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Abstract: Wound care is a global health issue with a financial burden of up to US $96.8 billion an-

nually in the USA alone. Chronic non-healing wounds which show delayed and incomplete healing 

are especially problematic. Although there are more than 3000 dressing types in the wound man-

agement market, new developments in more efficient wound dressings will require innovative ap-

proaches such as embedding antibacterial additives into wound-dressing materials. The lack of 

novel antibacterial agents and the misuse of current antibiotics have caused an increase in antimi-

crobial resistance (AMR) which is estimated to cause 10 million deaths by 2050 worldwide. These 

ongoing challenges clearly indicate an urgent need for developing new antibacterial additives in 

wound dressings targeting microbial pathogens. Natural products and their derivatives have long 

been a significant source of pharmaceuticals against AMR. Scrutinising the data of newly approved 

drugs has identified plants as one of the biggest and most important sources in the development of 

novel antibacterial drugs. Some of the plant-based antibacterial additives, such as essential oils and 

plant extracts, have been previously used in wound dressings; however, there is another source of 

plant-derived antibacterial additives, i.e., those produced by symbiotic endophytic fungi, that show 

great potential in wound dressing applications. Endophytes represent a novel, natural, and sustain-

able source of bioactive compounds for therapeutic applications, including as efficient antibacterial 

additives for chronic wound dressings. This review examines and appraises recent developments 

in bioactive wound dressings that incorporate natural products as antibacterial agents as well as 

advances in endophyte research that show great potential in treating chronic wounds. 
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1. Introduction 

Wound care is a global health issue. A retrospective analysis of the Medicare dataset 

for 2014 in the USA indicated that 8.2 million Medicare beneficiaries had at least one type 

of wound or related infection [1], indicating that the financial burden equates to between 

US $28.1 billion to US $96.8 billion, including the cost of infection management [2]. 

Wound repair mechanisms consist of four main phases including haemostasis, in-

flammation, proliferation, and dermal remodelling. In the haemostasis phase, a blood clot 

is formed to prevent exsanguination from vascular damage. In this step, platelet receptors 

interact with extracellular matrix proteins to promote adherence to the blood vessel wall. 

The second phase of wound healing is inflammation which is the primary defence against 

pathogenic wound invasion, followed by proliferation as the third phase. In this phase, 

activation of keratinocytes, fibroblasts, macrophages, and endothelial cells will help the 

process of wound closure, matrix deposition, and angiogenesis. Finally, in the matrix re-

modelling phase, a fibrin clot is deposited leading to the formation of a scar. For more 
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information, readers can refer to review papers by Wilkinson et al. [3] and Carr et al. [4], 

scrutinising various mechanisms of wound healing. 

There are two classes of wounds—acute and chronic. Acute wounds are injuries to 

the skin which are healed by the normal process of wound repair [5]. Wounds that have 

not progressed through the normal repair process and remain unhealed for an extended 

period are referred to as chronic wounds. The latter type of wound is a burden to the 

healthcare system [6], to the extent that 2% of the national health expenditure in Australia 

is spent on these types of wounds, equivalent to more than AUD 3.5 billion annually [7]. 

The delayed and incomplete healing process of chronic non-healing wounds exposes 

patients to a high risk of infection. Thus, for severe and chronic wounds, more advanced 

treatments and wound dressings should be applied to assist with accelerating wound 

healing [8] and preventing infection [9]. 

Among the more than 3000 wound dressing types on the wound management mar-

ket, different characteristics can be achieved based on the intrinsic properties of the poly-

mers used in wound dressing preparation. These characteristics include their ability to 

absorb exudate, combat infection, relieve pain, promote autolytic debridement, or even 

provide and maintain a moist environment at the wound surface. However, there is no 

wound dressing that possesses all these properties. The type of wound dressing is selected 

based on the patient’s health status, wound type, location, depth, amount of exudate, 

wound adhesion, and economic considerations [10, 11]. Hydrogels, foams, dermal 

patches, films, nanoparticles, hydrocolloids, nanofibers, and membranes are the main 

groups of dressings, and their description, characteristics, and polymers used to make 

them are summarised in Table 1 [10]. 

Table 1. Different types of wound dressings, their wound target, and polymer type. 

Variety Description Advantages Disadvantages 
Wound Type Ap-

plication 
Polymer Ref. 

Hydrogels 

Water-absorbent 

cross-linked poly-

meric networks re-

sulting from the re-

action of mono-

mers 

Efficient flexibility, good 

ability in swelling and 

sustaining a significant 

amount of water, mois-

turizing, removal of ne-

crotic tissue, good poros-

ity, and monitoring the 

wound without remov-

ing the dressing 

Inability to absorb 

enough exudates lead-

ing to bacterial prolif-

eration, and low me-

chanical strength 

Chemotherapy peels 

Polyethylene ox-

ide, polyvinyl 

pyrrolidine, Pol-

yvinyl alcohol 

[10-14] 

Ulcers 

Laser resurfacing 

Average thickness 

wounds 

Donor graft sites 

and artificial organ 

wounds 

Hydrocol-

loids 

Colloidal material 

(gel) constituted 

with elastomers 

and adhesives in 

the form of films or 

sheets 

Excellent exudate ab-

sorption properties, 

transparency, enhanced 

angiogenesis, and for-

mation of granulation tis-

sue 

Not permeable to gas, 

vapor, water, and bac-

teria, their debriding 

capability, skin macer-

ation, and producing a 

foul smell 

Chronic ulcers 

Pectin, carbox-

ymethylcellu-

lose, gelatin, and 

cellulose 

[10, 13, 15, 

16] 

Burns 

Average thickness 

wounds 

Donor graft sites 

Foams 

A porous structure 

using capillary ac-

tion as its mecha-

nism to absorb flu-

ids 

Exudate absorbance, pre-

venting bacteria inva-

sion, maintaining suffi-

cient moisture at the 

wound surface, being re-

moved easily, protecting 

the skin around the 

wound, maintaining an 

efficient temperature, 

mechanical protection, 

being nontoxic, being 

cost-effective with a long 

shelf life 

Drying out the wound 

in case of minimal or 

no exudate presence 

and maceration of the 

surrounding skin in 

case of exudate satura-

tion in dressing 

Chronic wounds 

Polyurethane, 

silicone, silk fi-

broin 

[13, 17-21] 

Burns 

Mohs surgery and 

wounds 

Laser resurfacing 

wounds 
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Films 

Consists of adhe-

sives, porous, and 

thin transparent 

polymers 

The possibility of having 

a high mechanical 

strength, high water 

transmission rate, pro-

tecting the wound 

against bacterial infection 

The possibility of hav-

ing a low mechanical 

strength 

Superficial wounds 

Soy protein iso-

lates, chitosan, 

polyvinyl alco-

hol 

[13, 22-24] 

Laser wounds 

Surgery defect sites 

Skin tears 

Dermal 

patches 

Dressings con-

sisted of a multi-

layered structure 

with an impermea-

ble excipient-

loaded film, drugs, 

and a release liner 

Suitable for skin adhe-

sion, not having a liquid 

reservoir, controlling the 

drug delivery rate 

Needing flux modera-

tion in case of loading 

with highly soluble 

drugs, and decrease in 

drug release rate with 

wear time, not suitable 

for most of the drugs 

Hypertension 
Poly(vinyl pyr-

rolidones), 

poly(vinyl alco-

hol) 

[25-30] 

Topical wounds 

Fibers and 

nanofibers 

Polymeric fibers 

produced with 

electrospinning 

process 

Excellent mechanical 

properties, thermal sta-

bility, antimicrobial ac-

tivity, biodegradability, 

control in water vapor 

transmission rate, oxygen 

permeability, fluid drain-

age ability, high porosity, 

and high surface area 

Higher cost of produc-

tion in some cases, 

hard to produce fibers 

with diameters less 

than 10 nm 

Partial thickness 

burns 
Polyurethane, 

collagen, silk fi-

broin, poly-

caprolactone, 

poly (lactic-co-

glycolic acid), 

polyethylene ox-

ide, etc. 

[31-40] 

Diabetic ulcers 

Bone bleeding 

Chronic infected 

wounds 

Acute wounds 

Venous ulcers 

Pressure ulcers 

Membranes 
A thin semi-perme-

able barrier 

Porous structure, trans-

parency, excessive loss of 

water, the ability to con-

tain an occlusive layer to 

impede microbial inva-

sion 

Cytotoxicity in some 

cases 

Superficial wounds Pectin, collagen, 

chitosan, chitin, 

alginate, zein, 

polycaprolac-

tone, polyvinyl 

acetate, polyvi-

nyl alcohol, pol-

ytetrafluoroeth-

ylene, cellulose, 

etc. 

[41-52] 

Frictional wounds 

Skin-scratching 

wounds 

Skin donor sites 

Skin with external 

contamination 

Polymer-

drug conju-

gates 

Polymer-based wa-

ter-soluble 

nanocarriers conju-

gated with bioac-

tive agents 

Improving the water sol-

ubility of the hydropho-

bic drugs, enhancing the 

pharmacokinetic profile 

of the conjugated drug, 

extending the volume of 

distribution, and protect-

ing the conjugated drug 

against degradation 

Limitations to be ap-

plied on a large scale, 

low stability in vivo, 

short half-life, and im-

munogenicity 

Diabetic wounds 

such as venous leg 

and lower limb ul-

cers 

N-(2-hydroxy-

propyl) methac-

rylamide copol-

ymer, polyglu-

tamic acid, 

Poly(ethylene 

glycol), Polyam-

idoamine, hya-

luronic acid, 

poly (vinyl 

ether-co-maleic 

anhydride), poly 

(vinyl pyrroli-

done), etc. 

[53-61] 

Studies show that the challenges of wound dressings linked to wound infection are 

significant. In most acute and chronic infections, a mixed population of both aerobic and 

anaerobic microorganisms is observed [62] and yet to be eliminated. This challenge em-

phasises the importance of strategies that target the most common bacteria on the wound 

surface. Data from recent studies on various wound infections (e.g., surgical incisions, 

burns, abscesses, and traumatic wounds) confirm the presence of Pseudomonas sp. and 

Staphylococcus aureus as the most common Gram-negative and Gram-positive bacteria, re-

spectively, on wound surfaces with a share of 58.4% for Gram-negative and 41.6% for 
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Gram-positive bacteria [63]. The percentage of each group of bacteria can be observed in 

detail in Figure 1. 

Figure 1. Distribution of the wound infections by: (a) the Gram-negative bacteria and (b) the 

Gram-positive bacteria. 

There is a significant need for antibacterial wound dressings for controlling and re-

ducing bacterial infections. One of the best approaches is wound dressings containing an-

tibiotics as an additive. Numerous reports can be found on wound dressings containing 

antibiotic additives and their effects on wound dressings [64-66]. 

By using an efficient amount of antibiotics, suitable treatment of wound infections 

can be achieved. However, high amounts of antibiotics will cause systemic toxicity [67]. 

In order to overcome these detrimental effects, the antibacterial compounds and antibiot-

ics are embedded in wound dressings for sustained and controlled drug release [10]. A 

lack of new antibiotics and antibacterial agents, as well as widespread distribution and 

misuse of these antibacterial compounds, has caused an increase in antimicrobial re-

sistance (AMR). It has been proposed that AMR has the potential to kill ten million lives 

by 2050 worldwide, costing an estimated US $100 trillion [68]. This can result in the return 

to a pre-antibiotic era, with infections caused by multiple-resistant pathogens [31]. Thus, 

there is an urgent need for sustainable novel antibacterial additives to overcome this major 

clinical problem. 

Looking at the newly approved drugs between 1981 and 2019, followed by the share 

of each source in previous researched studies, indicates that the share of natural or natu-

rally inspired approved drugs has increased over time [69, 70]. One of the most important 

sources of these novel pharmaceuticals is plants, which form a large portion of these 

newly approved drugs. Botanical-based natural antibacterial compounds have attracted 

great attention in recent years, indicating their great potential to be used as antibacterial 

additives in different medical applications including wound dressings. 

There has always been a significant need for novel antibacterial additives to improve 

wound dressing characteristics. After investigating the importance of botanical-based an-

tibacterial compounds as one of the most important sources of pharmaceuticals, the effi-

ciency of the resultant developed dressings using these additives has been scrutinised in 

each of the main groups of polymer wound dressings. The focus of this review is on the 

dressings containing additives against targeted bacteria, including P. aeruginosa, S. aureus, 

Escherichia coli, and other wound-infecting bacteria. 
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2. Bioactive Wound Dressings (Polymer + Additives) 

2.1. Hydrogels 

Hydrogel wound dressings containing natural antibacterial bio-additives have been 

used extensively for wound treatments. These additives are able to optimise the antibac-

terial properties against the unfavourable increase of bacterial proliferation in hydrogel 

wound dressings [11, 71]. 

Plant-based antibacterial additives have been used in hydrogels to increase their ac-

tivity against bacteria in infected wounds [71]. One of the most important class of addi-

tives in this group are the essential oils. The presence of essential oils as hydrophobic 

compounds in the hydrogel texture leads to good mechanical properties, degradability, 

improvement of the porous structure, and antioxidant properties [72]. Altaf et al. used a 

solution casting method to produce a polyvinyl alcohol/starch hydrogel membrane con-

taining various concentrations of clove essential oil. The products resulted in excellent 

antibacterial activity, with a minimum inhibition zone of 34 ± 0.42 mm against S. aureus 

and 31 mm against E. coli [71]. The synthesis scheme has been demonstrated in Figure 2. 

Other essential oils used in hydrogels are lavender and tea tree oil [73]. Using these two 

essential oils in gellan gum hydrogels at 25% w/w resulted in an efficient zone of inhibition 

of 20 mm against S. aureus and 30 mm against E. coli in standard disc diffusion assays [73]. 

Several studies have used different essential oils in hydrogels, such as basil oil [74], tea 

tree oil [75], sweet fennel oil [76], rosemary essential oil, orange essential oil [77], and Thy-

mus daenesis oil [78], to improve their antibacterial activity. 

 

Figure 2. Synthesis scheme of polyvinyl alcohol/starch hydrogel membranes. 

In addition to essential oils, plant extracts have been used as additives in hydrogel 

wound dressings. In a study by Shukla et al., a bioactive hydrogel dressing containing an 

ethanolic extract of Morus alba leaves was used against diabetic wounds. The apigenin 
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derived from the extract was tailored with gellan gum-poly ethylene glycol-chitosan hy-

drogels and screened in vivo for its effectiveness. The results indicated that the apigenin 

additives caused effective stimulation of wound contraction and increase in the collagen 

content in diabetic as well as normal wound tissues, which leads to an accelerated wound 

healing process [79]. The antibacterial activity of Morus alba extracts against S. aureus has 

been previously investigated, resulting in a minimum inhibitory concentration (MIC) of 

250 µg/mL [80]. 

2.2. Hydrocolloids 

Hydrocolloids have been previously used along with natural antibacterial additives 

to improve their characteristics against wound bacteria and reduce the unpleasant odour 

[81]. These additives are the extracts of some pre-approved antibacterial plants, such as 

Centella asiatica (CA) and Phellodendri amurensis (PA) [82, 83], which have been used in 

different studies against several bacteria. After loading CA plant extracts in alginate hy-

drocolloids using a hot melting method, Jin et al. showed excellent swelling, drug release, 

and mechanical properties compared with similar commercial products. Enhanced heal-

ing process in excision, infection, and abrasion wounds were observed in a rat wound 

model, which suggests that this extract is a potential candidate for the treatment of various 

wounds [82]. The preparation technique has been demonstrated in Figure 3. Antibacterial 

activity tests of the CA extracts at 100 µg/mL against P. aeruginosa, S. aureus, and E. coli 

resulted in zones of inhibition between 28–30 mm [83]. 

 

Figure 3. Preparation technique of alginate hydrocolloids using hot melt coating. 

Another application of hydrocolloids containing CA extracts is skin treatment. Kuo 

et al. produced an anti-acne patch with gelatin/chitosan (GC) bilayer hydrocolloid 

patches. This anti-acne bilayer patch was loaded with Cortex PA and CA extracts. The 

results indicated that CA could reduce scar formation and improve the wound healing 

process. Water retention rate, weight loss rate, antibacterial activity, and in vitro cytotox-

icity were tested as well. The results indicated that skin fibroblast cell viability was 
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accelerated and the water retention of the patches was improved, which contributed to 

the exudate absorption [84]. 

2.3. Foams 

Foams are another group of polymer wound dressings that have been previously used 

with additives to accelerate wound recovery. There are some reports on using plant-derived 

extracts as antibacterial agents in foam-based dressings. Nantaporn et al. prepared polyure-

thane foam sheets containing silver and asiaticoside (AS) (an extract derived from Centella 

asiatica plant) for healing dermal wounds. AS in a foam formulation played an essential role 

to increase the healing rate. The MIC of the additives against P. aeruginosa, S. aureus, E. coli, 

and B. subtilis were in a range of 0.4–3.1 ppm. However, the foam dressing released 4–5 ppm 

of the additive. The clear zones from disc diffusion assays were statistically larger than other 

tested formulations [21]. AS has been proved to be efficiently mixed with other polymers in 

different studies. Phaechamud et al. developed an absorbent chitosan-based dressing con-

taining silver and asiaticoside as an additive. This dressing showed a successful controlled 

drug release along with angiogenic activity, indicating the potential to be further utilised as 

absorbents in medical wound dressings [85]. In what follows, the scheme of the preparation 

technique has been demonstrated in Figure 4. 

 

Figure 4. Preparation scheme of chitosan-based bioactive foams. 

The other group of natural plant-based antibacterial additives used in foams is es-

sential oils. The antibacterial activity of plant essential oils such as oregano and thyme has 

been proven previously, with MIC values of 0.0781 µL/mL [86] and 0.125 mg/mL [87], 

respectively. Adding these oils to a natural polymer such as sweet potato starch-based 

foam, along with their antibacterial activity, may lead to a lower degradation under the 

thermoforming temperature and higher mechanical resistance [88]. 

2.4. Films 

Films have previously been used as bioactive wound dressings [10]. These types of 

wound dressings have been used with both plant extracts and essential oils. Some studies 

have shown the utilisation of different plants and plant extracts in film dressings. These 

plants are normally chosen based on their healing and antibacterial properties. Koga et al. 

developed an alginate film containing Aloe vera (Aloe barbadensis Miller) gel [89]. Aloe vera 
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has already exhibited several pharmaceutical activities, such as the ability to promote the 

healing process as well as the ability to stimulate the proliferation of fibroblasts [90]. After 

characterising the different aspects of films containing Aloe vera, the results indicated ad-

equate transparency, uniformity, mechanical tensile strength, and hydration capacity, 

which makes them an ideal candidate to be used as dressings. Furthermore, the films 

modulated the inflammatory phase, increased angiogenesis, and stimulated collagenesis, 

which leads to improved healing [89]. Figure 5 demonstrates the preparation process for 

these types of film. 

 

Figure 5. Preparation process of Aloe vera-containing alginate films. 

The second group of additives used in film wound dressings are essential oils. Sev-

eral types of essential oils have been used as an additive to optimise the antibacterial prop-

erties of film dressings. Clove, cinnamon, chamomile, thymol, lavender, tea tree, pepper-

mint, Eucalyptus globulus juvenile, lemongrass, and lemon are some of the essential oils 

that have been used as antibacterial additives [91-95]. 

A combination of gelatin with clove essential oil (CEO) and hydrotalcite (HT) nano-

particles was prepared by Guilherme et al. as a wound dressing. In this study, CEO-con-

taining films exhibited bactericidal activity against S. aureus and E. coli. HT was also hy-

pothesised to relate positively to the antimicrobial performance of using films and en-

hance physical properties, which was lowered by the CEO [91]. 

One of the challenges in preparing films containing essential oils is choosing the 

proper oil to be used in the process. In this context, comparisons have been made between 

using each type of essential oil in a wound dressing environment. Liakos et al. used vari-

ous types of essential oils such as lavender, tea tree, peppermint, Elicriso italic, cinnamon, 

Eucalyptus globulus, lemon, and lemongrass as an additive in sodium alginate matrixes. 

The produced films were tested for their antibacterial and anti-fungal properties. Among 

all the samples tested against E. coli, the cinnamon essential oils showed the largest inhi-

bition zone of 12 mm, followed by lemongrass essential oil with an inhibition zone of 3 

mm. The results of the antibacterial tests along with their stability indicates that films con-

taining essential oils have the potential to be used as antibacterial wound-dressing mate-

rials [93]. 

2.5. Dermal Patches 

The drugs used in these types of wound dressings should be penetrable to the skin, 

which makes most drugs unsuitable in this application. Solubility and diffusivity are two 

factors that determine the maximum skin penetration flux [96]. Some botanical-based ad-

ditives have been used to improve the characteristics of dermal patches used in skin care 

and the prevention of mosquito bites [97]. In a study by Sroczyk et al., a polyimide patch 
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was loaded with blackcurrant seed oil for atopic skin hydration studies. The application 

of these patches was against atopic dermatitis as a common disease among children. In 

this disease, gamma-linoleic acid is decreased, so the blackcurrant seed oil was used to 

restore the gamma-linoleic acid deficiencies. Based on the results, these patches adjust to 

skin movements, are stable with plant oils, and exchange air due to their high permeabil-

ity, which makes them a good candidate to be used in skin care and treatment [97]. The 

process scheme has been demonstrated in Figure 6. There are different types of botanical-

based oils with a high level of gamma-linoleic acid that can be used as additives instead 

of blackcurrant seed oil, such as Nigella sativa [98], borage [99], hempseed [100], and even-

ing primrose [101]. 

 

Figure 6. Process scheme of dermal patches containing natural additives. 

As previously mentioned, another application of botanical-based skin patches is in 

the prevention of mosquito bites. In this case, essential oils as additives in patches act as 

insect repellents. Chattopadhyay et al. developed a patch from an optimised mixture of 

cinnamon, lemongrass, and eucalyptus essential oils embedded into ethylcellulose and 

polyvinylpyrrolidone polymer patches. These patches were shown to be safe and effective 

and to contain good physico-chemical properties at room temperature. The additives in 

this case are not only environmentally friendly but also make the patch more effective 

than the previous synthetic commercial products by providing complete protection for a 

longer time [102]. 

2.6. Fibers and Nanofibers-Based Electrospun Polymers 

Bioactive agents added during nanofiber production have been shown to improve 

the wound healing process [10]. There are several strategies to tailor bioactive additives 

into the fibres, including emulsion electrospinning, blend electrospinning, co-axial elec-

trospinning, and surface immobilization [103]. 

There are several studies indicating the use of natural botanical-based bio-additives 

such as plant extracts and essential oils in electrospun polymer wound dressings. 

Plant extracts have been added to the polymer electrospun fibres based on the final 

properties required for the wound dressing. Numerous types of plant extracts have been 

used as an additive to nanofibers such as Azadirachta Indica [104], tumeric [105], 

Clerodendrum phlomidis [106], Gymnema sylvestre [107], Carica papaya [108], Aloe vera [109], 

Lawsonia inermis [110], Garcinia mangostana [111], mucilage [112], clove [113], Ataria 
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multiflora [114], pomegranate [115], Achillea lyconica [116], corn [117], fenugreek [118], 

henna [119], and chamomile [120]. 

These extracts have been proved to be effective in diabetic wound dressings. In a 

study by Ranjbar-Mohammadi et al., curcumin extracted from turmeric was used as an 

antibacterial additive in polycaprolactone electrospun fibres. The experiments indicated 

that the wound dressing was active for the treatment of diabetic wounds. Exhibiting an 

MIC of 62.5 µg/mL against P. aeruginosa [121], curcumin showed a more accelerated 

wound healing process in comparison with the blank sample [105]. Another application 

of nanofibers containing plant extracts is skin tissue engineering. Henna leaf extract-

loaded chitosan-based nanofibrous mats were used as a wound dressing by Yousefi et al. 

The final product displayed efficient antibacterial activity due to Lawsonia inermis (Henna) 

leaf extracts in mats (2 wt%), with zones of inhibition against S. aureus and E. coli of 18 

mm and 25 mm, respectively. The presence of henna extract caused a reduction in the 

fibre diameter of the mats, which makes it favourable for wound healing applications due 

to increasing the surface area. Furthermore, the combined advantageous features includ-

ing high biocompatibility, synergistic antibacterial activity, and acceleration of wound 

healing can be observed by using this additive in a mixture with polymer nanofibers [119]. 

The next group of botanical-based additives used in nanofiber polymer wound dress-

ings is essential oils. Different types of essential oils have previously been used as addi-

tives in a mixture with polymer nanofibers targeting wound bacteria. These plants include 

lavender oil [122], thyme oil [123], cinnamon oil [124], and rosemary/oregano oil [125] that 

have shown antibacterial activity against the most common wound bacteria such as S. 

aureus, E. coli, and P. aeruginosa [122-126]. 

An improved wound healing device using encapsulation of cerium oxide (CeO2) and 

peppermint oil (PM oil) on polyethylene oxide/graphene oxide (PEO/GO) electrospun 

polymeric mats was shown by Suganya et al. This study involved testing against Gram-

positive bacteria (S. aureus) and Gram-negative bacteria (E. coli) and evaluated in vitro 

cytotoxicity. The results indicated that the CeO2-PM oil-PEO/GO nanofibrous mats were 

less toxic to the L929 fibroblast cells. Furthermore, evaluations demonstrated that the in-

corporation of the plant-based bioactive agent and CeO2 in a nanofibrous mat accelerates 

re-epithelialization and collagen deposition, which makes the system an efficient potential 

candidate to be applied as wound dressings with skin infections [127]. The MIC values for 

peppermint essential oils are 3.1 µL/mL and 6.3 µL/mL against S. aureus and E. coli, re-

spectively [128]. In what follows, the preparation technique of CeO2-PM oil-PEO/GO nan-

ofibrous mats is demonstrated in Figure 7. 
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Figure 7. Preparation technique of CeO2-PM oil-PEO/GO nanofibrous mats. 

2.7. Membranes 

Another group of wound dressings that have been used in combination with plant-

based natural additives are membranes. Both essential oils and plant extracts have shown 

the ability to optimise the characteristics of the final dressings. Egri et al. developed Hy-

pericum perforatum oil-loaded polycaprolactone membranes to be used in wound dressing 

applications. After investigating the mechanical strength and antibacterial activity, the 

product exhibited sufficient elasticity and activity against S. aureus and E. coli, with inhi-

bition zones of 8–13 mm and 10–12.2 mm, respectively. Not having the risk of adhering to 

the wound surface, not having apoptotic/necrotic effects, being biocompatible, and having 

a proliferative effect on cells are some of the advantageous features of the Hyperium perfo-

ratum-loaded membranes [129]. The preparation scheme of this membrane is demon-

strated in Figure 8. 
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Figure 8. Preparation scheme of essential oil-based polycaprolactone membranes. 

Another type of essential oil used in membranes is Artemisia argyi. The efficiency of 

this essential oil has previously been investigated against wound bacteria such as S. au-

reus, P. aeruginosa and E. coli, with MIC values of 16 µg/mL, 64 µg/mL, and 32 µg/mL, 

respectively [130]. Ting-Ting et al. fabricated Artemisia argyi oil-microcapsule (AAO-

MC)/PVC fibrous membrane wound dressings and showed that the production process 

was enhanced using emulsification-internal gelation. The results showed excellent stabil-

ity and a slow release of the oil. Furthermore, the produced membrane showed good wa-

ter vapor transmission and high hydrophilicity as well as an excellent antibacterial rate of 

94.3%, which is calculated by the difference between the colony counts of the blank spec-

imen and the colony counts of culture medium that has been cultured with a bacterial 

solution for a specified time divided by the colony counts of the blank specimen [131]. 

Based on the targeted bacteria and the final characteristics, other types of essential 

oils may be used as additives, such as cabreuva (Myrocarpus fastigiatus) [132] and oregano 

[133]. The MIC values of pure oregano essential oil have been determined to be 0.25 

mg/mL, 0.64 mg/mL, and 0.16 mg/mL against E. coli, P. aeruginosa, and S. aureus, respec-

tively [134, 135]. 

The addition of cabreuva essential oil to poly (vinyl alcohol) membranes proves its 

effectiveness against S. aureus. Its capacity to produce cell regeneration along with no de-

tectable toxicity makes it a suitable dressing for superficial burns or minor wounds [132]. 

Oregano essential oils have been used with poly (L-lactide-co-caprolactone)/silk fibroin 

membranes as shown by Khan et al., showing a highly active membrane against both 

Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria. The results indicated an 

accelerated healing process, boosted granulation, and also re-epithelialization, which con-

firms its potential to be used as a wound dressing [133].  
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2.8. Polymer-Drug Conjugates 

Linkers used for the conjugation of drugs to polymers function to control the drug 

release in a pH specific manner and in the presence of enzymes depending on the chem-

istry of the linker employed [136]. For improving the therapeutic advantages of this type 

of wound dressing, moiety and solubilising units are also incorporated into polymer–drug 

conjugates [137, 138]. Several studies indicate the use of plant extracts and essential oils 

conjugated with polymers. Some of the essential oils that have previously been used in 

polymer nanocarriers are thyme [139, 140], peppermint oil [141], green tea oil [141], etc. 

In a study by Shetta et al., peppermint and green tea essential oils were encapsulated 

into chitosan nanoparticles using the emulsification/ionic gelation method. The final prod-

uct was tested against S. aureus and E. coli, showing minimum bactericidal concentration 

(MBC) values of 1.11 mg/mL and >2.72 mg/mL for peppermint oil and 0.57 mg/mL and 

1.15 mg/mL for green tea, respectively, demonstrating their potential to be used in wound 

dressing applications [141]. Figure 9 demonstrates the preparation steps of this product. 

 

Figure 9. Preparation steps of chitosan/essential oil nanoparticles. 

Another group of botanical-based antibacterial additives with the potential to be con-

jugated with polymers are plant extracts. Some of the utilised plant extracts conjugated 

with polymer wound dressings are polyphenolics and hydrolysable tannins from Hama-

melis virginiana [142], seaweed extract [143], Mcrotyloma uniflorum [144], Aloe vera [145], 

and curcumin [146]. 

In a study by Yang et al., gallic acid was conjugated to a 2-hydroxy (ethyl methacry-

late-co-2-diethylamino) methacrylate hydrogel. Gallic acid used in this study was ex-

tracted from an Indian plant called Terminalia bellinca, showing antioxidant and cytopro-

tective characteristics. The multifunctional hydrogel was used as a carrier for cell therapy 

and drug delivery applications. The results indicated that the product caused a faster re-

covery in affected tissues, which shows their significant potential to be used in medical 

applications [147]. 

2.9. Other Polymer Wound Dressings 

Other types of polymer wound dressings including 3D-printed scaffolds, emulgels, 

and nanoemulgels have been used with various plant-based antibacterial additives previ-

ously. There are several studies indicating the use of essential oils and plant extracts in 

these types of wound dressings. 

In a study by Ilhan et al., Satureja cuneifolia plant extracts were blended with sodium 

alginate and polyethylene 3D-printed scaffolds for treating diabetic ulcers. Disc diffusion 

testings against S. aureus demonstrated that the samples containing Satureja cuneifolia ex-

tracts (between 0.5 to 2 wt%) have an inhibition zone of 12–13 mm, which indicates their 
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remarkable activity against Gram-positive bacteria. However, their activity against E. coli 

was reported to be in much higher concentrations (700 µg/mL) [148]. 

Emulgels and nanoemulgels have been used extensively with plant extracts and es-

sential oils as an additive. Ocimum basilicum extracts [149], clove oil [150], rosemary oil 

[151], and piper betle oil [152] are some of these additives. 

In a study by Razdan et al., clove oil-based nanoemulgels were used as a burn wound 

dressing. Levofloxacin nanoemulgels were combined with clove oil and were examined 

in vivo against P. aeruginosa biofilm-infected burn wounds. The product was tested 

against mice and the wound closure state was observed on the 1st, 3rd, 7th, 10th, and 15th 

day. The results indicated a faster reduction in wound size and a complete wound closure 

after 15 days in comparison with the samples without the additive, which were not com-

pletely closed in that period [150]. 

As mentioned before, one of the ways to improve wound dressing characteristics is 

to include bioactive additives. The role of natural antibacterial additives in polymer 

wound dressing groups were summarised before. In the following, different groups of 

plant-based natural products, as the source of novel antibacterial additives against the 

most common wound bacteria (S. aureus, E. coli, and P. aeruginosa), are discussed [69]. 

3. Plant-Based Bio-Additives as Novel Antibacterial and Antimicrobial Additives to 

the Polymer Wound Dressings 

Two thirds of new antibacterial therapies [69], as well as several antibacterials cur-

rently in clinical trials, are natural products. The efficacy of these products is likely the 

result of their evolutionary process to be bioactive, providing organisms a selective ad-

vantage in the environment. [153]. 

Plant-based natural resources are promising antibacterial candidates for wound 

treatments. There are different types of plant-based antibacterial and antimicrobial agents 

including plant extracts, essential oils (EOs), and endophytes [31]. In what follows, a de-

scription and rationale of choosing each of these groups is discussed. Moreover, some 

examples in different types of each group along with their activity against targeted wound 

infection bacteria are demonstrated. 

3.1. Plant Extracts 

Plant extracts have been used against specific biological targets or related diseases. 

There are several extraction methods including cutting, chopping, macerating, and grind-

ing raw or dried plant material followed by adding at least one solvent. Based on the re-

quested final product, the ratio of the extracted material amount (kg) and the used volume 

(L) of the solvent may be different. Some of the other factors controlling the characteristics 

of the final products are solvent type (alcohols, oils, or water), the solvent temperature 

used in the process of extraction, and the time of extraction (between 1 h to 120 h). A 

pharmaceutically accepted excipient such as cellulose derivatives (as diluents), gelatin (as 

a binder), carbohydrates (as fillers), phosphate-buffered saline (as a buffering agent), pol-

yvinylpyrrolidone (as a dispersion enhancer), and silica (as a lubricant) can be added to 

the embodiment to improve its formulation properties [31]. 

Indigenous plants are one of the most important sources of these antibacterial addi-

tives. The valuable information about their ethnobotanical use is gained from the local 

population’s knowledge. This knowledge can be utilised to transform these traditional 

medicines into clinical applications. There are some patents to protect these discoveries 

based on their specificity, habitat, and composition [31]. 

There are many plants that have been investigated for their antibacterial activity 

against pathogens. Most of these plants have already been used in local folk medicine for 

various applications. For example, Roja et al, investigated the potential inhibitory effect 

of methanol leaf extracts of Acalipha alinifolia (AA), Delonix elata (DE), Digera muricate 

(DM), Hygrophilia auriculate (HA), Jatropha gasipifed (JG), Maeua oblongifolia (MO), Pterocar-

pus santalinus (PS), Punica granatum (PG), Syzygium cumini (SC), Gyrocaspus americana 
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(GA), and Euphorbia heterophilla (EH) on bacterial isolates of septic wound infections. Each 

one of these plants has been used in local folk medicine. The results indicated that PG and 

SC have potential antibacterial activity against the predominant isolates from septic 

wounds including P. aeruginosa, S. aureus, Klebsiella pneumoniae, and E. coli [154]. 

Azizah et al. studied the antibacterial activities of E. glabra against S. aureus and S. 

epidermidis. The bioactive compounds were extracted via solvent extraction and tested 

against selected bacteria via screening using agar diffusion methods. The results indicated 

activity against both bacteria, with MIC values between 32–512 µg/mL [155]. In another 

study, the antibacterial constituents from the indigenous Australian medicinal plant Ere-

mophila duttonii F. Muel were investigated by Joshua et al. The bioactive compounds were 

extracted using solvent extraction with hexane, dichloromethane, and ethanol. All the 

compounds showed appreciable activity against Gram-positive organisms, including S. 

aureus, S. epidermidis, and Streptococcus pneumoniae [156]. 

In Table 2, the common medical uses of some of these plants and the chemical class 

of major compounds are shown for more insight into the rationale for the utilisation of 

these sources. 

Table 2. Plant species and their activity in wound dressing. 

Scientific 

Name 

Classes of Chemical 

Compounds 

Common Medical 

Uses 

Solvents Used for Extrac-

tion 

Activity against Infected 

Wound Bacteria 
References 

Acalipha 

alinifolia/ fruti-

cosa 

Phenolic compounds, 

cardiac glycosides, 

tannins, flavonoids, 

and phytosterols 

Anti-bacterial, antifun-

gal, antioxidant, and 

anthelmintic proper-

ties 
Aqueous, acetone, and 

methanol 

S. aureus 

[157-160] 

asthma, pneumonia, 

scabies, and skin dis-

eases 

P. aeruginosa 

Delonix elata 
Saponins, tannins, fla-

vonoids, and steroids 

anti-inflammatory, 

anti-arthritic, and anti-

oxidant 

Aqueous, ethanol, chloro-

form, acetone, petroleum 

ether, and methanol 

S. aureus 

[161-165] E. coli 

P. aeruginosa 

Delonix regia 

Flavonoids, alkaloids, 

terpenoids, steroids, 

and phenolic acids 

Anti-diarrhoeal, anti-

inflammatory, antidia-

betic, antioxidant, 

hepatoprotective, anti-

microbial, anthelmin-

tic, wound healing, 

gastroprotective 

Aqueous, Methanol 

E. coli 

[166-179] 

P. aeruginosa 

S. aureus 

Klebsiella pneumoniae 

Digera muri-

cata 

Phenol, flavonoids, al-

kaloids, terpenes, ster-

ols, tannins, glyco-

sides, and lignins 

Antibacterial, antifun-

gal, diuretic, laxative, 

free radical scavenger 

activity, anthelmintic 

Petroleum ether, chloro-

form, ethanol, distilled 

water 

E. coli 

[180-182] 
S. aureus 

Hygrophilia 

auriculata 

Alkaloids, terpenoids, 

tannins, flavonoids, 

and fatty acids 

Medicinal usage in In-

dian Ayurveda 

Distilled water, 50% aque-

ous ethanol, methanol, pe-

troleum ether, chloroform, 

diethyl ether 

P. aeruginosa 

[183-192] 
S. aureus 

E. coli 

K. pneumoniae 

Maerua oblon-

gifolia 

Alkaloids, terpenoids 

carbohydrates, glyco-

sides, phytosterols, 

saponins, proteins, 

and amino acids 

Wound healing activ-

ity, treating toothache, 

the roots of this plant 

possess alternative, 

tonic, and medicinal 

properties 

Petrol-Et2-MeOH (1:1:1), 

Dichloromethane/metha-

nol, aqueous 

E. coli 

[193-196] 

S. aureus 

K. pneumoniae 

Pterocarpus 

santalinus 

Alkaloids, phenols, 

saponins, glycosides, 

flavonoids, 

Antipyretic, anti-in-

flammatory, anthel-

mintic, tonic, haemor-

rhage, dysentery, 

70% methanol 

S. aureus 

[197-199] P. aeruginosa 

E. coli 
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triterpenoids, sterols, 

and tannins 

aphrodisiac, anti-hy-

perglycaemic and dia-

phoretic 

Syzygium 

cumini 

Flavonoids, glucoside 

derivatives, and phe-

nols 

Diabetes, sores and ul-

cers, leucorrhoea, and 

antidote in opium poi-

soning 

Methanol, aqueous 

P. aeruginosa 

[200-203] 
E. coli 

S. aureus 

Gyrocarpus 

americanus 
Alkaloids 

Unknown medicinal 

values 
Ethanol, methanol, water NA [204-206] 

Punica gran-

atum 

Polyphenols, sterols, 

triterpenoids, flavo-

noids, fatty acids, and 

tannins 

Anti-inflammatory, 

anti-cancer, antioxi-

dant, and antibacterial 

activity 

Methanol, petroleum 

ether, chloroform, aque-

ous, chloramphenicol 

S. aureus 

[207-213] 
E. coli 

K. pneumoniae 

Euphorbia het-

erophilla 

Flavonoids, saponins, 

diterpenes, and phor-

bol esters 

Wound healing activ-

ity, used for the treat-

ment of constipation, 

bronchitis, and 

asthma, anti-inflam-

matory activity 

Aqueous, petroleum 

ether, Butanol, ethanol 

S. aureus 

[214-220] 

E. coli 

K. pneumoniae 

P. aeruginosa 

3.2. Essential Oils 

EO fractions are the carrier of the fragrance of plants. These secondary metabolite oils 

include a large number of compounds based on an isoprene structure called terpenes. 

Having the chemical backbone of C10H16, they exist as diterpenes, triterpenes, tetrater-

penes, and hemiterpenes as well as sesquiterpenes. 

Terpenoids are terpenes that contain additional functional groups. Basically, essen-

tial oils are terpenoid compounds [221]. They are synthesised from acetate units and share 

their origins with fatty acids. Due to their extensive branching and cyclization, they differ 

from fatty acids [222]. Essential oils have been extensively studied due to their inhibitory 

activity against pathogens [31]. Terpenes or terpenoids are active against bacteria [223], 

fungi [224], viruses [225], and protozoa [226]. One of the examples of this activity is 

triterpenoid betulinic acid, which has been shown to inhibit HIV. The mechanism of action 

of terpenes is not fully understood to date but it has been speculated to involve membrane 

disruption caused by these lipophilic compounds [222]. The processing unit of essential 

oils have been demonstrated in Figure 10 [227]. 
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Figure 10. Essential oils processing units. 

A skin lotion was prepared using an antibacterial essential oil containing a mixture 

of Camellia japonica L. oil with simple volatile aromatic compounds extracted from Juni-

perus chinesis L. and Aquilaria agallocha Lam. The steam distillation process was performed 

at a temperature ranging from 65 to 75 °C for 45 to 50 h [228]. The use of antibacterial 

essential oils caused the removal of adolescent acne and prevented skin aging. After test-

ing the effectiveness of various essential oils based on the aforementioned substances on 

a cohort of 100 people, the results indicated that the essential oils were reported as mod-

erate or high in antibacterial, antioxidant, and skin moisturization characteristics as well 

as acne reduction [31]. 

Mixing different essential oils is one of the ways to optimise the characteristics of the 

final product. Essential oil mixtures are able to show activity against numerous strains of 

bacteria (such as E. coli, S. aureus, and Shigella, or Shiga toxin-producing E. coli), viable but 

not-culturable bacteria, bacterial spores, helminth, protozoan, fungus, or virus. [31]. 

Another technique that can be used for achieving more efficient antibacterial activity 

in essential oils is nanoemulsification. Lida et al. prepared five different nano-emulsions 

from Lavandula angustifolia, Rosmarinus officinalis, and Satureja khuzistanica essential oils 

(SKEO) as well as two EO constituents (carvacrol and 1,8-cineol). After characterisation, 

the formulations demonstrated long-term stability. The nanoemulsification of the essen-

tial oils caused a more efficient antibacterial activity against P. aeruginosa. The MIC for all 

the crude essential oils was 64 mg/mL. However, the nano-emulsion compound of Satureja 

khuzistanica and carvacrol showed a MIC of 8 mg/mL. The MIC reported for the Lavandula 

angustifolia, rosmarius officinalis, and 1,8-cineol nano-emulsions was 16 mg/mL [229]. 

As mentioned in the previous section, essential oils have been widely used in wound 

dressings against wound pathogens. Table 3 shows examples of different antimicrobial 

essential oils along with their reported properties in medical applications, their activity 

against wound-infected bacteria, and their chemical constituents. 
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Table 3. Application and activity of antimicrobial essential oils. 

Plant Chemical Constituents Activity and Use 

Activity against In-

fected Wound Bacte-

ria 

References 

Clove (Syzygium 

aromaticum L.) 

Eugenol, acetyleugenol, 

thymol, cinnamaldehyde, etc. 

Anti-inflammatory, antibacterial, antifungal, 

anti-allergic, anti-carcinogenic, anti-mutagenic 

P. aeruginosa 

[230-235] S. aureus 

K. pneumoniae 

Rosemary (Rosma-

rinus officinalis L.) 

Α-pinene, myrcene, 1,8-cine-

ole, borneol, and camphor 
Antioxidant, antimicrobial 

S. aureus 

[236-238] K. pneumoniae 

E. coli 

Fennel (Foeniculum 

vulgare Mill.) 
Trans-anethole, estragole 

Hepatoprotective, antioxidant, anti-inflamma-

tory, antidiabetic, antitumor, and acaricidal 

S. aureus 

[239-246] E. coli 

P. aeruginosa 

Tea tree (Melaleuca 

alternifolia) 

Terpinen-4-ol, 1,8-Cineol, α-

Pinene, α-Terpineol, Sabinene, 

Antibacterial, antifungal, used for skin treat-

ment, airway treatment, oral treatment, and 

vaginal infections 

S. aureus 

[247-249] E. coli 

P. aeruginosa 

Cinnamon (Cin-

namomum cassia) 

Cinnamaldehyde, (−)-α-

Pinene/Ylangene, terpenes, 

aldehydes, etc. 

Antibacterial, antioxidant, wound healing ap-

plications 

S. aureus 

[250-252] E. coli 

P. aeruginosa 

Thyme (Thymus 

vulgaris L.) 

1R-α-pinene, o-cymol, 4-

carene, β-linalool, Camphor, 

Thymol, Carvacrol 

Antioxidant, antibacterial 
S. aureus 

[253, 254] 
E. coli 

Oregano 
Linalool, Thymol, Carvacrol, 

Ethyl caprate, etc. 
Antioxidant, antibacterial, anti-inflammatory 

S. aureus 
[253, 255-257] 

E. coli 

Basil (Ocimum ba-

silicum L.) 

Linalool, 1,8-cineole, aro-

madendrene, and transcaryo-

phyllene 

Antibacterial and antioxidant 

S. aureus 

[258-260] 
K. pneumoniae 

E. coli 

Shigella flexneri 

Orange (Citrus 

sinensis) 

Limonene, alcohol com-

pounds, carvone, β-myrcene 
Antibacterial 

E. coli 

[261, 262] P. aeruginosa 

S. aureus 

Peppermint (Men-

tha × piperita L.) 

Menthol, Menthone, Limo-

nene, β-pinene, α-pinene, 

Menthyl acetate etc. 

Antibacterial, antifungal 
S. aureus 

[263, 264] 
E. coli 

Juniperus chinensis 

L. 

Bornyl acetate, sabinene, 

trans-sabinyl acetate, carotol, 

elemol 

Air cleaning effect and antibacterial activity 

(mainly against Propionibacterium acnes), used 

for skincare and cleansing 

E. coli 

[265] P. aeruginosa 

S. aureus 

Camellia oil 

Triterpenes, Sesquiterpenes, 

tocopherols, phthalate esters, 

and cannabinoid 

Skin-moisturizing effect, skin-soothing effect; 

effective against atopic or allergic skin condi-

tions (effects due to high amount of oleic 

acid); prevention of skin dryness and alleviat-

ing itching (due to the gamma-linolenic acid 

content) 

E. coli 

[266, 267] 
Bacillus cereus 

C. albicans 

Dendropanax spe-

cies 

ɤ-elemene, tetramethyltricyclo 

hydrocarbons, β-Selinene and 

β-Zingiberene 

Antioxidant and antimicrobial or antibacterial 

activities 

S. aureus 
[268, 269] 

Bacillus. cereus 

Portulaca oleracea L. 
Phenolic compounds, α-lino-

lenic acid (ω3) 

Alleviate skin irritation and allergic responses, 

antibacterial and anti-inflammatory effects/it 

is used mainly in acne care products and cos-

metics for sensitive skin 

S. aureus 

[221, 270] 
Klebsiella oxytoca 

Houttuynia cordata 

Thunb. 

3-oxododecanal (Hou), 2- un-

decanone, pinene, camphene, 

myrcene, limonene 

Effective in treating skin inflammation and 

atopic diseases 
S. aureus [271, 272] 
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Glycyrrhiza glabra 

L. 

α-pinene, β-pinene, octanol, 

γ-terpinene, stragole, isofen-

chon, β-caryophyllene, citron-

ellyl acetate, caryophyllene 

oxide, and geranyl hexanolate 

Detoxifying and anti-inflammatory effects, ef-

fective in alleviating skin diseases such as 

acne, atopy, eczema, urticarial 

E. coli 

[273, 274] 

S. aureus 

Ziziphus jujuba 

Mill. 

Triterpenoid acids, alkaloids, 

saponins, flavonoids, and 

their glycosides 

Effective in moisturizing the skin and keeping 

the skin healthy 

E. coli 

[275, 276] S. aureus 

P. aeruginosa 

Chamaecyparis ob-

tuse (Siebold & 

Zucc.) Endl. 

δ-cadinene, α-pinene, γ-ca-

dinene, α-cedrol, α-muuro-

lene, γ-eudesmol, γ-muuro-

lene, α-elemene and α-co-

paene 

Sterilising effect (due to the high content of 

phytoncide) 
S. aureus [277, 278] 

3.3. Endophytes: A Novel Source of Bioactive Compounds 

Endophytes are defined as the microbes colonising the internal tissues of plants, 

which cause no immediate negative effects [279]. They have extensive biodiversity and 

are considered as a sustainable source for novel pharmaceutical applications. The discov-

ery of endophytes dates back to 1904. However, these groups of microorganisms did not 

receive much attention. With the discovery of paclitaxel (Taxol) from the endophytic fun-

gus Taxomyces andreanea, which has been isolated from Taxus brevifolia as an important 

anti-cancer drug, the attention changed dramatically [280]. The isolation of penicillin from 

Penicillium notatum in the 1940s by Sir Howard Florey and his team alerted the world to 

the significance of fungi as a novel source for bioactive compounds. Plants actively combat 

pathogenic attack by producing antimicrobial compounds. Screening plants for endo-

phytic isolation has led to novel and interesting compounds [281, 282]. This has subse-

quently directed research to consider endophytes from ethno-pharmaceutically used 

plants as a source of new therapeutic compounds. Due to the success of some previous 

medicinal drugs from microbial origins, drug discovery has been more focused on micro-

organisms instead of plants. Thus, it has led to the consideration of endophytic fungi as a 

promising rich source of natural products in the search for new drug sources [283]. 

Endophytes can be considered as chemical synthesisers in plants; many are respon-

sible for synthesising bioactive compounds used as a potential source of many pharma-

ceutical leads. These sources have been proven to show extensive potential to be used 

against multi-drug resistant (MDR) microorganisms [283]. They also have been proven to 

be useful in novel drug discovery by the chemical diversity of their secondary metabolites, 

to the extent that many of them are the source of production for novel antibacterial [284, 

285], antiviral [286, 287], antifungal [288, 289], anti-inflammatory [290, 291], anti-tumour 

[292, 293], and anti-malaria [294, 295] compounds. These compounds are from different 

chemical classes, such as alkaloids [296], terpenoids [297], flavonoids [298], phenolic com-

pounds [299], and steroid derivatives [300]. Table 4 lists these compounds, their host 

plants, and their bioactivity. 

Table 4. Bioactive compounds produced by antibacterial endophytic fungi. 

Types of Endo-

phytic Com-

pounds 

Endophyte Host Plant Main Bioactivity 
Activity against Wound Infection 

Bacteria 
References 

Aliphatic com-

pounds 

Chaetomium glo-

bosum 
Ginkgo biloba Antifungal, antibacterial S. aureus [296, 301] 

Cladosporium 

sp. 
Quercus variabilis Antifungal, antimicrobial NA [302] 

Fungal endo-

phytes 
Chinese herbs Antimicrobial, antibacterial 

Klebsiella pneumonia 

[300, 303-305] S. aureus 

P. aeruginosa 
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Phomopsis sp. Excoecaria agallocha Antifungal, antimicrobial 
S. aureus 

[306] 
E. coli 

Alkaloids 

Acremonium 

zeae 
Maize Antifungal, antibacterial 

Pseudomonas fluorescens 
[307, 308] 

Enterobacter agglomerans 

Phomopsis sp. Garcinia dulcis Antibacterial S. aureus [309, 310] 

Flavonoids 
Nodulisporium 

sp. 
Juniperus cedre Antifungal, Antibacterial NA [298] 

Peptides 

Cryptosporiopsis 

sp., Pezicula sp. 

Pinus sylvestris and 

Fagus sylvatica 
Antifungal, antibacterial E. coli [311, 312] 

Fusarium 

tricinctum 

Rhododendron tomen-

tosum 
Antimicrobial S. aureus [313] 

Penicillium sp. Acrostichum aureurm Antifungal, Antibacterial S. aureus [314] 

Phenols 

Alternaria sp. Sonneratia alba Antibacterial S. aureus [315] 

Phoma species Saurauia scaberrinae Antibacterial S. aureus [299] 

Penicillium sp. Cerbera manghas Antibacterial S. aureus [299] 

Quinones 
Ampelomyces 

sp. 
Urospermum picroides Antibacterial S. aureus [316] 

Steroids 

Colletotrichum 

sp. 
Artemisia annua Antifungal, antimicrobial 

S. aureus 
[300] 

P. aeruginosa 

Nodulisporium 

sp. 
Juniperus cedre Antifungal, Antibacterial NA [298] 

Fungal endo-

phytes 
Daphnopsis americana Antibacterial S. aureus [317, 318] 

Periconia sp. Taxus cuspidate Antibacterial 
S. aureus 

[297] 
K. pneumoniae 

Fungal endo-

phytes 
NA Antimicrobial 

S. aureus 

[319] P. aeruginosa 

E. coli 

Endophytes are believed to provide resistance against pathogenic attack of the host 

plant by producing secondary metabolites [320]. They are a great source of natural prod-

ucts which exhibit an extensive array of bioactivity to the extent that many of the endo-

phytic fungi are known to produce antibacterial and antimicrobial substances. Antimicro-

bial metabolites are defined as the low molecular weight organic natural substances, 

which have been made by active microorganisms at low concentrations against other mi-

croorganisms [321]. The crude extracts from the culture broths of endophytic fungi have 

shown activity against pathogenic fungi, bacteria, and yeasts, cytotoxic activity on human 

cell lines, anti-Herpes simplex virus type 1 (anti-HSV), and malaria parasites. Different 

antimicrobial activities by geographically different endophytes have been studied [322]. 

Different natural products have been produced from endophytic fungi, such as anti-can-

cerous, antioxidants, antiviral, anti-insecticidal, immunosuppressant, antimicrobial, anti-

malarial, and anti-mycobacterial compounds [323-325]. 

It has been reported that medicinal plants can harbor endophytes [326], which protect 

the host plants from infectious agents and adapts them to environmental conditions. This 

mechanism is enhanced by contributing to the compounds produced by the host plant 

that protect against biotic and abiotic stress factors [327-331]. Some researchers have re-

ported that in many cases, host plant tolerance to biotic stress is related to natural products 

produced by endophytic fungi [332]. 

Different factors are responsible for the rationale for choosing the proper plant 

among the numerous species available. Basically, reaching a particular microbial metab-

olite requires a particular biotope, at both environmental and organismal levels. Plants 

growing in an area with great biodiversity, in a unique habitat or containing novel strate-

gies for survival are likely to be good candidates due to their unusual biology. Thus, they 

are considered important for researching unusual endophytic species [333]. The second 

group of selected plants are the ones which are asymptomatically infected with 
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phytopathogens. These plants are likely to have endophytes with antimicrobial features 

[334]. Plants with an ethnobotanical history, which have been used by Indigenous people 

as traditional medicines, have great potential for the discovery of novel bioactive endo-

phytes. Endophytic Streptomyces isolated from an Australian medicinal plant, snakevine 

(Kennadia nigriscans), is an example of this group [335]. 

Many Australian native plants have a long history of being used as medicinal and 

culinary herbs. Some of them are even considered to be equivalent to the Mediterranean 

herbs. Lots of Mediterranean herbs have been investigated and their therapeutic proper-

ties have been well-documented. However, there is limited information about the use of 

Australian native plants in medicine [336]. Some of these plants have been investigated 

for their antibacterial components, such as Eremophila glabra [155], Eremophila duttonii 

[156], and Eremophila alternifolia [337]. 

The biological activity depends on the natural products that endophytes produce in 

the host plant [338]. Thus, research regarding this important source of bioactive com-

pounds has resulted in potential drug compounds as antibacterial additives. In what fol-

lows, some studies of different applications of endophytes are discussed. 

In a study by Xing et al., endophytic fungi from two types of orchids called Den-

drobium devonianum and Dendrobium thysiflorum were isolated and identified. The ex-

tracted compounds using ethanol as solvent were tested against six pathogenic microbes 

(Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Candida albicans, Cryptococcus neofor-

mans, and Aspergillus fumigatus). The antimicrobial activity of the extracts was tested using 

the agar diffusion method with a concentration of 100 µg/disk. The results indicated that 

10 and 11 endophytic fungi extracts originating from Dendrobium devonianum and Den-

drobium thysiflorum, respectively, showed antimicrobial activity against at least one of the 

pathogenic bacteria listed above. Out of the fungal endophytes of both plants, Phoma dis-

played strong inhibitory activity with an inhibition zone of more than 20 mm, and Epicoc-

cum nigrum isolated from Dendrobium devonianum showed stronger antibacterial activity 

than ampicillin sodium [339]. 

In another study, Dang et al. isolated Trichoderma ovalisporum endophytic fungi from 

Panax notoginseng and tested their antibacterial activity. After growing the chosen isolate 

in potato dextrose agar medium, samples were filtered and extracted with ethyl acetate. 

Finally, the crude extracted compounds were tested against Staphylococcus aureus and 

Escherichia coli for their antibacterial activity using disc diffusion. The results indicated a 

bacteria-free zone diameter of 12 mm for both strains [340]. The process of growth and 

extraction in endophytic fungi can be observed in Figure 11 [340]. 
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Figure 11. Extraction process of antibacterial compounds from endophytes. 

The antimicrobial and antibacterial activities of these bioactive compounds have al-

ready been scrutinised by researchers and the same classes of chemical compounds have 

been used extensively in wound dressing applications in several studies. The examples 

below describe antibacterial compounds that have been added to wound-dressing mate-

rials. As endophytes are known to produce these compounds, it demonstrates that endo-

phytic fungi could be an alternative and sustainable source of these valuable products. 

Soares et al. developed a chitosan-based hydrogel containing flavonoids isolated from 

Passiflora edulis Sims for wound healing purposes in a diabetic rat model. The results demon-

strated effective wound healing ability. In addition, the formulation could stimulate the an-

tioxidant defence system, which positively influenced the treatment of skin lesions in dia-

betic rats, representing their potential use as dressings in wound treatment [341]. 

In a study, Azzazy et al. developed chitosan-coated PLGA nanoparticles loaded with 

Peganum harmala alkaloids for wound dressing applications. In this study, the harmala 

alkaloid-rich fraction loaded into PLGA nanoparticles coated with chitosan in the emul-

sion-solvent evaporation method was used. The results indicated that the wound closure 

rate was superior in comparison with the blank sample. In addition, the developed for-

mulation demonstrated synergistic antibacterial and wound healing properties, leading 

to efficient wound management [342]. 

4. Conclusions 

Antibacterial agents derived from natural products have made a considerable impact 

in the development of novel materials for the treatment of wounds. Plant-based com-

pounds, including saponins, tannins, alkaloids, alkenyl phenols, glycoalkaloids, flavo-

noids, sesquiterpenes, lactones, terpenoids, and phorbol esters, have contributed a large 

portion of these antibacterial agents. Plant extracts and essential oils are reported in nu-

merous studies as two major sources of antibacterial additives in all types of wound dress-

ings. In this paper, we introduced an alternative promising source of antibacterial com-

pounds, namely endophytes, which are recognised as sources of compounds with useful 

pharmaceutical properties. The diverse bioactive compounds extracted from endophytic 

fungi with antibacterial activities should be the focus of future development as a sustain-

able source of chemicals for wound dressing applications. To our knowledge, there is no 

study showing the use of the antibacterial compounds sourced from endophytic fungi in 



Pharmaceutics 2023, 15, 644 23 of 35 
 

 

wound dressing applications. However, the abovementioned features and characteristics 

of bioactive compounds existing in endophytic fungi, along with the proven antibacterial 

characteristics of the extracts from endophytic fungi, show the great potential of using 

endophytes as new antibacterial additives for wound dressing applications, leading to 

new and effective products to combat acute and chronic wound infections. However, 

there are some limitations in using endophytic fungi extracts as novel antibacterial agents, 

including the low concentration of the active compounds in the extraction method and 

the lack of adequate in vivo trials. Overcoming these limitations requires further research 

in developing the previous methods of extraction, designing a method for purifying active 

extracted compounds, and in vivo studies in order to examine the products in a practical 

environment, which will potentially be the future steps of scrutinising these novel anti-

bacterial agents. 
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