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II. Summary 

Isoprenoids play an important role in plant communication and in defense against diverse 

stressors in- and outside of the plants. The emission of isoprenoids into the atmosphere is 

strongly dependent on temperature and light. After emission into the atmosphere, they contrib-

ute to photochemical processes such as ozone or secondary aerosol production, which can lead 

to further positive temperature feedback on the climate system. The isoprenoid emission poten-

tial is altered by stress events, such as droughts, which influence these emissions.  

These events are likely to increase in frequency and/or intensity under climate change. Drought 

stress response strongly differs between species and even within provenances and less is known 

on isoprenoid emission at this detailed level during phases of drought stress and recovery. Thus, 

within this PhD project, the plant chamber system “Tree DEMON” – Tree Drought Emission 

MONitor” was used to investigate the effect of soil water deficit on isoprenoid emissions on 

Scots pine (Pinus sylvestis L.) and sweet chestnut (Castanea sativa Mill.). 

The Tree DEMON was newly developed from scratch and tested to perform studies on tree 

seedlings in four plant chambers. It was able to measure gas exchange of CO2, water vapor and 

isoprenoids in parallel under steady-state conditions, which were guaranteed by a multi-step air-

conditioning system and by running the system in an environmentally controlled climate cham-

ber. Further this location reduced external disturbances. Gas exchange of CO2 and water vapor 

was measured by an infrared gas analyzer, while isoprenoid emissions were sampled onto ad-

sorption tubes. Sampled compounds were thermally desorbed from the tubes and analyzed by a 

GC-MS/FID system. This setup allowed screening and treatment studies lasting from one day to 

several weeks. 

Two drought experiments with Scots pine (study I and II) and one with sweet chestnut seedlings 

(study III) were performed: (I) In the first study, the effect of drought and re-watering on gas 

exchange of three provenances was investigated. (II) The second study looked at the gas ex-

change of one provenance under normal conditions, followed by a drought and re-watering pe-

riod at a higher temporal resolution. Additionally, seedlings were labelled with 13CO2 three 

times corresponding to the different soil water content to better distinguish between isoprenoids 

emissions of from pools and de novo sources by using an extended standardizing algorithm.  

(III) In the third experiment, sweet chestnut seedlings were screened for their emissions compo-

sition and put under drought stress to study the effect of changing water availability on gas ex-

change.  
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All three studies showed that drought reduces gas exchange of CO2, water vapor and isoprenoid 

emission and confirmed a reliable and stable usage of the Tree DEMON.  

In study I the three provenances showed distinct isoprenoid emission patterns and were classi-

fied into a non-Δ3-carene, with either higher α-/β-pinene or β-myrcene fraction, and a Δ3-carene 

dominated type, but not uniquely linked to provenances. Isoprenoid emission rates, net-

photosynthesis and transpiration were reduced during summer drought stress and significantly 

recovered after rewetting. Furthermore a seasonal emission increase towards autumn was ob-

served. Compared with the German provenance, the Spanish and Italian provenances revealed 

higher isoprenoid emission rates and more plastic responses to drought stress and seasonal  

development, which points to a local adaptation to climate.  

Conforming to observations in study I, decreasing soil water content led also in study II to an 

expected decrease of isoprenoids, water vapor and CO2 gas exchange. However, during re-

watering, water vapor and CO2 gas exchange recovered fast to pre-drought levels, whereas iso-

prenoids increased to a lower level compared to the initial non-stressed phase. %13C content 

after labelling was different at each monoterpene and ranged from 0.5 to 95% for unstressed 

trees and around 36±5% of the total emission rate originated from de novo synthesized isopre-

noids. During full drought, the de novo fraction was reduced to 3%. For the re-watering phase 

de novo emissions recovered only partly back to 20%, while pool emissions reached pre-

drought conditions. Thus, emissions of de novo synthesized isoprenoids of Scots pine are down 

regulated by soil drought rather than isoprenoids emissions from pools.  

Study III identified first time several chemo species within sweet chestnut by a screening study. 

The drought experiment showed a faster reduction to almost zero for CO2 and water vapor gas 

exchange, while isoprenoid emissions and were reduced delayed in time. 

The Tree DEMON showed to be a versatile and reliable machine and studies benefit strongly 

from the capability to measure at four trees in parallel. It gave new insights on the plastic ad-

justment of isoprenoid emissions during drought and showed the presence of different chemo 

species for Scots pine and sweet chestnut. Both facts should be considered in future isoprenoid 

models, since drought affects tree species/provenances differently and the presence of multiple 

chemo species may lead to different lifetime and reactions of isoprenoid emissions. Further, the 

results provided new emission rate information (quantitative and qualitative) for inventory data 

and could be used to improve and test emissions models.   
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III. Zusammenfassung  

Isoprenoide spielen eine wichtige Rolle für die Pflanzenkommunikation und für die Abwehr 

von Stressfaktoren inner- und außerhalb der Pflanze. Diese werden abhängig von Temperatur 

und Licht von der Pflanze in die Atmosphäre emittiert. Dort tragen sie zu photochemischen 

Prozessen bei, z.B. Bildung von Ozon oder Aerosolen, und führen damit zu einer Rückkopplung 

auf das Klimasystem. Das Emissionspotential der Pflanzen wird dabei von Stressereignissen, 

wie etwa Dürre, verändert, was zu Emissionsänderungen führen kann. Aufgrund des globalen 

(Klima-)Wandels wird von einer Zunahme der Frequenz und Intensität von Dürreereignissen 

ausgegangen. 

Die Trockenstressantwort von Pflanzen unterscheidet sich stark zwischen Arten als auch Prove-

nienzen. Es ist jedoch bisher nur wenig über die Veränderung der Isoprenoid-Emissionen zwi-

schen unterschiedlichen Provenienzen und Arten während Trockenheits- und Erholungsphasen 

bekannt. Im Rahmen dieser Arbeit wurde deshalb ein Pflanzenkammersystem „Tree DEMON – 

Tree Drought Emission MONnitor“ entwickelt, um den Effekt von Bodenwasserdefizit auf  

Isoprenoid Emissionen von Waldkieferprovenienzen (Pinus sylvestris L.) und Edelkastanie 

(Castanea sativa Mill.) zu untersuchen. 

Die Tree DEMON Apparatur wurde von Grund auf neu entwickelt und getestet, um verschiede-

ne Studien an Baumsämlingen durchzuführen. Das Vierkammersystem ermöglichte es, parallel 

den Gasaustausch von CO2, Wasserdampf und Isoprenoiden der Pflanzen im Flussgleichgewicht 

zu messen. Des Weiteren wurde die Apparatur in einer Klimakammer mit konstanten Umwelt-

parametern aufgestellt und eine mehrstufige Luftaufbereitung verwendet, um ein stabiles Fluss-

gleichgewicht und den Ausschluss von externen Störgrößen zu garantieren. Der Gaswechsel 

von CO2 und Wasserdampf wurde mit einem Infrarot Gasanalysator gemessen, wohingegen die 

Isoprenoide auf Adsorptionröhren angereichert wurden. Die gesammelten Isoprenoide wurden 

von den Röhrchen thermal desorbiert und mit einem GC-MS/FID System analysiert. Dieser 

Versuchsaufbau ermöglicht Screening- und Behandlungsversuche, die von einen Tag bis mehre-

re Wochen andauern können. 

In dieser Arbeit wurden zwei Studien mit Waldkiefersämlingen (I und II) und eine mit Edelkas-

taniensämlingen (III) durchgeführt. In der ersten Studie wurde der Dürre- und Wiederbewässe-

rungseffekt auf den Gaswechsel und Chemospezies zwischen drei Provenienzen untersucht. Die 

zweite Studie (II) untersuchte den Gaswechsel bei nur einer Provenienz unter verschiedenen 

Bewässerungslevels (Normal-Dürre-Normal) mit zeitlich höher aufgelösten Messintervallen. 

Zusätzlich wurden die Sämlinge innerhalb jedes Bewässerungslevels mit 13CO2 markiert, um 
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besser zwischen gespeicherten (Pool) und neu synthetisierten (de novo) Emissionen differenzie-

ren zu können. In der dritten Studie (III) wurden die Edelkastanien nach ihren Chemospezies 

unterschieden und unter Trockenstress gesetzt. Dabei wurde ebenfalls der Gaswechsel bei un-

terschiedlichen Bewässerungslevels untersucht. 

In allen drei Studien führte die reduzierte Verfügbarkeit von Wasser zu einem reduzierten Gas-

wechsel von CO2, Wasserdampf und Isoprenoiden. Dies zeigte die zuverlässige und stabile Nut-

zung des Tree DEMON Systems. In Studie I zeigten die drei Provenienzen unterschiedliche 

Emissionsmuster, welche in zwei nicht-Δ3-Carene emittierende Klassen, mit entweder hohen α-

/β-Pinene oder β-Myrcen Anteilen, und einer Δ3-Carene dominierenden Klasse eingeteilt wer-

den konnte. Isoprenoid-Emissons-, Nettophotosynthese- und Transpirationsraten wurden wäh-

rend der simulierten Sommerdürre reduziert, erholten sich signifikant nach einer Erholungspha-

se. Ein saisonaler Anstieg der Emission konnte im Herbst beobachtet werden. Die spanischen 

und italienischen Provenienzen hatten gegenüber der deutschen Herkunft höhere Emissionsraten 

und eine plastischere Reaktion auf die Dürre als auch eine saisonale Anpassung. Beide Punkte 

deuten auf eine lokale Anpassung an das Klima.  

Übereinstimmend mit Studie I führte auch in Studie II die Dürre zu der erwarteten Reduktion 

von Emissionen und des Gaswechsel von CO2 und Wasserdampf. Während der Wiederbewässe-

rung war zu sehen, dass sich der Gaswechsel von CO2 und Wasserdampf schnell auf das Vor-

stressniveau erholte, wohingegen die Isoprenoid-Emissionen auf einem niedrigeren Niveau 

blieben. Die 13C-Markierung ergab für jedes Isoprenoid eine unterschiedliche %13C-Anteil, wel-

cher für nicht gestresste Bäume 0.5-95% reichte. Daraus ermittelte sich ein de novo Anteil von 

36±5% für die gesamten Isoprenoid-Emissionen aller Bäume im nicht gestressten Zustand. 

Während der stärksten Dürrephase reduzierte sich dieser Anteil auf 3% und konnte sich in der 

Erholungsphase auf 20% erhöhen. In dieser Studie konnte gezeigt werden, dass de novo  

synthetisierten Isoprenoide stärker herunter werden reguliert werden als aus Pools  

emittierte Isoprenoide.  

Studie III zeigte erstmalig in einem Screening Versuch das Vorhandensein mehrere Chemospe-

zies für die Edelkastanie. Im Dürreversuch erfolgte eine starke Reduktion des Wasserdampf- 

und CO2 Gasaustausches, wohingegen bei den Isoprenoid Emissionen eine zeitlich verzögerte 

Reduktion beobachtet wurde.  

Der Tree DEMON erwies sich als flexibel einsetzbare und zuverlässige Messapparatur und die 

einzelnen Studien profitierten stark von der Möglichkeit vier Bäume parallel zu messen. Diese 

Systemeigenschaft führte einerseits zu neuen Einblicken in der plastischen Anpassung der  
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Isoprenoid Emission während einer Dürre und andererseits konnte die generelle Existenz unter-

schiedlicher Chemospezies in den Isoprenoid Emissionen der Waldkiefer und Edelkastanie be-

stätigt werden. Beide Ergebnisse sollten in zukünftigen Isoprenoid Emissionsmodellen berück-

sichtigt werden, da die Dürre auf die Emission zwischen Baumarten als auch Provenienzen un-

terschiedlich starken Einfluss hat und das Vorhandensein mehrerer Chemospezies die Emissi-

onszusammensetzung ändert. Beides ändert die Lebenszeit der emittierten Produkte und beein-

flusst stark die Folgereaktionen. Des Weiteren können die erhobenen Emissionsdaten zu Emis-

sionsinventurdatensätzen beitragen und zur Verbesserung und Validierung von Emissionsmo-

dellen verwendet werden.  
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1 Introduction 

Biogenic volatile organic compounds (BVOC) are hydrocarbons released by living organisms 

into the environment. BVOC are emitted by many forms of organisms found in all domains of 

life (e.g., Shaw et al. 2007, Insam and Seewald 2010, Loreto et al. 2014) and serve for various 

ecological functions such as communications or defense (e.g., Paré and Tumlinson 1999,  

Mithofer and Boland 2012, Ueda et al. 2012). They also affect atmospheric processes (Atkinson 

and Arey 2003, Mellouki et al. 2015). Within the plant kingdom, trees are one major producer 

of BVOC (Kesselmeier and Staudt 1999). BVOC, typically not including methane, can be split 

into several subgroups according to their chemical class. Isoprenoids (also see Figure 3 for ex-

emplary structures), such as isoprene (5C atoms), monoterpenes (MT) (10C atoms),  

and sesquiterpenes (SQT) (15C atoms) are one major group within BVOC (Kesselmeier and 

Staudt 1999, Guenther et al. 2012). Besides, other volatile compounds, groups such as alcohols 

and carbonyls, contribute to the BVOC. 

 

1.1 Global budget of BVOC 

The global BVOC budget to the atmosphere was estimated by a global emission model (ME-

GAN) to be around 1087 Tg yr-1 for the year 2000 (Guenther et al. 2012). The total emitted 

BVOC were modelled to be around 535 Tg yr-1 isoprene and 162 Tg yr-1 MT.Other VOC emis-

sions were estimated to be around 390 Tg yr-1 (including CO). The model simulation also 

showed that the BVOC amount emitted into the atmosphere is highlyvariable between ecosys-

tems and their contributing species. Several recent model estimations (Guenther et al. 2012, 

Sindelarova et al. 2014, Messina et al. 2016) revealed that major shares of isoprene and MT are 

contributed by tropical forest ecosystems (around 78% according to Guenther et al. 2012), 

which is caused by high radiation, temperature and water availability leading to high productivi-

ty rates all year round. In case of MT emission the deciduous broadleaf ecosystems are the sec-

ond largest emitters whereas conifer dominated ecosystems only contribute to around 9% due to 

a restricted vegetation period. However, large uncertainties in these model calculations are in-

duced by difficulties in modeling plant stress and seasonal changes (Niinemets et al. 2010a). 

With respect to global change, these budgets may significantly change in the future until 2100 

(Lathière et al. 2005, Pacifico et al. 2012) due to change of factors such as climate, species dis-

tribution, land use and more frequent stress events (Peñuelas and Staudt 2010). 
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SOA act as cloud condensation nuclei (CCN) (Pierce et al. 2012). Here, both clouds originating 

from bSOA-based CCN and bSOA itself can backscatter or adsorb incoming radiation and thus 

alter radiative forcing (Makkonen et al. 2012). Furthermore, bSOA can be filtered out as dry 

deposit or be solved within droplets. The dry deposit SOA might affect human health (Poschl 

2005, Gaschen et al. 2010) and can react on plant tissue again (Blande 2014). The follow up 

reactions can lead to atmospheric feedback loops (e.g., by increased temperature) altering the 

emission potential of plants (Peñuelas and Staudt 2010). 

1.3 Synthesis and storage of isoprenoid in plants 

In order to understand the sources of BVOC emission a short overview on the potential path-

ways in plant tissue and their storage are given in the next two subchapters. Isoprenoid precur-

sors are synthesized in specific enzymatic pathways into isoprene, MTs or SQTs (see 1.3.1), 

which can be either stored for longer or shorter time spans, or are emitted into the atmosphere 

(see 1.3.2 and 1.4)  

1.3.1  Isoprenoid synthesis pathways  

Isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMDP) are precursors for iso-

prenoid synthesis. Both are synthesized in two different pathways (Lichtenthaler et al. 1997b) as 

shown in Figure 2. The mevalonic acid (MVA) pathway, e.g., described by Dudareva et al. 

(2013), is located in the cytosol. It starts with acetoacetyl-CoA, which is then converted by three 

enzymatic reactions to MVA and by three further reactions to IDP. IDP can further be used to 

synthesize farnesyl diphosphate, which is the precursor for sesquiterpenes (Dewick 1999).  

The second pathway, the 2-C-methyl-D-erythritol 4-phosphate/1-deoxy-D-xylulose 5-phosphate 

pathway (MEP/DOXP pathway), is located in the plastids, such as chloroplasts or leucoplasts 

(Gutensohn et al. 2013a). The MEP pathway begins with condensation of pyruvate and glycer-

aldehyde-3-phosphate (G3P) to 1-deoxy-D-xylulose 5-phosphate (DXP) and in six further  

enzymatic steps DXP converted to IDP and DMAPD (Lichtenthaler et al. 1997a, Rohmer 1999). 

In case of isoprene DMAPD is converted by the isoprene synthase. 

It was shown for the MVA and MEP precursor’s substrates, as well as IDP, in various studies 

with isotopic 13C-labeling (e.g., Dudareva et al. 2005, Hemmerlin et al. 2003, Yang et al. 2012, 

Mendoza-Poudereux et al. 2015), that these could be transferred from plastids to the cytosol. 

Opitz et al. (2014) showed even a bidirectional transfer between both.  

Additionally Pazouki and Niinemets (2016) suggested the exchange of higher order intermedi-

ate products. This was already shown by Gutensohn et al. (2013b) and Dong et al. (2016) case 



 

of geran

chloropl

also the 

different

Figure 2 

Figure a

https://cre

black sig

dark blue

discussed

dimethyla

=farnesyl

geranyl d

tol 4-phos

Both pat

IDP/DM

NADPH

higher c

power (K

nyl diphospha

ast and mito

capability t

t stress phase

 

Simplified sc

and caption 

eativecommon

natures the in

e signature the

d volatile end 

allyl diphospha

 diphosphate;

diphosphate; ID

sphate pathwa

thways need

MADP. From

H/NADH for 

arbon losses

Kesselmeier 

ate (GDP) w

ochondria, re

to synthesize

es, when pho

chematic of t

retrieved an

ns.org/licenses

ntermediate p

e specific path

 products and

ate; DXP = 1-

; G3P = glyce

DP = isopente

ay; MVA = me

d substrates 

m the energe

reduction p

s in form of C

and Staudt 1

Intr

which was tra

espectively. Y

e, e.g., mono

otosynthesis a

he terpenoids

nd transform

s/by/3.0/ Retr

roducts, bold 

hways. Greye

d their pathwa

-deoxy-D-xylu

eraldehyde-3-p

enyl diphosph

evalonic acid) 

such as pyru

etic point o

processes. W

CO2, the MV

1999). Substr

roduction 

-4- 

ansferred bet

Yet, plastids

oterpenes. Th

and its produ

s synthesis w

med from N

rieved 10.01.2

forest green 

ed out arrows 

ays. (Abr : ac

lose 5-phosph

phosphate; GG

ate; LOX = lip

 

ruvate, G3P,

of view ATP

While the ME

VA pathway

rate and ener

tween cytoso

s have the h

his exchang

ucts are redu

with their pat

iinemets et 

2017. Arrows 

signature the

and signature

cetyl-CoA = ac

hate; Ery4P =

GDP = gerany

poxygenase; M

and acetate

P is needed

EP pathway 

is shorter, b

rgy can be p

ol and plastid

ighest GDP 

e could play

ced. 

hways  

al. 2013, L

represent enz

e resulting vol

es are indicati

cetyl coenzym

= erythrose 4-

ylgeranyl diph

MEP-pathway 

 to synthesi

d for phosph

has more ste

but requires m

rovided by th

ds and betwe

potential, th

y a role duri

 

Licensed und

zymatic reacti

latile group, a

ing to further 

me A; DMADP

-phosphate; F

hosphate; GDP

y = methyleryt

ize the produ

horylation a

eps and sho

more reducti

he chloropla

een 

hus 

ing 

der 

on, 

and 

not 

P = 

DP 

P = 

hri-

uct 

and 

ws 

ion 

asts 



 

or

Po

In

pl

as

GD

pe

Fi

pin

Th

re

as

1.

Th

on

ph

sis

Fu

ize

cie

th

Cr

tle

20

 

r mitochond

oudereux et a

n case of mo

lastids, IDP a

s universal m

DP further a

ene synthases

gure 3 Exem

nene, (C) α-fa

hese can hav

earrangement

s ketones, alc

3.2 Isop

he newly syn

n their hydro

hase (Niinem

s and emissio

urthermore, 

ed isoprenoi

es in leaf an

hese organs a

roteau 2001)

es (Nagy et a

001).  

dria (only e

al. 2015). 

onoterpene s

and DMPD 

monoterpene

acts as substr

s can produc

mplary chem

arensene. 

ve acyclic, m

t, oxidation, 

cohols, and e

prenoid stor

nthesized iso

ophilic or lip

mets et al. 20

on processes

some plants 

id producing

nd wood (e.g

are referred t

). These spec

al. 2000), or 

energy) and 

synthase, wh

are forming 

e precursor s

rate for the m

ce various kin

ical structur

monocyclic a

hydroxylatio

ethers can for

rage and po

oprenoids ar

ophilic chara

04). The poo

s (see 1.4). 

developed s

 cells. These

g., McCaski

o as resin du

cialized orga

constitutivel

 

Introduc

-5-

from store

hich mostly

geranyl diph

substrate (e.

monoterpene

nds of mono

res of non-o

and bicyclic

on and dehy

rm new mon

ools 

re stored ove

acter the com

ol size is con

specialized s

e are found i

ill et al. 199

ucts and are 

ans can be in

ly pre-aligne

ction 

ed carbon p

succeeds aft

hosphate (G

g., Dewick 

e synthesis. H

terpenes (Pa

oxygenated te

c structures (

ydration or ad

noterpene.  

er a short tim

mpounds are

ntrolled by m

storage orga

in form of se

92, Pickard 2

located in le

nduced, e.g.,

ed in specific

pools via g

ter the MEP

DP) by head

1999, Kreuz

Here, differe

zouki and N

erpenoids. (A

(see also Fig

dding functi

me within the

e stored in liq

multiple facto

ns which are

ecretory glan

2008). In ca

eaves, bark, a

by damage o

c plant organ

glycolysis (M

P pathway w

d to tail cond

zwieser et a

ent kinds of 

Niinemets 201

A) Isoprene, 

gure 3). Als

ional subgrou

e cytosol. D

quid aqueou

ors impactin

re coupled to

nds in broad-

ase of conife

and wood (T

of wood by b

ns (Trapp and

Mendoza-

within the 

densation 

al. 1999). 

monoter-

16).  

 

(B) (+)-α-

so further 

ups, such 

epending 

us or lipid 

g synthe-

o special-

-leaf spe-

er species 

Trapp and 

bark bee-

d Croteau 



Introduction 
 

-6- 

1.4 Control and regulation of isoprenoid emissions  

The emission potential of the plant is controlled by multiple factors from in- and outside the 

plant tissue. A typical emission path would be the transition of a stored or newly  

(de novo) synthesized isoprenoid (see 1.3.1) from liquid to gaseous phase within the leaf and 

diffusion through the stomata into the atmosphere as shown in Figure 4.  

 

Figure 4 Control and regulation of isoprenoid emissions. Plant-generated volatile organic compound 

(VOC) emission is limited by either physiological or physicochemical factors. The physiological constraints 

determine the availability of VOC precursors and maximum activity of rate-controlling enzymes, whereas 

the physicochemical factors limit the volatility (air-phase partial pressure, aqueous- and lipid-phase con-

centrations), the diffusion within the gas, aqueous and lipid phases of organic compounds within the 

leaves, and the gas-phase diffusion at  the leaf–atmosphere interface. (T represents temperature.) The 

figure shows four representative situations in which the VOC emission is constrained by different limita-

tions. Precursor availability mostly explains the light dependence, whereas the maximum activity of en-

zymes controlling the pathway flux primarily controls the temperature dependence of isoprenoid emissions. 

In these scenarios, precursor production is larger for A1 than for A2, and the emission rate is higher for I1 

than for I2 owing to a higher total enzyme content and activity. Volatility significantly modifies emissions of 

hydrophobic compounds such as non-oxygenated monoterpenes, whereas gas-phase diffusion can 

strongly curb the emission of water-soluble compounds such as methanol, formaldehyde and formic acid. 

Compound C1 has high volatility and immediately responds to modifications in the rate of compound syn-

thesis, whereas there is a significant time lag between the rates of synthesis and emission for the less 

volatile compound C2. Compound D1 supports a larger gas-phase partial pressure for a common aque-

ous-phase concentration than compound D2, explaining the stomatal insensitivity of the emission of com-

pound D1. Figure and caption reprinted from Niinemets et al. 2004 (Figure 1), Copyright (2004), with  

permission from Elsevier. See Niinemets et al. 2004 for further references within the caption.  
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This emission path depends on different physiological and physiochemical properties of the 

emitting plant tissue (Niinemets et al. 2004). From the physiological side, emissions are limited 

by the synthesis capability within the plant. The synthesis capacity is strongly driven by light, 

which determines to a high degree the carbon fixation in the photosynthesis apparatus, and by 

temperature, which regulates the enzyme activity. Both light and temperature are driving the 

amount of precursor compounds and thus the final isoprenoid synthesis (see 1.3.1).  

Furthermore, emissions are controlled by the physiochemical properties of the emitted com-

pound (see Figure 4) and of the gaseous and aqueous leaf phases (e.g., cytosol, sub-stomatal air 

space). The most important compound property is the gas-aqueous phase partition coefficient ܭு௣௖, which is also known as Henry’s law volatility coefficient [Pa m³ mol-1] (Henry 1803) and 

is defined by Eq. 1: ܭு௣௖ =          (1)	ଵିܿ݌

where p [Pa] is the partial pressure of the compound within the gaseous space above the aque-

ous space with compound concentration c [mol m-3]. Here, high water soluble compounds, e.g., 

methanol, have a low ܭு௣௖ and thus are less volatile, whereas high hydrophobic compounds, 

such as non-oxygenated isoprenoids (e.g., α-pinene), with a high ܭு௣௖are less water soluble and 

thus are high volatile.  

The partial pressure of a volatile compound within the gaseous space in the plant is defined by 

the concentration in the liquid phase and the compounds’ ܭு௣௖. Thus, higher temperatures in-

crease	ܭு௣௖, which leads to decreased compound solubility of the aqueous medium and therefore 

to a higher compound volatility. The concentration within the aqueous phase is mostly con-

trolled by synthesis or supply of new compounds and the size of the aqueous phase. For the 

final emission the compound has to pass the stomata. The rate of diffusion is determined by the 

compounds’ partial pressure difference Δp outside the leaf and the intercellular chamber. Typi-

cally, compounds with a high volatility/high ܭு௣௖ are insensitive to stomata conductance, there-

fore in case of stomata closure (decreased conductance) the diffusion equilibrium can be recov-

ered faster due to faster built up of higher partial pressure in gaseous space within the leaf and 

thus emission can be sustained. Compounds with low ܭு௣௖ are more dependent on liquid volume 

availability. The control of the emission by the stomata, therefore, depends on the compound 

type, the timespan until a new equilibrium between leaf in- and outside gaseous phase is 

reached. 
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1.5 Constitutive and induced emissions  

Emissions can be divided into two types depending on their type of occurrence: constitutive and 

induced emissions. Constitutive emissions are emitted by the plant permanently during optimum 

and stress conditions. They vary strongly between species (Oderbolz et al. 2013) and between 

stress levels and types (Niinemets 2010a) (see also Table 1). The BVOC emission inventory by 

Oderbolz et al. (2013) showed that most conifer trees (e.g., Abies, Picea species) are constitu-

tively emitting monoterpenes, while only some deciduous tree species (e.g., Quercus, Populus 

or Eucalyptus species) showed constitutive isoprene and monoterpene emissions. The constitu-

tive emissions split further into de novo synthesized emissions (strongly dependent on light) and 

pool emissions (strongly dependent on temperature) from permanent storage organs as found in 

resin ducts in Scots pine needles and wood. The pool sizes (either liquid phase or specialized 

storage organs) are controlled by the compound synthesis rate and storage size and are limited 

by physiological constraints (see 1.3 and 1.4). Important roles of constitutive emitted isopre-

noids are, e.g., to allure or distracting insects (Dicke 2003, Schiestl 2010), removal of O3 within 

the canopy (Calfapietra et al. 2013), act as antioxidants (Loreto et al. 2004, Vickers et al. 2009) 

and reduction of thermal damages (Singsaas et al. 1997). 

Induced emissions are typically emitted not at all or only at low amounts by the plant at non-

stressed states, but external abiotic or biotic stressors can induce those emissions (see 1.6). Of-

ten this short-term response is strongly related to a stress event, such as extreme heat  

(e.g. Joó et al. 2011), herbivory (e.g., Litvak and Monson 1998, Kessler and Baldwin 2001, Joó 

et al. 2011, Trowbridge et al. 2014, Faiola et al. 2015), or high ozone levels (e.g., Loreto et al. 

2004, Pellegrini et al. 2012). The emission response of the plant can be temporally and quantita-

tively very variable and strongly depends on factors such as the strength of the initial stressor, 

the plants’ potential adaptation to the stressor and co-occurring factors. 

1.6 Stress concepts and stress response to isoprenoid emissions 

Stress is a physiological response of the plant triggered by abiotic or biotic stimuli (stressors). 

First of all the strength and the duration of the stress determine if the stress reaction is not pre-

sent, mild or acute (see Figure 5a, b).  If, however, the stressor has a longer or stronger impact 

on the plant, the tree will suffer from acute (intensive) stress. This can lead to various kinds of 

damages, such as extensive built up of reactive oxygenated species (Vickers et al. 2009), me-

chanical damage on cell walls (Le Gall et al. 2015) or programmed cell death (Lam et al. 2001). 

Here, a recovery might not be possible anymore, and the plant might die in part or completely. 

In case of short extremes (see Figure 5c), the stress response is also more driven by average 

external conditions, rather by the short extreme itself, and thus damage effects can buffered by 
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the plant protection mechanisms. Such a mechanism was shown for example during a heat-

drought event when isoprene emitting poplar kept their photosynthesis system of longer intact 

than non-emitting Poplars (Vanzo et al. 2015).  

 

Figure 5 Simplified representation of the basic concepts of stress in plants: (a–c) mild and acute 

stress, (d–f) tolerance and acclimation exemplified for temperature stress. (a) Plant physiological process-

es (photosynthesis, growth, BVOC synthesis) respond to temperature according to a response curve with 

a maximum. In the vicinity of the optimum, plants experience no stress (dark green line), but plant physio-

logical activity decreases above and below the temperature optimum. In the case of mild temperature 

stress (light green lines), plant physiological activity plastically returns to the pre-stress value after the 

stress, whereas in the case of acute stress (red lines), plant physiological activity further decreases upon 

return to optimum conditions. The response to any given level of stress depends on the duration of the 

stress episode, so-called dose response. (b) A stress that was initially mild (light green) can turn into acute 

stress (red) under prolonged exposure. The dose response has major implications for interpreting plant 

reactions to rapid fluctuations in leaf temperature which commonly occur during the day as a result of 

changes in cloudiness and convective heat exchange. (c) (color codes as in a) In rapidly fluctuating envi-

ronments, plant response is driven by average temperature rather than by rapid pulses of temperature that 

result in low doses of heat and chilling stress. (d, e) Plants with greater heat tolerance (P2, dark green 

versus P1, dark blue) sustain acute heat stress (highlighted by red) at higher temperatures (d) and can 

tolerate given level of heat stress for longer time periods without sustained damage (e). Analogously, ac-

climation to higher temperature improves plant performance under heat stress. (f) Temperature acclima-

tion is particularly significant for plants in seasonal climates where daily average maximum and minimum 

temperatures strongly vary during the growing season. As a result of temperature acclimation, seasonal 

variations in temperature infrequently exceed the threshold for plant damage (red line shows heat toler-

ance and blue line cold tolerance limits). Often there is a trade-off between tolerance and acclimation to a 

certain type of stress, and tolerance to some other stress such as heat versus cold stress (acute cold 

stress shown by red lines, d, f). Figure and caption reprinted from Niinemets et al. 2010a (Figure 1), copy-

right (2010), with permission from Elsevier. See Niinemets et al. 2010a for further references. 
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However, some short extreme events, such as late frost events (Menzel et al. 2015), can lead to 

strong acute stress, which affect the plant organs permanently, e.g. by leaf destruction. Since 

plants, especially trees, are constantly exposed to different stressors, stress tolerance can in-

crease over the time (see Figure 5d). This acclimation was observed for example after a longer 

drought stress phase by development of smaller leaves/limited above ground biomass in order to 

reduce transpiration (e.g., Royo et al. 2001, Seidel and Menzel 2016). The tolerance level (see 

Figure 5e) can also differ between trees because of reduced fitness or a long term adaption 

linked to selection processes. In case of Scots pine, a species with a wide distribution area, 

many provenances exist which are adapted to specific regional climatic conditions as well as 

specific stressors (see e.g., Luoma 1997, Mátyás et al. 2004, Taeger et al. 2013). 

Tolerance levels are also often depending on seasonal development of a plant (see Figure 5f). 

Frost tolerance during winter is set up by storage of frost inhibiting substances or in case of 

deciduous trees the release of leaves (Charrier et al. 2015). During summer leaves become more 

heat tolerant due to rearrangement of part of photosynthesis system or enhanced production of 

isoprenoids (Pétron et al. 2001, Sharkey 2005). A review article by Niinemets (2010a) perfectly 

summarizes the varying responses constitutive in BVOC emissions of plants to different stress 

phases and types (see Table 1).  

Table 1 Stress response of constitutive emissions (rate relative to initial) observed at short- and long-

term stress and after end of stress. Table reprinted from Niinemets et al. 2010a (Figure 4c), copyright 

(2010), with permission from Elsevier. See Niinemets et al. 2010a for corresponding references for each 

stress type are listed. Original emission response symbols replaced by ↑ Increase, ↔ no response, ↓ de-

crease. Table was reformatted for better readability. 

Stress Short term Long term After stress 

Drought ↔ ↓ ↑↔↓ 

Heat ↑ ↓ ↑↓ 

Salinity ↔ ↓ ↑ 

Shading ↓ ↓ ↓ 

Ozone ↔↓ ↑↓ ↑↓ 

Wounding ↑↓ ↑↓ ↑↓ 

Herbivory ↑↓ ↑↓ ↑↓ 

Fungal infestation ↔↓ ↓ ↓ 
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1.7 Drought stress and its impacts on isoprenoid emissions 

The definition of drought can be linked to meteorological, agricultural, hydrological or socio-

economic criteria (Wilhite et al. 2014): For example, meteorological drought is observed when 

precipitation deviates negatively (amount, intensity, length and timing) from the long term nor-

mal. Agricultural drought is defined as soil water content being inadequate to sustain the phys-

iological requirements of a particular crop or plant at a specific time. In general, agricultural 

drought conditions are reached after meteorological drought but before hydrological drought 

which is defined by shortages in water supply present at the surface (e.g., rivers, lakes) and/or 

subsurface (e.g., groundwater). Socio-economic drought is reached when human activities are 

hindered by lowered precipitation and corresponding water availability.  

Extreme droughts are reoccurring events as shown for example by tree ring analyses for the 

Mediterranean area (Cook et al. 2016) or for Northern Africa (Touchan et al. 2011). Both stud-

ies showed a significant increase of drought frequency for the last 20 years in their study region. 

Spinoni et al. (2015) listed extreme drought events in Europe during the last 60 years, where 

several droughts occurred at different times/spatial scales and magnitude: e.g., observed in the 

heat wave in August 2003 over Europe, 2010 in European Russia, 2012 in Portugal. The most 

recent drought year for Europe was in 2015 (Ionita et al. 2017), where multiple drought events 

occurred over different regions in specific months. This study also reported that five out of six 

hottest summers occurred after the year 2000. Future climate projections simulate an increase of 

drought frequency by 20% until 2100 in Southern and Central Europe (Prudhomme et al. 2014). 

Since a drought event normally extents over a larger geographical scale, isoprenoid emissions 

are decreasing over a large regional scale as shown by model calculations by Müller et al. 

(2008) and Sindelarova et al. (2014). 

The strength and duration of drought (see also Figure 5a, c) determines the response of a plant 

to decreasing water availability, as described by Chaves et al. (2003), Bréda et al. (2006) and 

Rennenberg et al. (2006). Important drought responses which have a high impact on isoprenoid 

emission are: The closure of stomata limit water loss reduces gas exchange of CO2 and water 

vapor. This leads to reduced uptake of CO2 and photosynthesis. Since isoprenoid synthesis is 

closely related to the chloroplastic pathway (see 1.3.1) this could lead to shortage of potential 

precursors for isoprenoid synthesis and reduce potential emission as shown in many studies 

(e.g., Llusià and Peñuelas 1998, Šimpraga et al. 2011, Bourtsoukidis et al. 2014, Wu et al. 

2015). However, according to Brilli et al. (2007) isoprene synthesis substituted photosynthe-

sized fixed carbon by local stored carbon pools to some degree – but this has first to be shown 

for other isoprenoids. 
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Decreasing transpiration, and thus latent heat, increases leaf temperature and consequently the 

emission from storage pools equally increase due to increased Henry’s law volatility coefficient 

of the compounds within the leaf (see 1.4). In case of mixed type emitters (pool and de novo) 

such as many conifers (e.g., Pinus sylvestris L. or Pinus Halepensis MILL.) drought might have 

opposite impacts over the two pathways. This was however not investigated so far. Depending 

on the type of isoprenoid emission, emissions of hydrophobic compounds are not limited by the 

stomata conductivity, while for hydrophilic compounds emission can be reduced (see also 1.4). 

During a long-term and intensive drought, severe damages are caused by xylem embolism 

(Meinzer and McCulloh 2013), carbon starvation (Hartmann 2016), and/or increased reactive 

oxygen species (Cruz de Carvalho 2014). These can cause later on diebacks, e.g., by defoliation 

(Poyatos et al. 2013) or even of complete tree stands (Allen et al. 2010).  
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2 Aims and outlines 

Subsequent to chapter 1, the complex nature of BVOC emissions, its dependency on environ-

mental and plant physiological factors as well as different responses on stress, required an ap-

propriate system which enabled treatment studies and supported the measurement of emissions 

of multiple tree seedlings at once. 

One major aim of this thesis was the construction, evaluation and iterative improvement of the 

Tree Drought Emission MONitor (Tree DEMON), a four-chamber plant gas exchange system 

(see 3.1, 4.1 - Lüpke et al. 2017b, 4.2 - Lüpke et al. 2016). Parallel to the Tree DEMON devel-

opment, a complete lab infrastructure for BVOC emission analysis was set up and appropriate 

analytical methods were implemented (see following chapters 3.2, 4.1 - Lüpke et al. 2017b, 4.2 

- Lüpke et al. 2016 as well as and 4.3 - Lüpke et al. 2017a) and substantially improved over 

time. An adsorption tube calibration system was equally developed and successfully used. 

After the development and construction of the Tree DEMON and lab infrastructure set up sev-

eral studies were performed from 2013 till 2015. These studies aimed for a better understanding 

of drought effects on isoprenoid emissions which is needed to improve processes or parameteri-

zation of models (Grote et al. 2010, Guenther et al. 2012, Grote et al. 2014). Also it should be 

tested how far stress can be indirectly assessed by changes in the isoprenoid emission  

(Niinemets 2010b). These studies had to exclude co-occurring stressors, such as extreme heat, 

insect attacks or photorespiration (especially under strong light conditions) which are often pre-

sent under field drought conditions and may bias the pure drought effect. Therefore the Tree 

DEMON was placed in controlled environment of a climate chamber. 

Seedlings of Pinus sylvestris L. (Scots pine) were chosen for the first study due to the overlying 

large scale experiment within the project E3 (see also Seidel et al. 2016, Seidel and Menzel 

2016), which provided a large choice of provenances and tree individuals. Especially prove-

nances growing at the edge of the species’ distribution (e.g., Southern and Western Europa) 

have been affected by drought (see e.g., Rebetez and Dobbertin 2004, Galiano et al. 2010,  

Vacchiano et al. 2012), which already caused local diebacks (Allen et al. 2010). Scots pine as a 

mixed type isoprenoid emitter (Shao et al. 2001, Ghirardo et al. 2010) is also known to emit a 

significant amount of isoprenoids in Europe (Oderbolz et al. 2013). Since future climate scenar-

ios predict an increasing drought frequency, it is important to assess the drought response on 

isoprenoid emissions of important European tree species in more detail. 
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In the first study (performed 2013) isoprenoid emissions and gas exchange of three provenances 

of Scots pine during a drought and a re-watering phase were investigated (see 4.2;  

Lüpke et al. 2016) in order to check if the drought - isoprenoid emission response varied among 

provenances. Furthermore chemo species were determined within the provenances.  

The second study with Scots pine (performed 2015, Lüpke et al. 2017a) was performed to fill 

gaps regarding the drought effect on de novo and storage emission, which could not be an-

swered in the first experiment. Here, only one provenance was investigated in depth during var-

iable water regimes (normal – drought – normal) and their effects on gas exchange of MT, CO2 

and water vapor. In order to better separate pools and de novo emissions, three 13C labeling at 

different soil moisture states were performed and an improved standardization algorithm was 

applied. 

Castanea sativa Mill. (sweet chestnut) was selected as second tree species since it is a primary 

light dependent emitter with no isoprenoid storage organs. Its isoprenoid emission has been 

investigated only rudimentary in two studies before (Pio et al. 1993, Aydin et al. 2014) and the 

effect of drought stress on the emission was not investigated so far. In study III (performed 

2014) a BVOC screening and drought study was performed and results were used as a case 

study in Lüpke et al. (2017b). 

For both species some general key question were investigated: 

• How do isoprenoid emissions quantitative and qualitative differ between both species? 

(Study I to III) 

• Does drought affect gas exchange and emissions of both species differently?  

(Study I to III) 

Specifically for Scots pine following question were answered:  

• How do provenances affect the drought stress response on isoprenoid emissions? 

(Study I) 

• Are pool and de novo emissions affected differently strong by drought and  

re-watering? (Study II) 
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3.1.5 Time line of Tree DEMON development and improvement 

The Tree DEMON was planned and built within the first 1.5 years (2012 to mid of 2013) of this 

thesis. After selection of the appropriate built parts (see Lüpke et al. 2016, Lüpke et al. 2017b), 

these were installed into a 19-inch rack housing, the plant chambers and the air conditioning 

system. In 2014, the BVOC sampler unit was upgraded from magnetic valves to pneumatic 

valves and beginning of 2015 the air supply system underwent a security overhaul by exchang-

ing the filter tanks of the air supply conditions. The software was improved steadily from 2013 

to 2015.  

3.1.6 Environmental control 

Since BVOC emissions are sensible to changing environmental parameters such as light and 

temperature, the whole Tree DEMON system was placed in an environmental  

controllable climate chamber at TUM experimental station Dürnast near Freising. The used 

climate chamber was set to a constant temperature of 24°C and a ramped light program to simu-

late day and night (see Lüpke et al. 2016, Lüpke et al. 2017b and Lüpke et al. 2017a for detailed 

settings). Light intensity was increased by an extra multispectral LED lamp. Due to this con-

trolled environment, multiple replications in the experiments were possible. 

Even in the controlled climate environment an increased plant chamber temperature was still 

caused by the radiation of illumination, the greenhouse effect of plant chambers and the 

drought-included reduction of plant transpiration. A regulation of individual plant chamber 

temperature and humidity was initially planned, but was not accomplished within the frame-

work of this thesis. However, Soutschek (2015) tested in a related Master thesis a first prototype 

to control chamber temperature with a thermoelectric system. The built device was able to regu-

late the plant chamber air temperature in a range of 3.8°C, but only with a slow adjustment 

speed. Therefore, in all experiments temperature variation and its effects on BVOCs were com-

pensated by specific standardization algorithms (see 3.4.2)  

3.1.7 System evaluation 

Tree DEMON was positively evaluated by Lüpke et al. (2017b), covering several aspects, such 

as repeatability of sampling, system stability, spectral characteristics of chamber and LED light. 

In addition, the performance of the system was demonstrated in two case studies: a screening 

study and a drought stress study with Castanea sativa MILL. (see 3.5, 4.1).  
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3.2 Chemical analysis 

3.2.1 Adsorbent tube and thermal desorption 

BVOC emissions are ranging typically in the lower parts per billion (ppb) to part per trillion 

(ppt) range and need to be pre-concentrated on adsorbent tubes (AT) before analysis. An AT 

can be filled with a specific adsorbent material to trap non-polar or polar, light or heavy volatile 

compounds from the gas phase and to release them with thermal extraction. Since there is no 

universally applicable adsorbent material, specific materials (single or multiple in row) were 

selected for trapping target compounds. For the experiments, the main target compounds were 

isoprenoids ranging from C5 (e.g., isoprene) to C10 (monoterpenes such as α-pinene) up to po-

tentially C15-molecules (sesquiterpenes such α-farenesene). Therefore, a two-bed configuration 

was selected with 40 mg of Carbograph 5TD (C3 to C8, 60/80 mesh), a graphitized carbon 

black, and 70 mg of Tenax© TA (C6 to C26, 60/80 mesh), a porous polymer. An inert silica 

coated stainless steel was used as tube material which was less sensitive to wall reaction than 

stainless steel and more robust than glass (see Lüpke et al. 2016 for technical details). 

The adsorbed compounds on the tube material were automatically extracted by a thermal de-

sorption unit (ATD 650, Perkin Elmer, USA) in two steps. In the first step the compounds were 

thermally (280°C) extracted from the adsorbent tube for 15 minutes onto a cold trap (-30C°) 

filled with an adsorbent material (Perkin Elmer Air toxics). In the second step the cold trap was 

ballistically heated (40°C s-1) to 300°C so that all compounds were desorbed at once and trans-

ferred via a heated glass line to the separation column of the gas chromatograph (GC). Splits of 

the carrier gas flows in both steps allowed diluting the desorbed amount and reduced the risk of 

overloading the column and transferring too much humidity coming from the air sample. In a 

last step the AT was thermally reconditioned for reuse. During the course of the experiments, 

the thermal desorption method was constantly enhanced and fine-tuned; therefore the exact set-

tings are presented in the respective publications. 

3.2.2 Gas chromatography 

The extracted compounds were separated in a GC by a multi-ramp temperature program over a 

30 m column (5% diphenyl 95% dimethyl polysiloxane). The separation is based on the princi-

ple that compounds in the carrier gas are interacting differently with the so called stationary 

phase of the capillary column. The ongoing adsorption and desorption processes of a compound 

in the stationary and carrier gas phase during its transport through the separation column de-

pends on the physicochemical properties of a compound and the polarity of the stationary phase 

leading to a specific transport time. The transport or retention times of different compounds are 
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sensitive to temperature and pressure changes in the column. Thus, the separation of a com-

pound mix can be optimized by using appropriate stationary phase polarity, column temperature 

and carrier gas pressure. The compounds leaving the separation column with the carrier gas 

(He) are detected here using flame ionization detection and mass spectroscopy. 

3.2.3 Flame ionization detector 

Half of the extracted compounds were combusted at 300°C in a hydrogen flame while ions 

formed during this process were detected as electrical signal (Otto 2006). The detected signal is 

proportional to the concentration of combusted material. Benefits of the FID comprise a high 

linearity over a large detection range and low maintenance efforts. However, using an FID 

compounds are identified by retention time only, thus a known compound mixture has to be 

used beforehand to allocate the exact retention time and the signal response to each compound 

of interest. 

3.2.4 Mass spectrometry 

Mass spectrometry (MS) was performed with a Perkin Elmer SQ8 single quad with an electron 

ionization source EI (70eV). Briefly about the functional principle of the system (Hübschmann 

2009): A compound entering the MSis ionized by electrons of the ion source  which results in 

negative, positive as well as neutral molecule species. Negative ions and electrons are filtered 

out. First a quadrupole pre-filter removes non-target ions and thus keeps background noise low-

er. The pre-filtered positively ionized molecule and its fragments are further filtered by their 

mass to charge ratio (m/z) by the mass analyzer (quadrupole mass filter). Due to quasi-parallel 

full scan mode, the MS was able to scan over a large m/z range (e.g. m/z 30 to 330) and in a 

single ion mode to scan for specific m/z. The filtered ions are then transferred to a conversion 

dynode producing electrons, which are amplified, detected and converted to a measurement 

signal. 

EI ionization of a molecule produces a compound specific fragmentation pattern. Using constant 

ionization energy, typically 70eV the fragmentation pattern of a molecule could be compared 

with reference patterns in the NIST library to identify the molecule (Stein 2008). For the studies 

full scan as well as single ion modes were used to detect, identify and quantify compounds.  

In the 13C labeling study (Lüpke et al. 2017a) the MS response was used to calculate labelling 

ratios of isoprenoids. Each built-in 13C atom increased the m/z ratio of a specific molecule 

fragment by one and consequently the amount of built-in 13C atoms in the target molecule could 

be determined (see Lüpke et al. 2017a). 
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In 2013 calibration standards were added using the sample system of the Tree DEMON, from 

2014 on a self-built external calibration system was used (see Figure 11). This system was al-

most identically to the BVOC sample system used in the Tree DEMON system of 2014.  

The external calibration unit allows a higher flexibility and the smaller tubing diameter of the 

intake lines speeded-up the equilibrium time between gas phase and tubing surface when start-

ing a new calibration. 

3.3 Leaf area estimation 

Leaf area Aleaf of Scots pine was determined by harvesting the whole above ground biomass of 

the seedlings, drying the material for 48 h at 60°C and scanning a subset of needle leaves.  

ImageJ calculated the area of the scanned leaf by using a scanned reference scale and the specif-

ic leaf area (SLA) was calculated together with the dry mass. Total leaf area was determined 

upscaling the SLA with the total leaf mass. In case of sweet chestnut this procedure was slightly 

adapted (see Lüpke et al 2017a for details) and a non-destructive method was additionally im-

plemented. The non-destructive method was based on allometric relationships between the leaf 

area and its length and width. Thus, these parameters were measured to calculate an allometric 

function as shown by Serdar and Demirsoy (2006) on the same tree species.  

3.4 Gas exchange of CO2, water vapor and isoprenoids 

3.4.1 CO2 and water vapor gas exchange calculation 

In and outlet CO2 and water vapor concentrations were measured with a two channel non-

dispersive infrared gas analyzer. This device measures continuously the gas concentration of 

CO2 and water vapor of an air sample by the amount of absorption of an infrared beam at a  

target gas specific wavelength (Long et al. 1996). In order to determine photosynthesis and tran-

spiration rates, the calculation was done after Caemmerer and Farquhar (1981) with Eq. 4 and 5. 

Transpiration rate E [mmol m-2 s-1] was calculated from water vapor mole fraction differences 

Wdiff [mmol mol-1] of chamber inlet and outlet where the inlet air referred to reference  

Wref [mmol mol-1] based on the molar air flow Fm [mol s-1] per leaf area ALeaf [m²] with Eq. 4:  ܧ = ( ௗܹ௜௙௙)ܨ௠ܣ௅௘௔௙ିଵ(1 − ( ௗܹ௜௙௙ + ௥ܹ௘௙))ିଵ     (4) 

Net photosynthesis rate A was determined in a similar manner as the transpiration rate but using 

CO2 mole fractions of both channels Cref and Cdiff [µmol mol-1] which had to be corrected by the 

plant transpiration according to Eq. 5: 

ܣ ௅௘௔௙ିଵܣ௠ܨௗ௜௙௙ܥ = − ாଵ଴଴଴ ௗ௜௙௙ܥ) +  ௥௘௙)      (5)ܥ
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3.4.2 Isoprenoid emission rate calculation and standardization 

The emission rate EM [nmol m-2 s-1] is calculated by Eq. 6 after Niinemets et al. (2010): 

ܯܧ = (χ௢௨௧	 − χ௜௡)ܨெିଵܣ௅௘௔௙ିଵ + χ௢௨௧	ܧ	(6)     

with χin /out being in-/outlet-air compound concentration, the molar air flow rate FM [mol s-1], leaf 

area Aleaf [m²]. Due to the intensive air filtering χin was assumed as zero, but regularly checked 

by inlet air samples. In the second term of Eq. 6 the mass balance was corrected by the addi-

tional transpired water vapor of the plant, since only the flow rate into the chamber was meas-

ured.  

Different standardization algorithms were applied to compensate for temperature/light variabil-

ity between the chambers (see Lüpke et al. 2017b) which made reported emission rates compa-

rable to literature data and allowed proper statistical analyses. The pure temperature based algo-

rithm of Guenther et al. (1995) (Eq. 7) was used on pool dominated/stored emission: 

ௌ௧ௗܯܧ = ாெ௘(ഁ(೅ಽష೅ೞ೟೏))        (7) 

It is based on an exponential functional containing the empirical determined value β of 0.09 K-1 

(β can range for Scots pine from 0.076 to 0.18K-1, Niinemets et al. 2010b), leaf temperature TL 

in K and standard temperature of 278.15 K/303.15 K depending on the target standard tempera-

ture. This algorithm was used in the 2013 experiment (Lüpke et al. 2016) to standardize the 

emission rates to 25°C, since de novo shares could not be determined. 

Light and temperature (typically de novo synthesized) depending emission rates were standard-

ized by algorithms in Eq. 8 proposed by Guenther (1997) and by Niinemets et al. (2010b): 

ௌ௧ௗܯܧ = ாெ݂(ܶܮ)∗௙(ொ)        (8) 

In Eq. 8 the measured de novo emission rate was standardized by the correction term for leaf 

temperature f(TL) to 30°C (similar to the divisor term in Eq. 7) and for the correction term f(Q) 

to light level of to 1000 µmol PAR m-² s-1. The parameters for f(Q) and f(TL) used were the same 

as proposed by Guenther (1997). This algorithm was used in Lüpke et al. (2017b) based on the 

terms and parameters of Niinemets et al. (2010b). 

In Lüpke et al. (2017a) a mixed standardization algorithm was applied to incorporate pool and 

de novo emitted compounds which is typical for many conifers. This algorithm had been used 

before by Ghirardo et al. (2010) and Harley et al. (2014) and combined Eq. 7 and Eq. 8 to Eq. 9 



Overview of methods 
 

-26- 

with a scale factor fdenovo representing the de novo share of the emission. fdenovo was derived by 

labeling the plants with 13CO2 (Ghirardo et al. 2010, Harley et al. 2014, Lüpke et al. 2017a). 

ௌ௧ௗܯܧ = ாெೞೌ೘೛೗೐(௙೏೐೙೚ೡ೚	௙(்ಽ)∗௙(ொ))ା((ଵି௙೏೐೙೚ೡ೚)∗௘(ഁ(೅ಽష೅ೞ೟೏)))    (9) 

Parameters are similar to Eq. 7 and Eq. 8. 

3.5 Experimental setups 

Several pre-studies and three successful experiments were conducted from 2013 till 2015. Se-

lected species with their origin (provenance) as well as the sample designs are listed in Table 2.  

Table 2 Overview on experimental setups of the major experiments (prov = provenance, rep. = repli-

cation, N = number of individuals). *Out of the 3 rep. only 1 was successful. 

Study year 2013 2014 2015

Publication Lüpke et al. (2016) Lüpke et al. (2016) Lüpke et al. (2017a) 

Species Pinus sylvestris L. Castanaea sativa Mill. Pinus sylvestris L. 

Provenances Spain: “Alto Ebro” 

Germany:”Mittel-/ 

Ostdeutsches Tiefland”; 

Italy:”Emilia Romagna” 

Germany: “übriges Bun-

desgebiet” without North 

Germany; not clear spec-

ified 

Germany: “Mittel-

fränkisches Hügelland” 

Middle Franconia  

(Bavaria) 

Soil type 100% humus 30% humus  

70% sand 

30% humus 

70% sand 

Pot size 2-l 5-l 5-l

Total trees  ~300 per prov ~ 50 ~ 50

Selected trees 

and setup 

36 

(3 prov. x 3 rep. x 2 trees 

x 2 groups) 

Screening exp.: 20 

(5 rep. x 4 trees) 

Drought exp.: 12 

(3 rep x 2 trees x 2 

groups)* 

8 

(2 rep. x 2 trees x 2 

groups) 

Irrigation during  

exp. 

Dripping water system Manual Manual 

 

In the respective winters before the experiment (2012/2013), all seedlings were planted at an 

age of one (deciduous) or two (conifers) into pots (see Figure 12). All experiments were con-

ducted only after leaves were fully developed to exclude leaf growth effects. In all studies the 

effect of changing water regimes on the isoprenoid emissions was the main focus. 
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In 2015 eight Pinus sylvestris L. seedlings, size-wise suitable for the Tree DEMON, were used 

for a drought experiment with isotopic 13CO2 labelling. Similar to the 2014 experiment, soil 

water content was controlled manually and each four plants were installed for around 16 days in 

the Tree DEMON.  
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4 Abstracts and contributions to the individual publica-

tions 

4.1 The Tree Drought Emission MONitor (Tree DEMON), an innovative system 

for assessing biogenic volatile organic compounds emission from plants 

Marvin Lüpke, Rainer Steinbrecher, Michael Leuchner and Annette Menzel (2017):  

Plant Methods 13:14; doi: 10.1186/s13007-017-0166-6. (Lüpke et al. 2017b) 

Background: Biogenic volatile organic compounds (BVOC) emitted by plants play an important 

role for ecological and physiological processes, for example as response to stressors. These 

emitted compounds are involved in chemical processes within the atmosphere and contribute to 

the formation of aerosols and ozone. Direct measurement of BVOC emissions requires a spe-

cialized sample system in order to obtain repeatable and comparable results. These systems 

need to be constructed carefully since BVOC measurements may be disturbed by several side 

effects, e.g., due to wrong material selection and lacking system stability.  

Results: In order to assess BVOC emission rates, a four plant chamber system was constructed, 

implemented and throughout evaluated by synthetic tests and in two case studies on 3-year-old 

sweet chestnut seedlings. Synthetic system test showed a stable sampling with good repeatabil-

ity and low memory effects. The first case study demonstrated the capability of the system to 

screen multiple trees within a few days and revealed three different emission patterns of sweet 

chestnut trees. The second case study comprised an application of drought stress on two seed-

lings compared to two in parallel assessed seedlings of a control. Here, a clear reduction of 

BVOC emissions during drought stress was observed.  

Conclusion: The developed system allows assessing BVOC as well as CO2 and water vapor gas 

exchange of four tree specimens automatically and in parallel with repeatable results. A canopy 

volume of 30 l can be investigated, which constitutes in case of tree seedlings the whole canopy. 

Longer lasting experiments of e.g., 1–3 weeks can be performed easily without any significant 

plant interference. 

Contributions: I did the finalized design/construction/programming of the Tree DEMON and 

performed system test shown in this publication. Rainer Steinbrecher provided support for the 

system and its evaluation, Michael Leuchner and Annette Menzel provided methodological sup-

port. All co-authors reviewed and improved the draft manuscript before submission. About 85% 

of the work was done by myself. 
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4.2 Impact of summer drought on isoprenoid emissions and carbon sink of 

three Scots pine provenances 

Marvin Lüpke, Michael Leuchner, Rainer Steinbrecher and Annette Menzel (2016):  

Tree Physiology 36: 1382–1399, doi: 10.1093/treephys/tpw066. (Lüpke et al. 2016) 

Scots pine (Pinus sylvestris L.) provenances cover broad ecological amplitudes. In a greenhouse 

study, we investigated the impact of drought stress and rewetting on gas exchange for three 

provenances (Italy: Emilia Romagna; Spain: Alto Ebro; Germany: East-German lowlands) of  

2-year old Scots pine seedlings. CO2, water vapor and isoprenoid exchange of stressed and con-

trol trees were quantified with a four-chamber dynamic-enclosure system in the controlled envi-

ronment of a climate chamber.  

The three provenances showed distinct isoprenoid emission patterns and were classified into a 

non-Δ3-carene, with either high α-/β-pinene or β-myrcene fraction, and a Δ3-carene dominated 

type. Isoprenoid emission rates, net-photosynthesis and transpiration were reduced during sum-

mer drought stress and significantly recovered after rewetting. A seasonal increase of isoprenoid 

emission rates towards autumn was observed for all control groups. Compared with the German 

provenance, the Spanish and Italian provenances revealed higher isoprenoid emission rates and 

more plastic responses to drought stress and seasonal development, which points to a local ad-

aptation to climate. As a result of drought, net carbon uptake and transpiration of trees was re-

duced, but recovered after rewetting.  

We conclude from our study that Scots pine isoprenoid emission is more variable than expected 

and sensitive to drought periods, likely impacting regional air chemistry. Thus, a provenance-

specific emission assessment accounting for reduced emission during prolonged (summer) 

drought is recommend for setting up biogenic volatile organic compound emission inventories 

used in air quality models. 

Contributions: I had the idea for and designed the study. Michael Leuchner and Rainer 

Steinbrecher provided methodological support and supported me together with Annette Menzel 

in data analysis and writing of the manuscript. All co-authors reviewed the draft manuscript 

before submission. About 80% of the work was done by myself. 
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4.3 Quantification of monoterpene emission sources of a conifer species in 

response to experimental drought 

Marvin Lüpke, Rainer Steinbrecher, Michael Leuchner and Annette Menzel (2017):  

re-submission currently under review in AOB Plants (Lüpke et al. 2017a) – resubmitted at 

05.08.2017  

Monoterpene emissions of conifer tree species, emitted from de novo synthesis and storage 

pools, play an important role in plant ecology and physiology. During drought stress both emis-

sion sources are affected differently and with conventional measuring techniques they are diffi-

cult to separate. We investigated 13C labelled monoterpene (MT) emission of eight 3-year-old 

Scots pine seedlings in a drought stress experiment using a dynamic gas exchange chamber 

system (Tree DEMON). MT, water vapor and CO2 gas exchange were measured for a 2-day 

normal watering, a 11-day treatment and a 3-day re-watering period. In each period all trees 

were 13C labelled once for five hours. Results showed the expected decrease of MT, water vapor 

and CO2 gas exchange with decreasing soil water content. However, during re-watering water 

vapor and CO2 gas exchange recovered fast to pre-drought levels, whereas MT increased to a 

lower level compared to the initial non-stressed phase. The 13C labelling showed highly variable 

%13C values for different monoterpenes, which ranged compound-specific from 0.5 to 95% for 

unstressed trees. Overall, around 36±5% of the total emission rate originated from de novo syn-

thesized MTs during the 2-day prior to stress period. During full drought, the de novo fraction 

was reduced to 3%. For the re-watering phase de novo emissions recovered only partly to 20%, 

while pool emissions reached pre-drought conditions. Thus, emissions of de novo synthesized 

MTs of Scots pine are down regulated by soil drought rather than MT emissions from pools. 

Contributions: I had the idea for and designed the study. Michael Leuchner and Rainer 

Steinbrecher provided methodological support. Annette Menzel helped in data analysis and writ-

ing of the manuscript. All co-authors reviewed the draft of the manuscript before submission. 

About 80% of the work was done by myself. 
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5 Discussion 

5.1 Tree DEMON - a tool for stress assessment? 

The Tree Drought Emission MONitor was successfully used for several experiments (Lüpke et 

al. 2016, Lüpke et al. 2017b, Lüpke et al. 2017a). Its core features, gas exchange measurements, 

were tested in depth and proved to work reliably and reproducibly (Lüpke et al. 2017b). During 

its use from 2013 until 2016 the system was steadily improved in respected to changed require-

ments or missing features. Major improvements were the exchange of the sampler system 

(magnetic to pneumatic valves), the installation of soil moisture sensors in 2014 and the ex-

change of the air supply filter tanks in 2015. While the first upgrades improved the overall sam-

pler performance and system functionality, the second upgrade was necessary due to security 

aspects (TÜV - German Association for Technical Inspection approval).  

5.1.1 Key benefits 

Compared to commercial single chamber systems and other self-built chambers (see list in  

Ortega and Helmig 2008), the Tree DEMON has four independent plant chambers allowing two 

group studies with one replication (Lüpke et al. 2016, Lüpke et al. 2017a) and screening studies 

with high throughput (Lüpke et al. 2016). This kind of studies required a good parallel sampling 

performance and was proved by the repeatability and comparability test of the sampler (with 

and without chamber) in Lüpke et al. (2017b).  

The Tree DEMON measured only non-invasively plant physiological parameters such as gas 

exchange (CO2, water vapor and a wide range of VOC) and leaf temperature. Therefore, it was 

possible with a non-invasively biomass estimation method (see Serdar and Demirsoy 2006, 

Lüpke et al. 2017b) to reuse Sweet chestnut seedlings and perform multiple samplings during 

the vegetation season or even different kinds of experiments. Other methods, e.g., leaf water 

potential measurement, would involve damage to the plants and thus introduce a bias to any 

results. 

VOC filtering and conditioning of supply air, also used in other systems, e.g., by Komenda 

(2001) or Joó et al. (2010), enabled periodical instead of permanent inlet air samples. This dou-

bled the analytical capacity of air samples and allowed performing long-run (Lüpke et al. 

2017a) or high-throughput screening experiments (Lüpke et al. 2016, Lüpke et al. 2017b). This 

approach also reduced overall costs and simplified handling compared to a supply by synthetic 

air gas bottles. 
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The selected chamber layout enabled the study of whole canopies of the tree seedlings. Thus, 

potential disturbance effects, e.g., mechanical disturbance or risk of infection, were reduced and 

a more representative biomass could be investigated compared to single leaf studies or small 

branch studies (e.g., Blanch et al. 2007, Ghirardo et al. 2010, Harley et al. 2014).  

The software running the Tree DEMON offered a convenient user interface to control and set all 

important parameters and thus to reduce user errors and help monitoring the experiment. Fur-

thermore, data from all sensors were aggregated into one data file, which speeded up post pro-

cessing for data analysis. 

5.1.2 Key limitations 

For the experiments, an environment with constant temperature was selected, since conditioning 

of air supply as well as gas exchange were more stable under these conditions. Even so small 

variations of air and leaf temperature were observed in the plant chambers due to a small tem-

perature inhomogeneity in the climate chamber, drought treatment effects and greenhouse  

effects due to radiation. These temperature differences were compensated for by the standardi-

zation algorithm (see e.g., Eq. 7, of Guenther et al. 1995). In order to perform fast changing 

temperature programs or a placement of the Tree DEMON in natural environments (e.g. outdoor 

field conditions) additional technical upgrades would be necessary (see 6). An individual regu-

lation of the plant chamber temperature was tested with a prototype thermoelectric cooler 

(Soutchek, 2014), but in its first version it was only able to regulate temperature in a very small 

range and at a slow rate. The likely reason for this mediocre cooling performance was the large 

chamber volume, which made the system more inert to temperature changes, and high inlet flow 

rates, which would require a higher cooling capacity to reach a target temperature. In conse-

quence this system inertness would also apply to other environmental parameters, thus for ex-

periments requiring a fast reaction time smaller chambers or high inlet flow rates would be re-

quired (see e.g. system by Ghirardo et al. 2010, Harley et al. 2014). 

The size of the plant chamber limited tree age to up to four years and the pot size to up to five 

liters. Therefore tree seedlings were selected according to their maximal canopy size still fitting 

into the plant chambers, which may reduce the number of selectable individuals. The limitation 

of the pot size might influence plant growth, root growth and water storage (Poorter et al. 2012), 

but this was not relevant for the emission studies in this thesis which were predominantly short-

term and for which watering and nutrient supply were controlled.  

The setting and controlling of the soil water content underlay several limitations. In Lüpke et al. 

(2016) SWC could only be measured before and after installation in plant chamber, thus data 
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included a temporal uncertainty. Later on, one SWC sensor per pot was installed and used in 

Lüpke et al. (2017b) and Lüpke et al. (2017a), thus a continuous measurement was possible. 

Since the sensor only represented a part of the pot, the total SWC might either be under- or 

overestimated, depending of the distribution of water in the pot.  

5.2 Methodical adjustments 

5.2.1 Emission quantification 

In the experiments (Lüpke et al. 2016, Lüpke et al. 2017a, Lüpke et al. 2017b,) different ap-

proaches to quantify emissions were used. In Lüpke et al. (2016) only compound specific m/z 

(e.g., m/z 93) from the MS was used, since the FID was unreliable due to wet zero gas air. Since 

the MS tended to be more sensitive and more variable, an internal standard was used to com-

pensate the fluctuations. Later on, the installation of a gas dryer stopped this issue, thus for the 

studies Lüpke et al. (2017a) and Lüpke et al. (2017b) the FID was used for primary quantifica-

tion, since this sensor type is known for its better linearity over a large measurement range and 

long-term stability (Otto 2006). 

5.2.2 Emission standardization  

Due to the small variations in temperature and in the rare cases of a lamp failure resulting in 

varying light conditions emission rates were corrected by different standardization algorithms 

(see 3.4.2 for details, Guenther et al. 1995, Schuh et al. 1997, Niinemets et al. 2010b, Guenther 

et al. 2012, Harley et al. 2014). The optimal correction algorithm was selected based on the 

available information on the emissions’ dependency on light or temperature and about de novo 

shares which could be derived by 13C labelling. All used standardization algorithms contained 

empirical parameters, which were derived from data of previous emission studies and varied 

within and between species (Niinemets et al. 2010b). Thus, an individual tree assessment could 

reduce uncertainty of the estimated standardized emission rates. This individual assessment was 

however not performed due to limited experimental capacity, temperature and light limitation of 

the climate chamber (up to 24°C/up to 550 µmol m-2s-1) and untested behavior of the  

Tree DEMON within changing temperature conditions. 

5.3 Emission type, potential and chemo species 

The 13C labelling method proved that Scots pine was a mixed-type emitter with emission both 

coming from storage and de novo synthesis as shown in Lüpke et al (2017b) and confirmed by 

several other studies (Shao et al. 2001, Tarvainen et al. 2005, Holzke et al. 2006, Ghirardo et al. 

2010). In contrast, sweet chestnut was a pure de novo emitting species and highly light  



Discussion 
 

-35- 

dependent as shown by pre-screening tests (data not shown) and by Lüpke et al. (2017b). Both 

species were identified as MT emitters, which corresponded well to emission inventories by 

Kesselmeier and Staudt (1999) or Simon et al. (2006). Both species emitted MTs at a similar 

magnitude (30°C 1000 µmol m-2 s-1) in Lüpke et al. (2017b) and Lüpke et al. (2017a). Their 

emission composition was however different: Those of Scots pine were dominated by α-pinene, 

Δ3-carene, β-pinene and myrcene and in case of sweet chestnut they were dominated by  

α-pinene, β-pinene, and different isomers of ocimenes.  

5.3.1 Scots pine 

MT emissions of different provenances of Scots pine have not been investigated in detail so far. 

Lüpke et al. (2016) were the first to show for three provenances (see 3.5) differences in the MT 

emission composition with four distinct chemo species and varying emission rates among the 

provenances studied. A major distinction characteristic of the Scots pine chemo species types 

was the presences or absence of Δ3-carene, which was in case of Δ3-carene absences further split 

ratios of α-/β-pinene and the presence of myrcene. While some provenances showed a con-

sistent chemo species, such as the Brandenburg provenance, the other two varied much more. 

Equally, the Scots pine provenance used in Lüpke et al. (2017a) showed at least two distinct 

chemo species.  

The emitted MT compounds identified in Lüpke et al. (2016) and Lüpke et al. (2017a) are well 

in accordance with other studies (e.g., Janson 1992, Shao et al. 2001, Komenda 2002, Holzke et 

al. 2006, Ghirardo et al. 2010, Bäck et al. 2012). It was however expected that Scots pine prov-

enances would reveal different chemo species since also resin composition studies revealed 

multiple chemo species (Tobolski and Hanover 1971, Manninen et al. 2002). Furthermore also 

within local stands high variation of the chemical composition in emissions was observed by 

e.g., Holzke et al. (2006), Bäck et al. (2012) and in resin by Kannaste et al. (2013). Differences 

both between and within provenances were observed in the two Scots pine studies of this thesis. 

Reasons for different chemo species might be related to an evolutionary adaptation against local 

specific pests (see e.g., Iason et al. 2011, Achotegui-Castells et al. 2013). In addition the chemi-

cal composition may drive or be driven by the understory vegetation (Iason et al. 2005), thus the 

high spatial distribution of Scots pine and the corresponding high variety of understory vegeta-

tion may have led to different chemo species. 

Looking at the overall total emission rates reported in Lüpke et al. (2016), a strong variation 

between provenances was measured with higher emission rates of the two southern Europe 

provenances from Spain and Italy during summer and autumn. This strong difference might be 
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related to an occurrence of herbivores all year round, which are not present in regions with regu-

larly cold winters. A split into pool and de novo emission would have helped to gain more in-

sight, but this was not possible by the method of day night differences due to very short installa-

tion times and potential installation effects. Also fdenovo could not be determined in this study. In 

the second experiment on Scots pine (Lüpke et al. 2017) fdenovo was determined by multiple  
13C-labelling. However, the revealed values were below the reported fractions of Ghirardo et al. 

(2010). The results also showed variable fdenovo between individual trees and compounds which 

was probably related to different leaf to wood ratio (availability of resin ducts) and natural vari-

ation between the trees. 

5.3.2 Sweet chestnut 

The screening study of sweet chestnut trees (Lüpke et al. 2017b) revealed three distinct chemo 

species. These were a trans-β-dominated type, an intermediate type with terpinene and a β- and 

α-pinene dominated type. Emission rates varied strongly within each chemo type, thus no pat-

tern between specific chemo species was visible. The MTs identified partly matched the results 

of other studies (Pio et al. 1993, Aydin et al. 2014), but different chemo species had not been 

identified before. 

5.3.3 Importance of the results for modelling 

Large-scale BVOC emission models require the plants’ emission potential (emission rate and 

capacity at standard conditions) and its type (temperature or light dependent) for the correct 

calculation (see e.g., Arneth et al. 2008, Guenther et al. 2012, Acosta Navarro et al. 2014). Cur-

rent models are based on inventory data which list the emission potential and type at different 

taxonomic ranks or plant functional types ( see e.g., Kesselmeier and Staudt 1999, Steinbrecher 

et al. 2009, Guenther et al. 2012). The sweet chestnut and first Scots pine study showed howev-

er that at provenance level pronounced differences were present and thus should be considered. 

This would require large-scale screening studies constituting a time and cost intensive process.  

Results of BVOC emission models are further incorporated into atmospheric chemistry models 

(Makkonen et al. 2012, Smolander et al. 2014). Smolander et al. (2014) included the effect of 

chemo species into an atmospheric chemistry model and showed that specific process/yield 

rates of major compounds (Δ³-carene/α-pinene dominance) significantly affected specific inter-

mediate and end products or processes such as OH reactivity. Thus models, which consider 

specific compounds reactions, could perform more accurately by including chemo species or 

provenances information.  
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5.4 Effect of drought stress on isoprenoid emissions, CO2 and water vapor gas 

exchange 

The effect of drought stress on isoprenoid emission was investigated on the two species, namely 

Scots pine in chapter 4.2 (Lüpke et al. 2016) and 4.3 (Lüpke et al. 2017a) as well as sweet 

chestnut in chapter 4.1 (Lüpke et al. 2017b). Drought led to an expected decrease of BVOC 

emissions of both species and hereby confirmed results of other drought – isoprenoid emission 

studies on other tree species, such as Pinus halepensis MILL. (Llusià and Peñuelas 1998), 

Populus alba L. (Brilli et al. 2007), Quercus ilex L. (Llusià et al. 2011), Fagus sylvatic L. (Šim-

praga et al. 2011), Quercus robur L. (Bourtsoukidis et al. 2014), Pinus sylvestris L. (Wu et al. 

2015). 

5.4.1 Sweet chestnut 

In case of sweet chestnut only one replicate of the drought study could be used (Lüpke et al. 

2017b). This replication showed that de novo emitted MT followed in a lagged manner the de-

creasing photosynthesis rate during increasing drought. The lag might be explained by the use 

of stored carbohydrates for MT synthesis as observed by Brilli et al. (2007) for isoprene synthe-

sis during drought. Continuing drought stress led to leaf die off at one out of two trees which 

resulted in an almost complete cessation of MT emission. Compared to Scots pine, photosynthe-

sis, transpiration and emission response of sweet chestnut to decreasing water regimes was 

stronger and thus revealed relative anisohydric behavior, which complied with a study of 

Gomes-Laranjo et al. (2012). 

5.4.2 Scots pine 

In both Scots pine studies (Lüpke et al. 2017b, Lüpke et al. 2017a) drought strongly reduced 

photosynthesis, transpiration and increased leaf temperature by around 2 to 2.5°C compared to 

the control groups. This is in accordance with other conifer studies (e.g., Irvine et al. 1998, 

Blanch et al. 2007, Bansal et al. 2013). However, both Scots pine studies differed in the drought 

strength applied, the recovery time and sample interval.  

In Lüpke et al. (2016) the drought was lasting 6 weeks with periodically little watering and 

plants were sampled only once within the drought phase and after a longer recovery phase. The 

watering management led to a slight variability of SWC at each sample, but otherwise it would 

not have been possible to investigate larger sample sizes and cover three provenances. In gen-

eral, the two southern provenances of Spain and Italy responded stronger to drought by much 

more reduced gas exchange than the German provenance and both southern provenances 

showed also a stronger recovery. All three provenances reduced MT emission during drought, 
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but the two southern were able to increase their emissions faster during recovery. This response 

pointed onto a higher plasticity/resilience of the southern provenances on drought as equally 

shown by a thermography study on the same provenances by Seidel et al. (2016). A closer look 

at the single compound response to drought revealed different dependencies on SWC, which 

might be related to the different share of de novo and pool emission of each compound (see 

Lüpke et al. 2017a, Ghirardo et al. 2010) and was investigated in more detail in Lüpke et al. 

(2017a). 

In Lüpke et al. (2017a) fewer specimens were investigated over 16 days and were sampled on a 

daily basis with continuously changing water regime (normal-drought-normal). During the 

course of this experiment Scots pine showed a relative isohydric response by keeping transpira-

tion high until SWC threshold was reached. Compared to older trees (Irvine et al. 1998, Poyatos 

et al. 2008) and the first study (Lüpke et al. 2016), this reaction was more abrupt, which might 

be related to sandy soil type. But it confirms the general isohydric behavior of Scots pine (Irvine 

et al. 1998, Leo et al. 2014, Salmon et al. 2015) and also shows that anioshydric and isohydric 

are not sharply separated but by a smooth transition (Klein et al. 2014). The 13C-labelling meth-

od also proposed by Ghirardo et al. (2010) and Harley et al. (2014) allowed a better separation 

of pool and de novo emissions and a mixed standardization algorithm could be applied.  

The 13C-labelling showed that during drought stress the de novo emissions were more affected 

than pool emissions. Thus, a fixed fdenovo could not be used for the standardization algorithm 

since with changing stress conditions fdenovo is not static because the actual synthesis rate de-

creases. Thus in this study for the first time a correct scaled fdenovo was estimated with purely de 

novo emitted 1,8-cineole in a non-linear model for its use in the mixed standardization algo-

rithm. During re-watering Δ³-carene and β-pinene revealed quite high night values. This in-

creased emission from pools might be related to refilling of water in the xylem and an increased 

oleoresin pressure of resin ducts. This behavior was shown in emission increase from dry winter 

conditions (stem contains less water) to spring conditions (stem is refilled) by Vanhatalo et al. 

(2015). Additionally, a study of Rissanen et al. (2016) showed positive relation of xylem water 

content with oleoresin pressure, which was positively correlated with stem emissions. 

5.4.3 Stress response strategies of Scots pine and Sweet chestnut 

Both tree species showed a different stress response (isohydric/anisohydric) and BVOC emis-

sion types. Scots pine maintained MT emissions also during the short extreme drought states via 

storage pools, while in the case of sweet chestnut (at one tree observed) emission declined com-

pletely and even leaves fell, which returned after two months of normal watering, however.  
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This anisohydric behavior might be related to a more risk taking strategy which was also ob-

served during summer drought in 2003 in Switzerland (Barthold et al. 2004). This behavior 

might be an adaption to its natural distribution area, which is defined by a warm temperate cli-

mate (annual mean of 8 – 15°C, at least 6 months with average 10°C) with moderate precipita-

tion (600 – 800 mm) and warm and drier summers (Conedera et al. 2016). 

In contrast, the evergreen conifer Scots pine covers a wider climatic region (Houston Durrant et 

al. 2016), which ranges from annual average temperatures from -3 to 15°C and precipitation 

from ~450mm up to 3000 mm. As a pioneer species, Scots pine can grow on disturbed sites 

with good light conditions. Its needles are sustained for at least two years and can last for up to 

six years (Praciak 2013) and their built-up is more resource intensive (Givnish 2002), because 

stronger cell walls or built of resin ducts with stored isoprenoids. Also it is known that pines 

built-up more constitutive resin ducts in their woody parts than other conifers (Mumm et al. 

2003). Scots pine probably follows a stress endurance strategy and tries to keep as much needles 

as possible intact during stress phases by strongly controlling stomata opening and conductance 

(Martínez-Sancho et al. 2017). Thus stored isoprenoid enabled the plants to pass on de novo 

synthesize of compounds, since stored compounds are able to maintain functions such as acting 

as defense against various pests (Faldt et al. 2006, Heijari et al. 2011), wounding protection 

(Loreto et al. 2000), antimicrobial (Trombetta et al. 2005), antioxidant (Loreto et al. 2004) and 

sustain the photosynthesis system longer intact (Copolovici et al. 2005). Although synthesis is 

reduced during drought stress, a low amount of de novo compounds can still be sustained via 

pathways using stored carbon. Their share on the total emission was however relatively low as 

shown by Brilli et al. (2007) and indicated by the 13C labelling results in Lüpke et al. (2017a). 

The alternative carbon sources might play an important role at mild stress phases to compensate 

for reduced availability of recently photosynthetically fixed carbon Brilli et al. (2007). 
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6 Outlook 

The Tree DEMON was laid out as a modular system with standard components. Thus an easier 

adaptation to a new research question is possible. Several possible improvements of the Tree 

DEMON came up during this thesis to enlarge the range of applications. An individual control 

of the plant temperature, humidity and pot soil water content would enhance manipulation pos-

sibilities. Different plant chamber sizes and formats would enable to cover different tree sizes or 

plant parts, e.g., to separate emission form stem, roots and leaves. In case of outdoor field appli-

cation the system should be downsized for better portability and heated tubing would be re-

quired in order to avoid water condensation. Dependence on the field site infrastructure re-

quirements on the air supply could be lowered by e.g., exclusion of VOC filters by in- and out-

let sampling. This additionally offers the possibility to investigate VOC uptake of plants – a less 

investigated field. 

The performed experiments did not differentiate between plant parts due to a whole canopy 

concept. However, it is known for Scots pine that different plant parts contain varying amounts 

and types of MTs (Ghirardo et al. 2010) and cover different emission types (stem – storage,  

leaf – mixed or de novo). Thus, drought stress might affect these different ways: e.g., relation 

oleoresin pressure to xylem water content, different availability of carbon for synthesis in bark 

and leaves. Future studies should also investigate the point between mild and full drought and 

the recovery time in more detail, since the performed studies were temporal course or not long 

enough. This additional information would be required to understand the detailed drought and 

recovery process better.  

Due to the technical issues of the sweet chestnut experiments and its preliminary descriptive 

results, a re-run of the experiment would be necessary to get statistically tested results and more 

representative data for further modelling. 
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