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Abstract: Accurate updating of soil salination and alkalization maps based on remote sensing images
and machining learning methods plays an essential role in food security, biodiversity, and desertifica-
tion. However, there is still a lack of research on using machine learning, especially one-dimensional
convolutional neural networks (CNN)s, and soil-forming factors to classify the salinization and
alkalization degree. As a case study, the study estimated the soil salination and alkalization by
Random forests (RF) and CNN based on the 88 observations and 16 environmental covariates in
Da’an city, China. The results show that: the RF model (accuracy = 0.67, precision = 0.67 for soil
salination) with the synthetic minority oversampling technique performed better than CNN. Salinity
and vegetation spectral indexes played the most crucial roles in soil salinization and alkalinization
estimation in Songnen Plain. The spatial distribution derived from the RF model shows that from
the 1980s to 2021, soil salinization and alkalization areas increased at an annual rate of 1.40% and
0.86%, respectively, and the size of very high salinization and alkalization was expanding. The
degree and change rate of soil salinization and alkalization under various land-use types followed
mash > salinate soil > grassland > dry land and forest. This study provides a reference for rapid
mapping, evaluating, and managing soil salinization and alkalization in arid areas.

Keywords: soil salination; soil alkalization; remote sensing; convolutional neural network; classification

1. Introduction

Soil salinity (including soil salinization and alkalization) is a process of water-soluble
salts accumulating on the soil surface layer. The saline soil with many salt ions and alkali
ions prevents plant cells from absorbing water. The salt and alkali ions become toxic
ions when they exceed a threshold level, seriously harming plant growth [1]. Hence, the
process profoundly impacts sustainable agricultural development and food security [2,3].
Soil salinization is more likely to occur in areas with low relief and high underground
water, intensive evaporation and light rainfall, and human interference. Especially, diverse
land-use patterns significantly impact soil salt migration and accumulation. Food and
Agriculture Organization of the United Nations reported that the area of soil salinization
accounts for 8.7% of the earth’s continental area (https://www.fao.org/, accessed on 1
April 2022) and is increasing [4]. Various practices have been proposed to slow or even
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reverse the process of accumulating water-soluble salts to reduce soil salinization’s effects
on the ecological environment and food security [5,6]. These practices require rapid and
accurate mapping [7].

Traditional mapping, characterized as time-consuming, expensive, and laborious,
could not provide real-time information for improving and preventing soil salinization.
Contrary to the traditional mapping, digital soil mapping (DSM) can quickly obtain real-
time and high-resolution spatial distribution and even spatiotemporal change information
of soil salt at a large scale [8]. The principle of DSM for soil salinity is to build models
between dependent variables (soil salinity) and soil formation factors, including topogra-
phy, biology, climate, parent material, time, spatial location, and soil itself [9]. Thus, DSM
provides a scheme for updating soil salinization information in real time.

Recently, many studies have reported that the application of remote sensing data
(such as MODIS, Landsat, and Sentinel) in soil salt monitoring is a current and future
research hotspot [8,10,11]. The coarse resolution of MODIS images limited their application.
Compared with Landsat, the Sentinel-2 images have a higher spatial resolution (10 m)
in the red, blue, green, and near-infrared spectrum. These bands can be combined and
calculated to obtain various salinity and vegetation spectral indices, including salinity
indices II (SI2) [12], normalized vegetation index (NDVI) [13], and canopy response salinity
index (CRSI) [14]. Previous studies have revealed that Sentinel-2 combined with machine
learning methods can further mine the correlation between dependent variables and remote
sensing images [15–18]. Most of these studies found that random forest (RF) with Sentinel-2
MSI presented a good performance for soil salt prediction. Wang et al. (2020) compared
four models with Sentinel-2 MSI bands and found that the RF model performs better than
the Convolutional Neural Network (CNN) [16]. Recently, the CNN model with remote
sensing images has gradually been used in soil properties prediction [19–21]. However,
few studies have applied the one-dimensional CNN model in soil salt classification. The
research that uses machine learning, especially one-dimensional CNN with soil-forming
factors to classify salinity and alkalinity, is still lacking.

The study transforms the continuous data into the classification data according to the
classification standard of salinization, which reduced the calculation and simplified the
scheme. The overall goal of the research was to estimate and analyze the classification and
causes of soil salination and alkalization by RF and CNN. The study’s specific objectives
include: (1) evaluating the performance of RF and CNN in the classification of soil salination
and alkalization. (2) Describe the spatial distribution of soil salination and alkalization
derived from the best model and analyze the influencing factors. (3) Quantify the temporal
variation in soil salination and alkalization and discuss the effects of land-use types on
the change.

2. Materials and Methods
2.1. Study Area

The study area is located in Da’an city, Jilin Province, China, between 123◦08′45′′–
124◦21′56′′E and 44◦57′00′′–45◦45′51′′N (Figure 1). It covers a total area of 487,900 hm2 and
is a part of the Songnen basin. The average elevation is 120–160 m. The climate is temperate
continental monsoon type with an average annual rainfall of 413.7 mm, an average annual
temperature of 4.3 ◦C, and average annual evaporation of 1756.9 mm. Tao er, Nenjiang, and
Huolin rivers are in the study area’s northwest, northeast, and central parts, respectively.
According to the World Reference Base for Soil Resources, the soil is developed on the
loess sediments and is characterized by four dominant soil types: Chernozem, Cambisol,
Solonetz, and Solonchaks. Due to the flat terrain, light rainfall, intense evaporation, shallow
groundwater, and human factors, salinization with carbonate as the dominant salt mineral
has been noted in many areas in Da’an. In addition, bubble marsh is scattered all over the
place. The study area is located in one of the world’s three largest soda saline soil regions
and is a reserve food resource in China. Hence, choosing this region as the study area is
representative and significant.
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Figure 1. Distribution map of soil samples in the study area. TWSS is the total water-soluble salt.

2.2. Data
2.2.1. Soil Sampling and Soil Analysis

The soil survey and sampling were conducted from 16 May 2021 to 25 May 2021.
The sampling scheme considered the land-use type, salinization degree, and accessibility
of sampling sites. Under this sampling scheme, a total of 88 topsoil samples (0–5 cm)
were randomly selected. At each sampling site, a portion of 2 kg soil was collected and
labeled. The geographical coordinates of each sample were recorded. After being air-dried,
grounded, and passed through a 2 mm mesh, the soil was analyzed in the laboratory. The
total water-soluble salt (TWSS), calcium ion (Ca2+), magnesium ion (Mg2+), sodium ion
(Na+), potassium ion (K+), carbonate ion (CO3

2−), bicarbonate ion (HCO3
−), sulfate ion

(SO4
2−), chloride ion (Cl−), and pH were determined according to the conventional soil

physical and chemical analysis methods. TWSS was measured by residue drying method,
Ca2+, Mg2+, and SO4

2− were determined by EDTA complexometric titration method, and
Na+ and K+ were determined by flame photometry. Soil suspension with a soil–water ratio
of 1:5 was used to determine soil pH by electric potential method, CO3

2− and HCO3
− were

determined by double indicator neutralization titration, and Cl− was determined by silver
nitrate titration. The soil salination and alkalization classification in the 1980s was derived
from the exchangeable sodium percentage (ESP) (%) and topsoil salinity (ECE) (Ds/m)
data in the Harmonized World Soil Database [22].

2.2.2. Environmental Covariates

Table 1 shows the environmental factors, including terrain, vegetation, soil self, and
climate data. Shuttle Radar Topography Mission (SRTM) provides a digital elevation
model (DEM) with a 30 m spatial resolution. Other terrain factors, including curvature,
valley depth (Vdepth), negative openness (Openn), topographic wetness index (TWI), and
multi-resolution valley bottom flatness (MrVBF), were calculated from DEM through SAGA
GIS [23].



Remote Sens. 2022, 14, 3020 4 of 17

Table 1. Environmental covariates for predicting soil salination and alkalization.

Theme Environmental
Factors

Original
Resolution Source

Geographical coordinates X 30 m
Y 30 m

Terrain DEM, m 30 m http://www.resdc.cn/, accessed on 5 December 2021
Curvature 30 m Calculated from DEM

Vdepth 30 m Calculated from DEM
Openn 30 m Calculated from DEM

TWI 30 m Calculated from DEM
MrVBF 30 m Calculated from DEM

Vegetation NDVI 10 m Sentinel-2A
CRSI 10 m Sentinel-2A
SI2 10 m Sentinel-2A

Soil Land use (2021) 30 m http://www.resdc.cn/, accessed on 5 December 2021
Soil type 1:1,000,000 http://www.resdc.cn/, accessed on 5 December 2021
Clay, % 250 m http://www.resdc.cn/, accessed on 5 December 2021

Climate AMT, ◦C 1000 m http://www.geodata.cn/, accessed on 5 December 2021
AMP, mm 1000 m http://www.geodata.cn/, accessed on 5 December 2021

Key to terms: X, longitude; Y, latitude; DEM, digital elevation model; Vdepth, valley depth; Openn, negative
openness; TWI, topographic wetness index; MrVBF, multi-resolution valley bottom flatness; NDVI, normalized
difference vegetation index; CRSI, canopy response salinity index; SI2, salinity index II; AMT, Annual mean temp,
◦C; AMP, Annual mean precipitation, mm.

The study used the Google Earth Engine (GEE) platform to obtain and process the
Sentinel-2–MSI data. The Sentinel-2–MSI data was launched by the European Space Agency
(ESA) and provided by the Copernicus Open Access Hub (https://scihub.copernicus.eu/,
accessed on 5 December 2021). Sentinel-2–MSI Level–2A images between 15 April 2021
and 30 May 2021 were selected according to the soil sampling time. They were computed
by running sen2cor. The study set a threshold value of cloud percentage (10%) in GEE
to reduce the influence of the cloud cover on the remote sensing images. The average
reflectance of four bands with a 10 m spatial solution (B2 (Blue), B3 (Green), B4 (Red),
and B8 (Visible near-infrared)) of Sentinel-2A images during the sampling periods were
processed to calculate soil vegetation index and soil salinity index. The NDVI was calculated
by (B8 − B4)/(B8 + B4), the SI2 was obtained by B3 × B4/B2, and the CRSI was calculated
by [(B4 × B8) − (B2 × B3)]/[(B4 × B8) + (B2 × B3)]. These salinity and vegetation spectral
indexes were obtained in Google Earth Engine (GEE).

The soil type and soil texture were acquired from the Second Soil National Survey
(https://www.resdc.cn/, accessed on 5 December 2021). The soil texture was reflected
by the percentage of sand, silt, and clay content. The study only uses the clay content.
The land-use type in 2021 with a 30 m spatial resolution was obtained from the Resource
and Environmental Science Data Center (https://www.resdc.cn/, accessed on 5 December
2021), which contains six classes (cropland, Forest, grassland, waters, impervious surface,
and unused land) and 26 subclasses.

Climate data, including annual mean precipitation (AMP) and annual mean tempera-
ture (AMT), were calculated from the monthly data drawn from the CRU and WorldClim
(http://loess.geodata.cn/, accessed on 5 December 2021). The original resolution of the
Climate data is 1 km. All the environmental covariates were finally resampled to 30 m
using the bilinear method in ArcGIS 10.2.

2.3. Methods
2.3.1. Data Treatment

The source, process, and degree of soil salinization vary in different regions, so it
is necessary to determine the classification standard of salinization according to local

http://www.resdc.cn/
http://www.resdc.cn/
http://www.resdc.cn/
http://www.resdc.cn/
http://www.geodata.cn/
http://www.geodata.cn/
https://scihub.copernicus.eu/
https://www.resdc.cn/
https://www.resdc.cn/
http://loess.geodata.cn/


Remote Sens. 2022, 14, 3020 5 of 17

conditions. The study used TWSS and ESP as quantitative indexes for soil salinity and
alkalinity classification according to the classification standard proposed by Yang et al.
(1986) [18]. ESP is calculated by

ESP =
−0.0126 + 0.01475× SAR

1 + (−0.0126 + 0.01475× SAR)
× 100 (1)

SAR =

[
Na+

]
{
[Ca2+]+[Mg2+]

2

} 1
2

(2)

The degree of soil salinity was divided into non-salinized soil, weakly salinized soil,
moderately salinized soil, highly salinized soil, and very highly salinized soil according
to the TWSS index. According to the ESP, the degree of soil alkalization was divided into
non-alkalized, weakly alkalized, moderately alkalized, highly alkalized, and very highly
alkalized soil (Table 2).

Table 2. Quantitative standard saline soil classification.

Class Number Class Name Index

Degree of salinization

TWSS (%)

V Very low <0.1
IV Low 0.1−0.3
III Moderate 0.3−0.5
II High 0.5−0.7
I Very high >0.7

Degree of alkalinization

ESP (%)

V Very low <5
IV Low 5−15
III Moderate 15−30
II High 30−47
I Very high >47

Notes: ESP is exchangeable sodium percentage; SAR is sodium adsorption ratio; TWSS is the total water-soluble salt.

Table 3 shows the statistics of classification results according to Table 2. The number
of different levels varied greatly. For example, the number of class I in salinization was
approximately seven times as large as class II (Table 3). In other words, the datasets had
an imbalanced problem. However, many machine learning algorithms are unsuitable for
unbalanced classification data [24] because the prediction error is large in the minority class.
The synthetic minority oversampling technique (SMOTE) [25], adaptive synthetic sampling,
and one-sided selection method [26,27] were proposed to overcome the problem of class
imbalance. These studies have reported that SMOTE performed better than the other two.
SMOTE analyzes characters of the minority class and composes new samples based on
the characters to form balanced datasets. SMOTE was conducted using the function of
“SMOTE ()” from the “DMwR” package in R 4.0.2 [28].

Table 3. The number of observations in different levels.

Degree of Salinization Observations Degree of Alkalinization Observations

I 41 I 5
II 6 II 6
III 11 III 3
IV 11 IV 17
V 19 V 57
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2.3.2. Random Forest

RF, proposed by Breiman [29], can be used for classification and regression. Previous
studies have shown that RF showed good accuracy and robustness in soil salt predic-
tion [16,30,31]. RF is a bagging ensemble learning method based on decision trees. As a
critical procedure in the RF, bagging is a parallel integrated method based on Boostrap
Sampling and enables a sufficient subset to be learned to avoid the poor performance of
individual learners. In addition, RF introduces the random selection of factors. Hence,
RF has a strong learning ability and superior generalization. The final classification result
is obtained by the maximum voting method. The RF in the study was carried out from
the “Caret” Package in R 4.0.2. The parameters of the RF model include the number of
trees (ntree) and the number of selected factors in each node (mtry). The study obtained
the best parameters by parameter grid search and ten-fold cross-validation in the train-
ing set. Each factor’s Mean Decrease Gini (MDG) was derived from the RF model to
evaluate the sensitivity of 16 environmental covariates to the degree of soil salinization
and alkalinization.

2.3.3. Convolutional Neural Network

Deep learning aims to realize the brain’s cognitive process by constructing a neural
network model with many hidden layers. As a kind of deep learning model, CNN [32,33]
is characterized by adding convolutional layers between the input and output layers of
the network structure. The typical CNN model includes an input layer, convolutional
layers, pooling layers, full connection layers, and an output layer. The key procedure is
that the convolution kernel slides on the input vector, performs dot product operation
with the input vector, and adds the offset to the input value. The procedure is as follows:
(1) calculate the weight value of the convolutional layer through training data; (2) input the
weights and results generated from the convolutional layer into the activation layer, which
cause nonlinear changes; (3) input the data obtained in the previous step into the pooling
layer, which can further extract data features, reduce the data dimension, and prevent
overfitting; and (4) recut the tensor from the pooling layer into some vector, multiply it by
the weight matrix, add the bias value, and apply the activation function. In general, the
Softmax function is used for classification.

In the study, as shown in Figure 2, the one-dimensional CNN was conducted as follows:
a one-dimensional matrix of 16 environmental factors was converted into a 16 × 1 two-
dimensional matrix to prepare input data. Then, for soil salinization, the input layer was
calculated in three convolution layers and two max-pooling layers. For soil alkalization,
the input layer was calculated in two convolution layers and one max-pooling layer.
Each convolution layer used a 4 × 1 convolution kernel with ReLU as the activation
function. The data are then reduced to one dimension using the full connection layer
with Softmax as the activation function. A drop-out layer with a probability parameter
of 0.3 was added after the full connection layer to avoid overfitting, and the sample
data of batch processing are set to 30. The model adopted the gradient descent method
and took “Sparse_categorical_crossentropy” as the loss function. The adaptive moment
estimation (Adam) optimizer with an initiated learning rate of 0.2 was used to minimize
the label errors. The “callback_early_stopping” function in the “keras” package was used
to prevent overfitting.
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Figure 2. The architecture of the one-dimensional Convolutional Neural Network (CNN) for (a) soil
salinization and (b) soil alkalinization modeling.

2.4. Statistical Assessment

The study manually adjusted the random seed to randomly divide the observation
into a training set and test set by 7:3 to ensure the existence of every class in both the
training set and test set. In the training set, the SMOTE method was used to solve the
problem of classification imbalance, and then the RF and CNN models were conducted.
The number of the different classes before and after data resampling by SMOTE is shown in
Table 4. The optimal parameters of the RF model were obtained by ten-fold cross-validation
with the minimum mean squared error (MMSE). Five indices were used to test the model’s
performance: accuracy, precision, recall, F-score, and kappa. The calculation was as follows:

Accuracy =
TP + TN

TP + TN + FN + FP
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F-score =
2× Precision × Recall

Precision + Recall
(6)

Kappa =
Accuracy− pe

1− pe
(7)

where TP is truly positive, FP is falsely positive; FN is falsely negative; TN is truly negative;
and pe is the hypothetical probability of chance agreement.

Table 4. The number of observations in different degrees under balanced and imbalanced datasets.

Soil Salinization Soil Alkalinization

Degree Original Balanced Original Balanced

I 29 16 3 12
II 5 15 4 12
III 8 8 1 11
IV 8 8 11 11
V 14 9 39 12
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3. Results
3.1. Exploratory Data Analysis

Table 5 shows that the mean value of TWSS is 13.27 g kg−1 in the study area with a
maximum and minimum value of 118.8 g kg−1 and 0.37 g kg−1, respectively. According
to the classification standard in Table 2, the soil in the study area belonged to severe
salinization. In addition, the content of CO3

2−, HCO3
−, Cl−, and SO4

2− accounted for
38.08%, 30.41%, 15.89%, and 15.62%, respectively, in the total amount of anion. The sum of
CO3

2− and HCO3
− accounted for more than two-thirds of the total anions. The content

of Na+ accounted for 68%, which was equal to the sum of the proportions of CO3
2− and

HCO3
−. The finding indicated that the salt type in the study area is mainly Na2CO3 and

NaHCO3. The coefficient of variation (CV) presents the spatial variability of soil properties,
including the low (<0.1), moderate (0.1−1), and high (>1) variability [34]. According to this
standard, the CV of pH was 0.09, belonging to low variability. The CV of other salinization
indexes ranged from 0.78 to 2.74, presenting a strong spatial variation. The result indicated
that these anions, cations, and TWSS have significant spatial variability. In addition, the
study analyzed the correction among the TWSS, ESP, and 14 numerical variables. As shown
in Figure 3, the AMP (0.40) and Y (0.37) attained the highest correction with the TWSS,
followed by SI2 (0.28) and CRSI (−0.29). The ESP exhibited the most strong relationship
with SI2 (0.28), Y (−0.26), and AMP (0.25).
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Table 5. Descriptive statistics of total water-solution salt (TWSS), pH, and base ions.

Variable Number Mean SD Min Max Skew Kurtosis CV

pH 88 8.57 0.76 7.29 10.22 0.34 −0.90 0.09
TWSS (g kg−1) 88 13.27 18.97 0.37 118.8 2.92 11.37 1.43
CO3

2− (g kg−1) 56 1.39 1.85 0.01 11.26 2.91 11.95 1.33
HCO3

− (g kg−1) 81 1.11 0.87 0.12 3.92 1.37 1.14 0.78
Cl− (g kg−1) 86 0.58 1.15 0 6.96 3.51 13.40 1.98

SO4
2− (g kg−1) 88 0.57 1.56 0 11.46 5.22 30.12 2.74

Na+ (g kg−1) 88 0.92 1.49 0 12.11 5.02 34 1.62
K+ (g kg−1) 88 0.14 0.20 0 0.92 1.71 2.42 1.43

Mg2+ (g kg−1) 87 0.07 0.11 0 0.69 3.33 12.89 1.57
Ca2+ (g kg−1) 88 0.22 0.52 0.02 4.87 8.02 67.79 2.36

Notes: CV is the coefficient of variation; SD is the standard deviation.

3.2. Evaluation of the Models

As shown in Table 6, the kappa of the RF model with imbalanced data was 0.31 and
0.07 in soil salinization and soil alkalization validation, respectively. Especially, some
evaluation indexes were NA because the original RF model can only predict one or two of
the five categories, indicating that the RF model with imbalanced data performed poorly.
Conversely, the RF model with resampled data by SMOTE predicted all the soil salinization
and alkalization classes and significantly increased the accuracy. Compared with the RF
model, the accuracyp and precisionp of the RF–SMOTE model increased by 15.52% and
91.43%, respectively, for soil salinization prediction. A similar trend was observed in the
soil alkalization degree prediction. Thus, the resampling technique by the SMOTE showed
the powerful capability of data balancing, greatly improving the model’s performance.
Then, the SMOTE method was combined with the RF and CNN model to estimate soil
salinization and alkalization. As presented in Table 6, the RF–SMOTE model for soil
salinization prediction achieved higher accuracy than CNN–SMOTE, in which accuracyp,
precisionp, and kappap were 0.67, 0.67, and 0.52, respectively. Similarly, for soil alkalization
estimation, the accuracyp, precisionp, and kappap of RF–SMOTE improved by 23%, 19%,
and 70%, respectively, compared with the CNN–SMOTE. Thus, the study concluded that
the RF–SMOTE model performed better than the CNN–SMOTE.

Table 6. The performance of random forest (RF) and convolutional neural network (CNN) in the
training and test set.

Index
Random Forest Random Forest–MOTE Convolutional Neural Network–SMOTE

Salinization Alkalization Salinization Alkalization Salinization Alkalization

Accuracycv 0.58 0.67 0.73 0.62 0.64 0.53
Precisioncv 0.33 0.20 0.68 0.62 0.59 0.53

Recallcv 0.26 NA 0.69 0.54 0.69 0.54
F-scorecv NA NA 0.68 0.58 0.60 0.52
Kappacv 0.37 0.15 0.65 0.52 0.53 0.42

Accuracyp 0.58 0.53 0.67 0.53 0.58 0.43
Precisionp 0.35 0.22 0.67 0.51 0.56 0.43

Recallp NA NA 0.66 0.40 0.48 0.47
F-scorep NA NA 0.61 0.45 0.48 0.45
Kappap 0.31 0.07 0.52 0.34 0.40 0.20

Notes: Rows with bolded font identify the best-performing model. Subscript cv represents the model’s perfor-
mance in the training set, and p represents independent validation.

3.3. Importance of Predictors

As shown in Figure 4, the most crucial factor in the soil salinization was the Pre
with an MDG value of 5.28, followed by y (3.93), Openn (3.71), Soiltype (3.3), Tmp (2.88),
and TWI (2.89). The vegetation spectral indices, including NDVI (2.42) and CRSI (2.17),
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were moderately related to soil salinization. In the RF model for soil alkalization, the
MDG values of SI2 (6.45), Openn (5.35), and NDVI (5.00) ranked first in all predictors,
followed by Vdepth (3.95) and CRSI (2.98). The result was generally consistent with that in
Figure 3, indicating that the salinity spectral indices, vegetation spectral indices, and terrain
factors played an essential role in soil alkalinization classification. The MSD values of clay
and DEM were less than two, which was the least important factor for soil salinization
and alkalization.
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3.4. Mapping Using the Best Model

Figure 5 presents the maps of the study area’s soil salinization and alkalization degree
in 2021 derived from the RF–SMOTE model. The soil salinization and alkalization severity
increased from northwest to southeast of the study area. The very low salinity and alkalinity
areas were located northwest of the study area and accounted for 33.72% and 54.29%
(Figure 6). These regions were mainly farmland because they were suitable for growing
crops. For soil salinization, very high and high salinization was mainly distributed in
the non-cultivated region with an area of 60.25% and 0.9%, respectively. The moderate
salinization with an area of 4.35% was mainly located in irrigated land, and the low
salinization with an area of 1.59% was mainly distributed in the middle of the study area.
For soil alkalization, very high and high alkalinity areas accounted for 5.14% and 11.77%,
respectively, and were located nearby Nen River, bubble marsh, and lowland field. With an
area of 23.13%, the low alkalization occurred at the edge of small lakes and farmland gully.
In general, levels I and II of soil salinization accounted for a larger area than that of soil
alkalization, indicating that the soil salinization of the study area was more severe than
soil alkalization.
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The study compared the proportion of soil salinization and alkalization under five lev-
els in 2021 with that in the 1980s. As shown in Figure 6, the area of soil salinization and
alkalization (the sum of I, II, III, and IV proportion) presented an apparent upward trend
from the 1980s to 2021 at an annual rate of 1.39% and 0.88%, respectively. The percentage
of severe soil salinization and alkalization (Levels I and II) showed a similar increasing
trend at an annual rate of 1.43% and 0.38%, respectively. Overall, the areal extent of
very high salinization and alkalization was expanding. Then, the study selected six main
land-use types and analyzed the percentage of soil salinization and alkalization under
these land-use types in the 1980s and 2021. As shown in Figure 7, for soil salinization,
both the size in 2021 and change rate of level I and II area under distinct land-use types
followed the order of mash > salinate soil > grassland > forest > dry land > water field.
For soil alkalinization, very high and high alkalization mainly occurred in the marsh,
salinate field, and grassland that is bare or with low vegetation coverage. The degree of
soil alkalinization was low in forest and dryland with relatively thick vegetation. Similarly,
the increment of the levels I and II alkalized area under various land-use types followed
mash > salinate soil > grassland > dry land. The size of very high and high soil alkalized
areas even decreased in the forest.
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4. Discussion
4.1. Estimation Capabilities of SMOTE and Different Models

The study indicated that the SMOTE resampling techniques could overcome the
class imbalance problem and thus improve the model’s performance. The model with
balanced training datasets by SMOTE could fully extract the characteristics of each class and
enhance the prediction accuracy of classes with only a few instances. Similar to the result,
Taghizadeh-Mehrjardi et al. (2019) reported that the accuracy of the RF model trained on
the balanced data (accuracy = 0.58) improved by 10% more than the RF with imbalanced
data [35]. Sharififar et al. (2019) also showed that the calibration performance improved
after the SMOTE method combing with RF [36], as also reported by Lauron and Pabico
(2016) [37]. Hence, the SMOTE technology was used to balance the dataset in the study.
After processing the dataset by the SMOTE, the study compared the performance of RF
and CNN and found that the RF–SMOTE model performed better than the CNN–SMOTE.
Wang et al. (2020) reported that the estimation capabilities of the RF model were better than
the one-dimensional CNN [16]. Conversely, a great accuracy (accuracy > 0.9) was obtained
by an automated CNN model with 704 samples in soil salinity prediction [38]. The opposite
result may be due to the different amounts of training data. In the study, a total of only 56
and 58 data were used to train models for soil salinization and alkalinization, respectively
(Table 4). CNN model was more suitable for the training process with a large training set
to prevent overfitting [39]. Traditional machine learning methods, such as RF, are more
advantageous for models with fewer training samples. On the other hand, although 1D
CNN was characterized by small computational cost, it could not extract features around
the pixel to fully leverage the spatial context of a soil observation such as 2D CNN [40,41].

4.2. Effects of Soil-Forming Factors on Soil Salinization and Alkalinization

As reported by many studies, the climate plays the most important role in soil salt
variability. Especially in arid and semi-arid regions, the soil salt migrates to the soil surface
with the evaporation of soil water, resulting in salt accumulation in topsoil. After rainfall,
the amount of precipitation determines the salt leaching rate, leading to the heterogeneous
distribution of soil salinity. In the study area, the evaporation of the study area is three
to four times as much as precipitation, so it is not surprising that the Pre ranked first in
soil salt estimation (5.28). At present, salinity and vegetation spectral indexes have shown
satisfactory performance in salt prediction worldwide [42–44]. Nevertheless, affected by
the soil moisture, vegetation coverage, salt tolerance, and others [45–47], the performance
of these indexes varies with the local conditions. In this study, SI2, NDVI, openn, and
CRSI contributed most to soil alkalinization prediction, which may be because the red,
blue, green, and visible near-infrared are the most sensitive bands to soil pH in Songnen
Plain [44]. Hence, the study highlights the application of SI2, NDVI, and CRSI in soil
alkalinization estimation in Songnen Plain. On the other hand, the result reflected the
significance of vegetation to the spatial distribution of alkalization. This result may be
because the soil pH in the study area was 7.29–10.22 with a mean value of 8.57 (Table 4),
mostly exceeding the suitable pH value for most plant growth (6.5–7.5) [48]. Soil alkalinity
can severely harm the growth of plants by osmotic and specific ion effects [49].

4.3. The Spatial and Temporal Variation Characteristics of Soil Salinization and Soil Alkalinization

The study summarized the characteristics of salinization and alkalization as follows:
(1) according to the composition of soil salt, the soil in the area belongs to the soda saline
soil, which is consistent with the findings of previous studies [50,51]. (2) Very high soil
salinization and alkalization were mainly located around the Nen River, bubble marsh, and
lowland fields. The result may be because the salt is mainly concentrated in floodplains
and sediment. In addition, global warming, lower rainfall, and more intensive evaporation
have led to widespread droughts and salt accumulation. (3) The areal extent of high and
very high salinization and alkalization was expanding, and its increasing rate is consistent
with previous findings [52,53]. Similar to the results, some studies have reported that
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the areas of saline–alkali land in Da’an city increased by 4.69 and 2.65 × 104 hm2 during
1986–2006 and 1986–2000 [54,55]. The phenomenon that soil salinization is becoming more
severe may be due to climate change and human activities. Because of global warming,
enhanced evaporation and reduced rainfall will exacerbate soil salinization, especially in
dry areas. On the other hand, human activities had a crucial impact on soil variability [56].
The fertilizer application and land-use change [57,58] due to some policies and irrigation
farming [59,60] are related to the expanding saline soil. This hypothesis has been confirmed
by many previous studies focusing on the soil salinization of Songnen Plain [61]. (4) Severe
salinization (levels I and II) was more widespread and increased faster than severe alkaliza-
tion. This finding may be related to the different occurrence mechanisms of soil salinization
and alkalization. Soil salinization refers to the process by which the salts from surface
water, groundwater, and parent material accumulate vertically or horizontally along with
the soil water movement due to evaporation. The mechanism of soil alkalization is the
hydrolysis of calcium carbonate, sodium carbonate, and exchangeable sodium. In salinized
soil, enough anions and cations are combined to prevent the hydrolysis of exchangeable
sodium. Nevertheless, the salt ion concentration decreases when desalting occurs, leading
to exchangeable sodium hydrolyzing and soil alkalization. Hence, alkalization occurred
based on the salinization process. Studies have reported that high salt concentration in
the soil had an inhibitory effect on ESP [62]. (5) For both the 1980s and 2021, the very high
and high salinization and alkalization mainly occurred in the marsh, salinate field, and
grassland that is bare or has low vegetation coverage. In contrast, the salinization degree
was low in forest and dryland with relatively thick vegetation. Severe soil salinization and
alkalization were toxic to plant roots [63]. On the other hand, due to the discreteness of Na+,
saline soil was more susceptible to erosion and thus detrimental to vegetation. Perri et al.
(2018) reported that vegetation coverage change was directly related to salinization [64].

5. Conclusions

The study combined sixteen environmental covariates and the observed soil data with
RF and CNN models to classify soil salinization and alkalization levels in the western
Songnen Plain.

The results are as follows: (1) The SMOTE method can overcome the loss of minority
classes in prediction and improve classification accuracy. The RF model with SMOTE
resampled balanced data performed better (accuracy = 0.67, precision = 0.67 for soil sali-
nation) than the CNN model. (2) From the 1980s to 2021, the size of soil salinization and
alkalization areas showed an apparent upward trend at an annual rate of 1.40% and 0.86%,
respectively, and the area of very high salinization and alkalization was expanding. (3)
SI2, NDVI, and CRSI played the most crucial role in soil alkalinization estimation. (4) Both
the degree and change rate of soil salinization and alkalization under various land-use
types followed mash > salinate soil > grassland > dry land and forest due to the various
vegetation coverage.

This study provides a reference for rapidly mapping, evaluating, and managing soil
salination and alkalization in arid areas.
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