

Research Article

Forest Structure, Tree Species Diversity, and Distribution in Ukpon River Forest Reserve, Cross River State, Nigeria

Abstract

For effective conservation management, it is crucial to comprehend the diversity, abundance, and distribution of the forest as wildlife habitat. The fundamental composition of the forest is significantly influenced by the ecological features of the sites, species diversity, and rate of tree species regeneration. This finding aimed to assess the diversity, abundance, and distribution of tree species as suitable habitat for wildlife species and for sustainable forest management, climate change mitigation, and environmental resilience. The study was conducted in dry season (between 5th September, 2021 and April, 2022). Purposive sampling techniques and systematic line transects were used for data collection and plot delineation. There were laid 8 transects, each 1000 meters long and 500 meters apart. Descriptive statistics such as mean, frequencies, and percentages were used to analyze the data. Correlation analyses and diversity indices were carried out using the R programming software. In the study area, 68 tree species from 34 families were found. Meliacea (6 trees per ha), Caesalpiniceae, and Moracea (5 trees per ha) were the three most common tree species in the study area. Melicia excelsa showed the highest relative frequency (2.256%) and (2.241%). The species Bialonella toxisperma had the highest relative dominance (4.970%). In Melicia excelsa, IVI recorded the highest value (4.970%). The tallest tree and Dbh (Diameter at Breast Height) measured 80.5 cm and 68.3m). The Margelef index was 36.10, the Shannon Wiener index was 5.058, and species richness was 68. However, the high proportion of smaller-diameter trees in the forest reserve implies that, it is strong and healthy. Since natural areas play a critical role in slowing down climate change, strict oversight of these areas should be strongly encouraged.

Keywords: tree species, diversity, distribution, abundance, okpon river

Introduction

Understanding the forest stands' structure, diversity, abundance, and distribution is essential for conservation management. The ecological characteristics of the sites, species diversity, and the rate of tree species regeneration all play a significant role in the fundamental structure of the forest. Tree species abundance and diversity are essential to the overall biodiversity of forests because trees provide resources such as food, traditional medicine, timber, shade, and habitats for fauna Sushma et al.,¹ Due to numerous anthropogenic factors, the extent of species decline in the second half of the 20th century became a universal or global problem.² The provision and protection of biodiversity services are crucial to describing the pattern of forest structure in order to control or manage the increasing rate of anthropogenic activities within the forest estate.³ The variation in tree species diversity among forest reserves has been attributed to a variety of factors. According to Malhil et al.,4 and Lippok et al.,5 topography has a significant impact on the local endemism of plant species. Franscico et al., reported that disturbance has an impact on diversity and regeneration, including changes in tree growth, tree mortality, understory development in relation to forest reserves, and habitat heterogeneity. Forests are one of the main vegetative elements in India (as well as Nigeria), and they serve as a priceless repository for numerous economically significant species as well as the genetic material for many crop plants and their wild relatives.⁵ Basic understanding of key elements' spatial and temporal ranges as well as the main environmental factors that influence their survival and distribution is necessary for sustainable conservation management.⁶

Volume 7 Issue 2 - 2023

Esor PE,¹ Amonum JI,² Agera SIN²

¹Department of Forestry and Wildlife Management, Cross River University of Technology Calabar, NIgeria ²Department of Forest Production and products, College of Forestry and Fisheries, Joseph Sarwuan Tarka University Makurdi, Nigeria

Correspondence: Esor PE. Department of Forestry and Wildlife Management Cross River University of Technology Calarba, Nigeria, Email esorpeterekpo@yahoo.com

Received: February 24, 2023 | Published: May 04, 2023

Materials and methods

The study area

Okpon River Forest Reserve was gazetted by Cross River State in 1930. The reserve occupied a land mass of 31,300 hectares, covering two local government areas, Obubra and Yakurr, respectively. The Reserve lies between Latitudes $5^{0} \cdot 40^{1}$, $5^{0}.50^{1}$ and $6^{0}.00^{1}$, $6^{0} \cdot 10^{1}$ North of the Equator and Longitude 8^{0} . 10^{1} , 8^{0} . 20^{1} and $8^{0}.30^{1}$, 8^{0} . 40^{1} East of the Greenwich Meridian Figure 1. The reserve is bounded in the north by Etung and Ikom LGAs, south by Baise LGA, west by Abi LGA, and east by Eboyi State.

Sampling techniques/procedure

Transects and plots were selected using systematic and purposeful sampling techniques. For the purpose of counting the species of plants, eight (8) transects were set up. At regular intervals of 250 m along the transects, four plots of 50 m x 50 m (0.25 ha) size were systematically placed alternately along each transect. A hundred metres separated each transect. All woody plants with a diameter at breast height (dbh) less than 10 cm were the only ones eligible for measurement and identification.

Data collection and analyses

The study was conducted in dry season (between September, 2021 and April, 2022). Data collected was based on Dbh (\geq 10 cm). The height of each individual tree was measured using a sunto clinometer, while the diameter of the trees was measured using a diameter tape.

Int J Avian & Wildlife Biol. 2023;7(2):46-54.

nit Manuscript | http://medcraveonline.con

©2023 Esor et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and build upon your work non-commercially.

The diameter at breast height (> 10 cm dbh), importance value index (IVI), relative frequencies, relative dominance, relative density, and height of the entire individual tree were all calculated.

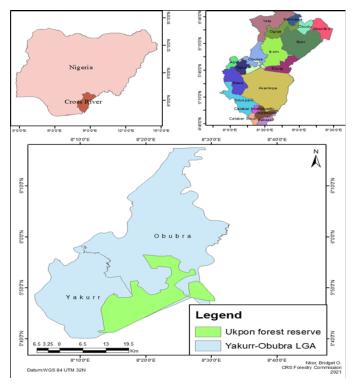


Figure I Map of Okpon river forest reserve.

The 2017 version of the Microsoft Word and Excel package was used to impute the collected data. We used descriptive statistics like means, percentages, tables, and charts. Using diversity indices, the RF, RD, RDO, and IVI of tree species were calculated. The threshold for statistical significance was (P 0.005%). In the "R" software, correlation analysis and diversity indices were both carried out.

Basal areas: of all trees in the samples plots were calculated using the formula:

$$BA = \frac{\pi D^2}{4} \tag{1}$$

B.A= Basal Area (m²), D= Diameter at Breast Height (cm) and π =(3.142).

Species Relative density (RD %):

$$RD = \frac{ni \times 100}{N} \tag{2}$$

RD = Relative density of the species, ni = Number of individuals per species and N = Total number of all individual tree of all species in the entire population.

Species Relative Dominance (%) was estimated using the following equation:

$$RD_0 = \frac{\sum B\alpha_1 \times 100}{\sum B\alpha_n} \tag{3}$$

 $Ba_1 = Basal$ area of individual tree belonging to the ith species and $Ba_n = Stand$ basal area.

Shannon – wiener diversity index was calculated using the following equation:

$$H = -\sum_{l=1}^{N} P_l ln(P_l) \tag{4}$$

H' = Shannon diversity index, S = the total number of species in the community, P_1 = Proportion S (species in the family) made *u* to the ith spp and In = natural logarithm.

Important Value Index:

$$IVI = RF + RD + RD$$
 (5)

RD = Relative density of the species; RD_0 = relative dominance

Results

Forest Structure of the Ukpon River Forest Reserve

Table 1 shows the diameter of breast height and the total height of species at the Okpon Forest Reserve. The maximum and minimum diameters at the base were recorded as 80.5 cm and 10.1 cm, with a mean of 25.1 cm and SD of 13.2. The mean total height was 28.6 m, with a standard deviation of 14.1 m. A minimum total height of 5.2 and a maximum of 68.3 m, with a mean of 28.6 m, were recorded in the study area. The diameter distribution in Figure 2 revealed that tree species within the diameter at breast height (dbh) distribution ranged from 10 cm to 70 cm. Fifty-five (55) trees belonged to the Dbh class (10 cm to 20 cm) and were the most frequently occurring in the area, representing 47%. This was followed by trees in the diameter class of 20cm - 40cm with twenty five (25) trees/ha representing 17.10%. the least number of stem (15tree/ ha) and (10 trees/ha) falls under diameter class of 40cm - 50cm and 50cm to 60cm representing 11.1% and 5.0% respectively while the least species within the diameter range of 60 cm > 70 cm represented 11.1 % and 5.0% respectively. Based on the result of this finding Figure 3, the total height of tree species in the study area ranged from 10 to 70 m. Forty trees (40/ ha) belonged to the tree height class of 20-30 m, representing 35%, followed by the tree height class of 30-50 m, with 25 trees representing 39.4%. Similarly, 20 trees/ha falls between the height classes of 50 -60m trees represented 12.8% of the entire tree species in the study location. Ten trees belonged to the height class between 60 and 70 m, representing 7.6%, while 5 trees per ha belonging to the height classes of 10 to 20 m and > 70 m were in the range of 2.6 each.

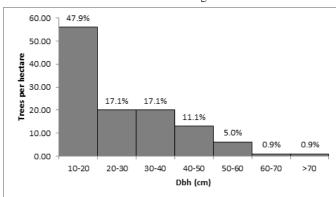


Figure 2 Diameter at breast height distribution of tree species in Okpon river forest reserve.

Tree species diversity and distribution in okpon river forest reserve

The results of this study recorded 248 tree species belonging to 55 families. Caesalpinaceae had the highest number of species (24

trees per ha), followed by *Moraceae* (20 trees per ha), *Euphorbiaceae* (15 trees per ha), *Apocynaceae* and *Steculiaceae* (12 trees per ha), *Leguminocea* (10 trees per ha), *Annonaceae* (9 trees per ha), and Rutaceae (8 trees per ha). These families were regarded as the most dominant in the forest reserve. *Sapindaceae* and *Ebeneceae* had 7 species each, Rubiaceae had 6 species, Mimosaceae and *Ulmaceae* 5 tree Sapotaceae and *Anacardiaceae* 4 species, *Gentianaceae* and *Lauraceae* families 3 species. Eleven families recorded two species, while twenty (20) families recorded one species each (Table 2).

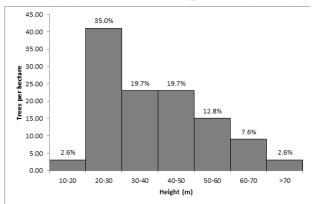


Figure 3 Total height distribution of trees at the okpon river forest reserve.

Table	I Summary	statistics of grov	vth variables in Okpc	on river forest reserve
-------	-----------	--------------------	-----------------------	-------------------------

Parameters	Dbh (cm)	Ht (m)
Minimum	10.1	5.2
Max	80.5	68.3
Mean	25.1	28.6
Standard deviation	13.2	14.1
Sample Size	937	937

Relative Frequency, Relative Density, Relative Dominance, and Importance Value Index (IVI) of Tree Species at Okpon Forestry Reserve

The result indicates that *Brachystegia eurycoma* and *Melicia excelsa* had the highest relative frequency of (2.266) followed by *Khaya ivorensis* (1.933%), *Diospyros mespiliformis, Funtunia elastic, and Lophira alata, which* recorded the same relative frequency of (1.826%). The least relative frequency of (0.107%) were recorded in 107 tree species Table 2. The results of the relative density of tree species at the Okpon forestry reserve presented in Table 2 showed that *Brahystegia erycoma* recorded the highest relative density of (2.241%), closely followed by *Khaya ivorensis and Milicia excelsa* that recorded the same value (2.028%), *Lophira alata* (1.814%), and *Entandrophragma utile* (1.708%), while the least relative density of (0.107%) was recorded in ninety-six (96) tree species.

Milicia excelsa recorded the highest relative dominance (4.970%), followed by *Piptadeniastrum africana* (4.643%), and *Brachystegia erycoma* (3.089%). The least relative dominance was obtained in *Kigela africana* (0.016%). *Brachystegia erycoma recorded* the highest IVI of 10.66%, followed by *Milicia excelsa* (9.46%) and *Khaya ivorensis* (6.865%). The lowest IVI of 0.228% was in *Ficus muccuso and Mansonia altissima* (Table 2).

Table 2 Species composition, abundance, and I	VI at Okpon river forest reserve CRS, Nigeria
---	---

S/No	Species	Family	RF(%)	RD(%)	RDo(%)	IVI
I	Acioa pallescens	Chysobalana	0.322	0.32	0.177	0.819
2	Aeglopsis chevalieri	Rutaceae	0.43	0.427	0.268	1.125
3	Afrormosia elata	Leguminosae	0.644	0.64	0.312	I.597
4	Afrostyrax lepidophyllus	Styraceae	0.107	0.107	0.039	0.253
5	Afzelia africana	Caesalpinaceae	0.322	0.32	0.267	0.909
6	Afzelia bella	Caesalpinaceae	0.322	0.32	0.295	0.937
7	Afzelia bipindensis	Leguminosae	0.43	0.427	0.161	1.018
8	Afzelia pachyloba	Caesalpinaceae	0.107	0.107	0.053	0.267
9	Albizia lebbeck	Leguminosae	0.107	0.107	0.023	0.237
10	Albizia adianthitolia	Mimosaceae	0.107	0.107	0.027	0.242
11	Albizia ferruginea	Leguminosae	0.43	0.427	0.177	1.033
12	Albizia gummifera	Leguminosae	0.215	0.213	0.094	0.523
13	Albizia zygia	Leguminosae	0.43	0.427	0.333	1.19
14	Alchornea cordifolia	Euphorbiaceae	0.215	0.213	0.054	0.482
15	Alchornea laxiflora	Euphorbiaceae	0.43	0.427	0.085	0.942
16	Allanblackia floribunda	Cluciaceae	0.644	0.64	0.509	1.794
17	Allophylus africana	Sapindaceae	0.107	0.107	0.127	0.342
18	Alophyllus africanum	Sapindaceae	0.107	0.107	0.056	0.27
19	Alstonia boonei	Apocynaceae	0.967	0.961	0.969	2.896
20	Alstonia congensis	Apocynaceae	0.859	0.854	0.965	2.678
21	Amphimas pterocarpoides	Leguminosae	0.43	0.427	0.209	1.065
22	Angylocalyx oligophyllus	Leguminosae	0.43	0.427	0.279	1.136
23	Aningeria robusta	Sapotaceae	0.215	0.213	0.03	0.459
24	Anonidum mannii	Annonaceae	0.107	0.107	0.042	0.256
25	Anthocleista djalonesis	Gentianaceae	0.107	0.107	0.134	0.348

S/No	Species	Family	RF(%)	RD(%)	RDo(%)	IVI
26	Anthocleista nobilis	Gentianaceae	0.107	0.107	0.032	0.246
27	Anthocleista vogelii	Gentianaceae	0.107	0.107	0.12	0.334
28	Anthonotha macrophylla	Caesalpinacea	0.107	0.107	0.101	0.315
29	Antiaris africana	Apocynaceae	0.107	0.107	0.053	0.267
30	Antiaris toxicaria	Moraceae	0.644	0.64	0.216	1.501
31	Antiaris welwitschii	Moraceae	0.215	0.213	0.051	0.48
32	Antidesma laciniatum	Euphorbiaceae	0.215	0.213	0.097	0.525
33	Antrocaryon micraster	Anacardiaceae	0.107	0.107	0.017	0.231
34	Aubregrinia taiensis	Mimosaceae	0.215	0.213	0.037	0.466
35	Avicennia africana	Avienniaceae	0.43	0.427	0.209	1.066
36	Azadirachta indica	Meliaceae	0.322	0.32	0.192	0.835
37	Baillonella toxisperma	Sapotaceae	1.504	1.494	3.672	6.67
38	Balanites wilsoniana	Balanitaceae	0.322	0.32	0.147	0.789
39	Baphia maxima	Papiloniaceae	0.537	0.534	0.2	1.271
40	Baphia nitida	Papiloniaceae	0.537	0.534	0.247	1.318
41	Barteria fistulosa	Passifloraceae	0.215	0.213	0.036	0.464
42	Barteria nigritana	Passifloraceae	0.322	0.32	0.263	0.906
43	Beilschmiedia gaboonensis	Lauraceae	0.322	0.32	0.182	0.825
44	Beilschmiedia mannii	Lauraceae	0.107	0.107	0.042	0.256
45	Berlinia auriculata	Caesalpinaceae	0.215	0.213	0.164	0.592
46	Berlinia bracteosa	Caesalpinaceae	0.107	0.107	0.017	0.231
47	Blighia sapida	Sapindaceae	0.215	0.213	0.163	0.592
48	Blighia unijugata	Sapindaceae	0.215	0.213	0.098	0.526
49	Blighia welwitschii	Sapindaceae	0.107	0.107	0.032	0.246
50	Bombax buonopozense	Bombaceae	1.611	1.601	2.071	5.283
51	Bosqueia angolensis	Moraceae	0.537	0.534	0.339	1.41
52	Bosquiea phoberos	Moraceae	0.322	0.32	0.07	0.713
53	Brachystegia eurycoma	Caesalpinaceae	2.256	2.241	6.17	10.667
54	Brachystegia kennedy	Caesalpinaceae	0.107	0.107	0.115	0.33
55	Brachystegia nigerica	Leguminosae	1.289	1.281	3.089	5.659
56	Brenania brieyi	Rubiaceae	0.215	0.213	0.255	0.683
57	Bridelia atroviridis	Euphorbiaceae	0.107	0.107	0.087	0.301
58	Bridelia ferruginea	Euphorbiaceae	0.322	0.32	0.188	0.831
59	Caloncoba glauca	Flacourtiaceae	0.537	0.534	0.231	1.301
60	Calpocalyx brevibracteatus	Mimosaceae	0.43	0.427	0.258	1.115
61	Calpocalyx spp	Mimosaceae	0.107	0.107	0.016	0.23
62	Carapa procera	Apocynaceae	0.43	0.427	0.171	1.027
63	Carpolobia alba	Apocynaceae	0.107	0.107	0.043	0.258
64	Carpolobia lutea	Apocynaceae	0.107	0.107	0.049	0.263
65	Casearia barteri	Salicaceae	0.107	0.107	0.053	0.267
66	Cassipourea congoensis	RPhizophoraceae	0.107	0.107	0.024	0.238
67	Ceiba pentandra	Bombaceae	1.826	1.814	2.635	6.275
68	Celtis mildbraedii	Ulmaceae	0.107	0.107	0.105	0.32
69	Celtis zenkeri	Ulmaceae	0.107	0.107	0.022	0.237
70	Chrysophyllum albidum	Sapotaceae	1.396	1.387	1.387	4.171
71	Chrysophyllum spp	Sapotaceae	0.215	0.213	0.15	0.579
72	Chrysophyllum subnudum	Sapotaceae	0.752	0.747	0.707	2.206
73	Chytranthus ellipticus	Sapindaceae	0.322	0.32	0.535	1.177
74	Cinnamomum zeylanicum	Lauraceae	0.43	0.427	0.186	1.043
75	Citrus spp	Rutaceae	0.644	0.64	0.178	1.463
76	Cleistanthus polystachyus	Euphorbiaceae	0.215	0.213	0.157	0.585
77	Cleistopholis patens	Annonaceae	0.215	0.213	0.08	0.508
78	Cola acuminate	Steruliaceae	0.537	0.534	0.169	1.239
79	Cola digitate	Steruliaceae	0.215	0.213	0.15	0.579
80	Cola gigantean	Steruliaceae	0.859	0.854	0.461	2.174
81	Cola heterophylla	Steruliaceae	0.322	0.32	0.296	0.939
82	Cola hispida	Steruliaceae	0.322	0.32	0.282	0.924
83	Cola nigerica	Steruliaceae	0.107	0.107	0.102	0.317
84	Cola nitida	Steruliaceae	0.43	0.427	0.204	1.061
85	Cola reticulata	Steruliaceae	0.107	0.107	0.031	0.245

Table 2 Continued...

S/No	Species	Family	RF(%)	RD(%)	RDo(%)	IVI
36	Combretodendron macrocarpum	Lecythidaceae	0.107	0.107	0.087	0.301
37	Cordia millenii	Bignoniaceae	0.107	0.107	0.032	0.246
38	Cynometra mannii	Caesalpinaceae	0.215	0.213	0.145	0.573
39	Cynometra megalophylla	Caesalpinaceae	0.107	0.107	0.04	0.254
90	Dacryodes edulis	Burseraceae	1.611	1.601	2.057	5.27
91	Dacryodes klaineana	Burseraceae	0.322	0.32	0.366	1.008
92	Daniellia ogea	Ceasalpinaceae	0.644	0.64	0.56	1.845
93	Dennettia tripetala	Annonaceae	0.215	0.213	0.042	0.47
94	Detarium senegalense	Caesalpinaceae	0.107	0.107	0.154	0.368
95	Dialium dinklagei	Caesalpinaceae	0.107	0.107	0.132	0.346
96	Dialium guineense	Caesalpinaceae	1.611	1.708	1.439	4.758
97	Dichaetanthera Africana	Melastomataceae	0.215	0.213	0.064	0.492
98	Dichapetalum spp	Melastomataceae	0.107	0.107	0.026	0.24
99	Didelotia Africana	Ceasalpinaceae	0.215	0.213	0.165	0.593
100	Diospyros abyssinica	Ebenaceae	0.107	0.107	0.121	0.335
101	Diospyros barteri	Ebenaceae	0.215	0.213	0.052	0.481
102	Diospyros dendo	Ebenaceae	0.43	0.427	0.193	1.05
103	Diospyros mannii	Ebenaceae	0.322	0.32	0.387	1.029
104	Diospyros mespiliformis	Ebenaceae	1.826	1.814	1.137	4.777
105	Diospyros nigerica	Ebenaceae	0.215	0.213	0.109	0.538
106	Diospyros preussi	Ebenaceae	0.322	0.32	0.169	0.811
107	Diospyrus spp	Ebenaceae	0.107	0.107	0.206	0.42
108	Distemonanthus benthamianus	Caesalpinaceae	0.107	0.107	0.025	0.239
109	Dracaena arborea	Dracaenaceae	0.43	0.427	0.283	1.139
110	Drypetes chevalieri	Euphorbiaceae	0.107	0.107	0.144	0.358
111	Ekebergia senegalesis	Meliaceae	0.215	0.213	0.072	0.5
112	Enantia chlorantha	Annonaceae	0.107	0.107	0.031	0.245
112	Entandrophragma angolense	Meliaceae	1.611	1.601	2.604	5.816
114	Entandrophragma cylindricum	Meliaceae	1.719	1.708	2.672	6.098
115	Entandrophragma utile	Meliaceae	0.537	0.534	0.774	1.845
115		Malvaceae	0.337	0.213	0.082	0.51
110	Eribroma oblonga Eriocoolum macrocarbum		0.215	0.213	0.082	0.51
	Eriocoelum macrocarpum	Sapindaceae				
118	Erythrina vogelii	Caesalpinaceae	0.322	0.32	0.257	0.899
119	Erythrophelum suaveolens	Caesalpinaceae	0.107	0.107	0.09	0.304
120	Erythroxylum mannii	Erthroxylaceae	0.215	0.213	0.124	0.552
121	Ficus capensis	Moracaae	0.752	0.747	0.157	1.656
122	Ficus congensis	Moraceae	0.537	0.534	0.149	1.22
123	Ficus exasperate	Moraceae	1.182	1.174	0.431	2.786
124	Ficus mucuso	Moraceae	0.107	0.107	0.014	0.228
125	Ficus vogeliana	Moraceae	0.43	0.427	0.091	0.947
126	Funtumia elastica	Apocynaceae	1.826	1.814	0.789	4.43
127	Garcinia kola	Moraceae	1.074	1.067	0.359	2.501
128	Garcinia livingstonei	Moraceae	0.215	0.213	0.047	0.475
129	Garcinia manii	Apocynaceae	0.859	0.854	0.446	2.16
130	Gilbertiodendron dewevrei	Caesalpinaceae	0.215	0.213	0.18	0.608
131	Gmelina arborea	Verbenaceae	1.182	1.174	1.948	4.303
132	Grewia coriacea	Tillaceae	0.215	0.213	0.077	0.505
133	Guarea glomerulata	Meliaceae	0.43	0.427	0.172	1.028
134	Hannoa klaineana	Simaroubaceae	0.752	0.747	0.474	1.973
135	Harungana madagascariensis	Guttiferae	0.322	0.32	0.182	0.824
36	Heinsia crinata	Myristicaceae	0.107	0.107	0.019	0.233
37	Hevea brasiliensis	Euphorbiaceae	0.537	0.534	0.136	1.207
138	Hexalobus crispiflorus	Annonaceae	0.107	0.107	0.027	0.241
139	Hildegardia barteri	Sterculiaceae	0.107	0.107	0.031	0.245
140	Holarrhena floribunda	Apocynaceae	0.215	0.213	0.066	0.495
141	Holoptelea grandis	Ulmaceae	0.107	0.107	0.019	0.234
142	Homalium lelestui	Salicaceae	0.322	0.32	0.073	0.716
143	Hunteria eburnean	Apocynaceae	0.322	0.32	0.105	0.747
144	Hylodendron gabunense	Caesalpiniaceae	0.43	0.427	0.133	0.99
-	Hymenodictyon biafranum	Myristicaceae	0.215	0.213	0.162	0.591

Table 2 Continued...

5/No	Species	Family	RF(%)	RD(%)	RDo(%)	IVI
46	Hymenostegia afzelia	Caesalpinaceae	0.107	0.107	0.213	0.427
47	Irvingia gabonensis	Irvingiaceae	1.504	1.494	2.669	5.667
48	Irvingia grandifolia	Meliaceae	0.107	0.107	0.059	0.273
49	Irvingia wombolu	Irvingiaceae	0.859	0.854	1.32	3.033
50	Khaya grandifoliola	Meliaceae	0.967	0.961	1.142	3.069
51	Khaya ivorensis	Meliaceae	1.933	2.028	2.903	6.865
52	Kigelia Africana	Bignoniaceae	0.107	0.107	0.016	0.23
53	Klainedoxa gabonensis	Irvingiaceae	0.322	0.32	0.873	1.515
54	Lannea welwitschii	Anacardiaceae	0.107	0.107	0.032	0.246
55	Lecaniodiscus cupanioides	Sapindaceae	0.107	0.107	0.02	0.234
56	Leonardoxa Africana	Caesalpiniaceae	0.107	0.107	0.059	0.273
57	Lepidobotrys staudtii	Linaceae	0.215	0.213	0.119	0.547
58	Leptonychia pallid	Sterculiaceae	0.215	0.213	0.041	0.469
59	Lophira alata	Ochnaceae	1.826	1.814	1.657	5.297
60	Lovoa trichilioides	Meliaceae	1.504	1.601	1.902	5.006
61	Macaranga barteri	Euphorbiaceae	0.107	0.213	0.043	0.364
62	Maesobotrya staudtii	Euphorbiaceae	0.107	0.107	0.032	0.246
63	Magnifera indica	Anacardiaceae	0.215	0.213	0.492	0.92
64	Mallotus oppositifolius	Euphorbiaceae	0.107	0.107	0.026	0.72
65	Mammea Africana	Guttiferae	0.322	0.32	0.224	0.867
66	Mangifera indica	Anacardiaceae	0.322	0.32	0.529	1.385
67	Mangijera inaca Mansonia altissima	Sterculiaceae	0.43	0.427	0.329	0.228
68	Markhamia tomentosa	Bignomaceae	0.107	0.107	0.105	0.220
69	Marsularia acuminate	Rubiaceae	0.107	0.107	0.044	0.258
70	Microberlinia bisulcata	Caesalpiniaceae	0.215	0.213	0.156	0.230
70		Pandaceae	0.213	0.107	0.138	0.38-
	Microdesmis puberula					
72 72	Milicia excels	Moraceae	2.256	2.241	4.97	9.467
73	Millettia macrophylla	Papiloniaceae	0.215	0.213	0.075	0.503
74	Mitragyna ledermannii	Rubiaceae	0.107	0.107	0.181	0.396
75	Moringa oleifera	Moringarceae	0.43	0.427	0.705	1.562
76	Morus mesozygia	Moraceae	0.322	0.32	0.211	0.854
77	Musanga cecropioides	Urticaceae	1.182	1.281	2.315	4.778
78	Myrianthus preussii	Cecropiaceae	0.107	0.107	0.027	0.24
79	Napoleonaea vogelii	Lecythidaceae	0.43	0.534	0.278	1.242
80	Nauclea diderrichii	Rubiaceae	1.182	1.174	1.486	3.842
81	Newbouldia laevis	Bignomaceae	0.859	0.854	0.454	2.167
82	Newtonia duparquetiana	Mimosaceae	0.107	0.107	0.04	0.254
83	Octoknema affinis	Olacaceae	0.322	0.32	0.163	0.805
84	Omphalocarpum elatum	Sapotaceae	0.107	0.107	0.023	0.237
85	Oubanguia alata	Scytopetalacea	0.107	0.107	0.042	0.256
86	Oxystigma mannii	Caesalpiniaceae	0.215	0.213	0.167	0.595
87	Parinari chrysophylla	Rubiaceae	0.107	0.107	0.025	0.239
88	Parkia bicolor	Mimosaceae	0.537	0.534	0.487	1.557
89	Paropsia guneensis	Passifloraceae	0.107	0.107	0.021	0.235
90	Pausinystalia talbotiic	Rutaceae	0.107	0.107	0.054	0.268
91	Pentaclethra macrophylla	Mimosaceae	1.504	1.494	1.842	4.839
92	Persea Americana	Lauraceae	0.537	0.534	0.811	1.882
93	Piptadeniastrum africanum	Mimosaceae	1.396	1.387	4.643	7.427
94	Poga oleosa	Rhizophoraceae	0.107	0.107	0.128	0.342
95	Psidium guajava	Myrtaceae	0.215	0.213	0.034	0.462
96	Pterocarpus mildbraedii	, Papiloniaceae	0.107	0.107	0.043	0.257
97	Pterocarpus osun	Mimosaceae	0.43	0.427	0.27	1.127
98	Puasinystalia talbotii	Rutaceae	0.107	0.107	0.054	0.268
99	Pycnanthus angolensis	Myristicaceae	0.644	0.64	0.868	2.153
200	Pycnanthus microcephalus	Myristicaceae	0.107	0.107	0.033	0.247
201	Randia longiflora	Rubiaceae	0.43	0.427	0.186	1.043
202	Raphia hookeri	Arecaceae	0.215	0.213	0.109	0.537
.03	Rauvolfia vomitoria	Аросупасеае	0.107	0.107	0.087	0.301
<u>2</u> 04	Rhaptopetalum beguei	Scytopetalaceae	0.107	0.107	0.019	0.234
	i inapioperaiani beguei	Scytopetuluceue	0.107	0.107	0.017	0.234

Table	2	Continued
-------	---	-----------

S/No	Species	Family	RF(%)	RD(%)	RDo(%)	IVI
206	Rinorea dentate	Violaceae	0.107	0.107	0.054	0.268
207	Roystonea regia	Palmae	0.107	0.107	0.017	0.231
208	Santiria trimera	Burseraceae	0.107	0.107	0.043	0.258
209	Sapium ellipticum	Euphorbiaceae	0.107	0.107	0.086	0.3
210	Scyphocephalum mannii	Myristicaceae	0.107	0.107	0.105	0.319
211	Spondias mombin	Annacardiaceae	0.752	0.747	0.567	2.066
212	Stemonocoleus micranthus	Papiloniaceae	0.107	0.107	0.017	0.23 I
213	Strombosia grandifolia	Olacaceae	0.107	0.107	0.021	0.235
214	Strombosia scheffleri	Olacaceae	0.107	0.107	0.129	0.343
215	Tabernaemontana crassa	Аросупасеае	0.107	0.107	0.017	0.23
216	Tabernaemontana pachysiphon	Аросупасеае	0.107	0.107	0.087	0.30
217	Tectona grandis	Verbenaceae	0.322	0.32	0.631	1.274
218	Terminalia ivorensis	Combretaceae	0.859	0.854	0.906	2.619
219	Terminalia superb	Combretaceae	0.537	0.534	0.705	1.776
220	Tetrapleura tetraptera	Mimosaceae	0.752	0.747	0.66	2.159
221	Thecacoris leptobotrya	Euphorbiaceae	0.107	0.107	0.119	0.333
222	Theobroma cacao	Malvaceae	0.322	0.32	0.064	0.706
223	Treculia Africana	Moraceae	1.289	1.281	2.462	5.03
224	Treculia obovoidea	Moraceae	0.215	0.213	0.165	0.594
225	Trema guineensis	Ulmaceae	0.107	0.107	0.02	0.234
226	Trema orientalis	Ulmaceae	0.215	0.213	0.149	0.577
227	Trichilia welwitschii	Meliaceae	0.322	0.32	0.067	0.71
228	Trichillia gilgiana	Meliaceae	0.107	0.107	0.018	0.232
229	Trilepisium madagascariense	Moraceae	0.107	0.107	0.149	0.363
230	Triplochiton scleroxylon	Sterculiaceae	0.322	0.32	0.137	0.779
231	Uapaca acuminata	Euphorbiaceae	0.107	0.107	0.032	0.246
232	Uapaca heudelotii	Euphorbiaceae	0.107	0.107	0.214	0.428
233	Uapaca togoensis	Euphorbiaceae	0.43	0.427	0.311	1.167
234	Uvariastrum elliotianum	Annonaceae	0.107	0.107	0.111	0.326
235	Uvariopsis bakeriana	Annonaceae	0.107	0.107	0.03	0.244
236	Vernonia conferta	Asteraceae	0.43	0.427	0.179	1.036
237	Vitex doniana	Verbenacea	0.537	0.534	0.14	1.21
238	Voacanga africana	Apocynaceae	0.215	0.213	0.067	0.496
239	Xylopia acutiflora	Annonaceae	0.107	0.107	0.017	0.23
240	Xylopia aethiopica	Annonaceae	0.107	0.107	0.137	0.352
241	Xylopia africana	Annonaceae	0.107	0.107	0.032	0.246
242	Xylopia staudtii	Annonaceae	0.107	0.107	0.039	0.253
243	Xylopia talbotii	Annonaceae	0.322	0.32	0.353	0.995
244	Zanthoxylum gilletii	Rutaceae	0.107	0.107	0.015	0.229
245	Zanthoxylum macrophylla	Rutaceae	0.215	0.213	0.314	0.743
246	Zanthoxylum rubescens	Rutaceae	0.107	0.107	0.03	0.244
247	Zanthoxylum zanthoxyloides	Rutaceae	0.107	0.107	0.017	0.23
248	Zenkerella citrine	Leguninosae	0.107	0.107	0.035	0.249

RF, relative frequency; RD, relative density; RDo, rselative dominance; IVI, importance value index

Species diversity in the sampled transect of okpon river forest reserve

The results in Table 3, across tree species diversity in the sampled transects indicate that Transect (T_5) had the highest number of individual tree species (145) and had Shannon wiener index of 4.563 with species richness of 106 closely followed by Transect seven (T_7) with one hundred and twenty one (121) number of individual species, Shannon wiener index and species richness of 4.203 and 75 respectively. Transects one and three (T_1 and T_3) recorded the same number of individual tree species (118); the Shannon-Wiener indices were 4.405 and 4.079, with species richnesses of 88 and 67, respectively. The least number of species, 93, with a Shannon number

of 3.925 and a species richness of 57, was recorded in Transects 8 (Table 3). The summary of diversity indices across the sampled transects at the Okpon River Forest Reserve presented in Table 4 shows that the Shannon Weiner index minimum and maximum values were 3.925 and 4.563 with a mean value of 4.287, while species richness had a minimum and maximum of 57 and 106 with an average value of 81.75. Both the Shannon Weiner index and species richness had standard deviations of 0.212 and 15.508, respectively. Table 5 indicates species diversity indices in the study area; Shannon weiner index recorded (5.058), Simpson's index (0.991), Pielou eveness index (0.917) and Margelef index recorded (36.097). The results of species richness recorded 248 trees in the study sites. Table 5

Copyright: ©2023 Esor et al. 53

 $\label{eq:constraint} \textbf{Table 3} \ \textbf{Species diversity in the sampled transects at Okpon river forest} \\ reserve$

Transects	Number of	Shannon-Weiner	Species
	Individuals	Index(HI)	Richness
Transects I	118	4.079	67
Transects 2	111	4.261	79
Transects 3	118	4.405	88
Transects 4	117	4.432	92
Transects 5	145	4.563	106
Transects 6	114	4.431	90
Transects 7	121	4.203	75
Transects 8	93	3.925	57

Table 4 Summary statistic of diversity indices across the sampled Transects at

 Okpon river forest reserve

Statistic parameters	Shannon-Weiner index	Species richness
Mean	4.287	81.75
Standard deviation	0.212	15.508
Minimum	3.925	57
Max	4.563	106
Number of transects	8	8

Table 5 Overall species diversity in the study area

Diversity indices	Index value
Shannon-Weiner index	5.058
Simpson's index	0.991
Pielou evenness index	0.917
Margalef index	36.097
Richness	248

Discussion

Forest Structure of Ukpon River Forest Reserve

Diameter and height distributions reflect the horizontal structure and vertical pattern of the forest; these are indications that the forest has the potential for continuous growth. However, the presence of large trees has been reported to be a sign of mature tropical rainforest Zang et al. According to Adekunle et al.,⁷ 222 tree stands were found to be in the lower Dbh class of 10-20 cm, followed by 21-30 cm, which had 78 tree stands, and 72 tree stands in the higher Dbh class of 81 cm. Hence, he reported that the diameter distribution indicated healthy recruitment potentials. The lower-class diameter tree stands could develop into mature trees and replace the old ones in the future if proper conservation efforts are sustained. Thus, this structure is typical of a natural forest.^{8,9} The minimum and maximum Dbh of trees in the study area were 10.1 m and 80.5 m, respectively. The forest reserve was characterized by an abundance of trees with small Dbh, which is not unusual for tropical rainforests. Similar results have been reported by previous workers in other tropical rainforests in Nigeria.¹⁰ The reason for relatively fewer number of individual trees with large Dbh values greater than >0.70 (Dbh>70) could be attributed to forest degradation activities which may have removed large individuals as well as the facts that some large-sized trees would have been removed through logging operation for some uses in the past.¹¹

Tree species diversity and distribution in okpon river forest reserve

The results of this study recorded 68 tree species belonging to 34 families. *Caesalpinceae, Moracea and Meliacea* were the

most abundance families. The area is rich in terms of tree species composition. However, the number is lower when compared with the 99 tree species belonging to 36 families recorded in the Takamanda Rainforest of Southwest Cameroon.¹² Similarly, it is lower than 118 tree species reported by Adeyemi et al.,¹³ for the Oban Division of the Cross River National Park in Nigeria. A higher number of tree species increases the number of ecological niches for fauna and understory flora. Thus, the presence of numerous tree species on a stand conserves not only more trees but other organisms as well. Comparing the results of this study to a similar study by Oluwatosin et al., in Onigambari forest reserve, Ondo State, Nigeria, they obtained a higher number of families (54) of tree species, while Miazu.¹⁴ reported four families in Kuyambana forest reserve, Zamfara State, Nigeria, even lower than the presence study of 34 families recorded in Okpon river forest reserve. He reported the dominance of the Caesalpinaceae, Mimosaceae, and Combretaceae families. This finding corroborated the works of Adekunle (2013), who reported that the tropical rainforest ecosystems of southwest Nigeria are dominated by some specific families such as the Sterculiaceae, Meliaceae, and Moraceae. In this present study, Okpon River Forest Reserve was dominated by the Caesalpiniaceae, Meliaceae, and Moraceae families.

Fabaceae, Melicea, and *Caesalpiniacea* have been reported as dominant plant families in Nigerian tropical forests.¹⁰ The effect of anthropogenic activities on the growth and distribution of tree species may have played a role in the status of these species in the ecosystem, threatening the occurrence and development of certain species while favouring others. The *Caesalpinaceae, Meliaceae, Moraeceae,* and *Euphorbiaceae* were the most prevalent families in the study area. This could be due to their fast regeneration ability associated with symbiotic properties, which may have enabled the species to easily establish within different habitat types. Deka *et al.* (2012) reported that legumes were the most prominent species recorded in Takamanda forest. This may not be far from the fact that the two forest reserves share some ecosystem characteristics and geographic boundaries.

The value of the Shannon Wiener index for tree species in this present study was (5.05). The value recorded in this study is higher than what was reported in other forest reserves; for instance, Parthasarathy (2001) reported H_1 3.89, while Adekunle and Olagoke (2010) reported H_1 4.02 for rainforest in India and Nigeria, respectively. This result is also in line with the findings of Bhat and kaveriappa (2013) who obtained among the fresh water swamp forest of kulathupazha, Anchal, Shendumeg, Karthakani, Pilarlarkan and Charmady Karnataka, Shannon wiener of (2.53), (3.69), (2.46), (4.04), (3.25) and (4.90) were recorded respectively. The reason for the high Shannon wiener in this present study could probably be due to the existing management practices, enacted law enforcements programs and anthropogenic activities.

Important value index for tree species

The tree with the highest importance value in the reserve was *Brachystegia eurycoma* (10.6%) followed by *Milicia excelsa* (9.4%). This is consistent with the works of Soumana et al., who reported that, most tree species could grow best in loamy sandy soils. The tree with the lowest importance index in the study area was *Pterocarpus* osun (1.1%). This could likely be due to the multipurpose usefulness (commercial and medicinal uses) of the tree, which is very important to the local economy. According to Curtis and Mcintosh (1951), a high importance value index IVI of a species indicates its dominance and ecological success, its good power of regeneration, and a greater ecological amplitude; these plants also need conservation management, while species that were grouped as

Forest Structure, Tree Species Diversity, and Distribution in Ukpon River Forest Reserve, Cross River State, Nigeria

having a low importance value therefore need high conservation effort Abdullahi, Abba. The highest regeneration potentials were recorded in Treculia africana (0.025%), which is guite lower in value than the 0.189% Culcacia saxatilis species obtained in the Onigambari forest reserve in Oyo State, Nigeria, by Salami et al. (2016). The differences in value could be attributed to the management practises adopted in the forest reserve. The regeneration potential in the study area was generally very poor. This has a serious implication on the regeneration and conservation of the various species encountered on the renewal of the forest in general. Wale et al. (2012) also noted that lack of adequate regeneration is an issue recognised by foresters and ecologists. Malik and Bhat (2016) also observed limited regeneration and subsequently declining populations of some dominant native species. Jaya Kumar and Nair (2013) observed in their study that only 101 species regenerate well, with one of the dominant species having no seedlings, which is an indication of poor regeneration.¹⁵⁻²¹

Conclusion and recommendation

Based on the results of this finding, a total of 68 tree species from 34 families were encountered in the study area. The results indicate that, *Meliaceae* had the highest number (6) of tree species, *Caesalpiniceae* had 5 species. There was low tree species density and high species diversity in the study area. The dominant height in the reserve was 40 m, with a Dbh class of 10–20 cm, which tends to dominate. To ensure suitable habitat for sustainable wildlife management and to prevent the extinction of some tree species in the area, there is a need to restrict logging activities and other illegal activities that have a negative effect on stand density and species distribution and abundance. Also, tight control of natural areas should be highly promoted because it is impossible to overstate how much they contribute to preventing climate change in the Ukpon area of Nigeria's Cross River State.

Acknowledgments

None.

Conflicts of interests

Authors declare that there are no conflicts of interest.

References

- Sushma S, Subair A, Chandra M, et al. Tree species richness, diversity and regeneration status in different oak (Quercus spp) dominated forest of garhwal himalaya India. *Journal of Asia Pacific Biodiversity*. 2016;9:293–300.
- 2. Malik ZA, Hussan A, Igbal,K. Species Richness and diversity along the distribution gradient in Kadonath Wildlife Sanctuary and its adjourning areas in Garhwal Himalaya, India. *International journal of Current Research*; 2014.
- Neelo JD, Teketay K, Kashe, et al. Stand structure, diversity and regeneration status of woody species in open and ex close dry wood land sites around molapo farming areas of the Okavango delta, Norlheasterm Botswana. Open Journal of Forest. 2015;5 (4):313–228.
- 4. Malhi Y, Lewis SL, Mayaux P, et al. African rainforests; past; present and future. *Philosophical transactions of the rayal society Biological Science*; 2013.
- Pushpangadam P. Economic evaluation of biodiversity in context of CBD and IPR regimes. In: regional training programed on biodiversity systematics evaluation and monetary with emphasis on medicinal plants. National Botanical Research Institute: Lucknow India; 2001.

- Gillison AN. Biodiversity assessment in the north bank landscape, North East India: a preliminary survey; 2004.
- Adekunle VAJ. Olagoke AO, Akindele SO. Tree species diversity and structure of a nigeria strict nature reserve. *Tropical Ecology*. 2013;54(3):275–289.
- Ogana FN, Gorgoso, Varela JJ. Comparison of estimation methods for fitting meibull distribution to the natural stand of oluwa forest reserve, Ondo State, Nigeria. *Journal of Research in Forestry. Wildlife and Environment.* 2015;7(2):81–90.
- Dau JH, Vange T, Amonum JI. Growth space requirements models for *Daniellia Oliverii (Rolfe) hutch and Daviz* tree in Makurdi, Nigeria. *International Journal of Forestry and Horticulture (IJFH)*. 2016;2(3):31–39.
- Adekunle VAJ, Olagoke AO. Diversity and bio volume of tree species in natural forest ecosystem in the bitumen – producing area of Ondo state, Nigeria. *Baseline study Biodiversity and Conservation*. 2008;17:2735– 2755.
- Hadi S, Zieglar T, Waltert M, et al. Tree diversity and forest structure in northern Siberut, Mentawai island, Indonesia. *Tropical Ecology*. 2009;50(2):315–327.
- 12. Egbe EA, Chuyong GB, Fonge BA, et al. Forest disturbance at korup national park. Cameroon. *International Journal of Biodiversity Conservation*. 2012;4(11):377–384.
- Adeyemi AA, Jimoh SO, Adesoye PO. Assessment of tree diversities in oban division of the cross river nation park (CRNP), Nigeria. *Journal* of Agriculture, Forestry and the Social Sciences. 2013;11(1):216–230.
- Miazu A. Woody plants genetics resources of kuyambana forest reerve, Mara zamfara state. Dissertation on department of biological sciences, Usman danfodiyo university, Sokoto; 2010.
- Abdulahi MB. Phytosociological studies and community rural appraisal towards biodiversity conservation in yankari: Game reserve, Bauchi state, Nigeria. Abubakar Tafawa Belawa University, Bauchi, Nigeria; 2010.
- Adekunle VAJ, Olagoke AO, Ogundare LF. Rate of timber production in a tropical rainforest ecosystem of southwest nigeria and its implications on sustainable forest management. *Journal of Forestry Research*. 2010;21:225–230.
- Aigbe HI, Akindele SO, Onyekwelu JC. Tree species diversity and density pattern in afi river forest reserve, Nigeria. *International Journal* of scientific and Technology Research. 2014;3(10):178.
- Dekka J, Tripath PO, Khan LM. High dominance of shorea robusta gaertn in alluvial plain kammp sal forest of Assam, North Eastern. *India International Journal of Ecosystem*. 2002;2(4):67–73.
- Haby VA, Marvin L, Baker, et al. Vegetables growers handbook. 4th edition. Compiled by Joseph GM, Frank JD (Emeritus). Texas A & M University. Horticultural and Forestry Science Building College Station, Texas; 2009.
- Lippork D, Beck SG, Renson D, et al. Topography and edge effects are more important than elevation as derives of vegetation patterns in a neotropical montane forest. *Journal of Vegetation Science*. 25;724–733.
- Parthasarathy N. Changes in forest composition and structure in three sites of tropical evergneen forest around sengaltheri, western ghats. *Current Science*. 2015;80(3):389–393.