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Abstract: Based on the nrDNA ITS sequence data, the Tordylieae tribe is recognized as monophyletic
with three major lineages: the subtribe Tordyliinae, the Cymbocarpum clade, and the Lefebvrea clade.
Recent phylogenomic investigations showed incongruence between the nuclear and plastid genome
evolution in the tribe. To assess phylogenetic relations and structure evolution of plastomes in
Tordylieae, we generated eleven complete plastome sequences using the genome skimming approach
and compared them with the available data from this tribe and close relatives. Newly assembled plas-
tomes had lengths ranging from 141,148 to 150,103 base pairs and contained 122–127 genes, including
79–82 protein-coding genes, 35–37 tRNAs, and 8 rRNAs. We observed substantial differences in the
inverted repeat length and gene content, accompanied by a complex picture of multiple JLA and JLB

shifts. In concatenated phylogenetic analyses, Tordylieae plastomes formed at least three not closely
related lineages with plastomes of the Lefebvrea clade as a sister group to plastomes from the Selineae
tribe. The newly obtained data have increased our knowledge on the range of plastome variability
in Apiaceae.

Keywords: plastome evolution; inverted repeats; contraction; expansion; Apiaceae; Tordylieae;
phylogenomics

1. Introduction

During the most recent decade, active studies of angiosperm plastid genomes (plas-
tomes) have shown that plastomes are relatively conserved but dynamic in terms of gene
content and structural features, and many amazing examples of radical enlargement or
reduction and rearrangements have been uncovered [1–4]. Most of the flowering plants,
however, possess plastomes evolving in a calm manner and exhibit structural diversity
only in the position of inverted repeats (IR) boundaries. In addition to the “ebb and flow”
of the inverted repeats borders [5], the incorporation of “foreign” DNA of mitochondrial or
uncertain origin is being reported more and more often [2,6].

In Apiaceae plastomes, gene order and genome structure are significantly
conserved [7–28]. However, while for land plant’s plastomes (from early non-vascular
plants to angiosperms), a general trend of IR enlarging can be seen [1,29], in the Apioideae
subfamily of Apiaceae, a contrary tendency of IR shrinking is observed [26,30]. The short-
est inverted repeats are concentrated within a distally branching group of clades (apioid
superclade), uniting several tribes and clades with unclear relationships, including the
Tordylieae tribe [31,32].
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Tordylieae was established as a tribe, consisting of the genera Tordylium L., Condylocarpus
Hoffm., Krubera Hoffm., and Hasselquistia L., by Koch (1824) [33]. Circumscription of
the tribe was not stable and changed significantly in rank, name, and genera content,
and in the system proposed by Pimenov and Leonov (1993) [34], Tordylieae included
23 genera. In addition to several large genera (Heracleum L., Pastinaca L., Tetrataenium (DC.)
Manden., Tordylium, Semenovia Regel & Herder, the tribe also includes mono and oligotypic
genera (Mandenovia Alava, Vanasushava P.K.Mukh. & Constance, Symphyoloma C.A.Mey.,
Pastinacopsis Golosk., Tordyliopsis DC., Ducrosia Boiss., Kalakia Alava, Tricholaser Gilli, etc.),
almost all of them are rare plants, known from limited locations. Although Tordylieae, as a
whole, was not the subject of special molecular phylogenetic studies, a lot of information
regarding relationships and generic circumscription in the tribe has been obtained [35–44],
and this information was summed up in the nrITS-based classification of the subfamily
Apioideae [31]. According to this classification and the data obtained later [45–47], the
tribe is recognized as monophyletic with the following major lineages: subtribe Tordyliinae
Engl., containing such genera as Heracleum, Malabaila Hoffm., Pastinaca, Semenovia, and
Tordylium; the Cymbocarpum clade, comprising the genera Cymbocarpum DC., Kalakia, and
Ducrosia; and the Lefebvrea clade consisting of the “African peucedanoid group”. However,
Tordylieae appeared to not be monophyletic in a recent broad nuclear phylogenomic
coalescent analysis of sequences obtained using the universal Angiosperm353 probe set: the
Cymbocarpum clade separated from the rest of Tordylieae, though quartet scores indicated
notable discordance in the gene trees and local posterior probabilities supporting the
position of the Cymbocarpum clade were not high [48].

Individual plastid markers (intron sequences of rps16, rpl16, rpoC1 genes) often did not
show sufficient variability to provide resolution both within the Tordylieae and between the
adjacent tribes or produced trees incongruent with the nrITS phylogeny [35,49,50]. A recent
plastid phylogenomic investigation claimed new robust evidence for incongruence between
the nuclear genome and plastome evolution in Tordylieae [20,26]. Within the Tordyliinae
subtribe, Pastinaca and Heracleum formed a well-supported subclade (designated as Tordyli-
inae I) as a sister group to the Selineae tribe. Another subclade (Tordyliinae II) included
Semenovia and Tetrataenium and was resolved as a part of a larger clade, which was a sister
group to the Sinodielsia clade. These studies did not include representatives of the Lefebvrea
and Cymbocarpum clades but revealed a noticeable difference in the plastome structure of
Tordyliinae I and Tordyliinae II members. They experienced a similar IR expansion at the
LSC/IRa border (JLA shift), but the insertion of the trnH and psbA sequences occurred in
different spacers: the ycf2-trnL(CAA) spacer in Tordyliinae I and trnV(GAC)-rrn16 spacer
in Tordyliinae II. Similar rearrangements caused by the JLA shift were also mentioned
in several non-monocot angiosperm families (Actinidiaceae [51], Chenopodiaceae [52],
Linaceae [53], Acanthaceae [54]) and in other Apiaceae species [26,55]. Moreover, two
of ten plastomes of Angelica sinensis (Oliv.) Diels (member of Sinodielsia clade from the
apioid superclade), and two of three available Semenovia plastomes showed absence of the
insertion [21,28]. Therefore, its appearance, distribution across plastomes from members of
the Tordylieae tribe and allied taxa that were yet unsampled, and utility of the specific plas-
tome rearrangements as phylogenetic markers are of special interest. In this work, in order
to address questions of phylogenetic relationships and structure evolution of plastomes
in Tordylieae, and utility of specific rearrangements in the plastid genome as phyloge-
netic markers, we determined eleven complete plastome sequences (from Dasispermum
suffruticosum (P.J.Bergius) B.L.Burtt, Ducrosia anethifolia Boiss., Kalakia marginata (Boiss.)
Alava, Mandenovia komarovii (Manden.) Alava, Notobubon galbanum (L.) Magee, Pastinaca
pimpinellifolia M.Bieb., Symphyoloma graveolens C.A.Mey., Tordylium lanatum Boiss., Tordylium
maximum L., Tordylium pestalozzae Boiss., and Zosima korovinii Pimenov) using a genome
skimming approach and compared them with the available data from the tribe and close
relatives. Phylogenomic analyses and tracking of specific rearrangements showed poly-
phyly of Tordylieae plastomes accompanied with a complex picture of multiple JLA and JLB
shifts.
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2. Results and Discussion
2.1. General Overview of Plastomes

All newly assembled plastomes of species from Tordylieae possessed a quadripar-
tite structure typical for angiosperms [56] with an overall length ranging from 141,148
(D. anethifolia) to 150,103 (T. maximum) base pairs (bp) (Table 1). The LSC regions ranged
from 99,620 (Z. korovinii) to 91,637 bp (T. maximum) in size, whereas the SSC ranged from
17,676 (T. maximum) to 16,931 bp (D. suffruticosum); the pair of inverted repeats separated by
the small single-copy region ranged from 20,395 (T. maximum) to 12,493 bp (T. pestalozzae)
(Table 1). The overall GC content varied slightly between 37.1% and 37.5%. The eleven
plastomes contained 122–127 genes, including 79–82 protein-coding genes, 35–37 tRNA
genes, and 8 rRNA genes (Supplementary Table S1). All but T. pestalozzae plastid genomes
contained two pseudogenes, in all plastomes, one was a truncated copy of the ycf1 gene
at the SSC/IRb junction (JSB), while another was either a part of the ycf2 gene at the
LSC/IRa junction (JLA) (D. suffruticosum, N. galbanum, and T. maximum), a fragment of
the psbA gene at the LSC/IRb junction (JLB) (M. komarovii, S. graveolens, P. pimpinellifolia,
Z. korovinii, K. marginata, and D. anethifolia), or an exon of the ndhB gene at JLA (T. lanatum).
The Tordylium pestalozzae plastome contained only a truncated copy of the ycf1 gene.

Table 1. Characteristics of plastid genomes (IR: inverted repeat, LSC: large single-copy region,
SSC: small single-copy region) and accession numbers of eleven plastid genomes from Tordylieae
tribe species.

Taxon Size
(bp)

LSC
Size
(bp)

SSC
Size
(bp)

IR
Size
(bp)

GC
Content

(%)

Total
Genes

Protein-
Coding Genes
(Pseudogenes)

tRNA
Genes

rRNA
Genes

GenBank
Accession
Number

Mean
Coverage
Depth (X)

Dasispermum
suffruticosum
(P.J.Bergius)

B.L.Burtt

144,902 91,681 16,931 18,145 35.2 126 82 (2) 36 8 OL839263 61

Ducrosia
anethifolia Boiss. 141,148 98,931 17,523 12,347 37.4 122 79 (2) 35 8 OL839264 25.8

Kalakia marginata
(Boiss.) Alava 142,155 98,758 17,497 12,950 37.5 122 79 (2) 35 8 OL839265 23.7

Mandenovia
komarovii

(Manden.) Alava
149,345 92,332 17,485 19,764 37.4 127 82 (2) 37 8 OL839266 121

Notobubon
galbanum (L.)

Magee
147,466 93,641 17,443 18,191 37.5 126 82 (2) 36 8 OL839267 51.9

Pastinaca
pimpinellifolia

M.Bieb.
149,758 92,242 17,654 19,931 37.4 127 82 (2) 37 8 NC_027450 82.8

Symphyoloma
graveolens
C.A.Mey.

149,245 92,159 17,516 19,785 37.5 127 82 (2) 37 8 OL839268 115

Tordylium
lanatum Boiss. 143,402 94,157 17,521 15,862 37.2 124 81 (2) 35 8 OL839269 89.7

Tordylium
maximum L. 150,103 91,637 17,676 20,395 37.3 126 82 (2) 36 8 OL839270 80.6

Tordylium
pestalozzae Boiss. 141,830 99,355 17,488 12,493 37.1 122 79 (1) 35 8 OL839271 33.1

Zosima korovinii
Pimenov 141,644 99,620 17,498 12,263 37.4 122 79 (2) 35 8 OL839272 173

The plastome of Ducrosia showed a 489-bp inversion in the LSC region; it affects the
orientation of the three tRNAs (trnE, trnY, trnD). This inversion was flanked by 39 com-
plementary bases, and similar inversions in the same region were also revealed in other
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Apioideae plastomes not closely related to each other: Cyclospermum leptophyllum (Urb.)
Constance (Pyramidoptereae tribe), Carum carvi L. (Careae tribe) [55], Angelica gigas Nakai,
and Angelica morii Hayata (Selineae tribe) [25]. Convergent inversions are not rare in plas-
tid genomes and have also been documented in other families, e.g., Ranunculaceae [57],
Oleaceae [58], Asteraceae [59], Fabaceae [60–62]. Moreover, in a recent study, Charboneau
et al. noticed possible heteroplasmy in Astragalus for the presence of the inversions [62], so
actually, the inversion of the trnE-trnY-trnD region in Ducrosia and other Apioideae plas-
tomes might be present in both orientations, with one variant being in a minor proportion.

2.2. Inverted Repeat Contractions and Expansions

Numerous indels have been accumulated in the studied plastomes, but their contribu-
tion to the genome length diversity is not high. This can be seen from the size variation of
the SSC region (from 16,931 to 17,676 bp), the borders of which may be considered relatively
stable, as they are in the same relative gene position. Substantial differences in length across
the eleven plastomes and differences in total gene number (122, 124, 126, 127) are caused by
contraction and expansion of the inverted repeats, reflecting their border shifts (Figure 1).
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Figure 1. Circular gene maps of eleven plastid genomes of Tordylieae tribe representatives. Genes
plotted outside the circle are transcribed counterclockwise, inside genes—clockwise. Genes are
colored according to their function, intron-containing genes are marked with asterisks. LSC = large
single-copy region, SSC = small single-copy region, IRA and IRB = inverted repeats A and B, respectively.

The longest IRs belong to T. maximum with JLB in ycf2; JLB in D. suffruticosum; and N.
galbanum is situated within the same gene. In the plastomes of M. komarovii, S. graveolens,
and P. pimpinellifolia, the inverted repeats are shortened, and JLB is followed by the ycf2
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gene sequence. The shortest IRs are found in the Z. korovinii plastome, the position of
JLB is several base pairs after the trnV(GAC) gene, and it is shared with D. anethifolia and
K. marginata plastomes. In the plastome of T. pestalozzae, the inverted repeat includes the
trnV(GAC) gene, while in the T. lanatum plastome the inverted repeat is expanded further
with JLB situated within the intron of the ndhB gene. The last two JLB shifts are observed for
the first time in the complete plastid genome studies and represent new examples of how
variable the plastome organization within Apiaceae can be. Earlier studies using restric-
tion fragment length polymorphism analysis allowed the definition of nine JLB junction
types [30], while complete plastome sequences recovered new types [9,10,20,24–26], and
nowadays, their number exceeds fifteen [26].

The IRa/LSC border is generally less prone to shift towards LSC because of the limited
space where the insertion of the LSC sequence at JLB is not fatal. Indeed, rare known
examples of such JLA shift from non-monocot angiosperms demonstrate the appearance
of trnH(GUG) (sometimes with a partial sequence of psbA or a longer sequence, includ-
ing matK, rps16, and trnQ(UUG) genes) in the rpl23-trnI spacer (in Actinidiaceae [51],
Chenopodiaceae [52]), in the trnI-ycf2 spacer (in Linaceae [53]), in the ycf2-trnL spacer
(in Acanthaceae [54]), and even invasion of the trnH sequence into the S10 operon was
possible in Elaeagnus L. species [63], several Aristolochia L. species [64], Drimys granadensis
L.f. [65], Stylidium debile F.Muell. [66], and Poeppiga procera (Poepp. ex Spreng.) C.Presl [67].
In our study, we have detected JLA shifts resulting in the inclusion of trnH and a partial
sequence of psbA in IR with their appearance at JLB in the ycf2-trnL spacer in S. graveolens,
M. komarovii, and P. pimpinellifolia plastomes similar to what was recently observed in two
Heracleum and Pastinaca sativa L. plastomes [19,26]. Similar JLA shifts resulted in the appear-
ance of the trnH and psbA partial sequence at JLB in the trnV-rrn16 spacer in Z. korovinii,
D. anethifolia, and K. marginata plastomes, as it was already observed in Semenovia and
Tetrataenium [20]. During annotation of plastomes of T. lanatum and T. pestalozzae, we
did not find psbA or trnH gene sequences in the trnV-rrn16 spacer; however, the spacer
contained an insertion of the non-coding sequence (957 and 1153 bp, respectively) that
has significant similarity with the part of the rrn16-trnH spacer of the plastomes of Zosima,
Ducrosia, and Kalakia. The insertion in the trnV-rrn16 spacer was verified and confirmed
using PCR-amplification and Sanger sequencing in Z. korovinii, D. anethifolia, K. marginata,
T. lanatum, and T. pestalozzae plastomes.

In the analyzed plastomes with insertions, which contain a partial psbA sequence,
the LSC/IRb borders are notably stuck to the beginning of the insertions because the
IRb expansion into LSC would inevitably cause the psbA gene disruption. At this point,
the genomes of T. pestalozzae and T. lanatum demonstrate a departure of the JLB junction
from the insertion place and hide an actual trajectory of the IR borders locomotion: they
experienced expansion by the JLA shift followed by the acquisition of the insertion in the
trnV-rrn16 spacer, then, two expansions of the JLB shifts—either separately in T. pestalozzae
and T. lanatum, or one common for both and further expansion in T. lanatum only. Such
“hidden” insertions are seen in alignment, but they may be easily overlooked when JLA
shifts are screened by the annotated genes in the plastomes of other plants. For example,
several Apiaceae plastomes in the Selineae tribe contain an insertion (ranging in length
from 794 bp in Saposhnikovia divaricata (Turcz.) Schischk. to 1010 bp in Kitagawia praeruptora
(Dunn) Pimenov [=Peucedanum praeruptorum Dunn]) at the 3′-end of the ycf2 gene, which is
highly variable across land plants. This insertion retains similarity with the insertions in
the trnV-rrn16 and ycf2-trnL spacers (Supplement Figure S1) of about 180 bp at its 3′-end. It
might also have been generated by the JLA shift and awaits further detailed analysis.

2.3. Phylogenetic Analysis of Tordylieae Plastomes

Phylogenetic relationships were inferred using two matrices: complete plastome
sequences with one inverted repeat excluded (“long” matrix) and protein-coding sequences
(“CDS” matrix). The long data matrix contained only reliably aligned positions from
intergenic regions, genes, and introns with the presence of gaps in less than half of the
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sequences. The only completely excluded intergenic spacer was the pseudo-ycf1-ndhF
spacer because of high variability. Special attention was paid to the presence of small
inversions as they increase the level of homoplasy and may affect the inferred topology,
model parameters, and branch length estimation, as well as branch support assessment
even in the full plastome data analyses [68–70]. Small inversions are widespread in the
plastomes across the land plants [68,69,71] and have also been reported in Apioideae [15,42].
In our dataset, nineteen small inversions with a length ranging from 3 to 62 bases were
identified, and one of them was found within the ycf1 gene. To restore the homology of
the nucleotide bases, these inversions were reverse complemented. The resulting data
matrix had 127,509 characters and contained 15,610 variable positions, 5326 of which were
parsimony informative. The CDS data matrix contained only protein-coding sequences
extracted from the long matrix; it had 67,875 characters and contained 6414 variable
positions, 2144 of which were parsimony informative.

Our preliminary phylogenetic analyses showed that Ducrosia and Kalakia behaved as
rogue-taxa [72] and destabilized the overall tree topology because of the absence of closest
relatives, as we suppose. In the absence of Ducrosia and Kalakia, both unpartitioned and
partitioned phylogenetic analyses resulted in the same topology; therefore, we present
a phylogenetic tree reconstructed without Ducrosia and Kalakia (Figure 2) with insets
indicating positions that they occupy when included in Bayesian analyses.
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Figure 2. Maximum a posteriori probability tree (PP = 1) inferred with Bayesian analysis of complete
plastome sequences from 40 representatives of the apioid superclade. Plastomes derived for this study
are marked with red. Support for enumerated branches 1–6 is presented in Table 2; others gained the
highest support in all analyses. The pie chart represents the site concordance (purple)/discordance
(red and yellow) factor. The inset shows Kalakia (A) and Ducrosia (B,C) placement and support when
included in Bayesian analyses of CDS (A,C) and long (A,B) data sets.
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Table 2. Support for branches 1–6 gained in phylogenetic analyses of CDS and full data matrices in
unpartitioned and partitioned phylogenetic analyses. PP = posterior probability, aBayes = “a la Bayes”
support, BS = nonparametric bootstrap support, sCF/sDF = site concordance/discordance factor.

Branch CDS,
PP/aBayes

Unpartitioned,
PP/aBayes

4 Partitions,
PP/aBayes

3 Partitions,
PP/aBayes

4 Partitions +
Heterotachy,
aBayes/BS

sCF/ sDF1/ sDF2 Putative
Synapomorphies

1 1/1 1/1 1/1 1/1 1/97 43.5/28.6/28.9 9

2 0.97/0.95 1/0.99 0.99/ 1/1 1/93 36.4/33.2/30.4 2

3 1/1 1/1 1/1 1/1 1/100 42.6/32.8/25.6 20

4 0.99/0.99 1/1 1/1 1/1 1/99 41.4/30.5/28.1 12

5 1/1 1/1 1/1 1/1 1/100 42.6/31.9/25.5 6

6 0.82/0.84 1/1 1/1 1/1 1/99 47.3/16.2/36.5 46

While most of internal branches of the tree gained the highest support irrespective of
the used partitioning scheme and data set in all analyses, support for six branches varied
(Table 2).

A sharp contrast of the high number of putative synapomorphies supporting sister
relationships of Cachrys clade with Apieae (branch 6, Figure 2) with low “a la Bayes” support
and posterior probability from CDS analyses is intriguing but will be investigated and
discussed elsewhere.

Worth noticing are the short internal branches 1–5, connecting clades of Selineae
tribe, Lefebvrea clade, Tordyliinae I, Sinodielsia clade, and Coriandrum + Nothosmyrnium +
Tordyliinae II clade. The lower support of branches 2 and 4 in the CDS matrix analyses
may be attributed to the different amount of phylogenetic information in the CDS and
full data matrices, though the different fit of the model to the data or other reasons may
also be relevant (discussed in [70]). A level of homoplasy in the CDS matrix is comparable
with that in the full matrix (homoplasy index 0.164 and 0.175, respectively). Testing
for substitutions saturation in the non-coding and protein-coding sequences showed no
presence of saturation (Iss << Iss.c; p < 0.0001) in the examined data.

Despite the high support gained in all Bayesian and ML analyses for branch 2, the site
concordance factor indicates that actually, there is no overwhelming support for any of the
competing topologies. The sCF is close to its lower limit, and this branch is supported by
the least number of putative synapomorphies. The sCFs for other short branches are higher
but still show a probable presence of conflicting (or a low level of decisive) phylogenetic
signal. Nevertheless, this tree is likely the best explanation of relationships of the available
plastomes given used models and methods of phylogenetic inference.

As follows from the presented tree, the plastome of Z. korovinii has found its place
among the plastomes of the Semenovia species (Tordyliinae II clade), while S. graveolens,
M. komarovii, and P. pimpinellifolia settled down in the Tordyliinae I clade. The plastome
of T. maximum became a separate lineage closely related to Heracleum + Pastinaca, and
plastomes of two other Tordylium species formed a sister group to the Zosima + Semenovia +
Tetrataenium clade. Plastomes from D. suffruticosum and N. galbanum, representing Lefebvrea
clade of Tordylieae, together formed a sister group to the plastomes from the Selineae tribe.
Relationships among the non-Tordylieae samples are identical to the recently presented
Apioideae plastome’s phylogeny [26].

Thus, Tordylieae plastomes are of polyphyletic origin and form at least three not
closely related lineages, which only partially correspond to the subtribal taxonomy. Plas-
tomes of the Tordyliinae subtribe failed to form a monophyletic group in phylogenomic
analyses [20,26,28], and our results are in good agreement with this statement. Plastomes
of the genus Tordylium also turned out to be not monophyletic on our tree, the type species
of the genus T. maximum separated from the congeneric species in the phylogenetic tree,
and their plastomes differ by the presence/absence of insertion in the trnV-rrn16 spacer. It
should be noted, that T. maximum, a European boreal species, is morphologically remote
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from the Mediterranean T. elegans and T. pestalozzae [73]. A possible polyphyly of Tordylium
had also been suggested earlier based on nrITS data analysis [42,74]. Unfortunately, the
genus received little attention in molecular phylogenetic studies and has never been sam-
pled densely, so the questions addressing relationships between Tordylium species using
nuclear and plastid sequences are still to be answered.

The close affinity of Symphyoloma, Mandenovia, Pastinaca, and Heracleum plastomes
corresponds well to the results of nrITS studies [42,44,45].

Ducrosia and Kalakia presented the Cymbocarpum clade in our analyses, but despite
the presence of insertion in the trnV-rrn16 spacer in both plastomes, the plastome of
K. marginata seems to be not closely related to D. anethifolia, which in all analyses is entered
in the Tordyliinae II clade (Figure 2, inset), while K. marginata was somewhat linked with the
Tordyliinae I clade. Support for their placement and the placement itself varied depending
on the data set used in the analyses and may change with the addition of other allied
plastome sequences, so the plastome of K. marginata may represent a lineage in Tordylieae
that is separate from Tordyliinae I. We expect that larger sampling with the inclusion of
Cymbocarpum and other Tordylium species will help stabilize the positions of Ducrosia and
Kalakia in the plastome tree.

The Lefebvrea clade looks like the only Tordylieae clade keeping monophyly, probably
because of the undersampling of the “African peucedanoid group” in our analyses. Ac-
cording to the ITS-taxonomy [31], the group includes ten genera and earlier did not show
monophyly in all phylogenetic analyses of the plastid markers (e.g., [75]). A sister relation-
ship of the plastomes from the Lefebvrea clade and Selineae tribe, as well as relationships
resolved with the short branches 1–5, also require confirmation with the inclusion of yet
unsampled allied tribes and clades.

Taking into account the absence of several important apioid superclade lineages
(Echinophoreae, Ormosciadium, Opopanax clade, etc.) and a well-known uncertainty in
short branch inference, the plastome relationships in the presented tree should be treated
with caution. The most comprehensive study of Apioideae molecular phylogeny using
nrITS sequences (2911 accessions) has shown a monophyly of Tordylieae [76]. Recent
analysis of nuclear phylogenomic data has confirmed at least monophyly of Tordyliinae
and sister relationships of Tordyliinae with the Lefebvrea clade [48], which are not recovered
in the obtained plastome phylogeny. At the same time, it is difficult to compare results of
this investigation with the nuclear phylogenomic study [48] due to differences in taxon
sampling: given the unpredictability of plastid phylogeny (i.e., non-monophyly of the
Sinodielsia clade, Tordyliinae, and Pimpinelleae [26]), the inferred relationships of sampled
representatives of the Lefebvrea clade should not automatically be applied to the entire
Lefebvrea clade. Considering plastome and nuclear phylogeny discrepancies in a broader
scale, Wen et al. suggested hybridization and incomplete lineage sorting as major sources
of observed discordances [26]. Indeed, distant relationships of the Tordyliinae I and
Tordyliinae II plastomes hardly can be altered with larger sampling but may be explained
with chloroplast capture events, as proposed by Wen et al. [26]. At this stage, we also can
hypothesize that ancient chloroplast capture due to hybridization might have played an
important role in the Lefebvrea clade evolution.

2.4. Distribution of Insertion in the trnV-rrn16 Spacer across Tordylieae and Its Allies

The inferred phylogeny showed that all plastomes with psbA-trnH insertion in the
ycf2-trnL spacer resided within the Tordyliinae I clade, forming a monophyletic group. The
distribution of insertions in the trnV-rrn16 spacer, at first sight, assumes at least two appear-
ances and one loss—in the common ancestor of two Semenovia species. The mechanisms
responsible for the rearrangements at IR junctions are yet not clearly understood; they may
involve gene conversion or homologous recombination induced by double-strand break
and followed by Holliday junction resolution or illegal recombination [5,77]. In recent years,
active studies of the double-strand break repair pathways have provided growing evidence
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that the error-prone microhomology-mediated mechanisms play important roles in the
plastid DNA evolution and may be responsible for structural rearrangements [78–80].

Whatever mechanism (or combination of) drives the IR borders in plastome, the
absence of the psbA-trnH insertion in the trnV-rrn16 spacer in Angelica sinensis (accessions
MT921983 and MT921984), Semenovia gyirongensis Q.Y.Xiao & X.J.He (NC_042912), and
Semenovia thomsonii (C.B.Clarke) Manden. (NC_057441) plastomes is surprising. To check
the accuracy of LSC/IRb junction assembly, S. thomsonii and A. sinensis raw data were
retrieved from the sequence read archive (SRR14561442 and SRR13247229, respectively;
raw data for S. gyirongensis were not accessible). Read mapping showed a drop of coverage
depth at the JLB junction, and these two plastomes were reassembled. For A. sinensis,
three contigs, corresponding to LSC, SSC, and IR regions, were produced, while for S.
thomsonii, four contigs resulted because of the split of IR. Contigs were joined in a single
plastome sequence by virtue of overlapping ends, and the annotation of plastomes revealed
the presence of psbA-trnH insertions in the trnV(GAC)-rrn16 spacer in both plastomes,
confirmed with plastome alignment. Thus, in two out of three species, the “disappearance”
of the insertion represents a misassembly rather than the real biological phenomenon; it is
highly likely that the same is true for S. gyirongensis.

To assess the distribution of the insertion across a wider sample of Tordylieae, a short
survey of 16 species, including Ducrosia assadii Alava, Cymbocarpum anethoides DC. ex
C.A.Mey., 9 Semenovia, 3 Tordylium, and 2 Tetrataenium species (Supplementary Table S2),
was performed using a pair of primers annealed to trnV(GAC) and trnH(GUG) sequences.
The insertion was found in all examined specimens, indicating that its presence is widespread
and stable and, surprisingly, that plastomes within Tordylium are even more dissimilar than
presented in this study. Notably, the psbA pseudogene in the insertion in the Cymbocarpum
and Kalakia plastomes are of the same length.

Among the insertions in the trnV(GAC)-rrn16 spacer, three are shorter as they do not
contain psbA-trnH sequences (T. pestalozzae, T. lanatum, and N. japonicum, Figure 3).
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Figure 3. Spacer with an indication of trnV pseudogene, psbA pseudogene, trnH and trnV gene
sequences, and the distribution of the insertions across the analyzed plastomes. Nucleotide bases
in alignment are color-coded; a similar color pattern means a similar sequence. The positions of
Kalakia and Ducrosia are shown as unresolved. Reassembled in this study, the plastomes of Semenovia
thomsonii and Angelica sinensis are presented. Note no matching insertion site in Angelica.

The alignment of the plastome sequences (Figure 3) shows that the insertion sites
in the trnV(GAC)-rrn16 spacer in the clade uniting Coriandrum and Nothosmyrnium with
Tordyliinae II and in the Sinodielsia clade in A. sinensis plastome do not match and occur au-
tonomously. Coriandrum’s insertion stands out by its length and differs from Nothosmyrnium
and Tordyliinae II plastomes by the presence of the trnV(GAC) pseudogene in the insertion:
this pseudogene is a 5′-truncated copy of the trnV gene. It is supposed to emerge as
a consequence of a double-strand break repair through the sequence-dependent strand
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annealing mechanism [55] but might also have arisen earlier by duplication of the trnV
gene. Considering the fact that the tandem duplication of tRNA (trnH(GUG)) genes in the
Piper plastomes is observed at the IR border [81] (see also Haberle et al. [82]), this is a quite
possible scenario. Anyway, as neither Nothosmyrnium nor Tordyliinae II plastomes contain
the trnV pseudogene in IRs, one may conclude that the psbA-trnH insertion in Coriandrum
is an independent event. It should also be noted that among all insertions examined, only
Kalakia showed a high similarity (91%) of the last 70 bases of the non-coding part of the
insertion with the trnK-rps16 spacer sequence, suggesting independent JLA shift in the
Kalakia plastome and its separation from Ducrosia.

Thus, within the analyzed plastomes, due to the different positions of the LSC/IRb
borders, similar but autonomous JLA shifts have caused three different placements of the
psbA-trnH insertions, and within Tordylieae, the insertions in the trnV-rrn16 spacer hap-
pened more than once. At the same time, apparently, it is not so easy for a plastome to
be gotten rid of once acquired and captured in IRs insertion without a trace; it should be
extremely rare, if ever possible, and these insertions may serve as phylogenetic markers
for certain clades. Insertion in the ycf2-trnL(CAA) spacer within Tordyliinae I seems to
have a single origin and inherited by descendants; the origin may be attributed to the
Heracleum + Pastinaca common ancestor on the plastome tree [74]. The mix of “long” (con-
taining psbA-trnH sequences) and “short” insertions in the trnV-rrn16 spacer at this stage
does not allow inferring whether the “long” insertions have shortened or “short” ones have
expanded and whether they have a common origin. Unknown positions of the surveyed
Tordylium species with the “long” insertion and unresolved placement of D. anethifolia
complicate the situation. Nevertheless, for the members of the Semenovia + Tetrataenium
clade, the insertion also has an obvious single origin, and we believe the same will be
found in other members of this clade in the forthcoming plastome studies. During our
survey, we indeed determined the presence of the insertion in S. eriocarpa (Bornm. &
Gauba) Lyskov & Kljuykov; the species was just recently attributed to the genus Semenovia
(formerly Seseli elbursense Pimenov & Kljuykov) based on the morphological features and
nrITS and nrETS phylogenetic analysis [83]. The opposite statement cannot be completely
true given possible independence of insertion events; however, the presence of the same
insertion in the plastome from early branched Physospermopsis clade (GenBank accession
MW820162, submitted as Hansenia forbesii) raises the question of whether the specimen is
really not Tetrataenium or Semenovia.

3. Materials and Methods
3.1. Plant Material and DNA Extraction

Most samples were collected and identified by M. G. Pimenov and his colleagues
during expeditions to the Caucasus, Turkey, and Iran. Additional samples were obtained
from E (Royal Botanic Garden, Edinburgh, UK), MW (Moscow State University, Moscow,
Russia) herbaria and the carpological collection of the Botanical Garden of Moscow State
University. Investigated species and their voucher information are listed in Table 3.

Total genomic DNA (gDNA) from the herbarium material (fruit and leaf) was isolated
using either a DNeasy Plant Mini Kit (Qiagen, Germantown, MD, USA) following the
manufacturer’s protocol or a modified version of Doyle and Doyle [84].
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Table 3. Voucher information for studied species, including collector name and date. Samples from
the carpological collection of the Botanical Garden of Moscow State University are indicated with an
asterisk (*).

Species Name Voucher Number Locality Collector, Date

Dasispermum suffruticosum MW0589014 Republic of South Africa, 34◦21′ S,
18◦55′ E Pimenov et al., 12 January 2003

Ducrosia anethifolia MW0744172 Iran, prov. Fars, 29◦41′ N, 52◦45′ E Pimenov et al., 8 June 2001
Kalakia marginata E №3567 Iran, Iranshakr Lamond, 1 June 1971

Mandenovia komarovii MW0701533 Russia, Daghestan, left bank of the river
Avarskoe Kojsu, near Tlyarata village Pimenov et al., 15 August 1978

Notobubon galbanum MW0589116 Republic of South Africa, 34◦05′ S,
18◦25′ E Pimenov et al., 13 January 2003

Pastinaca pimpinellifolia * Russia, North Caucasus Kljuykov et al., 5 August 2005

Symphyoloma graveolens MW0700962 Russia, Daghestan, Andijski distr.,
Danukh village Amirhanov, 5 August 1989

Tordylium lanatum * Turkey, Antalya, Elmali Pimenov et al., 11 July 2007

Tordylium maximum * Turkey, prov. Kastamonu, Kure-Inebolu,
Ercisler dere Pimenov et al., 21 August 2008

Tordylium pestalozzae MW0745191
Turkey, Ephesus C1 Izmir: between
Ephesus and Mariamane, 37◦55′ N,

27◦20′ E
Pimenov and Kljuykov, 27 May 1995

Zosima korovinii MW0864736 Kyrgyzstan, bank of river At-Bashi,
Baybichetau range, tract Kara-Terek Pimenov and Kljuykov, 1 August 1987

3.2. Genome Sequencing, Plastome Assembly, and psbA-trnH Insertion Survey

The DNA concentration was determined using a Qubit dsDNA HS Assay Kit (Life
Technologies, Eugene, OR, USA). Total DNA (1 µg) was fragmented by sonication using a
Covaris S220 instrument (Covaris Inc., Woburn, MA, USA). The DNA library was prepared
using a TruSeq DNA Sample Prep Kit (Illumina, San Diego, CA, USA) according to the
manufacturer’s instructions. The library was sequenced using an Illumina Hiseq2000 or
Nextseq500 instrument with a read length of 100 (for Hiseq2000) or 75 bp (for Nextseq500)
from each end of the fragment. The resulting reads were processed using the CLC Genomics
Workbench software v.5.5. (www.clcbio.com) and Trimmomatic version 0.32 [85]. De novo
assembly was performed using a CLC Genomics Workbench and IDBA version 1.1.3 [86].
The resulting contigs, showing homology to plastid genomes, were joined by overlapping
ends. To check the accuracy of assembly, trimmed paired reads were mapped to the whole
assembled plastome sequence and to the “left” and “right” halves of the circularized
plastome using Novoalign v.4.03.00 (www.novocraft.com) followed by manual inspection
with Tablet version 1.21.02.08 [87]. This approach allows the definition of IR borders
and to confirm the beginning and end of the plastome’s monomer. Genome annotations
were performed with the web application GeSeq [88] and checked manually using the
Artemis annotation tool [89]; plastome gene maps were drawn using OGDraw version
1.3.1 [90]. Raw data were submitted to GenBank and can be found within the BioProject
PRJNA772711.

For the reassembly of A. sinensis and S. thomsonii plastomes, raw data were retrieved
from the sequence read archive (SRR13247229 and SRR14561442, respectively). Data pro-
cessing, genome assembly, and read mapping were performed as described. Reassembled
annotated plastomes of A. sinensis and S. thomsonii are available in the Third-Party Anno-
tation Section of the DDBJ/ENA/GenBank databases under the accession numbers TPA
BK059532 and BK059899, respectively.

In order to confirm the presence of insertions in the trnV(GAC)-rrn16 spacer in as-
sembled plastomes of Z. korovinii, D. anethifolia, K. marginata, T. lanatum, and T. pestalozzae,
we designed primers for PCR amplification and sequencing. To assess the distribution
of insertions in the trnV(GAC)-rrn16 spacer, another pair of primers was used (Table 4);
their orientation does not allow the amplification when trnV and trnH are located at the
IRa/LSC boundary.

www.clcbio.com
www.novocraft.com
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Table 4. Primer sequences used for amplification and sequencing.

Purpose Primer: Name and Sequence

Insertion in assembled genomes trnV-rrn16_U: AGTTCGAGCCTGATTATCC
trnV-rrn16_L: ATTACTTATAGCTTCCTTGTT

Survey of 16 Tordylieae species trnV-rrn16_U: AGTTCGAGCCTGATTATCC
trnV-trnH_L: CAATCCACTGCCTTGATCC

PCR amplification was performed on a Biometra T3000 Thermocycler using an Encyclo
PCR kit (Evrogen JSC, Moscow, Russia). Each PCR reaction cycle proceeded as follows:
(1) 40 s at 95 ◦C to denature the double-stranded template DNA; (2) 30 s at 58 ◦C to anneal
primers to single-stranded template DNA; and (3) 30 s at 72 ◦C to extend primers. The first
cycle was preceded by an initial denaturation step of 2 min at 95 ◦C. To allow completion of
unfinished DNA strands and to terminate PCR reaction, a 7-min 72 ◦C extension period fol-
lowed the completion of 30 thermal cycles. Each PCR product was purified with a Cleanup
Mini kit (Evrogen, Moscow, Russia). PCR products were sequenced (Evrogen, Moscow,
Russia) with an ABI 310 Genetic Analyzer (Applied Biosystems, Waltham, MA, USA).

The following 16 species of Tordylieae were surveyed for the presence of insertion in
the trnV(GAC)-rrn16 spacer: Cymbocarpum anethoides DC.; Ducrosia assadii Alava; Semenovia
alaica Lazkov; Semenovia dasycarpa Regel & Schmalh.) Korovin ex Pimenov & V.N.Tikhom.;
Semenovia dichotoma (Boiss.) Manden.; Semenovia eriocarpa (Bornm. & Gauba) Lyskov &
Kljuykov; Semenovia glabrior (C.B.Clarke) Pimenov & Kljukov; Semenovia heterodonta (Korov.)
Manden.; Semenovia pamirica (Lipsky) Manden.; Semenovia pimpinellioides (Nevski) Manden.;
Semenovia tragioides (Boiss.) Manden.; Tetrataenium cardiocarpum (Rech.f. & Riedl) Manden;
Tetrataenium olgae (Regel & Schmalh.) Manden; Tordylium apulum Rchb.; Tordylium elegans
(Boiss. & Balansa) Alava & Hub.-Mor.; Tordylium hasselquistiae DC. Voucher information and
GenBank accession numbers are presented in Supplementary Table S2. PCR amplification
and sequencing were performed as described.

3.3. Phylogenetic Analysis

For phylogenetic analysis, we selected 42 plastid genome sequences from the apioid
superclade of the Apioideae subfamily. Earlier, the most representative plastome phyloge-
netic studies showed that the apioid superclade is a monophyletic group with Careae and
Pyramidoptereae tribes branching first [25,26]; therefore, plastomes of Carum carvi (Careae),
Crithmum maritimum L., and Cyclospermum leptophyllum (Pyramidoptereae) were used as
an outgroup. The Selineae tribe is the most represented tribe in the GenBank plastome
database, but as the tribe was also inferred monophyletic [25,26], we restricted ourselves to
only four early diverged representatives of Selineae. The list of the retrieved from GenBank
plastomes with currently adopted species names and accession numbers are presented in
Supplementary Table S3.

Plastome sequences were aligned using MAFFT version 7.471 [91,92] and corrected
manually in Bioedit [93]. In aligned plastomes, nineteen small inversions were identified
and reverse complemented prior to the analyses. Regions where positional homology
could not be firmly determined were excluded along with the gap-rich positions and one
copy of the inverted repeat. In addition to the truncated plastome “long”-data matrix, all
protein-coding sequences were combined in the “CDS”-data matrix, and both matrices
were subjected to phylogenetic analyses.

Plastome’s phylogenetic relations inference was performed using the Bayesian ap-
proach and maximum likelihood analysis. The Bayesian inference was performed with the
MrBayes version 3.2.6 [94] using four independent runs of 25 million generations and four
chains sampling every 1000th generation. The first two million generations were discarded
as burn-in, and the remaining trees were combined in a majority-rule consensus tree to
obtain the Bayesian posterior probabilities (PP). The maximum likelihood analyses were
performed with the IQ-tree version 2.1.1 [95]. Internal branch support was assessed with
the approximate likelihood-based approach “a la Bayes” [96]. Additionally, to assess varia-
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tion of phylogenetic signal in our data, the site concordance factor for internal branches—a
measure of concordance at the level of individual sites [97]—was estimated in IQ-tree.

To achieve a better fit of the nucleotide substitution models to the data, partitioned
analysis was applied to the long data matrix with model parameters unlinked across
partitions. The partitions were defined either according to the coding properties—non-
coding, protein coding, rRNA, and tRNA genes (four partitions)—or according to the
plastome structure—SSC, IR, and LSC regions (three partitions). As sequences in the
inverted repeat and single-copy regions have different rates of substitutions [98], the
heterotachy model implemented in IQ-tree [99] was used for the three-partition dataset to
accommodate a possible substitution rate heterogeneity in the lineages due to IR border
shifts. In this case, the region between the ycf2 and rrn16 genes was treated as a separate
partition; branch support was assessed using 500 nonparametric bootstrap resamplings.
Bayesian analysis using partitioned data and covarion model has also been tried, but
Markov chains did not show a tendency to converge after 5 million generations, and the
analysis was terminated.

The GTR + Γ model of nucleotide substitutions was selected for both data matrices
as the most appropriate according to the Akaike information criterion [100] in PAUP ver-
sion 4.0a [101] and used in unpartitioned and “three partitions” phylogenetic analyses.
For analysis of the “four partitions” data, models GTR + F + R3, GTR + F + R2, F81 +
F + I, and K2P + I were selected for non-coding, protein coding, rRNA, and tRNA parti-
tions, accordingly, by Bayesian information criterion in the IQ-tree built-in ModelFinder
utility [102].

The test for substitutions saturation in the non-coding and protein-coding sequences
was performed in DAMBE [103].

4. Conclusions

The new data obtained in this study have expanded our knowledge on the range of
plastome variability in Apiaceae and demonstrated high mobility of the LSC/IR boundaries
within Tordylieae. The more data accumulated, the more chaotic JLB movements within the
apioid superclade seem, diminishing the value of the JLB junction type for phylogenetic
purposes—closely related plastomes may have different junction types (as in T. pestalozzae
and T. lanatum), and a shared junction type may be confusing when preceding events are
hidden (as A. sinensis). On the contrary, the presence of the specific rearrangements marks
specific lineages and may serve as a phylogenetic marker for certain clades.

With eleven new plastid genomes of Tordylieae, the degree of observed nuclear/plastome
discordance has become higher. Plastome clades revealed in our study within Tordylieae
coincide more or less with those from nuclear sequences analyses; however, they appeared
to be not closely related. Concatenated phylogenetic analyses were unanimous in the highly
supported close relationship of the sampled plastomes of the Lefebvrea clade with those of
the Selineae tribe and in splitting plastomes of the Cymbocarpum clade into independent lin-
eages of Kalakia and Ducrosia with the latter nested within the Tordyliinae II clade. However,
despite the high support values obtained, the relationships of plastid genomes revealed
in this study should be examined further with larger sampling. Currently, both nuclear
transcriptome [104] and plastome phylogenetic analyses reveal short branches separating
Sinodielsia clade, Tordylieae, and Selineae lineages ([26], this study), and both still suffer
from missing lineages and tribes. Possible incomplete lineage sorting and hybridization
accompanying fast radiation of these clades may complicate the task of true relationship
inference, and additional data and analyses will contribute to our understanding of apioid
superclade diversification ways.
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