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Abstract: Hymenoptera venoms constitute an interesting source of natural toxins that may lead
to the development of novel therapeutic agents. The present study investigated the enzymatic
and biological characteristics of the crude venom of the ant Odontomachus bauri. Its crude venom
presents several protein bands, with higher staining for six proteins with gelatinolytic activity
(17, 20, 26, 29, 43 and 48 kDa). The crude venom showed high proteolytic activity on azocasein
at optimal pH 8.0 and 37 ˝C. In the presence of protease inhibitors as aprotinin, leupeptin and
EDTA, the azocaseinolytic activity was reduced by 45%, 29% and 9%, respectively, suggesting that
the enzymes present in the crude venom belong to the three classes of proteases, with the serine
proteases in greater intensity. The crude venom degraded the fibrinogen α-chain faster than the
β-chain, while the fibrinogen γ-chain remained unchanged. In biological assays, O. bauri venom
showed hemolytic and coagulant activity in vitro, and defibrinating activity in vivo. In addition,
the venom showed antimicrobial activity against Staphylococcus aureus and Escherichia coli as well
as antiparasitic activity on Toxoplasma gondii infection in vitro. In that sense, this study sheds
perspectives for pharmacological applications of O. bauri venom enzymes.
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1. Introduction

Ants of the genus Odontomachus are widely distributed in tropical and warm countries, being
especially abundant in the neotropics [1,2]. Ants of the species O. bauri usually build their nests
in the ground, protecting them from direct sunlight and choosing the place to build them far from
environmental disturbance. When nests are disturbed, these ants attack their aggressors and their
bites cause immediate acute pain and a burning sensation [3].
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Also known as trap jaw ants, their movements are extremely fast and produce remarkably
predatory attacks [4,5]. During predatory strikes, O. bauri mandibles close at a speed ranging from 35
to 64 m/s, far surpassing the speeds of other ballistic predatory appendages already documented in
the animal kingdom [5], including the discharge of the cnidarian nematocyst [6].

In addition, these ants have the ability to disable prey because their mandibles were
evolutionarily adapted for locomotion. O. bauri specimens use their claws to perform some jumps,
which have the assumed forms of “bouncer defense” [7].

The venom of O. bauri and other insects of the order Hymenoptera, is produced in venom glands
(structure located in the last segment of the body), wich are formed from modified accessory glands
of the female reproductive system [8–10]. Ant species of the genus Odontomachus are particularly
aggressive and their venoms have high toxic activity [3]. These ants produce various chemicals that
are used for attack, defense and communication through volatile components in prey capture, protect
the nest from predators and prevent the development of diseases in their colonies [11]. It is known
that the venom comprises organic molecules such as proteins, lipids, vasoactive amines and a wide
variety of different enzymes, such as phospholipases and hyaluronidases [12–17]. These substances
are responsible for the toxicity of this venom and several of these components have pharmacological
and therapeutic properties [18]. The mapping recent of the Tetramorium bicarinatum ant crude venom
demonstrated the presence of different proteins, including toxin (11%) and non-toxin (3%) class
proteins. With regard to toxin class, the authors observed a high diversification with the major
part consistent with the classical hymenopteran venom protein signature represented by venom
allergen (33.3%), followed by a diverse toxin-expression profile including several distinct isoforms of
phospholipase A1 and A2, venom serine protease, hyaluronidase, protease inhibitor and secapin [19].

Considering the essential role of insect proteases for survival and death of living organisms,
along with the increasing importance as potential therapeutic targets, the aim of the present work was
to investigate the biological and enzymatic characteristics of proteases present in the crude venom of
the ant O. bauri.

2. Results

2.1. Electrophoretic Profile

The O. bauri crude venom samples from several extractions had a mean protein concentration of
715.0 µg/mL. The SDS-PAGE profile of O. bauri crude venom showed several peptide components,
with relative molecular masses (Mr) ranging from 18 to 160 kDa when analyzed under nonreducing
conditions, with more intense staining for bands above 29 kDa (Figure 1, lane 1). Under reducing
conditions, the electrophoretic profile was changed, showing a wider Mr range, from 24 to 160 kDa,
(Figure 1, lane 2).
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were performed at 37 °C for one hour. 

Concerning the effect of inhibitors, the proteolytic activity was significantly reduced after  

pre-incubation with aprotinin, leupeptin and EDTA. However, aprotinin allowed the highest reduction 

of the activity (45%) when compared to other inhibitors as leupeptin (29%) and EDTA (9%) (Figure 2C). 

Figure 1. Electrophoretic profile of the O. bauri venom. Silver stained SDS-polyacrylamide gel at 14%.
Venom samples of O. bauri (15 µg) were analyzed in non-reducing and reducing (2-mercaptoethanol)
conditions. MrS: molecular size markers; lane 1, crude venom of O. bauri in non-reducing conditions;
lane 2, crude venom of O. bauri in reducing conditions.
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2.2. Enzymatic Activities

2.2.1. Azocaseinolytic Activity

The proteolytic activity of O. bauri crude venom on azocasein was determined as 102 U/µg.
When evaluating the effect at various pH the venom presented higher and optimal activity in pH
8.0, with a significant loss in acidic (4.0; 5.0 and 6.0) and basic (11.0) pH (Figure 2A). The effect
of temperature in the proteolytic activity showed high activities between 25 ˝C and 37 ˝C, with
optimal activity at 37 ˝C and significant reduction at higher temperatures (Figure 2B). In this way,
the following experiments were performed at 37 ˝C for one hour.

Concerning the effect of inhibitors, the proteolytic activity was significantly reduced after
pre-incubation with aprotinin, leupeptin and EDTA. However, aprotinin allowed the highest
reduction of the activity (45%) when compared to other inhibitors as leupeptin (29%) and EDTA (9%)
(Figure 2C). In contrast, the effect of ions as Ca2+, Mg2+, Zn2+ and Cu2+ did not show any change of
the proteolytic activity (data not shown).
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Figure 2. Influence of pH, temperature and inhibitors on the proteolytic activity of the O. bauri
crude venom on azocasein. (A) The crude extract (1 µg) was preincubated at various ranges of pH;
(B) different temperature or (C) with different inhibitors (5 mM) for 30 min and added to azocasein
(1 mg/mL) for 60 min at 37 ˝C. The azocaseinolytic activity was assayed at 405 nm and expressed
in U/µg. Results are reported as mean ˘ standard deviation. *** Statistically significant differences
in comparison to other ranges of pH or temperature (p < 0.0001). In (C), different letters indicate
statistically significant differences among the inhibitors (p < 0.05) (ANOVA and Bonferroni multiple
comparison post-test).

2.2.2. Gelatin Zymography

The Zymogram method was used to determine the nature and the molecular weight of the
gelatinolytic enzyme present in the venom of O. bauri. Figure 3 shows that the crude venom presented
six proteins having gelatinolytic activity, with apparent molecular masses of 17, 20, 26, 29, 43 and
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48 kDa (Figure 3A). When the effect of different buffers and pH (4.0–10.0) in the gelatinolytic activity
was evaluated, we observed increased renaturation of proteases with buffer containing CaCl2 and
NaCl in the presence of the chemicals CHAPS and EDTA (Figure 3B) and with optimal pH of 8.0
(Figure 3C).Toxins 2015, 7 5 
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Figure 3. Acrylamide-gelatin gel zymography of the O. bauri venom. (A) Crude venom samples
were analyzed in non-reducing conditions. MrS: molecular size markers; (B) Effect of different buffers
(50 mM Tris-HCl; 50 mM Tris-HCl and 10 mM CaCl2; 50 mM Tris-HCl, 1 mM CaCl2 and 1 mM SO4Zn;
50 mM Tris-HCl, 150 mM NaCl, 10 mM CaCl2, 0.002%CHAPS and 10 mM EDTA) on the gelatin
proteolysis activity of the O. bauri venom; (C) Effect of different ranges of pH (4 to 10) on the gelatin
proteolysis activity of the O. bauri venom. (*) optimal buffer and pH.
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Figure 4. The temperature effect on the gelatin proteolysis activity of the O. bauri venom and
enzyme stability. (A) Temperature-dependent gelatin zymography. Crude venom samples (5 µg) were
incubated at different temperatures for 30 min. MrS: molecular size markers; (*) optimal temperature
for enzymatic activity; (B) Enzyme stability. Crude venom samples were incubated at 4 ˝C in intervals
from 2 to 20 days and applied to the gel of gelatinase activity.
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Temperature was also critical for gelatin proteolysis induced by the O. bauri crude venom, as
we demonstrate that its activity was maintained between 25 ˝C and 37 ˝C after 30 min of reaction.
However, this activity was impaired when the temperature increased above 56 ˝C (Figure 4A).
Enzyme stability was also evaluated, and showed that the O. bauri venom was constant until the
20th day of incubation at 4 ˝C (Figure 4B).

2.2.3. Fibrinogenolytic Activity

Crude venom of O. bauri showed a time-dependent fibrinogenolytic activity. The enzymes
completely degraded bovine fibrinogen α-chain at a concentration of 5 µg and with 30 min of
incubation. However, degradation of fibrinogen β-chain was observed with longer incubation time
(720 min) and on the other hand, the enzymes did not showed any activity over fibrinogen γ-chain
(Figure 5).
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Figure 5. Proteolysis of bovine fibrinogen by the O. bauri crude venom. Fibrinogen was incubated or
not with 5 µg of the crude venom of O. bauri at 37 ˝C for 0, 30, 60, 120, 720 (12 h) and 1440 (24 h) min
and then analyzed on SDS-PAGE (14%). MrS: molecular size markers; bovine fibrinogen chains (α, β,
and γ) are shown on the left.

2.3. Biological Activities

2.3.1. Hemolytic Activity

The hemolytic activity of O. bauri crude venom was verified in different concentrations, reaching
a maximal hemolytic activity (around 100% lysis) from the concentration from 60 to 180 µg/mL
(p < 0.01) (Figure 6A).

2.3.2. Cell Viability Assay

Viability of HeLa cells and murine bone marrow-derived macrophages (BMDM) in the presence
of different concentrations of O. bauri crude venom (Figure 6B) was above 63% and 85%, respectively,
even when the highest concentrations (30 and 60 µg/mL) were used.
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Figure 6. Hemolytic activity and in vitro cytotoxicity. (A) Red blood cells were incubated with different
concentrations (0.06 to 32 µg/mL) of the crude venom or 1% (v/v) Triton X-100 (total lysis) or in
the presence of 0.9% NaCl (spontaneous lysis). Absorbance was measured at 540 nm and results
(mean ˘ SD) are reported as percentage of hemolysis in relation to total lysis. *** p < 0.0001 in relation
to NaCl control (ANOVA and Dunett post-test); (B) HeLa cells and murine bone-marrow-derived
macrophages were separately cultured in 96-well plates in the absence (control) or presence of
different concentrations of the O. bauri crude venom (0.03, 0.1, 0.3, 1, 3, 10, 30, 60, 90 and 180 µg/mL)
for 24 h. The results were expressed as the percentage of viable cells in relation to the control.

2.3.3. Hemorrhagic and Coagulant Activities

The crude extract of O. bauri was also evaluated for hemorrhagic and coagulant activities.
There was no formation of minimum hemorrhagic lesion (above 10 mm of diameter) in Swiss mice
inoculated intradermally with the crude venom, even using high concentration (50 µg). However, the
O. bauri venom was able to coagulate bovine plasma in about 15 sec when compared to the positive
control containing 0.2 M CaCl2 (coagulation in about 2 min) (data not shown).

2.3.4. Defibrinating Activity

Crude venom of O. bauri caused defibrinogenation when administered intraperitoneally to mice,
making the plasma uncoagulable. Animals treated with the venom promoted blood clotting after
4.3 min while the control animals had average clotting time of 1.6 min (p < 0.01) (data not shown).

2.3.5. Antimicrobial Activity

The antimicrobial activity of the O. bauri crude venom was also examined and the results were
measured by the zones of bacterial growth inhibition around each of the disks, comparing with
positive controls. O. bauri crude venom presented antimicrobial activity against both Gram-negative
(E. coli) and Gram-positive (S. aureus) bacteria in the concentration of 15 µg/disk, with inhibition of
bacterial growth in 62.5% and 72.7%, respectively, when compared to positive controls (Table 1).

Table 1. Antimicrobial activities of the Odontomachus bauri crude venom by using the agar
diffusion technique.

O. bauri Venom Concentration (µg) Zones of Growth Inhibition, in mm (% Inhibition)
Escherichia coli Staphylococcus aureus

15 15 (62.5) 16 (72.7)
10 12 (50.0) 14 (63.6)
5 11 (45.8) 11 (50.0)

2.5 0 0
1.25 0 0
0.6 0 0
0.3 0 0

Positive control * 24 22

* Oxacylin (S. aureus) and Ampicylin (E. coli).
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2.3.6. Antiparasitic Activity

Effect of the O. bauri crude venom on T. gondii infection and replication in HeLa cells was
verified and shown in Figure 7. The pretreatment of T. gondii tachyzoites with O. bauri venom
before infection of HeLa cells showed a dose-response inhibitory curve that reached up to 83% of
inhibition and showed an IC50 of 12.2 µg/mL for the infection index (Figure 7A). Concerning the
inhibition of intracellular parasite replication, the pretreatment of T. gondii tachyzoites with O. bauri
before infection of HeLa cells showed a dose-dependent inhibition, reaching rates of 68% and IC50 of
35.1 µg/mL (Figure 7B).
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Figure 7. Effect of pretreatment of T. gondii tachyzoites with O. bauri crude venom in different
concentrations (0.3, 1, 3, 10, 30 and 60 µg/mL) or with medium alone (control) (A) on T. gondii infection
and (B) intracellular replication in HeLa cells. Results are expressed as mean (box) and standard
deviation of the percentages of inhibition of infection and intracellular replication related to controls.
Dotted lines show the inhibitory concentration of 50% (IC50).

3. Discussion

Hymenoptera venoms constitute a number of pharmacologically active biomolecules, from
which the most common components are low molecular weight proteins recognized as important
allergens and resulting in an IgE-mediated reaction [20–22]. The discovery of such natural toxins may
lead to the identification of model compounds for the development of novel therapeutic agents [23].
In that sense, we evaluated the role of the crude venom of the ant O. bauri, concerning their biological
and enzymatic characteristics.

First, the electrophoretic profile of the O. bauri crude venom revealed several peptide bands
between 18 and 160 kDa. Insect venoms contain numerous proteins with or without enzymatic
activity, and usually have abundant protein profiles. Previous studies reported that crude venoms
of other species of ants, such as Solenopsis invicta and Myrmecia pilosula, also exhibited an extensive
electrophoretic profile with bands ranging from 10 to 232 kDa [10,24,25].

Second, the effect of pH on the proteolytic activity of the crude venom on azocasein substrate
was evaluated, showing an optimal activity at pH 8.0. Similar results were found in other species of
Hymenoptera. Whitwort et al. [26] found an optimum pH of 8.0 for a protease isolated from the larvae
of ant Solenopsis invicta, and observed ability of gelatin and azocasein degradation by the enzymes
of the venom. The evaluation of the effect of temperature on the gelatin proteolysis activity of the
crude venom showed high activities between 25 ˝C and 37 ˝C, optimal activity at 37 ˝C and impaired
activity above 56 ˝C. Qiu et al. [27] reported optimum temperature at 30 ˝C for a serine protease
isolated from the venom of bee Bombus terrestris. Above this temperature the enzyme activity declined
sharply, because high temperatures can cause protein denaturation [28].
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The enzymatic activity of the O. bauri crude venom in the presence of different protease
inhibitors (EDTA, leupeptin, and aprotinin) showed significant reduction under effect of these
inhibitors, particularly aprotinin, suggesting that the crude venom presents serine proteases in greater
intensity or alternatively, this could also be indicative of potent proteolytic activity of the serine
proteases. According to Bouzid et al. [29] some proteins/enzymes present in the venom of ant
Tetramorium bicarinatum are components such as sialidase, prophenoloxidase and serine protease.
Snake venom proteolytic enzymes are generally composed by two major groups: serine proteases
and metalloproteases. Recent work demonstrated that the proteolytic activity of serine proteases
Da-36 of the Deinagkistrodon acutus snake venom was strongly reduced by the inhibitor PMSF and
moderately affected by benzamidine and aprotinim [30].

The crude venom of O. bauri also presented gelatinolytic activity as determined by the zymogram
method, showing proteins with apparent molecular masses ranging from 17 to 48 kDa. Assays of
the effect of different buffers and pH in the gelatinolytic activity showed increased renaturation of
proteases with the use of buffers containing CaCl2 and NaCl in the presence of CHAPS and EDTA
and optimal pH at 8.0. Previous studies reported that the detergent CHAPS and the ionic strength
generated by NaCl can modulate the activity and stability of some proteins [31].

The fibrinogenolytic activity assay showed that the enzymes of the O. bauri crude venom
were able to degrade the fibrinogen α-chain and β-chain, while the fibrinogen γ-chain remained
unchanged, suggesting that these enzymes may be grouped as α and β class fibrinogenases.
Similar results demonstrated that serine protease isoenzymes purified of the Daboia russelii russelii
snake venom preferentially cleaved α-chain of fibrinogen with a lower activity towards fibrinogen
β-chain [32].

Concerning the biological activities, the crude venom of O. bauri showed cytotoxic effects for
HeLa cells and BMDM by MTT assays and maximal hemolytic activity, only when administered in
high concentration (60 µg/mL). The ability to cause lyses and hemolysis appears to be physiologically
important, suggesting that the enzymes present in the venom interact with cell membranes and cause
disorder in their organization, leading to rupture [33]. Venom of some ants of the subfamily Ponerinae
such as Dinoponera grandis, Platythyrea. cribinodis, araponeractatomma and Odontomachus hematodus
exhibit hemolytic activity; however, this activity is low compared to other Hymenoptera venoms,
such as those of the social wasps [34,35].

When studying the hemorrhagic activity of the O. bauri crude venom, the enzymes were not
able to degrade proteins from extracellular matrix of basal endothelial cells and consequently induce
hemorrhagic lesions. The absence of hemorrhagic activity was verified in venoms of other ant species,
such as Pogonomyrmex barbatus and Paraponera clavata and wasps, such as Vespula pensylvanica and
Polystes flavus [36]. On the other hand, the crude venom of O. bauri showed coagulant activity
in vitro and defibrinating activity in vivo, allowing future studies on thrombolytic diseases. Enzymes
with anticoagulant properties have been described for some ant venoms, such as Pogonomyrmex
barbatus, wasps as Vespula pensylvanica, Polystes flavus [36] and Vespa magnifica [37] as well as snakes
like Bothrops [38]. Serine proteases generally cause defibrinating activity in vivo, as observed in the
Bothrops asper snake venom, but also are able of promote blood clotting in vitro [39].

The O. bauri crude venom showed antimicrobial activity against S. aureus and E. coli, supporting
the biological activity of its enzymatic compounds. Recent studies have demonstrated that ant
Myrmecia pilosula peptides exhibited moderate antimicrobial activity against Escherichia coli and
Staphylococcus aureus [10]. The antimicrobial activity of mastoparans, a family of small peptides
identified from the venom of hymenopteroid insects, has been reported [40], due to interaction
between the positively and negatively charged microbial membranes. This is the first report of the
activity of the O. bauri venom against both Gram-positive and Gram-negative bacteria, although the
actual antimicrobial mechanism is still unclear.

Finally, the O. bauri venom also showed antiparasitic activity on T. gondii infection in vitro. The
pretreatment of T. gondii tachyzoites with the venom before infection of HeLa cells was able to control
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the infection, as demonstrated by dose-dependent inhibition curves and considerably low IC50

values. Similar effect was observed concerning the dose-dependent inhibition of parasite intracellular
replication. These findings indicate that the O. bauri crude venom showed to be effective when tested
directly against the parasite, with more reduction in the infection index than the parasite replication.
A recent study reported that Bungarus caeruleus snake venom (BCV) possessed anti-leishmanial
activity against promastigotes and amastigotes of Leishmania donovani, with BCV IC50 values of
14.5 µg/mL and 11.2 µg/mL, respectively [41].

4. Experimental Section

4.1. Animals

Male Swiss mice (18–22 g) were kept in the Bioterism Center and Animal Experimentation,
Federal University of Uberlândia, MG, Brazil. All procedures were conducted according to
guidelines for animal ethics and the study received approval of the Ethics Committee for Animal
Experimentation of the institution (protocol number 059/14).

4.2. Crude Venom

The ants (O. bauri) were collected in Uberlândia city, Minas Gerais state, Brazil, and immediately
frozen and stored at ´20 ˝C. The venom gland of O. bauri was obtained by removing the sting
apparatus with an entomological forceps, grabbing the last segment of the abdomen and detaching
it, along with the sting apparatus. The venom samples were extracted from a quantity of 10 ants,
solubilized with physiological saline solution (0.9% NaCl, Sigma-Aldrich, St. Louis, MO, USA) and
centrifuged at 13,000ˆ g for 10 min. Venom protein concentrations were determined by the method
of [42], using bovine serum albumin as standard.

4.3. Polyacrylamide Gel Electrophoresis (SDS-PAGE)

The gels were prepared using the system of discontinuous buffer described by Laemmli [43].
The stacking gel was prepared with 4% acrylamide-bisacrylamide (Sigma-Aldrich, St. Louis, MO,
USA), whereas for the separating gel a concentration of 12% was used. Venom samples (20 µg) were
loaded by track in gels. Gels were run under both reducing (with β-mercaptoethanol, Sigma-Aldrich)
and non-reducing conditions. Proteins were stained with a solution of Coomassie blue R-250
(Sigma-Aldrich). Molecular size markers (MrS) (BenchaMarckTM Protein Ladder, Invitrogen,
Carlsbad, CA, USA) were used in each electrophoretic run.

4.4. Enzymatic Activities

4.4.1. Azocaseinolytic Activity

Proteolytic activity of the O. bauri venom was determined using azocasein (Sigma-Aldrich) as
substrate [44] with modifications. Aliquots of 1 µg of venom were added to a mixture of 500 µL of
50 mM Tris-HCl (Sigma-Aldrich) pH 6.8 and 500 µL of 2% azocasein solution (w/v). As negative
control, 500 µL of saline solution were added to 500 µL of 2% azocasein solution. After 1 h of
incubation at 37 ˝C the reaction was stopped by adding 100 µL of 15% trichloroacetic acid (TCA,
Sigma-Aldrich) and the samples were centrifuged at 10,000ˆ g for 10 min. One unit of activity was
defined as an increase of 0.01 in absorbance units at 405 nm, and the results were expressed as specific
activity units (U/mg).

4.4.2. Effect of pH and Temperature on Azocaseinolytic Activity

To study the effect of pH on azocaseinolytic activity, 1 µg of venom was added to 500 µL of 2%
azocasein solution buffered with 500 µL of the following buffers at various pH ranges: 0.2 M sodium
acetate (Sigma-Aldrich) pH 4.0 and pH 5.0; 0.2 M sodium phosphate (Sigma-Aldrich) pH 6.0; 0.2 M
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Tris-HCl pH 7.0 and pH 9.0; 0.2 M sodium borate (Sigma-Aldrich) pH 10.0; 0.2 M phosphate sodium
(Sigma-Aldrich) pH 11.0.

The effect of temperature on the azoproteolytic activity was verified by preheating for 15 min
1 µg of venom at temperatures ranging from 25 ˝C to 75 ˝C, following incubation with 2% azocasein
solution. The reactions were stopped by adding 100 µL of 15% TCA, followed by centrifugation and
the absorbance read in a spectrophotometer at 405 nm.

4.4.3. Effect of Inhibitors and Ions on Azocaseinolytic Activity

The stability of enzymes of the O. bauri venom was evaluated on the basis of its proteolytic
activity on azocasein in the presence of different protease inhibitors as aprotinin (serine proteases,
Sigma-Aldrich), leupeptin (cysteine proteases, Sigma-Aldrich) and EDTA (metalloproteases,
Sigma-Aldrich) and bivalent ions (Ca2+, Mg2+, Zn2+ and Cu2+), all reagents at concentration of
5 mM. Aliquots of 1 µg of venom and 5 µL of inhibitors or ions were preincubated for 15 min and
then solubilized in 2% azocasein solution. After 1 h of incubation the reaction was stopped and the
enzymatic activity determined as above described.

4.4.4. Gelatin Zymography

The technique described by [45], with some modifications, was employed, using gelatin as
substrate. Crude venom samples (5 µg) were separated by 12% SDS-PAGE containing 1% of the
gelatin substrate (Sigma-Aldrich). Subsequent to the electrophoresis, the gel was washed twice for
30 min at room temperature in 2.5% Triton X-100 (Sigma-Aldrich) to remove the SDS and incubated
at 37 ˝C for 18 h in one of the following buffers: 0.05 M sodium citrate pH 4.0, pH 5.0 and pH 6.0;
0.05 M Tris-HCl pH 7.0, pH 8.0, pH 9.0 and pH 10.0; and in the presence of ions and other chemicals as
50 mM Tris-HCl pH 8.0; 50 mM Tris-HCl and 10 mM CaCl2 (Sigma-Aldrich) pH 8.0; 50 mM Tris-HCl,
150 mM NaCl, 10 mM CaCl2, 0.002% CHAPS (Sigma-Aldrich) and 10 mM EDTA pH 8.0; and 50 mM
Tris-HCl, 1 mM CaCl2 and 1 mM ZnSO4 (Sigma-Aldrich) pH 8.0. The gels were stained with R-250
Coomassie blue and gelatin proteolysis activity detected as colorless bands in the otherwise blue gel.

4.4.5. Temperature Dependent Gelatinolytic Activity

The thermal effect on the gelatin proteolysis activity of the O. bauri venom was investigated at
temperatures from 25 ˝C to 75 ˝C. First, aliquots (20 µg) were incubated at different temperatures
(25 ˝C, 37 ˝C, 56 ˝C, 65 ˝C and 75 ˝C) for 30 min and applied to the gel of gelatinase activity. After
electrophoresis, the gel was incubated with 50 mM Tris-HCl, 150 mM NaCl, 10 mM CaCl2, 0.002%
CHAPS and 10 mM EDTA (pH 8.0) for 18 h and stained with Coomassie blue.

4.4.6. Enzyme Stability

To analyze the enzyme stability, 200 µL of the O. bauri venom (stock solution at 500 µg/mL) was
incubated at 4 ˝C in intervals from 2 to 20 days. At each day of incubation, aliquots of 10 µL (5 µg)
were removed and applied to the gel of gelatinase activity as above described.

4.4.7. Fibrinogenolytic Activity

The fibrinogenolytic activity of the O. bauri venom was determined in SDS-PAGE according to
the methodology of [46], with modifications. Briefly, 25 µL of bovine fibrinogen (stock solution at
3 mg/mL, Sigma-Aldrich) were incubated with 5 µg of the venom at 37 ˝C. At different time intervals
(30, 60, 120, 720 and 1440 min), aliquots were collected and the reaction was stopped by adding SDS
sample buffer. The hydrolysis profile was followed by SDS-PAGE at 12% gel [43].
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4.5. Biological Activities

4.5.1. Hemolytic Activity

Red blood cells of Swiss mice were used to evaluate the hemolytic activity of the crude venom of
O. bauri according to [47] with modifications. After collected the red blood cells were washed twice
with 0.9% NaCl (w/v) and 0.5% erythrocytes (v/v) were incubated at 37 ˝C in the presence of venom
(32 to 0.06 µg) for 1 h. Samples were then centrifuged (450ˆ g for 5 min), and the absorbance of
the supernatants was measured at 540 nm. The absorbance measured from lysed red blood cells in
presence of 1% (v/v) Triton X-100 was considered as 100%.

4.5.2. Cell Viability Assay

Cytotoxicity of O. bauri crude venom was assessed by determining cellular viability using MTT
assay as previously described [48]. HeLa cells and BMDM from Swiss mice were cultured separately
in 96-well plates (1 ˆ 105 cells/well) in triplicate, in the presence of O. bauri crude venom in different
concentrations (0.03, 0.1, 0.3, 1, 3, 10, 30, 60, 90 and 180 µg/mL). As controls, cells were incubated
with complete RPMI medium alone. After 24 h of incubation at 37 ˝C and 5% CO2, cells were washed
and pulsed with 10 µL of thiazolyl blue at 5 mg/mL in 90 µL of complete RPMI medium 4 h prior
to the end of the culture. Formazan particles were solubilized in 10% sodium dodecyl sulfate (SDS)
and 50% N,N-dimethyl formamide (Sigma-Aldrich). The optical density was read after 30 min at
570 nm in a plate reader (Titertek Multiskan Plus, Flow Laboratories, McLean, VA, USA). Results
were expressed as percentage of cell viability in relation to controls.

4.5.3. Hemorrhagic Activity

The hemorrhagic activity was assessed according to [36]. Samples containing 50 µg of the crude
venom of O. bauri were prepared in 0.9% NaCl and injected intradermally into the dorsal skin of
Swiss mice, and saline solution alone was used as negative control. Three hours after the injection,
the animals were sacrificed by cervical dislocation and the dorsal skin was removed. The minimum
hemorrhagic dose (MHD) was defined as the amount of protein that induced a hemorrhagic lesion of
10 mm of diameter, as calculated using the perpendicular major diameters of the hemorrhagic spot.

4.5.4. Coagulant Activity

The coagulant activity of venom was assessed on citrated bovine plasma as described by
Denson et al. [49], with modifications. Samples of 20 µg of the crude venom of O. bauri were added
to aliquots of 200 µL of bovine plasma and incubated at 37 ˝C. The activity was characterized by the
immediate appearance of fibrin network compared with the clotting time of the control containing
0.2 M CaCl2.

4.5.5. Defibrinating Activity

The defibrinating activity of venom was tested by the method of [50], with modifications. The
activity was assessed by intraperitoneal injection of 2 µg/g body weight of mice of the O. bauri crude
venom in 100 µL of saline solution into male Swiss mice (18–22 g), using three mice per group;
control animals received 200 µL of saline solution. After one hour, the animals were anesthetized
and submitted to cardiac puncture. Blood was placed in tubes and kept at 25–30 ˝C until clotting
occurred. The minimum defibrinating dose (MDD) was defined as the amount of venom able to
prevent coagulation.

4.5.6. Antimicrobial activity

The antimicrobial activity of the O. bauri venom was performed by the disk diffusion
susceptibility method according to Yagmur et al. [51], with modifications, by applying a bacterial
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inoculum of approximately 2 ˆ 108 CFU/mL to the surface of a large (150 mm diameter)
Mueller-Hinton agar plate. Bacteria specimens tested included a Gram-positive, Staphylococcus
aureus (ATCC 25923) and a Gram-negative, Escherichia coli (ATCC 25922). Paper filter disks (0.5 mm
diameter) were prepared with crude venom of O. bauri in the following concentrations: 15, 10, 5, 2.5,
1.25, 0.6 and 0.3 µg per disk unit; and placed on the inoculated agar surface. Commercially-prepared
disks were used as positive control for S. aureus (Oxacillin; 1 µg, Laborclin, Pinhais, Brazil) and E. coli
(Ampicillin; 10 µg, Laborclin). Sterile water disks as negative control were applied to both bacteria.
Plates were incubated for 16–24 h at 35 ˝C prior to determination of results by measuring the zones
of growth inhibition around each of the disks.

4.5.7. Antiparasitic Activity

The antiparasitic activity of the O. bauri venom was verified on in vitro T. gondii infection
following the protocols of de Oliveira et al. [52]. HeLa cells were cultured on 13-mm round glass
coverslips into 24-well plates (1 ˆ 105 cells/well/200 µL) for 24 h at 37 ˝C and 5% CO2. T. gondii
tachyzoites (RH strain) were obtained from previously infected HeLa cells, washed in RPMI medium
and pretreated for 1 h at 37 ˝C and 5% CO2 with crude venom of O. bauri in different concentrations
(0.3, 1, 3, 10, 30 and 60 µg/mL) or with medium alone (control). Next, parasites were washed
and incubated with HeLa cell monolayers on coverslips at 2:1 (parasite: host cell) rate of infection
(2 ˆ 105 tachyzoites/well/200 µL) for 24 h at 37 ˝C and 5% CO2. Cells were washed with 0.9%
NaCl to remove non-adherent parasites, fixed in 10% buffered formalin for 2 h and stained with
1% toluidine blue (Sigma-Aldrich) for 5 s. Coverslips were mounted on glass slides and cells were
examined under a light microscope with regards to T. gondii infection index (percentage of infected
cells per 100 examined cells) and parasite intracellular replication (mean number of parasites per cell
in 100 infected cells).

Results were expressed as percentages of inhibition of infection as well as of parasite intracellular
replication for each treatment in relation to controls. The median inhibitory concentration (IC50) of
venom was calculated by extrapolation of the corresponding dose-curve response on a log linear plot
employing the portions of the curve that transected the 50% response point [53].

4.6. Statistical Analysis

Statistical analysis was carried out using the GraphPad Prism 6.0 software (1992–2012, Graphpad
Sofware Inc., San Diego, CA, USA). The azocasein proteolytic activity data were analyzed by one-way
ANOVA and Bonferroni multiple comparison post-test. The hemolytic activity data were analyzed
by one-way ANOVA and Dunett post-test. The anticoagulant activity data were analyzed by the
Student’s t-test. Values of p < 0.05 were considered statistically significant.

5. Conclusions

In conclusion, the present investigation describes biological and enzymatic characterization
of the crude venom of O. bauri. The properties of the venom here reported indicate that it
possesses enzymes belonging to α-fibrinogenase and demonstrates multifunctional activities, such as
hemolytic, coagulant, defibrinating, antimicrobial and antiparasitic activities. This study may open
interesting new structure–activity relationship perspectives for enzymes purified of the O. bauri crude
venom with pharmacological interest for future studies related to infectious diseases.
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