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Abstract: Mercury (Hg) has obesogenic properties. However, the associated health outcomes of
population-level mercury exposure were unclear. This study investigated the relationships between
blood mercury levels and obesity-related outcomes such as hyperlipidemia and elevated liver
enzymes. Using the second cycle of the Korean National Environmental Health Survey (n = 6454),
we performed logistic regression to examine the effects of Hg on hyperlipidemia and elevated liver
enzymes. The blood mercury levels were significantly higher in the hyperlipidemia group (n = 3699,
male: 4.03 µg/L, female: 2.83 µg/L) compared to the non-hyperlipidemia group (n = 2755, male:
3.48 µg/L, female: 2.69 µg/L), and high blood mercury levels were associated with an 11% higher
risk of hyperlipidemia. The elevated liver enzymes group had higher mean blood mercury levels
(n = 1189, male: 4.38 µg/L, female: 3.25 µg/L) than the normal group (n = 5265, male: 3.64 µg/L,
female: 2.70 µg/L), and elevated blood mercury was associated with a 35% higher risk of elevated
liver enzymes. Moreover, the effect was constant after adjusting for personal medications. These
results indicate that mercury exposure is significantly associated with hyperlipidemia and elevated
liver enzymes.

Keywords: mercury; obesogen; lipid profiles; hyperlipidemia; elevated liver enzymes

1. Introduction

Obesity is a major risk factor for several chronic diseases, including hypertension, diabetes,
and hyperlipidemia, and is a growing concern worldwide. The prevalence of metabolic syndromes
in Korea is approximately 30% due to increasing obesity [1]. A Westernized diet, lifestyle
patterns, and exposure to environmental pollutants are involved in the development of obesity.
Endocrine-disrupting chemicals such as phthalates, phenols, polychlorinated biphenyl (PCBs),
and polybrominated diphenyl ether (PBDEs) are well-known obesogens [2], and several studies
have reported that mercury (Hg) is also associated with metabolic syndromes [3,4].

According to the first cycle of the Korean National Environmental Health Survey [5], the geometric
mean (GM) of blood Hg among Koreans was 3.08 µg/L, which is high compared to the US (mean:
0.68 µg/L) [6] and Canada (mean: 0.59 µg/L) [7]. Blood Hg levels in Korea have been decreasing for the
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last ten years, but approximately 25% of the Korean population still has high levels over 5.00 µg/L,
which represents the control value for blood Hg (HBM-I) [8].

The main reason for high blood Hg levels in the Korean population is frequent seafood consumption,
due to the country’s geographical characteristics [9]. A previous study reported that methyl mercury
(MeHg) exposure is approaching the reference dose within the Korean population, which is the
allowable daily intake [10].

Exposure to Hg induces oxidative stress, lipid peroxidation, and mitochondrial dysfunction [11,12],
and γ-glutamyltransferase (GGT), a well-known biological marker of oxidative stress, is significantly
associated with blood Hg [13]. Interestingly, GGT levels may reflect insulin resistance [14] and
cardiovascular risk because of the relationship with lipoprotein cholesterol oxidation [15]. In a
cohort study from Japan, the risk of metabolic syndrome and diabetes increased with the levels of
hepatic enzymes, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), and GGT,
among the metabolic syndrome–free participants [16]. Thus, the hepatic enzymes may serve as
surrogate markers of obesity.

Several studies have investigated the associations between Hg and health, but the population-level
health effects of Hg exposure remain unclear. Therefore, we hypothesized that Hg exposure induces
obesity-related outcomes and investigated the relationships between blood Hg and hyperlipidemia and
elevated liver enzymes. We used national biomonitoring data to identify the variables that influence
blood Hg and analyzed the relationships between blood Hg and the lipid profiles and hepatic enzymes.
Finally, we assessed the effects of Hg on hyperlipidemia and elevated liver enzymes.

2. Material and Methods

2.1. Survey Data

The Korean National Environmental Health Survey (KoNEHS) is a nationwide cross-sectional
biomonitoring survey that aims to monitor the trends of environmental chemicals, including
blood Hg, and to identify major exposure sources. Approximately 2000 subjects (≥19 years) were
annually recruited via stratified multistage sampling units to represent the residential distributions
of geographical area, sex, and age. A total of 6454 participants provided blood and urine samples
and questionnaire responses, including demographic information and lifestyle. The KoNEHS was
approved by the Research Ethics Committee of the National Institute of Environmental Research
(NIER #2014-01-01-074, date of approval: 20 March 2014), Korea. Written informed consents were
obtained from all participants. Detailed study information is provided in a prior publication [17].
The present study used data from the second cycle of the KoNEHS, conducted between 2012 and 2014.

2.2. Measurement

The participant blood samples were collected in EDTA-containing tubes. After mixing, the blood
samples were aliquoted into cryo-tubes and stored at −20 ◦C. The blood chemistry markers were
measured by Seoul Clinical Laboratories (SCL, Yongin, South Korea), with a reference laboratory
service [18]. Briefly, the serum concentrations of total cholesterol, high-density lipoprotein (HDL)
cholesterol, and triglycerides (TG) were measured by an enzymatic method using auto analyzer
ADVIA 1800 (Siemens Medical Solutions, USA). Serum low-density lipoprotein (LDL) cholesterol
concentrations were calculated from Friedewald’s equation [19]. Calculated LDL values less than
zero were designated as 0 (n = 37). The hepatic enzymes (ALT, AST, and GGT) were measured on an
auto-analyzer ADVIA 1800 (Siemens Medical Solutions, Malvern, PA, USA).

Total Hg was measured by flow injection cold-vapor atomic absorption spectrometry (DMA 80,
Milestone, Bergamo, Italy) using whole blood samples. The limit of detection (LOD) for blood Hg
was 0.10 µg/L. A value below the LOD (n = 1) was included as LOD divided by the square root of 2.
External quality control was performed twice per year by the Korean Association of Quality Assurance
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for Clinical Laboratory (KSLM) and the German External Quality Assessment Scheme for analysis of
heavy metals in biological materials (G-EQUAS) [17].

2.3. Criteria for Hyperlipidemia and Definition of the Elevated Liver Enzymes

The criteria for hyperlipidemia were taken from the National Cholesterol Education
Program—Adult Treatment Panel III (NCEP-ATP III) [20]. Based on these guidelines, hyperlipidemia
was defined as lipid profiles showing high LDL (above 130 mg/dL), high total cholesterol
(above 200 mg/dL), or high triglycerides (above 150 mg/dL). Elevated liver enzymes were defined by
the reference ranges provided by SCL; ALT concentrations above 49 U/L, AST concentrations above
34 U/L, or GGT concentrations above 73 U/L (for men, above 38 U/L for women) [21].

2.4. Statistical Analyses

Subjects with missing records of blood Hg, lipid profiles, and hepatic enzymes were excluded
(n = 24). The final dataset contained 6454 personal records, and the distribution of blood Hg was
calculated using sampling weights and survey strata information. The blood Hg distribution was
right-skewed, so a log-transformation was performed to satisfy the assumptions of normality. Bivariate
analyses were initially performed to evaluate the demographic variables, including sex (male, female),
age group (19–29, 30–39, 40–49, 50–59, 60–69, and >70), BMI (underweight: <18.5, normal: 18.5–23,
overweight: 23–25, and obese: >25), smoking status (non-smoker, past-smoker, or current smoker),
alcohol consumption frequency (never, <1 time/month, 1–3 times/month, 1–2 times/week, >3 times/week,
or daily), household monthly income (<USD 1500, USD 1500–USD 3000, USD 3000–USD 5000,
USD 5000–USD 10000, and≥USD 10000), and fish consumption (rarely, 1–3 times/month, 1–3 times/week,
or 4–6 times/week). We divided the blood Hg levels into three groups based on the interquartile range,
low (blood Hg < 25th), middle (25th

≤ blood Hg < 75th), high (blood Hg ≥ 75th), and compared the
blood lipid levels and hepatic enzymes among groups. Each marker was regressed on blood Hg with
sex, age, BMI, smoking status, alcohol frequency, and income using sampling weights and survey strata
information. Analysis of variance (ANOVA) by sex and analysis of covariance (ANCOVA) with age were
used to assess the associations between blood Hg and criteria status of each clinical chemistry marker.

Logistic regression analyses were performed to examine the effect of Hg on hyperlipidemia
and elevated liver enzymes. Self-reported personal medications were considered to adjust for the
effect of medicine and individual health status. The corresponding health question was open-ended,
so we extracted information for hyperlipidemia-associated diseases by including the following terms:
‘hyperlipidemia’, ‘dyslipidemia’, ‘high blood pressure’, ‘hypertension’, and ‘diabetes’. The terms
‘fatty liver’, ‘hepatitis’, ‘liver cirrhosis’, ‘liver disease’, and ‘elevated liver enzymes’ were included to
represent personal medications for liver diseases. The final models were selected via model fit scores,
such as the Akaike information criteria (AIC) and Bayesian information criteria (BIC). The main effects
of sex, age, BMI, smoking status, alcohol frequency, and fish consumption, and the two-way interaction
of sex and alcohol frequency were included in the final model with the Hg levels. Personal medication
information was included in the logistic regression model as a covariate. Finally, the correlations
between liver enzymes and lipid profiles were analyzed across the blood Hg groups as part of the
sensitivity analysis. The significance level (alpha) was set to 0.05, and all of the statistical analyses
were performed in SAS version 9.4 (SAS Institute Inc., Cary, NC, USA, 2013).

3. Results

3.1. The Distribution of Blood Hg

The geometric mean (GM) and 95th percentile of blood Hg among all participants were 3.11 µg/L
and 9.01 µg/L, respectively. The blood Hg levels were significantly higher in males (GM = 3.70 µg/L)
than in females (GM = 2.63 µg/L; Table 1). Blood Hg levels increased until the participants were in their
60s. The blood Hg levels also increased as the BMI, alcohol frequency, and household income increased.
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Fish consumption > 4 times per week was associated with blood Hg levels that were approximately
twice as high as those who rarely ate fish (GM = 4.04 µg/L vs. GM = 2.17 µg/L). Smoking, alcohol
consumption frequency and amount, cooking types, education, marital status, parity, and menopause
were also significantly related to blood HG, but herbal medicine had no influence (Supplementary
Materials Table S1).

Table 1. Blood Hg distributions by demographic variables (µg/L).

Variables N GM 95 % Confidence Interval P75 P95 p-Value a

All 6454 3.11 (3.02, 3.20) 4.69 9.01 -

Sex <0.0001
Male 2767 3.70 (3.57, 3.84) 5.48 10.2

Female 3687 2.63 (2.54, 2.72) 3.83 7.11

Age <0.0001
19–29 536 2.37 (2.23, 2.52) 3.22 6.93
30–39 1053 3.18 (3.04, 3.33) 4.71 8.10
40–49 1224 3.58 (3.43, 3.75) 5.25 9.56
50–59 1434 3.64 (3.47, 3.82) 5.21 10.4
60–69 1326 3.23 (3.05, 3.43) 4.85 9.17
70+ 881 2.54 (2.38, 2.71) 3.86 8.40

BMI <0.0001
<18.5 159 2.13 (1.85, 2.45) 2.76 5.61

18.5 to < 23.0 2209 2.74 (2.64, 2.85) 4.08 7.61
23.0 to < 25.0 1602 3.27 (3.13, 3.41) 4.90 9.05
≥25.0 2484 3.54 (3.41, 3.68) 5.24 9.95

Smoke <0.0001
Non-smoker 4244 2.74 (2.65, 2.83) 4.03 7.62

Past 1053 3.92 (3.71, 4.14) 5.82 11.0
Current 1157 3.81 (3.64, 4.00) 5.71 10.03

Alcohol frequency <0.0001
Never 2219 2.68 (2.57, 2.79) 4.07 7.49

<1 time/month 709 2.68 (2.53, 2.84) 3.78 6.90
1–3 times/month 1033 2.94 (2.79, 3.09) 4.28 7.83
1–2 times/week 1400 3.47 (3.30, 3.64) 5.25 9.67
>3 times/week 612 4.03 (3.80, 4.27) 5.93 11.5

Daily 481 4.08 (3.77, 4.43) 5.85 13.3

Household income (USD/month) <0.0001
<1500 1792 2.76 (2.62, 2.92) 4.29 8.98

1500 to < 3000 1621 3.01 (2.84, 3.18) 4.52 8.79
3000 to < 5000 1765 3.21 (3.08, 3.35) 4.70 7.91

5000 to < 10,000 1103 3.37 (3.19, 3.56) 5.01 9.50
≥10,000 173 3.47 (3.06, 3.92) 5.19 9.97

Fish consumption frequency <0.0001
Rarely 622 2.17 (2.03, 2.32) 3.07 6.95

1–3 times/month 2030 2.88 (2.77, 2.99) 4.36 7.76
1–3 times/week 3377 3.41 (3.30, 3.53) 5.03 9.37
4–6 times/week 425 4.04 (3.68, 4.43) 6.20 11.2

Note: GM, geometric mean; P75, 75th percentile; P95, 95th percentile. a p-Value obtained from bivariate analysis
(SAS Proc SURVEYREG).

3.2. The Distribution of Lipid Profiles and Hepatic Enzymes

The blood Hg levels were categorized into three groups—low: ≤2.36 µg/L, medium:
2.36 < Hg ≤ 4.07 µg/L, and high: >4.07 µg/L. Approximately 45% of men and 24.6% of women
were in the high blood Hg group. Table 2 shows the distribution of each marker across the blood
Hg groups. The GMs of LDL, total cholesterol, and TG increased with blood Hg and was highest
in the high blood Hg group for both sexes. HDL tended to decrease with increasing blood Hg in all
populations, but the trend disappeared after stratifying by sex. The GMs of hepatic enzymes increased
with blood Hg in both sexes, and blood Hg had a significant effect on all of the markers, except TG.
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Table 2. Lipid profiles and hepatic enzymes among the blood Hg groups.

Biomarkers
(units)

Blood Hg Male Female All
p-Value b

Group a N GM (P5 P95) N GM (P5 P95) N GM (P5 P95)

LDL
(mg/dL)

Low 613 82.7 (45.3 143) 1534 89.6 (52.1 144) 2156 87.3 (48.8 143) 0.0085
Middle 895 84.5 (40.1 146) 1236 92.3 (53.8 150) 2142 88.4 (45.8 148)
High 1234 86.7 (40.1 146) 905 91.2 (50.0 152) 2156 88.2 (43.3 149)

HDL
(mg/dL)

Low 613 48.9 (33.2 73.6) 1534 56.0 (36.5 83.5) 2156 53.6 (35.0 80.6) 0.0012
Middle 895 49.6 (33.6 72.8) 1236 56.4 (37.8 85.8) 2142 52.9 (34.7 80.5)
High 1234 49.2 (33.3 72.4) 905 55.7 (37.2 84.4) 2156 51.3 (34.1 77.1)

Total
cholesterol

(mg/dL)

Low 613 171 (126 234) 1534 178 (129 240) 2156 176 (128 238) <0.0001
Middle 895 180 (129 244) 1236 183 (135 248) 2142 181 (132 246)
High 1234 184 (132 246) 905 186 (137 242) 2156 185 (134 245)

TG
(mg/dL)

Low 613 139 (49.6 370) 1534 119 (49.2 303) 2156 125 (49.4 331) 0.5822
Middle 895 160 (63.2 496) 1236 127 (49.2 365) 2142 143 (56.5 415)
High 1234 176 (72.8 461) 905 134 (53.8 393) 2156 160 (62.6 437)

ALT
(U/L)

Low 613 22.2 (10.3 62.4) 1534 16.5 (8.54 33.8) 2156 18.2 (8.99 42.7) 0.0002
Middle 895 25.5 (11.7 71.6) 1236 18.1 (9.39 38.2) 2142 21.5 (10.0 55.4)
High 1234 27.4 (12.6 69.7) 905 19.7 (9.93 45.0) 2156 24.5 (11.1 60.9)

AST
(U/L)

Low 613 24.0 (16.0 39.1) 1534 21.4 (14.1 32.9) 2156 22.2 (14.6 34.9) 0.0226
Middle 895 25.8 (16.2 45.0) 1236 21.9 (15.0 34.2) 2142 23.8 (15.3 39.0)
High 1234 26.1 (16.7 46.0) 905 23.1 (15.0 36.5) 2156 25.0 (16.0 44.0)

GGT
(U/L)

Low 613 25.7 (11.1 106) 1534 15.9 (7.93 41.7) 2156 18.6 (8.36 56.5) <0.0001
Middle 895 32.6 (12.6 132) 1236 17.8 (8.60 51.5) 2142 24.0 (9.46 88.7)
High 1234 39.2 (13.9 152) 905 19.9 (9.04 58.2) 2156 31.1 (10.7 134)

Note: GM, geometric mean; P5, 5th percentile; P95, 95th percentile. a Blood Hg was categorized into three groups - low: ≤ 2.36 µg/L, middle: 2.36 < Hg ≤ 4.07 µg/L, or high: > 4.07 µg/L. b

p-Values are the significance of blood Hg levels for each clinical marker, and the regression model included sex, age, BMI, smoking frequency, alcohol frequency, and income.
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3.3. Associations between the Blood Hg Levels and Lipid Profiles

Table 3 shows the GMs of the blood Hg levels and their associations with the lipid profiles. Blood
Hg increased until LDL levels reached ‘Borderline high’. Total cholesterol consistently increased with
blood Hg in females, but the blood Hg levels decreased with a ‘High’ total cholesterol classification in
males. The blood Hg levels significantly differed for each lipid profile after being adjusted for sex.
However, the significant difference for HDL disappeared after considering age. According to the
definitions for hyperlipidemia (LDL ≥ 130 mg/dL, total cholesterol ≥ 200 mg/dL, or TG ≥ 150 mg/dL),
61.8% of males (n = 1710) and 53.9% of females (n = 1989) were hyperlipidemia. The blood Hg levels
were significantly higher in the hyperlipidemia group (male: 4.03 µg/L, female: 2.83 µg/L) compared
to the non-hyperlipidemia group (male: 3.48 µg/L, female: 2.69 µg/L).

Table 3. The geometric means of blood Hg and the associations with hyperlipidemia (unit: µg/L).

Lipid Profiles Criteria
Male Female

p-Value a p-Value b

N GM N GM

LDL <100 Optimal 1640 3.70 1982 2.70 0.0009 0.1054
100–129 Above optimal 791 3.85 1161 2.84
130–159 Borderline high 285 4.31 434 2.80
160–189 High 40 4.19 95 3.13
≥190 Very high 11 4.05 15 2.79

HDL <40 Low 552 3.53 321 2.59 0.0004 0.1730
40–60 Optimal 1658 3.87 2023 2.77
≥60 High 557 3.92 1343 2.82

Total <200 Desirable 1955 3.64 2504 2.71 <0.0001 <0.0001
cholesterol 200–239 Borderline high 654 4.28 909 2.86

≥240 High 158 4.13 274 2.95

TG <150 Normal 1286 3.59 2235 2.73 <0.0001 <0.0001
150–199 Borderline high 519 4.01 599 2.71
200–499 High 854 4.00 794 2.94
≥500 Very high 107 4.02 58 2.63

Hyperlipidemia c No 1057 3.48 1698 2.69 <0.0001 <0.0001
Yes 1710 4.03 1989 2.83

Note: GM, geometric mean; LDL, low-density lipoprotein; HDL, high-density lipoprotein; TG, triglyceride. a p-Value
obtained using two-way ANOVA of the lipid profiles and sex. b p-Value obtained by ANCOVA adjusted for age.
c Hyperlipidemia was identified according to the following criteria - LDL ≥ 130, total cholesterol ≥ 200, or TG ≥ 150.

3.4. Association between Blood Hg and the Hepatic Enzymes

The blood Hg levels were higher in participants who fell outside of the reference range for the
hepatic enzymes (Table 4). The levels differed significantly by sex, and the significance remained after
adjustment for age. According to the criteria for elevated liver enzymes, 24.3% of males (n = 671;
ALT > 49 U/L, AST ≥ 34 U/L, or GGT ≥ 73) and 14.0 % of females (n = 518; ALT > 49 U/L, AST ≥ 34 U/L,
or GGT ≥ 38) had elevated liver enzymes. The blood Hg levels were significantly higher in the elevated
liver enzymes group (male: 4.36 µg/L, female: 3.25 µg/L) compared to the normal liver enzymes group
(male: 3.64 µg/L, female: 2.70 µg/L).
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Table 4. The geometric means of blood Hg and the associations with elevated liver enzymes (unit: µg/L).

Hepatic
Enzymes

Male Female
p-Value a p-Value b

Criteria N GM Criteria N GM

ALT
≤49 2513 3.78 ≤49 3583 2.75 <0.0001 <0.0001
>49 254 4.14 >49 104 3.56

AST
<34 2373 3.76 <34 3446 2.74 <0.0001 <0.0001
≥34 394 4.14 ≥34 241 3.22

GGT
<73 2361 3.67 <38 3305 2.71 <0.0001 <0.0001
≥73 406 4.73 ≥38 382 3.30

Elevated No 2096 3.64 No 3169 2.70 <0.0001 <0.0001
Liver enzymes c Yes 671 4.38 Yes 518 3.25

Note: GM, geometric mean; a p-Value obtained by two-way ANOVA of the hepatic enzymes and sex. b p-Value
obtained by ANCOVA adjusted for age. c Elevated liver enzymes were identified according to the following criteria
- ALT > 49, AST ≥ 34, or GGT ≥ 73 for males, and ALT > 49, AST ≥ 34, or GGT ≥ 38 for females.

3.5. The Risks of Hyperlipidemia and Elevated Liver Enzymes

Figure 1 shows the number of participants reporting personal medications; 317 (4.91%) reported
hyperlipidemia, 1175 (18.2%) reported hypertension, and 539 (8.35%) reported diabetes. One hundred
and forty-four subjects took medication for hyperlipidemia and hypertension, both. And 49 subjects
indicated that they took medication for hyperlipidemia, hypertension, and diabetes. Increased blood
Hg was associated with a 1.105-fold increase in the odds of hyperlipidemia (95% CI: 1.013, 1.208)
(Table 5). Thus, an increase of 1 µg/L blood Hg was associated with an 11 % risk of hyperlipidemia.
The significance of the odds ratio (OR) estimates remained even after adjustment for personal
medications related to hyperlipidemia. For those participants reporting hyperlipidemia and diabetes,
the blood Hg GM was 3.60 µg/L, and blood Hg was associated with a 1.105-fold increase in the odds
of hyperlipidemia (95% CI: 1.013, 1.207). This remained after adjusting for personal medications
(hyperlipidemia and diabetes).Toxics 2020, 8, x FOR PEER REVIEW 8 of 13 
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Figure 1. Frequency of the reported personal medications. Hyperlipidemia-associated diseases
were extracted with the terms ‘hyperlipidemia’, ‘dyslipidemia’, ‘high blood pressure’, ‘hypertension’,
and ‘diabetes’. Liver diseases were categorized with the terms ‘fatty liver’, ‘hepatitis’, ‘liver cirrhosis’,
‘liver disease’, and ‘elevated liver enzymes’.
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Table 5. The relationships between blood Hg and hyperlipidemia and elevated liver enzymes.

Disease Personal Medication a GM OR 95 % CI p-Value b

Hyperlipidemia (n = 3699)

Unadjusted 3.33 1.105 (1.013, 1.206) 0.0252
Hyperlipidemia 3.12 1.104 (1.012, 1.206) 0.0266

Hyperlipidemia and
Hypertension 2.95 1.104 (1.011, 1.205) 0.0275

Hyperlipidemia and Diabetes 3.60 1.105 (1.013, 1.207) 0.0250
Hyperlipidemia and

Hypertension and Diabetes 3.16 1.104 (1.012, 1.206) 0.0263

One of the Hyperlipidemia,
Hypertension, Diabetes 3.19 1.100 (1.007, 1.201) 0.0335

Elevated liver enzymes (n = 1189)

Unadjusted 3.84 1.345 (1.206, 1.500) <0.0001
Liver disease 3.24 1.350 (1.210, 1.506) <0.0001

Note: GM, geometric mean; OR, odds ratio; 95% CI, 95% confidence interval. a Personal medication information
was included in the model from the self-reported response. b p-Value shows the significance of the odds ratio of
blood Hg from logistic regression. The unadjusted model included the main effects of sex, age, BMI, smoke, alcohol
frequency, fish consumption, and the two-way interaction of sex and alcohol frequency. Each personal medication
information was included in the unadjusted model.

Sixty-three (0.98%) participants reported fatty liver, hepatitis, cirrhosis, liver disease, increased
hepatic enzymes, or other liver-related diseases. Increased blood Hg induced a 1.345-fold increase in
the odds of elevated liver enzymes (95% CI: 1.206, 1.500). Thus, high blood Hg induced a 35% greater
odds of elevated liver enzymes. After adjustment for personal medications related to liver diseases,
the OR showed a 1.350-fold risk of elevated liver enzymes.

3.6. Relationships between the Lipid Profiles and Hepatic Enzymes across Blood Hg Groups

The correlations between the lipid profiles and hepatic enzymes in each blood Hg group are
presented in Figure 2. In general, the correlation coefficients showed no associations between the
hepatic enzymes and lipid profiles, except for TG. The correlation coefficients between log TG and log
hepatic enzymes were 0.28 for ALT, 0.14 for AST, and 0.35 for GGT, and did not differ across blood
Hg levels.
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Figure 2. Correlations between the lipid profiles and hepatic enzymes in each blood Hg group. The x-axes represent the natural log scale of hepatic enzymes, and the
y-axes represent the lipid profiles including natural log scale of TG. The black, blue, and orange colors indicate low, middle, and high blood Hg levels, respectively. ‘ρ’
represents the correlation coefficient, and * indicates the significance of the correlation coefficient (p < 0.05). BHg on the left side of the figure indicates blood Hg.
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4. Discussion

This study used the second cycle of the KoNEHS (2012–2014) to examine the obesogenic properties
of blood Hg as it relates to hyperlipidemia and elevated liver enzymes. The GM of blood Hg was high,
up to 3.11 µg/L, and 57.3% of the survey population had hyperlipidemia. For participants aged 40
and above, 55–66% had hyperlipidemia, whereas 38% of the participants in their 20s and 50 % of the
participants in their 30s had hyperlipidemia. The mean BMI of the hyperlipidemia group was 25.0
compared to 23.3 in the non-hyperlipidemia group. Moreover, the mean BMI was 24.0 in the normal
group and 25.7 in the elevated liver enzymes group.

Approximately 32.1% of males (n = 889) and 15.4 % of females (n = 566) had blood Hg levels over
5.00 µg/L, which is the acceptable level for no adverse effects (HBM-I) [22]. These results are consistent
with the first cycle of the KoNEHS (2009–2011), where 33.4% of males and 16.1% of females exceeded
the HBM-I [10]. Many studies have investigated the high blood Hg levels in the Korean population.
Some reported significant associations between Hg, high BMI, and metabolic syndromes [23,24],
while others reported no associations or even negative associations [25–27]. Metabolic syndromes are
associated with many factors, including dietary habits and living patterns, and some factors may have
a stronger influence than Hg exposure. For example, alcohol consumption is a major risk factor for
metabolic syndromes, and raw-fish and clam soup are popular menu items that are often consumed
with alcohol in Korea. Thus, blood Hg is also significantly associated with drinking alcohol, and the
frequency of alcohol intake should be accounted for when evaluating the relationship between Hg
exposure and metabolic syndromes in Korea. In our study, 62.3% of males and 20.9% of females drank
alcohol more than once a week. Therefore, we also included the interaction of alcohol consumption
frequency and sex (p < 0.0001 for hyperlipidemia) when examining the obesogenic effects of Hg.

It is also possible that individual treatments for obesity attenuate the effects of Hg exposure.
Those diagnosed with metabolic syndromes may actively control their lipid profiles and insulin
resistance. Therefore, treatments including personal medications, could affect the associated markers
and the diagnoses of metabolic syndromes. In the Table 5, we showed only the ORs of blood Hg after
each medication. And the same analyses provided that taking personal medications for hyperlipidemia
reduced the odds of hyperlipidemia by 29% (OR: 0.710, 95% CI: 0.559, 0.902), and taking personal
medications for hyperlipidemia, hypertension, and diabetes was associated with 59% lower odds of
hyperlipidemia (OR: 0.410, 95% CI: 0.029, 0.733). Nonetheless, Hg significantly affected to the odds of
having hyperlipidemia.

Among the different forms of Hg, alkyl Hg is more lipid soluble and passes readily through
biological membranes [28]. Especially, methylmercury (MeHg) among the alkyl Hg, is the dominant
form in human blood [29] because the primary exposure source for the general population is fish
consumption. MeHg exposure inhibits paraoxonase-1, which prevents the atherosclerotic process
by metabolizing toxic oxidized lipids associated with LDL and HDL [30]. Therefore, Hg induces
oxidative stress and disrupts gluconeogenesis, resulting in systemic inflammation that affects the
accumulation of abnormal adipocytes [23,31]. Our results showed that the levels of blood Hg were
significantly higher (p <.0001) in the hyperlipidemia group (male: 4.03 µg/L, female: 2.83 µg/L) than
in the non-hyperlipidemia group (male: 3.48 µg/L, female: 2.69 µg/L), and that an increase of 1 µg/L
blood Hg was associated with an 11% increase in the odds of hyperlipidemia, even after adjustment
for personal medications.

Though bile is the major route of excretion, Hg can be reabsorbed into the blood via the
enterohepatic system [12,32]. In particular, methylated Hg makes up most of the mercury in humans and
can easily bind to cysteine residues [33], such as glutathione, and penetrate the cellular membranes [34].
The MeHg-cysteine complex can then enter the bile tract and be hydrolyzed by GGT and other
dipeptides [13,33]. As a result, Hg induces hydrogen peroxide, depletes glutathione, and increases
GGT levels. The association between Hg exposure and GGT, a marker of oxidative stress, is supported
by several animal and human studies [35–37]. Our study also showed that the levels of blood Hg
were significantly higher (p < 0.0001) in the elevated liver enzymes group (male: 4.36 µg/L, female:
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3.25 µg/L) compared to the normal group (male: 3.64 µg/L, female: 2.70 µg/L). After adjustment for
personal medications, blood Hg was associated with 35% higher odds of elevated liver enzymes.

This study has several limitations and strengths. The study design is a cross-sectional survey,
and each measurement was analyzed from an individual spot sample. However, the dataset is
representative of the entire Korean population. According to the previous studies, the intra-class
correlation for blood Hg was 0.67~0.71 [38]. Moreover, diet is the major source of Hg, so we anticipate
that the individual blood Hg levels would be constant. Secondly, individual health status or medical
history data were unavailable. Instead, personal medication data were adjusted for the obesogenic
effects of Hg. We also performed correlation analyses between the lipid profiles and hepatic enzymes
to avoid overestimating the Hg effects. There were no associations between the lipid profiles and
hepatic enzymes, nor were there any differences across blood Hg groups (Figure 2). This indicates that
the effects of blood Hg on the lipid profiles were irrelevant to the hepatic enzymes and that the hepatic
enzymes were not affected by the lipid profiles. Thus, correlation analyses demonstrate the significant
effects of blood Hg on hyperlipidemia and elevated liver enzymes.

5. Conclusions

In this study, we investigated the obesogenic properties of blood Hg using lipid profiles and
hepatic enzymes. Higher blood Hg levels were observed in the hyperlipidemia group than in the
non-hyperlipidemia group, and the elevated liver enzymes group had higher mean blood Hg levels
than the normal group. Blood Hg was associated with higher odds of hyperlipidemia and elevated
liver enzymes, even after adjusting for personal medications. These results indicate that Hg exposure
is associated with obesity-related outcomes and that other health effects due to low-level Hg exposure
should be investigated.

Supplementary Materials: The following are available online at http://www.mdpi.com/2305-6304/8/3/47/s1,
Table S1: Blood Hg distributions by influential variables.
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