What is the difference between sensation and perception?

Psychological Science, 4/e Figure 4.2
© 2013 W. W. Norton \& Company, Inc.

Sensation:

The process of detecting a stimulus, such as

- light waves (vision)

- sound waves (hearing)
- chemical molecules (smell

and taste (1),
- heat or pressure (touch).

Perception:

The process of integrating, organizing and interpreting sensations.

You might want to think of sensation and perception as two ends of a continuum. There is no clear dividing line between sensation and perception. Where sensation ends and perception begins is difficult to determine.

How many right angles do people perceive?

How many right angles are there?

The Basic Senses and What They Detect

Transduction	
The five senses convert physical energy from the world into neural energy, which is sent to the brain.	
Sense	Sensory Input Conversion into Neural Energy
Vision	Light reflected from surfaces, for example from a leaf, provides the eyes with information about the shape, color, and positions of objects. (See Figure 4.4 for a more detailed view.)
Audition (hearing)	Vibrations (from a guitar string, perhaps) cause changes in air pressure that move through space to the listener's ears.
Touch	Pressure of a surface against the skin signals its shape, texture, and temperature.
Taste and Smell	Molecules dispersed in the air or dissolved in saliva reveal the identity of substances that we may or may not

[^0]
Sensory Processes

There are some basic concepts that psychologists use when talking about the sensitivity of the senses (pages 230-234)

- Sensory adaptation: Diminished sensitivity as a consequence of constant stimulation (page 234).

Sensory adaptation: The decline in sensitivity of the basic senses to a constant stimulus. Therefore, a stronger stimulus is required to activate the senses (another definition).

Smell:
Touch

Hearing:

Sensory Adaptation

How does sensory adaptation help us understand the world around us?

Image source: unknown

Sensory Adaptation

How does sensory adaptation help us understand the world around us?

Image source: unknown

Sensitive are the Senses?

The absolute threshold is the [average] smallest possible strength that can be detected half the time.

Image source: Psychology (2011), Schacter et al.

How we see

2. Chemical reaction in turn activates bipolar cells.

1. Light entering eye triggers chemical reaction in rods and cones at back of retina.
2. Bipolar cells then activate the ganglion cells, whose combined axons form the optic nerve. This nerve transmits information (via the thalamus) to the brain.

Organizing information. You should read the section on rods and cones and organize the information in two columns.

Rods
- Long and thin with blunt
ends
- \quad estimated at 125 million
- max sensitivity in about 30
minutes

- primarily for night vision
- there are no rods in fovea, but more prevalent in the peripheral areas of the retina
- more sensitive to lightabout 1000 time better
- specialized for seeing fine details and vision in bright light.

The blind spot

Image source: Psychology (), Myers
Put the black dot about 12 " in front of your right eye. Using only your right eye (close the left eye), stare at the black dot and move the image forward and back until the car disappears

Young-Helmholtz Trichromatic Theory

3. Bipolar cells then activate the ganglion cells, whose combined axons form the optic nerve. This nerve transmits information (via the thalamus) to the brain.

Cones are responsible for color perception. According to the theory, there are three types of cones in the fovea that are very sensitive to certain wavelengths of light and not very sensitive to the other wavelengths of light.

- Blue light (short wavelength, S cones)
- Green light (medium wavelength, M cones)
- Red light (long wavelength, L cones)

The perception of other colors (such as yellows) is the stimulation of a combination of cones (green and red).

The Trichromatic Theory

What does the trichromatic theory of color perception explain?

People with red/green color blindness cannot distinguish between the two colors because their red and green cones are sensitive to the same color. Technically, this should be called color deficiency, but is commonly called being color blind (about 8% for men, and $1 / 2 \%$ for women).

Image source: Psychology (2009), Hockenbury and Hockenbury
True color blind people see the world in shades of gray, and are rare (about 1 out of 1,000,000 people).

Color Perception

Color Perception

Image source: Psychology, Lefton
Image source: Psychology, Coon
Image source: Psychology, Schacter et. al.

The Opponent Process Theory

The trichromatic theory cannot explain an afterimage such as seeing a faint red, white and blue flag after staring at a yellow/green flag.

Image source: Hockenbury and Hockenbury
According to the opponent process theory, there are three types of color sensitive neurons that are sensitive to a certain pair of colors:

1. red / green	red / green	red / green	red / green
2. blue / yellowa	blue / yellow/	blue / yellow	blue / yellow
3. whinie / black	white / black	white / black	white / black

One single receptor can only be activated to a single color, while the other color is inhibited (blue can be activated, while the yellow is inhibited). With multiple receptors, some receptors can be sensitive to blue, while others can be sensitive to yellow.

All color perceptions are a combination of these receptors. For example,

- Orange $=$ red/green + bue/yellow
- Purple = red/green + blue/yellow

How does the opponent process explain an afterimage?

Afterimages are explained when it is combined with the general principle of sensory adaptation-the weakening of the sensitivity of your senses when they become adapted to a stimulus.

Before staring at the "yellow/green" flag	Normal sensitivity Yellow / Blue Green / Red Black / Whinite
Staring at the "yellow/green" flag	Reduced sensitivity Normal sensitivity
Vellow / Blue	
Green / Red	

Looking at a white background that reflects all colors of light

RedOrange $\$ YellowGreenBluelndigoViolet

練密

RedOrangevellowGreenBlueIndigoViolet

Since the red and blue receptors are sensitive, they will activate and accentuate those colors when you look at a white background, producing a weak afterimage of a red, white and blue flag.

What theory of color vision is "right", they both can't be right?

What theory of color perception explains how we perceive color?

This is the wrong question to ask about color perception. Both theories explain color perception, but at a different level of color perception.

- The trichromatic theory primarily explains perception within the structure of the eye (the cones and retina) before being transmitted to the brain via the optic nerve.
- The opponent-process theory explains perception within the ganglion cells, thalamus and visual cortex.

Why is understanding the process of color perception important for understanding psychology, science, and perhaps life in general.

- No one theory explains complex behavior-it involves multiple processes.
- Sometimes asking the wrong/right question is important for understanding the world around you. The question that is given to you may be the "wrong" question.
- Even though they "appear" to be inconsistent, the two theories are consistent. Science needs to be internally consistent

Where will you see this again?

- Motivation and Emotion
- Personality

Perception

In order to make sense of information; we use two basic processes to help us perceive the world. These two processes work together and complement each other.

Bottom-Up Processing

Perception based on the physical features of the stimulus.
analysis moves from the parts to the whole; also called datadriven processing.

Top-Down Processing

How knowledge, expectations, or past experiences shape the interpretation of sensory information.
analysis that moves from the whole to the parts; also called conceptually driven processing.

Most information processing involves both top-down and bottom-up processing.

In order to determine the whether the processes is topdown or bottom-up, we have to look at the thinking process.

You use bottom-up processing when...	You use top-down processing when...
- recognizing a pattern from the known parts and pieces without the picture of what the puzzle looks like.	- recognizing a new part or piece of a puzzle from a known pattern.
- identifying the picture of a jigsaw puzzle as you assemble it piece by piece.	- searching for pieces to fit a known picture in a jigsaw puzzle.
- TWA 800 crash: no one knew the reason why the airplane exploded: to discover the cause, they had to reassemble the pieces of the wreckage	- Alaska Airlines flight out of Los Angeles was "flying upside down". It was hypothesized that the jack screw in the rudder failed.
- If you display the symptoms: - Fever - Swollen glands - Sore throat - Red throat	- If you have strep throat, then the throat swab test should be positive - If you have strep throat, then you should see white specks in the throat
- A person walks in with a green shirt, blue, green, yellow, red, green, black, green, green hat	- If today is St. Patrick's Day, then what should you see?
What is going on?	
- "Car Talk"	- "Car Talk"

[^0]: Image source: Psychology (2011), Schacter et al.

