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Abstract: Biflavonoids are flavonoid dimers that are much less studied than monomeric flavonoids.
Their precise distribution among plants and their role in plants is still unknown. Here, we have
developed a HPLC-DAD method that allows us to separate and simultaneously determine the five
major biflavonoids (amentoflavone, bilobetin, ginkgetin, isoginkgetin, and sciadopitysin) in ginkgo
(Ginkgo biloba L.). We performed tissue-specific profiling of biflavonoids in ten different plant parts:
tree bark, twigs bark, twigs without bark, buds, leaf petioles, leaf blades, seed stalks, sarcotesta,
nutshells, and kernels. We did not detect biflavonoids in plant parts not in direct contact with the
environment (twigs without bark, nutshells, and kernels). We found the highest total biflavonoids
content in leaves, where sciadopitysin was predominant. In contrast, in the bark, amentoflavone was
the predominant biflavonoid, suggesting that more methylated biflavonoids accumulate in leaves
and seeds. This is probably related to their biological function, which remains to be determined.

Keywords: amentoflavone; bilobetin; ginkgetin; isoginkgetin; sciadopitysin; ginkgo; tissue-specific
profiling; HPLC-DAD

1. Introduction

Flavonoids are a large, and to date, most studied group of plant metabolites [1].
Flavonoids have a 15 carbon- atom flavone skeleton, C6-C3-C6, with two benzene rings
(A and B) joined by a trinuclear pyran ring (C). The position of the B catechol ring on the
C pyran ring, as well as the number and position of hydroxyl groups on the catechol group
of the B ring, have a major influence on the chemical properties and biological activity
of flavonoids [1–3]. In addition, flavonoids can be conjugated, glycosylated, or methy-
lated, which also affects their biological properties and function in plants [1]. Flavonoid
dimers, known as biflavonoids, consist of two monomeric flavonoids via a direct link or
a linear linker. According to He et al. [4], nearly 600 different biflavonoids are known in
angiosperms, ferns, gymnosperms, and bryophytes. Most of them are found in plants used
in traditional medicine and are considered important factors in the health benefits of these
plants [3,5,6]. However, the role of biflavonoids in plants is poorly studied. Based on their
biological activity and localization in leaves [7,8], there are indications that they may be
involved in protecting plants from pests and predators and in photosynthesis regulation [9].

A plant in which various biflavonoids have been detected is the ginkgo (Ginkgo biloba L.),
also called maidenhair tree [3,10]. It is a deciduous gymnosperm tree (family Ginkgoaceae)
native to China and has been planted in Chinese and Japanese temple gardens since ancient
times, but is now found as an ornamental tree in many parts of the world [11]. Its use
in traditional Chinese medicine is well known, but today its extracts are widely used
worldwide for the treatment of cognitive complaints [12]. Various specialized metabolites
have been detected in ginkgo plant samples and extracts, including 110 different flavonoids,
13 of which are biflavonoids [3,10]. Although the presence of other biflavonoids has also
been reported, the most commonly reported biflavonoids include amentoflavone, bilobetin,
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ginkgetin, isoginkgetin, and sciadopitysin [3]. These are all 3′, 8′′- biflavones whose basic
structure is shown in Figure 1.
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Figure 1. Basic structure of 3′, 8′′- biflavones.

The flavonoids in ginkgo are being researched by many scientists. However, most
studies focus on monomeric flavonoids and biflavonoids are often neglected [13–15], e.g., in
the review article by Liu et al. [16], which focuses on the advances in chemical analysis and
quality control of flavonoids in ginkgo, the presence of biflavonoids is hardly mentioned.
To fill this gap in our knowledge of ginkgo flavonoids, the aim of the present study was
to establish a tissue-specific profile of biflavonoids in ginkgo. To this end, we developed
the HPLC-DAD method that allowed us to simultaneously determine five biflavonoids,
amentoflavone, bilobetin, ginkgetin, isoginkgetin, and sciadopitysin. We determined their
content in ten different ginkgo plant parts and discussed their presence in relation to
possible physiological functions.

2. Results
2.1. Chemical Differences and Method for Biflavonoids Analysis

All five biflavonoids analyzed (Figure 2) belong to the amentoflavone type, in which
two monomeric units are joined at positions 3′, 8′′ (Figure 1). Amentoflavone consists
of two apigenin monomers and other biflavonoids in ginkgo are considered derivatives
of amentoflavone.
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Bilobetin has a methoxy group at the C-4′ position. Isoginkgetin and ginkgetin have
two methoxy groups–isoginkgetin at the C-4′ and C-4′′′ positions and ginkgetin at C-7 and
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C-4′. Sciadopitysin has three methoxy groups at C atom positions C-7, C-4′ and C-4′′′. The
presence of methoxy groups affects the chemical properties of the analyzed compounds
and their polarity, which allows us to separate the compounds using reverse phase C 18
HPLC silica columns (Figure 3).
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Figure 3. Representative chromatogram of five biflavones recorded at 330 nm.

Under the proposed instrumental conditions, the biflavonoids eluted at 19.6 min
(amentoflavone), at 20.8 min (bilobetin), at 23.0 min (ginkgetin), at 23.3 min (isoginkgetin),
and at 28.7 min (sciadopitysin), as shown in Figure 3 and Table 1. Identification of each
compound was performed by comparing the retention times and UV spectra of the analytes
with those of the standard solution. According to the criteria of Commission Decision
(EC) No. 657/2002 on the performance of analytical methods [17], the relative retention
time of the determined compound in the sample solution had to be equal to that in the
standard solution with a tolerance of ±2.5%. Quantification was performed using an
external standard calibration and the amount of biflavonoids in the plant samples was
expressed in µg/g dry weight (dw).

Table 1. Retention times and UV spectrum data for analyzed biflavonoids.

Compound Retention Time
(min) Characteristic UV Spectrum Maximum UV Apsorption (nm)

Amentoflavone 19.634
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Table 1. Cont.

Compound Retention Time
(min) Characteristic UV Spectrum Maximum UV Apsorption (nm)

Ginkgetin 22.951
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The limit of detection (LOD) and limit of quantification (LOQ) were estimated using
the signal-to-noise (S/N) approach, calculated for the sample extract at the targeted level of
0.3 µg/mL for LOD and 1.0 µg/mL for LOQ, for each compound. The obtained S/N values
were regarded as acceptable if ≥3 and ≥10, respectively. The achieved R2 of all calibration
curves was greater than 0.99, and the targeted LOD and LOQ values for all five compounds
(0.3 µg/mL and 1.0 µg/mL, respectively) were evaluated as acceptable, as satisfying the
requirements of sufficient S/N ratios (Table 2).

Table 2. Curve equation, R2, LOD and LOQ for analyzed biflavonoids.

Analyte Wavelength
nm Curve Equation R2 LOD

µg/mL
LOQ
µg/mL

Amentoflavone 330 y = 36.7275x − 51.0679 0.99504 0.30 1.0
Bilobetin 330 y = 23.2259x − 33.033 0.99758 0.30 1.0
Ginkgetin 330 y = 54.6868x − 74.7767 0.99765 0.30 1.0

Isoginkgetin 330 y = 44.1283x − 51.4203 0.99775 0.30 1.0
Sciadopitysin 330 y = 49.3575x − 59.0710 0.99806 0.30 1.0

2.2. Tissue-Specific Biflavonoids Profiling

To establish a tissue-specific biflavone profile, we separated the different ginkgo plant
parts as shown in Figure 4. Various names have been used for the ginkgo seeds, which are
sometimes called fruits, although the ginkgo belongs to the gymnosperms and produces
seeds. The fleshy part is the seed coat or sarcotesta.

We can divide the analyzed plant parts into parts that are in direct contact with the
environment, such as leaves (petiole and leaf blade), bark, twig bark, bud, seed petiole
and sarcotesta, and parts that are not in direct contact with the environment, such as twig
without bark, nutshell, and kernel. We did not detect biflavonoids in the parts that are not
in direct contact with the environment.

Figure 5 shows the biflavonoid profile of tree and twig barks and buds. In tree bark,
we find only amentoflavone at a concentration of 63.30 ± 4.60 µg/g dw. Amentoflavone
was also the most abundant biflavonoid in twig bark and buds with a concentration
of 75.70 ± 6.80 µg/g dw and 38.82 ± 1.55 µg/g dw, respectively. Other biflavonoids
were also present in the twig bark: bilobetin in concentration 32.53 ± 2.30 µg/g dw,
ginkgetin 33.79 ± 2.80 µg/g dw, isoginkgetin 29.49 ± 3.23 µg/g dw and sciadopitysin
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41.57 ± 4.64 µg/g dw. In buds, we could not detect bilobetin, and ginketin, isoginkgetin,
and sciadopitysin were found at concentrations of 13.79± 1.00 µg/g dw, 5.47 ± 1.03 µg/g dw,
and 10.96 ± 3.43 µg/g dw, respectively.
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We found the highest content of biflavonoids in the leaf petioles and blades (Figure 6).
In contrast to the barks, amentoflavones were the least abundant biflavonoids in the leaves
(183.57 ± 1.18 µg/g dw in petioles and 86.00 ± 0.74 µg/g dw in leaf blades). In peti-
oles, the most abundant biflavonoid was bilobetin (984.48 ± 6.42 µg/g dw), followed by
isoginkgetin (883.83± 5.41 µg/g dw), sciadopitysin (727.14± 2.98 µg/g dw), and ginkgetin
(627.22 ± 3.21 µg/g dw). In leaf blades, the most abundant biflavonoid was sciadopitysin
(2398.59 ± 6.11 µg/g dw), followed by isoginkgetin (1896.02 ± 11.92 µg/g dw) and bilo-
betin and ginkgetin, whose contents were similar and were 1378.34 ± 11.22 µg/g dw and
1331.17 ± 5.85 µg/g dw, respectively.
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We analyzed seed petioles, sarcotesta, nutshells, and kernels separately and de-
tected biflavonoids only in seed petioles and sarcotesta (Figure 7). In seed petioles, the
most abundant biflavonoid was isoginkgetin (380.41 ± 26.98 µg/g dw), while the least
abundant biflavonoid was amentoflavone (34.01 ± 2.51 µg/g dw). Other biflavonoids
were present in the following concentrations: ginkgetin 146.62 ± 9.37 µg/g dw, bilobetin
249.29 ± 19.23 µg/g dw and sciadopitysin 289.32 ± 19.19 µg/g dw. In a sarcotesta, the
biflavonoids were present in similar proportions. The largest abundant was isoginkgetin
(311.67 ± 16.92 µg/g), followed by sciadopitysin (224.32 ± 4.44 µg/g dw), bilobetin
(138.34 ± 49.19 µg/g dw), and ginkgetin (116.53 ± 6.58 µg/g dw). The least abundant
biflavonoid in sarcotesta was amentoflavone with a concentration of 17.52 ± 2.77 µg/g dw.

The total content of biflavonoids in different parts of the ginkgo plant is shown in
Figure 8. As you can see, the biflavonoid content is highest in the leaves, followed by the
seeds, while the other parts have much lower biflavonoid content.
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3. Discussion

In the past, separation and especially identification of biflavonoids was a difficult
task due to lack of modern analytical equipment and commercially available standards.
Many of the early reported methyl biflavones had to be corrected for structure, as structural
elucidation in the 1960s and 1970s depended on co-chromatography with isolated authentic
compounds, which in turn could be misidentified [18]. Biflavonoids have a strong signal at
330 nm, making the DAD detector in combination with standards a compelling and rapid
method for detecting biflavonoids in ginkgo. One of the earliest HPLC-DAD methods for
separating biflavonoids from ginkgo leaves was developed by Briancon-Scheid et al. [19],
the HPLC-DAD method for the simultaneous determination of four (bilobetin, ginkgetin,
isoginkgetin, sciadopitysin) biflavonoids. Kaur et al. [20] developed a method for the
simultaneous determination of three biflavonoids (bilobetin, sciadopitysin, and ginkgetin)
from ginkgo leaves, and recently Lei et al. [21] focused on four biflavonoids (bilobetin,
ginkgetin, isoginkgetin, sciadopitysin), as did Wang et al. [22]. Pandey et al. [23] reported
only two biflavonoids (amentoflavone and sciadopitysin) in a crude extract of ginkgo
leaves. Beck and Stengel [7] like us, reported five biflavonoids in ginkgo leaves but were
unable to separate ginkgetin from isoginkgetin. To determine the content of biflavonoids in
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different plant parts (tissues) of ginkgo, we have developed the HPLC-DAD method for
the separation and simultaneous quantification of the five major biflavonoids in ginkgo [3],
which allows us to profile different tissue types.

We analyzed ten plant parts and could not detect any of the analyzed biflavonoids
in three parts (twigs without bark, nutshells, and seeds). Chen et al. [24] also failed to
detect biflavonoids in seeds or embryoids, as they called this the seed part. We detected
biflavonoids in all parts studied that are in contact with the environment, which may
indicate a biological role for biflavonoids in the context of plant-environment interactions.
This is consistent with literature data that biflavonoids are localized in the outer part of the
leaves of G. biloba [7] and above the ground rhizome of Psilotum nudum [8] according to
MALDI imaging data.

We found the highest total biflavonoid content and the presence of all five biflavonoids
in the leaf blades, followed by the petioles. In the leaf blades, the most abundant bi-
flavonoid was sciadopitysin, which is consistent with the report of Wang et al. [22] who
also described sciadopitysin as the most abundant biflavonoid in yellow ginkgo leaves.
In leaf parts, we detected a much lower amount of amentoflavone compared with other
biflavonoids, suggesting that more methylated biflavonoids are present in leaves. A simi-
lar high amount of sciadopitysin compared to amentoflavone in leaves was reported by
Pandey et al. [23] in ginkgo trees of different ages. The low content of amentoflavone is
probably the reason why this biflavonoid was generally not detected in leaves in other
studies [19,21,22]. Amentoflavone was also the least abundant biflavonoid in the seed
parts where biflavonoids were detected in seed petioles and sarcotesta, according to our
data. Chen et al. [24] reported only isoginkgetin in ginkgo sarcotesta at concentrations
ranging from 179.78 to 424.42 µg/g dry weight, which is comparable to our results where
isoginkgetin was the most abundant biflavonoid (380.41 ± 26.98 µg/g dw). Shen et al. [25]
reported bilobetin, isoginkgetin, and ginkgetin in sarcotesta and developed a method for
large-scale targeted isolation of these biflavonoids from the exocarp (sarcotesta), which is
an industrial waste.

In contrast to the leaves and seeds, in which methylated biflavonoids dominate, the
most abundant biflavonoid in the bark and buds of trees and twigs was amentoflavone.
In the bark, we could detect only amentoflavone and at the same time, other biflavonoids
were below the detection limit. In the bark of the twig, we also detected other biflavonoids,
but the amentoflavone content was twice as high as in other parts. Pandey et al. [23]
reported the presence of amentoflavone and sciadopitysin in ginkgo stems, but the au-
thors did not specify which type of stems they analyzed. The presence of amentoflavone
has also been reported in the bark of other plants such as Calophyllum pinetorum [26],
Ochna schweinfurthiana [27] and Anacolosa poilanei [28]. If we consider the strong antimicro-
bial [29,30] and antiparasitic [31–33] activity of amentoflavone, this could indicate its role
in protection against biotic stress, but further studies should test this hypothesis.

4. Materials and Methods
4.1. Materials and Plant Samples

Ultrapure water was prepared using the Purelab flex system (ELGA LabWater, Wycombe,
UK) and all solvents used were of HPLC grade. Certified analytical standards of bi-
flavonoids, including amentoflavone (CAS 1617-53-4), bilobetin (CAS 521-32-4), ginkgetin
(CAS 481-46-9), isoginkgetin (CAS 548-19-6), and sciadopitysin (CAS 521-34-6), were pur-
chased from Phytolab (Vestenbergsgreuth, Germany). Plants of Ginkgo biloba L. were
collected in Koprivnica, Croatia, in late October 2022. Leaves, seeds and bark samples
were collected and then separated to obtain different tissues (Figure 4). Fresh material
was quickly frozen and freeze-dried using a laboratory freeze dryer (LIO-5PLT, KAMBIČ,
Ljubljana, Slovenia). The dry plant material was pulverized using a bead mill (Bead Ruptor
12, Omni International, USA), sealed under vacuum and stored at room temperature for
further experiments.
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4.2. Preparation of Standard Solutions

Standard stock solutions of five biflavonoids (amentoflavone, bilobetin, sciadopitysin,
ginkgetin and isoginkgetin) were prepared individually in DMSO in a concentration of
1000 µg/mL. An appropriate amount of each standard stock solution was diluted with 80%
methanol to obtain seven working standard solutions (concentrations 1.0, 2.0, 5.0, 10, 20,
50 and 100 µg/mL) for constructing the relevant calibration curves. The standard stock
solution, along with the working solutions, was kept in dark at −20 ◦C until use.

4.3. Biflavonoids Extraction

Powdered samples of various G. biloba L. plant parts were accurately weighed (30 mg)
and sonicated for 10 min at room temperature in the presence of extraction solvent (1 mL
of 80% methanol), followed by a 45 min rotation in a mechanical shaker (Bio RS-24, Biosan,
Latvia) and 5 min centrifugation (LMC-4200R, Biosan, Latvia) at 4000× g. Prior to the
instrumental analysis, the obtained sample extracts were filtered through a 45 µm pore size
polytetrafluoroethylene syringe filter. Each plant sample type was prepared in triplicates
after which the average result value was expressed for each biflavonoid compound.

4.4. HPLC-DAD Analysis

The instrumental analysis was performed using an Agilent 1260 Infinity II HPLC
system (Agilent, Santa Clara, CA, USA), equipped with a quaternary pump system, au-
tosampler, column department and diode array detector (DAD). The acquisition and data
processing was conducted using Agilent OpenLAB CDS software (v. 2.6, Agilent, Santa
Clara, CA, USA). Chromatographic separation was attained using Zorbax 300Extend-C18
column, 150 × 4.6, 3.5 µm (Agilent, Santa Clara, CA, USA) maintained at 30 ◦C, and 0.1%
formic acid in water (mobile phase A) and acetonitrile (mobile phase B) at a constant
flow rate of 1.0 mL/min during 42 min of the analysis. The used multistep linear solvent
gradient for the analyte’s elution was as follows: 0 min 98% A, 5 min 90% A, 15 min 70% A,
20 min 50% A, 25 min 50% A, 30 min 20% A, 32 min 2% A, 40 min 98% A. The injection
volume was 10 µL for both standards and samples. UV/Vis spectra were recorded in the
range of 190–400 nm, and the chromatograms were acquired at 330 nm.

4.5. Statistical Analysis

For analysis, we collected samples from six different plants, three of which were female
from which we took seeds. We all collected material pulled together and for analysis,
we performed three separate extractions and analyzed them on HPLC-DAD. Statistical
analyses were performed using the free software PAST [34]. One-way ANOVA and post hoc
multiple means comparison (Tukey’s HSD test) were performed and differences between
measurements were considered significant at p < 0.05.

5. Conclusions

In the present study, we developed a method for the simultaneous determination of
five biflavonoids (amentoflavone, bilobetin, ginkgetin, isoginkgetin, and sciadopitysin) and
performed tissue-specific profiling in ten different parts of ginkgo plants. We did not detect
biflavonoids in three plant parts (twigs without bark, nutshells, and kernels) that were not
in direct contact with the environment. In the other plant parts studied, biflavonoids were
most abundant in leaves, followed by seeds. In bark samples and buds, the predominant
biflavonoid was amentoflavone, which, in contrast, was least abundant in leaves and seeds,
where methylated biflavonoids dominated. In petioles and leaf blades, the most abundant
biflavonoid was sciadopitysin, and in petioles and the sarcotesta of seeds, isoginkgetin. The
accumulation of biflavonoids in the parts in direct contact with the environment probably
indicates their role in plant-environment interaction. However, the different accumulation
of each biflavonoid might be related to their chemical structure and different biological
functions. Further studies should focus on elucidating the role of biflavonoids in plants,
with emphasis on the structural functional differences.
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