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1 Revision History 
 

Revision Date Changes 

1.0 December, 2020 Initial Publication 

2.0 March, 2021 Updates for LegUp HLS EAP 9.2 release 

3.0 June, 2021 Updates for SmartHLS 2021.1.2 release 

 
 
 
 
 

2 Requirements 
 

Before beginning this tutorial, you should install the following software: 

 

• SmartHLS™ 2021.1.2 or later  

• Libero® SoC 2021.1 or later with Modelsim 

 

 We will use this cursor symbol throughout this tutorial to indicate sections where you 
need to perform actions to follow along.  
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3 Introduction 
 

This tutorial will introduce you to high-level synthesis (HLS) concepts using SmartHLS. You will 

apply HLS to a real problem: synthesizing an image processing application from software 

written in the C++ programming language. Specifically, you will synthesize a circuit that 

performs one of the key steps of edge detection – a widely used transformation that identifies 

the edges in an input image and produces an output image showing just those edges. The step 

you will implement is called Sobel filtering. The computations in Sobel filtering are identical to 

those involved in convolutional layers of a convolutional neural network (CNN). Figure 1 shows 

an example of Sobel filtering applied to an image. This is the image that will be used as input 

data in this tutorial. 

 

 
Figure 1: Sobel Filtering Before and After 

Sobel filtering involves applying a pair of two 3 x 3 convolutional kernels (also called 

filters) to an image. The kernels are usually called Gx and Gy and they are shown below in the 

top of Figure 2. These two kernels “detect” the edges in the image in the horizontal and vertical 

directions. At each position in the input image, they are applied separately and then combined 

to produce a pixel value in the output image. The output value is approximated by:  

G = |Gx| + |Gy| 

Where the Gx and Gy terms are computed by multiplying each filter value by a pixel value and 

then summing the products together. 



 

4 
 

 

 
  
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

The bottom of Figure 2 shows an input image with 4 rows and 4 columns, where the value in 

each cell represents a pixel color. The figure illustrates the action of applying the Sobel filters at 

one position in the input image to compute one value in the output image. The input image 

pixels involved in the computation are often referred to as the receptive field. 

A question that may occur to you is: what happens at the edges of the image? i.e., the 

locations where the placement of the 3 x 3 Sobel filters would “slide off” the edge of the input 

image. In this tutorial, our program/circuit will simply place 0s into the perimeter of the output 

image corresponding to such edge locations – this is referred to as padding and it is a 

commonly done technique. 

 
The files for this tutorial can be found on github: 
  
 https://github.com/MicrochipTech/fpga-hls-examples/tree/main/sobel_tutorial 
 
You can download all the files using this link: 
 

https://github.com/MicrochipTech/fpga-hls-examples/archive/refs/heads/main.zip 
 

Extract this zip file and navigate to the sobel_tutorial folder: 

fpga-hls-examples-main\sobel_tutorial 

  

Figure 2: Sobel filters and computational action to compute one pixel in the output image from 
an input image. 

https://github.com/MicrochipTech/fpga-hls-examples/tree/main/sobel_tutorial
https://github.com/MicrochipTech/fpga-hls-examples/archive/refs/heads/main.zip
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4 Part 1: Basic Implementation 
 
In this section, we will use SmartHLS to compile the Sobel filter to hardware, without any 
modifications to the C++ code. 
 

First start the SmartHLS IDE: 
 
On Windows, this can be done by double-clicking on the SmartHLS shortcut either in the 
start menu or the desktop. 

 
On Linux, make sure that $(SMARTHLS_INSTALL_DIR)/SmartHLS/bin is on your 
PATH and the SmartHLS IDE can be opened by running the following command: 

shls_ide 

You will first see a dialog box to select a workspace directory as shown in Figure 3 below. You 

can use the default workspace for all parts of this tutorial by clicking on OK.  

 
Figure 3: Choosing a SmartHLS workspace. 

Warning: Make sure there are no spaces in your workspace path. Otherwise, SmartHLS will 

error out when running synthesis. 
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 Once the SmartHLS IDE opens, under the File menu, choose New and then SmartHLS 
C/C++ project as shown below in Figure 4.  

 
Figure 4: Create a new SmartHLS C/C++ project 

 For the project name, enter “sobel_part1” as shown in  Figure 5. Then click on Next. 
 

 
 Figure 5: Creating a new SmartHLS project 
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 As shown in Figure 6, you can leave the Top-Level Function blank since the 
sobel_filter function in sobel.cpp already has a pragma to indicate the top-level function. 
Now click on Add Files to import the source files for part 1 of this tutorial into the project. 
Navigate to where you have downloaded the tutorial files and go into the part1 directory. You 
can hold shift to select all three source files: input.h, output.h and sobel.cpp. After you have 
added the source files to the project, click on Next.   
 

 
Figure 6: Adding part1 source files into the new SmartHLS project. 

Next you will then see a dialog box where you can specify your own testbench, which are not 
needed for this part of the tutorial. So, click Next, without changing any of the options. 
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 Finally, to complete the project creation, you will choose the FPGA device you intend to 
target. Use the selections shown in Figure 7, for FPGA family choose PolarFire®. For FPGA 
Device, you have an option to choose “MPF300TS-1FCG1152I on the MPF300 Board” or use 
another PolarFire device that is not listed. For this tutorial, we will use another PolarFire device, 
MPF100T-FCVG484I, which can be used with a Microsemi Libero® free Silver license (the bigger 
MPF300TS-1FCG1152I device requires the paid Gold license). To use MPF100T, choose Custom 
Device for the FPGA Device field, then type in MPF100T-FCVG484I in the Custom Device field. 
Click on Finish when you are done. It may take a few moments to create the project. 
 

 
Figure 7: Choose FPGA device 

 If this is the first time you are using SmartHLS, you will need to set up the paths to 
Modelsim (and Microsemi Libero® for later parts of this tutorial). To setup the paths, click on 
SmartHLS on the top menu bar, then click on Tool Path Settings. Once the dialog opens, set the 
paths for ModelSim Simulator and Microsemi Libero® SoC as shown in Figure 8 and click OK. 

 

 
Figure 8: SmartHLS Tool Path Settings. 
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An important panel of the SmartHLS IDE is the Project Explorer on the left side of the window as 
shown in Figure 9. We will use the project explorer throughout this tutorial to view source files 
and synthesis reports. 
  

 Click on the small arrow icon to expand the sobel_part1 project. You can now double 
click any of the source files, such as sobel.cpp, and you will see the source file appear in the 
main panel to the right of the Project Explorer. 
 

  

 

 

 

Once a SmartHLS project is created, you should always open one of the source files 

(such as sobel.cpp) or double-click on the sobel_part1 directory in the Project Explorer pane. 

This will make sobel_part1 the active project.  

 

When there are multiple projects open in the workspace, you need to click on the 

project in the Project Explorer pane or open a file from the project in order to make the project 

active before running any SmartHLS commands.  

  

Figure 9: Project Explorer for browsing source files and reports. 
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Towards the top of SmartHLS, you should find a toolbar, as shown in Figure 10, which you can 
use to execute the main features of the SmartHLS tool. Hover over each icon to find out their 
meanings.  

 

  

Starting from the left of Figure 10, the icons are:  

1) Add Files to Project 

 

Then icons for the software development flow: 

2) Compile Software with GCC 

3) Run Software that was compiled 

4) Debug Software 

5) Profile Software with gprof 

 

The hardware development flow icons are:  

6) Compile Software to Hardware 

7) Compile Software to Processor/Accelerator 

SoC 

8) Simulate Hardware 

9) Software/Hardware Co-simulation 

10) Synthesize Hardware to FPGA.  

 

With the last three icons, you can: 

11) Set HLS Constraints  

12) Launch Schedule Viewer 

13) Clean SmartHLS Project 

 
These SmartHLS commands can also be run from the 
SmartHLS top bar menu. 

Figure 11 summarizes the SmartHLS design flow 
steps. We initially create the SmartHLS project and 
follow a standard software development flow on the 
C++ (compile/run/debug). Then we apply HLS 
constraints (i.e., target clock period) and compile the 
software into hardware using SmartHLS. We can review reports about the generated hardware. 
Then we run software/hardware co-simulation to verify the generated hardware. Finally, we 
can synthesize the hardware to our target FPGA to report the hardware resource usage and 
Fmax.  

1           2        3       4        5            6        7      8         9       10     11      12      13 

Figure 10: SmartHLS toolbar icons 

Figure 11: SmartHLS Design Flow Steps 
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We can now browse through the code in sobel.cpp. In the sobel_filter function, the 
first line “#pragma HLS function top” specifies that the sobel_filter function is the 
top-level function of the project. SmartHLS will only generate a hardware module for the top-
level function and all descendent functions.  

The sobel_filter top-level function contains a pair of nested loops that iterate over 
every pixel in the image. Inside the loop body is another pair of nested loops that iterate 
through the filter window at the current location in the image. For each pixel of the image that 
is not in the border, the 3x3 area centered on the pixel is convolved with Gx and Gy, then its 
magnitude summed, to produce the final output pixel.  

The main function is responsible for verifying the functionality of the sobel_filter 
function. The grayscale (8-bit) input image is stored in the 512x512 array elaine_512_input 
defined in input.h and the expected output image is stored in elaine_512_golden_output 
defined in output.h. The main function passes the input image to the sobel_filter function 
and prints “PASS!” if the computed output image matches the expected output image. 

 
Before compiling to hardware, we should verify that the C++ program is correct by 

compiling and running the software. This is typical of HLS design, where the designer will verify 
that the design is functionally correct in software before compiling it to hardware.  

 

 Click on the Compile Software icon  in the toolbar (Figure 10). This compiles the 
software with the GCC compiler. You will see the output from the compilation appearing in the 
bottom of the screen in the Console window of the IDE. 
  

 Now, execute the compiled software by clicking on the Run Software icon  in the 
toolbar. You should see the message PASS! appearing in the Console window, as shown in 
Figure 12. 

   

Figure 12: Console after running software execution. 
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 Now we can compile the Sobel filter C++ software into hardware using SmartHLS by 

clicking on the toolbar icon  to Compile Software to Hardware. This command invokes 
SmartHLS to compile the top-level sobel_filter function into hardware. If the top-level 
function calls descendant functions, all descendant functions are also compiled to hardware. 
You can find the generated Verilog code in sobel_part1.v as shown in Figure 13. 
 

  
Figure 13: Finding the SmartHLS-generated Verilog in the Project Explorer. 

 
When the compilation finishes, a SmartHLS report file (summary.hls.rpt) opens. The 

report shows the RTL interface of the top-level module corresponding to the top-level C++ 
function, the number of cycles scheduled for each basic block of the function as well as the 
memories that are used in the hardware. In this example, you will see the top-level RTL module 
has three interfaces, the standard Control interface that is used by any SmartHLS-generated 
circuit, and two Memory interfaces corresponding to the input and output array arguments of 
the top-level sobel_filter function. In the Memory Usage section of the report, there are 
no memories inside the generated hardware, as the input and output arrays are passed in as 
arguments into the top-level function. These input/output function arguments are listed as “I/O 
Memories” table. 
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 You can visualize the schedule and control-flow of the hardware using the SmartHLS 

schedule viewer. Start the schedule viewer by clicking on the Launch Schedule Viewer icon  
in the toolbar (see Figure 10). In the left panel of the schedule viewer, you will see the names of 
the functions and basic blocks of each function. In this example, there is only one function that 
was compiled to hardware, sobel_filter. In the Explorer pane on the left, we see the 
sobel_filter function and 8 basic blocks within the function that are all prefixed by “BB_”.   
 

 
Figure 14: Control-Flow Graph for the Sobel filter. 

 

 Double-click on the sobel_filter function in the call-graph pane and you will see the 
control-flow graph for the function, similar to Figure 14. The names of the basic blocks in the 
program are prefixed with “BB_”. Note that the basic block names may be slightly different 
depending on the version of SmartHLS you use. The basic block names are not easy to relate 
back to the original C++ code; however, you can observe that there are two loops in the 
control-flow graph, which correspond to the two outermost loops in the C++ code for the 
sobel_filter function. The inner loop contains basic blocks: BB_for_body3, 
BB_for_cond14_preheader, BB_for_body3_for_inc54_crit_edge, and 
BB_for_inc54. Try double clicking on BB_for_cond14_preheader (if the basic block 
names are different from the figure, click on the left-most basic block). 

  



 

14 
 

 Figure 15 shows the schedule for BB_for_cond14_preheader, which is the main part 
of the inner-most loop body. The middle panel shows the names of the instructions. The right-
most panel shows how the instructions are scheduled into states (the figure shows that states 6 
to 14 are scheduled for this basic block). Hold your mouse over top of some of the blue boxes in 
the schedule: you will see the inputs of the current instruction become red and outputs 
become orange. Look closely at the names of the instructions and try to connect the 
computations with those in the original C++ program. You will see that there are some loads, 
additions, subtractions, and shifts. After you are finished close the schedule viewer (File -> Exit). 
 

 
Figure 15: Schedule for the inner-most loop. 
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 Now we can simulate the Verilog RTL hardware with ModelSim to find out the number 
of cycles needed to execute the circuit – the cycle latency. Close the schedule viewer first, then 

click the SW/HW Co-Simulation icon  in the toolbar. SW/HW co-simulation will simulate the 
generated Verilog module, sobel_filter_top, in RTL using ModelSim, while running the rest 
of the program, main, in software. The co-simulation flow allows us to simulate and verify the 
SmartHLS-generated hardware without writing a custom RTL testbench. 

In the Console window, you will see various messages printed by ModelSim related to 

loading simulation models for the hardware. The hardware may take a few minutes to simulate. 

We want to focus on the messages near the end of the simulation which will look like this: 
... 

# Cycle latency:     3392549 

# ** Note: $finish    : ../simulation/cosim_tb.sv(279) 

#    Time: 67851010 ns  Iteration: 1  Instance: /cosim_tb 

# End time: 15:39:12 on Jun 30,2021, Elapsed time: 0:00:41 

# Errors: 0, Warnings: 0 

... 

Info: Verifying RTL simulation 

... 

Retrieving hardware outputs from RTL simulation for sobel_filter 

function call 1. 

PASS! 

... 

Number of calls:           1 

Cycle latency:     3,392,549 

SW/HW co-simulation: PASS 

 

We see that the co-simulation took 3,392,549 clock cycles to finish. The simulation 

printed “SW/HW co-simulation: PASS!” which indicates that the RTL generated by 

SmartHLS matches the software model.  

The co-simulation flow uses the return value from the main software function to 

determine whether the co-simulation has passed. If the main function returns 0 then the co-

simulation will PASS otherwise a non-zero return value will FAIL. Please make sure that your 

main function always follows this convention and returns 0 if the top-level function tests are all 

successful. 

In the main function of sobel_part1, also called the software testbench, after calling the 

top-level function, we iterate over every pixel of the computed output image and verify the 

pixel against the expected value. A mismatch counter is incremented if a pixel is not as 

expected and this counter value is returned by the main function. If all values match, then the 

main function will return 0. Therefore, since co-simulation printed PASS (main returned 0) we 

have verified the generated hardware is correct.  
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 We can also run co-simulation and launch Modelsim to show the Waveforms. From the 

SmartHLS top menu, select SW/HW Co-Simulation with Waveforms as shown in Figure 16. 

 

Figure 16: Run SW/HW Co-Simulation with Waveforms 

 When Modelsim opens it will prompt “Are you sure you want to finish?”. Select “No”. 

Then you can view the signal waveforms as shown in Figure 17. After you are finished close 

Modelsim (File -> Quit). 

 

Figure 17: Modelsim waveforms shown during SW/HW Co-Simulation 
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Libero® is the name of Microsemi’s synthesis, placement, routing, and timing analysis 
tool. SmartHLS can execute Libero® to synthesize, place and route the Verilog to the Microsemi 
PolarFire® FPGA to obtain information such as the resource usage and the Fmax of this design 
(i.e. the clock period).  

 

 Click the  icon on the toolbar to Synthesize Hardware to FPGA. SmartHLS will 
automatically invoke Libero® to create a Libero® project and synthesize the SmartHLS design 
targeting the PolarFire® FPGA device. Libero® may take a while to finish. 

Once the command completes, SmartHLS will open the summary.results.rpt report file. 

SmartHLS will summarize the resource usage and Fmax results reported by Libero® after place 

and route. You should get similar results as what is shown below. Your numbers may differ 

slightly, depending on the version of SmartHLS and Libero® you are using. This tutorial used 

Libero® SoC v2021.1. The timing results and resource usage might also differ depending on the 
random seed used in the synthesis tool flow. 

 

====== 2. Timing Result ====== 

 

+--------------+---------------+-------------+-------------+----------+-------------+ 

| Clock Domain | Target Period | Target Fmax | Worst Slack | Period   | Fmax        | 

+--------------+---------------+-------------+-------------+----------+-------------+ 

| clk          | 10.000 ns     | 100.000 MHz | 7.815 ns    | 2.185 ns | 457.666 MHz | 

+--------------+---------------+-------------+-------------+----------+-------------+ 

 

The reported Fmax is for the HLS core in isolation (from Libero's post-place-and-route 

timing analysis). 

When the HLS core is integrated into a larger system, the system Fmax may be lower 

depending on the critical path of the system. 

 

====== 3. Resource Usage ====== 

 

+--------------------------+---------------+--------+------------+ 

| Resource Type            | Used          | Total  | Percentage | 

+--------------------------+---------------+--------+------------+ 

| Fabric + Interface 4LUT* | 684 + 0 = 684 | 108600 | 0.63       | 

| Fabric + Interface DFF*  | 432 + 0 = 432 | 108600 | 0.40       | 

| I/O Register             | 0             | 852    | 0.00       | 

| User I/O                 | 0             | 284    | 0.00       | 

| uSRAM                    | 0             | 1008   | 0.00       | 

| LSRAM                    | 0             | 352    | 0.00       | 

| Math                     | 0             | 336    | 0.00       | 

+--------------------------+---------------+--------+------------+ 

 

* Interface 4LUTs and DFFs are occupied due to the uses of LSRAM, Math, and uSRAM. 

  Number of interface 4LUTs/DFFs = (36 * #.LSRAM) + (36 * #.Math) + (12 * #.uSRAM) = 

(36 * 0) + (36 * 0) + (12 * 0) = 0.  

 

Wall-clock time is one of the key performance metrics for an FPGA design, computed as the 

product of the cycle latency and the clock period. In this case, our cycle latency was 3,392,549 

and the clock period was 2.346 ns. The wall-clock time of our implementation is therefore 

3,392,549 × 2.346 ns = 7.959 ms. 
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 Now close the project by right clicking on the “sobel_part1” folder in the Project 

Explorer pane and click “Close Project”.  
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5 Part 2: Loop Pipelining 

 

Figure 18: Loop pipelining Example. 

In this section, you will use loop pipelining to improve the throughput of the hardware 

generated by SmartHLS. Loop pipelining allows a new iteration of the loop to be started before 

the current iteration has finished. By allowing the execution of the loop iterations to be 

overlapped, higher throughput can be achieved. The amount of overlap is controlled by the 

initiation interval (II). The II indicates how many cycles are required before starting the next 

loop iteration. Thus, an II of 1 means a new loop iteration can be started every clock cycle, 

which is the best we can achieve. The II needs to be larger than 1 in other cases, such as when 

there is a resource contention (multiple loop iterations need the same resource in the same 

clock cycle) or when there are loop-carried dependencies (the output of a previous iteration is 

needed as an input to the subsequent iteration). Resource contention commonly happens with 

memory accesses to dual-port block RAMs which can only perform two memory accesses per 

cycle. 

Figure 18 shows an example of loop pipelining. Figure 18(b) shows the sequential loop, 

where a new loop iteration can start every 3 clock cycles (II=3), and the loop takes 9 clock cycles 

to finish the final write. Figure 18(c) shows the pipelined loop. In this example, there are no 

resource contentions or data dependencies. Therefore, the pipelined loop can start a new 

iteration every clock cycle (II=1) and takes only 5 clock cycles to finish the final write. As shown 

in this example, loop pipelining can significantly improve the performance of your circuit, 

especially when there are no data dependencies or resource contentions. 
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 Follow the same procedure you used in the previous part of this tutorial (include the 
source files for part 2 and target MPF100T-FCVG484I), create a new SmartHLS project for part 
2. Once the project is created, open the part 2 source file sobel.cpp.  
 
With the Sobel filter, since each pixel of the output is dependent only on the input image and 
the constant matrices Gx and Gy, we would like to pipeline the calculation of each pixel. The 
loop pipeline pragma in front of the loop, “#pragma HLS loop pipeline”, tells SmartHLS to 
pipeline the loop and take advantage of loop parallelism: 
 

#pragma HLS loop pipeline 

 for (int i = 0; i < (HEIGHT – 2) * (WIDTH – 2); i++) { 
 

You will notice that the pair of nested loops in part 1 (previously using i and j) have been 
flattened into one for loop. We have flattened the nested loops to allow us to apply loop 
pipelining on the entire loop body. Otherwise, when we apply loop pipelining on a nested outer 
loop, SmartHLS will automatically unroll the inner loops, which would not be possible with 512 
iterations. See more details in the Appendix: Loop Pipelining in Part 1 vs Part 2. 
 

 Now you can synthesize the design by clicking the Compile Software to Hardware icon 

 in the toolbar. In the Console window, you should see messages like the following: 

 
Info: Resource constraint limits initiation interval to 4. 

      Resource 'in_external_memory_port' has 8 uses per cycle but only 2 units available. 

      +--------------------------------------+---------------------------+---------------------+ 

      | Operation                            | Location                  | Competing Use Count | 

      +--------------------------------------+---------------------------+---------------------+ 

      | 'load' (8b) operation for array 'in' | line 30 of sobel.cpp      | 1                   | 

      | 'load' (8b) operation for array 'in' | line 30 of sobel.cpp      | 2                   | 

      | 'load' (8b) operation for array 'in' | line 30 of sobel.cpp      | 3                   | 

      | 'load' (8b) operation for array 'in' | line 30 of sobel.cpp      | 4                   | 

      | 'load' (8b) operation for array 'in' | line 30 of sobel.cpp      | 5                   | 

      | 'load' (8b) operation for array 'in' | line 30 of sobel.cpp      | 6                   | 

      | 'load' (8b) operation for array 'in' | line 30 of sobel.cpp      | 7                   | 

      | 'load' (8b) operation for array 'in' | line 30 of sobel.cpp      | 8                   | 

      +--------------------------------------+---------------------------+---------------------+ 

      |                                      | Total # of Competing Uses | 8                   | 

      +--------------------------------------+---------------------------+---------------------+ 

 

These messages indicate that SmartHLS cannot achieve an II of 1 (highest throughput) 

due to resource conflicts – there are 8 loads from the same RAM memory in the loop body. 

Since RAM blocks are dual ported on an FPGA, we need 4 cycles to perform 8 loads. Therefore, 

SmartHLS needs to schedule 4 cycles between successive iterations of the loop (an initiation 

interval of 4). 
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 We can visualize the 8 memory loads in the pipeline using the SmartHLS schedule 

viewer. Click on the Launch Schedule Viewer icon . Double-click on sobel_filter, then in 
the Control Flow Graph, you will see a basic block called BB_for_body. Double-click 
BB_for_body to reveal the loop pipeline schedule, similar to that shown in Figure 19. 
Horizontally from left to right shows the operations performed on successive clock cycles and 
vertically going down shows successive loop iterations. Here, you can see that the II of the loop 
is 4 and that a new loop iteration starts every 4 cycles. You can also see the instructions that are 
scheduled in each cycle for each loop iteration. All instructions that are shown in the same 
column are executed in the same cycle.  

Now scroll to the far right in the schedule viewer. The dark black rectangle on the far 
right illustrates what the pipeline looks like in steady state. In steady state, three iterations of 
the loop are “in flight” at once. In steady state, you can see that there are two loads in cycle 8 
from iteration 1 (the second row down), two loads in cycle 9 from iteration 1, two loads in cycle 
10 from iteration 2 (third row down), and two loads in cycle 11 from iteration 2. Thus the 8 
loads are spread out over 4 cycles, making the Initiation Interval = 4.  

Figure 19: Loop Pipeline Schedule for the Sobel filter. 
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 Now, exit the schedule viewer and simulate the design in ModelSim by clicking the 

SW/HW Co-Simulation icon  on the toolbar. You should see Console output similar to the 
following: 

... 

# Cycle latency:     1040413 

# ** Note: $finish    : ../simulation/cosim_tb.sv(279) 

#    Time: 20808290 ns  Iteration: 1  Instance: /cosim_tb 

# End time: 00:04:28 on Jun 30,2021, Elapsed time: 0:00:37 

# Errors: 0, Warnings: 0 

... 

Info: Verifying RTL simulation 

... 

Retrieving hardware outputs from RTL simulation for sobel_filter 

function call 1. 

PASS! 

... 

Number of calls:           1 

Cycle latency:     1,040,413 

SW/HW co-simulation: PASS 

 

Observe that loop pipelining has dramatically improved the cycle latency for the design, 

reducing it from 3,392,549 cycles to 1,040,413 cycles in total.  
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 Finally, use Microsemi’s Libero® to map the design onto the PolarFire® FPGA by clicking 

the Synthesize Hardware to FPGA icon  on the toolbar. Once the synthesis run finishes, 

examine the FPGA speed (FMax) and area data from the summary.results.rpt report file. You 

should see results similar to the following: 
 

====== 2. Timing Result ====== 

 

+--------------+---------------+-------------+-------------+----------+-------------+ 

| Clock Domain | Target Period | Target Fmax | Worst Slack | Period   | Fmax        | 

+--------------+---------------+-------------+-------------+----------+-------------+ 

| clk          | 10.000 ns     | 100.000 MHz | 7.288 ns    | 2.712 ns | 368.732 MHz | 

+--------------+---------------+-------------+-------------+----------+-------------+ 

... 

 

====== 3. Resource Usage ====== 

 

+--------------------------+---------------+--------+------------+ 

| Resource Type            | Used          | Total  | Percentage | 

+--------------------------+---------------+--------+------------+ 

| Fabric + Interface 4LUT* | 778 + 0 = 778 | 108600 | 0.72       | 

| Fabric + Interface DFF*  | 535 + 0 = 535 | 108600 | 0.49       | 

| I/O Register             | 0             | 852    | 0.00       | 

| User I/O                 | 0             | 284    | 0.00       | 

| uSRAM                    | 0             | 1008   | 0.00       | 

| LSRAM                    | 0             | 352    | 0.00       | 

| Math                     | 0             | 336    | 0.00       | 

+--------------------------+---------------+--------+------------+ 
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6 Part 3: Designing Streaming/Dataflow Hardware 

The final hardware implementation we will cover in this tutorial is called a streaming 

implementation (also sometimes called a dataflow implementation). Streaming hardware can 

accept new inputs at a regular initiation interval (II), for example, every cycle. This bears some 

similarity to the loop pipelining part of the tutorial you completed above. While one set of 

inputs is being processed by the streaming hardware, new inputs can continue to be injected 

into the hardware every II cycles.  

For example, a streaming hardware module might have a latency of 10 clock cycles and 

an II of 1 cycle. This would mean that, for a given set of inputs, the hardware takes 10 clock 

cycles to complete its work; however, the hardware can continue to receive new inputs every 

single cycle. Streaming hardware is thus very similar to a pipelined processor, where multiple 

different instructions are in flight at once, at intermediate stages of the pipeline. The word 

“streaming” is used because the generated hardware operates on a continuous stream of input 

data and produces a stream of output data. Image, audio and video processing are all examples 

of streaming applications. 

In this part of the tutorial, we will synthesize a circuit that accepts a new input pixel of 

an image every cycle (the input stream) and produces a pixel of the output image every cycle 

(the output stream). Given this desired behavior, an approach that may spring to your mind is 

as follows: 1) Read in the entire input image, pixel by pixel. 2) Once the input image is stored, 

begin computing the Sobel-filtered output image. 3) Output the filtered image, pixel by pixel. 

While this approach is certainly possible, it suffers from several weaknesses. First, if the input 

image is 512x512 pixels, then it would take 262,144 cycles to input an image, pixel by pixel. This 

represents a significant wait before seeing any output. Second, we would need to store the 

entire input image in memory. Assuming 8-bit pixel values, this would require 262KB of 

memory. An alternative widely used approach to streaming image processing is to use line 

buffers. 

 
Figure 20: Motivation for use of line buffers. 

 

Figure 20 shows the 3x3 Sobel filter sweeping across an input image. From this figure, we can 

make a key observation, namely, that to apply the Sobel filter, we do not need the entire input 

image. Rather, we only need to store the previous two rows of the input image, along with a 
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few pixels from the current row being received (bottom row of pixels in the figure). Leveraging 

this observation, we can drastically reduce the amount of memory required to just two rows of 

the input image. The memory used to store the two rows are called “line buffers” and they can 

be efficiently implemented as block RAMs on the FPGA. 

 Create a new SmartHLS project for part 3 of the tutorial and include all the .cpp and .h 
files for part 3. Again, specify Microsemi’s PolarFire® custom device (MPF100T-FCVG484I) and 
finish creating the project.  
 
Examine the sobel.cpp file in the project viewer and you will find the following line: 

 
static LineBuffer<unsigned char, WIDTH, 3> line_buffer; 
 
This statement “instantiates” SmartHLS’s LineBuffer template class from the 

<hls/image_processing.hpp> C++ library to create a line_buffer object. The template 
parameters specify the desired line buffer configuration: 1) use “unsigned char” 8-bit type to 
represent pixels, 2) set image width to WIDTH, and 3) set the filter size to 3. Inside the 
LineBuffer, there are internal arrays for storing the previous rows (two rows when filter size is 
3), and an externally accessible 2D array named “window” to contain pixels in the current 3x3 
receptive field.  The line_buffer is declared as static so that its internal state and memory is 
retained between functions calls. 

A few lines below you should see “line_buffer.ShiftInPixel(input_pixel);”.  Each 
call of the ShiftInPixel() function pushes in a new pixel into the line buffer and updates the 
line buffer’s internal previous-row arrays as well as the receptive field window.  In the 
subsequent nested loop, you will see the 3x3 receptive field is accessed by reading the “window” 
array, i.e., line_buffer.window[m + 1][n + 1].  
 

 
 

 

 

Before going further, we will explain a common feature of streaming hardware called a FIFO 

(first-in first-out) queue. We use FIFO queues to interconnect the various streaming 

components, as shown in Figure 21. Here, we see a system with four streaming hardware 

modules, which are often called kernels (not to be confused with the convolutional kernels used 

in the Sobel filter!). The hardware kernels are connected with FIFO queues in between them. A 

FIFO 

 
FIFO 

Figure 21: Streaming hardware circuit with FIFO queues between components. 
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kernel consumes data from its input FIFO queue(s) and pushes computed data into its output 

queue(s). If its input queue is empty, the kernel stalls (stops executing). Likewise, if the output 

queues are full, the unit stalls. In the example in Figure 21, kernel 4 has two queues on its input, 

and consequently, kernel 4 commences once a data item is available in both of the queues. 

The SmartHLS tool provides an easy-to-use FIFO data structure to interconnect 

streaming kernels, which is automatically converted into a hardware FIFO during circuit 

synthesis. Below is a snippet from the sobel_filter function in the sobel.cpp file. Observe 

that the input and output FIFOs are passed by reference to the function. A pixel value is read 

from the input FIFO via the read() function; later, a pixel is written to the output FIFO through 

the write() function. These functions are declared in the hls/streaming.hpp header file. 
 
void sobel_filter(FIFO<unsigned char> &input_fifo, 
                  FIFO<unsigned char> &output_fifo) { 
    ... 
    unsigned char input_pixel = input_fifo.read(); 
    ... 
    output_fifo.write(outofbounds ? 0 : sum); 
    ... 
} 

 
The rest of the sobel_filter function is very similar to the previous parts of this 

tutorial. An exception relates to the use of static variables so that data can be retained across 
calls to the function. A count variable tracks the number of times the function has been invoked 
and this is used to determine if the line buffers have been filled with data. Two static variables, i 
and j keep track of the row and column of the current input pixel being streamed into the 
function; this tracking allows the function to determine whether the pixel is out of bounds for 
the convolution operation (i.e. on the edge of the image). 

The sobel_filter top-level function has an additional pragma: 
#pragma HLS function pipeline 

This pragma tells SmartHLS that the sobel_filter function is intended to be a streaming 
kernel.   

In the main function in sobel.cpp, you will see that FIFOs are declared in the beginning. 
The FIFO class has a template parameter to specify the data type stored inside the FIFO. The 
FIFO constructor argument specifies the depth (how many elements can be stored). In this case, 
the FIFOs are declared to have the unsigned char data type to create 8-bit wide FIFOs. 

In the main function, we see that the image input data (stored in input.h) is pushed into 
the input_fifo and the Sobel filter is invoked for HEIGHT x WIDTH times. Finally, the output 
values are checked for correctness and PASS or FAIL is reported. The main function returns 0 if 
the output values are correct.  

 Click the icons to compile  and run the software , and you should see the 
computed and golden pixel values and the message “RESULT: PASS”. 
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 Now generate the hardware with SmartHLS by clicking the Compile Software to 

Hardware icon . In the report file (summary.hls.rpt) that opens, you should see the top-level 
RTL interface now includes an input AXI stream interface and an output AXI stream interface, 
corresponding to the input_fifo and output_fifo arguments of the top-level function. Under 
Pipeline Result that the sobel_filter function is pipelined and has an initiation interval of 1. 

 

====== 3. Pipeline Result ====== 
 
+--------------+--------------+-------------+-------------------------+---------------------+-----------------+ 
| Label        | Function     | Basic Block | Location in Source Code | Initiation Interval | Pipeline Length | 
+--------------+--------------+-------------+-------------------------+---------------------+-----------------+ 
| sobel_filter | sobel_filter | %init.check | line 12 of sobel.cpp    | 1                   | 7               | 
+--------------+--------------+-------------+-------------------------+---------------------+-----------------+ 

 
This circuit has memories inside the hardware (see Local Memories under Memory 

Usage) due to the line buffers and the counters that are used. You can see there are two RAMs 
in the circuit both with 4096 bits, corresponding to the two line buffers each storing 512 x 8-bit 
pixels. Note we have removed other local memories from the report snippet below: 
 
+-----------------------------------------------------------------------------------------------------------+ 
| Local Memories                                                                                            | 
+-----------------------------------------+-----------------------+------+-------------+------------+-------+ 
| Name                                    | Accessing Function(s) | Type | Size [Bits] | Data Width | Depth | 
+-----------------------------------------+-----------------------+------+-------------+------------+-------+ 
...      ...    ... 
...      ...    ... 
...      ...    ... 
| sobel_filter_line_buffer_prev_row_a0_a0 | sobel_filter          | RAM  | 4096        | 8          | 512   | 
| sobel_filter_line_buffer_prev_row_a1_a0 | sobel_filter          | RAM  | 4096        | 8          | 512   | 
 

 Now simulate the streaming hardware by clicking the SW/HW Co-Simulation icon . 

You will see scrolling output in the Console window, reporting the computed and expected pixel 

value at each clock cycle. After a few minutes the co-simulation will finish and in the Console 

you should see: 

... 

PASS! 

... 

Number of calls:      262,658 

Cycle latency:      262,667 

SW/HW co-simulation: PASS 

 

The total number of clock cycles is about 262,667, which is very close to 512 x 512 = 262,144. 
That is, the number of cycles for the streaming hardware is close to the total number of pixels 
computed, which confirms that we are processing 1 pixel every clock cycle (Initiation Interval is 
1). At the end of the co-simulation, you should see that the co-simulation has passed. 
  



 

28 
 

 Now, we can synthesize the circuit with Libero® targeting the PolarFire® FPGA by 

clicking the Synthesize Hardware to FPGA icon  in the toolbar. You should see the following 

results in the summary.results.rpt report file: 
 
====== 2. Timing Result ====== 
 
+--------------+---------------+-------------+-------------+----------+-------------+ 
| Clock Domain | Target Period | Target Fmax | Worst Slack | Period   | Fmax        | 
+--------------+---------------+-------------+-------------+----------+-------------+ 
| clk          | 10.000 ns     | 100.000 MHz | 6.064 ns    | 3.936 ns | 254.065 MHz | 
+--------------+---------------+-------------+-------------+----------+-------------+ 
... 
 
====== 3. Resource Usage ====== 
 
+--------------------------+----------------+--------+------------+ 
| Resource Type            | Used           | Total  | Percentage | 
+--------------------------+----------------+--------+------------+ 
| Fabric + Interface 4LUT* | 486 + 72 = 558 | 108600 | 0.51       | 
| Fabric + Interface DFF*  | 398 + 72 = 470 | 108600 | 0.43       | 
| I/O Register             | 0              | 852    | 0.00       | 
| User I/O                 | 0              | 284    | 0.00       | 
| uSRAM                    | 0              | 1008   | 0.00       | 
| LSRAM                    | 2              | 352    | 0.57       | 
| Math                     | 0              | 336    | 0.00       | 
+--------------------------+----------------+--------+------------+ 

 
 
 
SmartHLS also allows the user to give a target clock period constraint, which the compiler uses 
to schedule the operations in the program and insert registers so that the generated circuit can 
be implemented accordingly. It may not always be possible for SmartHLS meet the user-
provided target period precisely, due to the complexity of the circuit or the physical properties 
of the target FPGA device, but in general, a lower clock period constraint leads to higher Fmax. 
A lower clock period may cause larger circuit area due to SmartHLS inserting more registers, 
and a higher clock period constraint leads to lower Fmax but can also have less area.  
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 Open the HLS Constraints dialog by clicking the icon  where we can change the target 

clock period constraint. As shown in Figure 22, select “Set target clock period” for Constraint 

Type and set Constraint Value to the desired clock period in nanoseconds: “7”. Then you must 

click the “Add” button. After pressing Add, the constraint will appear in the list of active HLS 

constraints. Then click OK. 
 

 
Figure 22: Setting the target clock period HLS constraint. 

If the target clock period constraint is not provided by the user, as in this tutorial, SmartHLS will 

use the default target clock period constraint that has been set for each target FPGA device. 

The default clock period constraint is 10 ns for the Microsemi PolarFire® FPGA.  

 Now that we lowered the clock period constraint to 7 ns, we can recompile software to 

hardware by clicking the icon . You should see the pipeline length has increased from 7 to 12 

cycles in the summary.hls.rpt report file: 
 

====== 3. Pipeline Result ====== 
 
+--------------+--------------+-------------+-------------------------+---------------------+-----------------+ 
| Label        | Function     | Basic Block | Location in Source Code | Initiation Interval | Pipeline Length | 
+--------------+--------------+-------------+-------------------------+---------------------+-----------------+ 
| sobel_filter | sobel_filter | %init.check | line 12 of sobel.cpp    | 1                   | 12              | 
+--------------+--------------+-------------+-------------------------+---------------------+-----------------+ 

The pipeline length increased because SmartHLS has added additional pipeline stages/registers 

to achieve the higher target Fmax. You can also synthesize the generated circuit with Libero® 

again to examine the impact of the clock period constraint on the generated circuit.  
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7 Instantiating SmartHLS IP Core in Libero® SmartDesign 
 
After we use SmartHLS to design a hardware IP component, we will want to instantiate the 
component into Libero® SmartDesign and integrate this core into our larger system. When 
SmartHLS generates the hardware, SmartHLS will also generate a create_hdl_plus.tcl 
script to easily instantiate the SmartHLS-generated IP core into Libero® SmartDesign. You will 
see the Info message in the SmartHLS IDE console window which includes the full path to the 
script: 
 

Info: Generating HDL+ Tcl script to be imported in SmartDesign: 
C:\SmartHLS-2021.1.2\workspace\sobel_part3\create_hdl_plus.tcl. 
 

 Now open Libero® SoC from the Start Menu. Create a new Libero® Project by selecting 
from the top menu: Project -> New Project. Choose any project name and target PolarFire® 
FPGAs. In the new Libero® project, create a new SmartDesign by double clicking “Create 
SmartDesign” as shown in Figure 23 below. Choose any name in the Create New SmartDesign 
dialog. 
 

 
 

Figure 23: Create SmartDesign in Libero® SoC. 

            
Figure 24: Execute Tcl script to instantiate SmartHLS IP component into SmartDesign. 
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 We now go to the Libero® Project menu and select Execute Script and give the path to 
the generated create_hdl_plus.tcl script as shown in Figure 24. Then click Run.  
 
Running the Tcl script will add the SmartHLS-generated HDL+ component sobel_filter_top 
and all required Verilog files, memory initialization files, and other dependencies to the Libero® 
project.  You should see the Execute Script command succeeded as shown in Figure 25. 

 
Figure 25: Script Execution Report after running SmartHLS SmartDesign Tcl script. 

 

 As shown in Figure 26, we can now instantiate the component in SmartDesign by right-
clicking on the sobel_filter_top HDL+ component in the Design Hiearchy panel on the left 
and selecting Instantiate in system. In the SmartDesign system we will now see the new 
sobel_filter_top_0 IP component. 

 

         
 

Figure 26: SmartHLS IP Component instantiated inside SmartDesign 
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In this case, since the sobel_filter_top IP component used SmartHLS FIFOs as top-level 
arguments, SmartHLS has automatically grouped the output_fifo and input_fifo 
data/ready/valid ports as AXI4-Stream bus interfaces. 
 
We also have the option to expose the sub-signals under the AXI4-Stream bus. This will allow us 
to connect individual ports instead of the entire bus. To do this, right click on the AXI4-Stream 
bus on the SmartHLS-generated IP component and choose Show/Hide BIF Pins. Then choose the 
sub-signals as appropriate.  
 

 For example, as shown in Figure 27, we can right click the output_fifo_axi4stream bus 
and choose to Show/Hide BIF Pins, then we select all 3 pins and press OK. We will now see that 
the sobel_filter_top_0 IP component has an input pin for output_fifo_ready, an output pin for 
output_fifo[7:0], and an output pin for output_fifo_valid. 

 
 
  

Figure 27: Expose the individual pins contained in the output_fifo AXI4-Stream bus 
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8 Summary 

High-level synthesis allows hardware to be designed at a higher level of abstraction, lowering 

design time and cost. In this tutorial, you have gained experience with several key high-level 

synthesis concepts in SmartHLS, including loop pipelining and streaming/function pipelining, as 

applied to a practical example: edge detection in images. These key techniques can allow you to 

create a high-performance circuit from software. 

 
For any questions, please contact us at SmartHLS@microchip.com. 
  

mailto:SmartHLS@microchip.com
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9 Appendix: Loop Pipelining in Part 1 vs Part 2 
 
In Part 2 of the tutorial, we noted that the nested loops from Part 1 were manually flattened 
into a single for loop (called “loop flattening”). As shown in sobel.cpp from Part 2 below: 
 

#pragma HLS loop pipeline 
    for (int i = 0; i < (HEIGHT - 2) * (WIDTH - 2); i++) { 
        // increment row when column reaches end of row 
        y = (x == WIDTH - 2) ? y + 1 : y; 
        // increment column until end of row 
        x = (x == WIDTH - 2) ? 1 : x + 1; 

 
We flattened the nested loops because SmartHLS does not support loop pipelining nested loops 
without unrolling the inner loops. For example, if we open sobel.cpp from Part 1 and add a 
pragma to pipeline the outer loop of the nested loop: 

#pragma HLS loop pipeline 
    for (int i = 0; i < HEIGHT; i++) { 
     for (int j = 0; j < WIDTH; j++) { 
            // Set output to 0 if the 3x3 receptive field is out of bound. 
            if ((i < 1) | (i > HEIGHT - 2) | (j < 1) | (j > WIDTH - 2)) { 
                out[i][j] = 0; 
                continue; 
            } 

 
Then SmartHLS will try to fully unroll the innermost loop (j index) but SmartHLS will give a 
warning in the Console output since the loop has too many iterations: 
 

Warning: Failed to unroll the entire loop nest on line 19 of sobel.c. 

 
And since the innermost loop has not been unrolled, then the loop cannot be pipelined: 
 

Warning: SmartHLS cannot pipeline nested loops. 
 
See screenshot from the SmartHLS IDE console below: 

 
If you just pipeline the innermost loop, then the hardware will be less efficient than flattening 
the nested loop into a single loop. Because for each outer loop iteration, we will need to stop 
and wait for the innermost loop pipeline finish.  If the nested loops are flattened and everything 
is pipelined then all the iterations can be overlapped and we never need to wait.  
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For example, if we open sobel.cpp from Part 1 and pipeline the innermost loop by adding the 
loop pipeline pragma: 

    for (int i = 0; i < HEIGHT; i++) { 
#pragma HLS loop pipeline 
     for (int j = 0; j < WIDTH; j++) { 
            // Set output to 0 if the 3x3 receptive field is out of bound. 
            if ((i < 1) | (i > HEIGHT - 2) | (j < 1) | (j > WIDTH - 2)) { 
                out[i][j] = 0; 
                continue; 
            } 

 When we re-run Software to Hardware by clicking the  icon. The initiation interval of 
the innermost loop is 4 as shown in the summary report: 
 
====== 3. Pipeline Result ====== 

 

+-------------------------+--------------+-------------+-------------------------+---------------------+-----------------+-----------------+---------+ 

| Label                   | Function     | Basic Block | Location in Source Code | Initiation Interval | Pipeline Length | Iteration Count | Latency | 

+-------------------------+--------------+-------------+-------------------------+---------------------+-----------------+-----------------+---------+ 

| for_loop_sobel_cpp_20_6 | sobel_filter | %for.body3  | line 20 of sobel.cpp    | 4                   | 10              | 512             | 2054    | 

+-------------------------+--------------+-------------+-------------------------+---------------------+-----------------+-----------------+---------+ 
 

 Then we run co-simulation  and see the following Console output: 
Number of calls:           1 
Cycle latency:     1,052,677 
SW/HW co-simulation: PASS 
make[1]: Leaving directory '.../workspace/sobel_part1' 
 
15:51:35 Build Finished (took 1m:51s.138ms) 
 

 
This cycle latency roughly corresponds to 512 (outer loop iterations) x 2054 (latency of 
innermost loop pipeline) = 1,051,648 cycles. There are some extra cycles for the hardware 
running before and after the pipelined loop. 
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We can compare this latency to sobel.cpp in Part 2 when we pipelined the flattened loop: 
 

#pragma HLS loop pipeline 
    for (int i = 0; i < (HEIGHT - 2) * (WIDTH - 2); i++) { 
        // increment row when column reaches end of row 
        y = (x == WIDTH - 2) ? y + 1 : y; 
        // increment column until end of row 
        x = (x == WIDTH - 2) ? 1 : x + 1; 

 

 When we run compile software to hardware  and we look at the summary report: 
 
====== 3. Pipeline Result ====== 

 

+-------------------------+--------------+-------------+-------------------------+---------------------+-----------------+-----------------+---------+ 

| Label                   | Function     | Basic Block | Location in Source Code | Initiation Interval | Pipeline Length | Iteration Count | Latency | 

+-------------------------+--------------+-------------+-------------------------+---------------------+-----------------+-----------------+---------+ 

| for_loop_sobel_cpp_20_5 | sobel_filter | %for.body   | line 20 of sobel.cpp    | 4                   | 11              | 260100          | 1040407 | 

+-------------------------+--------------+-------------+-------------------------+---------------------+-----------------+-----------------+---------+ 
 
The initiation interval of the flattened loop is still 4. But the pipeline length/depth is now 1 cycle 
longer (11 cycles instead of 10 cycles). 
 

 Now when we run co-simulation  we see the Console output below: 
Number of calls:           1 
Cycle latency:     1,040,413 
SW/HW co-simulation: PASS 
make[1]: Leaving directory '.../workspace/sobel_part2' 
 
15:59:45 Build Finished (took 1m:40s.823ms) 

 
This cycle latency roughly corresponds to the 1,040,407 latency reported in the last column 
“Latency” in the pipeline summary report. 
 
Flattening the loop improves the cycle latency from: 1,052,677 to 1,040,413 (1% improvement). 
 
In this case, there is not much improvement by loop flattening. But depending on the loop nest 
there can be a big impact. 
 


