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Sebastian Budzan 1,* , Roman Wyżgolik 1, Marek Kciuk 2 , Krystian Kulik 1, Radosław Masłowski 2,
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Abstract: In this paper, we present our investigation of the 2D Hand Gesture Recognition (HGR)
which may be suitable for the control of the Automated Guided Vehicle (AGV). In real conditions,
we deal with, among others, a complex background, changing lighting conditions, and different
distances of the operator from the AGV. For this reason, in the article, we describe the database of 2D
images created during the research. We tested classic algorithms and modified them by us ResNet50
and MobileNetV2 which were retrained partially using the transfer learning approach, as well as
proposed a simple and effective Convolutional Neural Network (CNN). As part of our work, we used
a closed engineering environment for rapid prototyping of vision algorithms, i.e., Adaptive Vision
Studio (AVS), currently Zebra Aurora Vision, as well as an open Python programming environment.
In addition, we shortly discuss the results of preliminary work on 3D HGR, which seems to be very
promising for future work. The results show that, in our case, from the point of view of implementing
the gesture recognition methods in AGVs, better results may be expected for RGB images than
grayscale ones. Also using 3D imaging and a depth map may give better results.

Keywords: gesture recognition; neural networks; automatic guided vehicle; HMI

1. Introduction

Gesture recognition in general refers to recognizing the expression of motion by a
human, mainly hands and arms but also face, head or even the whole body. Gestures can be,
and in many situations already are, an excellent means of interaction between human and
human or human and machine. For example, in [1] authors describe a gesture recognition
system for interaction with a computer, defining the gestures for mouse movement and
keyboard arrow press/depress. For smart home automation, the Wi-Fi based gesture
recognition is investigated, based on channel state information (CSI) [2,3]. With CSI the
micro human body movement can be detected in a non-intrusive manner, cause human
body movement, so also the gestures, would interface the Wi-Fi signal propagation, which
is observed as variations of CSI amplitude and phase.

In recent years, there has been a dynamic development in vision technology used for
the location and mapping of the AGV, also of the AMR (Autonomous Mobile Robot) envi-
ronment, the detection of obstacles and people, as well as human-machine collaboration.
Gesture control is already used in many civilian applications, in particular related to the
automotive industry, e.g., control of infotainment systems or cooperation with collabora-
tive robots, where the main tasks are pick and place, palletizing, packaging, or quality
inspection. The main purpose of using AGVs, and now more often collaborative robots
in combination with a vehicle, is cooperation with people in the production process, e.g.,
the robot uses elements that are given to it by a human, performs tasks with elements of
significant mass. Of course, in this situation, there is a problem with ensuring safety while
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increasing production efficiency. Then we must use systems that will allow cooperation in
one work zone shared by a human and a vehicle/robot, or ensure the separation of these
zones. Subsequently, software support should be provided for the detection of dangerous
situations, which in the absence of reaction will lead to a collision, then for the collision
itself, as well as for determining its level. Initially, the operation of the system was reduced
to optical devices that only controlled the appearance of an object—a human figure; in a
specific zone of the robot, or vehicle. In recent years, a number of studies and engineering
applications have enabled more precise oper ation by introducing human interaction and
controlling the robot/vehicle using gestures.

The autonomy of AGVs is constantly being developed. There are solutions on the
market, for which the routes do not need to be determined by wires embedded in the floor,
coloured or magnetic tapes applied to the floor surface. They use laser scanners to create
a map of their surroundings and use SLAM (Simultaneous Localization and Mapping)
system for localization and navigation. The advantage is that the map is continuously
updated during the AMR movement/driving. Due to the location of the laser scanner
in AMR, they create a map of objects in the surrounding up to a certain height, usually
20–30 cm. Therefore, e.g., obstacles hanging above the floor at a height above the laser
range may pose a problem. Therefore, AMR vehicles are usually equipped with one or two
2D cameras to detect such objects. The cameras can be used to extend AMR functionality
with gesture recognition. For example, gesture recognition can be used to call the nearest
free AMR vehicle and stop it at a certain distance from the operator, it can also be used
when parking a vehicle in working zones at production lines, docking in loading zones,
moving between halls. Of course, in zones where vehicles move in an environment shared
with employees. There, gesture control can be useful, acting much more selectively than
typical security systems based on 2–3 zones determined in a laser scanner. Due to the need
to ensure the speed and efficiency of software operation, it is so important to work on the
weaknesses of gesture detection algorithms in industrial applications.

Hand gesture recognition in automotive human-machine interaction (HMI) is also a
highly focused area of research. Ref. [4] gives an overview of early HMI trends for human-
vehicle interaction with more than 40 references concerning the topic. Also a number of
technics for hand gesture interface can be found there. The current approach to hand
gesture recognition for automotive applications is discussed in [5], where authors propose
a system with an infrared array sensor. The advantage of the infrared approach is that it
can work in various conditions as day and night, in noisy environment and in tunnels. The
alternative approach, based on depth cameras, is presented in [6]. The authors describe
current Machine Learning approaches to hand gesture recognition with data from depth
cameras.

In [7] authors propose a system for guiding unmanned vehicle based on gesture
recognition. The vehicle recognizes the “follow” and “stop” hand gestures shown by a
person. The first one puts the vehicle into follow (guide) mode so the vehicle begins to
detect the person then track and follow it. To finish guiding, the person issues a “stop”
gesture. The sensor used in this work was the Kinect-V2.

For robot applications in [8] the system is proposed based on PDM Camboar Pico ToF
camera which, according to the authors, gives 100 better accuracy than the stereo camera.
However, the range of the device used is limited to 4 m, which is sufficient in the case of
the application described there.

Since 2013/14, we have seen a significant increase in publications dealing with gesture
recognition. The most recent publication status regarding gesture recognition can be found
in [9]. This study has analysed 571 papers related to artificial intelligence and gesture
recognition. We can see, that deep learning (DL) methods are the most popular, however
also hybrid methods are used in some cases, e.g., for continuous gesture recognition on
data comprising image and depth data and skeleton features [10] with HMM and deep
dynamic neural networks (DDNN) or [11] for hand gesture recognition with a combination
of 3D CNN and a support vector machine (SVM) classifier.
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One of the first survey on gesture recognition, with particular emphasis on hand
gesture and face expressions, has been published by Mitra and Acharya [12] with 64
referenced papers. It focuses on different aspects of gesture recognition. Most of the
problems have been addressed based on statical modeling, such as principal component
analysis, hidden Markov models (HMM), Kalman or particle filtering. The currently widely
used neural networks were then represented by multilayer perceptron (MLP) and time
delay neural network (TDNN). 2007 was the year of the initial release of NVIDIA CUDA
technology for GPU processing, making it possible to use more complex neural networks,
in following years, such as long short-term memory (LSTM) [13,14] or convolutional neural
networks (CNN) [15,16].

Due to their specificity and frequency of use, it is hand gestures that are most often
recognized. For the rest, sign language uses a set of hand gestures for a reason—we
can convey more information with our hands than facial expressions or posture. Hand
modeling and 3D motion based pose estimation methods are reviewed in [17] and cover
developments till the year 2005, according to the listed references. The review of vision-
based hand gesture recognition algorithms is given in [18]. However this is also not the
newest publication, it is focused strictly on hand gestures. The major challenge is the
identification of the hand gesturing phase in an automatic gesture recognizer. First, we
have to identify the hand in the complex scene, then detect the known gesture from the
unpredictable and ambiguous non-gesture hand motions. The poorly lit scene, background
colour close to the colour of the skin, the distance between the camera and the human, scene
complexity (many elements in the scene) are the problems that determine the reliability
of the detection algorithm. Especially the last two are important from the point of view
of hand gesture recognition applications in use for AGVs. The problem addressing issues
due to complex backgrounds is discussed e.g., in [19,20]. The threshold model concept,
using HMM, is discussed in [21] and simultaneous gesture segmentation and recognition
is proposed in [22].

If we take into account the taxonomy of gestures, there are multiple ways to categorize
hand gestures. The categorization is given by Pishardy, Saerbek in [18]. First, based on
observable features. Second, based on the interpretation. In this paper, we focused only
on the first from above, where gestures are classified, based on temporal relationships
into two types: static and dynamic. In static gesture (aka hand postures/poses) we are
looking for orientation, shape, finger’s flex angles, relative position to body and/or context
environment. Dynamic gestures are characterized, besides the shape, orientation, and
finger’s flex angles, with position/trajectory, motions speed/direction and scale.

In this work, we described an approach to recognizing selected gestures in 2D images
for the purposes of controlling an autonomous platform. The main contributions of our
paper are summarized as follows:

• We have developed a diverse database of ten gestures with a complex background,
changing lighting conditions, and different distances of the operator from the AGV.
Our image database also contains clipped gestures.

• We proposed a straightforward and effective simple CNN that handles RGB images
well and does not require a large number of iterations to train.

• We modified the pre-trained ResNet50 and MobileNetV2 networks for the problem of
2D and 3D gesture recognition.

• We modified and implemented convexity defects algorithm in AVS and Python
environment.

• We conducted an analysis of the obtained results, generated by convexity defects
detection and neural networks, in terms of incorrect classification of gestures, so as to
indicate among them those gestures that will ensure high reliability of classification.

• We conducted a valuable comparison between a AVS engineering software, and an
Python environment, pointing out the pros and cons in terms of creating a neural
network structure.
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• We conducted a preliminary analysis of the possibility of using neural networks for
gesture recognition in 3D images.

The rest of the paper is organized as follows. In Section 2 we described the equipment
utilized to acquire the images, the images database for training the neural networks.
Then the problems connected with gesture recognition in 2D and 3D images and the
software tools selected for research. In Section 3 we provide a discussion of the results for
conventional gesture recognition methods based on image segmentation and morphology
and the deep learning methods for 2D and 3D images using customized CNN networks
and implemented in AVS. At the end, in Section 4 we summarize our research and provide
the conclusions.

2. Materials
2.1. Hardware

As part of our work, we use the prototype AGV platform developed in the Department
(Figure 1), which has been equipped with a power supply, drive, control system, and a
mapping, location, and object detection system. The drive of the platform consists of two
wheels located in the front part of the chassis and a single swivel wheel located in the rear
part of the chassis. From the point of view of the drive system of the platform, each of the
two front wheels is coupled to an independent DC motor. The additional rear wheel of
the vehicle allows free rotation in the axis normal to the plane of the platform’s motion,
and thus enables to change the direction of the vehicle. The vehicle control system was
organized based on the open-source Robot Operating System (ROS) programming platform.
The mapping, location and object detection system works with the use of 2D scanners,
vision cameras, and distance sensors.
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Figure 1. Experimental AGV platform.

Gesture detection was performed using Basler 2D camera acA1600-20gc with
1624 × 1234 resolution, 20 frames per second, and 8 mm lens, also with an additional
3D IFM camera O3D302 with 176 × 132 resolution and 300–8000 mm working distance.

2.2. Gesture Images Database

The starting point in our research was the most effective linking of specific gestures
with unambiguous behavior of the vehicle, i.e.: starting/stopping the vehicle, driving
straight, turn left, turn right. For this reason, in our considerations, we focused on 10 ges-
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tures that were recorded in visible light using a 2D camera as the main basis used in our
research. On the other hand, the registered—smaller, database of 3D images served us
only as a potential development path in the future, both in terms of the advantage over 2D
image acquisition and a number of classification algorithms that are used to detect gestures
in 3D space or the depth map.

The images were recorded in natural indoor conditions. During the recording, distur-
bances typical for AGV/AMR applications in the form of various backgrounds (uniform,
complex, mixed—part of the hand was on a uniform background, remained on a complex
one), variable lighting, and additional human poses in the background were taken into
account. During the registration, features related to image acquisition, i.e., loss of sharp-
ness, overexposure of the matrix, were also taken into account. The diversity of the base
was also ensured, i.e., 6 people of different ages and different clothes were used. Images
were recorded from two different distances—1.0 and 2.5 m. Each gesture was performed
from multiple angles by each study participant independently, resulting in high variability
within classes by background, scale, shape, m, and gesture angle. Sample images have
been presented on Figure 2.
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Figure 2. Sample raw 2D images taken during experiments.

Ten gestures were randomly selected for the study, namely: Fist(0), Palm(1), Rabbit(2),
Victoria(3), One(4), Four(5), Rock(6), Stop(7), Loser(8), Thunderbolt(9). The recorded images
originally had a resolution of 1624 × 1234 and contained a full scene with human poses and
complex surroundings. The database contains 4750 images in total -475 images per gesture
(Figure 3). The hand area in the original images averages 150x150 pixels. For this reason, in
all algorithms, we decided to analyze only the image from the region of interest around the
hand. Regardless of the tested algorithm, the input images had a resolution of 282 × 266,
which was determined based on the Region Of Interests (ROI) algorithm, based on the
conversion of the RGB space to HSV and the extraction of the H component. interest in
the hand. In the article, we also show the disadvantages of this method in practice, which
are revealed especially when a human head or another hand appears in the background.
The distance from the camera, other silhouettes in the background in this situation only
result in a change of position—centering the hand relative to the ROI, and in critical cases
even an incomplete shape of the hand in the ROI. In our considerations, we have taken into
account all the listed situations and features.



Sensors 2023, 23, 3109 6 of 23

Sensors 2023, 23, x FOR PEER REVIEW 6 of 22 
 

 

reason, research is also carried out in the field of gesture detection in images obtained 
from 3D cameras. 

      

      

      

      

      

      

      
Figure 3. 2D sample images of gestures from left to right: Fist(0), Palm(1), Rabbit(2), Victoria(3), 
One(4), Four(5), Rock(6), Stop(7), Loser(8), Thumbleft(9). 

The 3D camera used in the project was a time-of-flight camera, in which the coordinates 
of points are calculated based on the measurement of the time of flight of the beam sent by 
the generator. The result is a 3D point cloud. Analyzing raw 3D point clouds involves sig-
nificant computational effort, so it was limited to a 2D image while preserving distance in-
formation through the use of a depth map. It is created by projecting each point of the 3D 
point cloud onto the sensor plane and assigning weights in the range 0–255 depending on 
the distance of the respective points. Sample depth maps are shown in Figure 4. 

There are about 950 images for each of the four classes, they were acquired with res-
olution 176 × 132 pixels from different distances, angles, with changing lighting, and other 
people in the scene. The article describes depth map processing only as a direction of po-
tential development of human interaction systems with AGVs using gestures, therefore 
the database currently contains only four gestures and the results were not directly com-
pared with the results obtained based on 2D images in visible light. 

Figure 3. 2D sample images of gestures from left to right: Fist(0), Palm(1), Rabbit(2), Victoria(3),
One(4), Four(5), Rock(6), Stop(7), Loser(8), Thumbleft(9).

The use of 2D images for gesture recognition has a major disadvantage—the person
showing the gesture must be relatively close to the camera to reduce the impact of the
aforementioned disturbances, especially in industrial conditions. The image obtained with
a 2D camera also does not provide information about the distance of objects, therefore
the analysis of the image with a larger number of people significantly complicates the
algorithm or requires additional restrictions imposed on the operator in terms of the
method—direction, position, showing a gesture in front of the vehicle. Also for the above
reason, research is also carried out in the field of gesture detection in images obtained from
3D cameras.

The 3D camera used in the project was a time-of-flight camera, in which the coordinates
of points are calculated based on the measurement of the time of flight of the beam sent
by the generator. The result is a 3D point cloud. Analyzing raw 3D point clouds involves
significant computational effort, so it was limited to a 2D image while preserving distance
information through the use of a depth map. It is created by projecting each point of the 3D
point cloud onto the sensor plane and assigning weights in the range 0–255 depending on
the distance of the respective points. Sample depth maps are shown in Figure 4.
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There are about 950 images for each of the four classes, they were acquired with
resolution 176 × 132 pixels from different distances, angles, with changing lighting, and
other people in the scene. The article describes depth map processing only as a direction
of potential development of human interaction systems with AGVs using gestures, there-
fore the database currently contains only four gestures and the results were not directly
compared with the results obtained based on 2D images in visible light.

2.3. Software Background

Due to the practical application of the gesture detection algorithm, the experiments
were conducted from the scientific side in terms of potential, effective detection methods,
and from the implementation side of various programming environments. For this reason,
among the methods, we implemented the gesture detection method based on the search
for convexity defects, the ResNet50 and MobilnetV2 deep learning method modified by
us, as well as we proposed a simple and fast CNN network. We compared the algorithms
implemented in the Python environment with the results obtained in a typical engineering
environment for image processing, which is Adaptive Vision Studio, currently Zebra
Aurora Vision Studio. The environment is easy to use for both maintenance engineers and
scientists dealing with the subject of machine vision, object detection and classification.
At the same time, it has a wide range of tools for vision control. As part of the classic
algorithm, we used basic functions in the field of image segmentation and morphology,
while the neural network learning process required the use of the Deep Learning tool,
which allows for a transparent preparation of the learning process, including setting the
learning parameters, including data augmentation. This tool does not require network
structure design, but on the other hand, we also have no way to know its structure. The
Deep learning module uses deep neural networks, using Transfer Learning, in which a
pre-trained network is reconfigured at some stage to adapt to the current problem.

3. Methods, Discussion and Results

In this section, in the following subsections, we presented the detailed description,
discussion and results obtained for the method based on convexity defects recognition
known from the literature, then modified by us methods of deep learning of 2D images
ResNet50 and MobileNetV2, and the simple and fast CNN network proposed by us.
The discussion was focused on the analysis of mainly the disadvantages of the methods
due to the accuracy of detection and recognition of gestures. In addition, we conducted
preliminary studies of gesture detection based on a 3D camera and a depth map. In this
regard, we also tested selected neural networks. A summary of the 2D experiments concept
is presented in Figure 5. The above solutions were developed in the Python environment,
while the solution based on image segmentation and neural networks was also additionally
designed in the Adaptive Vision environment.
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3.1. 2D Gesture Recognition Based on Convexity Defects

The first approach was to use classical methods, which are most often based on the
extraction of specific features of the shape of the object. A common approach in the
classification of hand gestures is to extract the area based on the differences between
the colour of the hand and the environment [23,24]. The aim is therefore to search for
characteristic points, called convexity defects [25], which should be detected in the areas
between the fingers. In practice, these are the points of the hand contour that are furthest
away from the convex polygon surrounding the hand.

The method primarily uses segmentation in the HSV space and morphological opera-
tions to improve the quality of the detected hand area. Figure 6 shows the results of the
most important steps of the convexity defect detection algorithm. First, the image from
the RGB space should be converted to HSV, and then the Hue component (Figure 6a) is
extracted, this operation allows the skin area to be extracted from the image. Despite the
change in space, the original image usually contains much more separated objects than just
areas of human skin. Since the effectiveness of classical methods depends primarily on
the quality of the palm area, all other objects should be reduced. We used area filtration,
which allowed us to reduce smaller, individual areas on the one hand, and the remaining
areas are reduced based on the calculated area. Then, the image is improved on the basis
of morphological operations, mainly closing with a 5 × 5 kernel, which allows to fill any
holes in the hand area (Figure 6b). In the next step (Figure 6c), the contour was returned
using the topological structural analysis algorithm [26] in our python implementation and
RegionContours filter in AVS software respectively. In Figure 6d convex polygon of the hand
area is presented, which is used to divide the contour of the hand into segments, which are
presented in Figure 6e in the form of different colours.

The contour separated in this way is used to determine the shortest segments connect-
ing the points of the segments with the corresponding side of the polygon. The result are
groups of segments that are candidates representing fingers (Figure 6f). The last step is to
reduce the number of candidates (Figure 6g) by searching for the longest segment in each
group. At this stage, the selected candidates are also verified by checking the value of the
angle between neighboring candidates—it must be less than 90◦ (Figure 6h).

Figure 7 presents a similar algorithm developed during our experiments in AVS con-
taining the entire algorithm. Individual parts of the program have been divided into
sections, namely thresholding, morphological operations, determination of the hand con-
tour, contour reduction, determination of the envelope of the hand, and determination of
characteristic points.
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In principle, the algorithm should allow for an unambiguous determination of the
gesture by estimating the number of convexity defects—the space between the fingers.
However, this conclusion is true only for images obtained in conditions ensuring high
contrast in the image. Using the 2D image database described in the previous section, the
following results of convexity defects detection were obtained (Table 1). Bold numbers
indicate the number of defects that should be obtained. The results show that the classical
method has significant problems with the detection of convexity defects. 4750 images were
tested, if only the global detection accuracy for ten gestures was taken into account, it is
62.25%. On the other hand, the analysis of the results for individual gesture classes is more
important due to practical application, on the one hand, the accuracy of the detection of
a single gesture class, and on the other, the possibility of classifying a gesture among ten
classes. A summary of the calculated accuracies is presented in Figure 8.

Table 1. Number of detected convexity defects for gestures 0–9.

0 1 2 3 4 5

Fist(0) 459 16 0 0 0 0
Palm(1) 32 84 106 98 153 2
Rabbit(2) 153 179 122 21 0 0
Victoria(3) 37 356 81 1 0 0
One(4) 388 80 6 1 0 0
Four(5) 44 75 119 211 26 0
Rock(6) 117 337 21 0 0 0
Stop(7) 429 46 0 0 0 0
Loser(8) 247 216 11 1 0 0
Thumbleft(9) 387 87 1 0 0 0
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For two gestures Fist(0), Stop(7) the accuracy was above 90%, for the next two gestures
One(4), Thumbleft(9) above 80%. A characteristic feature of these four gestures is the
expected number of convexity defects—0. The worst results were obtained for two gestures,
Rabbit(2), Palm(1), respectively 4.42% and 32.21%. For both gestures, the position of the
hand in relation to the camera and the algorithm, which is ultimately based on the number
of convexity defects, undoubtedly has a major impact on the detection result. In the case
of the Palm(1) gesture, the width of the palm spread is also important, which directly
affects the analysis already at the stage of changing the colour space from RGB to HSV.
Importantly, all the cases where poor results were obtained were characterized by the
detection of several convexity defects instead of one standard one. In this case, there is the
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Rabbit(2) gesture, which combines two potential disadvantages—the need to spread three
fingers wide and the correct position relative to the camera. For this reason, only 21 images
contained the correct number of bulge defects (3), and the rest were distributed between
0–2 defects more or less evenly. Among the gestures below 80% detection accuracy, the
causes of errors in detection should always be looked for in the incorrect position of the
hand, which results in a change in the opening angle between the segment lines (fingers)—a
prime example is the Loser(8) gesture, where the algorithm most often does not detect
a convexity defect, or in the second place only detects one. In this situation, the most
important is the angle between the thumb and index finger. In conclusion, the algorithm
fails in every gesture in which there is a problem with unambiguously determining the
defect of the convexity between the fingers.

Despite the definitely fast prototyping of the algorithm in the AVS environment, also
Python, the method requires, on the one hand, very good image quality—the problem with
the thresholding operation, but also the selection of appropriate gestures. As a consequence
of the above considerations, in real, industrial conditions, certain restrictions should be
introduced, mainly at the stage of image recording, i.e., determine the area of the image in
which the gesture should appear and ensure the appropriate distance of the hand from the
camera, which will ensure correct focus on hand and sharp hand region in the image. In
addition to the reasons related to the preservation of the angle, the shape of the gesture
during registration in the classical method, we are dealing with errors resulting from
the adopted algorithm based on the HSV space and morphological operations. Figure 9
presents selected problems arising during the experiments. Placing the hand at an angle
that causes the reflection of the LED light results in errors in HSV segmentation (Figure 9a),
incorrect operation of the morphology operation results in closing too large an area between
the thumb and forefinger (Figure 9b) while reflecting the light. In Figure 9c, the shape
of the convex polygon has been changed in the thumb area by attaching a fragment of
the background object to the thumb area. The Figure 9d–f show problems when there are
other skin areas in the scene. In the extreme case (Figure 9f), the palm area may be omitted
from the analysis. Equally important as the ability to detect an individual gesture is the
ability to classify gestures from several classes, and here, unfortunately, in this case, the
method based only on convexity defects does not allow to distinguish gestures for which
the standard number of defects is the same.
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From the point of view of real-time control of AGV/AMR using gestures, the above-
described disadvantages of the classical method, both resulting from the acquisition process
itself and image processing, or the unambiguity in the gesture classification, make it
necessary to look for methods resistant to the above factors. In industrial conditions, certain
restrictions should be introduced, mainly at the stage of image recording, such as limiting
the distance and position relative to the camera, even the area of the ROI image where
the gesture should appear. For this reason, at the base registration stage, we conducted
experiments with forcing the position and ROI area in which the gesture appeared. This
ultimately resulted in many images containing incomplete, clipped gestures, blurred
gestures as a result of a quick attempt to stabilize the gesture inside the ROI. Regardless of
the possibility of introducing restrictions during registration, optimizing classical methods
in terms of the processing algorithm, or limiting the number of gestures to those most
unique to the algorithm, deep learning methods seem to be an alternative that should
cope better.

3.2. 2D Gesture Recognition Based on CNN in AVS

In the AVS environment, the Classify Object deep-learning tool was used in a uniform
way for grayscale and RGB images. Figure 10 shows one of the interfaces from Deep
Learning Module.
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What is very important, when using the Deep Learning Module tool in AVS, it is not
possible to design the network, and it is based on predefined networks with an unknown
structure. However, the learning process can be controlled primarily by changing the
augmentation parameters, i.e., rotation angle (15◦), relative translation (5%), scale of the
image (95–105%), noise (2%) and luminance (8%). The same augmentation was used in
the other networks. After experimenting with the number of epochs, we finally used
100 epochs for which we obtained optimal results for the tested set of images.

In addition to the direct access augmentation parameters, another advantage is the
ability to observe images after passing through the appropriate convolutional layers. The
tool is used to determine whether the network is focused on the relevant areas. The image
with gesture presented in Figure 10 shows an example of the heatmaps for selected gestures
in grayscale images CNN. The area in red is the area that has the most significant impact
on assigning a gesture to one of the classes.
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Without a doubt, the detection of gestures in the optimal situation should be carried out
on binary images. The solution based on binary images definitely has many advantages—
short time of classification, training and the test set does not have to be very large. A definite
advantage of using binary images is the possibility of creating a very small set. Nevertheless,
this approach is not without its drawbacks. The key disadvantage of this approach is
being dependent on lighting conditions and implementing additional thresholding and
segmentation algorithms. For this reason, despite the advantages, we do not recommend
relying on binary images in real, industrial conditions, where most often images contain
a complex background that significantly affects the effectiveness of gesture detection.
Therefore, we used both grayscale and RGB images in our experiments to explore the
potential effect of colour on gesture classification.

The use of grayscale and RGB images requires a much larger set of images. The
number of training and validation images per class was 380 divided proportional 80:20.
The parameter that gives important information about the quality of learning is, of course,
entropy, which should be interpreted as the uncertainty of the occurrence of a given
elementary event. Entropy tending to zero is equivalent to a stronger classifier. In the
training process, entropy of 0.022 and 0.015 was obtained for grayscale and RGB images,
respectively. Accuracy of 99.95% (grayscale) and 99.97% (RGB) was obtained for 3800
training images of all classes. The test was performed on a set of 950 of all gesture classes
that were recorded as a separate set of images in the same environment, but none of these
images were in the training set. The same set of test images was used to test the rest of the
networks. The result was an accuracy of 78.95% (200 grayscale images misclassified) and
89.79% (97 RGB images misclassified). The detailed distribution of errors is shown in the
confusion matrices for grayscale (Figure 11a) and RGB (Figure 11b) images.
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Analyzing the results for grayscale images, significant errors in the classification
of gestures Victoria(3), Rock(6), Stop(7) are characteristic, reaching even 46%. Gesture
combinations that have been particularly confused are Rabbit(2) with Palm(1), Victoria(3)
with One(4) and Four(5), One(4) with Fist(0), Rock(6) with Victoria(3), Stop(7) with Four(5)
and Loser(8) with Thumbleft(9). The best results were obtained for the Fist(0), Palm(1),
Thumbleft(9) gestures, which reached a maximum number of errors of 9.47% for the
Thumbleft(9) gesture, and the Palm(1) gesture was recognized without errors.

In the case of using the classifier for RGB images, much better results were obtained.
Errors were significantly reduced as eight gestures were detected with a minimum accuracy
of 88.42%. In only one Rabbit(2) gesture, a deterioration of accuracy from 83.15% to 47.36%
was observed, which for RGB is more than three times more likely to be confused with the
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Palm(1) gesture. It is a gesture which, due to the highly differentiated hand positioning of
the study participants, may be confused with the Palm gesture(1).

Moreover, the learned classifier for RGB images is much more selective and classifies
erroneous detections with greater confidence. Figure 12 shows some representative exam-
ples of misclassification. In Figure 12a, the gesture is misclassified with a probability of
80.3% for grayscale versus 98.5% for RGB. For the image in Figure 12b, it was 52.6% versus
98.9% (b). Misclassifications for grayscale images that were completely reduced for RGB
were most likely to have high misclassification probabilities—Figure 12c with 93.9% and
Figure 12d with 93,8% probability).
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Figure 12. Rabbit(2) classified as Palm(1) (a,b), Stop(7) as Four(5) (c), Rock(6) as Victoria(3) (d).

The use of closed software such as AVS, which is designed for object detection, can
be an alternative to open algorithms, where it will be necessary to quickly prototype a
solution for large learning sets in the case of gestures. One has note that in this situation
we cannot able to change the structure of the network, which is a significant limitation in
optimization of the classification for RGB images of gestures. From the point of view of
AGV/AMR control, in this situation, it would be advisable to focus on the selection of only
those gestures that not only achieve high detection accuracy, but false detections do not
occur between them, for example: Palm(1), Stop(7), Thumbleft(9).

3.3. 2D Gesture Recognition Based on Customized CNN

During the experiments, we proposed a developed and parameterized network, im-
plemented in Python using the Keras/Tensorflow library. An important stage in the
implementation of the training is the determination of the so-called hyperparameters. Hy-
perparameters of the network are parameters that are not subject to training, i.e., they are
constant and top-down selected. The hyperparameters include, among others: network
architecture—types of layers and selection of activation functions, batchsize—the number
of sample training data used during one training iteration, epochs—the number of training
iterations, loss and learning rate—loss function and learning coefficient, optimizer—tool
calculating new weights, number of training, validation and test images, dimensions of
input images. The proposed CNN network architecture is presented in Table 2.

All images were uniformly resized to 244 × 244 pixels. In the conducted experiments,
the optimal values for each trained network were determined. Finally, the batch size was
set to 16. The Adam optimizer was used with default parameters, so the learning rate
equals 0.001, beta_1 = 0.9, beta_2 = 0.999. The standard loss function for a multi-class
classification problem is set to categorical cross-entropy, which corresponds to the average
entropy in the AVS. For all experiments, conducted with our network, we set the same
number of iterations for one epoch, equal to 100, and the number of epochs also equal to
100. The kernel size was 5 × 5. All the experiments were performed on NVIDIA GeForce
RTX3060 GPU. The Relu activation function was used, which resets negative values.
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Table 2. CNN architecture.

Layer Name Output Size Layer Type Activation

Conv2D 240 × 240 × 16 Convolution ReLU

MaxPooling2D 120 × 120 × 16 Max-Pooling

Conv2D 116 × 116 × 32 Convolution ReLU

MaxPooling2D 58 × 58 × 32 Max-Pooling

Conv2D 54 × 54 × 64 Convolution ReLU

MaxPooling2D 27 × 27 × 64 Max-Pooling

Conv2D 23 × 23 × 128 Convolution ReLU

MaxPooling2D 11 × 11 × 128 Max-Pooling

Dense 64 Fully connected ReLU

Dense 10 Fully connected Softmax

The solutions mentioned above make it possible to create activation maps. Addition-
ally, the so-called dense layer, allowed us to take into account the vector data present in
the image (the so-called two-dimensional tensors). Two-dimensional tensors were created
after the Flatten operation was performed on three-dimensional tensors. This layer was the
output layer activated with the Softmax function. As in the case of AVS, it was necessary to
augment the data to prevent overtraining of the network. The efficiency and loss plots for
this model for grayscale images are shown in Figure 13. The accuracy of the model for the
test set is 70.5% and the average entropy is 1.72.
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For RGB images, the network architecture for grayscale images was modified primarily
in the input layer—the data from the input images was projected this time to a tensor with
dimensions (244, 244, 3). Other hyperparameters remained unchanged. The efficiency and
loss plot for this model is presented in Figure 14.

Figure 15 shows the error matrices of the test sets for both, the grayscale and RGB
images. For grayscale images, we have quite acceptable recognition, i.e., with a probability
of at least 84%, of only two gestures: Fist(0) and Palm(1). Detection of other gestures is at
an unsatisfactory level.

On the other hand, the accuracy of RGB model for the training set is 90.53 %, and the
worst results were obtained for Looser(8) and Victoria(3) gestures. From the rest of the
gestures, we can select for further processing (selecting the gestures for AGV control) these,
for which the proper classification is greater e.g., than 89%.
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As a validation for our implementation of CNN in Python, we used MobileNetV2 and
Resnet50. The MobileNetV2 utilizes depth-wise separable convolutions to build lightweight
deep neural networks dedicated mostly to embedded applications [27]. In [28] authors
compare recognition performance for hand gesture recognition using MobileNetV3 [29]
with the network proposed by the authors and with some other predefined networks
such as ResNet101 [30], ShuffleNetV2 [31], and HGR-Net [32]. The results show that the
MobileNetV3 has relatively high accuracy, by 3.6% less than the network proposed by the
authors. However, there is no information if the authors utilized those networks as is or
with a transfer learning approach, except for the last layer for data classification, which has
to be adapted to the number of classes. In our investigations, we froze all the layers, except
the last 3, which we relearned for our data set. The second version of MobileNet model [33]
was utilized, specifically tf2-preview/mobilenet_v2/feature_vector/4 from Tensorflow
Hub. The MobileNetV2, as well as ResNet50, are trained on a large dataset so we use a
transfer learning approach [34] to adapt the networks to analysed gestures.

For the Resnet50 neural network model, the last 3 layers were removed according to
the transfer learning principle. In their place, the two Dense layers with a neuron count of
2048 were added to the model, as well as accompanying Dropout layers, which perform
regularisation functions in the learning process. Without the aforementioned regularisation
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layer, the learning process generated an overlearned model, so the use of dropout was
necessary for this purpose. One of the last layers of the model described is BatchNormalisa-
tion, a technique that standardises the inputs to the layer for each mini-batch. By attaching
this layer to the network model, it is possible to stabilise the learning process and reduce
the number of training epochs required to train deep networks. The output of the Resnet50
model includes a layer with ten neurons, corresponding to the number of classes in the
classification problem under analysis. Thanks to the softmax function used in this layer
as an activation function, the output gives a polynomial probability distribution for each
processed gesture.

With the application of MovilenetV2, the situation is similar to the Resnet50 with ten
neurons at the output. The difference between these networks, however, is that the network
performed better without additional regularisation functions. Therefore, in this model also
as in Resnet50, the last 3 layers were removed, while 2 more Dense layers were added.
These layers have fewer neurons than ResNet50. The diagram representing both networks
is shown in Figure 16.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 22 
 

 

added. These layers have fewer neurons than ResNet50. The diagram representing both 
networks is shown in Figure 16. 

 
Figure 16. Resnet50 and MobileNet structure. Top blocks representing frozen layers—3; the rest are 
3 layers replaced for transfer learning. 

With this approach, the MobilenetV2 gave us 78.4% accuracy and 0.3 loss for test set 
of grayscale images while for RGB images, 90.1% test accuracy and about 0.3 loss. In Fig-
ure 17 the confusion matrixes are presented, for grayscale and RGB test sets. The result 
for RGB images is close to our CNN, but the size of the classifier is larger (see Table 3). 

For the RestNet50 [34] we obtained 81.8% accuracy for the grayscale images test set 
and 85.0% accuracy for RGB images test set. The result for RGB images is rather disap-
pointing, and additionally, the size of the classifier is significant (see Table 3). The confu-
sion matrixes for test sets are presented in Figure 18. 

Figure 16. Resnet50 and MobileNet structure. Top blocks representing frozen layers—3; the rest are 3
layers replaced for transfer learning.



Sensors 2023, 23, 3109 18 of 23

With this approach, the MobilenetV2 gave us 78.4% accuracy and 0.3 loss for test set of
grayscale images while for RGB images, 90.1% test accuracy and about 0.3 loss. In Figure 17
the confusion matrixes are presented, for grayscale and RGB test sets. The result for RGB
images is close to our CNN, but the size of the classifier is larger (see Table 3).
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Table 3. 2D CNN classifiers comparison.

Method Train
Accuracy [%]

Test
Accuracy [%]

Train
Loss

Test
Loss

Classifier
Size [MB]

Grayscale: AVS 99.90 78.90 0.022 0.332 14.00

Grayscale: MobileNetV2 97.44 78.37 0.087 0.312 42.40

Grayscale: ResNet50 91.98 81.75 0.237 0.496 196.00

Grayscale: Proposed CNN 99.93 70.53 0.004 1.719 14.40

RGB: AVS 100.00 89.80 0.015 0.124 14.00

RGB: MobileNetV2 96.94 90.13 0.087 0.312 42.40

RGB: ResNet50 94.47 85.00 0.168 0.438 196.00

RGB: Proposed CNN 99.90 90.53 0.004 0.403 14.50

For the RestNet50 [34] we obtained 81.8% accuracy for the grayscale images test set and
85.0% accuracy for RGB images test set. The result for RGB images is rather disappointing,
and additionally, the size of the classifier is significant (see Table 3). The confusion matrixes
for test sets are presented in Figure 18.
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3.4. Summary

Table 3 presents information on the results and parameters of the models trained in
this work. Train accuracy and Test accuracy are the accuracies on the training and test sets.
Train loss and Test loss represent the values of the loss function (average entropy), while
Classifier size is the size of the model in megabytes.

As part of the work, the classification of selected gestures in 2D images was inves-
tigated. The methods are based on classic solutions using segmentation as well as CNN
network including pretrained MobileNetV2 and ResNet50 networks, for 2D grayscale and
RGB images, all implemented in Python keras/tensorfow. The research was conducted also
with the utilization of the Adaptive Vision platform, dedicated to engineering applications.

As one can see in Table 3, train accuracy for all methods, besides ResNet50, was over
96.9%, mostly close to 99.9% with very low train loss. For the test set, the results are slightly
worse, which is mainly due to the fact, that none of the images from the test set is present in
the training set. The training set will be enlarged in the future with hand gestures collected
from more people with different complex backgrounds.

Some examples of incorrectly classified gestures are presented in Figure 19.
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In addition, two approaches using 3D depth maps were also implemented—one model
was trained in AVS, and the other in Python. The models showed a similar efficiency for the
training set, but for the test set the AVS 3D network achieved almost 2% higher efficiency.
The values of the loss function were also higher for CNN implemented in Python. The
disadvantage of methods based on 2D images is the use ROI (the hand must appear in
a specific area). The use of a 3D camera made it possible to provide the network with
information on the distance of objects from the camera, while the images obtained with
the 2D camera not. Thanks to this, the hand did not have to appear in a specific place
(ROI), and the operator does not have to maintain a fixed location of the hand. Information
about the distance is especially important when there is more than one person in the scene,
then the gesture of the person closest to the camera is taken into account (which results
from the recorded depth map). The second disadvantage faced by 2D vision is a complex
background which has an impact on hand gesture detection and classification.

The AVS was utilized to capture the 3D images, generating depth images and manual
classification to create a training set. Figure 20 presents exemplary results of gesture
recognition in AVS for each gesture class. In the case of the test set, an accuracy of 99.60%
was achieved (Table 4).
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Table 4. 3D CNN classifiers comparison.

Method Train
Accuracy [%]

Test
Accuracy [%]

Train
Loss

Test
Loss

Classifier
Size [MB]

AVS 3D 99.90 99.60 0.004 0.019 17.50

Proposed CNN 3D 99.89 97.88 0.010 0.100 4.32

The average entropy of the training set is 0.004 and the test set is 0.019, which is much
less than for 2D images. This method would be most suitable for use in industry, e.g.,
for AGV control or generally for unmanned ground vehicles, due to its flexibility and
effective classification at the level of 99.60%. For comparison results, the CNN in Python
was implemented once again. The CNN was exactly the same as in 2D vision described
earlier. The accuracy of this model for the training set was 99.89% and for the test set
97.88%. The average entropy for the training set was 0.01 and for the test set 0.1. Initially,
it seems that the classifier achieves higher accuracy than the 2D classifier with a smaller
input image size. However, this requires detailed research in subsequent works, especially
the expansion of the image database with further gestures.

4. Conclusions

The research shows that with a very limited set of sought features (in our case, specific
types of hand gestures), it is enough to use simple networks with a small number of hidden
layers. Complex networks, such as ResNet or Mobilenet, are trained on sets of images in
which many features or objects are sought, such as animals, planes, people, cars, etc. Even
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training them, with transfer learning approach, to detect new objects will not always give
the best result, and the classifier, with due to the size of these networks, it is relatively large.

For grayscale images, all networks gave relatively poor results, starting with CNN,
which had the lowest accuracy for the test set, 70.53%, ending with ResNet50, which was
81.75% accurate. It is definitely better for RGB images, where apart from the ResNet50
network, the others oscillate with an accuracy of 90% for the test set, with the best result for
the CNN network—90.53%.

Taking into account the fact, that the test difference in accuracy for the test set for
different methods is not so big, in embedded solutions for AGV the method with lower
sized classifier can be preferred.

The research results show that from the point of view of implementing gesture recogni-
tion methods in AGVs, the most promising are those using 2D RGB images and 3D imaging
and a depth map. Due to the additional information, which is the distance of the object in
3D (the person showing the gesture) from the camera, it is easier to detect the hand and
identify the gesture. In the initial stage of implementation, it will probably be necessary
to narrow down the search area to ROI, due to the potentially complex background and
proximity of other elements of the environment, i.e., objects between the person generating
the gesture and the camera installed on the AGV. The person making the gesture will have
to be in a free space—e.g., a passage in a production hall or warehouse, or make a gesture
at an appropriate, defined height.

In the case of 2D RGB images, there is still place for improvement, namely expanding
the 2D image database with a larger number of registered images within the gesture
classes. The improvement of classification accuracy can be obtained at the initial stage
by optimizing the ROI search algorithm. Currently, it is based on segmentation in the
HSV space by searching for skin areas. In the future, we intend to improve this process
by detecting body parts on the one hand—our database, as shown in the article, contains
scenes with a full human pose and environment. On the other hand, the possibility of
analyzing the scene and reducing the number of objects from outside the hand class in the
background based on the YOLO object classifier. Naturally, this will simplify the scene and
increase the chances of hand and palm area extraction.

Author Contributions: Conceptualization, S.B. and R.W.; methodology, S.B., R.W., M.K., W.P. and
K.K; software, K.K., R.M., W.P., O.S., M.S. and Ł.W.; validation, S.B., R.W. and M.K.; formal analysis,
S.B., K.K, W.P., M.S. and Ł.W.; investigation, K.K, R.M., W.P., O.S., M.S. and Ł.W.; resources, S.B., R.W.
and M.K.; writing—original draft preparation, S.B. and R.W.; writing—review and editing, S.B. and
R.W.; supervision, S.B.; funding acquisition, S.B. All authors have read and agreed to the published
version of the manuscript.

Funding: The APC was financed from the research subsidy at the Silesian University of Technology.

Data Availability Statement: Not applicable.

Acknowledgments: This research was supported by the European Union from the European Social
Fund in the framework of the project “Silesian University of Technology as a Center of Modern
Education based on research and innovation” POWR.03.05.00-00-Z098/17.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, P. A real-time hand gesture recognition and human-computer interaction system. arXiv 2017, arXiv:1704.07296.
2. Zou, H.; Zhou, Y.; Yang, J.; Jiang, H.; Xie, L.; Spanos, C.J. WiFi-enabled device-free gesture recognition for smart home automation.

In Proceedings of the IEEE 14th International Conference on Control and Automation (ICCA), Anchorage, AL, USA, 12–15 June
2018; pp. 476–481.

3. Hu, P.; Tang, C.; Yin, K.; Zhang, X. WiGR: A Practical Wi-Fi-Based Gesture Recognition System with a Lightweight Few-Shot
Network. Appl. Sci. 2021, 11, 3329. [CrossRef]

4. Suarez, J.; Murphy, R.R. Hand gesture recognition with depth images: A review. In Proceedings of the 2012 IEEE RO-MAN:
The 21st IEEE International Symposium on Robot and Human Interactive Communication, Paris, France, 9–13 September 2012;
pp. 411–417.

http://doi.org/10.3390/app11083329


Sensors 2023, 23, 3109 22 of 23

5. Tateno, S.; Zhu, Y.; Meng, F. Hand gesture recognition system for in-car device control based on infrared array sensor. In
Proceedings of the 58th Annual Conference Society of Instrument and Control Engineers of Japan (SICE), Hiroshima, Japan,
10–13 September 2019; pp. 701–706.

6. Zengeler, N.; Kopinski, T.; Handmann, U. Hand Gesture Recognition in Automotive Human–Machine Interaction Using Depth
Cameras. Sensors 2019, 19, 59. [CrossRef]

7. Zhang, B.; Yang, M.; Yuan, W.; Wang, C.; Wang, B. A Novel System for Guiding Unmanned Vehicles Based on Human Gesture
Recognition. In Proceedings of the 2020 IEEE International Conference on Real-time Computing and Robotics (RCAR), Asahikawa,
Hokkaido, Japan, 28–29 September 2020; pp. 345–350. [CrossRef]

8. Zoghlami, F.; Heinrich, H.; Schneider, G.; Hamdi, M.A. Tracking body motions in order to guide a robot using the time of flight
technology. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy, 30
September–3 October 2019; pp. 48–55.

9. Ojeda-Castello, J.J.; Capobianco-Uriarte, M.; Piedra-Fernandez, J.; Ayala, R. A Survey on Intelligent Gesture Recognition
Techniques. IEEE Access 2022, 10, 87135–87156. [CrossRef]

10. Wu, D.; Pigou, L.; Kindermans, P.-J.; Le, N.D.-H.; Shao, L.; Dambre, J.; Odobez, J.-M. Deep Dynamic Neural Networks for
Multimodal Gesture Segmentation and Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1583–1597. [CrossRef]
[PubMed]

11. Zhang, Z.; Tian, Z.; Zhou, M. HandSense: Smart multimodal hand gesture recognition based on deep neural networks. J. Ambient.
Intell. Humaniz. Comput. 2018. [CrossRef]

12. Mitra, S.; Acharya, T. Gesture Recognition: A Survey. IEEE Trans. Syst. Man Cybern.-Part C Appl. Rev. 2007, 37, 311–324. [CrossRef]
13. Ordóñez, F.J.; Roggen, D. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition.

Sensors 2016, 16, 115. [CrossRef] [PubMed]
14. Jiang, X.; Xu, K.; Sun, T. Action recognition scheme based on skeleton representation with DS-LSTM network. IEEE Trans. Circuits

Syst. Video Technol. 2019, 30, 2129–2140. [CrossRef]
15. Li, G.; Tang, H.; Sun, Y.; Kong, J.; Jiang, G.; Jiang, D.; Tao, B.; Xu, S.; Liu, H. Hand gesture recognition based on convolution neural

network. Clust. Comput. 2019, 22, 2719–2729. [CrossRef]
16. Hu, Z.; Hu, Y.; Liu, J.; Wu, B.; Han, D.; Kurfess, T. 3D separable convolutional neural network for dynamic hand gesture

recognition. Neurocomputing 2018, 318, 151–161. [CrossRef]
17. Erol, A.; Bebis, G.; Nicolescu, M.; Boyle, R.D.; Twombly, X. Vision-based hand pose estimaion: A review. Comput. Vis. Image

Underst. 2007, 108, 52–73. [CrossRef]
18. Pisharady, P.K.; Saerbeck, M. Recent methods and databases in vision-based hand gesture recognition: A review. Comput. Vis.

Image Underst. 2015, 141, 152–165. [CrossRef]
19. Triesch, J.; Malsburg, C. A system for person-independent hand posture recognition against complex backgrounds. IEEE Trans.

Pattern Anal. Mach. Intell. 2001, 23, 1449–1453. [CrossRef]
20. Pisharady, P.K.; Vadakkepat, P.; Loh, A.P. Attention based detection and recognition of hand postures against complex back-

grounds. Int. J. Comput.Vis. 2013, 101, 403–419. [CrossRef]
21. Lee, H.K.; Kim, J.K. An HMM-based threshold model approach for gesture recognition. IEEE Trans. Pattern Anal. Mach. Intell.

1999, 21, 961–973.
22. Kim, D.; Song, J.; Kim, D. Simultaneous gesture segmentation and recognition based on forward spotting accumulative HMMs.

Pattern Recognit. 2007, 40, 3012–3026. [CrossRef]
23. Shaik, K.B.; Ganesan, P.; Kalist, V.; Sathish, B.S.; Jenitha, J.M.M. Comparative Study of Skin Color Detection and Segmentation in

HSV and YCbCr Color Space. Procedia Comput. Sci. 2015, 57, 41–48. [CrossRef]
24. Neiva, D.H.; Zanchettin, C. Gesture recognition: A review focusing on sign language in a mobile context. Expert Syst. Appl. 2018,

103, 159–183. [CrossRef]
25. Srinivas, G. Gesture Recognition Using Convexity Hull Defects to Control an Industrial Robot. In Proceedings of the 3rd

International Conference on Instrumentation Control and Automation (ICA), Bali, Indonesia, 28–30 August 2013. [CrossRef]
26. Satoshi, S.; Keiichi, A. Topological structural analysis of digitized binary images by border following. Comput. Vis. Graph. Image

Process. 1985, 30, 32–46.
27. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
28. Zhou, W.; Chen, K. A lightweight hand gesture recognition in complex backgrounds. Displays 2022, 74, 102226. [CrossRef]
29. Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching

for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27
October–2 November 2019; pp. 1314–1324.

30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

31. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient CNN architecture design. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131.

32. Dadashzadeh, A.; Targhi, A.T.; Tahmasbi, M.; Mirmehdi, M. HGR-Net: A fusion network for hand gesture segmentation and
recognition. IET Comput. Vis. 2019, 13, 700–707. [CrossRef]

http://doi.org/10.3390/s19010059
http://doi.org/10.1109/RCAR49640.2020.9303046
http://doi.org/10.1109/ACCESS.2022.3199358
http://doi.org/10.1109/TPAMI.2016.2537340
http://www.ncbi.nlm.nih.gov/pubmed/26955020
http://doi.org/10.1007/s12652-018-0989-7
http://doi.org/10.1109/TSMCC.2007.893280
http://doi.org/10.3390/s16010115
http://www.ncbi.nlm.nih.gov/pubmed/26797612
http://doi.org/10.1109/TCSVT.2019.2914137
http://doi.org/10.1007/s10586-017-1435-x
http://doi.org/10.1016/j.neucom.2018.08.042
http://doi.org/10.1016/j.cviu.2006.10.012
http://doi.org/10.1016/j.cviu.2015.08.004
http://doi.org/10.1109/34.977568
http://doi.org/10.1007/s11263-012-0560-5
http://doi.org/10.1016/j.patcog.2007.02.010
http://doi.org/10.1016/j.procs.2015.07.362
http://doi.org/10.1016/j.eswa.2018.01.051
http://doi.org/10.1109/ICA.2013.6734047
http://doi.org/10.1016/j.displa.2022.102226
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1049/iet-cvi.2018.5796


Sensors 2023, 23, 3109 23 of 23

33. Nan, Y.; Ju, J.; Hua, Q.; Zhang, H.; Wang, B. A-MobileNet: An approach of facial expression recognition. Alex. Eng. J. 2022, 61,
4435–4444. [CrossRef]

34. Hussain, M.; Bird, J.J.; Faria, D.R. A Study on CNN Transfer Learning for Image Classification. In Advances in Intelligent Systems
and Computing, Proceedings of the Advances in Computational Intelligence Systems (UKCI 2018), Nottingham, UK, 5–7 September 2018;
Springer: Cham, Switzerland, 2019; Volume 840. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.aej.2021.09.066
http://doi.org/10.1007/978-3-319-97982-3_16

	Introduction 
	Materials 
	Hardware 
	Gesture Images Database 
	Software Background 

	Methods, Discussion and Results 
	2D Gesture Recognition Based on Convexity Defects 
	2D Gesture Recognition Based on CNN in AVS 
	2D Gesture Recognition Based on Customized CNN 
	Summary 

	Conclusions 
	References

