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Abbreviations: IGRT, Image-guided radiation therapy; DVH, 
dose-volume histogram; GTV, gross tumor volume; CTV, clinical 
target volume; PTV, planning target volume; TPS, treatment planning 
systems; ROI, region of interest; LGP, leksell gammaplan

Introduction
With new imaging technology and the increasing use of IGRT, the 

future development of treatment planning system will be based on 
artificially intelligent decision making. So called adaptive radiotherapy 
attempts to adjust the treatment plan by tracking small variations in the 
target volume (i.e., the GTV, CTV, or PTV). Sensitive object functions 
or optimization approaches are needed to reach this goal. Target shape 
variation is an important factor in that the migration of the tumor can 
adversely affect target dose delivery. Clinically, volume expansion 
from GTV to PTV is common in treatment planning systems (TPS). 
For example, the Pinnacle ADAC TPS1 uses different contraction 
and expansion algorithms. If high level dose conformity is required, 
knowing the variation in volume due to the expansion is crucial. The 
method used to calculate the volume of the region of interest (ROI) is:

( )0.5roi i eV v N N= × +                                                                     (1)

where v is the size of voxels, iN is the number of inner voxels, 
and eN is number of edge voxels. Voxels of different sizes have 
different effects on the accuracy of the volume calculation. An 
intuitive approach to avoiding the grid size effect is to decrease the 
voxel size; however, when the voxel is smaller than a micro-meter, 
continuously decreasing the voxel size may negate the physical 
meaning of the micro-radiobiologic effect. Naturally, a method of 

volume calculation independent of the grid is needed. The Monte 
Carlo algorithm is an alternative method for accurate volume 
calculation and quality assurance, which can be used to avoid the 
effect of voxel approximation. Calculation accuracy can be controlled 
by the number of sampling points. In gamma knife blocking beam 
treatment planning, it has been shown that integral dose can be used as 
one of the sensitive object functions by combining information from 
three dimensions.2,3

Calculation of integral dose is also affected by voxel size. Even 
though different methods are available to avoid inaccuracies due to 
pixel size deficiency, the physical constraints and approximations 
of the pixel approach limit its ability to express the real physical 
condition when the voxel size is smaller than the cells themselves. 
Therefore, in this study, we developed a Monte Carlo algorithm to 
calculate the volume and integral dose and compared its results with 
those of the pixel counting method. We also used the Monte Carlo 
integral dose object function to analyze variations in the target volume 
using a Gamma Knife treatment planning model. 

Methods and Materials
In stereotactic radiosurgery, accuracy of dose delivery is crucial, 

especially for small targets. There are two issues associated with 
stereotactic radiosurgery. The first is treatment setup accuracy, and the 
second is calculation accuracy. Integral dose is an effective objective 
function in optimization of Gamma knife blocking beam treatments. 
The optimization of a Gamma Knife treatment plan is a complex 
problem that has elicited several different solutions.4,5,6 However, most 
resultant optimization algorithms have been based on the pixel dose 
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Abstract

The Monte Carlo calculation of integral dose shows its sensitivity in the treatment plan 
dose distribution and dose-volume histogram (DVH) variation. To take advantage of the 
efficiency of the integral dose objective function in treatment planning optimization, the 
sensitivity of the target shape to the integral dose in the treatment plan beam setup, and the 
arbitrary characteristics of the contouring method, we developed a statistical integral dose 
calculation method using a Monte Carlo integral dose computation algorithm. When the 
analytical dose distribution function is available, this Monte Carlo approach overcomes 
voxel size constraints and edge voxel approximations. Variations in the contours (e.g., 
expansion of the target) were analyzed, and their effects on the treatment plan beam 
orientation selection were shown. In this study, we first demonstrate the insufficiency of 
volume calculation for pixel or grid size based integral dose or volume especially for high 
resolution and certain size of target treatment. Then the Monte Carlo integral method was 
employed to calculate the integral dose. The effectiveness of this Monte Carlo calculation 
method was demonstrated by using a cubic target, a C-shaped target with a nearby 
cylindrical critical structure, and a clinical case involving eye-lens shielding. The results 
showed that it is important to consider the voxel size effect when evaluating treatment plan 
dosimetry and that the Monte Carlo Integral Computation algorithm can be an alternative to 
voxel-based integral dose calculation methods in accounting for up to 2 mm displacements 
of the critical structures, which can result in as much as a 28% variation in the treatment 
pattern. We suggest that integral dose be used as an objective function in treatment planning 
to adjust initial adaptive target radiotherapy and to generate initial blocking beam treatment 
patterns for Gamma Knife treatment. This approach will provide better treatment with 
fewer complications, especially in single fraction stereotactic radiosurgery. 
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constraint because the Gamma knife treatment plan is determined by 
the shot center ( ), ,x y z the weight of the shot, and the size of the 
collimators. This generates a multiple-variable optimization problem 
that can be solved using nonlinear equations and simulated annealing 
algorithms. In addition, the challenge of balancing the effects of 
the different variables makes the problem even more complicated. 
Introducing integral dose, which combines the target volume, 
shape, dose, and geometry information into one objective function, 
simplifies the process so that a fast search algorithm can be applied 
in finding an optimal plan. The integral dose also reflects the intrinsic 
correlation between the dose distribution and the target volume. Using 
integral dose in this way can improve the treatment plan by reducing 
computation time and increasing dosimetric precision.

The integral dose calculation accuracy is affected by the grid size 
definition; and, in the Leksell GammaPlan (LGP), the dose point 
is calculated as 31×31×31 voxels. The integral dose changes with 
changes in voxel size. Therefore, integral dose can be used to optimize 
blocking pattern treatments.2,3 Calculation of integral dose involves 
two factors: target shape and dose distribution. Because different 
target shapes give different volumes, we first compared the volumes 
calculated using both the pixel counting method and the Monte Carlo 
method. Then, we used the Monte Carlo method to do the calculation 
using contours from a clinical case. The different results in blocking 
pattern treatments for the gamma knife system were analyzed. The 
calculated results were evident in pattern changes and in the DVHs.

In the Monte Carlo computation method, the number of sampling 
points affects the accuracy of the calculation. If the volume is 
calculated by counting the number of voxels inside the boundary, then 
the number of voxels determines the volume accuracy (i.e., the higher 
the number of voxels counted, the greater the accuracy). Therefore, 
we tried different voxel sizes in calculating the dose. Physically, the 
integral dose is the total energy absorbed by a specific volume of 
tissue. The clinical effect of this process is not clearly understood;7 
however integral dose includes the whole radiation volume and may 
have some correlation with the radiation response of tissue abutting 
the high dose region. Therefore, the integral dose is an important 
factor in radiotherapy. 

In calculating the integral dose and selecting of blocking beams in 
Gamma Knife treatment planning, we generally calculate each plug’s 
contribution to the dose per voxel or in the contoured region. The dose 
at a particular point Di(x, y, z) receives contributions from different 
plugs, and the integral dose for a particular region can be calculated 
in two ways. One way is to calculate the integral dose that each plug 
contributes to the critical region CR, and the other is to calculate the 
total integral dose Ii of all the plugs. This procedure is described by 
following Equation (2), which shows that the order of the integration 
procedure can be adjusted:

( ) ( ) ( )
1 1 1

, , , , , ,
N N N

n n iC C CR R R

I Ii Di x y z dxdydz Di x y z dxdydz D x y z dxdydz
− − −

= = = =∑ ∑ ∑∫∫∫ ∫∫∫ ∫∫∫           (2)

Given that the integral dose of the target is controlled by the volume 
( ), ,V x y z of the region RC and the dose distribution ( ), ,D x y z , then 

integral dose I can be expressed as:

( ) ( )( ), , , , ,I I V x y z D x y z=

Then any variation of the integral dose I can be expressed as:
I IV V D
V D
∂ ∂

∆ = ∆ + ∆
∂ ∂

If 0V∆ = is the condition necessary to preserve the clinical effect, 
theoretically or experimentally, it is worth analyzing the variations 
of V in adaptive radiotherapy. It is obvious that changes in V result 

in changes in the dose. The dose distribution is adjusted by turning 
the beam on and off, changing the length of time the beam is on, 
and adjusting the orientation of beam. It is interesting to calculate 
the volume variation that results from different factors such as target 
shrinking, target motion (or displacement), target deformation, 
density change, and so on. In other words, it is possible to induce the 
equivalent volume concept, which is like the concept of equivalent 
dose. The dose-volume effect depends on the accurate calculation 
of the volume. In this study, we applied the Monte Carlo method to 
devise an algorithm to calculate the volume variation effect on dose 
distribution and treatment planning in a gamma knife analytical dose 
model.2

There are several integral dose calculation methods that can be 
used to accomplish this objective. Because the integrated volume is 
determined by the contour, and knowing a point inside the contour is 
needed for both pixel counting method and Monte Carlo method to 
compute the integral volume, we first introduce the algorithm to check 
a point inside the contour, and then specify the methods for integration 
computation. 

Algorithm to check arbitrary point inside a contour

The contour can be expressed as{ }, ,ij ij ix y z where 1i = to m , m

is the total number of 2-dimensional layers, 1j = to n , and n is the 

number of contour points. Any point ( ), ,x y z can be determined by 
checking whether it lies within a certain contour layer. To check if a 
point is within a contour, we employed the following method:

Given contour polygon point group { },n nx y in same slice, where 
[ ]3,n N∈ and N is an integer, which is larger than 3 (Figure 1). 

The algorithm to check point ( ), ,ijk i j kP x y z in the polygon can be 
expressed as pseudo code: 

Figure 1 The method to check point Pijk (xi,yi,zi) inside the volume determined 
by polygon contour.

For a contour point set or graph expressed as ( )V N , and point 
( ), ,ijk i j kP x y z .

 Confirm that the points are inside the contour ( ) ( )( ), , ,ijk i j kV N P x y z :

a. 0T =  (point ( ), ,ijk i j kP x y z is outside of ( )V N

b. For any pair of points 1v and 2v in ( )V N , if the y coordinate of 

point ( ), ,ijk i j kP x y z is within the range of the y coordinate of the 
contour range and at the right of the line formed by points 1v and

2v , then 1T = ;

c. Return T; 

Methods to compute the integration

I. The direct integration method 

This method is simple and involves three steps:

1. Finding the range of x and y in the curves using an approximate 
analytical formula;
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2. Integrating the analytical contour and multiplying by the slice 
distance t to get the slice volumeV ;

3. Totaling all the 2-dimensional slice volumes V to get the total 
volume integration.

However, the difficulty in finding the exact analytical representation 
of the target is a challenge. If the distance between the slices is too 
large, volume information may be lost.

II. The pixel counting method

1. Determine all point ( ), ,ijk i j kP x y z from the minimum x and 

y directions in ranges [ ]min max,X X and [ ]min max,Y Y using the 

contour boundary point set{ }, ,ij ij ix y z ;

2. Verify that point ( ), ,ijk i j kP x y z is inside the contour using the 
method described above;

3. Multiply the number of points ( ), ,ijk i j kP x y z inside the contour 

by the number of voxels of grid size a. Then, the integral dose 
DI is:

 ( ), ,
N

D i i k
i o

I f d x y z
=

= ∑

where N is the number of voxels inside the target volume, f is 
the scale factor, and the accuracy of the point dose ( ), ,i i kd x y z is 
determined by the grid size a. 

The Monte Carlo method

Randomly generate point ( ), ,ijk i j kP x y z within the range 

[ ]min max,X X and [ ]min max,Y Y as determined by the contour polygon 
boundary;

Verify that every point ( ), ,ijk i j kP x y z is inside the contour;

Calculate the integration based on the relationship between the 
number of points generated and the number of points inside the 
contour.

More specifically, the algorithm can be represented by the 
following pseudo code:

Find the contour point range [ ] [ ]min max min max, , ,X X Y Y ;

Define the whole region volume ( ) ( )min max min max, * , *V X X Y Y t=
, where t is the thickness of the image slice.

Generate arbitrary points (xi,yi) randomly using the formula
( )min max min * ,i ranx X X X f= + − ( )min max min * raniy Y Y Y f= + − ; where 

ranf is a random fraction.

Verify that point ( ), ,ijk i j kP x y z is inside the contour by the method 
described above;

Set the Integral dose as ( )* , , /D i j kI V D x y z n+ = for all sampling 
points n

In this study, we analyzed several contours to illustrate Monte 
Carlo Integral dose calculation and described a clinical case. Initially, 
we tested Monte Carlo calculation based on a cube shaped volume. 
Then we tested integral dose sensitivity using a semi-circular cylinder. 
Finally, a case involving eye lens dose blocking beam treatment was 
included to show the effectiveness of the plugging pattern treatment 
plan generated by this Monte Carlo Integral dose computation method.

Results
To guarantee the accuracy of our analysis, a series of procedures 

were followed to check the calculation. Our methodology was 
derived from analysis of a simple shape, a complicated structure, and 
a clinical case. And this approach guided us throughout the process 
of developing this algorithm. A cube was chosen to make certain 
that all voxels remained within the boundary of the polygon. We 
used the semi-circular cylinder because the circumference of a circle 
approximately represents an infinite number of sections of line. Then 
a clinical case was used to show the application of the Monte Carlo 
integral dose and the calculation benefit in the analytical Gamma 
Knife dose model. The Gamma Knife dose model can be calculated 
based on the measurement of the helmet and some of the reference 
points.8 The Gamma Knife C model dose simulation was verified 
by the profile comparison, which is shown in figure 2, where the 
2-dimensional dose profiles can be seen along the x , y , and z axes. 
The solid data point was directly extracted from the Leksell Gamma 
Knife Treatment Planning System (LGKTPS). 

Figure 2 Simulation of Leksell Gamma Knife C model in x, y, z directions. 
The diamond points are the data from LGK TPS. The solid line is from the 
computed model.

Monte Carlo calculation for a cubic shape

Figure 3 shows the cube that we generated by simulating the frame 
coordinate system of the LGKTPS. The center of the cube coincides 
with the center of the frame (which is x=100, y=100, z=100); and the 
axial plane bisects the cube at Z=100. The cubic volume was fixed for 
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testing purposes. The insufficiency of the pixel counting computation 
method was illustrated by calculating the volume based on grid size 
variations. Figure 4 shows the effect of grid size on the computation. 
Obviously, different grid (voxel) sizes generate different volume 
percentages for the cube, even though the grid size is large enough 
to cover the entire cube. In figure 4, the grid size was too small to 
cover the cube; therefore, it was possible that the calculated volume 
would be different from the full volume of the cube. In Figure 5, for 
the upper figure, the voxel size is set to 0.06 of the length of the edge 
of the cube. The calculation results in 289 voxels inside the boundary; 
and the voxel calculation method results in a volume that is about 
104% of the cube. The lower figure shows that if the voxel size is set 
at 0.01 of the length of the edge of the cube, the resulting 961 voxels 
would cover only 38% of the real volume.

Figure 3 Cubic structure used for the volume calculations, based on 
31×31×31 voxels with different grid sizes.

Figure 4 The circles show that the computed volume (i.e., the percentage of 
the volume of the cube) varies in relation to the voxel size.

Both scenarios can be avoided by using different approaches. For 
example, formula (1) offers a solution to the problem of the grid or 
voxel lying across or outside of the boundary of the volume, which is 
the situation shown in the upper of figure 5. The problem of insufficient 
coverage seen in the lower part of figure 5 can be avoided by a visual 
check. The Monte Carlo method is another solution for both scenarios, 
correcting them both by using a defined boundary larger than that 
of the given volume. This computation is more cumbersome when 
integration of a function is needed inside the defined boundary or 

target. More simply, when the number of sample points is increased, 
the Monte Carlo method can give an acceptable result, usually around 
±5% or better. This phenomenon is also addressed elsewhere.9 

Figure 5 Illustration simulating the voxel size effect on the accuracy of 
volume calculations.

2. Monte Carlo calculation of the integral dose for a cylindrical 
half-ring target surrounding cylindrical critical structure

Figure 6 illustrates dose calculation using a half-ring target 
surrounding a critical structure as a cylinder at the center. This target 
was chosen because the circumference of a circle approximately 
represents an infinite number of sections of a line, which gives a 
general scenario. We defined the half-ring target as:

( ) ( )( )
( )

1/222
1 2x y

down z up

r x o y o r

Z z o Z

< − + − <

< − <

where 1r and 2r are the inside and outside radii; ( ), ,x y zo o o is the 

center of the ring, and downZ and upZ are used to define the range of 
the axial direction. The cylindrical critical structure is defined as:

( ) ( )( )
( )

1/222
x y c

down z up

x o y o r

Z z o Z

− + − <

< − <

where cr is the radius of the cylinder. To apply and evaluate our 
Monte Carlo Integral dose computation in Gamma Knife Plugging 
pattern treatment, we followed two steps: first, we checked the 
convergence of the Monte Carlo calculation, and then we tested its 
sensitivity as a treatment planning object function. 

Figure 7 shows the sample point effect on the integral dose 
calculation by three different trials. The calculation converges at about 
100,000 sample points. The number of sample points is determined 
using an exponential formula. In this setup, we used the integral 
dose that was calculated by the Monte Carlo method to test the target 
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variation effect on the treatment plan. The Gamma Knife treatment 
planning system was selected due to the fixed number of beams (201) 
and fixed geometry of those beams. After checking the convergence 
of the Monte Carlo calculation, we employed this method to show 
the sensitivity of the integral dose in beam selection. We fabricated a 
nine shot Gamma Knife treatment plan with the shot centers midway 
between inside and outside rings. With a sequence blocking beam 
treatment for each shot selected, 24 beams were selected to block. 
There are different possibilities for target variation. A typical case 
would be the displacement of a target such as an organ at risk. Figure 8 
shows three different blocking patterns. Figure 8(a) shows an original 
setup with 9 plugging shots. Figures 8(b) and 8 (c) show the plugging 
patterns after the critical structure has been shifted 2 mm superiorly 
or inferiorly. We developed several mechanisms to compare the 
different plugging patterns in both the DVH’s and treatment patterns. 
In figure 9, the upper DVH shows the difference due to structure 
displacement. The circles represent the DVH of the critical region 
without displacement. The triangles represent the DVH resulting 
when the critical region is shifted superiorly 2 mm, and the squares 
represent the situation when the critical region is shifted inferiorly 
2 mm. When a blocking beam pattern is used for the treatment, 
the DVH curves show two features: in one, the dose in the critical 
structure is significantly lower; in the other, the difference in the three 
DVH curves decreases and DVH curves nearly overlap each other due 
to selection of blocking beams. Obviously, displacement of the target 
leads to variation in the treatment setup. The target DVH curves are 
not shown because they are overlapped and almost identical for the 
given resolution in figure 9.

Figure 6 A cylindrical half-ring as target with a cylinder critical structure.

Figure 7 Illustration of the convergence of Monte Carlo Calculation of 
Integral Dose.

Figure 8a Plugging Pattern of a 9 shot treatment without displacement of 
the critical structure.

Figure 8b Plugging Pattern of a 9 shot treatment with the critical structure 
displaced 2 mm superiorly.

Figure 8c Plugging Pattern of 9 shots treatment with the critical structure 
displaced 2 mm inferiorly.
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Figure 9 DVH curves from the cylindrical Critical Structures.

To show the significance of these differences in the treatment 
pattern, we devised a formula to describe the distortion. Given 
the two feature vectors iR , and jR for the two sets of treatment 
configurations, which is the plugging beam index, the distortion 

( ),i jM R R can be expressed as:

( ), i j
i j

i

R R
M R R

R
−

=

This calculation shows that the distortion is 28% when the critical 
region is shifted superiorly 2 mm, and distortion is 24% when the 
critical region displaced inferiorly 2 mm. The difference in these 
percentages is a result of differences in the helmet’s distance from 
the target. 

Monte Carlo calculation of the integral dose in a clinical 
case involving eye lens shielding during Gamma Knife 
treatment

Eye lens dose is a concern in radiation treatment of ocular 
cancer.10,11 However, determining which beam should be plugged is 
difficult, especially when the eye lens is far away from the treatment 
target. Figure 10 illustrates such a circumstance. Combining the 
Monte Carlo integral dose model and the analytical dose model, we 
can easily generate a blocking pattern that will decrease the eye-
lens dose by more than 50%. This result is shown in Table 1. In 
this case, we prescribed the dose to average center of the 9 shots. 
The critical structure was defined as the lens of the right eye, and 
reference point dose was prescribed to the center of this structure. 
The dose was decreased is up to 81.7% by selecting 3 beams to block. 
These data suggest that blocking beam selection is a mechanism that 
is sufficiently sensitive and effective for integral dose calculation. 
Therefore, the Monte Carlo integral dose calculation method can be 
an effective tool in selecting beams to block to protect organs at risk 
in Gamma Knife treatment plans.

Figure 10 Eye lens dose avoidance using Monte Carlo Integral dose 
calculation.

Table 1 Effectiveness of 3-beam blocking treatment on eye lens dose in 
relative unit

Shot No. No plugging 
beam

3 Blocking 
beams

Lens center 
dose percentage

1 1.90 0.35 18.4%
2 0.71 0.15 21.1%
3 0.44 0.13 29.5%
4 0.42 0.07 16.7%
5 1.16 0.17 14.7%
6 0.38 0.07 18.4%
7 2.36 0.40 16.9%
8 0.95 0.20 21.1%
9 0.77 0.12 15.6%
Sum 9.09 1.66 18.3%

Conclusion and Discussion
In this study, we investigated the relative effectiveness of the pixel-

counting volume calculation method and a Monte Carlo algorithm in 
calculating integral dose in treatment planning. We found that, without 
careful selection of the location of the voxels and size of the voxels, 
the voxel-based method for calculating integral dose or volume may 
result in large variations. The Monte Carlo method is an alternative 
method that can be effective in avoiding these large variations. This 
Monte Carlo method can easily be implemented in treatment planning 
systems and provides a convenient tool for quality assurance.

Some shortcomings of the Monte Carlo method need to be 
addressed. For instance, variations in integral dose are generated due 
to the fluctuation of the random number generator. These variations 
could result in a 5% difference; however, this difficulty can be reduced 
by increasing the number of sampling points.

In our clinical example, we showed how variations in the target 
could affect a Gamma Knife blocking beam treatment plan. A 2 mm 
target displacement could generate a >28% variation in the treatment 
pattern, which emphasizes the importance of accurately defining the 
target for Gamma Knife stereotactic radiosurgery. This method of 
analysis could possibly be applied in external beam treatment planning 
as well, and quantitative measurement and analysis of integral dose 
will be next research step.

Acknowledgments
The authors express their gratitude to Robert Luo in pattern display 

program.

Conflicts of Interest Statement 
None of the authors have expressed any conflict of interest related 

to this study.

https://doi.org/10.15406/ijrrt.2023.10.00360


Monte Carlo simulation of integral dose volume based on gamma knife stereotactic treatment planning 88
Copyright:

©2023 Kaile

Citation: Kaile L. Monte Carlo simulation of integral dose volume based on gamma knife stereotactic treatment planning. Int J Radiol Radiat Ther. 
2023;10(4):82‒88. DOI: 10.15406/ijrrt.2023.10.00360

References
1. Pinnacle treatment planning manual, release 7.6.

2. Li K, Ma L, Selective source blocking for Gamma Knife radio surgery 
of trigeminal neuralgia based on analytical dose modeling, Phys Med 
Biol. 2004;49:3455–3463.

3. Li K, Ma L, A constrained tracking algorithm to optimize plug patterns 
in multiple iso–center gamma knife radiosurgery planning. Med Phys. 
2005;32(10):3132–3135.

4. Yan Y, Shu H, Bao X, et al. Clinical treatment planning optimization by 
Powell’s method for Gamma Unit treatment system. Int J Radiat Oncol 
Biol Phys. 1997;39(1):247–254.

5. Wu QJ, Bourland JD. Morphology–guided radiosurgery treatment 
planning and optimization for multiple isocenters. Med. Phys. 
1999;26(10):2151–2160.

6. Leichtman GS, Aita AL, Goldman HW. Automated Gamma Knife dose 
planning using polygon clipping and adaptive simulated annealing. Med 
Phys. 2000;27(1):154–162.

7. Mayneord WV. The measurement of radiation for medical purposes. 
Proc Phys Soc. 1942;54:405–421.

8. Marcu SM, Wu QJ, Pillai K, et al. GammaPlan–Leksell Gamma 
Knife raidosurgery treatment planning verification method. Med Phys. 
2000;27(9):2146–2149.

9. Sobol IM. The Monte Carlo Method. Chicago Press, 1974.

10. Ma L, Chin L, Sarfaraz M, et al. An investigation of eye lens dose for 
gamma knife treatments of trigeminal neuragia. J Appl Clin Med Phys. 
2000;1(4):116–119.

11. Liang C, Ho M, Lu K, et al. An investigation of eye lens dose of 
stereotactic radiosurgery for trigeminal neuralgia using Leksell Gamma 
Knife model C. J Neorosurg (suppl). 2006;105 Suppl:112–116.

https://doi.org/10.15406/ijrrt.2023.10.00360
https://www.science.gov/topicpages/p/pinnacle+treatment+planning
https://pubmed.ncbi.nlm.nih.gov/15379025/
https://pubmed.ncbi.nlm.nih.gov/15379025/
https://pubmed.ncbi.nlm.nih.gov/15379025/
https://pubmed.ncbi.nlm.nih.gov/16279066/
https://pubmed.ncbi.nlm.nih.gov/16279066/
https://pubmed.ncbi.nlm.nih.gov/16279066/
https://pubmed.ncbi.nlm.nih.gov/9300760/
https://pubmed.ncbi.nlm.nih.gov/9300760/
https://pubmed.ncbi.nlm.nih.gov/9300760/
https://pubmed.ncbi.nlm.nih.gov/10535632/
https://pubmed.ncbi.nlm.nih.gov/10535632/
https://pubmed.ncbi.nlm.nih.gov/10535632/
https://pubmed.ncbi.nlm.nih.gov/10659752/
https://pubmed.ncbi.nlm.nih.gov/10659752/
https://pubmed.ncbi.nlm.nih.gov/10659752/
https://iopscience.iop.org/article/10.1088/0959-5309/54/5/302
https://iopscience.iop.org/article/10.1088/0959-5309/54/5/302
https://pubmed.ncbi.nlm.nih.gov/11011744/
https://pubmed.ncbi.nlm.nih.gov/11011744/
https://pubmed.ncbi.nlm.nih.gov/11011744/
https://catalogue.nla.gov.au/catalog/5380325
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5726159/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5726159/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5726159/
https://pubmed.ncbi.nlm.nih.gov/18503342/
https://pubmed.ncbi.nlm.nih.gov/18503342/
https://pubmed.ncbi.nlm.nih.gov/18503342/

	Title
	Abstract
	Keywords
	Abbreviations
	Introduction
	Methods and Materials 
	Algorithm to check arbitrary point inside a contour 
	Methods to compute the integration 
	The Monte Carlo method 

	Results
	Monte Carlo calculation for a cubic shape 
	Monte Carlo calculation of the integral dose in a clinical case involving eye lens shielding during 

	Conclusion and Discussion 
	Acknowledgments
	Conflicts of Interest Statement  
	References
	Figure 1 
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8a
	Figure 8b
	Figure 8c
	Figure 9 
	Figure 10
	Table 1

