
Citation: Zhou, Y.; Stepanenko, A.;

Kishchenko, O.; Xu, J.; Borisjuk, N.

Duckweeds for Phytoremediation of

Polluted Water. Plants 2023, 12, 589.

https://doi.org/10.3390/

plants12030589

Academic Editors: Viktor Oláh,

Klaus-Jürgen Appenroth and K.

Sowjanya Sree

Received: 11 November 2022

Revised: 28 December 2022

Accepted: 19 January 2023

Published: 29 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Review

Duckweeds for Phytoremediation of Polluted Water
Yuzhen Zhou 1 , Anton Stepanenko 2,3 , Olena Kishchenko 2,3, Jianming Xu 1 and Nikolai Borisjuk 1,*

1 School of Life Science, Huaiyin Normal University, Huai’an 223300, China
2 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
3 Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine,

03143 Kyiv, Ukraine
* Correspondence: nborisjuk@hytc.edu.cn

Abstract: Tiny aquatic plants from the Lemnaceae family, commonly known as duckweeds, are often
regarded as detrimental to the environment because of their ability to quickly populate and cover
the surfaces of bodies of water. Due to their rapid vegetative propagation, duckweeds have one
of the fastest growth rates among flowering plants and can accumulate large amounts of biomass
in relatively short time periods. Due to the high yield of valuable biomass and ease of harvest,
duckweeds can be used as feedstock for biofuels, animal feed, and other applications. Thanks to their
efficient absorption of nitrogen- and phosphate-containing pollutants, duckweeds play an important
role in the restorative ecology of water reservoirs. Moreover, compared to other species, duckweed
species and ecotypes demonstrate exceptionally high adaptivity to a variety of environmental factors;
indeed, duckweeds remove and convert many contaminants, such as nitrogen, into plant biomass. The
global distribution of duckweeds and their tolerance of ammonia, heavy metals, other pollutants, and
stresses are the major factors highlighting their potential for use in purifying agricultural, municipal,
and some industrial wastewater. In summary, duckweeds are a powerful tool for bioremediation
that can reduce anthropogenic pollution in aquatic ecosystems and prevent water eutrophication in a
simple, inexpensive ecologically friendly way. Here we review the potential for using duckweeds
in phytoremediation of several major water pollutants: mineral nitrogen and phosphorus, various
organic chemicals, and heavy metals.

Keywords: duckweed; Spirodela; Lemna; water pollutants; nitrogen; phosphorus; heavy metals;
agrochemicals wastewater remediation

1. Introduction

Pollution and shortages of potable water are two of the most serious problems facing
humanity. In many Asian countries and elsewhere, the demand for potable water doubles
every 10–15 years due to rising domestic and industrial consumption [1,2]. In addition,
eutrophication, the nutrient enrichment of municipal, agricultural, and industrial water
reservoirs due to human activities leading to stimulation of bacteria, algae, and plant
growth and oxygen limitation, is a global concern and has been identified as a major
environmental problem for water resource management.

The need to reduce anthropogenic nutrients in aquatic ecosystems to prevent water
eutrophication has been widely recognized [3], and a number of physical, chemical, and
biological methods for wastewater treatment have been tested [4]. The cultivation of aquatic
plants is an attractive option for restoring eutrophic water bodies, offering an eco-friendly
method for removing nutrients, bioaccumulating toxic nutrients and heavy metals for
disposal, and regulating oxygen balance [5]. Various aquatic plants have been used for
the bioremediation of wastewater with varying degrees of success [6], with duckweeds
standing out because of their specific physiology, high growth rates, multiple options for
biomass usage, simple maintenance, and easy harvesting [7].
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Plants bioremediate pollutants by diverse mechanisms, depending on the pollutant
nature. Simple nutrients such as N and P, which result from agricultural runoff and cause
the eutrophication of water sources, can be used as nutrients to fuel plant growth. Organic
compounds can be detoxified by cellular metabolism within the plant or by associated
microbes; for successful bioremediation, the plant must tolerate the doses of these organic
compounds present in the environment, take up the compound, and be able to metabolize
it [8]. Some pollutants, such as industrial dyes, can also be removed by biosorption, in
which the pollutant binds to the surface of the plant. For pollutants that cannot be broken
down, such as heavy metals, bioremediation may involve uptake and sequestration of
the pollutant, followed by removal and processing of the contaminated biomass [9,10].
Understanding the mechanism of bioremediation has key implications for selecting the
species used and improving the ability of that species to bioremediate the pollutant in
question.

Duckweed is a common name that unites a group of floating aquatic plants in the
Lemnaceae that inhabit all continents except Antarctica [11,12]. Because of their rapid
propagation, among the fastest growth rates of flowering plants [13], duckweeds play an
important role in the ecology of water reservoirs worldwide. Often seen as detrimental
to the environment due to their ability to quickly colonize and take over bodies of water,
duckweeds have a long history of applications in medicine, the food chain, and rituals
since ancient times, from the Chinese Han dynasty, to early Christians, to classic Mayan
culture [14]. Since the dawn of modern molecular biochemistry, duckweeds have served as
a model plant helping to reveal basic functions of proteins, nucleic acids, and hormones,
and have provided insights into plants development, photosynthesis, nutrient turnover,
and other key processes in plants [15–19]. With the search for new sources of renewable
energy and biomaterials, the 2010s saw duckweeds reemerge in academic research and a
wide spectrum of new practical applications [20–23]. Duckweeds have well-recognized
potential uses as animal feed, biofuel feedstock, and human food because of their rapid
accumulation of biomass and its high protein and starch contents [20,24–26]. Here we
present a comprehensive summary highlighting recent applications of duckweeds for phy-
toremediation of major water pollutants: (i) mineral nitrogen and phosphorus, (ii) various
organic chemicals, and (iii) heavy metals.

2. Duckweeds (Lemnaceae): Tiny Aquatic Plants with Unique Properties

Although duckweeds are often mistaken for algae because of their small size and
reduced morphology, phylogenetically they are ancient monocotyledonous flowering plants
represented by 36 currently recognized species grouped into five genera: Spirodela, Landoltia,
Lemna, Wolffiella and Wolffia (Figure 1). Compared to the majority of plant species, leaves,
and stems in duckweeds are merged into a simplified structure known as a frond, and
roots, which are entirely lacking in two genera (Wolffia and Wolffiella). Species of the genus
Spirodela have the largest fronds, up to 15 mm across, while those of Wolffia species are
2 mm or less in diameter with Lemna species are of intermediate size at 6–8 mm.

Because of the ancient origin of duckweeds about 100 million years ago, their tiny size,
and their simple morphology, the phylogenic grouping of this clade remains a matter of de-
bate [12], and recently has become more dependent on new molecular methods [27–29]. For
example, analysis of chloroplast and nuclear DNA markers supported renaming Spirodela
punctata to Landoltia punctata and separating the species into a new genus Landoltia [30], as
well as a recent reduction in genus Lemna from 13 to 12 species [31].

Due to their very rapid vegetative propagation, duckweeds can produce a biomass mat
capable of covering expansive water surfaces and formed by a single species or different
species. With a doubling time of about 24 h for some duckweed species, they are among
the fastest-growing flowering plant known and can reach an annual biomass productivity
of 39–105 tons of dry weight per hectare per year [13]. For comparison, the productivity of
Miscanthus, a major grass used for bioenergy production, is 5–44 tons of dry weight per
hectare per year.
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Figure 1. Duckweeds, the Lemnaceae plant family. (A) The Lemnaceae plant family contains 36 
species grouped into five genera: Spirodela, Landoltia, Lemna, Wolffia, and Wolffiella. a, b, c, d, e1, e2 
depict representative images of a species in the corresponding genera. The duckweed images are 
adapted from a drawing of Dr. K. Sowjanya Sree, Central University of Kerala, Periye, India [27]; 
(B) harvesting of duckweed covering a fishpond near Huai’an city, China; (C) Lemna aequinoctialis 
growing in the lake on the campus Huaiyin Normal University. Bar = 1 cm. 
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supported renaming Spirodela punctata to Landoltia punctata and separating the species 
into a new genus Landoltia [30], as well as a recent reduction in genus Lemna from 13 to 12 
species [31]. 

Due to their very rapid vegetative propagation, duckweeds can produce a biomass 
mat capable of covering expansive water surfaces and formed by a single species or 
different species. With a doubling time of about 24 h for some duckweed species, they are 
among the fastest-growing flowering plant known and can reach an annual biomass 
productivity of 39–105 tons of dry weight per hectare per year [13]. For comparison, the 
productivity of Miscanthus, a major grass used for bioenergy production, is 5–44 tons of 
dry weight per hectare per year.  

During biomass accumulation, duckweeds can very efficiently remediate different 
types of wastewater [32], and these traits can be further improved not only by selection of 
the best species or ecotypes [7,33,34], but also through optimization of plant’s growth 
parameters such as ration of nutrients, light intensity, fronds density, etc. [35–38]. 
Biomass accumulation by plants in general strongly depends on efficient use of N, and 
duckweed plants are extremely efficient at assimilating N. Due to N remobilization and 

Figure 1. Duckweeds, the Lemnaceae plant family. (A) The Lemnaceae plant family contains 36 species
grouped into five genera: Spirodela, Landoltia, Lemna, Wolffia, and Wolffiella. A, B, C, D, E1, E2
depict representative images of a species in the corresponding genera. The duckweed images are
adapted from a drawing of Dr. K. Sowjanya Sree, Central University of Kerala, Periye, India [27];
(B) harvesting of duckweed covering a fishpond near Huai’an city, China; (C) Lemna aequinoctialis
growing in the lake on the campus Huaiyin Normal University. Bar = 1 cm.

During biomass accumulation, duckweeds can very efficiently remediate different
types of wastewater [32], and these traits can be further improved not only by selection
of the best species or ecotypes [7,33,34], but also through optimization of plant’s growth
parameters such as ration of nutrients, light intensity, fronds density, etc. [35–38]. Biomass
accumulation by plants in general strongly depends on efficient use of N, and duckweed
plants are extremely efficient at assimilating N. Due to N remobilization and recycling
by duckweeds, their nitrogen use efficiency is extremely high, reaching more than 68
kg biomass/kg of N under N limitation [39]. Simultaneously, duckweeds demonstrate
relatively high tolerance to many water pollutants (e.g., ammonia, heavy metals, vari-
ous organic compounds) and other environmental stresses when used for remediation of
agricultural, municipal, and even industrial wastewater streams. These complementary fea-
tures of water remediation and fast biomass accumulation have made duckweed a subject
of intense academic research interest from the business community in recent years [20,40].

Recently, there has been significant progress in the areas of duckweed genomics, bio-
chemistry, and developmental physiology [41]. We now have up-to-date, fully sequenced
genomes of two ecotypes of Spirodela polyrhiza [42,43], Spirodela intermedia W. Koch [44],
Lemna minor L. [45], Lemna minuta [46] and Wolffia australiana (Benth.) Hartog and Plas [47],
as well as ongoing whole-genome sequencing projects for Lemna gibba L. [48]. Those efforts
are further supported by establishment of duckweed collections hosting more than 2000 eco-
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types [49]. The major world duckweed depository is hosted by Prof. E. Lam at the Rutgers
Duckweed Stock Cooperative at Rutgers University (New Jersey, USA). There are also a
number of live in vitro collections available in Canada, China, Germany, Hungary, India,
Ireland, and Switzerland [50]. The broad geographical distribution of these duckweed
collections clearly reflects the worldwide interest in promoting duckweed research and its
exciting new applications.

3. Duckweeds for Remediating Water Contaminated with Nitrogen and Phosphorus

Excessive use and runoff of agrochemical fertilizers, primarily those containing nitrogen
(N) and phosphorus (P), are considered to be the major causes of eutrophication [51]. To
maximize crop yields, about 80 million tons of nitrogen fertilizers are applied globally per
year [52]. It is likely that no more than 40% of this amount is taken up by crops [53], and
the rest eventually ends up in freshwater reservoirs en route to the ocean. Aquaculture
systems are another serious source of water pollutants, and the pollution of water bodies
by aquaculture has increased by 2–4% per year over the last 20 years in the Yangtze River
Basin and Zhujiang Delta Basin of China [54]. The main contaminants from aquaculture
wastewater effluent are ammonium, organic N, and P [55]. Only about 15% of the N and
25% of the P from the feed used in aquaculture are consumed by fish and shrimp, with the
unused part accumulating in the water or sediment [54].

Duckweeds have potential uses for low-cost wastewater treatment and efficient re-
moval of excess N and P [34,56–58]. It has been estimated that duckweed can accumulate
up to 9.1 t/ha/year of total N and 0.8 t/ha/year of total P in their biomass [58]. It has been
demonstrated that after just 3 days of incubation of the duckweed Lemna turionefera in local
municipal wastewater, the main nutrient concentrations (total N and total P) were lower
than those in the effluent from a local wastewater treatment plant. In the same study of
Zhou et al. [58], within 15 days of growth, four duckweed species removed more than 93%
of total N and total P in local municipal wastewater. The final total N concentration was 1
mg/L, which is much lower than the national standard for treated wastewater (15 mg/L,
China Standard GB 18918-2002) and is close to the total N level accepted for drinking
water (1.5 mg/L, China Standard GB3838-2002). Similarly, high rates of removal were also
demonstrated with duckweed growing on sewage water [59] and wastewater from a hog
farm [60]. Moreover, 98% removal of N and P from pig-farm effluent has been achieved [61].
This was accompanied by a significant increase in the level of dissolved oxygen and the
production of duckweed biomass with 35% crude protein.

Another advantage of duckweed is its tolerance of relatively high levels of ammonium
ion (NH4

+), which can be toxic to plants, animals, and humans at high concentrations [62].
The common duckweed (L. minor) has been reported to grow well at NH4

+ concentrations
of up to 84 mg/L [63]. The ability of duckweeds to take up and tolerate such high levels
of NH4

+ makes them particularly suited to the remediation of wastewater from domestic,
agricultural, and especially aquaculture sources, which often contain considerable amounts
of NH4

+ due to the breakdown of urea in urine and runoff of NH4
+-containing fertilizers.

Moreover, unlike most plant species, duckweeds prefer NH4
+ over nitrate (NO3

−) as the
source of N, as first demonstrated for dotted duckweed (Landoltia punctata) [64,65], and
more recently confirmed for five other duckweed species representing the genera Spirodela,
Lemna, and Wolffia [66].

To optimizing nutrient and fertilizer use and promote plant productivity, much recent
work has focused on plant–microbe interactions in the rhizosphere [67–69]. To attract and
feed root-associated microbes, plants invest a substantial part of their photosynthesized
carbon into rhizosphere exudates [70,71]. In terrestrial [69,72] and aquatic plants [33,73,74],
microbial-mediated denitrification limits nitrogen assimilation by reducing nitrate and
nitrite ions to volatile NO, N2O, and N2 [75]. However, denitrification might accelerate
bioremediation of wastewater containing high levels of N compounds. A detailed analysis
of denitrifying bacteria interacting with the common duckweeds S. polyrhiza and L. minor
showed that some derivatives of fatty acids and stigmasterol, previously revealed as
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the major components of the cuticule in duckweed [76], participate in plant–microbe
interactions stimulating bacterial nitrogen metabolism by activating nitrate and nitrite
reductases [77,78]. Moreover, the denitrifying rhizospheric bacterium Pseudomonas sp.
RWX31 was able to modulate the chemical composition of root exudates in duckweed,
specifically inducing the secretion of stigmasterol. In turn, stigmasterol appeared to alter the
composition of the rhizosphere microbial community in favor of denitrifying bacteria [77].

4. Duckweeds for Remediating Water Contaminated with Organic Compounds

With the continuous development of agriculture, industry and economy, more and
more organic pollutants are generated from agricultural irrigation; chemical, pharmaceu-
tical, papermaking and other industries; and domestic sewage. Some organic pollutants
do not biodegrade well and tend to accumulate in the environment, endangering the food
chain. They are also often teratogenic, carcinogenic, and/or mutagenic to animals and
humans, and this seriously threatens ecological environment security and human health.
Therefore, it is important to seek efficient, low-cost and sustainable technologies to remove
organic pollutants from water. Below we summarized the studies on duckweeds interaction
with a variety of organic pollutants in water, such as agricultural chemicals, pharmaceuti-
cals, and personal care products (PPCPs) and other industrial organic compounds.

4.1. Organic Agrochemicals

With the increasing demand for food and the development of agriculture and aquacul-
ture, tons of toxic agrochemicals such as pesticides, herbicides, and fungicides are produced
and applied annually. A considerable amount of these chemicals applied on farmlands and
aquaculture ends up in the aquatic environment without treatment, causing substantial
pressure on the environment. Aquatic non-targeted organisms are more likely to be ex-
posed to herbicides in multiple pulse events than long continuous exposure. Therefore, the
potential of an organism to recover between exposures has important effects on the overall
toxicity. In addition, the organism used for bioremediation must be able to tolerate relevant
concentrations of the compound while taking up some of the compound to metabolize it.
Studies to test the toxicity to and uptake of agrochemicals by duckweed have primarily
used L. minor.

Most agrochemicals are tolerated by duckweed at low concentrations but are toxic
at higher concentrations. Wilson and Koch (2012) evaluated the effects and potential
recovery of L. minor exposed to the herbicide norflurazon for 10 days under controlled
conditions [79]. Duckweed was severely inhibited by norflurazon, but there was a rapid
recovery for all norflurazon concentrations tested after the plant was removed from the
media [79]. Varga et al. (2020) evaluated the growth patterns and recovery potential of
duckweed between multiple exposures to the herbicide isoproturon [80]. Growth was
significantly inhibited during each exposure phase with significant cumulative effects in
subsequent treatment cycles, resulting in a cumulative decrease in biomass production.
However, inhibitory effects were reversible upon transferring plants to a herbicide-free
nutrient solution. These results indicate that L. minor plants have a high potential for
recovery even after multiple exposures to isoproturon.

Burns et al. (2015) investigated the ability of two duckweed species (L. minor and
L. gibba) to recover from a 7-day exposure to different concentrations (0.4–208 µg/L) of
the herbicide diuron [81]. Diuron significantly inhibited duckweed growth and biomass
production after the initial 7-day exposure. Following transfer to herbicide-free media,
recovery was observed for all effects at concentrations ranging 60–111 µg/L for L. minor
and 60–208 µg/L for L. gibba. These results suggest that recovery is possible for primary
producers at environmentally relevant concentrations that are considered significant in
ecological risk assessment. The herbicide glyphosate can induce oxidative stress in plants
through H2O2 formation by targeting the mitochondrial electron transport chain and the
deleterious effects of the herbicide, glyphosate, on duckweed photosynthesis, respiration,
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and pigment concentrations were related to glyphosate-induced oxidative stress through
H2O2 accumulation [82].

Even though agrochemicals are toxic to duckweed, researchers showed that duckweed
was able to remove agrochemicals from the environment, indicating that this aquatic plant
can efficiently eliminate organic contaminants and may ultimately serve as phytoremedia-
tion agents in the natural environment. Dosnon-Olette studied the effect of two herbicides,
isoproturon and glyphosate, on L. minor growth [83] and showed that 10 µg/L isoproturon
and 80 µg/L glyphosate had little effect on the growth rate and chlorophyll fluorescence
of L. minor, which was able to remove 25% and 8% of the isoproturon and glyphosate,
respectively, after a four-day incubation. Mitsou et al. (2006) studied the toxicity of the
rice herbicide propanil to L. minor and found that propanil, at a concentration of 1 mg/L,
did not affect the growth of L. minor, and did not induce antioxidative defenses within the
plant. In addition, L. minor accumulated and metabolized the propanil [84]. Prasertsup
and Ariyakanon (2011) explored the potential of water lettuce (Pistia stratiotes L.) and
duckweed (L. minor) to remove different concentrations of the herbicide chlorpyrifos under
greenhouse conditions. Low concentrations (0.1 and 0.5 mg/L) of chlorpyrifos had no sig-
nificant effect on the growth of L. minor and P. stratiotes, but a higher concentration (1 mg/L)
inhibited their growth. The maximum removal of chlorpyrifos (initial culture concentration
of 0.5 mg/L) by P. stratiotes and L. minor was 82% and 87%, respectively [85]. Olette et al.
(2008) compared the ability of three aquatic plants to remove three pesticides and found
that compared to two other aquatic plants (Elodea canadensis and Elodea canadensis), L. minor
more efficiently removed the pesticides, causing reductions of 50%, 11.5% and 42% for
copper sulfate, dimethomorph, and flazasulfuron, respectively [86].

Many organisms limit toxicity of environmental factors by not taking up these factors;
however, successful bioremediation requires that the plant take up some of the compound
and metabolize it into less-toxic byproducts. Dosnon-Olette et al. (2010) studied the
factors affecting the rate of pesticide uptake by two duckweed species, L. minor and
S. polyrhiza [87]. Increased sensitivity to the pesticide dimethomorph was observed with
increasing duckweed population density, possibly explained by having less light due to
crowding. Plant photosynthesis uses light as the energy source leading to the production
of biochemical energy (e.g., ATP) and reducing power (NADPH), which in turn are used
for carbon fixation. This light-dependent electron source contributes to the absobing and
transformation pesticide dimethomorph. Panfili et al. (2019) showed that L. minor is
suitable for cleaning water polluted with the herbicide terbuthylazine, and this potential
can be successfully improved by treating the species with a biostimulant or a safener such
as Megafol and benoxacor [88].

Tront and Saunders (2007) evaluated the uptake and accumulation of a fluorinated
analog of 2,4-dichlorophenol, 4-chloro-2-fluorophenol (4-Cl-2-FP), by L. minor [89]. Time
series data gathered from an experiment with an initial aqueous-phase concentration of
130 mM 4-Cl-2-FP showed that 4-Cl-2-FP was continuously removed from the aqueous
phase and less than 2% of original 4-Cl-2-FP was detected in plant tissue within the
time period of 77 h. An increasing amount of metabolites was detected in the plant tissue,
comprising 18.9%, 28.6%, and 53.4% of original 4-Cl-2-FP at 10 h, 24 h, and 77 h, respectively.
This means that over 95% of the initial compound accumulated by duckweed was broken
down in the plant cells. Although many studies have focused on herbicides and their effects
on aquatic plants, other agrochemicals also affect plants. For example, Yılmaz and Taş (2021)
examined the effect of the synthetic pyrethroid insecticide zeta-cypermethrin on the growth
and bioremediation of aquatic photosynthetic organisms and showed that L. minor used
zeta-cypermethrin as a nutrient and increased its development in low zeta-cypermethrin
concentration (150 µg/L) medium [90]. However, high concentrations (300–600 µg/L) were
toxic and inhibited growth. In addition, L. minor removed 35.4–95.9% of zeta-cypermethrin,
depending on the initial concentration.
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4.2. Pharmaceuticals and Personal Care Products (PPCPs)

PPCPs, including antibiotics, painkillers, anti-inflammatory drugs, disinfectants, and
aromatics, pose potential hazards to the environment and human health. These pollutants
are becoming ubiquitous in the environment because they cannot be effectively removed by
conventional wastewater treatment due to their toxic and recalcitrant nature. Though the
PPCPs, and particularly pharmaceuticals are usually present in wastewaters at very low
concentrations of nanograms per liter, their average annual world per capita is 15 g with
50–150 g in the most developed countries [8,91]. Considering that these compounds are
often pretty stable, bioactive and bioaccumulative, they can present serious environmental
and human health risks [92,93].

Toxicity to plants caused by pharmaceuticals is an important issue, and several plant
species, including duckweed, have been considered for phytoremediation of pharmaceuti-
cals in wetlands [94]. Like agrochemicals, most PPCPs are toxic to duckweeds. For example,
three β-blockers, propranolo, atenolol and metoprolol, were found to be toxic to duckweed
(L. minor), which was less sensitive than the arthropod Daphnia magna and the green alga
Desmodesmus subspicatus [95]. Kaza et al. (2007) evaluated the toxicity of 13 pharmaceuticals,
usually at ng/L to µg/L in the environment, to duckweed L. minor [96]. A total of 7 out of
13 drugs tested were toxic at concentrations below 100 mg/L. The antipsychotic drugs thior-
idazine and chlorpromazine were the most toxic substances, having effective concentrations
(EC50s) below 1 mg/L. Synthetic wastewater contaminated with the target compounds at
25 µg/L was prepared, and batch and continuous-flow experiments were conducted. Batch
verification tests achieved removals of 98.8%, 96.4% and 95.4% for paracetamol, caffeine,
and tricolsan, respectively. Overall removal of the PPCP contaminants was 97.7%, 98.0%,
and 100% for paracetamol, caffeine, and tricolsan, respectively, by the constructed wetland
system alone, while 97.5%, 98.2%, and 100%, respectively, were achieved by the lab-scale
free water surface constructed wetland system [96].

In other work, Reinhold et al. (2010) tested the potential of both live and inactivated
duckweed in removing pharmaceuticals in a microcosm wetland system [97]. Indeed,
both live and inactivated duckweeds actively increased aqueous depletion of fluoxetine,
ibuprofen, 2,4-dichlorophenoxyacetic acid, and the hand sanitizer triclosan. Some PPCPs
can be used as a carbon source by duckweeds.

Amy-Sagers et al. (2017) conducted laboratory ecotoxicological assessments for a
large range of concentrations of sucralose (an artificial sweetener) and fluoxetine (an
antidepressant) on L. minor physiology and photosynthetic function [98]. Their results
showed that, unlike humans who cannot break down and utilize sucralose, L. minor can use
sucralose as a sugar substitute to increase its green leaf area and photosynthetic capacity.
However, fluoxetine (323 nM) significantly decreased L. minor root growth, daily growth
rate, and asexual reproduction.

4.2.1. Antibiotics

Although most antibiotics are toxic to duckweeds, they can tolerate and phytore-
mediate those compounds from the environment with different efficiency depending on
particular types and concentrations of the antibiotic. Cascone et al. (2004) evaluated the
phytotoxicity of the fluoroquinolone antibiotic flumequine on L. minor and plant drug
uptake [99]. Flumequine, at all concentrations between 50 and 1000 µg/L tested, affected
plant growth, but duckweed continued to grow over a five-week period. In media con-
taining flumequine, a large proportion of the drug (about 96% at all concentrations tested)
was degraded in the presence of Lemna. Gomes et al. (2017) studied the mechanism by
which PPCPs affect duckweeds and found that in L. minor, high concentrations of the
common antibiotic ciprofloxacin disrupted the normal electron flow in the respiratory
electron transport chain and induced hydrogen peroxide production, thus changing the
photosynthetic, respiratory pathway, and oxidative stress capacity of duckweed and af-
fecting its ability to remove ciprofloxacin [100]. Therefore, when the concentration of
antibiotics is high, the metabolism of duckweed changes, affecting its ability to remove the



Plants 2023, 12, 589 8 of 19

antibiotics. Singh et al. (2018) evaluated the potential toxicity of the antibiotic amoxicillin
on the duckweed S. polyrhiza and found it was toxic, even at low concentrations [101].
Nonetheless, the duckweed contributed directly to the degradation of antibiotics in the
water. In other study, the same group [102] estimated the phytotoxicity and degradation by
S. polyrhiza of the antibiotic ofloxacin. The high concentrations of ofloxacin caused a reduc-
tion in biomass (4.8–41.3%), relative root growth, protein (4.16–11.28%) and photopigment
contents. The fronds treated with ofloxacin showed an increased level of antioxidative en-
zymes (catalas, ascorbate peroxidase and superoxide dismutase) than control. The residual
ofloxacin content in the medium was significantly reduced (93.73–98.36%) by day seven and
phytodegradation was suggested to be the main mechanism for removal of this antibiotic.

The specific mechanism of PPCP removal by duckweeds depends on the type of PPCP
and the duckweed species. Iatrou et al. (2017) explored the mechanism of removal effect
of four kinds of antibiotics by L. minor [103]. The removal efficiencies of L. minor were
100% (cefadroxil), 96% (metronidazole), 59% (trimethoprim), and 73% (sulfamethoxazole),
respectively. Plant uptake and biodegradation were the major mechanisms accounting
for metronidazole removal; the most important mechanism for trimethoprim was plant
uptake.

4.2.2. Analgesics and Anti-Inflammatory Drugs

The anti-inflammatory drugs and analgesics that do not require prescription in many
countries, such as ibuprofen or paracetamol, are widely spread in the environment. Mata-
moros et al. (2012) found that caffeine and ibuprofen are removed by biodegradation
and/or plant uptake by three aquatic plants, including the duckweed L. minor, and the
removal rate was 83–99% in a microcosm wetland system [104]. In the presence of 1 mg/L
ibuprofen, an increase in L. gibba frond number (+12%) and multiplication rate (+10%) was
seen, while no variations in photosynthetic pigment content were observed [105]. More-
over, ibuprofen and 11 ibuprofen metabolites were detected in plants and in the growth
medium, suggesting that L. gibba metabolizes ibuprofen. Li et al. (2017) studied the removal
of four selected emerging PPCP compounds using greater duckweed (S. polyrhiza) in a
laboratory-scale constructed wetland [106]. Di Baccio et al. (2017) explored the removal
and metabolism of ibuprofen by L. gibba at high (0.20 and 1 mg/L) and environmentally
relevant (0.02 mg/L) ibuprofen concentrations [107]. Ibuprofen uptake increased with
increasing concentration, but the relative accumulation of ibuprofen and generation of
hydroxy-ibuprofen was higher in the lower ibuprofen treatments. The main oxidized
ibuprofen metabolites in humans (hydroxy-ibuprofen and carboxy-ibuprofen) were identi-
fied in the intact plants and in the growth solutions. Apart from a mean physical-chemical
degradation of 8.2%, the ibuprofen removal by plants was highly efficient (89–92.5%) in all
conditions tested.

4.3. Other Industrial Organic Compounds

Because of the efficient removal of pesticides and PPCPs by duckweed, researchers
have explored whether duckweed can effectively remove other organic pollutants. In a
recent study, the potential of L. minor for decolorization and degradation of malachite
green (a triarylmethane dye) was investigated. The decolorization ability of the plant
species was as high as 88%, and eight metabolic intermediate compounds were identi-
fied by gas chromatography-mass spectrometry [108]. Can-Terzi et al. (2021) [109] stud-
ied the phytoremediation potential of L. minor using methylene blue and showed that
L. minor could effectively remove methylene blue from wastewater with the highest re-
moval efficiency (98%) within 24 h. Fourier transform infrared spectroscopy (FTIR) and
scanning electron microscopy (SEM) analyses indicated that dye removal was mainly by
biosorption. Torbati (2019) evaluated the ability of L. minor to decolorize the acid Bordeaux
B (ABB, an aminoazo benzene dye) [110]. Increased temperature and enhancement of initial
plant weight increased the dye removal efficiency, but raising the initial dye concentration
and pH reduced it. In optimum conditions, L. minor exhibited a considerable potential
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(94% removal) for the phytoremediation of ABB. Seven intermediate ABB degradation
products were identified using gas chromatography-mass spectrometry analysis, indicating
biodegradation is one of the mechanisms of L. minor’s removal and detoxification of ABB.

In a study of the fate of five benzotriazoles (used to inhibit the corrosion of copper) in
a continuous-flow L. minor system, benzotriazole removal ranged between 26% and 72%.
Plant uptake seemed to be the major mechanism governing the removal of benzotriazoles.
When Zhang and Liang (2021) investigated the removal efficiency of 8 perfluoroalkyl
acids by L. minor under aeration [111], they found that the removal efficiency of L. minor
for long-chain perfluoroalkanes exceeded 95%, while the removal efficiency for short-
chain perfluoroalkanes was marginal. The accumulation of perfluorooctane sulfonate in
L. minor cells reached 14.4% after 2 weeks of exposure. Subsequently, the researchers
further investigated the absorption and accumulation effect of L. minor on several interme-
diates of perfluoroalkyl compounds. The results showed that, after 14 days of exposure,
L. minor accumulated 86.7 µG kg−1 and 1226 µG kg−1 for perfluorooctyl sulfonamide and
fluorotelomere sulfonate, respectively [111]. In related work, Ekperusi et al. (2020) tested
the potential of Lemna paucicostata (Lemna aequinoctialis, according to current classification)
for removing petroleum hydrocarbons from crude oil-contaminated waters in a constructed
wetland over a period of 120 days [112]. They found that L. paucicostata significantly
(F = 253.405, p < 0.05) removed petroleum hydrocarbons from the wetland, reaching nearly
98% after 120 days, and estimated that about 97% of the petroleum hydrocarbons were
biodegraded, because less than 1% bioaccumulated.

5. Duckweeds for Remediating Water Contaminated with Heavy Metals and Metalloids
5.1. Heavy Metals

Heavy metals are released into the environment from natural and anthropogenic
sources, predominantly from mining and industrial activities. After entering the water
environment, they accumulate in aquatic organisms, affecting their normal physiological
and metabolic activities. Because they pose a threat to human health via the food chain
and have serious impacts on the ecological environment, the removal of toxic pollutants is
extremely important to minimize potential threats. Conventional techniques for the reme-
diation of heavy metals are generally costly, time-consuming, and generate the problem of
sludge disposal [113]. An environmentally friendly and economical treatment technology
for the remediation of wastewater polluted with heavy metals is needed [114]. Duckweeds
are relatively tolerant to heavy metals and able to take up many heavy metal ions, includ-
ing those of cadmium, chromium, copper, iron, mercury, manganese, nickel, palladium,
lead, and zinc [115–124]. Therefore, duckweed also has potential uses for monitoring and
remediating heavy metals [125]. As a floating plant, duckweed can rapidly absorb heavy
metals due to its special morphology and high growth rate [126]. In addition, duckweed
can resist the toxicity of heavy metals through chelation and compartmentalization in
vacuoles, effectively removing heavy metals in water through biological adsorption and
intracellular accumulation [127].

A summary of studies of heavy metal uptake by duckweed species is shown in Table S1.
Different duckweed species have different tolerances to various heavy metals, and their
biomass, photosynthetic pigments, and antioxidant enzyme activities are significantly
different. The toxic effect of heavy metals on duckweed is the main factor limiting the
application of duckweed. Therefore, identifying duckweed species that can tolerate specific
heavy metals, have suitable bioaccumulation ability, and have suitable resistance will help
to improve the phytoremediation of heavy metals in polluted water by duckweed.

Some researchers found that mixing different species of duckweed and coculturing
duckweed with microorganisms or other plants can affect the absorption of heavy metals.
Due to differences in tolerance and accumulation ability of different duckweed species
for various heavy metals, the coculture of different duckweed species can improve both
biomass and antioxidant enzyme activity, reducing the toxicity of heavy metals to duckweed
and thus aiding the removal of heavy metals from polluted water [128]. By coculturing
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L. punctata and L. minor or individually in the medium with different concentrations of
copper (Cu), Zhao (2015) found that coculturing produced better remediation effect than
did single cultures at low Cu concentration; however, the single culture system was more
effective at higher Cu concentration [129]. Duckweed can partly neutralize the toxic effect
of high Cu concentrations by enhancing the activity of antioxidant enzymes, thus limiting
the absorption of Cu.

The ability of duckweed to absorb heavy metals is also affected by the particular mi-
croorganisms symbiotically associated with the duckweed. Stout et al. (2010) showed that
axenic duckweed, L. minor, accumulated slightly more Cd than did plants inoculated with
bacterial isolates, suggesting that bacteria serve a phytoprotective role in their relationship
with L. minor by preventing toxic Cd from entering plants [130].

Due to their ability to absorb heavy metals from the environment, duckweeds have
been proposed for removing heavy metal contamination from wastewater. Bokhari et al.
(2016) found that L. minor could effectively remediate both municipal and industrial wastew-
ater [123], with removal rates of cadmium, copper, lead, and nickel all above 84% (Table S1).
In addition, because dried duckweed power has a large specific surface area and high
porosity, duckweed can also be processed into dry powder and used as a potential new
adsorbent. Chen et al. (2013) found that the lead ion (Pb2+) adsorption capacity of dried
powder of L. aequinoctialis was more than 57 mg/g [131]. Nie et al. (2015) compared the
removal rate of uranium ion (U4+) by live L. puntata and its dry powder and found that the
removal rate of 5 g/L U4+ was nearly 96% by 1.25 g/L dry powder at pH 5, which is higher
than that (79%) by 2.5 g/L (FW, fresh weight) live L. puntata [132]. Li et al. (2017) studied
the adsorption of cadmium ion (Cd2+) in the aquatic environment by the dry powder of
S. polyrhiza and L. puntata and found that the removal rates of Cd (50 mg/L) by the two
kinds of dry powder of duckweed were 83% (L. punctata) and 96% (S. polyrhiza), respec-
tively [133].

5.2. Metalloids: Boron and Arsenic

Boron (B) is an essential nutrient for plants but is toxic at high concentrations [134,135].
A study of the toxic effect of B (0.5–37 mg/L) on duckweed revealed that S. polyrhiza showed
significantly reduced frond production and growth rates while significantly increasing the
production of abnormal fronds. The authors concluded that S. polyrhiza could not remove
significant amounts of B from the treatment solutions and, as a result, cannot be used as an
effective component of B bioremediation systems [136]. Growing L. gibba at B concentrations
of 0.3–10 mg/L showed no change in biomass production and a significant accumulation
of B in fronds. At the same time, duckweed effectively reduced the B content in the
environment in concentrations up to 2.0 mg/L [137]. A study of B toxicity using L. minor
and L. gibba, with the aim of using them for phytoremediation and biomonitoring, revealed
that significant inhibition of plant growth began at a B concentration of 16 mg/L. L. minor
was more sensitive to B than L. gibba. The activity of the antioxidant enzymes superoxide
dismutase, ascorbate peroxidase, and guaiacol peroxidase can serve as biomarkers for
B-rich environments [138]. In another study, the combined use of L. gibba and chitosan
beads effectively removed B from drinking water [139].

L. gibba showed the greatest potential to remove boron from irrigation water with
B concentrations of 5.58–17.39 mg/L using a batch reactor. It was capable of removing
19–63% of the B from irrigation water, depending upon the level of contamination or initial
concentration [140]. L. gibba and L. minor in the form of duckweed-based wastewater
treatment systems coupled with microbial fuel cell reactor was shown to be an efficient
method to simultaneously remove B from domestic wastewater/irrigation water and
generate electricity [141,142]. In these studies, a monoculture of L. gibba showed the highest
efficiency of B removal. Part of the research focused on the possibilities of B accumulation by
duckweed under salt stress. Salt stress significantly affects the growth and B accumulation
of L. minor. It was shown that only 7.9% to 15.5% of B was accumulated by L. minor during
cultivation at NaCl concentration in a range of 0–200 mM. Finally, the authors concluded



Plants 2023, 12, 589 11 of 19

that L. minor is suitable for the accumulation of B when NaCl is below 100 mM [143].
Similar results were also shown for S. polyrhiza [144]. Thus, to date, information on the
possibility of using duckweed for B removal is very limited, focusing on only three species,
of which only L. gibba showed a sufficiently high potential for phytoremediation.

Arsenic (As) is present in the environment in inorganic and organic form and exists
in four oxidation states—arsenate (As(V)), arsenite (As(III)), arsenic (As(0)), and arsine
(As(-III)) [145]. Aquatic As phytoremediation approaches continue to be actively pur-
sued [146,147]. Among 36 duckweed species, L. gibba, L. minor, S. polyrhiza, W. globosa,
W. australiana, and L. valdiviana have been reported to remove As from water. The potential
of duckweed for phytoremediation of As was first demonstrated in 2004 in waters from
abandoned uranium mines. L. gibba revealed high arsenic bioaccumulation coefficients in
wetlands of two former uranium mines in eastern Germany and under laboratory condi-
tions. The potential extractions from mine surface waters using L. gibba were estimated to
be 751.9 kg As/ha·yr [148]. In another study, L. gibba accumulated 10 times more As than
background concentrations in the tailing waters of an abandoned uranium mine, reducing
arsenic on average by 40.3% in the solutions [149].

L. minor showed high As accumulation (641 ± 21.3 nmol/g FW) when grown on As
concentrations of 25–80 µM under laboratory conditions [150]. In another study, L. minor
showed a removal rate of 140 mg As/ha·d, with a recovery of 5% when grown under a
concentration of 0.15 mg/L [151]. The study of biological responses of L. minor revealed
that both the duration of exposure and the concentration of inorganic As had a strong
synergistic effect on antioxidant enzyme activity. L. minor showed a higher accumulation
of As(III) compared to As(V) from polluted water [152]. A study of the accumulation of As
by aquatic plants in running waters showed that L. minor is one of the top three studied
species regarding arsenic accumulation (430 mg/kg DW). Higher values were observed
only for Callitriche lusitanica and Callitriche brutia [153]. In hydroponics, L. minor revealed
maximum removal of more than 70% As at a low concentration (0.5 mg/L) on day 15 of the
experiment [154]. Another finding revealed that chelating agents had positive effects on
As(III) or As(V) accumulation in L. minor [155].

For L. valdiviana, the As was only absorbed by the plant after a decline in the phosphate
levels of the medium [156]. Concentrations greater than 1 mg/L As in the nutrient solution
caused deleterious effects in L. valdiviana and compromised their phytoremediation capacity
of water contaminated with As [156]. In addition, for L. valdiviana, As accumulation was
dependent on pH. L. valdiviana accumulated 1190 mg/kg As (dry weight) from the aqueous
media and reduced its initial concentration by 82% when cultivated between pH 6.3 and
7.0 [157].

At concentrations of 1.0, 2.0, and 4.0 µM As and dimethylarsinic acid, S. polyrhiza
showed a significant level of As bioaccumulation, using different mechanisms for the degra-
dation of arsenate vs. arsenite [158]. In addition, the uptake of inorganic arsenic (As (V) and
As (III)) by S. polyrhiza was higher compared to the organic As sources, monomethylarsonic
and dimethylarsinic acid. The addition of EDTA increased the uptake of inorganic As into
the plant tissue, but the uptake of organic arsenic was not affected [159]. The study of the
stability of S. polyrhiza at As (V) concentrations of 1, 5, 10, and 20 µM revealed an increase
in the fresh biomass, photosynthetic pigments, and total protein contents of S. polyrhiza at
lower concentrations of As (V) after 1 d of exposure, followed by a decrease in biomass
with an increase in metal concentration [160]. In another study, S. polyrhiza showed the
ability to survive in high concentrations of As (V) solution in hydroponics by decreasing
As concentration, with a removal rate of 41% [161].

W. globosa accumulated 2–10 times more As than S. polyrhiza/L. minor and Azolla
species [162]. At the low concentration range, the uptake rate was similar for arsenate and
arsenite, but at the high concentration range, arsenite was taken up at a faster rate [162].
W. globosa was more resistant to external arsenate than arsenite but showed a similar degree
of tolerance. A more detailed study of the mechanisms of As assimilation in W. globosa
demonstrated an important role of phytochelatins in detoxifying As and enabling As
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accumulation [163]. A study conducted using W. australiana revealed the importance of
microbial agglomerations for As assimilation. Sterile W. australiana did not oxidize As(III)
in the growth medium or in plant tissue, whereas W. australiana with phyllosphere bacteria
displayed substantial As(III) oxidation in the medium [164].

6. Conclusions and Perspectives

The beginning of the 21st century saw duckweed’s revival as a model system for
academic research and a wide spectrum of new applications boosted by growing concerns
related to wastewater, renewable energy sources, and rising fossil fuel prices [41]. Re-
searchers and entrepreneurs regard duckweed as a powerful tool for bioremediation that
can reduce anthropogenic pollution in aquatic ecosystems and prevent water eutrophi-
cation in a simple, cheap, and environmentally friendly way. This is clearly reflected in
the number of PubMed publications related to the search terms “duckweed remediation”
compared to other popular categories such as “duckweed feed”, “duckweed food”, or
“duckweed biofuel” (Figure 2).
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