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Abstract: Fraxinus rhynchophylla, common name ash, belongs to the family Oleaceae and is found in
China, Korea, North America, the Indian subcontinent, and eastern Russia. It has been used as a
traditional herbal medicine in Korea and various parts of the world due to its chemical constituents.
During a field survey in March 2019, mild vein thickening (almost negligible) was observed in
a few ash trees. High-throughput sequencing of libraries of total DNA from ash trees, rolling-
circle amplification (RCA), and polymerase chain reaction (PCR) allowed the identification of a
Fraxinus symptomless virus. This virus has five confirmed open reading frames along with a possible
sixth open reading frame that encodes the movement protein and is almost 2.7 kb in size, with a
nonanucleotide and stem loop structure identical to begomoviruses. In terms of its size and structure,
this virus strongly resembles begomoviruses, but does not show any significant sequence identity
with them. To confirm movement of the virus within the trees, different parts of infected trees were
examined, and viral movement was successfully observed. No satellite molecules or DNA B were
identified. Two-step PCR confirmed the virion and complementary strands during replication in
both freshly collected infected samples of ash tree and Nicotiana benthamiana samples agro-inoculated
with infectious clones. This taxon is so distantly grouped from other known geminiviruses that it
likely represents a new geminivirus genus.

Keywords: geminivirus; begomovirus; Fraxinus symptomless virus; Fraxinus rhynchophylla

1. Introduction

Fraxinus, commonly known as ash tree, is an important member of the Oleaceae family
found in North America, northeast Asia, east and western France, China, Korea, eastern
Russia, Pakistan, India, and Afghanistan [1–4]. Chemically, Fraxinus plants contain various
secoiridoids, phenylethanoids, flavonoids, coumarins, and lignans, so they are considered
to have diverse biological and pharmacological activities [5,6]. Their immense range
of pharmacotherapeutic properties, such as anticancer, anti-inflammatory, antioxidant,
antimicrobial, and neuroprotective, make them highly valuable. In addition, their bioactive
phytochemicals and secondary metabolites can be exploited as effective antiaging agents
in the cosmetics business [1,2,5,7].

Among Fraxinus species, Fraxinus rhynchophylla, our target study, also known as
East Asian ash, grows mainly in moist, fertile soils on hillsides and in river valleys in
Korea, China, and Japan (https://species.nibr.go.kr, accessed on 29 September 2021).
F. rhynchophylla regenerates and dominates naturally after thinning in Korea, promoting
the restoration of native hardwood forests [8]. It serves as a wildlife habitat, helps to
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stabilize stream banks, and contributes organic matter to the forest. In addition to the
medicinal benefits of its bark, its wood is used to manufacture furniture, sports equipment,
and tool handles owing to its hard, dense, but elastic properties [2,6,9].

Few viruses have been reported as infectious agents in Fraxinus species. To date, only
RNA viruses, namely, Arabis mosaic virus, cherry leaf roll virus, tomato ringspot virus and
tobacco ringspot virus (genus: Nepovirus; family: Sicoviridae); tobacco necrosis virus (genus:
Alphanecrovirus; family: Tombusviridae); tobacco mosaic virus (genus: Tobamovirus; family:
Virgaviridae); and white ash mosaic virus (unclassified) [10–19], have been documented.
To our knowledge, no plant-infecting DNA viruses have ever been reported to infect
Fraxinus species.

High-throughput sequencing (HTS) technologies have revolutionized systems for
detecting viruses [20,21]. This has resulted in a significant increase in the identification
of novel viruses across ecosystems, as well as a broadening of our understanding of the
diversity of plant-infecting viruses. Among plant virus families, the largest number of
new and divergent viruses has been discovered through HTS in Geminiviridae [22]. Ap-
proximately 12 new genera discovered mainly through HTS have been classified recently,
extending the nine recognized geminivirus genera to fourteen: Becurtovirus, Begomovirus,
Capulavirus, Citlodavirus, Curtovirus, Eragrovirus, Grablovirus, Maldovirus, Mastrevirus, Mul-
crilevirus, Opunvirus, Topilevirus, Topocuvirus, and Turncurtovirus [23–26]. Many of these
genera have been classified based on viruses discovered through large-scale HTS-based
virus discovery projects [27–34].

Geminiviruses are circular single-stranded DNA genomes encapsidated in twinned icosa-
hedral particles and encode up to seven genes that are bi-directionally transcribed [24,35].
Among these seven genes, replication-associated protein gene (rep) and a capsid protein
gene (cp) are detectably conserved across all of these divergent lineages [36,37]. Few genes
are found conserved across the few genera within the family Geminiviridae, i.e., replication
enhancer protein gene (ren), a C4 gene (which encodes a symptom determinant and/or
a silencing suppressor), and a transactivation protein gene (trap), are possibly conserved
in genera: Begomovirus, Curtovirus, Eragrovirus, Topocuvirus, and Turncurtovirus [24,36–38].
Movement protein genes (mp) are present in all known geminivirus genomes except in
few recently reported geminiviruses [39].

Geminiviruses mainly cause severe economic losses in a variety of crops (i.e., tomato,
maize, cotton, cassava, and bean plants) [36,40–42], but newly discovered geminiviruses
appeared to produce either no symptoms or only mild ones in their host species [23,29,43].
Geminiviruses are transmitted by a range of insect vectors in the order Hemiptera [36,40].
In the past, geminiviruses as pathogens of cultivated plants were primarily focused on
but recent reports of new virus species including geminiviruses as causative agents in
various new hosts from natural ecosystems have caught more attention of plant virologists
towards the emergence of new crop pathogens, especially geminiviruses from natural
ecosystems [22,23,44–50].

Here, we describe the characterization of a novel geminivirus found to infect Fraxinus
species, namely, F. rhynchophylla, in Korea. The virus was shown to exhibit a separate
grouping during phylogenetic analysis and was thus named: Fraxinus symptomless virus
(FSMV). Infectivity assays involving Nicotiana benthamiana confirmed the asymptomatically
infection of FSMV.

2. Materials and Methods
2.1. Sample Collection and Processing

A total of 41 F. rhynchophylla plant samples from various regions of Korea were
collected in different time periods (Table 1). All samples were asymptomatic and collected:
Jinju (n = 4 in March 2019; n = 8 in September 2019), Busan (n = 9 in October 2019; n = 6
in May 2020), Pocheon (n = 6 in September 2019), Jeonnam (n = 2 in September 2019),
Yeongdong (n = 3 in September 2019), and Daegu (n = 2 in September 2019) (Figure 1). No
insects were found or collected from any of these 41 plants. All samples were stored at
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−20 ◦C until processing. All leaf samples were sterilized by using 70% ethanol for 20–30 s
and allowed to dry off from the ethanol with the air flow under the fume hood. Total DNA
was extracted from leaf tissue samples using either a Viral Gene-Spin Viral DNA/RNA
Extraction Kit (iNtRON Biotechnology) or a cetyl trimethylammonium bromide (CTAB)-
based extraction protocol, following the manufacturer’s instructions [51]. Total DNA
from each sample was used in RCA reaction with the TempliPhi™ kit (GE Healthcare,
Chicago, IL, USA), as described by Shepherd et al. [52].

Table 1. Tree ash samples collected from various locations in Korea.

No. Location Collection Date Labelled as

1

Jinju

March 2019

J1
2 J2
3 J3
4 J4

5

September 2019

J5
6 J6
7 J7
8 J8
9 J9
10 J10
11 J11
12 J12
13 J13

14

Busan October 2019

B1
15 B2
16 B3
17 B4
18 B5
19 B6
20 B7
21 B8
22 B9

23

Pocheon September 2019

P1
24 P2
25 P3
26 P4
27 P5
28 P6

29
Jeonnam September 2019 JM1

30 JM2

31
Yeongdong September 2019

Y1
32 Y2
33 Y3

34 Daegu September 2019 D1
35 D2

36

Busan May 2020

B1 *
37 B2 *
38 B3 *
39 B4 *
40 B5 *
41 B6 *

* New Samples collected from Busan for the second time.
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(D) Busan, (E) Pocheon, and (F) Yeongdong, respectively.

2.2. HTS and Genome Assembly

Aliquots of the RCA product of two samples collected from the Jinju sample (J1 & J2)
in March 2019 were sequenced on an Illumina HiSeq 4000 platform (paired end 2 × 100 bp)
at Macrogen Inc. (Seoul, Korea). Raw reads were de novo assembled using SPAdes
v.3.12.0 [53] and the resulting contigs were analyzed using BLASTx [54] against a GenBank
viral RefSeq protein database [55]. PCR using abutting primers (TF2 5′-AGT GTT GGA
CTC GAA TCC AGA A-3′ and TR2 5′- CTG GAC AGA CGA CGA ATC CA-3′) was
processed following the manufacturer’s thermal cycling condition recommendations to
recover potentially full-length virus genomes from plant samples (J1, J2, J5, J6 from Jinju
and P2, P3, P4 from Pocheon). Amplicons were resolved in 1% agarose gel and those with
target size of approximately 2.7 kb (the expected size range of geminivirus genomes) were
excised, gel-purified, and cloned in the pGEM-3Zf (+) vector (Promega, Madison, WI) and
sequenced by a commercial sequencing service (Macrogen, Seoul, Korea) followed by the
sequence analysis in the NCBI Basic Local Alignment Search Tool (BLASTn) [54].

2.3. Detection of the Novel Virus in F. rhynchophylla

We selected a total of 41 DNA extracts representing different geographic areas and
provinces across South Korea (Table 1). First, only four samples from Jinju (JI–J4) were pro-
cessed. The DNA extracts were recovered from plant tissues consisting of leaf petioles and
small portions of twigs, using the CTAB method. Based on full length sequence, new spe-
cific primers (Ash_Gemini_2F 5′-CCA CGT GTC ATC ATC TTA GG-3′ and Ash_Gemini_2R
5′- TAGTCCCGGTCAATTTCTTG-3′) of product size 737 bp, were designed for easy de-
tection purpose and were mainly used for detection in all samples (Supplementary Table
S1). PCR was processed following standard amplification conditions: denaturation at
94 ◦C (3 min), and then 35 cycles of 30 s at 94 ◦C, 30 s at 58 ◦C, and 1 min at 72 ◦C,
followed by final extension at 72 ◦C (5 min). Amplicons were excised and sequenced as
mentioned in Section 2.2. RCA followed by the digestion through restriction enzymes:
KpnI, PstI, and BamHI, and PCR with universal betasatellite [56], alphasatellite primers [57],
and DNA-B primers [58] (Supplementary Table S1) attempted to detect the associated
components, i.e., satellite molecules or DNA B (Supplementary Figure S1).

Leaf tissue samples were collected from three different sites of ash trees (B1 *–B6 *)
and processed by PCR using Ash_Gemini_2F/R primers to confirm virus movement and
infectivity in all parts of the trees.
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2.4. Genome Organization and Homology Searches for Genes

PCR products obtained through conventional Sanger sequencing were assembled
using multiple sequence alignment by Florence Corpet (MultAlin) [59]. Open reading
frames (ORFs) were identified with ORFfinder (https://www.ncbi.nlm.nih.gov/orffinder/,
accessed on 29 September 2020), and conserved domains were characterized using BLASTx
and PLACE [54,60]. Identity matrices were obtained using the MUSCLE option in SDT
v1.2 [61]. Alignments for nucleotide and amino acid homology were performed with
the MUSCLE algorithm embedded in MEGA7 [62]. Phylogenetic relationships among
members of geminivirids were evaluated using full-length nucleotide sequences with the
neighbor-joining method in MEGA7 program with 1000 bootstrap replicates, as already
described by the ICTV Taxonomy study group [63]. Maximum-likelihood phylogenetic
trees were inferred from all genes of representative nucleotide isolate sequences of viruses
from genera in the family Geminiviridae.

2.5. Attempts at Further Characterization by Southern Blot Hybridization

Southern hybridization analysis was conducted to confirm the viral replication of
FSMV in the samples using the modified method from Southern et al. [64,65]. Total DNA
(15µg) isolated from 2 ash tree tissues samples from each location (Table 1) was loaded
on 1% agarose gel followed by the depurination, denaturation, and neutralization steps
and transferring the DNA loaded on the gel to a positively charged nylon membrane
(Hybond-N+ membrane, GE Healthcare Life Sciences, Waukesha, WI, USA) using the
capillary transfer method for up to 16 h and the transferred DNA was linked covalently to
the nylon membrane using an ultraviolet crosslinker (UVC 500 crosslinker, GE Healthcare
Life Sciences, Waukesha, WI, USA). The FSMV DNA-A (2.7 kb) was amplified from J1,
B6, P4, and JM2 (Table 1) with the TF2/R2 primer set, was gel purified, and labeled with
[α-32P] dCTP using the Rediprime II Random Primer Labeling System (GE Healthcare Life
Sciences). Hybridization was conducted at 65 ◦C for 16 h. After washing, the membrane
was then exposed to X-ray film (Kodak, Rochester, NY, USA) for approximately 48 h in a
−70 ◦C freezer.

2.6. Strand-Specific PCR for Virus Detection

Strand-specific amplification method introduced by Rodríguez-Negrete using virion-
sense- and complementary-sense-specific primer sets was conducted with slight modi-
fications to detect the virus in the samples, i.e., J1, B6, P4, and JM2 [66,67]. In the first
step, extension reactions of single-stranded viral templates with T4 DNA polymerase
(TaKaRa, Japan) and viral-specific primers OCS-TAG or OVS-TAG were performed for
strand-specific amplification followed by the purification through QIA quick PCR Purifi-
cation Kit (Qiagen) (Supplementary Table S1). In the second step, 2 µL product of the
first-strand reaction was mixed with 10 µL of 2X AccuPower PCR Master Mix (Bioneer),
1 µL of 10 pM specific primers (TAG, OVS, or OCS), and 6 µL of nuclease-free water
following the manufacturer’s protocol and reacted for one cycle at 95 ◦C for 30 s, and
then 40 cycles at 95 ◦C for 10 s, 60 ◦C for 15 s, and 72 ◦C for 20 s in a T100 thermal cycler
(Bio-Rad, Hercules, CA, USA).

2.7. Construction of Infectious Clone of FSMV

Infectious clone (1.1 mer) of FSMV was constructed to check its infectivity in the
host plants. Two partial genomes containing restriction sites at the edge were amplified
using primer sets designed based on the sequence of FSMV and ligated into the pGEM-T
Easy vector (Promega, Madison, WI, USA) using the TA cloning technique, in accordance
with the manufacturer’s instructions followed by the sequencing (Macrogen, Korea) and
restriction digestion with specific enzymes. These two partial genomes were introduced
into the pCAMBIA1303 vector and first transformed into competent Escherichia coli strain
DH5α using the heat shock method and then transformed into GV3101 Agrobacterium

https://www.ncbi.nlm.nih.gov/orffinder/


Viruses 2021, 13, 2385 6 of 15

strains and confirmed by both enzyme digestion and colony PCR with the detection
primer sets.

2.8. Agro-Inoculation with the FSMV Infectious Clone

Nicotiana benthamiana plants were planted in a growth chamber at Sungkyunkwan
University, Suwon, Korea. Approximately 4-week-old N. benthamiana plants of similar sizes
were selected to check the infectivity. Agrobacterium GV3101 strains (both transformed
and untransformed) were cultured in LB broth in the presence of pCAMBIA1303 selection
antibiotic, namely, kanamycin (50 mg/L), and strain-specific selection antibiotics, namely,
gentamycin and rifampicin (50 mg/L), at 28°C with agitation for 30 h (until the OD value
at 600 nm was 0.8–1.0). Agro-inoculation was performed by the pin-pricking method [68].
Leaf tissue samples were collected from mock and infected plants 28 days post-inoculation
(dpi) to check the infectivity through PCR processing using Ash_Gemini_2F/2R primers.
Vector-specific primers were also used to make sure of the detection of the virus itself
instead of pCAMBIA1303 plasmid containing the virus in different parts of the plant.

3. Results
3.1. HTS Results

HTS of the two DNA libraries yielded 74,391,351 raw paired reads. A total of 54,465
contigs were obtained from the libraries. BLASTx search of these contigs indicated the
presence of virus-derived DNAs with an identity with Geminiviridae members. Pairwise
alignment of putative DNA-A-like contigs revealed that DNA-A does not exhibit a greater
identity with the reference viruses cited in the literature. A more accurate analysis of the
sequence of the contig disclosed five ORFs in a circular pattern very similar to the findings
in the genus Begomovirus of the family Geminiviridae.

3.2. Virus Detection through PCR

The PCR product showed a target size band of about 700 bp when subjected to gel
electrophoresis, followed by sequencing (Figure 2). NCBI blasts showed 34% sequence
identity to Olea europaea geminivirus (MW316657) and 8% to Tomato Chino La Paz virus
(MH678590). The full-length sequences (2.7 kb) were detected from samples from all
locations but at first only from Jinju and Pocheon samples and sequenced followed by
GenBank submission; Accession numbers: MZ054403 and MZ054404 (Figure 3). Full-length
sequences from all other locations resemble MZ054403. The sequencing results showed
that it is a new virus that has not previously been reported. No satellite or DNA B could be
detected in any sample using both PCR and RCA techniques (Supplementary Figure S1).
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3.3. Genomic Features

Using the complete genomic sequences, DNA-A was investigated to identify and
characterize the genomic features and the putative encoded proteins. A complete circular ss-
DNA virus contig was identified. In contrast to other begomoviruses, our contig comprises
only DNA-A with five confirmed ORFs, while one ORF in virion-sense responsible for
movement was not clear. Thorough analysis of the full genome sequence data showed an
open reading frame which may encode a movement protein (V2*). All other ORFs showed
the same pattern as in begomoviruses with respect to their location (Table 2). An intergenic
region with a proper conserved region and stem loop structure with a nonanucleotide
structure identical to that in begomoviruses was also observed. This newly identified virus
lacks any satellite molecules or DNA B, which assist viruses in moving and infecting hosts.

Table 2. Genomic organization and ORFs sizes of the putative Fraxinus symptomless virus (FSMV). The
table characterizes the open reading frames of FSMV, locus, length (nt/aa), and protein identification.

# ORF Locus nt/aa Strand Protein

1 V1 153–905 753/251 Positive Coat Protein
2 V2* 85–416 372/123 Positive MP
3 C3 902–1342 441/147 Negative REn
4 C2 1029–1487 459/153 Negative TrAP
5 C1 1399–2481 1083/361 Negative Rep
6 C4 2255–2416 162/54 Negative C4

* V2 is the possible movement protein found in the genomic organization of FSMV.

3.4. Phylogenetic Relationship with Other Virus Families

The relationships between FSMV and other virus members from different genera
within the family Geminiviridae were initially examined by comparison of the whole-
genome sequences by nucleotide pairwise alignments and identity matrices. Phylogenetic
analysis was run at the nucleotide level sampling representative virus sequences (Figure 4).
The full-length genome sequences of these top hits were downloaded, aligned with the
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MUSCLE algorithm, and subjected to pairwise comparison using SDT v1.2 (Figure 5). The
obtained identity matrix revealed that the sequence similarity with other viruses ranges far
below the threshold for demarcation from other virus species of 91%. Neighbor-joining
phylogenetic analysis of whole-genome sequences from isolates of representative species
of each genus showed clusters with the unclassified Olea europaea geminivirus among
Becurtovirus, Begomovirus, Capulavirus, Citlodavirus, Curtovirus, Eragrovirus, Grablovirus, Mal-
dovirus, Mastrevirus, Mulcrilevirus, Opunvirus, Topilevirus, Topocuvirus, and Turncurtovirus. A
comparison of most well conserved proteins such as the CP and Rep with the viruses of all
14 genera of family Geminiviridae was also done to show how closely related they are on a
protein level (Supplementary Figure S2).
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Figure 4. Phylogenetic relationship of FSMV detected from F. rhynchophylla with viruses of other
genera in the family Geminiviridae. (A) Phylogenetic relationships were analyzed using the iTOL
software. Nevick file for iTOL was generated using MEGA7 program. (B) Genomic organization of
FSMV comprised of ORFs: Rep, C4, TRAP, and Ren on the complementary strand and only CP on
the virion sense without MP. The stem–loop structure containing the nonanucleotide motif has been
shown to the right of the phylogenetic tree.

3.5. Southern Blotting Hybridization Analysis

To investigate whether the viral DNA was integrated into the ash tree genome, a
Southern blot hybridization assay was performed. Multiple hybridization attempts were
carried out using total DNA extracts from J1, B6, P4, and JM2 as probes, respectively, but
none of the samples produced a noticeable specific band of the expected full-length genome
size. Interestingly, DNA was clearly visualized from the CTAB extracts on the agarose gel
(data not shown), but in the hybridization assay, none of them showed any specific band
for the virus either as DNA or as plant genome-integrated viral sequences.

3.6. Strand-Specific PCR and Site-Based Detection

Strand-specific amplification using virion-sense- and complementary-sense-specific
primer sets (Figure 6A) showed that dsDNA and two ssDNA molecules (virion and
complementary senses) were present in the infected samples: J1, B6, P4, and JM2, which
indicates the virus replication phases in the host plants (Figure 6B).
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We also checked the presence of the virus in three different locations by PCR to
investigate viral replication ability and systemic movement. According to PCR, the virus
was detected in four out of six samples (B1 *–B4 * were found positive and B5 *, B6 * as
negative) whereas the virus was successfully detected in all three sites of positive samples,
which confirmed its presence (Figure 7A,B).

3.7. Infectivity through Infectious Clone Inoculation

N. benthamiana plants showed no symptoms in both mock and FSMV-inoculated
groups. We could not observe any differences among all N. benthamiana groups inoculated.
Leaf tissues were harvested and analyzed by PCR to investigate viral replication ability.
According to PCR, the virus was detected, which confirmed its presence (Figure 8A,B),
and viral replication was confirmed through strand-specific primers (Figure 8C). The virus
replicating in N. benthamiana maintained the exact nucleotide sequence of the original
clone (Supplementary Figure S3). PCR using vector-specific primers shows negative results
which backs the virus detection on its own instead of containing the virus in different parts
of the plant (Supplementary Figure S4).
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Figure 6. Strand-specific amplification with FSMV-infected samples. (A) Schematic representation
of the strand-specific amplification PCR procedure for confirming the existence of virion-sense (VS)
and complementary-sense (CS) DNA molecules. (B) Strand-specific amplification with leaf tissues of
samples J1, B6, P4, and JM2 using virion-sense- and complementary-sense-specific primer sets.
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Figure 7. Detection of FSMV in various tree parts to confirm its infectivity. (A) Schematic representation of tree sampling
sites, i.e., top A, middle B, and down C. (B) PCR processing of B1 *–B4 * ash tree samples using Ash_Gemini_2F/R primers
to detect FSMV at all sampling sites.
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Figure 8. Agro-infection of FSMV in N. benthamiana. The results of inoculation assays for FSMV clones in (A) N. benthamiana
plant and (B) N. benthamiana leaf 28 dpi. (C). Successful detection of FSMV using Ash_Gemini_2F/R primers in three
N. benthamiana plants and a mock plant used as negative control in PCR processing. (D). Strand-specific amplification
PCR procedure for confirming the existence of virion-sense (VS) and complementary-sense (CS) DNA molecules in three
N.benthamiana plants.

4. Discussion

The advent of new molecular techniques (i.e., HTS technologies and RCA) has signifi-
cantly broadened our knowledge of plant viruses, especially the geminiviruses. Recently,
many divergent geminivirids infecting grapevine, citrus, apple, pear, Prunus, mulberry,
chinaberry tree (Melia azedarach), olive tree, grey fig (Ficus virens), and Jatropha multifidi
have been identified, expanding the host range to woody trees [27–29,44,45,47,69,70]. In
this paper, we report the identification and characterization of a novel geminivirid infect-
ing woody trees, i.e., ash trees in Korea (Figure 1, Table 1). A circular ssDNA of about
2.7 kb was identified by bioinformatic analysis in ash trees (Figure 3). Similar to other
NW begomoviruses, the genome has gene encoding AC1, AC2, AC3, and AC4 proteins on
the complementary strand and the coat protein (AV1) on the virion sense along with the
possible AV2 protein. Unlike NW begomoviruses as well as OW begomoviruses, DNA B
or satellite molecules, respectively, could not be detected in ash tree samples (Supplemen-
tary Figure S1). Despite the similar DNA-A genomic organization to NW begomoviruses,
BLASTn search of the FSMV sequence revealed very low sequence identity with any bego-
movirus. To completely rule out the possibility of contamination of insect exudates, eggs,
or larvae of insect vectors or other possible sources, PCR of four samples (J1, B6, P4, and
JM2) was processed using 16S RNA primers [71] and MCOI targeting primers [72] but all
had negative results (Supplementary Figure S5).

Furthermore, phylogenetic analysis showed that FSMV does not group with bego-
moviruses or with other approved geminiviral genera. These findings together with a
neighbor-joining tree of representative full-length genomes of all genera within the Gem-
iniviridae family and the overall nucleotide identity levels suggest that this virus could
belong to a novel unclassified genus within the family, although information on vectors and
viral particles is currently lacking (Figure 4). F. rhynchophylla is one of the most abundant
trees found in almost all parts of Korea [1,8] and field survey revealed that the virus is
widely distributed in Korea, with none of the analyzed trees infected with it showing any
symptoms. FSMV was attempted to be confirmed through Southern blot hybridization
assay, but this was not successful, probably because of the abundance of phenolic com-
pounds or lower viral titer, which can inhibit the hybridization reaction or be due to a very
low concentration of the virus in vivo. However, the full-length genome was detected and
confirmed by using strand-specific PCR and site-based detection (Figures 6 and 7).

Detection of the virus from different sites within the tree confirms the virus infection
in it and its movement either from cell to cell or over long distances. Infectivity assay in N.
benthamiana confirms the monopartite infectious nature of FSMV (Figure 8). There have
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been recent reports regarding the begomoviruses where movement proteins either missed
or have no role [44,73]. Though the lack of a gene encoding the movement protein in the
genome of any geminivirid raises many questions, proper virus movement and associated
infectivity undoubtedly occur in the case of FSMV. Following this, thorough analysis of the
full genome sequence data was done which showed an ORF (85–456 nt) on the virion sense
which may encode a movement protein like other geminiviruses, although this would
be tentative given that there is no biological data to support this yet and is a topic for
further exploration.

5. Conclusions

FSMV, the first reported F. rhynchophylla-infecting DNA virus, is the latest discovered
member of the family Geminiviridae. Despite its high divergence from other known gem-
iniviruses, we believe that it is still a geminivirid based on its resemblance in terms of
genomic structure and length. FSMV has only been found in woody trees. Two FSMV
isolates, i.e., MZ054403 and MZ054404, were detected in our experiment, which share
very high nucleotide sequence identities with each other. We were also able to show that
cloned FSMV sequences are capable of initiating asymptomatic systemic infections in N.
benthamiana. Although we can only confirm that FSMV is present in Korea, it remains
plausible that it occurs in the Americas or other parts of the world where Fraxinus species
are found in high numbers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13122385/s1. Supplementary Figure S1. PCR processing to detect FSMV associated
molecules. (A) Detection of DNA B, (B) detection of alpha-satellite molecule, and (C) detection of beta
-satellite molecules. Supplementary Figure S2. Comparison of FSMV with all members of the genera
in family Geminiviridae on protein level. (A) Construction of phylogenetic tree, (B) Sequence Demarca-
tion Tool (SDT) based pairwise sequence comparisons, and (C) identity scores in a matrix based upon
coat protein, whereas (D) the construction of phylogenetic tree, (E) SDT-based pairwise sequence
comparisons, and (F) identity scores in the matrix based upon Rep protein. Supplementary Figure S3.
Multiple sequence alignment of FSMV extracted from three N. benthamiana plants (N1, N2, and
N3) used in infectivity assay. Supplementary Figure S4. Detection of pCAMBIA1303 plasmid con-
taining the virus using vector specific primers. (A) Gel electrophoresis of PCR product obtained
using vector specific primers. N: Negative control with mock plant extracted DNA as template, P:
Positive control with pCAMBIA1303 plasmid as template, N1-N3: N. benthamiana plants used in
infectivity assay. (B) Details of vector-specific primers (pCam-F/R) used for amplification purpose.
Supplementary Figure S5. PCR processing to check the possibility of contamination from insect
exudates, eggs, or larvae of insect vectors. (A) PCR processing of four ash tree samples, i.e., J1, B6, P4,
and JM2 using 16SRNA primers and MCOI targeting primers, respectively. (B) Details of 16SRNA
primers and MCOI targeting primers used for amplification purpose. Supplementary Figure S6. Full
length sequences of detected FSMV isolates. (A) Sequence and genetic map of MZ054403 and (B) the
sequence and genetic map of MZ054404, respectively. Supplementary Table S1. Primers used to detect
FSMV DNA-A, DNA-B and to confirm the existence of virion-sense (VS) and complementary-sense
(CS) DNA molecules in strand-specific amplification PCR procedure.
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