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Identification of Isopeptides
Between Human Tissue
Transglutaminase and Wheat, Rye,
and Barley Gluten Peptides
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Celiac disease (CD) is a chronic immune-mediated enteropathy of the small intestine, which is triggered
by the ingestion of storage proteins (gluten) from wheat, rye, and barley in genetically predisposed
individuals. Human tissue transglutaminase (TG2) plays a central role in the pathogenesis of CD,
because it is responsible for specific gluten peptide deamidation and covalent crosslinking, resulting in
the formation of N°-(~-glutamyl)-lysine isopeptide bonds. The resulting TG2-gluten peptide complexes
are assumed to cause the secretion of anti-TG2 autoantibodies, but the underlying mechanisms are
only partly known. To gain more insight into the structures of these complexes, the aim of our study
was to identify TG2-gluten isopeptides. With the use of discovery-driven as well as targeted nanoscale
liquid chromatography tandem mass spectrometry, we detected 29 TG2-gluten isopeptides in total,
involving seven selected TG2 lysine residues (K205, K265, K429, K468, K590, K600, K677). Several
gluten peptides carried known B-cell epitopes and/or T-cell epitopes, either intact 9-mer core regions or
partial sequences, as well as sequences bearing striking similarities to already known epitopes. These
novel insights into the molecular structures of TG2-gluten peptide complexes may help clarify their
physiological relevance in the initiation of CD autoimmunity and the role of anti-TG2 autoantibodies.

Celiac disease (CD) is defined as a chronic immune-mediated inflammatory disorder of the small intestine ini-
tiated by the storage proteins (gluten) of wheat, rye and barley in genetically predisposed subjects’. The inges-
tion of gluten causes villous atrophy, lymphocyte infiltration and the stimulation of CD4* T cells against gluten
epitopes in CD patients. These epitopes are presented by the human leukocyte antigen (HLA) class II alleles
HLA-DQ2.5, HLA-DQ2.2 and HLA-DQS8 of the major histocompatibility complex (MHC) expressed on B cells
and antigen-presenting cells. The presentation of gluten peptides leads to the activation of CD4™ T cells, which
are the main effector cells for immunologic processes®>.

Human tissue transglutaminase (TG2), a Ca®*-dependent protein-glutamine ~-glutamyltransferase (EC
2.3.2.13), is ubiquitously expressed and catalyses the deamidation of glutamine residues or the crosslinking
reaction (transamidation) between a glutamine and a lysine residue to form a covalent N°-(v-glutamyl)-lysine
isopeptide bond*. The TG2-mediated deamidation converts certain glutamine residues to glutamic acid resi-
dues by releasing ammonia and incorporating water. This leads to an introduction of negative charges in gluten
peptides following a distinct pattern, e.g., the glutamine residues in the sequences QXP, QXXF(Y/W/M/L/I/V)
or QXPF(Y/W/M/L/1/V), where X designates any other amino acid except P, are preferentially targeted®. This
introduction of negatively charged amino acids increases the binding affinity of gluten peptides to the HLA mol-
ecules and enhances their antigenicity in CD patients®. During transamidation, the ~-carboxamide group of a
protein-bound glutamine serves as acyl donor that is transferred to an acyl acceptor, such as small, biogenic
amines or an e-amino group of protein-bound lysine to form a crosslink”®. The modification of gluten peptides by
TG2 is known as a critical event in the pathomechanism of CD, particularly as TG2-gluten peptide complexes are
formed®. Patients with active CD have specific anti-TG2 IgA (and IgG or IgM) antibodies® and the formation of
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these antibodies is dependent on the ingestion of gluten. In previous studies, TG2 was identified as the predom-
inant autoantigen of CD'. At the moment, there are different models to explain the formation of autoantibodies
against TG2. It has been assumed that gluten-specific CD4" T cells presented in the context of HLA-DQ2.5 or
-DQ8 provide help to TG2-specific B cells!!. After this initiation, different ways for gluten uptake by B cells and
the role of B cell receptors (BCR) are possible: (i) BCR take up TG2-gluten peptide complexes and present them
to gluten-specific CD4™ T cells, which provide help to B cells for the formation of anti-TG2 antibodies (original
hapten-carrier-model'?). In addition, (ii) the BCR may be crosslinked to neighboring BCRs by TG2 and this
process contributes to B-cell activation. Evidence for these models comes from previous studies that TG2 can
crosslink TG2 molecules into multimeric complexes, which can additionally incorporate gluten peptides. These
multimers stimulate TG2-specific B cells and are presented to gluten-specific T cells’. (iii) The BCR might be
crosslinked to gluten peptides through TG2 activity and thus be directly involved in uptake and presentation
either in a single TG2-BCR complex or (iv) with a neighboring BCR!*. After endocytosis of the BCR-gluten
peptide complexes and TG2 by the receptor, the isopeptide bond between gluten peptide and BCR may again be
hydrolyzed by TG2. This step releases the deamidated gluten peptide that will be subsequently linked to HLA-DQ
and presented to CD4™ T cells.

In-depth studies about the formation of covalent TG2-gluten peptide complexes showed that six lysine residues
of TG2 were involved in crosslinking with two different gluten peptides® or even with TG2 molecules to create
covalent TG2-TG2-multimers'®. In addition, a reciprocal proteomics strategy using an a-gliadin-derived model
peptide recently allowed the identification of 34 isopeptides involving 20 different lysine residues of TG2'. It is
also known that, when confronted with a complex gluten peptide mixture, TG2 preferentially crosslinks peptides
containing known CD-active T-cell epitopes to an acyl acceptor substrate such as 5-biotinamido-pentylamine!®.
However, there is no information as to which gluten peptides are good substrates for crosslinking to TG2, because
all studies so far have worked only with selected gluten-derived model peptides and not with physiologically rel-
evant enzymatic gluten hydrolysates due to their extreme heterogeneity®!°.

Therefore, the aim of our study was to apply our recently developed reciprocal mass spectrometric approach,
including discovery-driven mass spectrometry' and additional targeted proteomics, to complex gluten hydro-
lysates that had been incubated with TG2 and identify TG2-gluten isopeptides. We used well-characterized gluten
protein types (GPTs) of wheat, rye and barley'” and extended our analysis strategy with additional confirmation
of isopeptide identities by parallel reaction monitoring (PRM) LC-MS/MS as follow-up measurements.

Results

Experimental approach to identify TG2-gluten isopeptides. To reduce complexity compared to a
total gluten hydrolysate, our experimental approach to identify TG2-gluten isopeptides started with the prepara-
tion of the following GPTs: a-gliadins, ~-gliadins, w5-gliadins, w1,2-gliadins, high- (HMW-GS) and low-molec-
ular-weight glutenin subunits (LMW-GS) of wheat, w-secalins, HMW-secalins, ~-75k-secalins and ~-40k-secalins
of rye and C-hordeins, ~-hordeins, B-hordeins and D-hordeins of barley (Fig. 1a)!”!%. The individual GPTs were
hydrolysed using a combination of pepsin and chymotrypsin/trypsin to mimic the main enzymatic processes
during gastrointestinal digestion'®!"®. Then, the resulting GPT hydrolysates were incubated with TG2, leading to
the formation of TG2-gluten peptide complexes. These complexes were hydrolysed with trypsin followed by solid
phase extraction (SPE) for clean-up of the isopeptide/peptide mixture and subsequent discovery-driven nanos-
cale liquid chromatography tandem mass spectrometry (nLC-MS/MS) analysis (Fig. 1b)'*. The GPT blank con-
trols without addition of TG2 were used to create customized protein databases (Table S1) for each GPT that were
applied in the proteomics software MaxQuant (MQ)%. In order to identify TG2-gluten isopeptides, MQ searches
for gluten peptides (a-side of the isopeptide) were performed against the appropriate GPT-database with each
of seven selected TG2-peptides (3-side of the isopeptide) as modifications. These seven peptides (FLKNAGR,
WKNHGCQR, ISTKSVGR, LAEKEETGMAMR, DLYLENPEIKIR, QKR, AVKGFR, lysine residue involved in
crosslink formation highlighted in bold) containing the lysine residues K205, K265, K429, K468, K590, K600 and
K677 from the TG2 amino acid sequence were selected as possible crosslinking sites. The lysine residues K590,
K600 and K677 had previously been identified by Fleckenstein et al.® and the lysine residues K205, K265, K429
and K468 additionally by Lexhaller ef al.'>. K590, K600 and K677 were known as preferred TG2 crosslinking sites
also for TG2 self-multimerization'®, while K205, K265, K429 and K468 were involved in the formation of isopep-
tides with high identification scores'. The tryptic TG2 peptides were chosen to contain only one lysine residue to
reduce potential variability on the TG2-side. The identities of the isopeptides were confirmed by annotating the b-
and y-fragments as well as internal fragment ions (double fragmentation on both crosslinked peptide sequences)
calculated with the MS-Product feature of ProteinProspector?'. The identities of the isopeptides as well as the
crosslinking site localisations were verified by re-analysing all samples using targeted parallel reaction moni-
toring (PRM) nLC-MS/MS. Data analysis was performed with Skyline?? and additional manual curation. PRM
analysis yields higher ion intensities, because it focuses on monitoring the predefined transitions from precursor
to fragment ions. This higher overall intensity provided more fragments, especially around the crosslinking sites.

Identification of isopeptides in wheat GPTs.  Altogether, 13 isopeptides were identified in the wheat
GPTs. Table 1 shows the identified isopeptides (sorted by TG2-modification site) in each GPT, the gluten protein
corresponding to the identified gluten peptide with UniProtKB accession number, name and organism, the MQ
identification score, as well as the numbers of characteristic fragments identified in discovery-driven nLC-MS/
MS experiments and of those that were confirmed using PRM. The ~-gliadin-GPT hydrolysate contained five
isopeptides (W2, W3, W6, W7, W9) with four different TG2-crosslinking sites. Four isopeptides with three dif-
ferent TG2 peptides were identified in the a-gliadin-GPT hydrolysate (W1, W8, W11, W12), two isopeptides
with two different TG2 peptides in the LMW-GS-GPT hydrolysate (W4, W10) and one isopeptide each in the
HMW-GS-GPT hydrolysate (W13) and the w1,2-gliadin-GPT hydrolysate (W5). No isopeptides were identified

SCIENTIFIC REPORTS |

(2020) 10:7426 | https://doi.org/10.1038/s41598-020-64143-9


https://doi.org/10.1038/s41598-020-64143-9

www.nature.com/scientificreports/

a w5 w12

800
70
600

Osborne Preparative _ = i -
: . > 0 M
Q\.“““ fractionation HPLC % .
> I 2 m Gluten
Gluten g w protein
fractions < 0 types

0 W 30 o 0 & 7N
Time[min]

b Peptic,

chymotryptic, Reaction

B tryptic g W|th T1G2 )
9@\) l Tryptic
(== hydrolysis hydrolysis
Individual
gluten

protein type Gluten peptide-

TG2-complex

: Ya
g A I Data ] be
clean- up ) . i
D - analysis |
iscovery-driven 1 v,
g nanoLC-MS/MS ' ] . by
| 6

Y7

Peptide/ 1 ¥ b|0 Vis

isopeptide ] ’ ‘ | |

mixture T |1 | [
Isopeptlde m/z

identification |

l 140

120

Isopeptide & 100
|Il targeted confirmation ?-; 80
>| nanolC-MS/MS —_—> % 60
Skyline (PRM) Crosslinking E 40
PRM site 20 AR
methods identification ° . as a6

Retention Time

Figure 1. Workflow to identify isopeptides between gluten protein types of wheat, rye and barley and human
TG2. (a) Extraction and separation procedure to obtain gluten protein types from wheat, rye and barley flours,
respectively, (b) Proteomics workflow combining a reciprocal search strategy to identify isopeptides using
discovery-driven mass spectrometry, MaxQuant, Skyline and parallel reaction monitoring (PRM). SPE: solid
phase extraction; TG2: recombinant human tissue transglutaminase.

in the hydrolysate of w5-gliadin-GPT. The structures of the isopeptides as well as the localization probabilities for
the crosslinks and the deamidation are shown in Fig. 2.

As an example, a very high MQ score (91.31) was obtained for the isopeptide VQGQGIIQPQQPAQL/
FLKNAGR (W3, Q and K involved in the isopeptide bond highlighted in bold, deamidation site underlined)
based on the identification of 24 b- and y-fragments of the a-side (some fragments were identified without or
with water- and ammonia-loss). First, the MQ search result of VQGQGIIQPQQPAQL carrying the TG2 isopep-
tide modification “fI” (= FLKNAGR) at Q,, and a deamidation “de” at Q, was loaded into MQ Viewer to have
all b- and y-fragments annotated. These fragments were by default decharged by MQ Viewer to show them as
single charged fragments (Fig. 3a)*. Additionally, in Fig. 3b, the annotation was done manually in the MS/MS
spectrum by combining the information from the spectral annotation of MQ Viewer and 35 internal fragments
calculated by ProteinProspector for confident localization of the deamidation and crosslinking sites in the isopep-
tides. The correct detection of isopeptide W3 was confirmed by targeted MS analysis using PRM?*?>. The PRM
data revealed high quality chromatographic peaks for 15 characteristic fragment ions, including by, * to bg,* as
consecutive series?® within the a-side, and seven fragments for the 3-side modified at K with the deamidated
VQGQGIIQPQQPAQL peptide. Q,, was identified as the crosslinking site with a localization probability of 94.4%
and the deamidation at Q, was detected with a probability of 99.9%.
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TG2 UniProtKB MQ (discovery)® | (discovery)s | (targeted)"
Abb.* | lysine® | Gluten peptide* GPT! | accession UniProtKB name Organism score® |l [CU Y B |« 6)
w1 K205 | WQIPEQSR o P04726 ‘I‘,l{,’é‘féll’gta'g“adi“ clone T aestivum | 4937 |10 |4 |18 |13 |9 |—
w2 K205 AQIPQQL ~ A0A290XYW2 | gamma-gliadin T. aestivum 66.99 9 4 22 6 8 4
w3 K205 VQGQGIIQPQQPAQL N P08453 gamma-gliadin T. aestivum 91.31 24 7 67 8 15 7
w4 K265 PYSQPQPF LMW | X2KVH9 alpha-gliadin T. aestivum 59.21 9 1 16 2 7 —
W5 K429 PQQTFPQQPLF wl,2 R9XUE1 LMW-GS T. aestivum 84.57 14 1 34 1 11 —
W6 K468 PQPPQQPEF* N AO0A290XYS8 | omega-gliadin T. aestivum 75.31 11 2 24 14 |9 —
w7 K590 VQGQGIIQPQQPAQL o P08453 gamma-gliadin T. aestivum 61.21 19 8 37 28 11 8
ws! K590 QEQQIGQEQQPGQW a B2LS24 HMW glutenin subunit type-2 | T. timopheevii | 55.26 12 2 28 — |14 2
wo! K600 PQQSEQVIPQQPQQPF |~ A0A3B6UD61 | uncharacterized protein T. aestivum 104.05 |17 — 39 — 14 —
W10' | K600 QQQPPFWQQQPPF LMW | I3QPHO i‘l’l‘gumni"tlfgéar weight glutenin | i m 7094 |14 — I35 — 19 |—
W11 K677 RPQQPYPQPQPQY a A0A023WGB8 | alpha-gliadin T. aestivum 63.73 13 1 38 4 7 1
W12 K677 WQTPEQSR 10IT59 alpha/beta-gliadin T. aestivum 64.42 13 3 13 3 19 3
WI3 | K677 VYYPTSPQQPGQL HMW | AOAIG4P1W4 ?é\f;"’ glutenin x-type subunit | o 6045 |16 |2 |43 |9 |13 |1

Table 1. Isopeptides between TG2 and peptides derived from wheat gluten protein types. *Abb., abbreviation,
PLysine residue in the TG2 sequence, K205: peptide FLKNAGR, K265: peptide WKNHGCQR, K429:
ISTKSVGR, K468: LAEKEETGMAMR, K590: DLYLENPEIKIR, K600: QKR, K677: AVKGFR, “Glutamine
residues involved in crosslinking to TG2 are highlighted in bold, deamidation sites underlined, ‘GPT, gluten
protein type, o, a-gliadins, ~, y-gliadins, w1,2, wl,2-gliadins, HMW, high-molecular-weight glutenin subunits,
LMW, low-molecular-weight glutenin subunits, °MQ, MaxQuant, Number of fragments identified by
discovery-driven nLC-MS/MS and MaxQuant data analysis, 8Number of fragments identified by discovery-
driven nLC-MS/MS and manual inspection of full scan spectra considering additional internal fragments
calculated by ProteinProspector, "Number of fragments identified by PRM analysis, i, a-side of the isopeptide
(gluten peptide), 13, 3-side of the isopeptide (TG2 peptide), “Unspecific cleavage at the C-terminal end (IP),
ICrosslinking site identified by PRM analysis.

The isopeptides W1-W7 and W11-W13 were already identified unambiguously by discovery-driven nLC-MS/
MS and application of the confirmation parameters (at least seven identified b- or y-fragments, at least three
fragments in a consecutive series and a crosslink localization probability >75%'°). The additional PRM analysis
confirmed these 10 identified isopeptides and their crosslinking and deamidation sites. However, the PRM data
was essential to unambiguously localize the crosslinking site or some deamidation sites for the three isopeptides
W8-W10. For this purpose, specific transitions around these sites were used to confirm the localization of the
crosslinking or deamidation sites as shown in Fig. 2.

Identification of isopeptides in rye GPTs.  Overall, six isopeptides were identified in the GPTs of rye
(w-secalins, HMW-secalins, N-75k-secalins and ~-40k-secalins) (Table 2). Three isopeptides (R2-R4) crosslinked
with three different TG2 peptides were detected in the ~-75k-secalin-GPT hydrolysate (Fig. 4). In the hydrolysate
of the y-40k-secalin-GPT, two isopeptides (R1, R6) with two different TG2 peptides were identified. One isopep-
tide (R5) with a gluten peptide derived from barley C-hordeins was identified in the w-secalin-GPT hydrolysate,
most likely due to high sequence homologies between rye w-secalins and barley C-hordeins. No isopeptides were
identified in the HMW-secalin-GPT hydrolysate.

The isopeptides R5 and R6 were already identified unambiguously by discovery-driven nLC-MS/MS, because
they fulfilled the confirmation parameters and the crosslinking sites were identified with localization probabilities
0£99.3% and 100%, respectively. The PRM data from these isopeptides were used as confirmation. To identify the
crosslinking sites in the other rye isopeptides (R1-R4), the identification and confirmation of specific fragments
by PRM analysis was needed. Figure 4 shows the structures of these isopeptides as well as the MQ localization
probabilities and the specific fragments used to confirm the crosslinking site.

Identification of isopeptides in barley GPTs. In total, ten isopeptides were identified in the GPTs of
barley (C-hordeins, ~-hordeins, D-hordeins and B-hordeins) (Table 3). Five isopeptides (B1, B3, B5, B6, B10)
with four different TG2 peptides were identified in the D-hordein-GPT hydrolysate and four isopeptides (B4,
B7-B9) in the -hordein-GPT hydrolysate. The B-hordein-GPT hydrolysate contained one isopeptide (B2) with
a gluten peptide derived from wheat LMW-GS, most likely again due to high sequence homologies between
B-hordeins from barley and LMW-GS from wheat (Fig. 5). No isopeptides were detected in the hydrolysate
of the C-hordein-GPT itself. However, one isopeptide identified within the w-secalin-GPT was assigned to a
C-hordein.
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Figure 2. Schematic illustration of isopeptides between TG2 and wheat gluten proteins. (W1)-(W7) and
(W11)-(W13), Isopeptides with localization probabilities >75%. (W8)-(W10), Isopeptides with crosslinking
sites additionally confirmed by parallel reaction monitoring. The binding glutamine residues are given in bold,
the binding probabilities for the crosslinks (MaxQuant) in the grey box and the deamidation probabilities

for the glutamine residues in colours. Specific fragments used to confirm the binding sites are given in blue
(b-fragments) and pink (y-fragments).

The isopeptides B2, B3 and B5 were already detected unambiguously by discovery-driven nLC-MS/MS exper-
iments and the PRM analyses were only used for confirmation. The localization probabilities for the crosslinking
sites were between 87.4% and 95.2% (Fig. 5). In comparison, PRM analyses were necessary to detect the specific
fragments around the crosslinking sites in B1, B7, B9 and B10 and confirm the localization of the crosslinks
(Fig. 5).

Regarding the isopeptide B4, the localization probability was 49.3% for the crosslink at Q, or Qs, respectively.
The PRM data also did not reveal the exact position of the crosslink, because the specific transitions for these two
sites were not detectable. The isopeptide B6 was identified with two deamidation sites, one of which was detected
clearly with a localization probability of 77.4% at Q. The positions of the second deamidation and the crosslink-
ing site were ambiguous with localization probabilities of 51.0% at Q,, or 40.2% at Q,, for the deamidation and
46.8% at Q) or 39.8% at Q,, for the crosslink. Even the PRM experiments did not provide any further informa-
tion, so that the deamidation and crosslinking sites could not be assigned unequivocally within B6.

In the isopeptide B8, the crosslinking site was identified at various positions with various low localization
probabilities by discovery-driven nLC-MS/MS: Qg with 27.3%, Qo with 36.4% and Q,,, Q,3, and Q,, with 12.0%,
respectively. The positions Q, (localization probability: 96.9%) and Q; (localization probability: 46.7%) of the two
deamidated glutamine residues in the N-terminal part of the sequence were verified due to the specific transi-
tions b,, " to by, and the position of the crosslinking site could be confirmed at Q, based on the detection of the
characteristic bg, ™ to by, " fragments after PRM analysis. Q,, had a deamidation probability of 96.9%, so that only
the exact positions of the fourth deamidation in the rear part (Q,; or Q,,) could not be assigned unambiguously
due to missing specific fragments.
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Figure 3. MS/MS spectrum of the isopeptide between VQGQGIIQPQQPAQL (+-gliadin) and FLKNAGR
(TG2). (a) Spectrum of the isopeptide annotated with fragments of the ~-gliadin peptide with TG2-peptide as
modification as annotated by MQ Viewer (spectrum is shown decharged with fragments only single charged).
The fragments are marked in different colours as follows: y-fragments in red, b-fragments in blue, a- and
c-fragments in turquoise, fragments with losses of NH; or CO marked in orange. (b) Spectrum of the isopeptide
annotated manually with fragments of both sides of the isopeptides, calculated with ProteinProspector. The
insert amplifies the range between m/z 100 to 400. The fragments are marked in different colours as follows:
y-fragments of the ~-gliadin peptide in pink, b-fragments of the ~-gliadin peptide in blue, y-fragments of TG2
peptide in violet, a- and internal fragments in turquoise, fragments with losses of NH; or CO marked in orange.

Discussion

In this study, we applied a reciprocal proteomics strategy, including discovery-driven'* as well as targeted MS
measurements, to complex gluten hydrolysates and identified isopeptides between TG2 and gluten peptides. To
get well-defined gluten raw materials, GPTs were isolated by modified Osborne fractionation following prepara-
tive RP-HPLC and characterized as described before!'”'8. In total, 13 isopeptides of wheat GPTS, six of rye GPTs
and ten of barley GPTs were detected crosslinked to peptides containing any of the seven selected TG2-lysine
residues (K205, K265, K429, K468, K590, K600, K677). The crosslinking sites were unambiguously identified
by discovery-driven nLC-MS/MS with localization probabilities of >75% in 18 out of 29 isopeptides. The addi-
tional PRM analyses on the ambiguously identified crosslinks in 11 isopeptides were used to clearly assign the
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Manually
Fragments | checked Fragments
. £ . f h
G2 UniProtKB MQ (d{scoveljy) (discovery) (targeted)
Abb.? lysine® Gluten peptide® GPT! accession UniProtKB name Organism score® al | @ [ 8 [ S)
1 ) . S. cereale ssp.
R1 K205 IVQGQSIIQQQPAQL ~40k H8YON7 gamma prolamin afghanicum 68.97 17 4 34 4 13 3
R2! K429 AQVQGIIQPQQL ~75k A4GU91 75k gamma secalin S. sylvestre 59.25 9 — 10 3 12 —
R3! K600 QPQQPFPQQPQQSF ~75k H8YOK1 gamma prolamin P, juncea 80.75 14 — 39 2 10 —
R4 K677 AQVQGIIQPQQL ~75k A4GU91 75k gamma secalin S. sylvestre 90.05 16 2 36 5 19 2
R5 K677 QIPTPLQPQQPF w Q41210 C-hordein H. vulgare 57.18 14 1 41 3 10 1
. S. cereale ssp.
R6 K677 AQIPQHL ~40k H8YON7 gamma prolamin afghanicum 62.98 10 3 24 8 9 3

Table 2. Isopeptides between TG2 and peptides derived from rye gluten protein types. *Abb., abbreviation,
"Lysine residue in the TG2 sequence, K205: peptide FLKNAGR, K429: ISTKSVGR, K600: QKR, K677:
AVKGFR, “Glutamine residues involved in crosslinking to TG2 are highlighted in bold, deamidation sites
underlined, GPT, gluten protein type, ¥40k, N-40k-secalins, v75k, ~-75k-secalins, w, w-secalins, SMQ,
MaxQuant, ‘Number of fragments identified by discovery-driven nLC-MS/MS and MaxQuant data analysis,
8Number of fragments identified by discovery-driven nLC-MS/MS and manual inspection of full scan spectra
considering additional internal fragments calculated by ProteinProspector, "Number of fragments identified
by PRM analysis, ‘o, a-side of the isopeptide (gluten peptide), I3, 3-side of the isopeptide (TG2 peptide),
ICrosslinking site identified by PRM analysis.

R1 R2
65.9% 70.4% 49.7%

IvasGQSSIIQngQJDAQML AQV QG 11QP Qo Qy L

b3a b9a blOa bll(x b4c1
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4
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Q,IPTPLQ,PQyQ,;PF AQ,IPQHL
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Figure 4. Schematic illustration of isopeptides between TG2 and rye gluten proteins. (R5)-(R6), Isopeptides
with localization probabilities >75%. (R1)-(R4), Isopeptides with crosslinking sites additionally confirmed by
parallel reaction monitoring. The binding glutamine residues are given in bold, the binding probabilities for the
crosslinks (MaxQuant) in the grey box and the deamidation probabilities for the glutamine residues in colours.
Specific fragments used to confirm the binding sites are given in blue (b-fragments) and pink (y-fragments).

crosslinking site. This method enabled the identification of the exact crosslinking and deamidation sites in 8 of
the remaining 11 isopeptides due to the detection of the characteristic fragments around the modified sites. Only
one deamidation site (B8), one crosslinking site (B4) as well as one deamidation and one crosslinking site (B6)
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Manually
Fragments | checked Fragments
. a| e & h
G2 UniProtKB MQ (discovery)" | (discovery) (targeted)
Abb.* |lysine® | Gluten peptide* GPT! | accession UniProtKB name | Organism scoret (ol (B |a €} a 6]
high-molecular-
B1! K205 QGQQGQQLGQGQQGYY D AOA2CYPIB7 | weight glutenin Ae. umbellulata | 59.90 13 — |25 4 16 —
subunit protein
B2 K265 VQQQQPPF B V9P6N2 LMW-i glutenin T aestivum 8585 |8 2 |9 1 8 2
subunit 1
B3 K590 PQQPGQW D I6TRS8 D-hordein H. vulgare 44.97 7 13 |11 21 7 13
B4 K590 IIPQQPQQPFPLQPHQPY* ~h P17991 C-hordein H. vulgare 44.20 10 7 17 10 11 7
B5 K600 PQQPGQGQQPGQR D 16TRS8 D-hordein H. vulgare 121.20 |19 — |31 2 14 —
B6 K600 PQQPGQGQGQQGYYPGATSLK D 16TRS8 D-hordein H. vulgare 82.36 18 — 35 — 24 —
B7! K677 PLQPQQPFPW ~h Q41210 C-hordein H. vulgare 72.55 9 1 23 3 8 1
B8 K677 PQQQFPQQQFHQQQL ~h AOAOB5JD29 | omega-gliadin T. aestivum 52.73 12 — 36 4 16 1
B9 K677 FPQYQIPTPL ~h Q40053 Hor1-17 C-hordein | H. vulgare 47.94 11 2 25 7 10 2
B10' K677 PQQPGQGQGQQGYYPGATSL D I6TRSS D-hordein H. vulgare 10636 |23 |2 |41 |3 24 |2

Table 3. Isopeptides between TG2 and peptides derived from barley gluten protein types. *Abb., abbreviation,
PLysine residue in the TG2 sequence, K205: peptide FLKNAGR, K265: peptide WKNHGCQR, K590:
DLYLENPEIKIR, K600: QKR, K677: AVKGEFR, “Glutamine residues involved in crosslinking to TG2 are
highlighted in bold, deamidation sites underlined, 4GPT, gluten protein type, D, D-hordeins, B, B-hordeins,
~h, y-hordeins, *MQ, MaxQuant, Number of fragments identified by discovery-driven nLC-MS/MS and
MaxQuant data analysis, {Number of fragments identified by discovery-driven nLC-MS/MS and manual
inspection of full scan spectra considering additional internal fragments calculated by ProteinProspector,
"Number of fragments identified by PRM analysis, ‘o, a-side of the isopeptide (gluten peptide), /3, 3-side of the
isopeptide (TG2 peptide), “Both crosslinking sites are possible and could not be identified unambiguously due
to missing fragments, 'Crosslinking site identified by PRM analysis.

could not be assigned unambiguously. However, we were able to identify the subpart of the amino acid sequence,
where the modified glutamines are located most likely.

No isopeptides were detected in the hydrolysates of w5-gliadins, HMW-secalins and C-hordeins. This may
have several causes, including poor digestibility of the proteins, especially for w5-gliadins*’, comparatively low
percentages of the respective GPT within the isolate, especially for C-hordeins!’, isopeptide concentrations that
were below the limit of detection or even no formation of isopeptides. Due to the multitude of potential pairings
considering that the TG2 sequence contains 32 lysine residues in total, we decided to focus our data evaluation
on the seven selected TG2-lysine residues within the specific peptides that had been reported as reactive sites in
previous investigations®!>. With the gluten peptide side also unknown prior to our investigation, including all 32
lysine residues would have dramatically increased the search space at the cost of decreasing confident isopeptide
identification. However, our intentional limitation to these seven lysine residues also implies that we may have
missed isopeptides, if they contained any other TG2-derived lysine peptide.

The gluten peptides involved in isopeptide formation were not always matched to the corresponding pro-
teins that would be primarily expected in the respective GPT. Each isopeptide dataset was searched against the
GPT-specific database that was generated during the discovery-driven experiment with the GPT blank controls.
Nevertheless, these GPT-specific databases partly contained proteins from other closely related plant species due
to incomplete or unannotated protein entries in the UniProtKB database®. In some cases, the gluten peptides
were derived from a different Triticum species like T. timopheevii (W8) or from different Secale species including
Psathyrostachys juncea (Russian wild rye) (R1-R4, R6). One peptide present in the rye w-secalin hydrolysate
was matched to a protein sequence from H. vulgare (R5) and, vice versa, two peptides from the barley ~- and
B-hordein hydrolysates corresponded to protein sequences from T. aestivum (B2, B8). This can be explained with
the close phylogenetic relationship of wheat, rye and barley that causes extensive amino acid sequence homolo-
gies, especially in the repetitive domains?*. Several gluten peptides also contained missed peptic/tryptic/chy-
motryptic cleavages sites, as is known to occur frequently during gluten digestion®*2. To enhance the quality
of correct protein identifications, it might be useful to search in other, curated databases, which include more
complete gluten entries®.

The approach with TG2 and GPTs described here has to be seen as a two-component model system with sim-
ulated gastrointestinal digestion. The crosslinking reactions were performed using isolated fractions of wheat, rye
and barley proteins and this is rather far away from the real conditions, where gluten proteins are part of a com-
plex food matrix. The simulated digestion model is based on physiological conditions including the three gastro-
intestinal enzymes trypsin, pepsin and chymotrypsin, but without the action of other enzymes, e.g., brush-border
enzymes. This design was chosen deliberately, because the additional action of several enzymes with different
cleavage specificities would have made the MS data evaluation much more complicated and increased the pep-
tide search space by several orders of magnitude. These limitations of the current study have to be considered
carefully, because more gastrointestinal enzymes would produce more or maybe divergent peptides from a more
complex matrix.
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Figure 5. Schematic illustration of isopeptides between TG2 and barley gluten proteins. (B2), (B3) and (B5),
Isopeptides with localization probabilities >75%. (B1), (B4) and (B6)-(B10), Isopeptides with crosslinking
sites additionally confirmed by parallel reaction monitoring. The binding glutamine residues are given in bold,
the binding probabilities for the crosslinks (MaxQuant) in the grey box and the deamidation probabilities

for the glutamine residues in colours. Specific fragments used to confirm the binding sites are given in blue
(b-fragments) and pink (y-fragments).

TG2 is known for its high reactivity with gluten peptides®, especially those harboring T-cell epitopes’®.
Depending on the neighboring C-terminal amino acids, TG2 specifically deamidates glutamine residues in the
QXP-, QXXF(Y/W/M/L/1/V)- or QXPF(Y/W/M/L/1/V)-motifs (where X designates any amino acid except P)
resulting in increased binding affinity of the gluten peptides to the CD-associated HLA molecules®. In contrast,
the QXXP- or QP-motifs have been described as poor or no targets for TG2-mediated deamidation®. Thirteen
of the 29 isopeptides carried a gluten peptide with at least one additional deamidation, of which five displayed
the preferred QXP-motif (W9, R1, B2, B5, B9) and five the QXXF(Y/L/I)-motif (W3, R3, B1, B6, B8). Two gluten
peptides were deamidated at the poor QXXP- (W10) and QP-motifs (R3), while the remaining deamidation
sites were located in sequences with unknown effect on TG2-specificity. Non-enzymatic deamidation cannot be
excluded in our experiments due to the slightly alkaline pH conditions during incubation with TG2 and tryptic
digestion®®, but our intent was to focus on the identification of crosslinking sites, rather than deamidation sites.

Among the 29 isopeptides, 12 crosslinking sites to TG2 were located in the preferred QXP-motif (W1-W3,
W7, W8, W12, W13, R5, R6, B3, B5, B7) and three in the QXX(Y/I)-motif (R1, B9, B10). Five isopeptides had
the crosslink within the QP-motif (W4-W6, W10, W11) and one within the QXXP-motif (W9) that are either
no or poor targets for TG2. The other crosslinks were either not localized unambiguously (B4, B6) or involved
QXXX-motifs (R2-R4, B1, B2, B8) that may or may not have an effect on TG2 specificity. In case of W4 no pre-
ferred target was available, but these results point to the fact that TG2 might not necessarily follow the known
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specificity when it comes to crosslinking TG2 molecules to gluten peptides instead of deamidation. However, fur-
ther experiments would be necessary to study the mechanisms of crosslinking versus deamidation in more detail.

A further limitation of the current study is that it does not allow a differentiation if one TG2 molecule carries
several gluten peptides crosslinked to different lysine residues or if there are several TG2 molecules that carry
one gluten peptide each. In view of the relative distance between the active site of TG2 and the crosslinked lysine
residues, it appears most likely that TG2 crosslinked the gluten peptides to other independent neighbouring
TG2 molecules. In our well-defined model system, there were no other acyl acceptor substrates present except
for TG2. However, this situation is uncommon under physiological conditions, where other extracellular matrix
proteins such as collagen or fibronectin and free amines are always present®”-*%. To address this major limitation
of the current study, further experiments would be necessary in the presence of other proteins or free amines as
potential substrates for TG2.

Of the 26 different gluten peptides (the isopeptides W3/W7, R2/R4 and B6/B10 involve different TG2 lysine
residues, but the same gluten peptide, respectively) identified as part of isopeptides, three contained three dif-
ferent complete 9-mer core regions of known T-cell epitopes®: IQPQQPAQL (DQ2.5.glia-2%) in W3 and W7,
FRPQQPYPQ (DQ2.5-glia-a3*") in W11 (F at the N-terminal end missing due to chymotryptic cleavage) and
QQPFPQQPQ (DQ2.5-glia-~5*!) in R3. The crosslinked glutamine residue in W3, W7 and W11 was located
within the core region, whereas R3 had the crosslink after the core region, but within the truncated motif of
the epitope DQ2.5-glia-~1 (PQQSFPQQQ™) that contains a chymotryptic cleavage site. The DQ2.5-glia-a3 and
DQ2.5.glia-2 epitopes had also been identified as preferred TG2 substrates by Dorum et al.!°. Several of the
other gluten peptides crosslinked to TG2 also show striking similarities with known T-cell epitopes. For example,
B7 is identical to LQPQQPFPQ (DQ2.5-glia-~4e*) except for the C-terminal W, while also being identical to
PQPQQPFPW (DQ2.5-glia-w2*') except for the N-terminal L. W9 and B4 contain seven and eight amino acids
of QQPQQPFPQ (DQ2.5-glia-~4c*!), respectively. Multiple sequence alignment of all identified gluten peptides
that were bound to TG2 revealed that the PQQP-motif was the most common feature in many gluten peptides.
However, there were also variations such as PQQL and PQQS, while some peptides had a different sequence alto-
gether (e.g., within B9 or B1) (Fig. S1). The alignment of the gluten peptides considering the deamidation sites
essentially showed a similar picture (Fig. S2).

As the formation of stable gluten peptide-HLA complexes is the prerequisite for activating the gluten-reactive
T-cell response®® these TG2-bound gluten peptides carrying known T-cell epitopes may contribute to enhanced
T-cell reactivity. In turn, gluten-reactive T cells provide help to gluten-specific B cells with both receptor reper-
toires sharing a preference for deamidated gluten peptides with overlapping or adjacent recognition sequences*>.
Although eight of the gluten peptides we identified within the isopeptides were too short (only eight amino acids
in five cases, or seven amino acids in three cases) to elicit binding to HLA-DQ2.5, -DQ2.2 or -DQ8 molecules,
one (W1) did carry a sequence recognized by gluten-specific B-cells (IPEQ, WQIPEQ)*. Furthermore, the pep-
tides W9, R3, R6, B4 and B7 contained the QPQQPF-motif* and W11 the PXPQP-motif*, that are reported as
important sequences for B-cell receptor recognition. Regarding TG2-specific B cells, the most likely route is that
TG2-gluten peptide complexes are taken up through the B-cell receptor'?, but our knowledge on the coopera-
tion of gluten-reactive T cells and TG2-specific B cells in B-cell activation warrants further investigation''. Our
findings on isopeptide formation between TG2 and gluten peptides from a complex gluten hydrolysate may help
shed some more light into the complex interactions between HLA-DQ2/8 molecules, gluten-reactive T cells,
gluten-specific B cells and TG2-specific B cells. The workflow combining discovery-driven and PRM nLC-MS/
MS could also be adapted to other related questions, because TG2 is also known to interact not only with gluten,
but also with extracellular matrix proteins, such as fibronectin®”¢,

Conclusion

We identified 29 isopeptides of TG2 with peptides from gluten hydrolysates from wheat, rye and barley in vitro
using a reciprocal proteomics strategy. The model system does not rely on model peptides, but uses gluten pro-
teins extracted from the flours and hydrolysed by three different gastrointestinal enzymes to mimic physiological
conditions in a simplified form. In addition to discovery-driven mass spectrometry, all isopeptides were verified
by targeted proteomics (PRM) that allowed the localization of the respective crosslinking site. These results pro-
vide novel insights into preferred TG2 substrates and the molecular structures of TG2-gluten peptide complexes.
Several gluten peptides carried known B-cell and T-cell epitopes, either intact 9-mer core regions or partial
sequences, as well as sequences bearing striking similarities to already known epitopes. Further research com-
bining in vitro and in vivo experiments on the extent and the activation of B cells are needed to get more insights
on the immunological and physiological relevance of these complexes. With the proteomics strategy in place,
it would be interesting to gradually move away from the well-defined model system to studying TG2-mediated
crosslinking under physiologically relevant conditions, e.g., with additional action of brushborder enzymes and
in the presence of other acyl acceptor substrates such as other extracellular matrix proteins or free amines.

Methods

Material. All chemicals and solvents were at least HPLC or LC-MS grade. Recombinant human TG2 was
purchased from Zedira (Darmstadt, Germany) as a purified and lyophilized protein produced in sf9 insect cells.
Trypsin (from bovine pancreas, TPCK-treated, >10,000 BAEE U/mg protein), pepsin (from porcine gastric
mucosa, 10 FIP U/mg) and a-chymotrypsin (from bovine pancreas, TLCK-treated, >40 U/mg of protein) were
purchased from Sigma-Aldrich (Steinheim, Germany). The Retention Time Standardize Kit PROCAL (Proteome
Tools Calibration Standard) was from JPT (Berlin, Germany).
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Grain Samples. Grains of wheat (cultivar (cv.) Akteur, harvest year 2011, 1.G. Pflanzenzucht, Munich,
Germany), rye (cv. Visello, harvest year 2013, KWS Lochow, Bergen, Germany), and barley (cv. Marthe, harvest
year 2009, Nordsaat Saatzucht, Langenstein, Germany) were milled into white flour using a Quadrumat Junior
Mill (Brabender, Duisburg, Germany) and sieved to a particle size of 200 um. Then, the flours were allowed to rest
for 2 weeks prior to the determination of moisture and protein contents (conversion factor N x 5.7) according
to International Association for Cereal Science and Technology (ICC) Standards 110/1*” and 167, respectively.
The moisture contents were 14.59 £ 0.01% (wheat), 11.424+0.01% (rye) and 12.09 +0.06% (barley) and the crude
protein contents were 9.93 +0.14% (wheat), 5.81 £0.29% (rye) and 6.72 & 0.04% (barley).

Preparation of GPTs. The GPTs a-gliadins, ~-gliadins, w5-gliadins, w1,2-gliadins, HMW-GS and LMW-GS
of wheat, w-secalins, HMW-secalins, ~-75k-secalins and ~-40k-secalins of rye, and C-hordeins, ~-hordeins,
D-hordeins and B-hordeins of barley were isolated as reported in detail by Schalk et al.'® and Lexhaller et al."”.
Briefly, the protein fractions were isolated stepwise by modified Osborne fractionation from wheat, rye and barley
flours using salt solution (0.4 mol/l NaCl with 0.067 mol/l Na,HPO,/KH,PO,, pH 7.6) to obtain the albumins/
globulins, ethanol/water (60/40, v/v) to obtain the prolamins and glutelin extraction solution (2-propanol/water
(50/50, v/v)/0.1 mol/l Tris-HCI, pH 7.5, containing 2 mol/l (w/v) urea and 0.06 mol/l (w/v) dithiothreitol (DTT))
at 60 °C under nitrogen to obtain the glutelins. The supernatants of each prolamin and glutelin fraction were
combined, concentrated, lyophilized and re-dissolved for preparative RP-HPLC. After filtration of the prolamin
and glutelin solutions (0.45 pm), the GPTs were separated on a Jasco HPLC (Jasco, Gross-Umstadt, Germany)
according to their retention times, collected from several runs, pooled, lyophilized and stored at —20°C until use.
Then, the GPTs were characterized by RP-HPLC, SDS-PAGE and discovery-driven mass spectrometry to verify
their identities and purities as already reported in detail'”8.

Enzymatic digestion of GPTs. Each GPT was suspended in 0.02 mol/l HCI (pH 2) and hydrolyzed with
pepsin at an enzyme:substrate ratio of 1:20 (w/w) for 60 min at 37 °C. After adjusting the pH to 6.5 with sodium
phosphate buffer (50 mmol/l), trypsin and chymotrypsin were added at an enzyme:substrate ratio of 1:40 (w/w),
respectively and hydrolyzed for 120 min at 37 °C'®'°. The samples were heated for 10 min at 95 °C to stop prote-
olysis, centrifuged and filtered. For the following crosslinking reaction with TG2, the samples were dried using a
vacuum centrifuge (37°C, 4 h, 800 Pa), reconstituted in TRIS/HCl buffer (0.1 mol/l, pH 7.4, 10 mmol/l CaCl,) and
the resulting peptide concentrations were estimated with a NanoDrop Micro-UV/VIS spectrophotometer and the
protein A205 application (NanoDrop One, Thermo Scientific, Madison, USA) at 205 nm, which can be used to
determine peptide concentrations based on the absorption of the peptide bonds.

Crosslinking reaction of TG2 and GPT hydrolysates. The reaction of TG2 (0.16 nmol/l) with each GPT
hydrolysate was performed in TRIS/HCI buffer (0.1 mol/l, pH 7.4, 10 mmol/l CaCl,) at a molar ratio of TG2:GPT
hydrolysate of 1:150 at 37 °C for 120 min."® To inactivate TG2, all samples were heated at 95°C for 10 min. The
negative controls were prepared by adding the GPT hydrolysates after inactivation of TG2. Additional GPT blank
controls contained only GPT in TRIS/HCI buffer and were treated as described above just without TG2. The
samples and the negative controls were prepared in triplicates; the GPT blank controls were also prepared in
triplicates, but pooled prior to tryptic hydrolysis.

Tryptic digestion and isopeptide clean-up. Enzymatic hydrolysis and peptide purification were car-
ried out as described in detail by Lexhaller ef al.’®. Briefly, all samples, negative controls and GPT blank controls
were hydrolyzed with trypsin at an enzyme:substrate ratio of 1:100 (w/w) at 37°C for 24 h and the digestion
was stopped with formic acid (FA, pH <2). Purification was done by solid phase extraction (SPE) using 50 mg
Sep-Pak tC,4 cc cartridges (Waters, Eschborn, Germany). After activation with methanol (1 ml), equilibration
with acetonitrile/water/FA (80:20:0.1; 1 ml), and washing with acetonitrile/water/FA (2:98:0.1; 5 x 1 ml), the car-
tridges were loaded with the samples and washed again. The isopeptides and peptides were eluted with acetoni-
trile/water/FA (40:60:0.1; 2 x0.5ml), dried and reconstituted in FA (0.1%, v/v). Prior to nLC-MS/MS analysis,
the peptide concentrations of the reconstituted samples were estimated again with the NanoDrop Micro-UV/VIS
spectrophotometer at 205 nm. All samples were spiked with the PROCAL Mix (33 fmol/pl) and diluted in 96 well
plates to a concentration of 200 ng/pl with acetonitrile/water/FA (2:98:0.1).

Discovery-driven mass spectrometry. nLC-MS/MS analysis was performed on an Ultimate 3000
nanoHLPC system (Dionex, Idstein, Germany) coupled to a Q Exactive HF mass spectrometer (Thermo Fisher
Scientific, Dreieich, Germany). The nanoscale LC system consisted of a trap column (75pum x 2 cm, self-packed
with Reprosil-Pur, C,4, ODS-3, 5 um resin, Dr. Maisch, Ammerbuch, Germany) and an analytical column (75 pm
% 40 cm, self-packed with Reprosil-Gold, C,g, 3 um resin, Dr. Maisch). The injection volume was 2 pL (estimated
peptide concentration: 0.16 ug/uL). The peptides were delivered to the trap column using solvent A0 (0.1% FA in
water) at a flow rate of 5uL/min and separated on the analytical column using a 60 min linear gradient from 4% to
32% solvent B at a flow rate of 300 nL/min (solvent A1, 5% DMSO, 0.1% FA in water; solvent B, 5% DMSO, 0.1%
FA in acetonitrile)*. The MS was operated in data-dependent acquisition mode, automatically switching between
MS1 and MS2 spectra to acquire full scans. The mass-to-charge (m/z) range for the acquisition of MS1 spectra
was 360-1,300 mm/z at an Orbitrap full MS scan (resolution: 60,000, automatic gain control (AGC) target value:
3e6, maximum injection time: 50 ms). In the MS2, the Top18 peptide precursors were automatically selected for
fragmentation by higher energy collision-induced dissociation (isolation width: 1.7 Th, maximum injection time:
25ms, AGC value: 1e5). Analysis was performed using 25% normalized collision energy at a resolution of 15,000.

Preparation of GPT databases. Each GPT blank control was searched individually against a protein data-
base containing all gliadin entries (January 2019; 5,958 entries), glutenin entries (January 2019; 4,488 entries),
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secalin entries (January 2019; 219 entries) and hordein entries (January 2019; 158 entries) of the UniProtKB
database using MQ (software version 1.6.0.1)?°. The parameters were set as follows: digestion mode: specific,
enzyme: trypsin, pepsin, chymotrypsin, maximum missed cleavage sites: 2, variable modifications: deamidation
(NQ), oxidation (M), main search peptide tolerance: 4.5 ppm, mass tolerance for fragment ions: 0.5 Da. All other
parameters were used as default settings. All identified proteins in the proteinGroups.txt file were used to create
an appropriate database for each GPT.

Identification of TG2-gluten isopeptides. The Thermo Xcalibur full scan.raw files of each GPT (three
samples and three negative controls) were directly used as input in MQ? and searched against the appropriate
GPT database. Seven peptides containing lysine residues (K205, K265, K429, K468, K590, K600, K677) from
the TG2 sequence were selected as possible crosslinking sites in the isopeptides. The elemental compositions of
these tryptic TG2 peptides were calculated in silico to configure the TG2-sides of the isopeptides as modifications
in MQ. A formal subtraction of NH; was necessary to use these peptides as modifications (TG2-modifications)
in an isopeptide bond'®. The parameters were set as follows for the individual search runs: digestion mode:
specific, enzyme: trypsin, pepsin, chymotrypsin, maximum missed cleavage sites: 2, variable modifica-
tions: each TG2-modification in one single search run, deamidation (NQ), TG2-modifications: FLKNAGR,
Cy6Hs,N ;05 WKNHGCQR, Cy3HeoN Oy, S, ISTKSVGR, CysHesN,,0,, LAEKEETGMAMR, CssHosN;:040S,
DLYLENPEIKIR, C¢H, 3N ;40,;, QKR, C;;H;,N,0;, AVKGFR, C;,H,4N,O,, max. number of modifications per
peptide: 5, fasta files: appropriate GPT and TG2 (UniProtKB accession no. P21980) fasta files, minimum score for
modified peptides: 40. All other parameters were used as default settings.

Annotation of MS/MS fragments of the isopeptides. To confirm the identification and the respective
crosslinking sites of the isopeptides, the b- and y-fragments of both sides were calculated with the MS-Product
feature of the ProteinProspector webpage (v.5.22.1, University of California, San Francisco, CA, USA)?!. The
sequences of gluten peptides and the TG2-modifications were entered and the binding Q or K were replaced
by “u” for the user-specified amino acid elemental composition of the other isopeptide site, respectively.
ProteinProspector parameters were then set to calculate b-, y- and internal fragments and associated fragments
due to water- and ammonia-loss. The charge states were calculated up to 5+ for the precursors and up to 3+ for

the fragments.

Isopeptide confirmation and creation of PRM methods.  Skyline-daily (version 19.0.9.149)?2 was used
to confirm the identities of all detected isopeptides, to compare negative controls and samples and to create isola-
tion lists for the PRM methods. To confirm the identified isopeptides and reject false positives, the sequences of
the GPT-peptides were loaded into Skyline as the targets and modified with the appropriate TG2-modifications,
a deamidation (—17 Da) or both, according to the MQ output. To identify the isopeptides from both sides, the
reverse isopeptide sequence, i.e., the sequence of the TG2 peptide, was also loaded into Skyline and modified with
the previously identified GPT peptide via a crosslink. Then, Skyline generated the appropriate precursors of all
sequences. Every isopeptide was manually checked to fulfill the following parameters: (a) the retention time had
to match with the identified retention time of the MQ search (ID), (b) comparison of retention time and isotopic
dot product scores (idotp: generated from comparing the expected precursor isotopic distribution to the observed
distribution; scored from 0-1 with 1 being the highest) among the triplicates using the graphical tools?, (c)
reproducible detection of the isopeptide in the three replicates and absence in the negative controls; false positive
matches in the negative controls were rejected, (d) the idotp had to be >0.9, (e) the threshold for unambiguous
localization was set to a localization probability of >75% (MQ search). MS/MS libraries were built to generate the
isolation lists for the isopeptides of each GPT. Therefore, the MQ output tables “msms.txt” of the searches of every
modification were imported into Skyline. All identified isopeptides of one GPT and their reversed isopeptides
with the appropriate GPT-modifications were summarized in one PRM method. This method was exported as
an isolation list for use in the nLC-MS/MS system. A single isolation list and a single PRM method were created
for each GPT.

Targeted mass spectrometry. All PRM measurements were carried out using the exact same instrument
and LC conditions as for the discovery-driven setup (see above). The MS was operated in unscheduled PRM
mode with the following settings: MS1 resolution: 60,000, MS1 automatic gain control (AGC) target value: 3e6,
MS1 maximum injection time: 100 ms, MS1 scan range 360-1300 m/z, quadrupole isolation window width: 1.7
Th, MS2 maximum injection time: 22 ms, MS2 AGC value: 1e6. High-energy collision-induced dissociation was
performed using a normalized collision energy of 27.

PRM data analysis. The Xcalibur.raw files of the PRM data were imported into Skyline separately for each
GPT. The transitions of each target were checked manually and in comparison to the negative controls. To con-
firm the identified isopeptides and reject false positives, the following parameters were checked: (a) the retention
time in the PRM data had to match with the identified retention time of the MQ search (ID) and the full scan
data, (b) the comparison of retention time and idotp of the precursors among the triplicates had to fit using the
graphical tools and no detection of the signals in the negative controls had to be observed, (c) according to Chen
et al.?®, at least seven identified b- or y-fragments had to match theoretical peptide fragments, (d) at least three
fragments had to be consecutive in the peptide sequence. Every identified isopeptide was double-checked with
the MQ search result in the MQ Viewer.

Multiple sequence alignment of gluten peptides. All gluten peptides identified as part of the isopep-
tides were compiled into a peptide fasta file, either without or with deamidation at the sites we had detected. The
multiple sequence alignment was done using MAFFT online version 7.452 on January 16, 2020 (Computational
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Biology Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan) using
the default settings and the L-INS-I algorithm®°.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://
proteomecentral.proteomexchange.org) with the dataset identifier PXD017693 and are publicly available on
Panorama Public (https://panoramaweb.org/8QUQ5F.url).
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