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Abstract: Ageratina pichinchensis (Kunth) R.M. King & H. Rob. belongs to the Asteraceae family and
is a plant native to Mexico to which several biological properties are attributed. In this study, the
cytotoxic effect of four extracts from the wild plants and two extracts from A. pichinchensis callus
culture were evaluated against carcinogenic cell lines including prostate carcinoma, cervical cancer,
hepatocellular carcinoma, hepatoma human, lung cancer, and cellular keratinocytes. The extracts
were obtained with ethyl acetate and methanol using both leaves and stems or the callus. Only the
ethyl acetate extract of the callus culture influenced the cervical cancer cell line (HeLa) with an IC50

of 94.79 ± 2.0 µg/mL. From the ethyl acetate callus extract, 2,3-dihydrobenzofuran was isolated and
purified and also evaluated against cancer cells. The cytotoxic evaluation of this compound showed a
significant effect against the HeLa cell line with an IC50 of 23.86 ± 2.5 µg/mL. Our results contribute
to the development of biotechnological alternatives and extraction processes to produce compounds
with possible potential against certain types of human cancer.

Keywords: cytotoxic activity; 2,3-dihydrobenzofuran; cervical cancer

1. Introduction

Ageratina pichinchensis (Kunth) R.M. King & H. Rob. belongs to the family Asteraceae
and is an endemic plant species of America. In the state of Morelos, Mexico, this species
grows mainly in the municipalities of Amatlán and Tepoztlán. A. pichinchensis is popularly
known as “water leaf” and “axihuitl”. Traditionality, this plant is used by communities
to treat gastric ulcers, healing, and diseases related to inflammatory events [1]. A. pich-
inchensis is described as a shrub up to 1.5 m tall, stem erect, highly branched, or slightly
puberulent [2]. In this regard, scientific evidence dealing with the phytochemical and
pharmacological studies has validated its ethnomedical uses [3–8]. Moreover, biotech-
nological studies have shown that A. pichinchensis can biosynthesize anti-inflammatory

Pharmaceuticals 2023, 16, 1400. https://doi.org/10.3390/ph16101400 https://www.mdpi.com/journal/pharmaceuticals

https://doi.org/10.3390/ph16101400
https://doi.org/10.3390/ph16101400
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0003-3558-4803
https://orcid.org/0000-0003-2811-1143
https://orcid.org/0000-0001-9366-8744
https://orcid.org/0000-0002-7127-7264
https://doi.org/10.3390/ph16101400
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph16101400?type=check_update&version=1


Pharmaceuticals 2023, 16, 1400 2 of 14

compounds that are structurally similar to those produced by the wild plant. For instance,
the production of the compounds 3-epilupeol and a benzofuran was found in callus and
cell suspension cultures, which are not produced by wild plants. In fact, the production of
these anti-inflammatory compounds could be improved using an airlift reactor, and their
production was improved by 1.82- to 1.35-fold, respectively [9–11].

Although the phytochemical composition and functional properties of A. pichinichensis
have been evaluated, other biological properties, such as those related to its cytotoxic effect,
have yet to be explored. This topic is relevant due to its impact on health and due to
the research for bioactive molecules to treat neoplastic diseases. The WHO estimates that
cancer is the leading cause of death in the world and more than 18 million deaths were
reported worldwide in 2022 alone, the most common being breast, lung, colon, rectum,
and prostate cancers [12,13]. This has led to the search for and development of new
solutions based on different approaches, given that the causes are diverse and diagnosis is
also challenging; this is the reason why multiple research groups around the world have
dedicated themselves to the task of searching for therapeutic compounds of synthetic and
natural origin [14–16] to be applied in therapies or treatments that are already applied in
order to improve their effectiveness. One of the common treatments in cancer patients is
chemotherapy, which makes use of molecules that act at different levels of the cell cycle,
successfully saving lives or improving the quality of life of patients. Despite the percentage
of efficacy of chemotherapies, the search for therapeutic agents continues to be necessary
due to the high global demand [17–19].

This emphasizes the use of medicinal plants as an important source of compounds
with cytotoxic effects in different types of cancer. One of the molecules commonly used in
chemotherapies is the tetracyclic diterpenoid compound Taxol®, which is isolated from the
bark of the genus Taxus. This molecule is commercially known as paclitaxel®, and due to its
molecular complexity, it has been impossible to develop synthetic pathways for its produc-
tion; this phenomenon has led to its direct extraction from the plant, with the disadvantage
that trees require up to 15 years to be able to biosynthesize the compound [20,21]. On the
other hand, the vinblastine and vincristine alkaloid-type compounds from Catharanthus
roseus present yields below 0.001% and their cost is around one billion dollars per kilogram,
but they are used for their efficacy in chemotherapies for patients with leukemia [22]; other
potentially anticancer alkaloids are colchicine, vindesine, vinorelbine, podophyllotoxin,
decotaxel, campotecin, curcumin, apigenin, and vincamine, all of which have a common
factor in their origin from plant species [23,24].

On the other hand, extracts of medicinal plants have also shown a cytotoxic effect
where the compounds participate synergistically, as has occurred with the species Aris-
tolochia baetica, Artemisia annua, and Fagonia indica, among others [25–27]. However, there
are numerous plant species in the world that lack studies. In Mexico, more than 300 en-
demic plants from different families and genera are used, of which only a proportion has
been scientifically studied [19,28,29]. On the other hand, there are reports of callus and
cells suspension cultures of plants whose main advantage is the production of bioactive
compounds in a constant and controlled manner, which is a useful alternative because
medicinal plants in wild conditions are affected by different seasonal, environmental, and
geographical conditions, among others. These factors are determinant conditions for the
constant production and yields of secondary metabolites and put medicinal plants at a
disadvantage as a sufficient source for the world’s needs in tumor pathologies.

Therefore, this paper reports the cytotoxic activity of wild plant (Figure 1A) and callus
culture (Figure 1B) extracts of A. pichinchensis as well as 2,3-dihydrobenzofuran isolated
from callus cultures.
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Figure 1. Typical plant of Ageratina pichinchensis growing naturally in the state of Morelos, Mexico. 
Adult plant (A); callus induced from leaf explants (B). 
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ferentiation, and was used as a selectivity control [30]. 

The methanolic and ethyl acetate extracts of the wild plants did not demonstrate a 
significant cytotoxic effect in any of the cell lines analyzed, even with the maximum con-
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On the other hand, it was detected that the ethyl acetate extract from wild plant 
leaves exhibited a mild cytotoxic effect on HeLa and PC-3 cell lines, with mean inhibitory 
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To corroborate the efficacy of our cytotoxic study, we used paclitaxel (PTX) as the 
reference drug; it is a chemotherapeutic drug widely used in the treatment of various 
types of cancer, including breast, cervical, prostate, and liver cancers [31,32]. The results 
reveal a remarkable sensitivity of PXT-treated cell lines with IC50 values in the nanomolar 
(nM) range, underscoring the potential efficacy of this reference drug as an anti-tumor 
agent in our research context. 

  

Figure 1. Typical plant of Ageratina pichinchensis growing naturally in the state of Morelos, Mexico.
Adult plant (A); callus induced from leaf explants (B).

2. Results and Discussion
2.1. Cytotoxic Evaluation of Extracts

We evaluated the cytotoxic activity of the ethyl acetate and methanol extracts obtained
from different parts of the wild plant A. pichinchensis, including its leaves, stems, and
callus cultures. The extracts were evaluated using concentrations of 200, 100, 50, 25, and
12.5 µg/mL against various cell lines (Table 1), including human prostate carcinoma (PC-3),
cervical cancer (HeLa), hepatocellular carcinoma (Huh-7), human hepatoma (HepG2) and
breast tumor cells (MCF-7). These cell lines represent cell types that, unfortunately, have
high incidence and mortality rates globally. In addition, cytotoxicity was evaluated in
keratinocytes (HaCat), a human epithelial cell line that exhibits normal differentiation, and
was used as a selectivity control [30].

Table 1. Cytotoxic activity (IC50) of ethyl acetate and methanol extracts of callus cultures and wild
plants of A. pichinchensis.

Cellular
Line

Wild Plant Leaves Wild Plant Stems Callus Cultures
Paclitaxel *

(µg/mL)EAE
(µg/mL)

ME
(µg/mL)

EAE
(µg/mL)

ME
(µg/mL)

EAE
(µg/mL)

ME
(µg/mL)

HeLa 161.49 ± 4.91 >200 >200 >200 94.79 ± 2.09 150.9 ± 7.5 0.017 ± 1.03 × 10−3

PC-3 188.66 ± 10.42 >200 >200 >200 121.21 ± 9.25 168.6 ± 4.5 0.013 ± 1.96 × 10−3

Huh-7 >200 >200 >200 >200 132.80 ± 8.51 >200 0.021 ± 2.73 × 10−3

HepG2 >200 >200 >200 >200 122.97 ± 2.54 >200 8.57 × 10−3 ± 1.28 × 10−3

MCF-7 >200 >200 >200 >200 191.30 ± 6.41 >200 0.018 ± 3.5 × 10−3

HaCat >200 >200 >200 >200 >200 >200 0.097 ± 12.80 × 10−3

EAE = ethyl acetate extract; ME = methanol extract. * Reference drug.

The methanolic and ethyl acetate extracts of the wild plants did not demonstrate
a significant cytotoxic effect in any of the cell lines analyzed, even with the maximum
concentration evaluated (200 µg/mL).

On the other hand, it was detected that the ethyl acetate extract from wild plant
leaves exhibited a mild cytotoxic effect on HeLa and PC-3 cell lines, with mean inhibitory
concentration (CI50) values of 161.49 µg/mL and 188.6 µg/mL, respectively. By contrast,
the methanolic extract from wild plant leaves showed no significant cytotoxic effect on
these same cell lines.

Interestingly, although the methanolic extract of stems and leaves did not show a
significant cytotoxic effect on any of the cell lines, the methanolic extract of callus cultures
did have a cytotoxic effect on the HeLa and PC-3 lines, with IC50 values of 150.9 µg/mL
and 168.6 µg/mL, respectively. However, the most prominent cytotoxic effect was ob-
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served with ethyl acetate extract of callus cultures, especially against the HeLa cell line
(IC50 = 94.79 µg/mL), followed by PC-3, HepG2, Huh-7, and MCF-7 (IC50).

To corroborate the efficacy of our cytotoxic study, we used paclitaxel (PTX) as the
reference drug; it is a chemotherapeutic drug widely used in the treatment of various types
of cancer, including breast, cervical, prostate, and liver cancers [31,32]. The results reveal
a remarkable sensitivity of PXT-treated cell lines with IC50 values in the nanomolar (nM)
range, underscoring the potential efficacy of this reference drug as an anti-tumor agent in
our research context.

These results suggest that ethyl acetate extract of A. pichinchensis callus cultures could
be a potential interest in future applications relating to the treatment of certain types of
cancer, especially in the case of the HeLa cell line. It was therefore important to delve into
the composition of the extract and identify if there is any compound to which the activity
can be attributed.

2.2. Chemical Profile of Ethyl Acetate Extract of Callus Cultures

Since the ethyl acetate extract prepared with callus cultures had an important cytotoxic
effect, the chemical content was analyzed by mass gas chromatography coupled with mass
spectrometry (Figure 2). The chromatographic and mass spectrometric analysis allowed us
to identify 11 main compounds [9].
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as Commiphora, Orchis chusua, Salvia verbenaca, and Cleidion javanicum Bl., and these com-
pounds have shown antioxidant and antimicrobial effects on gram-positive and gram-

Figure 2. Chromatogram of GC-MS analysis of ethyl acetate callus extract. The red numbers
correspond to the compounds identified in the extract.

Fatty acids (1) and (2) have been reported as constituents of many plant species such as
Commiphora, Orchis chusua, Salvia verbenaca, and Cleidion javanicum Bl., and these compounds
have shown antioxidant and antimicrobial effects on gram-positive and gram-negative
microorganisms, and their antifungal effect has also been reported [33–37]. Particularly, the
hexadecenoic acid (1) compound has been shown to be an important inhibitor of the PLA2
enzyme that plays a role in inflammation of blood vessels and favors the development of
atherosclerosis [38]. However, compound (2) has only been associated with antimicrobial
effects [39,40]. These compounds are common in the essential oils of many medicinal plants
such as Chasmanthe aethiopica, Zostera japonica, and Jatropha curcas [41–43], and their effect
has been reflected in antimicrobial and anti-inflammatory evaluations.
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In addition, according to an NIST (National Institute of Standards and Technology)
database search, the identities of the 11 compounds of the structures in Figure 3 are known,
and their biological effects have been reported.
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Figure 3. Compounds identified by GS-MS analysis in the ethyl acetate callus extract of A. pichinchensis.

The compound β-eudesmol acetate (3) belongs to the group of eudesmans; it has been
reported in species of the Asteraceae family and the main biological activities studied are
cytotoxic, antioxidant, and antimicrobial [44–46].

Regarding compound (4), it has been identified in Helianthus annuus, Achillea mille-
folium ssp. millefolium, and Ageratina grandofolia, whose biological studies showed its
antimicrobial and antifungal effect [47–49].

On the other hand, the compounds stigmasterol (5), stigmasterol glucoside (11), and
β-sitosterol (6) are considered some of the predominant compounds in plants [50,51].
Their pharmacological studies have shown their antimicrobial, anti-inflammatory, anti-
osteoarthritic, anti-tumor, cytotoxic, anti-hypercholesterolemia, and antioxidant activi-
ties [52–55].

The 2,3-dihydrobenzofuran compounds have exhibited anti-tumor, antimicrobial, an-
tioxidant, and antiprotozoal activity effects [56–58]. Some plant species that biosynthesize
2,3-dihydrobenzofuran are Aristolochia pubenscens, Polygorum barbatum, and Tagetespatula
L. [59–61]. Compound (7) has shown outstanding anti-inflammatory effects and is consid-
ered a potential pro-inflammatory factors inhibitor agent [9].

Likewise, the pentacyclic triterpene-type compound β-amyrin (8) identified in this
study has exhibited anti-inflammatory properties and significantly reduced the expression
levels of proinflammatory factors TNF-α, IL-1β, IL-6, PGE-2, and COX-2 [62,63], suggesting
that its presence in A. pichinchensis extracts may enhance its functional properties by
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blocking the expression of key enzymes involved in proinflammatory events. In addition,
the cytotoxic effect of this metabolite was reported in an MCF-7 breast cancer cell line
with IC50 15.5 µg/mL, and it has also shown a cytotoxic effect in colon, ovarian, cervical,
lung, and breast cancer lines [64,65]. Moreover, β-amyrin has been reported in species
from different families, such as Alstonia boonei, Protium heptaphyllum, and Gymnosporia
montana [66–72]. In addition, antioxidant properties in Myrcianthes pungens and Celastrus
hindsii have been reported [73,74].

On the other hand, the stigmasterol glycoside compound has revealed a cytotoxic
effect on kidney, breast, and liver tumor cells [75–77], and other reports found that it has
anti-inflammatory and antimicrobial effects [78–81]; finally, the benzofuran compound has
been reported as anti-inflammatory [9].

The compound campesterol (10) has been reported as an important phagocytosis
suppressor and inhibitor of lipopolysaccharide in RAW 264.7 macrophage cells [82]; in
addition, extracts of different plant species with anti-inflammatory effects have revealed
that compound (10) participates in the biological effects attributed to the extracts, such as
in Cajanus cajan L. seeds, Ananas comosus leaves, Allium schoenoprasum L. leaves, and in
Opuntia ficus-indica seed oil [83–86].

These scientific reports demonstrate that the cytotoxic effect observed in the ethyl
acetate extract of A. pichinchensis callus in our study is due to biologically active compounds
that act synergistically, significantly enhancing its cytotoxic effect on PC-3 and HeLa cell
lines. This chemical content is constant, because the callus are cultured under controlled
conditions and their nutrients are the same. This advantage has allowed numerous callus
cultures to be a source of bioactive compounds, opening up the applications of the cultures
in the design of alternative treatments for health problems.

Due the compound 2,3-dihydrobenzofuran having been found to be related to an
anti-inflammatory effect with pro-inflammatory potential, it was selected to evaluate its
cytotoxic effect; the rest of the compounds have been deeply studied at a pharmacological
level, and according to the literature, 2,3-dihydrobenzofurans commonly exhibits cytotoxic,
antiviral, antioxidant, antimicrobial, and anti-tumor activities [86,87].

2.3. Cytotoxic Effect of the Compound 2,3-Dihydrobenzofuran

Considering the pharmacological properties of 2,3-dihydrobenzofurans, we analyzed
the cytotoxic effect of compound (7) on the study cell lines. The results show a remarkable
effect on the inhibition of HeLa cells, while the rest of the cell lines revealed no inhibitory
effect (Figure 4).

It is notable that HeLa cervical cancer cells were the most sensitive to the treatment
using 2,3-dihydrobenzofuran (7) (Table 2) with an IC50 of 23.86 µg/mL, which is 3.97 times
lower than the IC50 of ethyl acetate extract of callus cultures of A. pichinchensis. This may
suggest that the cytotoxic activity observed in the extract is associated with the effect of
this compound; selectivity against cancer cells was also observed. The selectivity index is
commonly reported in the literature as a ratio of IC50 values calculated for healthy cells
and cancer cells [30,88], with values greater than 1 indicating desirable selectivity against
cancer cells. The selectivity index of 2,3-dihydrobenzofuran (7) was 5.17, 1.53, 1.54, 1.65,
and 1.15 for HeLa, PC-3, Huh-7, HepG2, and MCF-7 cells, respectively.

Table 2. Cytotoxic activity of 2,3-dihydrobenzofuran (7) against different cancer cell lines.

Cell Cancer Line IC50 (µg/mL)

HeLa 23.86 ± 2.5
PC-3 80.36 ± 4.63

Huh-7 79.98 ± 3.78
HepG2 74.62 ± 2.02
MCF-7 107.20 ± 1.52
HaCat 123.50 ± 15.17
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This finding is outstanding because compound (7) is only biosynthesized by callus
cultures, but not in the wild plants of A. pichinchensis, which provides a notable contribution
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from callus cultures, as a controlled and stable source of compounds of therapeutic interest.
Moreover, compound (7) exhibits chirality, which complicates the development of synthesis
routes to obtain it. On the other hand, our research group has reported the production
of the compound through suspension cell cultures in flasks as well as in airlift reactors,
significantly improving its production and possible scaling [10,11], which provides a viable
and sustainable alternative to produce the compound.

Methanolic and ethanolic extracts of other wild plant species have reported important
cytotoxic effects against HeLa cells, suggesting that there are still plants that can be a source
of important cytotoxic compounds; for example, Artemisia ludoviciana, Consolida orientalis L.,
Ferula assa-foetida L., Coronilla varia L., Moringa oleifera, and Ficus carica L. [89–93]. Likewise,
pure compounds have also exhibited a significant inhibitory effect on cell proliferation of
the HeLa line, such as the compound benzobijuglone, which was isolated from Juglans
mandshurica, and the gymnemagenol compound from Gymnesa sylvestre [94,95].

Therefore, it is necessary to continue establishing callus cultures of medicinal plants
that are a potential source of cytotoxic compounds, and it is even possible to biosynthesize
them in species that have not reported a cytotoxic effect, as occurs with A. pichinchensis,
which is widely used in traditional Mexican medicine. It is used to treat diseases caused by
fungal and skin infections and wounds, as well as to relieve pain and treat gastric ulcers,
and anti-inflammatory effects have been reported. Extracts from this plant have shown
antifungal activity against Trichophyton mentagrophytes, T. rubrum, and Candida albicans, and
have shown therapeutic effectiveness in patients with vulvovaginal candidiasis [7,96].

3. Materials and Methods
3.1. Plant Material from the Wild Plants

The plants were collected in their natural habitat in the San Juan Tlacotenco neighbor-
hood of the municipality of Tepoztlán in the state of Morelos, Mexico. Plants were identified
by our research group in previously reported works and assigned the voucher number
39913. The specimen is under protection in the HUMO herbarium of the Autonomous
University of the State of Morelos (UAEM), whose taxonomic identification was carried
out by Biol. Gabriel Flores Franco [9].

3.2. Plant Material from Callus Cultures

Calluses were previously established by our research group using leaf explants in
Murashige and Skoog culture medium supplemented with 30 g/L sucrose, 1 mg/L naph-
thaleneacetic acid, 0.1 mg/L kinetin, and 3 g/L phytagel [8]. The culture medium was
sterilized at 121 ◦C, 15 psi, for 15 min using an autoclave. Calluses were subcultured every
20 days and incubated at 25 ± 2 ◦C under a photoperiod of 16 h with white fluorescent
light (50 µmol/m2 s).

3.3. Obtaining Organic Extracts

The wild plants were dried at room temperature and the leaves were separated from
the stems and ground to a fine powder. For the extraction process, 145.18 g of dried leaves
and 78.13 g of dried stems were used. On the other hand, 13.20 g of ground dried calluses
were used. The dry plant material (leaves and stems) and dry biomass (callus culture)
were extracted by maceration (72 h, at room temperature) with ethyl acetate. The same
biomass was then extracted with methanol with three extraction cycles each. The solvent
was removed by distillation under reduced pressure, using a rotary evaporator, finally
obtaining three ethyl acetate extracts, i.e., leaves (17.20 g), stems (7.31 g), and callus culture
(0.924 g), and three methanol extracts, i.e., leaves (59.09 g), stems (28.47 g), and callus
culture (2.346 g). This methodology is summarized in Figure 5.
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3.4. Cytotoxic Assay

PC-3 (prostate), HeLa (cervical), MCF-7 (breast), and Huh-7 and HepG2 (hepatocellu-
lar) human cancer cell lines were purchased from ATCC (Manassas, VA, USA) (Figure 5).
We also included an immortalized human epidermal keratinocyte line (HaCat) as a control
of non-cancerous cells [90]. PC-3 was grown in RPMI-1640 medium (Sigma Aldrich, St.
Louis, MO, USA), while Huh-7, HepG2, HeLa, and HaCat were grown in DMEM medium
(Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% SFB
and 2 mM glutamine. All cultures were incubated at 37 ◦C in 5% CO2.

Cells (4× 103 cells/well) were seeded in 96-well plates. The cells were treated with the
investigated samples (at 200, 100, 50, 25, and 12.5 µg/mL) and incubated at 37 ◦C in 5% CO2
for 48 h. Paclitaxel was used as a positive control. For determining the number of viable
cells in proliferation we used a CellTiter 96® AQueous One Solution Cell Proliferation
Assay kit (Promega, Madison, WI, USA), following the manufacturer’s instructions. Cell
viability was determined by absorbance at 450 nm using an automated ELISA reader
(Promega, Madison, WI, USA). Stock solutions of all compounds were prepared in DMSO
at a maximum concentration of 0.5%. The experiments were conducted in triplicate in
three independent experiments. Data were analyzed using the Prism 8.0 statistical program
(Graphpad Software Inc., La Jolla, CA, USA) and the half-maximal inhibitory concentrations
(IC50) were determined by regression analysis.

3.5. Isolation of Compounds from Callus Culture

For the isolation of the compounds, the ethyl acetate callus extract was used. Therefore,
we followed the methodology previously reported by our working group [8] and we found
high reproducibility. Gas chromatography coupled with mass spectrometry was used for
identification of the compounds, and 2 mg of the extract was weighed and dissolved in
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1 mL of chloroform to be analyzed by GC-MS (NIST 1.7a). The harvested calluses were
dried in an oven at 40 ◦C, and the dry biomass (14.76 g) was extracted three times with
100 mL of ethyl acetate by maceration; each extraction took place every 72 h at room
temperature. The solvent was evaporated under reduced pressure and a yellow viscous
extract (0.6859 g) was obtained. The ethyl acetate extract was fractionated on an open
chromatographic column pre-packed with 18.76 g of silica gel (70–230 mesh; Merck), and
eluted with a gradient system of n-hexane/ethyl acetate (90:10, 80:20, 70:30, 60:40, 50:50,
40:60, 30:70, and 00:100 v/v). Fractions of 10 mL were collected to obtain 45 fractions
and they were monitored by TLC (ALUGRAM® SIL G/UV254 silica gel plates). The
fractions that showed similarity in TLC were grouped, obtaining 7 groups: GE-1 (1–16;
0.1802 mg), GE-2 (17–18; 15.6 mg), GE-3 (19–20; 78.3 mg), GE-4 (21–25; 40.8 mg), GE-5
(26–36; 81.6 mg), GE-6 (37–40; 70.6 mg), and GE-7 (41–45; 92.6 mg). The GE-1, GE-2, and
GE-4 fractions were analyzed by GC-MS; this analysis indicated that the GE-1 fraction was
made up of a mixture of n-hexadecanoic acid (1) and the ester of hexadecanoic acid (2).
Fraction GE-2 was made up of β-eudesmol acetate (3) and desmethoxyencecalin (4), and
purification of fraction GE-3 by column chromatography using a gradient of n-hexane-ethyl
acetate (100:00 → 70:30) provided 30 fractions. Fractions 15–22 eluted with n-hexane-
ethyl acetate (90:10) contained stigmasterol (5) and β-sitosterol (6), and fractions 23–28
showed a single compound, identified by 1H and 13C NMR and by comparison with their
values reported in the literature [10] as (2S,3R)-5-acetyl-7,3-dihydroxy-2-(1-isopropenyl)-
2,3-dihydrobenzofuran (15.3 mg, 7). The GE-4 fraction was made up of α-amyrin (8),
3-epilupeol (9), and campesterol (10). Compound (11) was identified in the GE-5 fraction
by direct comparison with an authentic sample available in the laboratory.

4. Conclusions

For the first time, it is shown that the chemical content of the ethyl acetate extract
of A. pichinchensis callus cultures exhibits a significant cytotoxic effect on the HeLa cell
line, whose activity is suggested to be attributed to the 2,3-dihydrobenzofuran compound.
These results contribute to the development of alternatives for the treatment of cervical
cancer, which has become a health problem causing many deaths worldwide; moreover,
this finding provides the possibility of new applications of callus culture extracts, since wild
plant extracts did not show the cytotoxic effect. This is because in vitro cultures produce
the compounds of interest in a constant and controlled manner, while wild plants are
dependent on environmental, geographical, seasonal, and other factors.
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