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Abstract: Due to globalisation and anthropopressure (intensification of shipping, creation of water
corridors connecting seas, cultivation of commercial species), the movement of aquatic species has
increased in recent years. The determination of trends in the movement of aquatic species in their
geographical distribution over time is important because it may help in the management of a species
in aquatic ecosystems. There are also knowledge gaps on the long-term trends in the movements
of Southern European aquatic alien invertebrates. The study provides the first evidence of both
northward and southward movements of these species based on available observations from 1940 to
2021, using meta-analyses and GAM modelling. To date, the majority (98%) of analysed Southern
European aquatic alien invertebrates of Mediterranean and Ponto-Caspian origin have moved to
the north. Among them, 61% are Ponto-Caspian aquatic alien invertebrates that moved only to the
north, and 4% are Mediterranean aquatic alien invertebrates that moved only to the north; the rest
include species that moved to the north and south: 27% are Ponto-Caspian aquatic alien invertebrates,
and 6% are Mediterranean aquatic alien invertebrates. The one-way movement to the south was
observed only in 2% of Mediterranean aquatic alien species. The study will help in understanding the
movement patterns of Southern European aquatic alien invertebrates and in the effective management
of aquatic ecosystems that allow for the co-existence of people and the rest of biodiversity.

Keywords: global changes; movement of species; Mediterranean and Ponto-Caspian aquatic alien
invertebrates; climate change

1. Introduction

There is often a knowledge gap about where and why species move. This knowledge
is important to understand species distribution patterns [1,2]. Animals usually move to
find more favourable conditions [3,4]. Many drivers affect the movement of organisms,
e.g., climate change, disturbances in the natural habitats of organisms, etc. [5]. Among
these drivers, shipping is considered the largest vector for the movement of aquatic species
across the globe [6]. In the XVIIIth and XIXth centuries, important new waterways were
opened. Numerous canals connecting the Mediterranean and the Ponto-Caspian areas with
other parts of Europe were created as a result of industrial and economic human activity.
Man-made interconnections of river basins (water corridors) have caused the movement
of many aquatic species in Europe [7,8]. Thanks to these connections, the movement of,
e.g., Dreissena polymorpha (Pallas, 1771) has started with climate suitability and the ability of
species to successfully establish themselves [9], influencing the distribution of species [10].

It is common for species to move into cooler areas to escape warming [11,12]. Many
studies have shown the northward movement of organisms, e.g., [13-15]. However, north-
ward movement is usually considered in the context of native species, e.g., [16], despite the
fact that human-mediated movement of species to the north has also been documented,
e.g., [17-21]. Global warming is increasing, and it is estimated that by the end of the century,
the average temperature on Earth will rise by 2.7 °C [22]. Temperature is a major factor in
determining the geographical distribution of species [23-28]. Globalisation facilitates the
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movement of species. But are alien species moving only northward in a changing world?
Is there only one trend in movement?

The movement of species may have unpredictable consequences for ecosystems, and
it is not possible to predict whether changes in the distribution will have a positive or
negative effect. It is very important in species conservation and management to incorporate
species movements into management objectives. This knowledge can be used to develop
management strategies that may improve the effectiveness of management actions [2].
Animal movement is a core component of an ecosystem and may be vital for sustaining
ecosystem processes such as trophic and species interactions [29-31]. Aquatic invertebrates
constitute a significant diet source for many fish and water birds [32], so changes in their
distribution may have important consequences for consumers. Some of these species are
invasive (e.g., Dikerogammarus villosus (Sowinsky, 1894)) [33,34], so their possible presence
and coexistence with other species [35], as well as a possible replacement of natives and/or
threat to humans [36,37], may be important information for management actions.

However, there are knowledge gaps in documented evidence of long-term changes in
the distribution of Southern European aquatic alien invertebrate species based on avail-
able observations, so the aim of this study is to analyse movement in the geographical
distribution of these species.

The study addresses the gaps in knowledge by:

(1) analyses of long-term trends in the movement of Mediterranean and Ponto-Caspian
aquatic alien invertebrate species;

(2) discussion on the responses of Southern European aquatic alien invertebrate species
to changing conditions and management implications.

2. Materials and Methods

The list of all aquatic invertebrate species from the database GRIIS (Global Register
of Introduced and Invasive Species) [38] with habitat and country of occurrence was
downloaded. The geographical origin of aquatic invertebrate taxa was searched in the
literature and in the databases AquaNIS (Information System On Aquatic Non-indigenous
and Cryptogenic Species) [39] and GBIF (Global Biodiversity Information Facility) [40]. All
Southern European aquatic alien invertebrate species (those living in freshwater, less than
0.5 ppt; brackish, 0.5-30 ppt; and marine waters, greater than 30 ppt) [41] of Mediterranean
and Ponto-Caspian origin were selected.

Later, the occurrence records of Mediterranean and Ponto-Caspian aquatic alien inver-
tebrate species were collected from GBIF [40]. Spatial records from GBIF are commonly
used in decision-making processes and large-scale biogeography research [42].

Thus, the available occurrence data from 1940 to 2021, depending on research/
monitoring/reporting efforts, were processed. The trends of movement over time were
determined using the maximum latitude in a year (northern extent) and/or the minimum
latitude in a year (southern extent) (among all records of distributions in the GBIF database)
of Mediterranean and Ponto-Caspian aquatic alien invertebrate species. Using occurrence
data (degrees), a generalised additive model (GAM) approach was used to determine
changes in the maximum/minimum latitude of occurrence of a species in the analysed
years for evidence of species movement. The GAM models provide a useful tool to visualise
the nature of the relationship between changes in the geographical distribution of a species
over time. Latitudinal movements of the northern and southern limits were noticed (for
species that moved north and south). For changes in geographical occurrences of particular
species over time, the gamma distribution with log link function and categorisation was
used. Estimates of movement (if sufficient data were available) were prepared due to the
described methodology [43,44]. This GAM-based analysis was prepared using the Statistica
10 version. The shapes of the movements for the species were plotted. Additionally, the
direction of species movement (northward and/or southward) was indicated based on
information based on country of occurrence from GRIIS (Global Register of Introduced and
Invasive Species) [38].
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3. Results
3.1. General Results on the Movement of Southern European Aquatic Alien Invertebrate Species

The geographical occurrences of Southern European aquatic alien invertebrate species
were analysed, and directions of movement were determined (Figure 1; Tables 1-4), de-
pending on available data and research/monitoring/reporting efforts. Despite the fact
that geographical distribution data are incomplete in GBIF, changes in the geographical
distribution of Southern European aquatic alien invertebrate species over time were ob-
served (Figures 2—4). To date, we have observed that the majority (98%) of the analysed
Southern European aquatic alien invertebrate species (Mediterranean and Ponto-Caspian
aquatic alien invertebrates) moved to the north. Among them, 61% are Ponto-Caspian
aquatic invertebrates that moved only to the north and 4% are Mediterranean aquatic alien
invertebrates that moved only to the north; the rest include 27% of Ponto-Caspian aquatic
alien invertebrates that moved to the north and south and 6% of Mediterranean aquatic
alien invertebrates that moved to the north and south. The one-way movement into the
south (into warmer areas) was observed only in the case of 2% of species from Southern
Europe (only Mediterranean aquatic alien invertebrates).

Figure 1. Location of the Mediterranean and Ponto-Caspian regions and directions of movements
of species.
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Figure 2. Movement of Southern European aquatic alien invertebrate species to the north and south
(based on data from GBIF (Global Biodiversity Information Facility) [38] and GRIIS (Global Register
of Introduced and Invasive Species) [40].
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Figure 3. GAM models presenting curves of movement over time of Mediterranean aquatic alien in-
vertebrates, based on GBIF (Global Biodiversity Information Facility) [38]. (a) Northward movement;
(b) Southward movement.
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Figure 4. GAM models presenting curves of movement over time of Ponto-Caspian aquatic alien
invertebrates, based on GBIF (Global Biodiversity Information Facility) [38]. Northward movement.
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Table 1. Mediterranean aquatic alien invertebrate species that are characterised by movement, based
on GBIF (Global Biodiversity Information Facility) [38] and GRIIS (Global Register of Introduced and

Invasive Species) [40].

Species Group Movement Pathway of Introduction
1 Northward
J Southward
1 Atyaephyra desmarestii Crustacea T Corridor
(Millet, 1831)
2 Brachynotus sexdentatus Crustacea T/ NA
(Risso, 1827)
3  Gammarus pulex Crustacea 1] NA
(Linnaeus, 1758)
4 Gammarus roeselii Crustacea 1 Corridor
(Gervais, 1835)
5  Echinogammarus berilloni Crustacea 71 Corridor
(Catta, 1878)
6 Proasellus coxalis Crustacea 7 Corr41dor, sty il
fouling
(Dollfus, 1892)
7  Proasellus meridianus Crustacea 7 COI‘I:IdOI‘, sty il
fouling
(Racovitza, 1919)
8  Aporrhais pespelecani Mollusca 1 NA
(Linnaeus, 1758)
9  Bela menkhorsti Mollusca | NA
(van Aartsen, 1988)
10  Bogia labronica Mollusa { NA
(Bogi, 1984)
11 Mytilus galloprovincialis Mollusca 1 Aquaculture
(Lamarck, 1819)
12 Tritia corniculum Mollusca 1| NA
(Olivi, 1792)

Abbreviation: NA—not available.

Table 2. Ponto-Caspian aquatic alien invertebrate species that are characterised by movement, based
on GBIF (Global Biodiversity Information Facility) [38] and GRIIS (Global Register of Introduced and

Invasive Species) [40].

Species Group Movement Pathway of Introduction
1 Northward
J Southward
1 Amathillina cristata Crustacea 7 NA
(G.O.Sars, 1894)
2 Amathillina pusilla Crustacea T NA
(G.O. Sars, 1896)
3 Cardiophilus marisnigrae Crustacea 7 NA
(Miloslawskaya, 1931)
4 Caspiocuma campylaspoides ~ Crustacea 1 NA
(G.O. Sars, 1897)
5  Cercopagis pengoi Crustacea 1 Catils, sy gritocling,
ballast waters
(Ostroumov, 1891)
6  Chaetogammarus placidus Crustacea 1 NA
(G.O. Sars, 1896)
g Chactogammarus Crustacea 1 Deliberate with fish/shellfish
warpachowskyi
(Sars, 1897)
8  Chelicorophium chelicorne Crustacea 71 NA

(G.O. Sars, 1895)
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Table 2. Cont.

Species

Group

Movement
1 Northward
J Southward

Pathway of Introduction

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Chelicorophium
curvispinum

(G.O. Sars, 1895)
Chelicorophium maeoticum
(Sowinsky, 1898)
Chelicorophium nobile
(G.O. Sars, 1895)
Chelicorophium
mucronatum

(G.O. Sars, 1895)
Chelicorophium robustum
(G.O. Sars, 1895)
Chelicorophium sowinskyi
(Martynov, 1924)
Compactogammarus
compactus

(G.O. Sars, 1895)
Cornigerius bicornis
(Zernov, 1901)
Cornigerius lacustris
(Spandl, 1923)
Cornigerius maeoticus
(Pengo, 1879)
Dikerogammarus bispinosus
(Martynov, 1925)
Dikerogammarus
haemobaphes

(Eichwald, 1841)
Dikerogammarus villosus
(Sowinsky, 1894)
Ectinosoma abrau
(Krichagin, 1877)
Echinogammarus ischnus
syn. Chaetogammarus
ichnus

(Stebbing, 1899)

Euxinia sarsi

(Sowinsky, 1898)
Echinogammarus trichiatus
(Martynov, 1932)
Echinogammarus
warpachowskyi

(G.O. Sars, 1894)
Euxinia weidemanni
(G.O. Sars, 1896)
Evadne anonyx

(G.O. Sars, 1897)
Hemimysis anomala
(G.O. Sars, 1907)
Heterocope caspia

(Sars G.O., 1897)
Hypaniola kowalewskii
(Grimm and Annenkova,
1927)

Iphigenella acanthopoda
(G.O. Sars, 1896)

Crustacea

Crustacea

Crustacea

Crustacea

Crustacea

Crustacea

Crustacea

Crustacea

Crustacea

Crustacea

Crustacea

Crustacea

Crustacea

Crustacea

Crustacea

Crustacea

Crustacea

Crustacea

Crustacea

Crustacea

Crustacea

Crustacea

Crustacea

Crustacea

T

e e

™

NA

NA

NA
NA

NA

NA

NA

NA
NA
Canals

Corridor, vessels
Corridor, vessels

Corridor, vessels
NA

Corridor, vessels

NA

Corridor
NA

NA

Canals, shipping
Stowaway, ballast water
NA

Fauna improvement

NA
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Table 2. Cont.

Species Group Movement Pathway of Introduction
1 Northward
J Southward

33 Jaera istri Crustacea 7 Corridor
(Veuille, 1979)

34 Jaera sarsi Crustacea 7 Canals
(Valkanov, 1936)

35  Katamysis warpachowskyi Crustacea 7T Canals
(G.O. Sars, 1893)

36  Kuzmelina kusnezowi Crustacea 7 NA
(Sowinsky, 1894)

37 Lanceogammarus Crustacea 71 NA
andrussowi
(G.O. Sars, 1896)

38  Limnomysis benedeni Crustacea T Corridor
(Czerniavsky, 1882)

39  Niphargoides corpulentus Crustacea 7T NA
(G.O. Sars, 1895)

40 Niphargogammurus Crustacea 1 NA
intermedius
(Carausu, 1943)

41  Niphargus hrabei Crustacea 71 NA
(S. Karaman, 1932)

42 Obesogammarus crassus Crustacea 1] Aquaculture
(G.O. Sars, 1894)

43 Obesogammarus obesus Crustacea 7 Canals, vessels
(G.O. Sars, 1894)

44  Paramysis lacustris Crustacea T4 Fisheries
(Czerniavsky, 1882)

45  Paraniphargoides motasi Crustacea 1] NA
(Carausu, 1943)

46  Pontogammarus robustoides ~ Crustacea 1 NA
(Sars, 1894)

47  Pontogammarus abbreviatus ~ Crustacea 1 NA
(G.O. Sars, 1894)

48  Pontogammarus aestuarius ~ Crustacea 71 NA
(Derzhavin, 1924)

49  Pontogammarus borceae Crustacea 1/ NA
(Carausu, 1943)

50  Pontogammarus maeoticus Crustacea 1| NA
(Sovinskij, 1894)

51  Shablogammarus chablensis ~ Crustacea 71 NA
(Carausu, 1943)

52 Shablogammarus subnudus ~ Crustacea 1 NA
(G.O. Sars, 1896)

53  Stenogammarus carausui Crustacea 1 NA
(Derzhavin and Pjatakova,
1962)

54  Stenogammarus compressus ~ Crustacea 1] NA
(G.O. Sars, 1894)

55  Stenogammarus macrurus Crustacea 71 NA
(Sars, 1894)

56  Stenogammarus similis Crustacea 1] NA
(Sars, 1894)

57  Turcogammarus aralensis Crustacea 1 NA
(Uljanin, 1875)

58 Ur.m?ip hargoides Crustacea 71 NA
spinicaudatus

(Carausu, 1943)
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Table 2. Cont.

Species Group Movement Pathway of Introduction
1 Northward
J Southward
59 Yogmelina limana Crustacea 71 NA
(Karaman and Barnard,
1979)
60 Abra segmentum Mollusca 14 NA
(Récluz, 1843)
61  Dreissena polymorpha Mollusca 1 NA

(Pallas, 1771)

Dreissena rostriformis Corridor, stowaway,

62 Mollusca 1|

bugensis contaminant
(Andrusov, 1897)

63  Dreissena rostriformis Mollusca 1 NA
(Deshayes, 1838)

64  Euxinipyrgula lincta Mollusca 1 NA
(Milaschewitsch, 1908)

65  Hypanis colorata Mollusca 1 NA
(Eichwald, 1829)

66  Hypanis pontica Mollusca 1 NA
(Eichwald, 1838)

67  Hypanis fragilis Mollusca 1 NA
(Milaschevitch, 1908)

68  Hypanis glabra Mollusca 1 NA
(Ostroumoff, 1905)

69  Lithoglyphus naticoides Mollusca 1 Corridor
(C.Pfeiffer, 1828)

70  Viviparus acerosus Mollusca 1 Release, escape
(Bourguignat, 1862)

71  Blackfordia virginica Cnidaria 1] NA
(Mayer, 1910)

72 Cordylophora caspia Cnidaria 1 ?éixl/;/ﬁ;vay, e
(Pallas, 1771)

73 Caspiobdella fadejewi Annelida 1 NA
(Epshtein, 1961)

74  Hypania invalida Annelida 1 Stowaway, hull, fouling
(Grube, 1860)

75  Hypaniola kowalewskii Annelida 1 NA
(Grimm and Annenkova,
1927)

76  Isochaetides michaelseni Annelida 1 NA
(Lastockin, 1937)

77  Potamothrix heuscheri Annelida 1J Corridor
(Bretscher, 1900)

78  Potamothrix vejdovskyi Annelida 1| Clomilé oy Ghovnay, balast

water

(Hrabe, 1941)

79  Potamothrix moldaviensis Annelida 1 NA
Vejdovsky and Mrazek,
1903

80  Potamothrix bavaricus Annelida 1| NA
(Oschmann, 1913)

81  Potamothrix bedoti Annelida 1J NA
(Piguet, 1913)

82  Potamothrix hammoniensis ~ Annelida T NA
(Michaelsen, 1901)

Corridor, stowaway, ballast

83  Psammoryctides moravicus ~ Annelida T B

(Hrabe, 1934)
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Table 2. Cont.

Species Group Movement Pathway of Introduction
1 Northward
J Southward
84  Tubificoides diazi Annelida 1J NA
(Brinkhurst and Baker,
1979)
85  Tubifex newaensis Annelida 1 NA
(Michaelsen, 1903)

Abbreviation: NA—not available.

Table 3. Statistics of GAMs of Mediterranean aquatic alien invertebrate species movement, including
significance levels (p-values) and degrees of freedom (d.f.) only for species with significant differences

at the 0.05 level.

Statistics of Movement

Species Taxonomic Position 1 Northward J Southward
p-Value df.  p-Value d.f.

Gammarus pulex

(Linnaeus, 1758) Crustacea 0.010010 4

Gammarus roeselii

(Gervais, 1835) Crustacea 0.0000001 4

Echinogammarus berilloni

(Catta, 1878) Crustacea 0.002880 4

Aporrhais pespelecani Mollusca 0.014661 4

(Linnaeus, 1758) '

Mytilus galloprovincialis Mollusca 0.789822 4 0.0000001 4

(Lamarck, 1819)

Table 4. Statistics of GAMs of Ponto-Caspian aquatic alien invertebrate species movement, including
significance levels (p-value) and degrees of freedom (d.f.) only for species with significant differences

at the 0.05 level.
Statistics of Movement
Species Taxonomic Position 1 Northward J Southward
p-Value df.  p-Value d.f.
(Célegc‘;:i h i{’S"; SC)” FOISPIRUIL o stacea 0.0000001 4
élz”:;flﬁfsliybefggg”” Crustacea 0.000002 4
g);:lilsasga;z;;oll)y morpha Mollusca 0.048831 4
(Dpffﬁiflns‘;goigg;; mis DUGensis — yrolusca 0005452 4
é‘ghgﬁ"i’frf’gsl’;gg"ides Mollusca 0.000627 4
géyr "iﬁfem fgzg;id” Annelida 0014347 4
%iacﬁf:; Zﬁ/bfggcus Annelida 0.0000001 4
fﬁi’ﬁgzg fl‘;’gg‘)’”iemg Annelida 0.000046 4
Tubificoides diazi Annelida 0.000078 4

(Brinkhurst and Baker, 1979)
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3.2. Long-Term Trends in the Movement of Southern European Aquatic Alien Invertebrate Species

The long-term tendency in the movement of Southern European aquatic alien inver-
tebrate species to higher northern latitudes (observed in the majority—in 98% of species)
shows that these species generally moved to cooler areas. But in the case of some species,
movement to the south occurred. However, the number of geographical coordinates con-
firming the movement of species to the south was not sufficient for the preparation of the
plot in GAM.

The shapes of the trends of movements over time in GAMs for each species (if suffi-
cient data were available) are illustrated in Figures 3 and 4. Based on the changes in the
maximum/minimum latitude over time, the movement of the analysed species to the north,
towards higher latitudes, and/or to the south, towards lower latitudes, was confirmed.
Interestingly, in the case of some Southern European alien aquatic invertebrates, only one-
way movement to the south was recorded, but only in the case of the Mediterranean species
Muytilus galloprovincialis was GAM analysis possible. When the deviance residuals were
plotted against time (years), clear patterns were verified (Figures 3 and 4). The deviance
residuals in the presented models show how well the movement of species is confirmed
by the models and present a discrepancy between the observations and the estimated
curves. The GAMs confirmed that movement of Southern European aquatic alien species
occurs over time (Figures 3 and 4) and indicates that species display non-linear changes in
distribution over time. However, a GAM analysis of a multiyear dataset might reveal that
the movement in many cases is very low but in others is relatively high. Comparing the
shapes of the plots (Figures 3 and 4), the movement patterns of species differ among various
species depending on their origin. In the case of Mediterranean aquatic alien species, the
shapes are more linear, but in the case of Ponto-Caspian aquatic alien species, they are
usually more irregular.

4. Discussion
4.1. Movement of Southern European Aquatic Alien Invertebrates

The study provides the first evidence of long-term movements in the distribution of
Southern European aquatic alien invertebrate species using meta-analysis and GAM-based
modelling. The study demonstrates that GAM-based modelling could be used to create
non-linear, spatial changes in the distribution of species over time. Moreover, GAM-based
analyses better illustrate movement patterns than linear models, often used for confirmation
of distribution trends [45]. The movement of many Southern European aquatic alien species
was confirmed based on available data; for all the rest, there is a knowledge gap. The
obtained results were based on the analysed period (from the 1940s to the 2000s) and
depended on differences in research/monitoring/reporting efforts. Individual species’
movements vary in their rates of change. Perhaps different shapes of movement could
identify different responses of species towards environmental conditions, e.g., temperature,
salinity, habitat degradation, etc., as a result of different introduction pathways.

The rate of settling of aquatic alien invertebrate species is influenced by a combi-
nation of morphological, behavioural, and ecological features [17,46]. A comprehensive
understanding of these traits and interactions is crucial for predicting and managing the
spread of aquatic alien species. Morphological adaptations can play a crucial role in the
settlement success of alien aquatic invertebrates. Features such as body shape, size, and
dispersal mechanisms can affect their ability to colonise new environments. For example,
species with efficient dispersal structures such as specialised appendages or buoyancy
adaptations may have a higher settlement rate compared to those lacking such traits [17,47].
Behavioural traits of aquatic alien invertebrates can significantly influence their ability to
settle in new habitats. For instance, the ability to respond to a wide range of environmental
conditions, different resource availability, and competitive interactions with native species
can impact the success of settlement [19,36]. Behavioural traits related to, e.g., feeding habit,
capacity for behavioural thermoregulation, and aggression can influence the establishment
and spread of alien species [17,33,48]. Physiological traits, including quiescence and dor-
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mancy (or diapause), which help to overcome adverse conditions, as well as tolerance of
a wide range of temperatures, euryeocity, and a high reproduction rate, are important in
the settlement success of alien species [17]. Understanding the ecological context in which
aquatic alien invertebrates settle is also essential. The availability of suitable resources,
including food, shelter, and reproductive sites, can greatly influence their establishment.
Furthermore, interactions with native species, both competitive and facilitative, can play a
pivotal role in determining the settlement rate of alien species [17,49]. Several case studies
provide valuable insights into the relationship between morphological, behavioural, physi-
ological, and ecological features and the settlement rate of alien aquatic invertebrate species.
By examining specific examples, such as, e.g., the zebra mussels (D. polymorpha) and the
killer shrimp (D. villosus), we can observe how their unique characteristics contribute to the
rapid colonisation of new habitats [19,50,51].

By identifying the key morphological, behavioural, physiological, and ecological traits
associated with the successful settlement of aquatic alien species, we can enhance early
detection and implement targeted control measures to prevent or mitigate their negative
impacts on native ecosystems [52].

Moreover, we should understand that aquatic alien invertebrates from Southern Eu-
rope gained the opportunity for movement through different pathways. As a consequence
of shipping and the creation of navigable canals and waterways enabling connections of the
Mediterranean and the Ponto-Caspian regions with other parts of Europe, their spread to
the north was possible [7,8], as was movement to the south [53]. The northward movement
was confirmed in this study by the majority of Southern non-indigenous aquatic species.
This is in line with previous observations: Ponto-Caspianization of central and western
European waterways [54]. Interestingly, some Southern European aquatic invertebrates
moved to the south, into lower latitudes, where they most probably evolved elevated upper
thermal limits relative to the species in northern latitudes, facilitating their establishment in
warm water bodies [55] (Figure 2; Tables 1-4). Generally, it is well known that temperature
variability imposes intensified peak stress [56]. However, detailed knowledge of which
individuals and species are most likely to survive and why under upper thermal limits
is poor, indicating that smaller individuals survived to higher temperatures than large
animals and active species survived to higher temperatures than sessile or low-active
species when temperatures were raised acutely [57]. Ecological generalists, with higher
heat tolerances, are competitive at more extreme and increasing temperatures [58].

A major problem is that changes in the extent and impacts of invasions are occurring
with the accumulation of impacts and through synergisms with other components of global
change [59].

4.2. Responses of Southern European Aquatic Alien Invertebrates to Changing Conditions

The analysed species were able to move outside their original ranges of distribution.
Most likely, increases in regional sea temperatures have triggered a major northward
movement of species. Projected climate change in the Mediterranean and Ponto-Caspian
areas with higher temperatures and increased periodic drought can be expected to further
increase the instability of habitats [60-62]. Climate warming will accelerate the movement
process and favour species movement from southern to northern latitudes in Europe [62]
in search of more favourable thermal conditions compared with those existing in the
original areas.

Southern aquatic species may have only a northern direction of movement if climate
change is the only reason affecting movement. However, the latest studies report that
another reason for species’” movements is most likely the destruction of habitats they
previously inhabited. In fact, biodiversity loss in the Mediterranean and Ponto-Caspian
regions may be caused by habitat degradation, coastal infrastructural development, and
damming of rivers, so biodiversity here is under threat [62,63]. Habitat modifications
disturbed previous natural salinity gradients and settings in the Ponto-Caspian area [61].
In many places in the Ponto-Caspian area, native species have been replaced by invasive
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species, e.g., Mytilopsis leucophaeata (Conrad, 1831), Potamopyrgus antipodarum (Gray, 1843),
Rhithropanopeus harrisii (Gould, 1841), and other euryhaline species [62]. Similarly, the
Mediterranean region is regarded as a hot spot for invasive alien species that tend to
decline native species [64].

4.3. Management Implications

The results of this study may suggest several recommendations for management
actions in areas of the introduction of Southern European aquatic invertebrate species. The
Convention on Biological Diversity (CBD) prioritises preventing the introduction of alien in-
vasive species and thereby avoiding adverse impacts. Firstly, on-going monitoring activities
are recommended to record new species. Many Mediterranean and Ponto-Caspian aquatic
invertebrates are easily adaptable to novel environments, e.g., [17,65]. Unfortunately, these
species are generalists [65-68]—they utilise different food sources and have relatively wide
thermal tolerance [69,70]. Some of these are tending to decline, compete, and displace na-
tive species from their habitats [71-73] and to re-engineer the new ecosystems [74]. Further
changes in the distribution of Southern European aquatic alien invertebrate species are
expected due to climate change and the degradation of habitats in their native areas. Once
these species become established, management is difficult and economically costly [75]. It
aims for species eradication, complete reproductive removal, containment, and/or popula-
tion suppression [76]. But new invaders are nearly impossible to fully eradicate [77], so
early identification of aquatic alien invaders in new areas should be prioritised because
species management is not working well in the marine realm.

Pathogens and parasites are the next aspects connected with species movement. Associ-
ated life, e.g., bacteria, viruses, fungi, and other organisms, as well as different epibionts and
endobionts, may be consequences of alien species introduction because alien species may
carry new organisms [78,79], with unpredictable consequences for humans and other biota.

Therefore, understanding the movement of Southern European aquatic alien inver-
tebrate species enables managers to identify threats and prioritise management actions.
An important way to reduce introductions is to manage vectors and pathways [80]. As
shipping is the primary pathway for the introduction of aquatic organisms, mainly inverte-
brates [81,82], it needs such management actions as, e.g., hull cleaning, antifouling, and
ballast water exchange [83]. Such actions have the potential to reduce the establishment
and spread of aquatic alien species. But not always mentioned interventions are sufficient.
Dispersal corridors (water corridors among marine basins) are also considered introduction
pathways and require responsibility [84-87]. Another pathway of introduction of aquatic
alien species is cultivation, and some invertebrates, e.g., the commercial species of the
mussel Mytilus galloprovincialis (Lamarck, 1819), are introduced in this way. The potential
impact of the species once it is established in the new aquatic ecosystem is uncertain be-
cause it can outcompete native mussels and because of its high reproductive potential and
adaptability to different environments [87]. Prevention measures for such species should
include prohibiting cultivation in foreign areas and monitoring unintentional introductions.

Effective biological management demands complex multisectoral and multinational
collaboration, and much work remains to be carried out. Success in such ventures holds
the key to reducing the influx of alien species.

On the other hand, climate change and habitat degradation facilitate alien species
movement [56,88] and should be limited.

5. Conclusions

Prevalent long-term trends in the movement of Southern European aquatic alien
invertebrates to the north were confirmed. The movement of Southern European aquatic
alien invertebrates to the south was also observed, but not on a sufficiently large scale.
Maybe in the future, if the observed trend is continued, Southern European alien species will
be common not only in the Northern Hemisphere [21], but also in the Southern one. Due to
the potentially adverse impact of many aquatic invasive alien species moving to the north
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and south, understanding changes in the geographical distribution of species has relevance
to management efforts. Understanding the morphological, behavioural, physiological and
ecological features associated with the settlement rate of aquatic alien species is vital for
developing effective management strategies. Strong human impacts, including shipping,
intensification of use of waterways, cultivation, climate change, and habitat degradation,
should be limited in the future. For sustainable use of aquatic ecosystems, preventing
actions (e.g., hull cleaning, antifouling, ballast water exchange) should be prioritised.
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