the NPs cluster creation with both fingerprints. An interactive version
of the scatter plot created with TMAP from MAP4 fingerprints (Figure 9B) is freely available
at https://github.com/alexgoga21/LaNaPDB/blob/main/Interactive%20TMAP_MAP4
.html (accessed on 28 September 2023). To open the interactive map, download the file and
open it in a web explorer. Given that TMAP performed better than t-SNE, and MACCS keys
(166-bits) and MAP4 fingerprints showed a similar efficacy in the TMAP, the comparison of
LANaPDB with the reference databases was made with TMAP and MACCS keys (166-bits)
fingerprint (Figure 10). It can be observed that LANaPDB overlaps with COCONUT in
well-defined areas; nevertheless, the approved drugs are more dispersed and some of them
overlap with the compounds in LANaPDB (Figure 10).
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3. Materials and Methods

The visual representations of the different chemical spaces that consider either physico-
chemical properties or molecular fingerprints are illustrated with scatter plots (Figures 6–10).
Every point in the scatter plots represents a unique compound. The scatter plots were
created in the python programming language (version 3.10.7), employing the seaborn
module (0.12.2) [113].
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3.1. Dataset Curation

The Latin American NP databases of Table 2 were used to construct the unified
NP database LANaPDB. The process was carried out in the python programming lan-
guage (version 3.10.7), employing the RDKit (version 2022.03.5) [114] and MolVS (version
0.1.1) [115] modules. The standardization process of MolVS was applied, which consisted
of the remotion of explicit hydrogens, disconnection of covalent bonds between metals
and organic atoms (the disconnected metal is not preserved), application of normalization
rules (transformations to correct common drawing errors and standardization of functional
groups), reionization (ensure the strongest acid groups protonate first in partially ionized
molecules) and recalculation of the stereochemistry (ensures preservation of the original
stereochemistry). The salts were removed, keeping the largest fragment, which was neu-
tralized, and the remaining partially ionized fragments were reionized. The canonical
tautomer was determined, and, from the InChIKey strings of the canonical tautomer, the
duplicate compounds were removed.

A Venn diagram was constructed with python programming language, employing
the Venn module (version 0.1.3), to see the number of unique and overlapping compounds
along the nine Latin American databases.

3.2. Structural Classification

Compounds in LANaPDB were classified with NPClassifier [116], which is a freely
available deep neural network-based structural classification tool for NPs. NPClassifier
establishes a classification system based on the literature from the specialized metabolism of
plants, marine organisms, fungi and microorganisms. The categories used in NPClassifier
were defined at three hierarchical levels: pathway (nature of the biosynthetic pathway),
superclass (chemical properties or chemotaxonomic information) and class (structural de-
tails). Pie charts were constructed with the python programming language (version 3.10.7),
employing the Plotly express module (version 0.4.1) [117], to represent the distribution of
the dominant structures for each of the three categories.

3.3. Physicochemical Properties

Employing the software KNIME [118] version 4.7.1, with the RDKit nodes, six physico-
chemical properties of pharmaceutical interest were calculated: SlogP [102], MW, TPSA [103],
Rb, HBA, HBD. Violin plots were constructed to summarize the distribution of each prop-
erty individually. In each violin plot, we highlighted the limit of drug-like rules of thumb
(Table S2). To generate a visual representation of the chemical space of the compound
libraries based on the six properties, we reduced the data dimensionality to two dimensions,
employing PCA and t-SNE with the python module Scikit-learn version 1.2.2 [119]. PCA:
principal component one and principal component two to represent the six physicochemical
properties. t-SNE hyperparameters: perplexity = 40 and number of iterations = 300. The
distribution of the individual properties and the two-dimensional representation of the
chemical space were conducted to analyze and compare the properties of the NPs among
the six Latin American countries and with two other reference datasets, COCONUT [40]
and FDA-approved small-molecule drugs, version 5.1.10 (released by DrugBank in January
2023) [120].

3.4. Molecular Fingerprints

A fingerprint encodes the structural information of a molecule in a vector [121]. Two
different fingerprints were determined for each molecule: MACCS keys (166-bits) finger-
print and MAP4 fingerprint. MACCS keys (166-bits) fingerprints were calculated with
KNIME [118] version 4.7.1, employing the Chemistry Development Kit (CDK) nodes [122].
MAP4 fingerprints were determined with the python programming language, following
the instructions of the creators of this fingerprint [111]. To allow a 2D representation of the
molecules, two different techniques for dimensionality reduction were employed: t-SNE
and TMAP [110]. For t-SNE, the same hyperparameters of Section 3.3. were used. Em-
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ploying the TMAP with MACCS keys (166-bits), LANaPDB was compared with the two
reference datasets used in Section 3.3. From the MAP4 fingerprints, an interactive TMAP
was created in the python programming language (version 3.9.17) with the faerun module
(version 0.4.2).

4. Conclusions

Here we report progress towards the assembly of the first version of a unified Latin
American Natural Products Database. The current version has 12,959 compounds from
nine compound databases of six different Latin American countries. The database is
freely available and the information of each compound in this first version includes the
structures in SMILES format, the structural classification and six physicochemical properties
of pharmaceutical interest. The LANaPDB compounds are produced by plants, terrestrial
and marine animals, fungi and bacteria. Moreover, the most abundant NPs were the
terpenoids (63.2%), followed by the shikimates and phenylpropanoids (18%) and the
alkaloids (11.8%). Although it is not easy for NPs to fulfill most of the drug-likeness
parameters compared with synthetic drugs, many LANaPDB compounds satisfy some
drug-like rules of thumb for physicochemical properties. Moreover, the chemical space
covered by LANaPDB completely overlaps with COCONUT and, in some regions, with
the FDA-approved drugs. The concept of the chemical multiverse was used to generate
multiple chemical spaces from two different dimensionality reduction techniques (t-SNE
and TMAP) and two fingerprints (MACCS keys (166-bits) and MAP4). MAP4 performed
better than t-SNE in separating the compounds into clusters according to their structural
features. All the resources used for the assembly, curation, analysis and graphics creation
are freely available.

LANaPDB is part of one of the strategic actions to contribute to the further develop-
ment of chemoinformatics and related disciplines in Latin America and strengthen the
interactions between Latin America and other geographical regions [123]. We encourage
the community to visit the websites where the individual NP databases of the different
Latin American countries are available (Table S1).

We anticipate that LANaPDB will continue growing and evolving with the update of
more compounds from each existing database, along with the addition of databases from
other Latin American countries. One of the first steps in this direction is the integration of
a larger set of NAPRORE-CR and the incorporation of natural products database NPDB-
EjeCol from Colombia. Another perspective is the implementation of the database in a free
web server. Likewise, LANaPDB could be integrated with other large public databases of
natural products, such as COCONUT or LOTUS.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph16101388/s1, Table S1: Websites of the natural product databases
of Latin America; Table S2: Rules of thumb guides associated with drug-likeness; Table S3: Analysis
metrics of the principal component analysis.
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