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Abstract

A Flow Classification System (FCS) is a process and mechanism that assigns a
class to a network connection (flow). In QoS-aware networks, QoS-aware applications
can identify and assign service classes to their flows. The flows are then treated
by the networks according to their classes. However, most of the existing network
applications are QoS-unaware applications, prompting a need for an enhanced FCS
that can automatically identify the service classes of the flows.

This dissertation describes a new FCS, called Supervised Machine learning Assisted
Real-Time (SMART) Flow Classification System, designed to classify QoS-unaware
flows in real-time. It uses a novel concept of flow prefix, which refers to a certain
number of flow packets. We empirically show that the characteristics of a flow can
be estimated by observing only up to a specific prefix. Evaluations on benchmark
datasets have shown that observing only 11 packets is sufficient to achieve more than
90% classification accuracy.

SMART uses a machine learning algorithm to automatically identify relationships
between the characteristics and the classes of the flows from QoS-aware applications.
The learned relationships are then used to identify the QoS-unaware flows. We have
evaluated our SMART FCS over a variety of real-world data, including flow samples
collected from individual users and a large dataset collected from an edge router of an
organizational network. The results show that our approach achieves average correct-
ness of 98.82% and 99.66% in individual-users and large-network benchmark datasets,
respectively.
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Typographical Conventions

The following table explains the typographical conventions used in this thesis.

Table 1: Typographical Conventions
Formatting Convention Type of Information Example
“Quoted” Introduction of a term. “Classifier”
Italics Used to emphasizing the A learner can be

importance of a point or trained to learn.
to indicate a mathematical
notation. prefix (f, 3) = (p1, p2, p3)

Monospaced Elements in UML diagrams, If a AND b THEN x
program codes, computer
input or output, such as FCS Component
protocol signatures and
classification rules.
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Chapter 1

Introduction

Mobile devices, such as smartphones or Personal Digital Assistants (PDAs), are get-
ting smaller and faster everyday. They are not meant to just make phone calls, create
short notes or facilitate simple organizing; common applications now include sending
emails, playing videos, watching television, attending videoconferences, playing online
games and processing other tasks that would only be possible on a desktop computer
just a few years ago. This is due to the emerging computing and wireless networking
technologies as well as the growing demand of the users who want to have more con-
nectivity, usability and entertainment, while at the same time also need to maintain
their mobility. Current network services have also evolved from just sending emails or
web browsing into real-time offerings such as videoconference or broadcasting, which
consequently demand much higher network performance than traditional applications.
In response, mobile networks are also getting faster, as we are now moving from typical
Global System for Mobile communications (GSM) and General Packet Radio Service
(GPRS) to Universal Mobile Telecommunications System (UMTS), High-Speed Packet
Access (HSPA), Worldwide Interoperability for Microwave Access (WiMAX) and Long
Term Evolution (LTE). These new technologies offer better network performances such
as higher data rate or lower delay.

While it could be argued that applications demand can always be met by constantly
increasing network capacity, especially in wireless links, simply increasing network per-
formance might not be possible due to physical limitations. This issue also holds in
the case of wired networks, especially in home-network where members of a house-
hold share the same Internet connection. To this end, resource management schemes,
such as quality-of-service (QoS) management, are required. Informally, QoS can be
described as a measurement on how the user experiences the services [Räi03].

Recent network standards, such as Internet Protocol version 6 (IPv6), 802.11e
Wireless LAN, WiMAX, UMTS and LTE incorporate QoS management schemes into
their specifications. The implemented schemes are based on “Differentiated Services
(DiffServ)” architecture, under which an application in a network node can specify
an appropriate service class to its network connection or “flow”. The packets within
the flows are then marked with a “service class” indicating the flow’s type of service so
that the network can treat each of them appropriately. This way, packets requiring, for
instance, lower transfer delay or higher throughput will be served first, whereas those

1
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that can sustain higher delay or less speed will be put on hold or even discarded. The
downside of the DiffServ approach is that explicit network capacities or resources are
not guaranteed to the flows. Another QoS management approach, “Integrated Services
(IntServ)”, is designed to specifically address this issue by allowing applications to
reserve network resources along the communication route. This is done through a
resource reservation protocol. However, due to its scalability problem, it is not widely-
implemented [Räi03]. Therefore, this research is restricted to the DiffServ approach.

Regardless of which QoS management scheme is employed, effective QoS manage-
ment within a network requires certain applications to specify the QoS requirement
to their flows. We call such applications “QoS-aware applications”. In contrast, the
commonly used applications at present are designed based on the best-effort scheme.
These so-called “QoS-unaware applications” are not aware of the concept of QoS and
do not specify any classes to their flows — hence they cannot receive the QoS-support
provided by the network. Therefore, a mechanism that can correctly assign the service
classes to the flows is essential. The class assignment process is called “flow classifica-
tion” and the mechanism that carries out the classification is called a “flow classification
system (FCS)”. The classification process has to be carried in a very short period of
time so that the flows can promptly benefit from the QoS support. Because new,
unseen applications or services can be dynamically introduced to the network at any-
time, the flow classification system must be able to handle them as well. The flow
classification task can be formalized as follows.

Flow Classification Task Given a flow, the flow classification system has to assign
to the flow a service class that matches the requirements of the flow.

Requirements

• Accuracy: The flow classification system must classify flows with high accuracy.

• Robustness: The classifier must be able to handle new or unknown applications.

• Generality: It also must be able to handle any kind of Internet applications.

• Real-time: Given certain classification accuracy, the classification time is bound
by an upper limit.

1.1 Challenges

In the process of developing a practical technique to classify flows in real-time, several
challenges and constraints have to be overcome.

1.1.1 Dynamic Nature of Internet Applications

Until recently, the Internet has been restricted to a small number of services such as
Email, FTP, Telnet, Gopher, etc. These services are bound to specific transport pro-
tocol ports and connections of a service would be established only through designated
ports. Moreover, the protocols are open and standardized. Through standardized port
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assignments and protocol syntaxes, identifying the flows’ services (and, in turn, their
classes) is relatively easy. Along with the emergence of the World-Wide-Web (WWW)
in the past decade, however, came new services, such as videoconferences, peer-to-peer
file sharing (P2P) and online games. Most of these services are no longer using stan-
dardized transport protocol ports. Some use dynamic port assignments, while others,
especially P2P applications, avoid using specific port numbers because they are usually
used to transfer illegal media contents such as music or movie files. Using transport
ports is therefore not effective in flow classification. To make the matters worse, the
protocol syntax is in many cases proprietary and closed while packets could also be en-
crypted. Distinguishing flows based on protocol syntax or specific payload contents is
also not feasible. Even though the flow classification system could be pre-programmed
to handle non-standardized protocols, it might not be able to handle applications using
unknown protocols or even updated versions of existing protocols.

1.1.2 Generality

Recent network services, such as videoconference and online games, implement the
UDP protocol to minimize delays. Thus, at the network level, the flow classification
system has to be general enough to handle not only TCP but also UDP protocol.
At the application level, the system must be able to handle as many applications as
possible.

1.1.3 Classifying Flows in Real-Time

To provide appropriate and timely service quality to flows, the classification has to be
done in a bounded period of time — ideally immediately after the flow is seen. This
task is not always straightforward as the flow information at the classification time
may be limited.

1.1.4 Lack of General Flow Classification Model

Flow classification has played an important role in many network activities. A lot
of research has been carried out for the past several years targeting different aspects
including quality-of-service support, security, management and provisioning. As a re-
sult, different systems have been developed without a common underlying model that
can explain the common components and processes, making analyzing, comparing and
understanding the relationships among different approaches rather difficult [SOMS08].
As a matter of fact, without a unambiguous model that precisely describes the flow
classification task, understanding the task itself could prove to be a formidable chal-
lenge.

1.2 Real-Time Adaptive Flow Classification System

In this section, an overview of the a new flow classification system, called “Super-
vised Machine learning Assisted Real-Time Flow Classification System (SMART)”, is
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provided. We will also briefly discuss how our approach fulfills the requirements and
overcomes the aforementioned challenges.

A flow classification process, in general, consists of three main processes — flow
observation, feature extraction and classification. In the flow observation process, the
QoS-unaware flow to be classified is observed. Essentially, a flow is a sequence of
packets that belong to the same connection and the observation is carried out by a
packet capturing sensor that resides in a network device.

In the feature extraction process, the observed flow is transformed into abstract
representations called “features”, which, in principle, are the characteristics of the flow
that we are interested in. Examples of features include transport protocol, average
throughput, packet counts and statistics of packet inter-arrival time (IAT). Each fea-
ture is computed by a designated “feature function”. Multiple features of a single flow
are usually presented together as a vector called “feature vector”. The feature calcula-
tions and the feature vector construction is managed by the “feature extractor” or, in
short, the “extractor”. The set of features used by the system plays a very important
role in the flow classification. If the features are discriminative, the flows belong to
different classes would be easier to be distinguished from each other.

In this thesis, a set of features, which can be effectively used to distinguish flows
is identified. The proposed set of features can be used on both TCP and UDP flows
as required in our setting. We also investigate the discriminability of those features
and single out the features that are the most useful to the classification using “feature
selection” methods. Moreover, a study of the relationships between features and flow
observation duration is provided. By incrementally scrutinizing the characteristics of
the flows over observed “prefixes” (which refer to the number of observed packets),
we identify the minimal number of packets required to be observed in order to obtain
the preferred accuracy. The results of the analysis lead to an effective and accurate
real-time flow classification system.

After a flow is abstracted into a feature vector, it will be classified by the “classifier”,
which in general is a set of rules that analyzes the values in the feature vector and
assigns the class accordingly. In this dissertation, a set of five classes are defined. In
contrast to previous works, the proposed classes are intended especially to assist QoS
support and capture different service quality requirements. Figure 1.1 illustrates the
classification process.

Flow Classification Process

Packet sensor
captures a flow Flow The extractor employs feature

functions to compute features

feature vector
Classifier assigns a class to
the flow according to the

values in the feature vector

Figure 1.1: Activity diagram of a flow classification process.



1.2. REAL-TIME ADAPTIVE FLOW CLASSIFICATION SYSTEM 5

Some FCSs in the literature are equipped with static classifiers, which cannot be
automatically updated. These might not be able to effectively handle flows of unseen
applications as the classifiers do not recognize them. The problem can be circumvented
by issuing patches to update the classifier regularly (analogous to updating an anti-
virus software) or by asking the user for classification assistance. Such approaches are,
however, not practical. In response, our proposed FCS is equipped with a learner that
is able to learn the relationship between the flow characteristics and their classes, as
well as update their classifiers correspondingly. This way, the classifier has the ability
to handle unseen flows without human-intervention — consequently making our FCS
adaptive, robust and immune to the dynamic nature of the Internet.

In the learning process, the flows of QoS-aware applications are captured and ex-
tracted into feature vectors along with their service classes issued by the applications.
The set of pairs of feature vectors and classes is then stored in a “dataset”. Finally, the
learner analyzes the relationships between the features and the classes in the dataset
and induces a classifier accordingly. Figure 1.2 shows an activity diagram of the learn-
ing process. The quality of the induced classifier depends on the employed set of
features and the learner. Therefore, in this thesis, in-depth evaluations of various
machine learning techniques are carried out to determine which method is the most
suitable for the flow classification task.

Learning Process

Packet sensor captures a flow
and its class

Add the pair of flow and
its class to a dataset

Flow

Feed dataset to learnerDatasetLearner analyzes the dataset
and induces a classifier

Classifier

The extractor employs feature
functions to compute features

Class

Learning initiation
signal

[no learning initiation signal]

[learning is initiated]

Figure 1.2: Activity diagram of a learning process.

As mentioned earlier, flow classification systems in the past several years have
been developed and evaluated separately without a general model that can be used
to identify, categorize and compare them. It is therefore difficult for a newcomer
to understand the principle of flow classification and to find a suitable method for
her domain. This thesis, in turn, provides a uniform model, which describes the
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flow classification components and processes on an abstract level as well as allows
us to classify existing flow classification approaches and compare them in a unified
framework.

1.3 Contributions

This research introduces SMART, which is a novel flow classification system aimed
to provide QoS support to QoS-unaware applications. Based on a new concept of
flow prefix, our approach is able to identify the class of the given flow in real-time.
The proposed method is accurate, adaptive, self-updatable and generic. Our work
contributes to the existing network literature in a number of ways:

• We develop a unified mathematical model, which precisely describes the flow clas-
sification components and processes on an abstract level. This new model pro-
vides a fundamental framework in which different flow classification approaches
can — for the first time — be distinctively described, compared and categorized.

• We propose a set of service classes intended for QoS requirements.

• The novel concept of flow prefix, which refers to a certain number of flow packets,
is introduced.

• We empirically show in this thesis that the characteristics of a flow can be es-
timated by observing only up to a specific prefix as well as identify the optimal
number of packets that should be observed.

• We present a set of features aimed to capture flow characteristics and also utilize
feature selection techniques to identify the features that are most discriminative
and useful to the classification. Moreover, the feature functions employed in this
thesis are precisely and clearly defined. This will ensure the correct interpreta-
tions of the functions, which allows our research and experiments to be replicated.
Comprehensive evaluations are conducted on real-world data collected from in-
dividual users and a large, diverse network. The results indicate that our set of
features is discriminative and generic. Furthermore, we incrementally investigate
the relationship between the features and prefixes and show that the character-
istics of the flows can be captured using only partial flows. To the best of our
knowledge, no such study has been conducted before.

• We review and evaluate flow features as well as several machine learning algo-
rithms in order to identify the most suitable learner for flow classification. Unlike
most of the studies in the literature, our research is focused on supervised learn-
ers that give human-comprehensible classification models as outputs. Not only
can such models be used in the flow classification process but they can also be
employed by experts to analyze the flow behaviors as well as the relationships
between the flow characteristics and classes.
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• An analytical framework is developed in this thesis as an experimental platform.
Moreover, to ensure data integrity, a sophisticated signature-based flow classi-
fication system is introduced. We also identify a large number of signatures of
various application protocols to be incorporated with the implemented FCS.

We believe that the research presented in this thesis will add value to many different
areas in computer science. Researchers in the networking area can benefit directly from
our novel real-time flow classification technique. Additionally, our solid mathematical
classification model as well as extensive analysis on machine learning algorithms in a
real-world scenario can also be useful to knowledge representation, machine learning
and software engineering communities.

1.4 Thesis Structure

We begin with an introduction to computer networks and quality-of-service manage-
ment in Chapter 2. Then, we will move on to a discussion on flow classification system
and how to incorporate it with QoS-support. Existing flow classification systems im-
plemented in many areas are also reviewed. In Chapter 3, a new unified mathematical
model describing flow classification process and components is discussed. This model
will be used to describe all processes and components throughout this dissertation.
Apart from mathematical model, the implementation, deployment and system de-
composition of SMART are also described using Unified Modeling Language (UML).
Chapter 4 provides an overview of machine learning and a survey on current learning
techniques. We will also discuss how to evaluate a learner as well as to define the
performance measurement of a learning algorithm. Chapter 5 describes SMART, our
new adaptive flow classification system. SMART employs machine learning algorithm,
which allow it to update its classifier without human-intervention. It also uses a novel
feature, throughput difference, which is intended to capture the burstiness of flows.
How the learning algorithm and the feature be integrated into the FCS will be de-
scribed in the chapter. In Chapter 6, a new concept of prefix is presented. Also, a
study on the relationship between features and prefixes as well as a discussion about a
novel real-time classification technique that requires only the smallest number of pre-
fix are provided. Here, SMART employs another novel feature, packet-size difference,
which can be used to capture the differences of packet sizes within a flow in real-time.
We will also present the results of critical evaluations of the proposed technique and
identify the most discriminative features using a feature selection method. Finally,
Chapter 7 concludes the thesis with a discussion of our results and contributions, as
well as directions for future research.
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Chapter 2

Preliminaries

This chapter provides fundamental knowledge on network architecture, quality-of-
service, basic principles and surveys on flow classification. The chapter is organized as
follows. Introductions to computer networks and quality-of-service are provided in Sec-
tion 2.1 and 2.3, respectively. Section 2.4 discusses how QoS-support can be provided
to QoS-unaware flows. Finally, background and state-of-the-art on flow classification
systems are described in Section 2.5.

2.1 Introduction to Computer Networks

In the wake of the 20th century, we have seen revolutions in computers and commu-
nication technologies. Computers are getting much smaller and more mobile. Recent
communication technologies allow several computers to exchange data and, together,
accomplish given tasks even though they are far apart. A system in which a collection
of computers are connected together in the way that they can exchange information is
called a “computer network” or simply a “network”. We usually call a network by the
protocols that are employed by that network. For example, we call a network whereby
the computers are interconnected by the Internet Protocol (IP) an IP-network.

In this thesis, the term “computer” covers not only ordinary desktop or notebook
computers but also mobile devices such as personal digital assistant (PDA) and smart-
phones. Since there are many kinds of devices that can be connected to a network, we
will refer to them simply as “network devices”, or more broadly as “host”.

The hosts are physically linked together by “physical media”. These media could
be copper wire, optical fibers, radio signals, etc. In each computer, there exists a set of
software that performs the tasks given by the user. These are called “applications”. In
a sense, an application is software that interacts with a user, receiving the tasks from a
user, executing them and providing feedback. Applications can also communicate with
other applications residing in other computers in the same network. Furthermore, in a
single network device, there could be more than one application dedicated to different
tasks.

As an example, consider a user, Alice, who wishes to establish a videoconference
with another user Bob. Alice has a smartphone that has a camera as well as a piece of
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software that can perform videoconferences. Indeed, Bob has to have a device, say a
desktop computer, that possesses the same functionality. Here, Alice and Bob are the
users. Alice’s smartphone and Bob’s computer are the hosts. Their videoconference
clients are the applications. We will see now how the devices are connected together.

Classical communication technologies such as the telephone are based on analog
signals. In an analog telephone network, for example, actual voice signal is transmitted
as electrical voltage. The telephone network is operated on a so-called “circuit switch-
ing” scheme. When two network devices in this network want to connect to each other,
a physical connection is established for both nodes. Here, the network devices could be
telephones or modems. The connection media are the telephone lines. Although this
methodology might guarantee that there would be no traffic congestion between the
two nodes, it might not be efficient. It would be extremely expensive to have enough
connection reservations for all pairs of network nodes. Furthermore, analog signals are
also prone to error. Digital technology eliminates these issues [Tan03][LGW04].

Encoding analog data into series of 0s and 1s makes the data easier to recognize
and thus more accurate. As the data can be encoded into streams of bits, they can be
further cut into small chunks called “packets”. Data packets enable another networking
scheme, which is easier and cheaper to maintain, called “packet switching”. Instead
of establishing dedicated connection between the two hosts, packet switching network
transfers data between the hosts through arbitrary paths. Each packet might travel
through different paths. At the destination, all the packets are assembled to reconstruct
the original data.

The entire communication process is governed by a set of rules. These rules —
the “protocols” — define how two or more network devices communicate with each
other. For instance, they define how the data are divided into packets and how the
packets are delivered through the network. Generally, protocols are designed to work
with each other in a stack-like manner. Each protocol operates only on its own level
or “layer” and relies on the functionality of the protocol in the layer below it. This
kind of network model is called a “layered” model. As an example, consider the afore-
mentioned scenario where Alice wants to perform a videoconference with Bob. The
videoconference applications used by both users must have adhere to the same proto-
col, e.g., H.323 protocol [H.306], to define how to establish a videoconference session.
The H.323 protocol relies on the UDP protocol to divide the video data into packets
and to relay those packets between the two hosts.1 The UDP protocol in turn relies on
the IP protocol to route the packets to the designated host. Finally, the IP protocol
also relies on WiMAX protocol [80204] to deliver the data through the physical links.

It is important to note that the number of layers, functionality and the protocols in
each layer may differ from network to network. In the following section, we will discuss
a network architecture called the “Transmission Control Protocol / Internet Protocol
architecture” or “TCP/IP architecture”. It is the core architecture of the Internet and
the architecture on which our research is based.

1A videoconference protocol might rely also on other protocols, such as Real-time Transport Pro-
tocol (RTP) [SCFJ03] or Real Time Streaming Protocol (RTSP)[SRL98] to control the video packets.
However, for the sake of simplicity, we do not consider them here.
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2.2 TCP/IP Architecture

The TCP/IP architecture is a network architecture consisting of two major protocols,
TCP and IP. Although the name may suggest otherwise, the TCP/IP architecture has
more than these two protocols. In this section, we will discuss how different protocols,
which are designed for different tasks, work together and how they are incorporated
to form a network architecture.

2.2.1 TCP/IP Reference Model

The “TCP/IP Reference Model” or, in short, the “TCP/IP model” is a layered abstract
model for network protocol design introduced by the Internet Engineering Task Force
(IETF) [Bra89]. It does not describe some particular protocols, but rather the com-
munication functions, which should be performed by the protocols. It consists of four
layers, arranged from top to bottom: Application, Transport, Internet and Network
Access layer (see Figure 2.1). The upper layers are closer to the user. The lower layers
are responsible for transmitting the data from the upper layers through the physical
media. The following sections explain the operations of the TCP/IP layers from the
top layer to the bottom one.

2.2.2 Application Layer

All application-oriented protocols, including the H.323 protocol, the Hypertext Trans-
fer Protocol (HTTP) [BLFF, FGM+], the File Transfer Protocol (FTP) [PR85], etc.,
belong to this layer and we call them “application protocols”. These protocols do not
handle any data transportation or routing. They focus only on how to represent, re-
construct and interpret the data. Note that the protocols are not applications. They
are actually sets of rules that applications in different hosts use to communicate with
each other. Each protocol is designed to convey a certain task. For instance, H.323
is designed to deliver a videoconference session while HTTP is designed to transmit
hypertext pages (e.g., web pages). There can be more than one application using the
same protocol and there can be more than one protocol designed for the same task. For
example, videoconference clients could be different, yet they can still be used together
as long as they use the same video protocol (i.e., H.323).

2.2.3 Transport Layer (TCP Layer)

When the data are sent from the application layer to the transport layer, they are
divided into packets with the “protocol header” added to each of them. The header
contains protocol information, such as the transport port, header length, or packet
checksum, which is required by the protocol to control the packet delivery. The most
important thing in the transport protocol header is the “transport ports” or simply the
“ports”.

When applications on two hosts want to communicate with each other, one of them
has to open a communication channel and wait for the incoming data. This channel
is called a transportation port. When an application is waiting for incoming data, it
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Network Connections View

Host A Host BRouter Router

TCP/IP Model

Application

Transport

Network

Network Access

Application

Transport

Network

Network Access

Network Network

Network Access Network Access

Figure 2.1: TCP/IP reference model. The upper diagram shows the network connection view
of a communication path between two hosts. The lower diagram shows the same connection
path in TCP/IP model. As shown in the figure, IP routers operate only up to network layer.
They check the IP header of the IP packets to decide which would be the next gateway or
router to use. Each gateway or router along the communication path is sometimes referred to
as “hop”.



2.2. TCP/IP ARCHITECTURE 13

flow f  : srcPort = 45678, dstPort = 123451

flow f  : srcPort = 12345, dstPort = 456782

Figure 2.2: Alice and Bob are communicating through ports 12345 and 45678.

is said to “listen” to the port. Strictly speaking, a port is an internal address that
identifies which application should receive the data packet that is sent to the host.
A port cannot be used by more than one application at the same time. To this end,
the packets can be sent to an application without specifying the application name
explicitly. They can simply be sent to the port and the data will be directed to the
application listening to it. Still, the sender has to be assigned to a port as well, so
that to the receiver side can identify which application is the one sending the packet.
If the receiver wishes to communicate back to the sender, it can send the packet back
to the port that the sender is assigned to. That is, in each packet, there are two port
numbers. One is the port of the application that sends the packet and the other is
the port specifying the application that should receive the packet. We call the sending
port the “source port” and the receiving port the “destination port”.

Going back to our example, when Alice’s videoconference client, called Video-A,
wants to send video data to Bob’s client, called Video-B, Video-A simply sends the
data to the port that Video-B is waiting, say port 12345. Video-A, in turn, has to
send the data through a port as well (say, port 45678). When Video-B wants to send
the data back to Video-A, it can send the data back to port 45678. Here, the source
and destination ports of the packets that are sent by Video-A to Video-B are 45678
and 12345, respectively. When the packets are sent back in the opposite direction,
however, port 45678 would be the destination and port 12345 would be the source
port. (See Figure 2.2.)

Furthermore, encapsulating the data with the header also provides abstraction of
protocols and services. If an application sends the data to the TCP layer, for example,
the TCP protocol attaches its header to the data and sends it further to the IP layer.
The IP protocol has to be concerned only that it is a packet of TCP protocol regardless
of which application generates the data. Figure 2.3 illustrates how the protocol header
is added to the data.

There are two major transport protocols that are typically used: the Transmission
Control Protocol (TCP) [Pos81b] and the User Datagram Protocol (UDP) [Pos80].
TCP is designed to guarantee both data correctness and completeness. If the data
are not transferred correctly or some packets are missing along the path, they will be
retransmitted. TCP detects the incorrect and missing data by the confirmations from
the receiver. For every packet that is correctly received, the receiver has to send an
acknowledgement back to the sender. TCP also provides congestion control such that
the packet sending rate is adjusted with respect to the current network capability and
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Data
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DataTCP HeaderIP Header
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Figure 2.3: Packet encapsulation. TCP/IP architecture encapsulates the data from the
upper layer by attaching a “header” of the current-layer protocol into the data.

congestion.
On the other hand, UDP is a simpler transport protocol that guarantees only data

correctness but not completeness. It ensures that the data are transferred without
error but it does not guarantee that every data packet is transferred. This allows
UDP to transmit the data faster than TCP because there would be no overhead in
data retransmission in case of packet loss or error. Thus, services that use UDP are
normally the ones that are sensible to transmission delay but tolerable to erroneous
and missing data [Tan03, page 43].

It is important to note that, in a single host, different applications could use dif-
ferent transport protocols. (Some applications can also use more than one protocol.)
Each transport protocol has its own port numbering. That is, port 12345 of the TCP
protocol is not the same as port 12345 of the UDP protocol.

2.2.4 Network Layer (IP Layer)

While the data correctness and completeness are taken care of by the transport pro-
tocols, the protocols in the network layer are responsible for the data delivery. The
dominant packet delivery protocol over the Internet is the Internet Protocol (IP). Cur-
rently, the Internet Protocol that is generally in use is IP version 4 or IPv4 [Pos81a].

Once the data from the transport layer is sent to IP layer, the IP header is added
to it similar to the transport layer. The most important information in the IP header
are the “IP addresses”. Like the transport ports, in a packet, two IP addresses have
to be specified — namely, the “source IP address” (or the “source address”) and the
“destination IP address” (or the “destination address”). The former identifies which
host has sent the packet, whereas the latter identifies where the packet should be sent
to.

Combining with the information in the transport protocol header, one can distin-
guish which data packets belong to which applications on which host. For each packet,
the source and destination IP addresses specify the sending and receiving hosts; the
transport protocol, the source and the destination ports specify which application is
the sender and which should be the receiver of the packet. In computer networks litera-
ture, the transport protocol, the source and destination addresses, as well as the source
and destination ports, are usually referred to collectively as the “5-tuple”. A sequence
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of packets that is sent by a host to another host such that all packets in the sequence
has the same 5-tuple value is called a “flow”. In a sense, a flow is an application-
to-application connection in which the source and destination of the connection are
specified by the components in the 5-tuple. From here on, we will call the headers
of the transport and network-layer protocols together as the “packet header”. and the
data from the application layer will be called the “packet payload”. The number of
packets that belong to a flow will be called the “flow length”.

IP delivers the packets by checking the IP address in the packet header. If the
destination host is connected directly to the source host (i.e., the local network),
the packet will be delivered directly. Otherwise, it will be sent outside of the local
network through a “gateway” or “router”2. If there is more than one gateway, the most
appropriate one is selected through a process called “routing”, which is done for each
individual packet in the network. Different packets heading to the same destination
could be routed through different gateways.

2.2.5 Network Access Layer

Sometimes referred to as the “link layer”, the network access layer is the lowest layer in
the model and also the closest to the physical network. It contains protocols which a
network device needs to transmit the data through a physical medium. The protocols
in this layer are designed with respect to the specific physical media to which they
are intended to access. Each physical medium could have their own data units. For
example, in the Ethernet network [80205], a data unit is called a “frame” whereas in
Asynchronous Transfer Mode (ATM) network [I.199, GH99], it is called a “cell”.

After the data has been transferred to the destination host, the protocol headers
are stripped off level-by-level. Once the network access layer receives the data frame
from the physical link, it takes off the frame header and footer and then forwards the
data to the IP layer. The IP layer, in turn, obtains the packet, strips off the header
and sends the packet to the transport layer and so on. At the end, the user application
receives and reconstructs the data from the incoming packets.

2.3 Quality of Service

Traditionally, the routers in the IP-network route the packets based solely on the
destination of the packets. Every data packet is intended to be transferred as fast
as possible. The routers do not concern which applications send the packets or how
urgent the packets are — for instance, the videoconference packets would be treated
exactly the same as web-browsing packets. If the incoming packets are more than what
it can handle, they will be either buffered or discarded. This is called the “best-effort”
scheme.

2Both gateway and router can decide which path the packets should be routed to. Typically, a
gateway has an extra feature such that it is normally used to bridge two networks together. The
two networks can be of the same or of different types. That is, a gateway translates two different
protocols. However, current routers are also equipped with the translation facility. Thus the terms
gateway and router can be used interchangeably.
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The TCP/IP protocol suite was introduced in the 1970s. At the time, major
services were only email, FTP and Telnet [PR83] (WWW has been developed much
later [FGM+]). These applications are not sensitive to network delay. When the
network load is high, they can afford to wait until their buffered (or discarded) data are
transmitted (or retransmitted). The best-effort scheme is therefore sufficient. However,
recent applications, such as video or audio-conferences, multimedia streaming and even
online games, are sensitive to transmission delay and variations in delays (or some other
parameters). If the packets are not delivered in time, the applications may not be able
to perform their tasks or services properly. The performance of the task is measured
by its “quality-of-service (QoS)”. To deliver the task with proper QoS, a mechanism
that can provide an appropriate level of network performance to the applications is
required. Such mechanism is called “QoS-support” and a network that is equipped
with QoS-support is called a “QoS-support network”.

2.3.1 Services

Loosely speaking, a service is a set of functions that work together to deliver a given
task, such as sending a message to another user, retrieving an information from a
website, or making a call to another user. The corresponding service to those tasks
are: email, web-browsing, file transferring or videoconferencing. Due to open and
flexible environment of the IP networks, it is difficult to define a “service” precisely
[Räi03]. Some even go so far as to believe that standardizing services is impossible
[EN01]. Still, the TeleManagement Forum [Tel04] has provided a definition of a service
that, which we will use in the following:

Definition 2.1 (Service) A service is a set of independent functions that are an
integral part of one or more business processes. This functional set consists of the
hardware and software components as well as the underlying communication medium.

In [Tel04], the term “business process” refers to actual business operations such
as trading, data transactions, or communication among individuals. A service is an
operation or a task that a user is performing and could be carried out by different
applications on different network architectures. Thus, a service can be thought as a
functionality of a system, to which the user is interacting. How a service is carried
out is not irrelevant. In turn, in the Unified Modeling Language (UML), a service
can be modeled as a use case and the user is the actor interacting to the use case.
Take the videoconference session between Alice and Bob again as an example. The
videoconferencing is a service. It consists of the videoconference clients on Alice’s
smartphone and Bob’s computer. Their hardwares (i.e. the smartphone and the
computer) are connected together through a network architecture. A service is thus
not just an application, network device, or the network individually, but a combined
functionality. Consequently, the quality of the videoconference (e.g., the video or audio
quality, the resolution, or the frame rate), does not rely only on any single component,
but the collective performance of every component. These components include, for
instance, processing power of Alice’s smartphone and Bob’s computer, their software
clients and their network’s capability.
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2.3.2 Quality of Service

Extensive research has been done in the area of quality-of-service and there is a wide
range of definitions for different contexts and purposes (e.g., [X.995], [E.894], [Moo01],
[SW03]). We use the the following definition of the International Telecommunication
Union’s Telecommunication (ITU-T) [G.101a]:

Definition 2.2 (Quality-of-Service) The quality of service is the collective effect
of service performances, which determine the degree of satisfaction of a user of service.

According to the definition, quality of service is the end result of every underlying
process that affects the end user’s experience of service. Nevertheless, service quality
does not depend solely on these values, as it is also affected by psychological factors
[Räi03]. Human tends to forget and forgive a glitch or quality dip in a communication
over time if it does not occur too much and too often [EST02, Cla01] and does not
coincide with an important piece of information [BSD00]. This means smooth and
constant service quality are not always necessary although one should aim to achieve
the acceptable quality level.

2.3.3 Quality of Service Management Models

As mentioned earlier, TCP/IP (especially IPv4) does not provide native QoS support.
It needs to be deployed additionally. There are currently two major quality of service
models proposed for TCP/IP: “Integrated Services (IntServ)” model and “Differentiated
Services (DiffServ)” model. The two models, which are designed based on different
approaches, are both standardized (in [BCS94] and [BBC+98]). The difference between
them is that the network devices on IntServ model can negotiate with other devices
in the network to reserve the network resources along the path from the connection
sources to the destinations, while differentiated services treat each packet differently
according to its “service class” without any explicit negotiation.

Integrated Services (IntServ)

In the Integrated Services (IntServ) architecture [BCS94], a service can negotiate and
explicitly request network resources for each flow. A flow QoS requirement is specified
by the flow descriptor, which consists of “filter specification (filterspec)” and “flow
specification (flowspec)”. The filterspec is used to identify the packets that belong to
the flow, while the flowspec provides the flow QoS requirements.

The protocol designed to negotiate network resources in IntServ is the Resource
reSerVation Protocol (RSVP)[ZBHJ97]. In an IntServ network, when an application
tries to specify service quality to a flow, the RSVP messages are sent throughout the
network to negotiate required resources. The routers that have appropriate resources
would, in turn, accept the request, reserve the resources and inform the source about
the reservation. This process is rather complex and requires high overhead [Räi03].
Moreover, reserving resources and keeping track of each reservation in large-scale net-
works would require high storage spaces and computational power from the routers.
Thus, IntServ model is not scalable in large networks [Kil99, Räi03, LGW04].
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Differentiated Services (DiffServ)

Due to the scalability problem of IntServ, Differentiated Services (DiffServ) has been
proposed by the Internet Engineering Task Force (IETF) [BBC+98]. DiffServ is de-
signed right from the beginning to be simple and scalable. The idea is to mark each
packet with a “service class label” so that the routers can give them an appropriate
treatment accordingly. Packets of classes with higher priorities will be treated with
more importance. This would resolve the scalability problem in two ways. First, the
routers do not have to maintain per-flow service quality. Second, the complex resource
reservation process is not necessary, as the packets are classified into a service class
only once at the network edge.

Since the routers treat each packet solely on the basis of its class label, explicit
network resources are not required and no resource reservation is needed at run-time.
Therefore, service quality has to be negotiated before any connection is established.
This is done through the “service level agreement (SLA)”, a service contract between a
user and a network operator specifying service performance and forwarding treatment
that the customer would receive. It also includes a “traffic conditioning agreement
(TCA)”, which specifies traffic profiling, shaping and classification that are to apply
to the flows. In essence, SLA defines the QoS characteristics of each class. (Details
on the SLA and TCA can be found in [BBC+98, Gro02].) An SLA can be either
static or dynamic. A static SLA is an agreement that is made on a long-term basis
(e.g., monthly or yearly). A dynamic SLA is made more frequently, even each time a
connection is established.

A service class in the DiffServ model is labelled in the IP packet at the “Type-
of-Service (TOS)” field in the IPv4 header or “Traffic-Class” field in IPv6 header.
This label is called “differentiated service code point (DSCP)”, or just “code point”
[NBBB98]. The TOS field and the traffic class field together are called “DS field” in
DiffServ terminology. After a packet is classified and labelled with a code point, it will
be sent out to the network as an ordinary IP packet (i.e., through a non-deterministic
path and no resource reservation). However, unlike typical IP packets, the routers
along the paths will forward each packet differently based on its code point (hence the
name differentiated services). This forwarding treatment is called “per-hop behavior
(PHB)”.

Per-hop behaviors lift the processing burden of the routers within the DiffServ
network. They forward the packets according to the service class label specified by
the DSCP. The traffic controlling is done at the edge node. Although this scheme can
overcome the scalability problem of the IntServ architecture, it cannot really guarantee
the uniform level of service quality along the route because each hop would handle
packets based on its capability and current traffic condition. In any case, thanks to
its scalability and simplicity, recent network standards, such as IPv6, 802.11e Wireless
LAN, WiMAX or UMTS, implement DiffServ-based flow-prioritization schemes in their
specifications.
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2.3.4 QoS-Aware and QoS-Unaware Applications

So far we have discussed the TCP/IP architecture and its QoS management models
(e.g., IntServ and DiffServ). These models assume that applications accessing the
networks are aware of QoS-support and that they are supposed to specify the class
of the service to their flows by themselves. These applications are called “QoS-aware
applications”. The flows that are specified by a service class is called “QoS-aware flows”.
There is also a large body of research that focuses on QoS specification languages that
allow users and applications to express their needs (e.g., [Cam96, Flo96, LBS+98,
AV98, WNGX01, NWG02]). An extensive review on QoS specification languages can
be found in [JN02] and [JN04]. Nevertheless, most of the existing applications are
not QoS-aware. Instead, the flows are treated in the best-effort fashion and cannot
fully benefit from the QoS-support provided by the networks. These applications are
called “QoS-unaware applications”. The flows from those applications are called “QoS-
unaware flows”.

2.4 Providing QoS-Support to QoS-Unaware Applications

To provide QoS support to QoS-unaware flows, a number of mechanisms are proposed.
They are aimed to incorporate some means of QoS-specification in the QoS-unaware
flows so that they can be treated as QoS-aware flows. The added QoS-specification
might not have to be a service class because some approaches are not aimed for DiffServ
network.

A proxy-based system introduced by Tsetsekas et al. [TMV01] identifies the flows’
QoS requirements at proxy servers according to their application-layer protocols. For
a flow with an unknown protocol, a preliminary resource reservation is given, after
which its resource usage will be periodically measured to provide a more accurate
service quality for the flow. The knowledge of service quality requirements, however,
is specific to that particular flow. Dharmalingam and Collier [DC02] have introduced
a so-called manager node that resides in the network. It can interact and receive the
QoS-support request for each application as well as an appropriate “application type”
directly from the user. In [MHS02], a QoS request can be set up for QoS-unaware
applications without modification to the source code by employing the QoS Library
Redirection. This library redirection is carried out by rewriting the communication
library in the operating system. When QoS-unaware applications open connections
through the library, appropriate service qualities are assigned to the flow allowing
QoS support to be added to the library instead of modifying the applications. A
similar approach has also been implemented for the Microsoft Windows system. Roscoe
and Bowen [RB00] facilitate transparent QoS support for Windows NT by modifying
Winsock protocol stack. The modified stack captures the flow-opening calls from the
applications. A policy daemon will consequently assign traffic policies to the flows
according to the applications or the hosts that applications are connecting to. Both
approaches, however, are merely designed as a mechanism to provide predefined QoS
to QoS-unaware applications; they do not have the facility to automatically recognize
applications’ service types.
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Shih et al. [SLSH04] pointed out that modifying operating system itself is rather
complicated and proposed a transparent QoS mechanism that can transparently pro-
vide QoS to QoS-unaware applications without modifying either applications or the
operating system. QoS support for QoS-unaware flows is provided by a QoS manager,
which acts as a middleware between the kernel and the applications. Through the QoS
manager, the user can specify which flows require quality-of-service support. Service
quality level can then be assigned to the flows based on observed traffic characteristics.

While the aforementioned works have been developed from different approaches,
none can automatically identify the certain QoS requirement or service class of each
flow without human assistance or predefined QoS assignment rules. They are merely
mechanisms aimed to assign QoS requirements to the flows and do not have the ability
to decide what is the appropriate requirement for each flow. This is problematic when
these systems have to deal with unknown applications or when the users lack sufficient
technical knowledge. Therefore, a system that can identify the types of flows and assign
appropriate QoS requirements to them without human-intervention would certainly be
welcome. Such a system is called “flow classification system (FCS)”. The next section
presents an overview of the several FCSs.

2.5 Flow Classification System Components and Survey

Flow classification is a method to categorize a given flow to an appropriate group or
class. A flow classification system is an implementation of such method. It origi-
nated in the area of network security where attacks or unauthorized flows must be
detected [PN97][ZP00][ML05][RG07]. The network administrators also use the FCSs
to distinguish different types of flows for network management and provision [SSW04]
[MZ05b][BTS06][RG07][L7-08]. Recently, along with the need of QoS management,
the flow classification has been employed to identify service classes of the QoS-unaware
flows [RSSD04][ZNA05b][WZA06][AS07b][AS07a][TAO07].

2.5.1 Overview

Flow classification consists of three main processes: Flow observation, feature extrac-
tion and classification. The flow classification begins by observing the flows. Then
the feature extraction process transforms flows, which are sequences of packets, into
abstract representations called “features”. In essence, features are characteristics of a
flow that can be used to distinguish different types of flows. The employed features
vary among different approaches, ranging from transport port numbers, payload con-
tent, to other characteristics such as throughput and average packet sizes. The feature
extraction is done by a component called a “feature extractor” or simply “extractor”.
Multiple features of a single flow are usually presented together as a vector called
“feature vector”. In the classification process, a “classifier” analyzes these features and
assigns the classes to the flows accordingly. Figure 1.1 illustrates the classification
process.

Nevertheless, in the domains where the characteristics or the behaviors of the
traffic are not well understood, designing an effective classifier might be difficult, hence



2.5. FLOW CLASSIFICATION SYSTEM COMPONENTS AND SURVEY 21

requiring adaptive flow classification systems that are able to induce and/or update
their classifiers. We call such systems “adaptive flow classification systems”. These
are equipped with “learners”, which allow them to induce new or update classifiers by
analyzing relationships between the seen flows and their classes. The learning process
is shown in Figure 1.2. In some domains, such as QoS-support, the flow classification
has to be carried out in a limited period of time so that the flow can benefit from
the assigned class. Such a system is called a “real-time flow classification system”.
Thorough discussion and precise definitions of such systems are provided in Chapter
3.

2.5.2 Features

The simplest approach to distinguish different kinds of the flows is to look at their
transport ports. Traditionally, well-known Internet application protocols have specific
transport port numbers registered to themselves by the Internet Assigned Numbers
Authority (IANA) [Int07]. These registered ports are standardized and the registered
applications are supposed to use only these ports to transfer their data. Some of
these ports are shown in Table 2.1. Consequently, the applications that the flows
belong to can be identified simply by associating the ports to applications, that is,
the only concerned features are transport ports. We call an FCS that classifies flows
using only transport port a “port-based FCS”. Simple firewall applications or classical
classification techniques such as [MKK+01, LC03, PN97] are examples of such systems.
Advantage of port-based approach is that only one packet per flow is required to obtain
the transportation ports, making the classification faster and simpler compared to
other methods. However, applications might not communicate via registered ports
or some application protocols are not registered to IANA. Madhukar and Williamson
[MW06] have shown that unregistered traffic has increased from 10%-30% in 2003 to
30%-70% in 2005, causing the use of only the port numbers as features to be unreliable
[RSSD04, KBFC04, KPF05, MP05]. Another approach used to identify flow classes is
called “signature-based” approach. Signature-based FCSs work under the assumption
that each class (usually defined over application-layer protocols) has specific payload
contents, such as protocol commands and syntaxes. A specific content that can be
used to identify a class is called a “signature” of the class. The payloads of the packets
in the flows are extracted and searched for the signatures. In effect, the feature used
by signature-based approach is the packet payload itself. This approach is analogous
to how anti-virus software detects virus codes that reside in the files and is sometimes
referred to as “deep packet inspection”. One of the earliest works in signature-based
classification was carried out by Zhang and Paxson in 2000 [ZP00]. They introduced
a set of small algorithms designed to detect a number of application protocols, where
each algorithm attempts to find specific signatures of a designated application protocol.
In 2004, Sen et al. of AT&T Labs [SSW04] have proposed a method similar to Zhang
and Paxson’s FCS that focuses mainly on identification of peer-to-peer (P2P) flows.
Moore and Papagiannaki [MP05] combined port-based and signature-based approaches
by using both transport ports and signatures as their features. Their FCS consists
of multiple classifiers, each of which classifies flows using only a specific number of
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Application Port Number
FTP Data Channel 20

FTP Control Channel 21
SSH 22
Telnet 23
SMTP 25
HTTP 80
POP3 110
IRC 194

HTTPS 443
Doom 666

Table 2.1: Example of port numbers and their corresponding protocols or applications as-
signed IANA in [Int07]. The assigned ports which are commonly known for specifics services
are called “well-known ports”. IANA maintains the port assignments only for ports 0-1023.
Nevertheless, IANA also suggests in [Int07], ports above 1023 that are also well-known (al-
though not formally assigned) such as port 5900 for Virtual Network Computing (VNC)
[RSFWH98] or port 5004 for real-time transport protocol (RTP) [SC03].

packets. In the classification process, the classifier requiring the smallest number of
packets attempts to classify the flow first. If it fails, another classifier that requires
more packets would take over the classification. In case all classifiers fail to pinpoint the
class in any flow, a human expert will be informed to manually classify the flow. The
signature-based approach is also implemented in many network firewalls and intrusion
detection systems (IDSs) including Snort [RG07], CheckPoint [Che08], Cisco IPS 4200
[Cis08] and Linux L7-filter [L7-08].

Because each application protocol typically has its own unique signatures, classify-
ing flows using the signatures usually yields very high classification accuracy. However,
accuracy does not come without a cost as signature-based classifiers always require pre-
defined signatures. The signature set must be identified beforehand and, to be able to
handle new applications, must be updated constantly. In addition, searching for signa-
tures in packet payloads might raise privacy issues and might not work if the data in
the payload are encrypted. Haffner et al. [HSSW05] and Ma et al. [MLK06] attempt to
automatically identify signatures of a number application protocols using information
retrieval techniques. Although the experimental results of both methods are promising,
they are still plagued by the privacy and payload-encryption problems. Furthermore,
the FCSs using this method tend to suffer from long signature-searching time [SSW04].
Many researches have contributed to this issue (see, for example, [DKSL03], [NSS05],
[APA+05], [RJM06], [RG07]).

The signature-based approach, while reliable, is not flexible as the set of signatures
must be updated constantly, leading to the development of more general techniques
that also consider other flow features. These techniques, collectively called “flow-
behavior-based” approaches, try to capture common “characteristics” of the flows in
the same classes. The idea was originated in 2000 by Zhang and Paxson [ZP00], who
tried to distinguish the flows that contain keystrokes and the ones that do not. It
was observed that the flows which deliver keystrokes such as SSH or FTP commands
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have specific packet sizes and inter-arrival times (IATs) characteristics [PF95]. As a
consequence, the classifier is designed to capture the ratios of specific packet sizes
and IATs. Using predefined ratios of small packets and short IATs, two kind of flows,
keystroke and non-keystroke, can be distinguished. This technique was extended in
[ML05]. Relying also on the predefined ratios, her approach can identify up to 11
application protocols. A similar approach has also been proposed in [TAO07]. There,
if the packet IAT of two consecutive packets is larger than a predefined threshold, a
“headpoint” is said to occur. The flows can be classified as “real-time” or “bulk” based
on specific patterns of the headpoint occurrences. After the features are extracted,
they will be analyzed by a classifier so that the flow can be classified accordingly. All
of aforementioned FCSs are equipped with a classifier that has been pre-programmed
by an expert, which means that they are still not be able to classify flows with unseen
characteristics.

To attack this problem, machine learning techniques have been introduced to pro-
vide adaptability to the classification systems. Using machine learning, the patterns
hidden in a set of data can be learned automatically. The earliest work to employ
machine learning in flow classification is introduced by Early et al. in 2003 [EBR03].
The authors observed that different services generate TCP packets differently. For
instance, HTTP traffic contains fewer packets with PSH flag than Telnet traffic. To
capture this behavior, for each TCP flag3, ratio of packets with that flag is used as a
feature. A machine learning algorithm, C5.0 [Rul07], is employed to find relationships
between ratio of each TCP flag and different service classes. Nevertheless, using TCP
flags as features limits the use of FCS only to TCP flows. This might not be practical
for conversational services such as videoconferences, VoIP, or real-time gaming as they
mainly use UDP as transport protocol.

This idea has been extended by Roughan et al. [RSSD04] who employ a “clustering
algorithm” as the learner to analyze various statistics of the flow, such as standard
deviation of packet sizes, average data volume, etc. and then classify the flows accord-
ingly. The same set of features is used by Williams et al. [WZA06]. However, instead of
clustering algorithms, several “supervised learners” are utilized and evaluated. A sim-
ilar approach has also been implemented by Zander et al. in 2005 [ZNA05b, ZNA05a].
In 2005, Moore and Zuev [MZ05b] employed Naive Bayes learner to analyze over 200
flow features, most of which are statistics of TCP flags and control packets in the
flows. Nevertheless, after their investigation, only 3 - 50 features are found to be more
discriminative than others. These FCSs, although adaptive, are not suitable for QoS-
support because the entire flows have to be observed before they can be classified and,
thus, cannot be classified in real-time.

Bernaille et al. [BTA+06][BTS06] point out that one can classify flows without
observing all packets in the flows and propose a new set of features, which require
only few packets of a flow to compute. The ratio of packet sizes of the flows that are
transferred in both directions are different for different application protocols. This
phenomenon is more pronounced in the first few packets of the flows. To capture

3The TCP state flags are: URG - Urgent, ACK - Acknowledgment, PSH - Push, RST - Reset,
SYN - Synchronize and FIN - Finish. Details on these flags can be found in networking literatures
such as [Tan03].
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this behavior, packet sizes of both directions of each communication4 are compared
with respect to their orders, that is, the packet size of the first incoming packet is
compared with that of the first outgoing packet and the sizes of second packets in
both directions are then compared and so on. Because the features do not require
every packet in a flow, the classification can be done while the flow is still running. We
call such FCS a “real-time FCS”. Nevertheless, to classify a flow, its coflow is always
required to compute the packet size ratios. This means that the FCS can be used
only on TCP flows where coflows always exist. Moreover it might not be useful in the
networks where outgoing and incoming packets are transferred through different paths.
Another real-time FCS is proposed by Erman et al. [EMA+07]. The features employed
in their FCS include, for example, total number of packets, data volume, total caller to
callee bytes and packets and total callee to caller bytes and packets. The caller in this
case is the one who initiates TCP handshake and the callee is the one who responds the
initiation. Thus, it does not work with UDP flows. In their method, several classifiers
are employed simultaneously which each of them using a specific number of packets.
For instance, once the observed number of packets reaches 5, the classifier K5 will be
used. When the number of packets reaches 10, K10 will be used to classify the flow
again.5 After the flow is reclassified, the previous class will be replaced by the new
class. The FCS proposed in [EMA+07] suffers the same disadvantage as [BTA+06] as
a coflow is always required to compute features and only TCP flows can be classified.
Nevertheless, although an approach to classify flows within specific length is proposed,
the author did not specify how many packets should really be observed. Moreover,
as we will see in Section 6.2.1, empirical experiment results reveal that using multi-
classifiers is not necessary because flow characteristics will not fluctuate after a specific
flow length. Adding more classifiers after that point would be redundant.

All flow classification systems mentioned earlier analyze and classify each flow
individually. Other approaches such as [KPF05] and [XZB05] take a different route
and focus on classifying the hosts instead. After the type of the host (e.g., a server,
a client, or an attacker) is determined, all flows from that host will be classified as
the same class. While this approach is rather useful in a network provision where an
overview of the networks is required, it is ineffective for flow-level classification.

Several researches on flow classification systems have been explored. Port-based
and signature-based classification systems are non-intelligent, that is, the classification
system does not have the learner and the classifier cannot be induced by the system
itself. Although they can classify flows in real-time, the classifier must be constantly
updated. Most of the flow-behavior-based classification systems, on the other hand,
are intelligent as they are generally equipped with learners. Nevertheless, most of
these systems are intended for network administration or intrusion detection and thus
do not require or support real-time classification (except for [BTA+06, BTS06] and
[EMA+07]). They can classify only TCP flows and are not suitable to handle UDP

4In this thesis, a flow is defined unidirectionally. In the situation where communication is bidirec-
tional, there exist two flows that are transferred in opposite direction. They are said to be “coflows”
of each other. Detailed discussion regarding the coflows can be found in Chapter 3.

5In this thesis, we call an approach that employs several classifiers to classify flows at different
contexts a “multi-classifiers approach”.
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Table 2.2: Categorization of Flow Classification Systems
Non-Adaptive Adaptive

Non-real-time Flow-behavior-based Flow-behavior-based
[ZP00],[ML05], [EBR03],[MZ05b],

[DWF03],[TAO07] [WZA06],[RSSD04],
Host-behavior-based [ZNA05b, ZNA05a]
[KPF05],[XZB05]

Real-time Port-based Flow-behavior-based
[MKK+01],[LC03],[PN97] [BTA+06, BTS06]

Signature-based [NA06][EMA+07]
[ZP00],[SSW04],[MP05],
[RG07],[Che08],[Cis08]

applications, such as videoconferences and online games. It is clear then that an
intelligent flow classification system that is self-adaptive and able to classify flows
regardless of their transport protocol would represent an improvement to the existing
systems. In this thesis, such an approach is proposed and is explored in detail in the
following chapters. Moreover, existing FCSs can be grouped based on their adaptability
and their abilities to classify flows in real-time. Table 2.2 shows a comparison of the
flow classification systems.

2.5.3 Service Classes

The differentiated service standard [BBC+98] focuses only on service differentiation
with respect to the given code points. How the code points should be interpreted is not
a concern; it does not define how many classes should be employed, which applications
or services belong to the classes or what the QoS requirements of the classes are. As
the class definition is open, different sets of service classes are used in different FCSs
depending on their respective purposes. For example, Zhang and Paxson [ZP00] intro-
duced an FCS to detect unauthorized flows that carry Secure Shell (SSH) [Ylo06] and
File Transfer Protocol (FTP) [PR85] commands. The service classes employed by this
system are “keystroke” and “non-keystroke”. Another FCS, also proposed by Zhang
and Paxson in [ZP00], is aimed for more general network management purposes and
employs a set of application protocols, including Telnet [PR83], SSH, Rlogin [Kan91],
FTP, Napster [Tys07] and Gnutella [KAD+04, Man07], as service classes. Application
protocols are also employed as service classes in some other studies, such as [EBR03],
[ML05], [ZNA05b], [WZA06] or [BTA+06]. An FCS proposed by Sen et al. [SSW04] is
intended mainly to identify various peer-to-peer (P2P) flows. Thus, the applied service
classes are solely the P2P protocols, namely, Gnutella, eDonkey [eDo07], DirectCon-
nect [Dir07], Kazaa [Ber03] and Bittorrent [Coh03]. Table 2.3 lists the application-layer
protocols considered by various researches.

Identifying the application protocols individually, while they are being used in net-
work provision and management, does not suit our purpose of assisting QoS-support.
This is because some protocols could be used to serve different kind of services with
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Service Categories [MZ05b] [MZ05b] [KPF05] [EMA+07]
Remote Access × ×

Database × × ×
Mail × × × ×

WWW × × × ×
P2P × × × ×

Games × × ×
Chat ×

Streaming × × ×
Services × × ×
Bulk × × ×
Attack × ×

Table 2.4: List of researches that deine service classes based on practical purposes of the
considered applications.

different QoS requirements. For example, HTTP can be used to deliver web pages,
transfer files, or even perform media streaming. Some researchers, define the classes
based on the practical purposes of the services. For instance, Moore and Zuev [MZ05b]
and Moore and Papagiannaki [MP05] categorized services into “Bulk data”, “Database”,
“Mail”, “WWW”, etc. Karagiannis et al. [KPF05] categorized services into “WWW”,
“Peer-to-Peer”, “FTP”, “Mail”, etc. (See Table 2.4 for more details.) Again, defining
service classes this way cannot differentiate the QoS requirements of the services in
different classes.

DiffServ standard is nevertheless intended primarily to provide QoS support. To
this end, IETF carried out two standard-track PHB specifications for DiffServ, namely,
“expedited forwarding PHB (EF PHB)” [JNP99, DCB+02] and “assured forwarding
PHB (AF PHB)” [HBWW99]. EF PHB provides low-delay, low-jitter and low-lost
end-to-end connections through the network. EF PHB traffic will be provided with
very low delay and assured bandwidth. At each hop, the minimum outgoing rate is
well-defined (i.e. fixed and will not fluctuate) and the arrival rate is conditioned so
that it will not exceed the minimum outgoing rate. RFC 2598 [JNP99] suggests that
the edge node supposed to control its traffic limit to be lower than the outgoing rate
and so the packets will not be queued. To avoid queuing, EF PHB traffic would be
given absolute priority over other traffic (i.e. it has to be served first) or it is served in
designated queue — effectively providing guaranteed QoS. (This is possible only when
there are not so many EF PHB traffics on the network).

In the AF PHB scheme, users are offered choices of service classes to their aggregate
traffic. Each class defines QoS parameter-values that the users would receive. (The
agreement of the service classes and the corresponding QoS values is called “profile”
and normally done through the SLA). As long as the traffic from a user does not
exceed the agreed value, the traffic is called “in-profile” and the user will receive the
agreed QoS with high assurance. The user, however, can access the network beyond the
agreed value (or “out-profile”) but the exceeding traffic will be served with no guarantee
(i.e., in best effort manner). Four service classes defining four traffic profiles have
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been proposed. Flows can be classified into one of the four classes according to their
requirements. Furthermore, within one class, traffic can also be further divided into
three more “drop precedences” (low, medium and high). When a congestion occurs, the
router would drop the packets with higher drop precedence first, allowing finer traffic
classification. Both class and drop precedence are marked at the DSCP. The PHB
schemes, however, are merely packet queueing and dropping protocols. They do not
specify any concrete mapping between PHB categories and services or applications.

In 2001, the International Telecommunication Union (ITU) defines eight different
classes in ITU-T Recommendation G.1010 [G.101b]. The classes, shown in Table 2.5,
are defined with respect to end-to-end user perception, i.e., how the user should ex-
perience the services. The classes are defined as a universal specification and do not
depend on any specific network architecture. It can be seen from Table 2.5 that the
proposed classes are divided mainly on the basis of delay sensitivity, which, according
to [G.101b], has direct impact on the user perception. Among the same delay require-
ments, the services are further categorized with respect to error tolerances. These
service classes are also adapted by 3GPP as part of their UMTS standard in 2004
[3GP04]. In both [G.101b] and [3GP04], explicit values of network performance expec-
tations of each service class are also suggested. These are, however, beyond the scope
of our research and will not be discussed here. In 2006, a service class guideline was
proposed as an informational6 Request for Comments (RFC) [BCB06]. It is designed
especially for DiffServ networks. In this guideline, 12 different classes are proposed:
Two for network operation and administration services and 10 for user services. The
classes are divided based on their tolerance to delay, delay variation, packet loss and
also data rate requirement or “elasticity”. A service is said to be “elastic” if it can
always wait for the data to arrive [BCS94]. This kind of service is tolerant to delay
and jitter and its data rate can be adjusted over the course of the communication.
Otherwise, it is said to be “inelastic”. In our context, elastic services are comparable to
real-time services and inelastic are comparable to non-real-time services. A summary
of the characteristics of the user service classes is shown in Table 2.6. Further details,
such as example applications and recommended PHBs of each class, can be found in
[BCB06]. Classes proposed in G.1010 and RFC 4594 are aimed at capturing the QoS
requirements of the services, whereby the services are grouped based on the delay sen-
sitivity. However, such fine-grained classes are not suitable for flow classification task
because some applications that provide the same services might belong to different
classes. For instance, Skype and MSN are applications that provide videoconference
service, yet the characteristics of their connections are highly different.

In this thesis, the service classes are defined with respect to the delay sensitivity
and interactivity of the applications in the classes. Five classes are identified and
these include “Strict Conversational (StrConv)”, “Relaxed Conversational (RlxConv)”,
“Streaming”, “Interactive” and “Bulk”. They are also intended to be in compliance with
the classes proposed in RFC 4594, an industrial standard guideline. Thus, they are
comparable to the classes shown in Table 2.6. Their characteristics as well as examples

6Informational RFC is not a standard. It provides rather information or recommendation only
and it might be originated by either IETF itself or other individual.
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Error 
tolerant 

Conversational 
voice and video 

Voice / video 
messaging 

Streaming 
audio and 

video 
Fax 

Error 
intolerant 

Command / 
control Transactions Messaging, 

downloads Background 

 Interactive 
(delay << 1 s) 

Responsive 
(delay ~2 s) 

Timely 
(delay ~10 s) 

Non-critical 
(delay >> 10 s) 

Table 2.5: Model for user-centric QoS categories proposed by ITU [G.101b]. It is also adapted
by 3GPP as part of UMTS standardization [3GP04].

Sensitive to Service Class Traffic 
Characteristics Elasticity Delay Jitter Loss 

G.1010 
Rating 

Signaling 
Variable size packets, some 
what bursty short-lived 
flows 

Inelastic H L H Responsive 

Telephony 
Fixed-size small packets, 
constant emission rate, 
inelastic and low-rate flows 

Inelastic VH VH VH Interactive 

Real-time 
Interactive 

RTP/UDP streams, 
inelastic, mostly variable 
rate 

Inelastic VH H H Interactive 

Multimedia 
Conference 

Variable size packets, 
constant transmit interval, 
rate adaptive, react to loss 

Rate 
adaptive VH H M-H Interactive 

Broadcast 
Video 

Constant and variable rate, 
inelastic, non-bursty flows Inelastic M H VH Responsive 

Multimedia 
Streaming 

Variable size packets, 
elastic with variable rate Elastic M L M-H Timely 

High-
Throughput 

Data 

Variable rate, bursty long-
lived elastic flows Elastic L-M L H Timely 

Low-Latency 
Data 

Variable rate, bursty short 
lived elastic flows Elastic M-H L H Responsive 

Low-Priority 
Data Non-real-time and elastic Elastic L L L Non-critical 

Standard Unspecified Elastic N/A N/A N/A Non-critical 
Table 2.6: Summary of service classes proposed in RFC 4594 [BCB06] and their charac-
teristics. L, M, H, VH in the tolerance columns stand for low, medium, high and very high
respectively. Rate adaptive elasticity means that the service can change its data rate, but only
in fixed-step manner, resembling step-wise data rate.
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of applications that belong to each class are described in Section 5.1. Apart from our
research, some flow classification studies classify flows based on delay-sensitivities and
interactivity as well. Roughan et al. [RSSD04] classifies flows into “Remote Access”,
“Streaming”,“Bulk” and “Transactional” (which includes HTTP and DNS) and [TAO07]
classifies flows into real-time and non-real-time. Their classes, however, do not capture
all types of services. For instance, [RSSD04] entirely ignore videoconference and online
gaming while, Tai et al. categorizes both HTTP, FTP and Mail protocols together as
non-real-time and considers only streaming protocols as real-time [TAO07].

2.6 Summary

In this chapter, we have discussed about the TCP/IP network as well as QoS man-
agement models that are designed to be used with it. We have also pointed out that
DiffServ model is more scalable and supported by many network standards, including
the upcoming IPv6, WiMAX and 802.11e. Thus, it is chosen as our target QoS model.
Since the QoS-unaware applications may not benefit from the QoS support provided
by the network, flow classification systems have been proposed to provide the QoS
support to QoS-unaware applications. The flow classification task, however, requires
more than assigning a proper class to a given flow. It has to be carried out in real-time.
To handle unknown applications, the FCS has to be adaptive as well.

We have reviewed a large number of FCSs component by component and found
that none of them can fulfill all requirements of the flow classification task listed in
Chapter 1. Moreover, as it turns out, all existing FCSs are developed separately
without any underlying model. Therefore, understanding and comparing them are
rather cumbersome. In conclusion, not only a real-time adaptive FCS itself, but also a
rigid model that describes the flow classification domain and process are still missing.



Chapter 3

A Unified Framework for Flow
Classification

In the previous chapter, a review of existing flow classification systems was given. As
discussed, different systems are developed independently without any general under-
lying model that can explain the common elements and processes, making analyzing,
comparing, and understanding the relationships among different approaches rather
difficult. This issue has been raised in [SOMS08] but the authors have only intro-
duced a reliable measurement method, not a model that can identify the classification
systems. In response, we propose a mathematical model that can describe the flow
classification components and processes as well as existing classification approaches.
The model provides a unified framework for the analysis and comparison of different
flow classification approaches.

In the following sections, we model the components in a flow classification system.
These include, e.g., the packets, flows, flow characteristics or features, and service
classes.

3.1 Packets and Flows

When an application at a host sends its data to another host, the data are divided
into chunks called packets. These packets are then traversed across the network to
the destination host. Each packet consists of three main parts — the transportation
and the network-layer protocol headers, the packet payload with higher-layer protocol
headers and the application data. We will now discuss a mathematical model that
describes the packets. Because we would like to have a model that can describe any IP
packet regardless of which transport protocol is in use, the protocol-specific information
such as TCP flags or window sizes is ignored.1 The model contains only the general
packet information including the transport protocol, source IP, source port, destination
IP, destination port, packet timestamp, packet size, and payload. This information

1For details on this information, see, e.g., [Pos81a], [DH98], [Pos81b] and [Pos80] for IP version 4
(IPv4), IP version 6 (IPv6), TCP and UDP headers respectively

31
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is transport-protocol independent and can always be obtained. We call such model a
“packet model”.

Here, we consider only TCP and UDP as they are the protocols commonly used
to transfer users’ data. The timestamp is the time when the packet is observed by the
packet capturing component2. The packet size is the size of the packet specified in the
IP header. Because the packets are intended to transfer data (i.e., the content in the
payload), we start modeling our framework from the lowest element in the domain:
The packet payload.

Computer data are sequences of bits or binary numbers (i.e., sequences of 0s and
1s). We thus represent the data as sequences of strings.

Definition 3.1 (String) Let Σ be a finite non-empty set of symbols. A string or
data string is a finite sequence

a1 . . . an

where ai ∈ Σ and n ∈ N. We call n the length of the string. The string of length 0
is called empty string and denoted by ε. The set of strings of length n is denoted by
Σn where Σ0 = {ε}. The set of non-empty strings is denoted by Σ+ =

⋃
m≥1

Σm and

Σ∗ = Σ+ ∪ Σ0 is called a set of strings.

Although the computer data can be represented as bit-strings (i.e., Σ = {0, 1}),
referring to the data directly as bit-strings might not be practical. Thus, in this thesis,
the data are treated byte-wise instead of bit-wise and represented in sequences of bytes.
We use 2-digit hexadecimal number to represent the value of each byte. For example,
the byte 1010 0010 can be represented as A2.

The following is an example of a string that is taken from a payload in a packet.
Spaces are added here to maintain the readability and to distinguish each byte, al-
though, strictly speaking, they are not part of the strings.

CD AD 52 54 53 50 2F 31 2E 30 20 32 30 30 20 4F
4B 0D 0A 53 65 72 76 65 72 3A 20 51 54 53 53 2D

When QoS-aware applications establish flows, they also specify service classes to
their flows. As discussed in Section 2.3.3, in the DiffServ model, the service class
is marked in each packet. The routers along the route will then treat the packets
accordingly. We define the service classes as the following set:

C = {c1, . . . , ck}.

The elements of C are not required to be explicitly specified. This allows the system
designer to apply any sets of classes according to the applications of the system. The
set of classes employed in an FCS defines the purpose of the FCS because it specifies
what would the flows be classified into. For example, an FCS presented in [ZP00]

2The packet capturing component could reside anywhere in the network, including the source and
destination hosts and the intermediate routers. Its location depends on the purpose of the capturing.
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is aimed for network security. It classifies flow into attack and normal. Thus the
following service class is employed:

C′ = {attack,normal}

An FCS intended for network management as presented in [WZA06] classifies flows
according to application protocols. The employed set of classes is then:

C′′ = {http, ftp, smtp, telnet, dns, half-life}

In our case, the FCS facilitates QoS support. The set of classes is therefore defined
with respect to QoS requirements of the flows. As discussed in Section 2.5.3, the
following service classes are employed: Strict conversational class (StrConv), relaxed
conversational class (RlxConv), interactive class, streaming class and background class.
That is:

C = {StrConv, RlxConv, Interactive, Streaming, Background}. (3.1)

Characteristics and examples of applications that belong to each class are described in
Section 5.1. Unlike QoS-aware applications, QoS-unaware applications do not assign
any class to their packets. In this case, the service class is said to be “unspecified” or
“empty” and it is denoted by ε.

Definition 3.2 (Packet Model) Consider the following sets:

N natural numbers
I set of IP-addresses
P set of transport protocols = {TCP, UDP}
Cε C ∪ {ε}
Σ∗ set of strings over Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,A,B,C,D,E,F}

Elements of P×I×N×I×N×N×N×Cε×Σ∗ are called packet models. A set of packet
models is denoted by P ⊆ P×I×N×I×N×N×N×Cε×Σ∗. Let p = (w1, . . . , w9) ∈ P ,
we define the following functions:

protocol : P → P : p 7→ w1

srcIP : P → I : p 7→ w2

srcPort : P → N : p 7→ w3

dstIP : P → I : p 7→ w4

dstPort : P → N : p 7→ w5

timestamp : P → N : p 7→ w6

size : P → N : p 7→ w7

class : P → Cε : p 7→ w8

payload : P → Σ∗ : p 7→ w9

A connection between two services in two different hosts is called a flow. Different
connections can be distinguished from each other via the 5-tuple values, i.e., source
IP, destination IP, source port, destination port, and the transport protocol. Hence, a
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dstPortsrcPort

dstIPsrcIP

transport protocol

timestamp

payload

size class

Figure 3.1: The packet model. The orange part is the information abstracted from the IP
header [Pos81a]. The blue part is abstracted from the transport protocol header (see [Pos81b]
and [Pos80] for TCP and UDP headers respectively), the pink part is the packet payload,
and the green part is obtained from the packet capturing component. The actual protocol
headers contain more information. However, they are not relevant to our discussion and thus
discarded.

p1 p2 p3 pn

Figure 3.2: A flow is a sequence of packets p1, . . . , pn such that they have the same transport
protocol, IP addresses and transport ports.

flow can be modeled as a sequence of packets such that all packets in the flow contain
the same 5-tuple values (see Figure 3.2). At any rate, because the service class is given
to each packet in the flow individually, it is possible that different packets in the same
flow could have different classes. In this discussion, we assume that all packets in a
flow are marked as the same class.

Definition 3.3 (Flow) Let P be a set of packet models, N+ = {1, 2, 3, . . .}, and
n ∈ N+. A flow f is a non-empty finite sequence

(pi | 1 ≤ i ≤ n)

where
(∀1 ≤ i ≤ n) pi ∈ P,

(∃r ∈ P)(∀1 ≤ i ≤ n) protocol(pi) = r,
(∃s ∈ I)(∀1 ≤ i ≤ n) srcIP(pi) = s,

(∃u ∈ N)(∀1 ≤ i ≤ n) srcPort(pi) = u,
(∃t ∈ I)(∀1 ≤ i ≤ n) dstIP(pi) = t,

(∃v ∈ N)(∀1 ≤ i ≤ n) dstPort(pi) = v.

n is said to be the length of f . A set of flows is denoted by F . In addition, let
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Table 3.1: The table shows the information of each packet model within a flow. The columns
indicate the components of each packet. For the sake of simplicity, the timestamp is shown in
the milliseconds that the packets are captured, starting from zero. In reality, the timestamp
is stored in UNIX time format [RR95].

Packets Protocol srcIP srcPort dstIP dstPort timestamp size class
p1 UDP 9.119.124.200 27960 24.195.14.189 27960 000000 68 RlxConv
p2 UDP 9.119.124.200 27960 24.195.14.189 27960 023658 66 RlxConv
p3 UDP 9.119.124.200 27960 24.195.14.189 27960 047861 65 RlxConv
p4 UDP 9.119.124.200 27960 24.195.14.189 27960 071661 65 RlxConv
p5 UDP 9.119.124.200 27960 24.195.14.189 27960 093118 66 RlxConv
p6 UDP 9.119.124.200 27960 24.195.14.189 27960 116573 65 RlxConv
p7 UDP 9.119.124.200 27960 24.195.14.189 27960 140576 68 RlxConv
p8 UDP 9.119.124.200 27960 24.195.14.189 27960 161649 68 RlxConv
p9 UDP 9.119.124.200 27960 24.195.14.189 27960 185548 68 RlxConv
p10 UDP 9.119.124.200 27960 24.195.14.189 27960 230565 68 RlxConv

...
...

...
...

...
...

...
...

...

p707 UDP 9.119.124.200 27960 24.195.14.189 27960 170924 68 RlxConv

(pi | 1 ≤ i ≤ n) ∈ F . We extend the functions introduced in Definition 3.2 as follows:

protocol : F → P : (pi | 1 ≤ i ≤ n) 7→ protocol(p1)
srcIP : F → I : (pi | 1 ≤ i ≤ n) 7→ srcIP(p1)
srcPort : F → N : (pi | 1 ≤ i ≤ n) 7→ srcPort(p1)
dstIP : F → I : (pi | 1 ≤ i ≤ n) 7→ dstIP(p1)
dstPort : F → N : (pi | 1 ≤ i ≤ n) 7→ dstPort(p1)
class : F → Cε : (pi | 1 ≤ i ≤ n) 7→ class(p1)

We call f ∈ flow such that the class is not empty (i.e., class(f) = ε) a QoS-unaware
flow or QoS-aware flow otherwise.

According to the definition, a flow of zero packet (i.e., an empty sequence) is not
allowed because, in reality, zero packet means there is no packet sent. Thus, the flow
does not exist. Table 3.1 shows a sequence of packets that constitute a flow. The
sequence containing the first l packets of a flow is called the l-prefix of the flow, which
is characterized as follows.

Definition 3.4 (Prefix of a Flow) Let f be a flow of length n, i.e., f = (pi | 1 ≤
i ≤ n) and l ∈ N+. The prefix of f of length l is a flow defined as follows:

prefix : F × N+ → F

(f, l) 7→
{
f if l ≥ n,
(pi | 1 ≤ i ≤ l) otherwise.

We call prefix(f, l) the l-prefix of f .

To exemplify the prefix of a flow, the 3-prefix of the flow shown in Table 3.1 refers
to (p1, p2, p3). Figure 3.3 provides further illustration of the flow prefix. Because the
DiffServ architecture defines the flow as unidirectional, in our framework, flows are
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f :

prefix(f,3) :

p1 p2 p3 pn

p1 p2 p3

Figure 3.3: Prefix of a flow of length three.

modeled as unidirectional as well. A two-way communication between two hosts (e.g.,
a TCP socket) thus consists of two flows - one for each direction. Figure 2.2 illustrates
such scenario. In the figure, the flows f1 and f2 have the corresponding pairs of ports.
Source port of f1 is the destination port of f2 and vice versa. They are said to be
transferred in “opposite direction” of each other. We call f1 and f2 “coflows” of each
other.

Definition 3.5 (Coflow) Consider a set F of flows. Coflow is a binary relation
defined as follows:

Coflow ⊆ F × F

such that (f, f ′) ∈ Coflow iff

protocol(f ′) = protocol(f),

srcIP(f ′) = dstIP(f),

srcPort(f ′) = dstPort(f),

dstIP(f ′) = srcIP(f),

dstPort(f ′) = srcPort(f).

If (f, f ′) ∈ Coflow , then f ′ ∈ F is said to be a coflow of f ∈ F .

Definition 3.5 does not restrict the number of coflows. Still, a flow generally has
only one coflow, i.e., the flow that communicates in response to it. When a flow f is
established from a host A to another host B, host B can establish only one coflow f ′

back to A, in response to f . In this case, f and f ′ are said to belong to the same
“conversation”.

Definition 3.6 (Managed Set of Flows) Let F be a set of flows. F is said to be
managed iff for each f ∈ F there exists at most one f ′ ∈ F such that f ′ is a coflow of
f . Given a managed set of flows F , if there exists f, f ′ ∈ F such that f ′ is a coflow of
f , then f ′ is said to be the coflow of f .

One should observe that given a managed set of flows F , f ∈ F is a coflow of
f ′ ∈ F iff f ′ ∈ F is a coflow of f . In the following, only the managed set of flows
is considered and, hence, the set of flows are presumed to be managed unless stated
otherwise.
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3.2 Features

So far, the packet, flow, and service classes, which are the fundamental elements in
data transmission, have been defined. In general, however, a flow can be characterized
as a feature vector, where each component of the vector indicates a feature of the flow.
As briefly discussed in Section 2.5.1, features are the abstract representations that
describe particular characteristics of a flow. Examples of features include transport
protocol, port number, payload content, throughput, number of packets, or connection
time. They are usually presented together as a vector called a “feature vector”. Each
feature is extracted from a flow by a “feature function”, which is defined as follows.

Definition 3.7 (Features) Let F be a set of flows, and D be a set. A feature
function is a function

V : F → D

f 7→ d.

We call d a feature of f . A set of feature functions is denoted by V.

It is worth pointing out that, in flow classification literature, the classification
methods are usually evaluated without mentioning the feature extraction process as
the data used in the experiments are already extracted as feature vectors. However, the
extraction process in fact plays a crucial role in the overall classification performance
especially in real-time systems where the classification has to be done in a limited time
period. This is because different features require different amount of time and number
of packets to compute. Thus, to be able to specify the maximum number of packets
used in the extraction process, we extend the feature function as follows.

Definition 3.8 (Length-Restricted Feature Function) Let V : F → D be a feature
function and f ∈ F a flow. A length-restricted feature function V ′ corresponding to V
of length l ∈ N+ is defined as follows:

V ′ : F × N+ → D

(f, l) 7→ V (prefix(f, l))

A set of length-restricted feature functions is denoted by V ′.

In a sense, a length-restricted feature function is an encapsulated function or an
interface to a feature function that restricts the feature function to considering only
up to prefix of length l. The actual feature calculation is still done by the feature
function.

Definition 3.9 (Feature Vector) Let Vi : F → Di, 1 ≤ i ≤ d, d ∈ N+, be feature
functions. Elements ofD1×. . .×Dd are called feature vectors. A set Xd = D1×. . .×Dd

is called a set of feature vectors.

Intuitively, a feature vector is a vector of features where each component in the
vector is computed by a feature function. Collectively, they provide an abstraction of
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a flow. The set Xd is the set of all feature vectors with the same number of components
d. The subscript d will be dropped if the number of the components is irrelevant to
the context. A feature vector, as mentioned earlier, is an abstracted representation of
a flow. Each component in the vector is computed by a designated feature function.
Still, each feature function can calculate only one component. The transformation of
a flow to a feature vector that consists of multiple components (i.e., multiple features)
is carried out by the following function.

Definition 3.10 (Feature Extraction Function) Let V = {V1, . . . , Vd} be a set of
feature functions such that Vi : F → Di, 1 ≤ i ≤ d, d ∈ N+, and Xd = D1 × . . .×Dd.
A feature extraction function corresponding to V is

EV : F → Xd
f 7→ 〈V1(f), . . . , Vd(f)〉.

We call EV(f) an abstraction of f or the feature vector of f .

This means that a feature extraction function EV corresponding to V is the function
that maps a flow to a vector using all features in V. Naturally, the dimension of the
resulting vector is equal to the cardinality of V.

At this point, a feature vector is only an element of D1× . . .×Dd. The features in
a feature vector can be calculated using an arbitrary flow length, which could also be
the entire flow. Although calculating features using the entire flow might reflect the
actual characteristics of the flow, it is very time consuming because all the packets in
the flow must first be observed. This might not be suitable for real-time classification
and, therefore, the feature extraction function is extended so that it considers only up
to a given flow length l.

Definition 3.11 (Length-Restricted Feature Extraction Function) Let
V ′ = {V ′1 , . . . , V ′d} be a set of length-restricted feature functions such that V ′i : F ×
N+ → Di, 1 ≤ i ≤ d, d ∈ N+, and Xd = D1×. . .×Dd. An l-restricted feature extraction
function corresponding to V ′ is defined as follows:

E′V ′ : F × N+ → Xd
(f, l) 7→ 〈V ′1(f, l), . . . , V ′d(f, l)〉.

We call E′V ′(f, l) the l-feature vector of f .

In other words, the feature extraction function maps the flows into a feature vector
using designated length-restricted features. Note that all the features are computed
using up to the same flow length (i.e., at most l). For the sake of simplicity, if it is clear
from the context which set of features is used, we can also refer to the components in a
feature vector and a length-restricted feature vector not just by their values, but also
by the feature functions corresponding to them. For instance, consider a feature-vector

〈UDP, 27960, 27960, 46828, 17.09, 2740.08〉, (3.2)
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where the components are computed by the following functions: protocol, srcPort,
dstPort, dataVolume, connTime and dataTPUTAvg, respectively. The vector shown in
(3.2) could be written as:

〈protocol = UDP, srcPort = 27960, dstPort = 27960, dataVolume = 46828,
connTime = 17.09, dataTPUTAvg = 2740.08〉.

In addition, if the explicit value of each component is not required, each component
can be denoted by the name of the corresponding feature function, e.g.,

〈protocol, srcPort, dstPort, dataVolume, connTime, dataTPUTAvg〉.

After a QoS-unaware flow is transformed to a feature vector, it can be analyzed
and then an appropriate service class can be assigned. This class assignment process is
called “flow classification”. A QoS-unaware flow or a feature vector assigned to a class
is said to be “classified”. In the classification process, the classifier does not analyze
the flow directly, but rather the feature-vector of the flow. Therefore, a classifier can
be modeled as a function that maps a feature vector to a class.

Definition 3.12 (Classifier) Let V = {V1, . . . , Vd} be a set of feature functions
such that Vi : F → Di, 1 ≤ i ≤ d, d ∈ N+, Xd = D1 × . . .×Dd, and C a set of service
classes. A classifier corresponding to Xd is a function

KXd
: Xd → C.

A set of all classifiers corresponding to Xd is denoted by KXd
.

In other words, the classifier classifies flows with respect to their feature values.
This then implies that the classifier has to be compatible with the set of feature vectors
Xd. Nevertheless, if it is clear from the context, the subscript d will be dropped. As
discussed in Section 2.5, there are numerous flow classification systems in the literature,
which can be distinguished primarily by their classifiers or, to be precise, the domains
and codomains of the employed classifiers. The domain of the classifier designates the
features that are concerned by the FCS. The codomain of the classifier designates the
service class of the FCS, which, in turn, defines the purpose and the use of the FCS.

The fundamental components of the flow classification system introduced so far
are summarized in Figure 3.4. (The last component, the learner, will be discussed in
Section 3.3.) Finally, we define a general flow classification system as follows.

Definition 3.13 A generic flow classification system is a tuple

〈P,F ,V,Xd, EV , C,KXd
〉

where

• P is a set of packet models,

• F is a managed set of flows,
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• P - a set of packet models

• F - a set of flows

• prefix : F × N+ → F - the flow prefix function

• V = {V1, . . . , Vd} - a set of feature functions such that Vi : F → Di ∈ V,
1 ≤ i ≤ d, d ∈ N+

• V ′ = {V ′1 , . . . , V ′d} - a set of length-restricted feature functions such that V ′i :
F × N+ → Di : (f, l) 7→ Vi(prefix(f, l)), 1 ≤ i ≤ d

• Xd = D1 × . . .×Dd - a set of feature vectors

• EV : F → Xd - a feature extraction function

• E′V ′ : F × N+ → Xd - a length-restricted feature extraction function

• C - a set of service classes

• KXd
- a set of classifiers

• KXd
: Xd → C ∈ KXd

- a classifier used by the system

• L : D→ KXd
- a learner

Figure 3.4: Fundamental components of flow classification.

• V = {V1, . . . , Vd} is a set of feature functions such that Vi : F → Di ∈ V,
1 ≤ i ≤ d, d ∈ N+,

• Xd = D1 × . . .×Dd is a set of feature vectors,

• EV : F → Xd is a feature extraction function,

• C is a set of service classes and,

• KXd
: Xd → C is a classifier.

Generic flow classification systems employ ordinary feature extraction function that
uses all packets in the flow. The features are thus calculated after the flow is finished.
In real-time flow classification, the number of packets used to calculate the feature
values is restricted. Therefore, real-time flow classification system is then defined as:

Definition 3.14 A real-time flow classification system is a tuple

〈P,F , prefix,V,V ′,Xd, E′V ′ , C,KXd
〉

where

• P,F ,V,Xd, C,KXd
are the components defined in Definition 3.13,

• prefix : F × N+ → F is the flow prefix function,
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• V ′ = {V ′1 , . . . , V ′d} is a set of length-restricted feature functions such that (∀i ∈
{1, . . . , d})V ′i : F × N+ → Di : (f, l) 7→ Vi(prefix(f, l)) and

• E′V ′ : F × N+ → Xd is a length-restricted feature extraction function,

That is, the real-time flow classification system extends the generic one by employ-
ing two extra components prefix and V ′. It also uses length-restricted feature extractor,
E′V ′ , instead of ordinary one (EV). As a result, the number of packets used to calculate
the feature values can be specified. Note that, in both systems, the classifier KXd

is
predefined.

Modeling the flow classification system this way restricts the way elements interact
among each other to an extent that each function has specific domain and codomain.
The other elements such as packets and flows are also precisely defined. As a result,
the classification process, i.e. mapping a flow to a class, is also precise and well-defined.
The whole processes of general and real-time classification can be expressed simply as
KXd

(EV(f)) and KXd
(E′V ′(f, l)) respectively.

3.3 Adaptive Flow Classification System

In the machine learning literature, there exists a class of methods called “supervised
learning”. Given a set of pairs, these methods attempt to estimate structural patterns
in the set [SD90][WF05]. In our setting, the pairs are those of feature vectors and their
service classes, and, for a given set of pairs, a supervised learner, or simply a “learner”,
is to estimate a function that maps a feature vector to an appropriate service class
with respect to the observed pairs. In other words, the learner induces a classifier from
the given set of pairs of feature vectors and service classes.

In flow classification scenario, the feature vectors utilized by the learner have to
be computed from the flows where each of these flows is marked with a service class.
Therefore, the pairs of feature vectors and classes have to be computed from the pairs
of flows of their classes. We call a set of flows-classes pairs that will be used in the
learning process a “raw dataset”. A set of pairs of feature vectors and service classes
is called a “dataset”.

Definition 3.15 (Raw Dataset) Let F be a set of flows and C be a set of service
classes. Elements of F × C are called flow instances or flow examples. We call a finite
set R ⊆ F × C a raw dataset or a set of raw data.

In other words, a raw dataset is a set of (unique) flows that have a service class
assigned. Keep in mind that, for the QoS-aware flows, the assigned classes are labeled
in each packet in the flows (see Definition 3.2 and 3.3). The class assigned for each
flow in the raw dataset might not be the same as the class specified in each packet of
the flows. This allows us to associate any classes to the flow instances, regardless of
what their original classes are.

In the following, we will formally define the dataset, or a set of pairs of feature
vectors and classes. We will begin with an introduction to multiset, which is the
collection of objects that forms the basis for a dataset. Then, the formalization of the
dataset will be given, followed by the functions that map a raw dataset to a dataset.
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Conceptually, a multiset is a collection of elements whereby certain elements can
occur more than once. The number of times an element occurs in a multiset is called
the multiplicity (i.e., number of occurrences) of that element. Formally, it is defined as
a function that maps an element in a set to a natural number indicating the multiplicity
of the element.

Definition 3.16 (Multiset) Let X be a set of elements, a multiset M over X is a
function

M : X → N
x 7→ k.

We call k themultiplicity x in M . For all x ∈ X, ifM(x) > 0, x is said to be an element
ofM . If there exist no x ∈ X such thatM(x) > 0, thenM is said to be empty, denoted
by M = ∅. The set of underlying elements of M is the set UM = {x ∈ X |M(x) 6= 0}.
M is finite if UM is finite.

To explicitly enumerate all elements of M , we use the dot notation

M = {̇x11 , . . . , x1k1
, x21 , . . . , x2k2

, . . . , xn1 , . . . , xnkn
}̇

where xi ∈ X and ki is the multiplicity of xi, i ∈ {1, . . . , n}, n ∈ N+. Elements of
a multiset is not ordered. Therefore, any permutation of the notation can be used.
For example, given a multiset containing four elements, a, a, b, and c, {̇a, a, b, c}̇ =
{̇a, b, a, c}̇.

Definition 3.17 (Cardinality of a Multiset) Let X be a set of elements, the car-
dinality of a multiset M over X, denoted by Card(M), is given by

Card(M) =
∑
x∈X

M(x).

We use the notation |M | to denote Card(M). Further operators and functions of
multiset are given in, e.g., [Bli89],[GJ09],[JGT01], and [SIYS07].

Definition 3.18 (Dataset) Let X be a set of feature vectors and C be a set of
service classes. A dataset is a finite multiset over X × C. Elements of a dataset are
called data instances or examples. The set of all datasets is denoted by D.

In other words, a dataset is a finite multiset {̇〈x1, c1〉, . . . , 〈xm, cm〉}̇ such that
〈xi, ci〉 ∈ X × C, 1 ≤ i ≤ m. Although a collection of pairs of feature vectors and
classes is generally called a “dataset”, the term is somewhat a misnomer. A dataset,
unlike a raw dataset, is a multiset, not a set. This is because elements in a dataset
could be identical [Koh95]. Depending on the feature functions employed, feature
extraction function might not be one-to-one. In other words, given a feature extraction
EV corresponding to a set of features V, there exist flows f, f ′ ∈ F such that EV(f) =
EV(f ′). This is true for length-restricted feature extraction function as well. The
reason behind this is that each flow in raw dataset can be distinguished by the 5-tuple.
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However, if the 5-tuple is not considered when the flows are extracted to feature vectors,
then the flows might lose their uniqueness. Therefore, to ensure that abstractions of
all flows in the raw dataset exist after the feature extraction, a multiset is required.
The multiplicities of feature vectors are necessary for learners that induce classifiers
based on statistics of flow features such as C4.5 decision tree algorithm [Qui93], Naive
Bayes, Partial Rule (PART) [FW98], and many others [WF05].

Now, we have two types of data collections, namely, raw dataset and dataset. To
transform a raw dataset into a dataset, all flows in the raw dataset have to be extracted
to feature vectors and stored into a dataset. The transformation is done by a function
called “dataset generator” defined below.

Definition 3.19 (Dataset Generator) Let F be a set of flows, C a set of service
classes, and D the set of all datasets. Given a set of feature vector V and a feature
extraction function EV : F → Xd with d = |V|, a dataset generator corresponding to V
is a function defined as follows:

G : P(F × C)→ D

{〈f1, c1〉, . . . , 〈fm, cm〉} 7→ {̇〈EV(f1), c1〉, . . . , 〈EV(fm), cm〉}̇.

Definition 3.20 (Length-Restricted Dataset Generator) Let F be a set of flows,
C a set of service classes, and D the set of all datasets. Given a set of length-restricted
feature vector V ′, an l-restricted feature extraction function E′V ′ : F × N+ → Xd with
d = |V ′| and l ∈ N+, an l-restricted dataset generator corresponding to V ′ is a function
defined as follows:

G′ : P(F × C)× N+ → D

({〈f1, c1〉, . . . , 〈fm, cm〉}, l) 7→ {̇〈E′V ′(f1, l), c1〉, . . . , 〈E′V ′(fm, l), cm〉}̇.

We call {̇〈E′V ′(f1, l), c1〉, . . . , 〈E′V ′(fm, l), cm〉}̇ a dataset of length l or l-dataset.

The dataset generator abstracts all flows from the given set of raw data to a dataset.
This is done without concerning the flow length. The l-restricted feature-vector gener-
ator, in contrast, abstracts the feature vectors with respect to l. The resulting dataset,
{̇〈E′V ′(f1, l), c1〉, . . . , 〈E′V ′(fm, l), cm〉}̇, thus contains only the l-feature vectors.

Because a learner induces a classifier from a dataset, it can be modeled as a function
that maps a dataset to its classifier.

Definition 3.21 (Learner) Let D be the set of all datasets and K be a set of
classifiers, a learner is a function defined as follows:

L : D→ K
{̇〈x1, c1〉, . . . , 〈xm, cm〉}̇ 7→ K.

The definition basically states that the learner induces a classifier from a given set
of data. At this point we are not concerned with any learners in particular; the learner
and the classifier are thought simply as functions. With a learner, we can extend our
generic flow classification system as follows:
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Definition 3.22 A adaptive flow classification system is a tuple

〈P,F ,V,Xd, E, C,KXd
, L〉

where

• P,F ,V,Xd, E, C are the components defined in Definition 3.13,

• KXd
is a set of classifiers and

• L : D→ KXd
is a learner.

The adaptive flow classification system uses a learner to induce a classifier ef-
fectively replacing a predefined classifier making the classification system adaptive.
Likewise, a learner can be employed in real-time flow classification system as well. By
replacing the predefined classifier with a learner, a real-time adaptive flow classification
system can be defined as:

Definition 3.23 A real-time adaptive flow classification system is a tuple

〈P,F , prefix,V,V ′,Xd, E′V ′ , C,KXd
, L〉

where

• P,F , prefix,V,V ′,Xd, E′V ′ , C are the components defined in Definition 3.14,

• KXd
is a set of classifiers and

• L : D→ KXd
a learner.

Note that the dataset and the classifier are not included in the model. This is be-
cause what distinguishes different classification systems is the learner, not the dataset
used to induce the classifier or the induced classifier. Also, an adaptive flow classi-
fier employs the feature extraction function that is not length-restricted, and thus the
entire flow must also be observed in the classification process. A real-time adaptive
FCS, in contrast, can restrict the length of the flow considered as it is equipped with a
length-restricted feature extraction function. Consequently, the induced classifier can
classify the flow at any preferred flow length. This is true in both dataset generation
and classification processes.

3.4 Unsupported Methodologies

The proposed model is designed to be as general as possible. It is intended to cover all
flow classification components and processes, regardless of which transport protocols
are used. However, it still has some limitations and there are some flow classification
approaches that cannot be described by our model.
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3.4.1 TCP-Specific Features

As discussed in Section 2.2, the TCP protocol provides mechanisms to guarantee data
correctness and completeness. In doing so, the TCP protocol adds some information
in the TCP header of each packet. Such information is used in some flow classification
researches that are discussed below. Nevertheless, our model of the packet does not
contain protocol specific information such as TCP flags or window size. Thus, clas-
sification approaches that utilize TCP-specific information are not supported by the
current framework.

In 2003, Early et al. [EBR03] introduced a classification system that classifies flows
using TCP state flags. A flag is a binary variable describing a property of a packet.
Early et al. observed that different services generate TCP packets differently. For
instance, HTTP traffic contains fewer packets with PSH flag than Telnet traffic. To
capture this behavior, for each TCP flag, Early et al. propose a feature that calculate
the ratio of the number of packets with that flag set against the total number of
packets. In effect, there are in total six features, one for each TCP flag.

Moore and Zuev [MZ05b, MZ05a] proposed 248 features to be used in the flow
classification scheme. Most of them are related to TCP-specific properties, such as
number of control packets, window sizes, round-trip time (RTT) between packets sent
and their acknowledgements. Other features are calculated from packet inter-arrival
time, Fourier transform of inter-arrival time, transport port, etc. The full list of the
features is available in [MZ05a].

Nonetheless, although our current model cannot describe TCP-specific features,
it can be extended without much effort by adding TCP header fields into the packet
model.

3.4.2 Host-Behavior-Based Features

Another breed of flow classification technique, which takes a totally different approach
than the works discussed earlier, is called host-behavior-based classification. The host-
behavior-based methods do not attempt to identify flow types with respect to indi-
vidual flow’s characteristics. Instead, they try to identify the services or applications
running on the hosts based on the hosts’ interactivity rather than directly classify
the flow types. It works under the assumption that different types of hosts (e.g., a
web server or an end-user client) exhibit different communication characteristics. For
example, a host is likely to be a service provider (e.g., web server or files server) if it
communicates with other hosts using only few source ports. Thus, the flows from that
host are considered as interactive flows. Host-based behavior classification systems are
not intended to classify individual flows. They are generally designated for network
management.

In SIGCOMM 2005, Karagiannis et al. introduced a host-classification scheme
called BLINd Classification (BLINC) [KPF05]. BLINC collects the transport protocol,
source IP and port and destination IP and port (i.e., the 5-tuple) of each flow coming
in and out of a host. That is, BLINC considers five features. To identify the type of
a host, Karagiannis et al. introduced a host-classification rules set that is expressed
in a visualized form called “graphlets”. These rules are used to identify the host type
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based on, e.g., the transport ports used by the host, the number of flows from or to
the host, and the number of other hosts that are in contact with the host. BLINC
is not equipped with a mechanism that can generate the classification rule set. The
classification rules proposed by Karagiannis et al. are created by hand.

Another approach which is similar to BLINC is a traffic profiler introduced by Xu
et al. The approach has also been introduced in SIGCOMM 2005 [XZB05]. The traffic
profiler is a classification system intended to identify interesting (or rather strange)
host behaviors compared to other hosts. It considers four features, namely, source
IP, source port, destination IP, and destination port. In their approach, the flows are
clustered based on the four features using a clustering algorithm. After the hosts are
clustered, the common behavior within the cluster can be identified.

The aforementioned systems are not considered flow classification systems. This is
because they classify hosts, not individual flows in the hosts. They are therefore not
covered by our framework.

3.5 An Example of Flow Classification Scenario

This section presents a simple flow classification scenario. We will see how to transform
a flow into a feature vector and how a feature vector be classified. An example of a
small dataset will also be given.

Consider a set of feature functions

V = {protocol, srcPort, dstPort, dataVolume, connTime, dataTPUTAvg} (3.3)

where

protocol : F → P
(pi | 1 ≤ i ≤ n) 7→ protocol(p1),

srcPort : F → N
(pi | 1 ≤ i ≤ n) 7→ srcPort(p1),

dstPort : F → N
(pi | 1 ≤ i ≤ n) 7→ dstPort(p1),

dataVolume : F → N

(pi | 1 ≤ i ≤ n) 7→
n∑
i=1

size(pi),

connTime : F → R

(pi | 1 ≤ i ≤ n) 7→ (timestamp(pn)− timestamp(p1))

1000
,

dataTPUTAvg : F → R

(pi | 1 ≤ i ≤ n) 7→ dataVolume((pi | 1 ≤ i ≤ n))

connTime((pi | 1 ≤ i ≤ n))
.

The feature function dataVolume measures the total amount of data that are trans-
ferred. connTime determines the flow running time. The feature function dataT-
PUTAvg calculates the average data throughput of the flow (in bytes). The following
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is the set of length-restricted feature functions corresponding to feature functions pre-
sented above:

V ′ = {protocol′, srcPort′, dstPort′, dataVolume′, connTime′, dataTPUTAvg′} (3.4)

where

protocol′ : F × N+ → P (3.5)
(f, l) 7→ protocol(prefix(f, l)),

srcPort′ : F × N+ → N (3.6)
(f, l) 7→ srcPort(prefix(f, l)),

dstPort′ : F × N+ → N (3.7)
(f, l) 7→ dstPort(prefix(f, l)),

dataVolume′ : F × N+ → N (3.8)
(f, l) 7→ dataVolume(prefix(f, l)),

connTime′ : F × N+ → R (3.9)
(f, l) 7→ connTime(prefix(f, l)),

dataTPUTAvg′ : F × N+ → R (3.10)
(f, l) 7→ dataTPUTAvg(prefix(f, l)).

A feature vector corresponding to the length-restricted feature functions defined in
(3.5) to (3.10) is an element of the following cartesian product:

X6 = P× N× N× N× R× R (3.11)

Given the set feature functions V from (3.3) and a corresponding set of feature
vectors X6 from (3.11), a feature extraction function EV corresponding to V is charac-
terized as follows:

EV : F → X6

f 7→ 〈protocol(f), srcPort(f), dstPort(f), dataVolume(f), (3.12)
connTime(f), dataTPUTAvg(f)〉.

Consider the flow shown in Table 3.1. It is a UDP flow whose source and destination
ports are 27960. It has the length of 707 and 46828 bytes of its data have been
transfered in 17.09 seconds. It has an average throughput of 2740.08 bytes per second
(Bps). Applying the feature extraction function to the flow yields the following feature
vector:

EV(f) = 〈UDP, 27960, 27960, 46828, 17.09, 2740.08〉. (3.13)

The first component in the vector, the protocol, indicates the transport protocol of
the flow. The second and third components indicate the source and destination ports
of the flows respectively. The fourth component, the total data volume, is the sum of
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the sizes of packets one to five. The fifth component is the connection time, which is
the timestamp difference between the packet p1 and p707. Finally, the last component
is the average data throughput calculated by dividing the total data volume by the
connection time.

Consider the set of length-restricted feature functions V ′ in (3.4). A feature ex-
traction function E′V ′ corresponding to V ′ is the function

E′V ′ : F × N+ → X6

(f, l) 7→ 〈protocol′(f, l), srcPort′(f, l), dstPort′(f, l), dataVolume′(f, l),
connTime′(f, l), dataTPUTAvg′(f, l)〉.

Applying E′V ′ to the flow shown in Table 3.1 by specifying the prefix to five, we have:

E′V ′(f, 5) = 〈UDP, 27960, 27960, 330, 0.07, 3548.39〉. (3.14)

Notice that the values of the third to the last element of the vectors in (3.13) and
(3.14) are different. This is because, although they are abstractions of the same flow,
they are calculated using different flow lengths.

Given the set of feature functions V from (3.3), set of feature vectors X6 from
(3.11) and C = {StrConv, RlxConv, Interactive, Streaming, Background} a set of ser-
vice classes, the following is an example of a simple port-based classifier:

KX6 :X6 → C
(〈protocol, srcPort, dstPort, dataVolume, connTime, dataTPUTAvg〉)

7→


StrConv if srcPort = 27960 or dstPort = 27960,
RlxConv if srcPort = 1680 or dstPort = 1680,
Interactive if srcPort = 80 or dstPort = 80,
Streaming if srcPort = 32052 or dstPort = 32052,
Background otherwise.

(3.15)

The classifier above maps a feature vector to a class with respect to the transport pro-
tocol ports. Such classifiers are employed in some FCSs such as [MKK+01], [LC03],
and [PN97]. Indeed, the actual port-based classifiers that are used in the real im-
plementations would be more complicated and the classification conditions would be
more elaborated. Also, the feature vector would consist of only two components, one
for source port and another one for destination port.

Applying KX6 to the feature vector shown in (3.14), we have

KX6(E′V ′(f, 5)) = KX6(〈UDP, 27960, 27960, 330, 0.07, 3548.39〉)
= StrConv .

If we pair up a feature vector and a service class together, a data instance can be
constructed. Following is an example of a data instance corresponding to the feature
vector in (3.14):

〈〈UDP, 27960, 27960, 330, 0.07, 3548.39〉,StrConv〉.
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Table 3.2: A Small Dataset. Each column describes each characteristic or feature of a flow.
The last column indicates the service class of the flow.
protocol srcPort dstPort connTime dataVolume avgDataTPUT Class
UDP 51662 28314 52.70 222 4.21256 StrConv
UDP 57938 63789 18.86 576 30.5401 StrConv
UDP 15187 46992 2.73 160 58.6478 StrConv
UDP 7777 7777 24.88 2700 108.522 StrConv
UDP 29423 46992 15.15 544 35.9253 StrConv
TCP 3644 5050 2.16 4369 2022.69 RlxConv
TCP 62923 5050 0.78 1253 1606.41 RlxConv
TCP 5190 33773 0.26 192 735.63 RlxConv
TCP 5050 1213 0.42 1706 4091.13 RlxConv
UDP 527 4224 4.224 44 10.42 RlxConv
TCP 4314 554 402.53 64356 159.88 Streaming
TCP 2049 554 2553.28 2 962.94 Streaming
TCP 3458 554 563.93 80844 143.36 Streaming
TCP 25626 554 0.26 216 826.13 Streaming
TCP 4462 554 264.43 46464 175.72 Streaming
TCP 50790 3124 6.70 216 32.22 Interactive
TCP 80 51177 1.12 456 408.38 Interactive
TCP 3124 2428 10.51 2604 247.76 Interactive
TCP 55312 80 1.30 3462 2663.77 Interactive
TCP 3124 1454 114.94 36351 316.25 Interactive
TCP 48244 25 0.37 372 1016.32 Bulk
TCP 25 39186 1.11 751 674.84 Bulk
TCP 25 56881 1.05 955 911.99 Bulk
TCP 25 4946 10.73 4272 397.99 Bulk
TCP 25 15792 4.31 2134 495.25 Bulk

The example here is the flow abstraction shown in (3.14), paired with a service class,
StrConv. For the sake of simplicity, we shall write such a pair of feature vector and a
service class as

〈UDP, 27960, 27960, 330, 0.07, 3548.39,StrConv〉,

or, if the feature functions need to be explicitly specified,

〈protocol = UDP, srcPort = 27960, dstPort = 27960, dataVolume = 46828,
connTime = 17.09, dataTPUTAvg = 2740.08, class = StrConv〉.

Table 3.2 shows an example of a dataset.

3.6 Decomposing SMART

In addition to mathematical model presented earlier, in this section, Unified Modeling
Language (UML) diagrams describing SMART will be presented. We will begin with
overview of SMART and subsystem decomposition. We will also see how SMART could
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be deployed in network devices. Then, we will move on to package and class diagrams
describing each component of the system. Finally, we will discuss how SMART switches
between classification and learning operations.

3.6.1 Deploying SMART

SMART can be deployed in both user’s end-device and the router. Figures 3.5 and
3.6 present deployment diagrams for deploying SMART in a user device and a router,
respectively. Deploying SMART in a router allows SMART to learn and classify flows
from different devices residing in the network. This is because SMART treats all flows
similarly regardless from (or to) which devices. In both figures, the Application com-
ponent consists of all applications running on an end-device. The NetworkSubsystem
includes all network components such as protocol stacks and physical network inter-
faces. SMART acts as a support system, which assists the router in identifying the
classes of incoming flows. To this end, SMART has two ports, one takes packets as
inputs and another outputs service class. (See Figure 3.7.)

Deployment Diagram for Deploying Flow Classification System in a User Device

<<dev i ce>>
iPhone : UserDevice

<<dev i ce>>
: Router

<<component>>
:Application

<<component>>
:FCS

<<component>>
:NetworkSubsystem

<<component>>
:NetworkSubsystem

< < t c p / i p > >

Figure 3.5: Deployment diagram for deploying SMART in a user device

Let us consider the flow classification component in detail. The packets are fed
into the component through the input port, which connects the NetworkSubsystem
component. The incoming packets are first sorted and assembled into flows via the
FlowAssembler. The FeatureExtractor then transforms the flow into a feature vec-
tor. The WorkingModeStrategy component follows Strategy pattern deciding whether
SMART should operate in classification mode or learning mode. The operation mode
depends on the type of the flow. If the flow is QoS-unaware, SMART should switch to
classification mode and uses the Classifier component to identify the service class of
the flow. Otherwise, if the flow is QoS-aware, SMART would operate in learning mode
and stores the feature vector along with the service class in the Dataset component.
Learner can then use the data to induce the classification model and updates the
classifier accordingly.

3.6.2 SMART Class Diagrams

SMART is composed of three major elements, which can be grouped into three pack-
ages, including the FlowModel package, the FeatureExtraction package and the
Classification package. (See Figure 3.8.) The FlowModel package contains classes
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Deployment Diagram for Deploying Flow Classification System in a Router

<<dev i ce>>
iPhone : UserDevice

<<dev i ce>>
pc : UserDevice

<<dev i ce>>
: Router

<<component>>
Appl icat ion

<<component>>
NetworkSubsystem

<<component>>
Appl icat ion

<<component>>
NetworkSubsystem

<<component>>
:FCS

<<component>>
NetworkSubsystem

< < t c p / i p > >

< < t c p / i p > >

Figure 3.6: Deployment diagram for deploying SMART in a router

SMART FCS Component

<<component>>
SMART : FCS

FlowAssembler FeatureExtractor

Classif ierWorkingModeStrategy

Dataset Learner

Service Class

Packets

Figure 3.7: SMART Component

of packet, flow, as well as service class. The FeatureExtraction package consists of
classes related to features and feature extraction, which includes feature value, feature
vector and feature function. The Classification package contains classifiers and
learners classes. As shown in Figure 3.8, FeatureExtraction and Classification
packages depend on FlowModel. This is because classes in both packages deal with
flows — The FeatureExtration extracts flow features and the Classification clas-
sifies flows. Classification package also depends on FeatureExtraction as the
classifier takes a feature vector as input. In the following, contents of each package
will be discussed in detail.

First, let us consider the FlowModel package, which contains all classes related
to flows. As defined in Definition 3.3, a flow is a non-empty sequence of packets.
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FlowModel

FeatureExtraction

Classification

Figure 3.8: Package diagram of a SMART

Therefore, as shown in Figure 3.9, the flow is modeled as a class consists of one or
more packets. Also, a flow could be either QoS-aware or QoS-unaware, where QoS-
aware flow is assigned to a service class while QoS-unaware is not. As defined in
Definition 3.3, if the class of the flow belongs to a set of classes C, the flow is called
QoS-aware, whereas if the class is empty, the flow is called QoS-unaware. The class
diagram of the flow follows the definition closely. As shown in Figure 3.9, a flow consists
of a service class, such that the service class could be either ServiceClassAbstract
or UnknownServiceClass. The ServiceClassAbtract is a super class of all QoS
service classes. A flow class also has an operation getPrefix, which takes an integer
as input and returns its prefix of the specified length as output.

The FeatureExtraction package, depicted in Figure 3.10, contains all classes
corresponding to feature extraction process. As defined in Definition 3.10, a fea-
ture extraction function takes a flow as input and returns a feature vector as output.
It employs a feature function to compute each feature value in the feature vector.
Following the definition, in our model, FeatureExtractor class consists of one or
more FeatureFunction classes. Its operation, extract, takes flow as input and
produces an instance of FeatureVector class, which consists of one or more feature
values, as output. For feature function, we use Abstract Factory pattern to model
FeatureFunction class. This is because all feature functions share the same func-
tionality (compute a feature value from a flow), but their implementations are different.

The Classification package, shown in Figure 3.11, comprises of classes corre-
sponding to classification and learning. These classes include Classifier, Learner
and Dataset classes. Classifier class considers the values in a feature vector and
assigns an appropriate service class accordingly. The learner uses data in the dataset
to induce new classification model and updates the classifier.

As mentioned earlier, SMART consists of two working modes: Classification and
learning modes. These modes are activated based on the class of the incoming flow.
If the flow is QoS-unaware, SMART will operate in classification mode, whereas if the
flow is QoS-aware, it will operate in learning mode. (See Figure 3.12.) This mode-



3.7. CONCLUSION 53

FlowModel Package

-srcIP : string
-srcPort : int
-dstIP : string
-dstPort : int
-protocol : string
-serviceClass : ServiceClassInterface
+getPrefix(prefix : int) : Flow

Flow

-srcIP : string
-srcPort : int
-dstIP : string
-dstPort : int
-protocol : string
-serviceClass : ServiceClassInterface
-size : int
-payload : string

Packet

<< In te r face>>
ServiceClassInterface

UnknownServiceClassServiceClassAbstract

StrictConversational

RelaxedConversational

Streaming

Interactive

Background

1..*

1

Figure 3.9: The contents of FlowModel package

FeatureExtraction Package

+compute(flow : Flow) : FeatureValue
FeatureFunction

Feature_1 Feature_2 Feature_d

+extract(flow : Flow) : FeatureVector
FeatureExtractor

FeatureVector FeatureValue

A b s t r a c t
F a c t o r y

1..*

1..*

<<ex t rac t>>

Figure 3.10: The contents of FeatureExtraction package

switching policy is described in WorkingModePolicy object, which determines the
working mode based on the service class (i.e., the ServiceClassInterface class).

3.7 Conclusion

In this chapter, we have described a general framework of flow classification systems.
The fundamental elements and processes of flow classification systems are recognized
and formally defined. The components are modeled using basic mathematical con-
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Classification Package
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Classif ier

FlowFeatureVector
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< < u s e > > <<setServiceClass>>

<<upda te>>

< < u s e > >

Figure 3.11: The contents of Classification package

FlowClassificationSystem

WorkingMode

WorkingModePolicy

<< In te r face>>
ServiceClassInterface
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S t r a t e g y
P a t t e r n

Figure 3.12: SMART working-mode switching strategy

structs, which makes the model precise, versatile, and easy to verify. We have made
a distinction between flows and feature vectors, feature functions and feature values,
as well as learners and classifiers. Also, we have derived the basic properties of flow
classification systems based on their adaptability and their abilities to classify flows
in real-time. Using our model, flow classification systems can be clearly and easily
categorized and compared. Apart from mathematical model, the implementation, de-
ployment and system decomposition of SMART are also described using UML.

However, the model still has some restrictions. The model of the packet does not
contain protocol specific information such as TCP flags or window size. Thus, some
approaches that utilize TCP-specific information are not supported by the current
framework. Moreover, our model does not recognize host-behavior based approaches
as flow classification systems as they actually classify the hosts, not the flows.



Chapter 4

Machine Learning

Machine learning is a set of methods designed to recognize (or “learn”) and describe
structural patterns in a set of data. They are generally categorized into “supervised”
and “unsupervised” learning methods. Supervised learning is a class of learning meth-
ods that estimate patterns in a set of data — represented as a set of pairs. Each pair
consists of the characteristic and the class of an object. A characteristic of an object
is a fixed, predetermined collection of its descriptions, which in our context pertain to
the feature vectors. The class of an object refers to its service class. The goal of super-
vised learning is to identify and describe the relationships between the pair, which can
then be used to classify unseen instances. In contrast, unsupervised learning methods
attempt to estimate the pattern in the data only from the features vectors (i.e., the
classes of the instances are not given). The goal of such methods is to identify how
the data are organized or structured without any explicit set of classes.

In this chapter, the discussion on the potential learners to be used in our classifica-
tion system will be given. Since the service classes are always given to the QoS-aware
flows (which are used as the training data) in the flow classification scenario, super-
vised learning perfectly suits the domain. The discussion will therefore focus mainly
on supervised methods. Moreover, considering that machine learning algorithms are
best described by how the learned knowledge is presented, the technique used to de-
scribe the knowledge will dictate the most suitable learning methods for obtaining the
knowledge.

4.1 Decision Tree

A decision tree is an analytical tool that explicitly maps observations of an object to
its value in a tree-like structure. Each node in the tree is associated with a feature and
its branches are labeled with the values corresponding to the associated feature. The
leaves of the tree are labeled according to the service classes into which the instances
are to be classified. The classification of an instance requires testing the value of each
of its features at the corresponding node. The test is done by comparing the value
of the instance with the value labeled at each branch starting from the root. When
the value of the instance matches with the value of a branch, the classification will

55
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continue through that branch until a leaf is reached. The instance is then classified as
the class labeled on the leaf. An example of a decision tree is shown in Figure 4.1. An
algorithm that induces a decision tree from a dataset is called a “decision tree learner”.

Figure 4.1: An example of a decision tree. Each branch of a node is associated to a feature.
The leaves of the tree are labeled with the classes. Here, StrConv and RlxConv refer to strict
and relaxed conversational classes respectively.

A decision tree consists of nodes at which the corresponding feature values are
tested. Thus, the central idea of constructing a tree is to select which feature to test
at each node. In the beginning, a decision tree consists of only one node (i.e., the root).
The decision tree learner then selects the feature that best divides the dataset with
respect to some criterion. (The selection criteria and how the selection is done will be
discussed below.) A branch is created for each possible value of the selected feature
(i.e., each element of the codomain of the feature) and the instances in the dataset are
divided according to these values.1 Then, at the end of each branch, a node is created
and the next feature to be tested will be selected using only the instances associated
with the branch. The process is repeated until the data cannot be divided further.

In general, all decision tree learners construct the tree in the same manner, with
the main exception being the criterion by which the effectiveness of the features is
evaluated. Examples of such measures are information gain, which is used in many
learners such as Hunt et al. [HMS66] and Quinlan [Qui86], biased-corrected variant
of information gain called gain ratio, introduced also by Quinlan to be used in his
C4.5 decision tree learner [Qui93], and the Gini index employed by Breiman et al.
[BFSO84]2. In our research, we will restrict ourselves only to C4.5, which is generally

1If the codomain is continuous, an extra processing must be done. A detailed discussion regarding
this topic will be given later in this section.

2Other metrics such as chi-square [Min89] and Bhattacharya [Bha43] and Kolmogorov-Smirnoff
distances (see, e.g., [CLR67]) have been used as well. Extensive reviews on decision tree construction
methods as well as feature evaluation functions can be found in [BN92], [Mur98], [LLS00], and [Kot07].
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accepted as the most influential and widely-used tree learner [WF05][Kot07]. Apart
from its popularity, Lim et al. [LLS00] showed that C4.5 provides the best trade-off
between accuracy and learning time. Furthermore, its feature-evaluation function,
which is based on information gain, has been shown to be very effective in selecting
the features [BN92]. In the following, we will see in detail how C4.5 induces a tree
from a given dataset.

Ross Quinlan [Qui93] proposed a method based on “information gain” to select the
feature to be tested at each step while the tree is being grown. This measure results
in a decision tree learning algorithm called C4.5. Information gain is derived from the
concept of “entropy”, which is a measure of impurity or uncertainty of a given set of
data introduced by Shannon in 1948 [Sha48].

The main idea of C4.5 is focused on the entropy of the classes in the given dataset.
More precisely, we want to know which features can divide a set of data into smaller
subsets such that each of them contains as little entropy as possible (i.e., as many
elements in them belong to the same class as possible). In the following, we will define
some auxiliary functions required to describe the entropy followed by the definition of
entropy.

Let X be a set. We define functions that compare two elements in the class as
follows.

matched : X ×X → N

(x, x′) 7→
{

1 if x = x′,
0 otherwise. (4.1)

unmatched : X ×X → N

(x, x′) 7→
{

1 if x 6= x′,
0 otherwise. (4.2)

Definition 4.1 (Frequency) Let X be a set,M = {̇m1, . . . ,mn}̇ is a finite multiset
over X, and x ∈ X. The frequency of x in M is a function

Freq : X × P(M)→ N

(x, {̇m1, . . . ,mn}̇) 7→
n∑
i=1

matched(x,mi)

Definition 4.2 (Frequency of a Class) Let X be a set of feature vectors, C a set
of service classes, D a set of all datasets over X ×C, D = {̇〈x1, c1〉, . . . , 〈xm, cm〉}̇ ∈ D
and c ∈ C. The frequency of c in D is

ClassFreq : C ×D→ N
(c, {̇〈x1, c1〉, . . . , 〈xm, cm〉}̇) 7→ Freq(c, {̇c1, . . . , cm}̇)

Given a dataset D, randomly select an instance that belongs to a class cj from D
has probability

ClassFreq(cj ,D)

|D|
.
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Therefore, the information that cj conveys is

− log2

(
ClassFreq(cj ,D)

|D|

)
(4.3)

bits. Combining both measures, we define the entropy as follows.

Definition 4.3 Let X be a set of feature vectors, C = {c1, . . . , ck} a set of service
classes, D a set of all datasets over X ×C, and D ∈ D. The entropy of D with respect
to classes is a function

H : D→ R

D 7→ −
k∑
j=1

(
ClassFreq(cj ,D)

|D|

)
× log2

(
ClassFreq(cj ,D)

|D|

)
The entropy can be interpreted as the weighted average of the information conveyed

by a class in a dataset where the weight is the probability of each class. With entropy,
we measure the discriminability of a feature as follows.

Definition 4.4 (Information Gain) Let V = {V1, . . . , Vd} be a set of feature func-
tions such that Vi : F → Di, 1 ≤ i ≤ d, d ∈ N+, Xd = D1× . . .×Dd, C a set of service
classes, D a set of all datasets over Xd×C. Given a feature function Vj : F → Dj ∈ V,
1 ≤ j ≤ d, the information gain of Vj relative to D is

Gain : D× V → R

(D, Vj) 7→ H(D)−
∑
x∈Dj

|Dx|
|D|

H(Dx) (4.4)

where Dx = {̇〈x1, . . . , xj , . . . , xd, c〉 ∈ D | xj = x}̇.

Intuitively, the information gain of a feature function Vj is the difference in entropy
of the original dataset compared to the ones that are divided with respect to the
outcomes of Vj , weighted by the probability of each outcome. That is, the information
gain of Vj is the expected reduction of entropy after knowing the values of Vj .

The information gain is used in Iterative Dichotomiser 3 (ID3) tree-learning algo-
rithm [Qui86], the predecessor of C4.5. However, it biases toward features with many
outcomes. This is because higher outcomes mean more partitions, which, in turn,
tend to have less class impurity. In an extreme case, imagine a dataset of 100 flows
with each flow having a unique source IP address. Using information gain alone, the
learner would construct a tree with a single node, srcIP, which has 100 branches, and
each branch, marked with the source IP of each flow, points to the class of the flow.
The resulting tree would be too precise and overfit the training data. In response, an-
other measure called “split information”, which aims to suppress the bias, is introduced
[Qui93].

Definition 4.5 Let V = {V1, . . . , Vd} be a set of feature functions such that Vi :
F → Di, 1 ≤ i ≤ d, d ∈ N+, Xd = D1 × . . . × Dd, C a set of service classes, D a set
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of all datasets over X × C. Given a feature function Vj : F → Dj ∈ V, 1 ≤ j ≤ d, the
split information of Vj relative to D is

SplitInfo : D× V → R

(D, Vj) 7→ −
∑
x∈Dj

|Dx|
|D|
× log2

(
|Dx|
|D|

)
(4.5)

where Dx = {̇〈x1, . . . , xj , . . . , xd, c〉 ∈ D | xj = x}̇.

Split information is essentially the entropy of D with respect to Vj , whereas entropy
introduced in Definition 4.3, is the entropy of D with respect to the classes. It repre-
sents the information obtained by dividing D into smaller sets regarding to outcomes
of Vj . Then, we can use the following criteria to select a feature as follows.

Definition 4.6 Let V = {V1, . . . , Vd} be a set of feature functions such that Vi :
F → Di, 1 ≤ i ≤ d, d ∈ N+, Xd = D1 × . . .×Dd, C a set of service classes, D a set of
all datasets over X × C. Given a feature function V ∈ V, the gain ratio of V relative
to D is

GainRatio : D× V → R

(D, V ) 7→ Gain(D, V )

SplitInfo(D, V )
. (4.6)

Gain ratio normalizes the gain of a feature by the uniqueness of the feature itself.
If the feature contains many uniformly distributed values, the split information will be
high and, thus, the gain ratio will be low. For example, consider the aforementioned
scenario, the split information of the feature srcIP (which is unique for every flow)
is log2m where m = |D|. Suppose we have another feature, transport protocol, that
splits the dataset into two equal subsets, the split information of transport protocol
will be 1. If the two features yield the same information gain, the feature transport
protocol would be selected according to the gain ratio criterion.

At first glance, it may seem that the gain ratio can only be applied to finite dis-
crete domains as the entropies H(Dx) of all elements x ∈ Dj have to be computed.
However, according to Quinlan [Qui93], this is not necessary. Since the dataset is
finite, there could only be finite values of any given feature. Take the feature function
avgDataTPUT in the dataset shown in Table 3.2 (on page 49) as an example. Al-
though its codomain is R, there exist only 25 outcomes of the feature function in the
dataset. Thus, instead of computing the gain ratio of the entire set of real numbers
(which is impossible as it is infinite and uncountable), one can compute only that from
the feature values present in the dataset. In addition, in case of discrete values, after
a feature is selected to be tested at a node, branches are created for all possible values
of the feature. In case of continuous feature values, however, C4.5 creates only two
branches that splits the dataset into two sets (e.g., set of instances that has feature
values > x and ≤ x) in order to restrict the number branches at each node. If needed,
the same feature can be tested again at lower nodes.

To illustrate how the splitting is achieved, consider a sequence (s1, . . . , sn), which
contains all distinct values of a feature in a dataset. The components of the sequence
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are sorted. There are, in turn, n−1 splits to be examined (i.e., for each si, 1 ≤ i ≤ n−1,
the dataset can be split into > si and ≤ si). At each split point si, the overall gain
ratio is computed (at this point, only two feature values are considered: > si and
≤ si+1) and the splitting point that yield the highest gain ratio is selected.

Taken together, the tree generation process is carried as follows:

• Compute gain ratio of all features using the entire dataset and select the one
that has the highest gain to be tested at the root node. If the codomain of
the selected feature is discrete, compute the gain ratio using all elements of the
codomain. Otherwise, if the codomain is continuous or infinite, determine the
splitting point using the method explained above.

• Then, after the root node is created, add branches to the node whereby each of
them is labeled with a possible outcome of the selected feature function.

• Next, if the selected feature is discrete, remove the feature from the set of features
(as all values of the feature are already considered). On the other hand, if the
feature is continuous or infinite, the feature might be tested again and it will be
kept in the set of features.

• At each branch, a node is created the same way as the root. However, instead of
using the entire set of data, only the instances whose feature values correspond
to the branch are considered. That is, at each node, the dataset is divided into
smaller partitions, each of which corresponds to the feature value labeled at each
branch.

The process is repeated until all instances corresponding to a branch belong only to
a single class, at which point a leaf node labeled with that class is created below the
branch. Also, if there are no more features to be determined (i.e., all features have
been tested along the path from the root), a leaf node labeled with the dominant class
of the partition of the dataset associated to the branch is created. The detailed tree
construction process is described in Algorithm A.1 in Appendix A.

In the context of flow classification, decision tree learners have been employed by
a number of flow classification systems. Early et al. [EBR03] implements the C5.0
algorithm [Rul07], which is a commercial, unpublished descendant of C4.5, to build a
decision tree classifier. Later in 2006, C4.5 is employed and evaluated by Williams et
al. [WZA06] along with other learners including Naive Bayes algorithm and Bayesian
Network. The results show that C4.5 can classify the flows faster than other algorithms
while maintaining high accuracy. Detailed discussion on this issue will be provided in
Section 4.3.

4.2 Covering Algorithms

C4.5 generates decision trees by analyzing the effectiveness of features and dividing
the set of instances into smaller sets according to the values of the selected feature.
Then, within these smaller sets, the steps are repeated until the data cannot be divided
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any further. This strategy is referred to as a “divide-and-conquer” method. In this
section, another kind of learning approach called a “sequential covering” method will be
explored. In a sequential covering approach, a set of classification rules is induced from
the common characteristics of the instances of each class. After a rule is learned, the
instances that are “covered” by the rule are separated (i.e., removed) from the dataset
and the process iterated until all examples are covered (i.e., no more example left in the
dataset). A rule consists of two parts: precondition and conclusion. The precondition
part has one or more logical criteria or tests, which the instance to be classified has
to meet; the conclusion specifies the class to be assigned to the given instance if it
conforms to the logical expressions in the precondition part. An instance is said to be
covered by a rule if its feature values conform to the tests in the precondition part and
its class matches the class specified in the conclusion part of the rule.

In this thesis, we will focus on a sequential covering learner called Repeated Incre-
mental Pruning to Produce Error Reduction (RIPPER). It was introduced by William
Cohen in 1995 [Coh95] as an improved version of another learner called Incremental
Reduced Error Pruning or IREP, developed by Fürnkranz and Widmer in 1994 [FW94].
RIPPER constructs a rule set exactly in sequential fashion, i.e., rules are created one-
by-one. Once a rule is found, the instances covered by the rule are removed from the
dataset. In each iteration, the learner always tries to construct a rule that covers the
largest number of instances. The process is repeated until there is no instance of the
target class left or the newly found rule yields an unacceptable error rate.

Conceptually, a rule starts with an empty precondition while it is being generated
and a logical test is then repeatedly added to it. In this process, the rule is said
to be “grown”. The rule is grown until it covers no instance that is not the target
class (i.e., the rule is specific enough to cover only the target class). Growing a rule
this way typically results in a rule that is too specific and overfits the considered
dataset. Therefore, it has to be generalized or “pruned” by eliminating some conditions
afterwards. To this end, it is essential to find an effective growing and pruning criterion
in order to construct a plausible rule set. In the following, we will see how RIPPER
creates a rule set from a dataset as well as the heuristics that are employed to grow
and prune the rule.

Given a target class c, RIPPER starts the rule learning by splitting the dataset
into two sets Dc and Dc̄ where Dc is the set of instances that belongs to c and Dc̄
contains the instances of the other classes. Dc is then divided further into Grow c and
Prunec where the former set will be used to grow the rule whereas the latter will be
used to prune it. Likewise, Dc̄ is also divided into Grow c̄ and Prune c̄. The rule is first
started with empty precondition and, throughout the growing process, conditions are
recurrently added. A condition, like a node in decision tree, is a test of a feature value,
which is selected by RIPPER based on the information gain criterion3.

Unlike a decision tree, however, when a feature is selected, only the value yielding

3This selection criterion has been initially employed by another sequential rule-learning algorithm
called FOIL [Qui90] which was introduced by Ross Quinlan who also introduced C4.5. FOIL, in fact,
is more expressive than RIPPER as it learns first-order logic rules as opposed to propositional logic
rules in RIPPER. However, since propositional rule is sufficient to our task, we will restrict ourselves
only to propositional rules learning.
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the highest gain is kept in the rule. (In C4.5, when a feature is selected to be tested
at a node, a branch associated to each possible feature value is created under that
node. In this sense, adding a condition is analogous to adding a node with a single
branch.) Also, because a sequential algorithm finds rules for only one class at a time,
the entropy used to calculate information gain does not measure the overall purity of
all classes as in C4.5; rather, it only measures the purity of the target class. To be
precise, let r be a rule, and l be a condition to be added to r:

GrowEval(l, r) = tc
(

log2

t′c

t′c + t′c̄
− log2

tc

tc + tc̄

)
(4.7)

where tc and tc̄ are numbers of instances of the target and non-target classes covered
by r, and t′c and t′c̄ are numbers of instances of target and non-target classes after
l is added to r respectively. That is, Equation (4.7) measures the difference of the
information before and after a condition is added to a rule. A rule is grown by repeat-
edly adding the conditions that best describe instances in the growing set (i.e., Grow c)
until the rule does not cover any element in Grow c̄ (i.e., covers only the target class).
Then it is pruned based on its pruning sets whereby the evaluation metric is:

PruneEval(r) =
tp − tp̄

tp + tp̄
(4.8)

where tp and tp̄ are numbers of instances in Prunec and Prune c̄ covered by r respec-
tively. In other words, the rule is evaluated on its ability to distinguish the target class
from other classes.

At any rate, the growing and pruning processes are used to construct only one
rule at a time. The next concern is when to stop adding rules to the rule set and
avoid overfitting the data. In RIPPER, the minimum description length (MDL) is
employed as a stopping criterion. The concept of MDL is related to Shannon’s message
information length that has been discussed earlier. In the MDL approach, the induced
rule set is thought as a theory that explains a dataset. A larger, more complete theory
would be able to explain more instances in the dataset than the simpler one. Here,
instances that fail to be explained are called “exceptions”. Explanation completeness
comes, indeed, with a price — a large and more complete theory would require more
bits than a smaller one. According to the MDL principle, similar to Occam’s razor,
the best theory is one that requires the smallest number of bits to encode both the
theory itself and the exceptions not covered by the theory. In RIPPER, the length of
a rule is encoded as:

‖k‖+ k log2

(
1

(k/n)

)
+ (n− k) log2

(
1

1− (k/n)

)
where k is the number of conditions in the rule, n is the number of possible conditions
that could appear in a rule and ‖k‖ is the number of bits required to encode the integer
k. The length of the theory (i.e., entire rule set) is the sum of the length of all rules.
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The length of the exceptions is computed as follows:

log2(|Prunec ∪ Prune c̄|+ 1)

+ fp ×
(
− log2

(
fp + fn

2t

))
+ (t− fp)×

(
− log2

(
1− fp + fn

2t

))
+ fn ×

(
− log2

(
fn

u

))
+ (u− fn)×

(
− log2

(
1− fn

u

))
where t = tp + tp̄, u = |Prunec ∪Prune c̄| − t, fp and fn are the number of instances in
Prunec and Prune c̄ that are misclassified by the rule set respectively. Details on how
these calculations are obtained can be found in Cohen’s original paper on RIPPER
[Coh95] and Quinlan’s studies on the description sizes of rule sets [Qui94][Qui95].
RIPPER stops adding new rules when the total of the description length of the current
rule set is δ bits larger than that of the smallest rule set found so far. Here, we use
δ = 64 as suggested by Cohen [Coh95].

After a rule set is induced from the given dataset, the rule set is then revised again
to optimize the overall performance of the set. In this phase, for each rule r in the
rule set, a replacement rule r′ is formed by growing and pruning r again. This time,
instead of information gain, the growing criterion is the MDL of the entire ruleset. In
addition to the replacement rule r′, r is also revised again by greedily adding more
conditions to it. One of the three variants of r will then be selected according to MDL
of the entire rule set4. In Algorithm A.2, the pseudo code of RIPPER is illustrated.

Effective rule induction depends upon three fundamental aspects, namely, growing
criterion, pruning criterion and stopping criterion. Growing and pruning criteria can
be thought together as rule evaluation criteria while the stopping criterion determines
the value of the entire rule set. In RIPPER, the rule is evaluated by the ratio of the
number of covered target instances to that of all covered instances (see Equation (4.8))
and the rule is grown using the information gains of candidate conditions.

Apart from the aforementioned criteria, many other metrics are used to evaluate
rules. For instance, CN2 [CN89], employs entropy to evaluate the induced rules. IREP
[FW94] (the rule learner on which RIPPER is based) uses error rate that the rule set
made on the pruning set as a stopping criterion. In 1990, Cestnik [Ces90] proposed
another evaluation criterion called them-estimate, which assumes that each rule covers
m instances a priori.

According to Fürnkranz and Flach [FF03], however, almost all major evaluation
metrics employed in current rule learners are closely related and information gain is
particularly suitable for covering algorithms. They also suggested that RIPPER’s rule

4It is worth noting that, to obtain a rule set with lowest MDL, each rule in R has to be revised.
Although the most efficient rule set is assured, this makes RIPPER a rather computationally expensive
algorithm.
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set generalization method is superior to others, which leads us to select RIPPER as a
candidate to be used in our flow classification system.

Another successful rule learning method that combines C4.5 and RIPPER is pro-
posed by Frank and Witten [FW98]. To avoid rule set revision after all rules are found
(as in RIPPER), C4.5 is employed to generate a rule instead of the ordinary grow-and-
prune method. In their approach, the decision tree is created using C4.5 algorithm.
However, instead of expanding every node to cover the entire dataset like the usual
tree-generation method, only the node with lowest entropy is expanded, resulting in a
tree that is not fully explored or a “partial tree”. The leaf that covers most instances is
selected and a rule is then extracted from its path from the root. Finally, the instances
that are covered by the newly obtained rule are removed and the process is repeated
as in other sequential covering methods. This method is called “PART” as it uses a
partial tree to generate rules. Because it employs C4.5 to generate rules and repeats
the process like ordinary sequential-covering learners, we do not find it necessary to
describe the algorithm in detail. However, as it bridges two learning schemes that
are presented and used in our experiments, it is included in our experiments as well.
Detailed discussions on the algorithm can be found in [FW98] and [WF05].

In flow classification, to the best of our knowledge, sequential-covering approaches
have not been used in any existing FCSs except in our system, which was published
in [AS07b], [AS07a] and [Ana10].

4.3 Statistical Learning Methods

Statistical learning methods predict the class of a new, unseen instance through sta-
tistical approaches. One of the simplest statistical learning methods is called “Naive
Bayes”, which is derived from the Bayes theorem of conditional probability. It was
originally described by Nilsson in 1965 [Nil65] and was first used to solve classification
problems by Cestnik et al. in 1987 [CKB87]. In a nutshell, Naive Bayes predicts the
most probable class of an instance with respect to a given dataset. Before we begin
our discussion on the method, we will first introduce a few notations and give the
formulation of the Bayes theorem. We shall write P(c) to denote the prior probability
of c or, in other words, the probability that c holds. In our flow classification domain,
we assume that all classes could occur with the same probability, i.e., P(ci) = P(cj) for
all ci, cj ∈ C. Likewise, given a feature vector x, we use P(x) to denote the probability
that x is observed and P(x|c) to denote the probability of observing x in a domain
where c holds, i.e., the probability of x when we fix the class to c. Finally, we use
P(c|x) to denote the probability of c given x.

The Bayes theorem is given by:

P(c|x) =
P(c)P(x|c)

P(x)
. (4.9)

Given a vector x, the goal of Naive Bayes method is the find the class c ∈ C that
has the highest P(c|x). Such class is called the “maximum a posteriori (MAP)” class,
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denoted by cMAP, which is precisely characterized as follows:

cMAP = argmax
c∈C

P(c|x)

= argmax
c∈C

P(c)P(x|c)
P(x)

The term P(x) can be dropped because it is the same for all classes and will not affect
the calculation. Hence,

cMAP = argmax
c∈C

P(c)P(x|c).

An instance x is a vector composed of feature values (i.e., x = 〈x1, . . . , xd〉), thus,

cMAP = argmax
c∈C

P(c)P(〈x1, . . . , xd〉|c)

= argmax
c∈C

P(c)P(x1, . . . , xd|c).

If we assume that the feature values are independent given a class, we get

cMAP = argmax
c∈C

P(c)P(x1|c)P(x2|c), . . . ,P(xd|c)

= argmax
c∈C

P(c)

d∏
i=1

P(xi|c). (4.10)

This means that cMAP is a class c that maximizes the sum of the product of the
probability of all feature values given c.

The question then is how we can know the probability of P(x1|c) to P(xd|c) as well
as the probability of the class P(c). In practice, they are obtained from the dataset
by analyzing the statistics of feature values and classes. For example, consider the
dataset in Table 3.2. The size of the dataset is 25, five of which are RlxConv and the
probability of RlxConv is thus

P(RlxConv) =
5

25
= 0.2.

From all RlxConv instances, two of them have a destination port of 5050. Thus, the
probability of dstPort = 5050 given the class RlxConv is

P(dstPort = 5050|RlxConv) =
2

5
= 0.4.

In Naive Bayes, to classify an instance, one only has to repeatedly compute the prob-
ability of each feature value given all classes in C and select the class that yields
highest probability. That is, Naive Bayes simply looks for the class with the highest
probability with respect to the given dataset, without constructing any concrete clas-
sification model. Nevertheless, although the probability of the class is obtained using
the statistics of the feature values of all instances in the dataset, the entire dataset is
not required in the classification phase — only the frequencies of each feature value
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and the classes are. In any case, it is important to note that Naive Bayes works under
the assumption that the features are independent from each other, which is usually
not the case. The method has been shown to work comparatively well in practice,
however, and in some cases performs better than more complicated methods such as
a decision tree or rule learners [DP97]. Furthermore, because cMAP is the product of
the probabilities of all feature values, if there exist any xi such that P(xi|c) = 0, the
resulting product would be zero. This problem can be fixed using Laplace estimator
or m-estimate, which adds one to all numerators and adds the number of added ones
to the denominator [Ces90][Kot07].

While the method described above can handle only discrete values, Naive Bayes is
also designed to handle numerical values. Typically, Naive Bayes assumes that each
numerical feature has a Gaussian probability distribution, which is characterized by
the mean and standard deviation. We can compute the probability of observing a
value of a feature as follows. Given a class c ∈ C, a feature V : F → D, and x ∈ D,
the probability of an instance of class c that V = x is:

PrGauss(V = x|c) =
1

σc
√

2π
e−(x−µc)2/2σ2

c (4.11)

where µc is the mean and σc is the standard deviation (SD) of the values of V with
respect to the class c.

Practically, the mean µ and SD σ of a feature are calculated from the values of the
feature in the dataset. To determine the probability of a feature value, in the discrete
case, one has to count the frequency of the value and compare it with all other values
in the dataset as discussed earlier. In case of a numerical value, x in (4.11) has to
be instantiated with the value of interest along with the µ and σ calculated from the
dataset. Consider again the instances in the dataset in Table 3.2 as an example. The
mean and SD of the values of connTime of instances that belong to class RlxConv are
1.568 and 1.661 respectively. If we are considering the probability of an instance with
the feature value, say, connTime = 2.00, which belongs to RlxConv , we will get:

PrGauss(connTime = 2.00|RlxConv) =
1

1.661
√

2π
e−(2.00−1.568)2/2(1.661)2

= 0.232

After the probability of the value of each feature is obtained (either continuous or
discrete), the likelihood of the class can then be calculated using Equation (4.10)
as discussed earlier. Nevertheless, in practice, some features do not follow a Gaus-
sian distribution. For instance, Figure 6.2 illustrates the distribution of the average
throughput of instances in a dataset5, which does not have a Gaussian distribution.
Assuming all numeric features to have a Gaussian distribution is, therefore, impracti-
cal and would lead to low classification performance. To this end, instead of relying on
the Gaussian assumption, John and Langley [JL95] proposed a kernel density method
to estimate the probability distribution.

5This dataset is called “WIDE Dataset” and it will be used later in our evaluations. A discussion
over this dataset as well as detailed explanation of the distribution shown in the Figure will be given
in Chapter 6.
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Consider a dataset D and a dataset Dc ⊆ D such that all elements in Dc belong to
class c, i.e.,

Dc = {̇〈x11, . . . , xi1, . . . , xd1, c1〉, . . . , 〈x1m, . . . , xim, . . . , xdm, cm〉}̇

such that ck = c, 1 ≤ k ≤ m. The kernel estimation of Vi = x is given by:

PrKernel(Vi = x|c) =
1

m

m∑
j=1

(
1

σc
√

2π
e−(x−µcj)2/2σ2

c

)
(4.12)

where xi,j is the value of feature Vi of the j-th element in Dc and µcj = xij .
In words, the kernel estimation is the sum of multiple Gaussian probability estima-

tions whose mean of each estimation is an occurrence of the interested feature value
(which is Vi, in the equation above), which is seen in the dataset. In a usual Gaussian
estimation, the mean µc is the average of all values of the interested feature that are
found in the dataset and the probability is evaluated only once using (4.11), whereas
in case of a kernel estimation, m evaluations are performed.

By summing up multiple Gaussian distributions, the kernel method can capture
the distributions with multiple peaks. This method has been shown by John and Lan-
gley [JL95] to be very useful and outperform Gaussian-based Naive Bayes in many
domains6. In the context of flow classification, Naive Bayes method was employed by
Moore and Zuev in 2005 [MZ05b] and it has been shown that, by simply changing
the estimation method from Gaussian to kernel, the overall prediction correctness is
improved from 65.26% to 93.50%. In 2006, Williams et al. [WZA06] evaluated the
method along with other learning algorithms including C4.5. The results show that
given the same feature and data sets, the learners perform equally well in term of clas-
sification accuracy. The main difference, however, is their computational performance.
Williams et al. found that C4.5 can classify the flows faster than other algorithms
while maintaining high accuracy. Naive Bayes using a kernel estimator, on the other
hand, performs the worst in terms of correctness but it is much faster considering the
classification model building time. This finding is also confirmed by our evaluations.
The missing element in the evaluations presented in [WZA06], however, is the flow ob-
servation time. Because learning can be carried out offline, the time the learner takes
to learn is not relevant; the time that the flow classification system takes to classify
the flows — including features extraction — is much more important.

Another method based on Bayes theorem is called “Bayesian Network”, which is
essentially a graph describing probability relationships among features. Each node in
the graph is associated with a feature whereby the arcs linking two nodes represent
causal relationships between features. If there is no arc between any pair of nodes, it
means that the two features associated with both nodes are independent. For example,
take a Bayesian Network describing a probability relationship between a symptom and
a disease contains two nodes, one of which is associated with the symptom and the
other with the disease given the symptom. The probability of observing the symptom
is given in the symptom node and the probability of the disease given the symptom is

6At any rate, both methods perform just as good if the feature values are Gaussian distributed.
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indicated in the arc. With this information, one can compute the probability of having
the disease if the patient is observed with the symptom. If the disease is associated
with more than one symptom, then there would be arcs linked from other nodes, which
correspond to the probabilities of other symptoms.

Since we have no background knowledge in the dependencies of the features, it is
rather difficult to come up with an appropriate Bayesian network. In our experiments,
we will focus only on kernel-based Naive Bayes as it is more accurate than its Gaussian
counterpart. Still, there are several approaches, such as [HMC99], [Chi02], and [Ad03],
which aim to automatically determine the network structure from a given set of data.

4.4 Instance-Based

If knowledge is hidden in the data, why not use the data themselves to represent the
knowledge instead of employing an additional model, such as a decision tree or a rule
set? Using the data instances to represent the knowledge is the key concept of instance-
based learning. Instance-based learning does not build any classification model or any
abstraction from the data: it uses the dataset itself as part of the classifier to classify
unseen instances [AKA91]. This kind of classifiers evolve around a classic learning
algorithm called “k-nearest-neighbor (k-NN)”, which was introduced by Cover and
Hart in 1967 [CH67]. In k-NN, an instance is thought of as a point in a d-dimensional
space, in which each dimension is related to one of the d features. It is conjectured
that the instances of the same class should have the same properties and, therefore,
would be close to each other. To classify a new instance, the algorithm finds k nearest
instances (or “neighbors”) and assigns the majority class of those instances to the new
one.

The performance of k-NN is affected by two following aspects: the distance metric
and the value of k. The employed distance metric should minimize the distances among
instances from a similar class and maximize the distances among those from different
classes. In general, Euclidean distance is used as the distance measure. However, other
geometric distances such as Manhattan distance [Kra87] can also be used. Examples of
the distance metrics used in various k-NN approaches are shown in Figure 4.3. A more
detailed review on instance-based learning and distance metrics can be found in [Aha97]
and [dA98]. In any case, if different features have different scales of measurement, the
distances have to be normalized first. Otherwise, the features with a larger scale of
measurement would have more influence than those with smaller scales. In a noisy
domain, the noisy instances that reside near the new instance could easily win the
majority vote. This problem could be solved by increasing k to suppress the effect of
the noise. However, the larger k will also lead to rougher areas that define the classes.
This means that even though the instances of the same class, say c, are well-clustered
together, a new instance of this class, which resides very close to the existing ones,
might be classified as another class if c is not the majority class of the k instances.
Figure 4.2 illustrates such scenario. At any rate, one of the disadvantages of the k-
NN approach is that there exists no systematic way to identify the best k for a given
domain. One can only iteratively apply different k to determine the best classification
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Figure 4.2: k-Nearest Neighbor. Selecting appropriate k is essential to the classification
performance. If k = 5, the new instance (the middle circle) would be classified as triangle
whereas, if k is set to 10, it would be classified as square.

performance [Kot07][WF05].

Let x,y ∈ Rd, the distance metrics can be defined as follows.

Euclidean : DiffEuc(x,y) =

√√√√( d∑
i=1

|xi − yi|2
)

Manhattan : DiffMan(x,y) =

d∑
i=1

|xi − yi|

Chebychev : DiffChe(x,y) = max
i
|xi − yi|

Camberra : DiffCam(x,y) =

d∑
i=1

|xi − yi|
|xi + yi|

Figure 4.3: Approaches to define distance between x and y. (Originally shown in [Kot07])

Instance-based classification algorithms are said to be lazy as they defer the cal-
culation process until when it is actually needed (i.e., at the classification process)
[Mit97][WF05]. Eager algorithms, such as a decision tree or rule learners, on the
other hand, perform the generalization process as soon as the data are fed. Being
lazy implies that instance-based learners would take more time than eager ones in the
classification phase in which the whole process is completed. Therefore, instance-based
learning might not suit our domain where the classification time is critical.

Traditional instance-based representations such as [CH67] do not employ any knowl-
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edge model to explain patterns in data. All data instances are used in classifying new
instances. Consequently, a large number of data might be required at classification
time. To attack this problem, instead of storing a whole set of data, it is possible to
store only a few prototypes of each class (i.e., the ones near the boundary between
classes) [FBF77][MM99][PM00]. Instead of calculating distances from the instances’
neighbors, they basically define regions that enclose instances of the same classes.
These regions can be different based on the algorithms that generate them, the num-
ber of classes, or the data themselves. Generalizing instances into regions leads to
another kind of knowledge representation called “clusters” which will be discussed in
the next section.

In this research, we follow a popular instance-based learning approach described
in [Aha97] by Aha et al. in 1997, which is derived from the classical k-NN algorithm
introduced by Cover and Hart. It employs the Euclidean distance as the distance
metric and the feature values are normalized to ensure that equal importance is given
to the features with respect to the same distance function. Then, to classify an unseen
instance, the k nearest neighbors of that instance in the dataset are determined and
the majority class of the k instances is given to the unseen one. In our experiment,
k is set to 10. Algorithm A.3 in Appendix A describes the approach in detail. Note
that the algorithm actually describes the classification process rather than the learning
process as the instance-based learner takes the lazy path and pushes all the work into
the classification phase. It has been shown by Roughan et al. [RSSD04] that k-NN is
very useful in a flow classification domain. They have evaluated the algorithm using
several k with many trace sets and different numbers of classes. The accuracy of the
system varies from 92.1% to 97.5% depending on the number of k and classes.

4.5 Clustering

All the methods that we have discussed so far are supervised learning methods aimed to
predict the class of an instance with the learners learning from the given pairs of feature
vectors and classes. Another breed of classification methods consist of unsupervised
learning methods and is designed to be applied to domains where data instances do
not belong to any predefined classes and the learners consider only the feature vectors
(and not the classes of the instances in the dataset). The aim of an unsupervised
learner is to determine how the data are organized, rather than to associate instances
with classes. One of the most common types of unsupervised learning methods is
called “clustering”. Similar to the instance-based approach, an instance in clustering is
thought of as a point in a d-dimensional space associating with d features. The goal of
the learning is to divide the data instances into groups or “clusters”, with the instances
in each cluster possessing some similar properties (e.g., the feature values). How the
clusters are defined and determined is different among clustering algorithms.

Although it is not originally designed for classification tasks, clustering algorithms
can be used in classification problems as well. The rationale is that the instances that
belong to the same class should have the similar characteristics and, thus, belong to
the same clusters. To classify a new instance, it will be assigned to the nearest cluster
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according to the feature values and then the class associated with that cluster will
be given to the instance. Nevertheless, because the classes are not considered in the
learning process, the instances that belong to different classes could still be assigned
to the same cluster. If there are multiple classes in a cluster, assigning a class to the
new instance could clearly become problematic. Many class-assignment heuristics have
been introduced in response to this issue. Roughan et al. [RSSD04] propose to assign
classes to the flows in the clusters based on specific features such as transport ports.
Zander et al. [ZNA05b, ZNA05a] and Erman et al. [EMA+07], on the other hand,
simply classify a flow with the dominant class of that cluster. Bernaille et al. further
conduct an experiment regarding the classification heuristics in [BTS06] and conclude
that classifying a flow based on its cluster and transport port is more effective than
the dominant-class approach. It is important to note, however, that their results could
be biased because the ground truth (i.e., the true classes of instances in the dataset)
is determined by transport ports.

4.6 Discussion on Learner Selection

In addition to categorizing them into supervised and unsupervised ones as discussed
above, we can also divide machine learning algorithms into white box and black box
approaches. For white box approaches, which include most of the algorithms presented
earlier, the classification models induced by the learner are observable, symbolic, and
easy to be comprehended [Mic88][MBB98]. On the other hand, the black box learners,
such as “Artificial Neural Networks (ANNs)7” [MP69][Wer75][Hop82][Elm90][Dav09],
Random Forest [Bre01], and mathematical statistics, induce models based on their
own knowledge representations, which are rather complex and difficult to interpret
[MBB98][HX02]. These models typically involve weights, coefficients, and distances
[MBB98].

Although neural networks are expressive and robust [WF05], the learned knowl-
edge that is embedded in the network structure is difficult to understand and cannot
be easily verified by the domain experts [HX02]. Despite many attempts to extract
the comprehensible knowledge from the networks [Gal93][TS93][Fu94][HX02] and to
combine connectionist systems and symbolic knowledge representation [Smo87][SA93]
[BHH08], understanding the neural network structure is still a challenging research
area. Another example of a black box learner is the Random Forest, which creates a
number of decision trees from randomly chosen subsets of features (hence the name).
A new instance will be classified by all trees and the majority class will be assigned
to the instance. It is considered as a black box because there is no obvious way to
extract the general knowledge from the forest [Bre01].

Because the classifier’s task is essentially to map the feature vector to a service class,
it is reasonable to restrict ourselves only to supervised learning algorithms. Moreover,
we are also looking for algorithms whose learned classification models are easy to in-
terpret and utilize. White-box algorithms whose learned models can be transformed
into IF-THEN rules are the most preferable as they clearly present the relationships

7In the literature, they are also referred to in a broader term as “connectionism models”.
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between features and classes. To this end, we have selected four white-box, supervised
algorithms to evaluate — namely, C4.5, RIPPER, PART, and Naive Bayes. In addi-
tion, k-Nearest Neighbor, which is an instance-based approach is also included. C4.5,
the decision tree algorithm, follows a divide-and-conquer approach. It first examines
all the features at each level of the tree and then determines which one is the most dis-
criminative in separating the classes at their respective levels. RIPPER, on the other
hand, adopts a sequential covering approach as it considers each class individually and
tries to find rules that cover as many instances of that class as possible. PART is a
hybrid algorithm, which makes use of both approaches. Built on Bayes theorem, the
Naive Bayes classifier works by statistically classifying the flows based on background
knowledge. Lastly, the k-NN algorithm classifies an instance based on its similarity
(or distance) between the new instance and other instances in the dataset.

All aforementioned algorithms cover a wide range of learning algorithms, which
we believe will be comprehensive enough for robust evaluations. Nevertheless, apart
from the algorithms presented above, there are many other learning algorithms that
have not been discussed, such as neural networks, linear/non-linear regression models,
and support-vector machines. Their exclusion from our research is due to the fact
that they are not intended to induce such comprehensive structures as trees or rules.
Possibilities of applying them in flow classification domain will be explored in our
future efforts. Machine learning literatures, e.g., [Bis08], [WF05], [TK03], [Mit97],
[MBB98], and [Kot07], provide further discussions on these learners as well as other
machine learning techniques.

4.7 Performance Measurement

Having discussed the learning algorithms and the classifier induction, we will now turn
to the evaluation of a classifier after it is induced by a learner. Typically, in machine
learning literature, the evaluation process involves two types of datasets: the “training
set” and the “test set”. The former is a set of instances used by the learner to induce
a classifier; the latter is the dataset used to evaluate the classifier produced by the
learner.

Definition 4.7 (Accuracy of a Classifier) Let K be a set of classifiers, D the set
of all datasets, and C a set of service class. The accuracy of a classifier K ∈ K over
D is defined as follows:

Accuracy : K ×D→ R

(K, {̇〈x1, c1〉, . . . , 〈xq, cq〉}̇) 7→
∑q

i=1 matched(K(xi), ci)

q
.

Provost et al. [PFK98] suggested that using accuracy as an evaluation measure
might be misleading in some cases due to the fact that classification accuracy assumes
equal misclassification costs. For example, the cost of misclassifying StrConv flows
as Bulk flows is the same and vice versa (both are considered as incorrect), which
might not always be the case. Also, classification accuracy assumes that the classes in
the dataset are equally distributed. If the classes are badly distributed, or “skewed”,
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however, the evaluation results could be biased. For instance, if 90% of the instances in
the dataset belong to Bulk class, simply classifying all instances in the dataset as Bulk
would still give 90% correctness. In our evaluation, we assume that misclassification
costs are the same for all classes. Furthermore, the datasets used to evaluate the
classifiers are “stratified” (i.e. the instances of all classes are drawn equally from the
original datasets), which ensures that the evaluation results are not influenced by
results of only any particular classes. Dataset stratification is discussed in detail in
Section 5.4.2 and 5.5.3.

When the dataset is split into training and test sets, there is a chance that either
of the two will not represent the actual characteristics of the data. In an extreme
case, a certain class might be missing altogether from the training set. This effect
could be prevented at the splitting process using stratified randomization. However,
it is still very premature as it cannot guarantee that the training and test sets are
really representative. This problem becomes even more pronounced in a case where
the entire dataset (including both training and test sets) is small.

To address this issue, Stone [Sto77] proposes an evaluation method that repeatedly
uses multiple training and test sets generated from multiple splits. This method is
called “cross-validation (CV)”. In cross-validation, the data are divided into k equal
partitions or folds and each fold is held out to be used as the test set while the rest are
used as the training set. A classifier is then induced from the training set and evaluated
against the test set by a learner. This process is repeated over and over every fold
has been used as test set (i.e., k iterations). As a result, the learner is evaluated k
times over k different sets. The correctness from all iterations is then averaged to
find the overall accuracy. In our evaluation, k is set to 10 as it tends to produce the
best accuracy estimation, according to [Koh95]. In the following, formal description
of cross-validation process will be given. We will begin with an introduction to a
multiset operator, additive union, follows by definitions of folds and cross-validated
performance of a classifier respectively.

Definition 4.8 (Additive Union) Given a set X, the additive union of two multi-
setsM1 andM2 over X is a multisetM , denoted byM = M1]M2, such that ∀x ∈ X,
M(x) = M1(x) +M2(x).

Basically, additive union is a multiset operation that joins two multisets together
like ordinary set union. In additive union, however, the multiplicities of similar ele-
ments in both sets are also added together. The following is the formal definition of
folds:

Definition 4.9 (Folds) A set of k-folds of a dataset D is a set FD = {D1, . . . ,Dk}
such that D1 ] . . . ] Dk = D, and ∀i, j ∈ {1, . . . , k} there exists no Di,Dj ∈ FD such
that abs(|Di| − |Dj |) > 1. An element in FD is called a fold of D.

In other words, the dataset is composed of k folds such that the differences of the
cardinalities of the folds are not greater than one. The condition on the number of
cardinality ensures that the sizes of the folds are as close as possible. Finally, we can
formulate the cross-validation as follows.
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Definition 4.10 (Cross-Validation) Let D be a set of all datasets, D ∈ D, FD =
{D1, . . . ,Dk} a set of k-folds of D, and L a set of learners. A k-folds cross-validation
performance of L over D with respect to FD is defined as

CrossValidate : L ×D× P(D)→ R

(L,D,FD) 7→
∑k

i=1 Accuracy(L(D\Di),Di)
k

.

4.8 Conclusion

In this chapter, an overview of supervised white box machine learning methods is
provided. We have explained in detail how several supervised learning schemes work
as well as investigated their strengths and weaknesses. As a result, five learning algo-
rithms — C4.5, RIPPER, PART, Naive Bayes, and k-Nearest Neighbor — are selected
to be used for evaluation in our research. A discussion on measuring the performance
of a classifier is also given along with the formal definitions of accuracy and cross-
validation measures. In the next chapter, we will see how these learners are integrated
in a flow classification system and how they perform on the real-world datasets with
respect to the performance measures described in this chapter.



Chapter 5

Toward an Adaptive Flow
Classification System

We have learned in Chapter 2 that a real-time adaptive flow classification system
that can classify both TCP and UDP flows is still missing. In this chapter, a novel
flow classification system called “Supervised Machine learning Assisted Real-Time FCS
(SMART)” is presented. The system will be described on the basis of the model that
we introduced in Chapter 3. It is equipped with a learner and uses only features
that consider only information that is available in both TCP and UDP protocols. We
will see in this chapter the components of SMART including the service classes, the
features, the learner, and how they are integrated. In addition, the system will be
evaluated on the data from individual users.

5.1 Proposed Service Classes

The choice of service classes to be used in a FCS depends on the purpose of the system
as it specifies how the flows would be categorized. Since SMART is developed to assist
QoS support, the set of classes has to be able to capture the QoS requirements.

Currently, there are few standardized service classes available, for example, [G.101b]
by ITU-T, [3GP04] by 3GPP, and service class guideline by IETF [BCB06]. They can-
not be used in our scenario directly as they are designed to identify how the packets
should be treated (based primarily on delay-sensitivities), and not to group similar
services together. To this end, we propose a set of service classes, which is meant
principally for flow classification systems, with each class being designed to be general
enough to cover all services with similar QoS requirements as follows.

Strict Conversational Class Real-time audio/video applications are symmetric ap-
plications, which are sensitive to delay and delay variation as well as require rel-
atively high data rates. Examples of application protocols in this class include
the Real-time Transport Protocol (RTP) [SCFJ03], which delivers services such
as Voice-over-IP (VoIP), Windows Live Messenger videoconference [Mic07], and
real-time online games such as Half-Life [Val07] and Unreal [Epi07].

75
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Relaxed Conversational Class This class of applications is quite similar to the pre-
vious class but requires less bandwidth, less delay variation sensitive and error
intolerable. Applications in this class are real-time and symmetric with low delay
requirement, including remote desktop, interactive games and instant messag-
ing. Example applications are Telnet, SSH [Ylo06], Virtual Network Computing
(VNC) [RSFWH98], Internet Relay Chat (IRC) [Oik93], and Yahoo Messenger
[Yah08].

Streaming Class Streaming class services serve streams of data, including audio/video
streaming services (such as RealMedia [Rea08] or web-based streaming services
like YouTube [You08]). These applications expect high data rates but are not
sensitive to delay or delay variation because the data can be buffered and do not
need to be used in real-time.

Interactive Class All server access applications fall into this class. The key charac-
teristic of the interactive class applications is request-and-response, i.e., the client
application sends a request to a server and receives a response from the server.
This kind of service is asymmetric, not delay sensitive, and does not require high
bandwidth. The main requirement is error intolerance. Examples of applica-
tions include web browsers, email clients, as well as searching or file-transferring
requests of peer-to-peer (P2P) software. It is worth noting that P2P software
generally has two types of sessions. One is for searching and requesting files and
the other is for the actual data transmission. The set of classes described here
categorize the two types of sessions into two classes.

Background Class In background class traffic, the other side of the transmission
does not expect the data within a certain period of time and the application
will use network resources as they are available, i.e., in best-effort manner. Ex-
amples of services in this class are email delivery, SMS, and bulk data transfer
such as FTP and Server Message Block (SMB) protocols as well as P2P data
transmissions.

The set of applications or services of each class that are used to evaluate SMART,
our new FCS, are listed in Appendix C.1. Because the components of the flow clas-
sification system do not depend on any the set of classes, the suggested set of classes
could be effortlessly replaced if SMART is used for other purposes.

5.2 Features

Features are characteristics of flows that are used to categorize the flows into classes.
Different feature functions are employed by different flow classification approaches as
briefly discussed in Section 2.5. In this section, feature functions that are used by
several existing FCSs will be explored using the model introduced in the Chapter 3.
Then, we will proceed to discussions on a novel feature, throughput difference, as well
as other feature functions used by SMART.
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5.2.1 Features in the Literature

In this section, the characteristics and properties of the existing features in the litera-
ture are reviewed, using our model introduced in the previous chapter. The advantages
and disadvantages of each kind of feature will be discussed. We will also see that our
model can explain all existing features that are available in the literature.

The simplest kind of flow classification system is the port-based approach that
classifies flows based solely on their transport ports. The feature functions of such
systems are thus:

srcPort : F → N
(pi | 1 ≤ i ≤ n) 7→ srcPort(p1)

dstPort : F → N
(pi | 1 ≤ i ≤ n) 7→ dstPort(p1).

The feature extraction function can, in turn, be defined as:

E′ : F × N+ → X2

(f, l) 7→ 〈srcPort′(f, l), dstPort′(f, l)〉

where F is a set of managed flows, N+ = {1, 2, 3, . . .}, X2 = N × N a set of feature
vector, and srcPort′ and dstPort′ are length-restricted features corresponds to srcPort
and dstPort, respectively. By definition, the source and destination ports are the
same among all packets in the flow. Therefore, l = 1 is sufficient. Examples of such
systems include [MKK+01], [LC03], and [PN97]. As discussed in Section 2.5, transport
protocol ports are not reliable, hence, in our FCS, the use of transport port is avoided.
Also, because of that, other techniques such as signature-based and flow-behavior
based approaches are developed. Signature-based approaches consider packet and flow
payload as features and classify flows according to the contents of the payloads. Hence,
feature functions employed in signature-based FCSs are functions that extract payload
contents from the given flows. A study on signature-based FCS including the employed
feature functions and feature extraction functions is presented in Section 5.5.2.

Another kind of classification approach is called flow-behavior-based approach. It
employs the features that are aimed to capture more generic characteristics of the
given flows such as average packet size or throughput. One of the earliest of such
FCSs, which is proposed by Zhang and Paxson [ZP00], tries to distinguish flows based
on the ratios of specific packet sizes and IATs. Its feature functions can be described
under our model as follows.
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Let P a set of packet models and p ∈ P . We define the following auxiliary functions:

smallPkt : P × N+ → {0, 1}

(p, s) 7→
{

1 size(p) ≤ s,
0 otherwise.

timeGap : P × P × N+ → {0, 1}

(p, p′, s) 7→
{

1 smallPkt(p, s) - smallPkt(p′, s) 6= 0,
0 otherwise.

shortIAT : P × P × R→ {0, 1}

(p, p′, t) 7→
{

1 iat(p, p′) ≤ t,
0 otherwise.

Intuitively, the function smallPkt checks if the packet is larger than the given packet
size. The function timeGap checks if the given packets are both small. shortIAT checks
if the IAT between two packets are shorter than a given value. Then, let F be a set
of flows, (pi | 1 ≤ i ≤ n) ∈ F , s ∈ N+, and t ∈ R, we can characterize the following
feature functions:

smallPktRatio : F → R
(pi | 1 ≤ i ≤ n)

7→
∑n

i=1 smallPkt(pi, s)−
∑n−1

i=1 timeGap(pi, pi+1, s)− 1

n
(5.1)

shortIATRatio : F → R

(pi | 1 ≤ i ≤ n) 7→
∑n−1

i=1 shortIAT(pi, pi+1, t)

n− 1
(5.2)

Here, the feature functions compute the ratio of bursts of small packets against the
total number of packets and the ratio of short IATs against all IATs respectively.
The thresholds of small and short are defined as s and t, which must be manually
specified to suite the target protocols or classes. Furthermore, in [ZP00], the features
are calculated from all packets in the flow. Therefore, it is considered to be non-real-
time approach and, in turn, the feature extraction function is defined as follows:

E : F → X2

f 7→ 〈smallPktRatio(f), shortIATRatio(f)〉

where X2 = R× R. Then, to classify a flow, a rules set that classifies the flows based
on the predefined ratio of small packets and short IATs is introduced to be used as a
classifier. Similar techniques have been extended by [ML05], [DWF03], and [TAO07].
However, because the thresholds of the packet size and IAT as well as their ratios have
to be predefined, these approaches are categorized as non-adaptive.

In 2004, Roughan et al. [RSSD04] introduced flow classifier systems that are
equipped with different clustering-algorithms-based learners. In their paper, average
packet size, root mean square of packet size, flow connection time, data volume, num-
ber of packets, and standard deviation (SD) of packet inter-arrival time are employed
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as features. In addition, they also introduced another feature, the inter-arrival time
variability, which can be categorized as follows:

iatVar : F → R

f 7→ iatSD(f)

iatAvg(f)
(5.3)

Essentially, the function states that the inter-arrival time variability is the ratio of
the SD to the average of the IATs throughout the flow. This feature was shown in
[RSSD04] that it could be used to separate streaming traffic and bulk-data traffic
from each other. Furthermore, it was shown that the average packet size and the
flow connection time can be used to distinguish relaxed conversational, interactive and
streaming classes from each other. These features are also employed by Zander et al.
in 2005 [ZNA05b, ZNA05a] as well as SMART [AS07a][Ana10]. In 2006, Williams et
al. [WZA06] evaluated the aforementioned features along with the following: transport
protocol, minimum and maximum packet size, and inter-arrival time.

All approaches mentioned above are non-real-time flow classification systems, which
abstract the features from the entire flows. The flow extraction function can thus be
characterized as follows:

E : F → Xd
f 7→ 〈V1(f), . . . , Vd(f)〉

where F is a managed set of flow, V1, . . . , Vd are feature functions, and Xd is a set of
feature vectors corresponds to V1, . . . , Vd.

Non-real-time approaches are not suitable for some domains, such as QoS support,
where the classification has to be carried out in a limited time period so that the
flow can benefit from the given class. Thus, Bernaille et al., [BTA+06, BTS06] have
proposed a flow classification system that can classify flows in using only partial flows
allowing the classification to be done after seeing only specific number of packets. In
[BTA+06, BTS06], it is observed that when two hosts interact with each other using
different application protocols, their communication initialization behaviors are also
different. These interactions are defined over the sizes and the direction of the packets.
The packet sizes of each flow and its coflow are captured and compared with respect
to their orders. That is, packet size of the first packet of a flow is compared with the
size of the first packet of its coflow, the sizes of second packets in both flows are then
compared, and so on. After the comparison, the differences of the packet sizes of each
pair are stored in a feature vector of length l where l is the number of packet pairs
to be compared. The k-th component in the vector is the difference of the sizes of
the k-th packet pair. To precisely characterize the feature, we first define an auxiliary
function that computes the size of the specified packet:

sizeOfPacket : F × N+ → N

((pi | 1 ≤ i ≤ n), j) 7→
{

size(pj) 1 ≤ j ≤ n,
0 j > n.
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The feature function is given by:

sizeComparek : F → R

f 7→ sizeOfPacket(f, k)

sizeOfPacket(coflow(f), k)

sizeCompare′k : F × N+ → R
(f, l) 7→ sizeComparek(prefix(f, l))

Intuitively, the feature function compares the size of the last packet of the given flow
with the one from its coflow. The feature extraction function can be characterized as:

E′ : F × N+ → Rl

(f, l) 7→ 〈sizeCompare1(f, l), . . . , sizeComparel(f, l)〉.

In the function sizeOfPacket, the case where j > n occurs when the length of the
flow is smaller than specified length j. Although we specify it as zero here, in the
papers, the authors have not mentioned such cases.

Since the preferred flow length can be specified, this method is considered real-
time. The authors also apply and evaluate a number of clustering algorithms as the
learners, making the method adaptive. At any rate, using this technique, the coflow
of each flow is always required. Thus, it can only be applied to TCP flows where
coflows always exist and the order or the packets in both flows have to be kept in
sync. Furthermore, the employed features might not be able to distinguish between
the classes whose the initialization behaviors are the same but the actual characteristics
are different. One example is a case where streaming data are encapsulated by HTTP
protocol. This downside is also confirmed by the experiments carried out by the
authors themselves. The induced classifiers exhibit performance drop in the dataset
where a single application protocol conveys multiple types of services.

5.2.2 Discriminative Features

In order to find the features that can effectively distinguish flows from different classes
(or, in other words, highly “discriminative” features), it is necessary to first under-
stand the nature of the flows. The strict and relaxed conversational classes share some
characteristics such as symmetry (both sides of connection communicate to each other
equally) and connection time (e.g., a conversation would take longer than loading a
web page) but they are different in error tolerance, data volume, and delay sensitivity.
Strict conversational flows consume much more bandwidth, are tolerable to errors,
and are extremely sensitive to delay, while the relaxed conversational class behaves
diametrically. Therefore, we believe that the transport protocol, data volume, and
packet inter-arrival time (IAT) could be the key differences between them. Stream-
ing connection is typically carried out in a request-and-response manner. Once the
connection is established, the client does not send anything back to the server apart
from TCP packet acknowledgements. This is also true for the interactive class. We
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Figure 5.1: Throughput calculation window. The width of a calculation window is the
number of packets used to calculate the throughput at a point in time. The first throughput
will be calculated using packets 1 to ω. The second throughput will be calculated using packet
2 to ω+ 1, and so on. While ω = 8 in this figure, ω is set to 10 in the actual implementation.

can thus use this asymmetry factor to separate streaming and interactive classes from
the conversational ones. The symmetry might be captured by ratio of data volume
transferred by a flow to that of its coflow.

The streaming and interactive classes can then be distinguished from each other
by data volume and burstiness. In the next section, a new feature, which is designed
to capture burstiness of a flow will be described.

5.2.3 Throughput Difference — A New Feature

Flow burstiness characterizes how uniform the packet IAT of the flow is. Packet IATs
of streaming flows, which transfer data in streams, would be more stable than those
of interactive flows, which have to wait for interaction from the other sides of the
transmissions. To capture such characteristic, we employ a new feature function called
TPUTDiff, which captures the changes of the throughput along the flow1. Although
throughput is affected by both IATs and packet sizes, our experiments show that the
feature can be effectively used to distinguish the flows.

Throughput is calculated by dividing the size of the data by the time duration that
the data are transferred. Generally, it is done by fixing a time-window and the amount
of data transferred within the window is divided by the window width. In doing so,
however, a timer is required for each flow2. Instead, we take another approach to
calculate throughout. When a flow is seen, the classification system stores the size
and the timestamp of each packet up to a specific number of packets, say ω. The
throughput is calculated by dividing the sum of the packet sizes with the differences
between the timestamps of the last (i.e., the ω-th) and the first packets. Interval
between first and last packets is called a “calculation window”. By moving the window
through the flow, the sum of the differences of the throughput along the flow can be
obtained. Figure 5.1 illustrates the calculation window.

1This work has already been reported in [AS07a].
2Also, because WinPcap triggers the flow capturing component every time a packet is seen, calcu-

lating this way is more suitable than maintaining the timer.
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Let dataTPUTAvg and packetCount be functions that calculate average data through-
put and packet counts of a flow, respectively3. The following is the definition of the
corresponding auxiliary function, sumTPUTDiff, which calculates the sum of differ-
ences of throughput along the flow, and the throughput difference feature function.

sumTPUTDiff : F × N+ → R

((p1, . . . , pn), ω) 7→


|dataTPUTAvg((p1, . . . , pω))
−dataTPUTAvg((p2, . . . , pω+1))|
+sumTPUTDiff((p2, . . . , pn)) n ≥ ω + 1,
0 otherwise.

TPUTDiffω : F → R

f 7→ sumTPUTDiff(f, ω)

packetCount(f)

Intuitively, throughput of a flow is calculated using a moving window of ω pack-
ets. To ensure accurate throughput computation in our experiments, we use ω = 10.
After at least two windows are obtained, the difference of throughputs of two adjacent
windows are computed and summed. In effect, to compute the differences, at least
ω + 1 packets are required. Also, the sum of the differences is affected by the overall
number of packets (i.e., the flow length) and, therefore, has to be normalized by the
flow length.

Apart from high discriminative power, the designate features should not require
deep-packet information (i.e., the payload data) and calibration. Some features, such
as [ZP00], [ML05], [DWF03], and [TAO07], require some calibrations or fine-tuning
by experts. It thus begs the question whether such features can be used in general or
whether the induced classifier would be able to handle unseen services. In consequence,
they will not be considered here. For TPUTDiffω, although the size of the calculation
window ω has to be identified beforehand, it signifies only how the throughput is
measured but does not directly influence the classification. Features that are not
well-defined such as maximum or minimum throughput are also avoided. This is
because they require additional parameters, such as the interval that the throughput
is observed. As a result, a set of 32 features shown in Table 5.1 is used. Some of these
features have already been employed or introduced in the literature. Precise definitions
of all feature functions in this thesis are given in Figure B.1 in Appendix B.

In this chapter, to empirically prove that SMART is feasible, preliminary experi-
ments will be conducted using the entire set of features. In Chapter 6, further scrutiny
will be on the discriminability of each feature. We will also see how the features behave
with respect to the number of packets observed. The investigation would lead to an
efficient, real-time and accurate flow classification system.

5.3 Learners

As discussed in the previous chapter, supervised learners are suitable for flow clas-
sification problem because the set of classes is distinctively defined and the training

3Precise definitions of these functions are defined in Figure B.1 in Appendix B.
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Table 5.1: Descriptions of features.
Features Description

1 protocol transport protocol of the flow
2 srcPort source port
3 dstPort destination port
4 connTime flow run time (in seconds)
5 connTimeCF connTime of the coflow
6 dataVolume sum of the sizes of all packets in the flow
7 dataVolumeCF dataVolume of the coflow
8 dataVolumeRatio ratio between the data volume of the flow and its coflow
9 pktCount number of packets in the flow (flow length)
10 pktCountCF number of packets in the coflow
11 pktCountTotal total number of packets in the flow and its coflow
12 pktCountRatio ratio between number of packets in the flow and its coflow
13 pktSizeAvg average packet size
14 pktSizeAvgCF pktSizeAvg of the coflow
15 TPUTDiff sum of differences of throughputs along the flow
16 TPUTDiffCF TPUTDiff of the coflow
17 pktSizeSD standard deviation of the sizes of packets in the flow
18 pktSizeSDCF pktSizeSD of the coflow
19 pktSizeRMS root mean square of the sizes of packets in the flow
20 pktSizeRMSCF pktSizeRMS of the coflow
21 dataTPUTAvg average data throughput (data rate)
22 dataTPUTAvgCF dataTPUTAvg of the coflow
23 pktTPUTAvg average packet throughput (packet rate)
24 pktTPUTAvgCF pktTPUTAvg of the coflow
25 iatAvg average packet inter-arrival time
26 iatAvgCF iatAvg of the coflow
27 iatSD standard deviation packet inter-arrival time
28 iatSDCF iatSD of the coflow
29 iatRMS root mean square packet inter-arrival time
30 iatRMSCF iatRMS of the coflow
31 iatVar ratio of the iatSD and iatAvg
32 iatVarCF iatVar of the coflow
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data that are fed into the learner come with service classes. In turn, our research is fo-
cused on evaluating several supervised learners including C4.5, RIPPER, PART, Naive
Bayes, and k-NN. These learners represent a wide range of learners based on different
disciplines and should be able to show how well our flow classification methodology is
performed across different learners.

5.4 Empirical Evaluation - Individual Users

In this section, empirical evaluations of our flow classification methodology will be
presented. The aim is to see if adaptive flow classification that uses the proposed service
classes, features, and machine learning techniques, is feasible in end-user devices. This
would allow us to see how our methodology performs when it is used to classify flows
from single user. Also, we would like to know if the classifier induced by observing
flows from a user can be effectively used to classify flows from another user. We will
first begin with the data collection and preparation, followed by a discussion over the
evaluation strategy, and evaluation results respectively. The experiments and results
presented in this section have been previously published in [AS07b] and [AS07a].

5.4.1 Data Collection with Live-Capturing Sensor

To investigate the feasibility of our classification methodology as well as finding the
most suitable learner for the flow classification domain, a thorough analysis of real-
world data is carried out. In doing so, we have developed two state-of-the-art data
collection programs; one is designed to be deployed on end-user devices and collect
live traffic data from individual users and the other is intended to analyze flow data
in large offline packet traces4. With two diverse classes of flow data, we can inves-
tigate the possibility of utilizing our methodology in both end-user devices and in
other network devices such as routers and firewalls. We call the implementations of
live-packet and packet-trace data collection platforms “FlowStatLive” and “FlowStat-
Trace”, respectively. In the following, our live-capturing software, FlowStatLive, will
be discussed in detail. FlowStatTrace will be described later in Section 5.5.1.

The packet sensor of FlowStatLive is implemented over an open source packet
capturing software called WinPcap. WinPcap consists of two main components, the
“capturing driver” and the “capturing interface”. The capturing driver is implemented
as an ordinary network driver through which the applications can interact with the
network interfaces. However, unlike a typical network driver, when the application
sends or receives packets through WinPcap driver, it also copies the packets and sends
them to any programs that are waiting (one of which, in our case, is FlowStatLive)
through the capturing interface. Every time when a packet is seen, the sensor will be
invoked. Then, the sensor will determine if the packet belongs to any flow that it has
seen before. If so, the packet will be added to a temporary packet buffer associating

4A packet trace is a large collection of flow data, which is usually collected at the router of large
network such as organizational or ISP gateways. Packet traces will be discussed further in Section
5.5.1.
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with the flow that corresponds to the packet; otherwise, a new buffer, which is a linked-
list containing the packet structure, will be created. Although WinPcap provides an
excellent capturing facility, it treats the packet individually regardless of which flow it
belongs to. This means that FlowStatLive has to sort the packet into flows by itself.

In this sense, each buffer represents a flow that is seen over the network interface.
The packet capturing and buffering process is shown in Figure 5.2. After a flow is
closed or if no packet belongs to the flow observed within the time period, the flow
will be considered closed and the feature extractor will be called to further process
the packets in the buffer. In the literature, this timeout period is typically set to 60
seconds, which we also adapt to our non-real-time FCS implementation.

Packet Capturing - FlowStatLive

Capture packet Packet

Add packet to the buffer of
the corresponding flow

Create new
packet buffer

Termination
Signal

[termination signal received]

[no signal received]

[otherwise]

[the packet does not belong to any seen flow]

Figure 5.2: Packet-capturing process.

After the flow is closed or the timeout is reached, the extractor will invoke fea-
ture functions to abstract the corresponding feature values. All feature functions are
inherited from the same feature function class, which takes a flow (i.e. linked-list of
packet structures) as input and gives a feature value as output. For the extractor,
each feature function is treated as a black box, as it is concerned only with the output
type of the function regardless of how the output is computed. This approach closely
follows the models of the feature function and extraction function defined in Definition
3.7 and 3.10. After all of them have completed the calculations, the extractor gathers
the feature values and stores them in the dataset, which, in our implementation, is a
comma-separated values (CSV) file. One can also store raw packet data directly with-
out converting them to feature vectors. Doing so, however, is impractical here because
it would take too much space as all network traffic on the device will be recorded. At
any rate, the entire process from capturing the packets to storing the feature vectors
into the dataset is carried out in real-time without noticeably slowing the system down.
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Table 5.2: Dataset descriptions. Although the user’s applications are summarized as, for
instance, “web browsing” or “online games”, each user might have different applications of the
same type.

Users User’s applications Number of flows
User 1 Mainly web browsing followed by real-time online 9364

games, video streaming, videoconference and chat
User 2 Mainly real-time online games followed by 7928

web browsing, chat and streaming respectively
User 3 Mainly web browsing, followed by video streaming, 8992

chat, audio conference, and online games
User 4 Mainly web browsing, stock ticker, 8191

and video streaming, few online games.

5.4.2 Data Preparation

To see how SMART performs in the real-world, the dataset used to evaluate the system
must be collected from real-world networks and must be of a certain degree of diversity.
In consequence, to capture real-world traffic and network usage, we have deployed our
data collection software in different devices from different users, ranging from a high
school student, whose main applications include online gaming and media streaming, to
an investor who primarily uses stock ticker and web browsing applications. (See Table
5.2.) This diversity ensures that the applications, hardware and accessed networks of
these users are different. Data collection consists of two main phases, flow capturing
and service class identification.

In the flow capturing phrase, the flows data are collected by letting the users run
their usual applications. FlowStatLive, which runs in the background, will capture the
flows and extract the feature vectors automatically. Along with flow characteristics
computed by the feature functions, the name of the application associated with each
flow is stored in the feature vector as well5. In effect, the application associated to
the flow is also counted as a feature. This way, we are always able to map feature
vectors to the corresponding applications. This mapping is important to identify the
true class of the flows as described below. Moreover, the flow observation time is
restricted to 30 seconds, primarily because we want to save the system memory at
the runtime. Another reason is that we would like to see if the flows can be classified
without observing them entirely.

After the feature vectors are extracted, the service classes have to be assigned
to them. Currently, there exists no QoS-aware application that specifies flow service
classes. The networks are also not always guaranteed to support QoS. Furthermore,
service class definitions are not standardized, making the information available in
Type-of-Service field unreliable. Without knowing the true classes of the flows in the
dataset, we cannot reliably evaluate our flow classification method. Therefore, the
classes have to be assigned to the feature vectors by some other means — this is where

5The application name is obtained from the application-to-5-tuple mapping provided by the oper-
ating system.
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the application names come into play. As the application names are stored as a feature
in the feature vectors, one can identify the flow types based on the corresponding
applications. Some applications can nevertheless open many classes of flows. For
example, MSN Messenger can open both chatting flows and videoconference flows.
To provide additional information for the identification process, after the user run a
network application, she is asked to specify the class of her activities. The user is not
expected to have background knowledge in networking or flow classification. She has
to specify only what kind of actions she is doing, e.g., browsing web, playing games,
or videoconferencing. These actions are considered, along with the application names,
to identify the actual classes of flows. The identification is done manually by a human
expert. Using activity-mapping, we can establish the ground truth (i.e., the true class
of each flow in the dataset) to evaluate our classification method.

Ground Truth Identification with Expert

Obtaining Connection
Table from the OS

Packet Capturing

Add application name
to the feature vector.

FeatureVector

ConnectionTable

Extract feature vector
from the flow

Store to the Dataset

Flow

Human expert assigns a class to
each flow wrt. user's activity.

Stop the packet-capturing
process

terminate packet
capturing

[otherwise]

[Need more flow instances]

Figure 5.3: Ground truth identification process. The system first observes a flow and feed it
to the extractor to extract a feature vector. The connection table is then from the operating
system. The name of the application corresponding to the flow is then attached to the feature
vector. After enough flows are collected, they are later classified by the human expert. The
expert uses information on activities provided by the users and the application names in the
feature vectors to classify each vector in the dataset.

The aforementioned service classes identification method is at least as reliable as the
signature-based approach, which uses signatures to identify the service, and, based on
the identified service, identifies the class of the flows. Our approach, on the other hand,
uses connection-mapping tables provided by the operating system. This ensures that
the mapping be error-free, unlike the signature-based approach, whose classification
accuracy depends on the quality of the signatures.
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5.4.3 Evaluation Strategy

This section presents the evaluations of the learners described earlier in Chapter 4,
namely C4.5 decision tree learner, PART and RIPPER covering algorithms, Naive
Bayes, and k-NN. The experiments are conducted on WEKA, an open source data
mining platform [HFH+09]. In WEKA, C4.5 is reimplemented in Java. This Java
implementation is called J4.8. The evaluations are carried out in two main phases:
single-user and cross-user. In the single-user phase, the learners are applied to the
dataset from each user to learn the flow behaviors of that user and use the learned
knowledge to classify unseen flows from the same user. The accuracy is evaluated
using 10-fold CV method. To avoid any biases, the 10-fold CV method is repeated 10
times resulting in a total of 100 individual tests. In the cross-user phase, each learner
is trained using the entire data from one user and is evaluated on the data from the
others. For individual user datasets, Bulk class flows are not considered because most
of the applications in this class run in the background and, thus, the users are not
aware of them. Therefore, we cannot be certain which flow instances belong to the
class. It is important to note that none of the existing flow classification systems are
aimed for end-user devices and, to the best of our knowledge, none has ever collected
and performed experiments on individual-user flow data as we have done here.

5.4.4 Single-User Evaluation Results

Table 5.3 reports the evaluation results of the first phase where learners are trained
and tested by the data from the same user using the cross-validation method. Despite
the diversity of the users, all learners perform significantly well on every dataset, with
PART performing especially better than other learners in most cases. Table 5.4 -
5.8 present per-class correctness of each learner. The results show that the learners
perform equally well in all classes across datasets, and the overall correctness is not
biased by correctness of any particular classes. Note that User 4 never used strict
conversational flows and hence the result for that class is missing.

Table 5.3: Classification accuracy of each learner on each dataset.
Users J4.8 PART RIPPER Naive Bayes k-NN
User 1 98.73 98.54 98.46 93.37 98.25
User 2 97.14 97.98 97.56 89.52 96.47
User 3 99.31 99.43 99.52 97.73 99.09
User 4 99.11 99.33 99.32 91.98 98.52

Average correctness 98.57 98.82 98.72 93.15 98.08

We have also evaluated the learners in terms of computational time required to
induce classifiers (i.e., learning time). In our observations, the classification times
of all learners are extremely low and not significantly different. Thus, they are not
considered here. The tests are performed on a 2.8 GHz Intel Core 2 Duo with 2 GB of
RAM using Mac OS X 10.5 as the operating system. Figure 5.4 and Table 5.9 show
the average learning time of each learner on each of the datasets. Although there is
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Table 5.4: Per class accuracy - J4.8
Class User 1 User 2 User 3 User 4

StrConv 99.10 99.56 100.00 N/A
RlxConv 99.18 98.20 98.41 72.83
Streaming 97.55 95.03 98.17 99.53
Interactive 99.56 98.14 99.86 99.61

Table 5.5: Per class accuracy - RIPPER
Class User 1 User 2 User 3 User 4

StrConv 98.88 99.87 100.00 N/A
RlxConv 98.64 98.44 96.83 75.00
Streaming 97.73 95.38 98.57 99.78
Interactive 99.50 97.67 99.76 99.46

Table 5.6: Per class accuracy - PART
Class User 1 User 2 User 3 User 4

StrConv 100.00 99.87 100.00 N/A
RlxConv 98.37 98.55 96.83 73.91
Streaming 97.38 96.08 97.88 99.85
Interactive 99.43 97.50 99.75 99.61

Table 5.7: Per class accuracy - Naive Bayes
Class User 1 User 2 User 3 User 4

StrConv 92.81 88.44 98.77 N/A
RlxConv 95.65 98.49 98.41 82.61
Streaming 94.29 85.71 93.19 95.08
Interactive 97.44 81.79 98.49 89.60

Table 5.8: Per class accuracy - k-Nearest Neighbor
Class User 1 User 2 User 3 User 4

StrConv 97.75 98.99 100.00 N/A
RlxConv 91.58 97.86 98.41 72.83
Streaming 96.21 95.12 96.58 98.28
Interactive 99.17 95.05 99.63 99.30
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Figure 5.4: Average CPU time taken to learn. Because k-NN is a lazy algorithm, it does not
construct any knowledge representation model and requires no learning time.

Table 5.9: Average CPU time taken to learn (in seconds).
Users J4.8 PART RIPPER Naive Bayes
User 1 1.54 2.08 7.19 0.19
User 2 1.72 4.07 7.61 0.24
User 3 2.10 2.32 5.41 0.15
User 4 1.31 1.73 3.41 0.13
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little variation in terms of classification accuracies, as seen from Table 5.4 - 5.7, huge
differences in learning time are observed here. Naive Bayes learns considerably faster
than the other learners on all datasets, as it simply collects the flow characteristics.
Conversely, because it has to construct and revises the learned rules, RIPPER requires
at least twice as much time as the other learners. This is due to the fact that RIPPER
employs a slow grow-and-prune technique to generate the rule set and, after the rule
set is induced, each rule in the set has to be revised again [WF05]. Naive Bayes,
on the other hand, performs only simple calculations to establish the likelihood of
feature values and classes. Considering the computational time alone, Naive Bayes
would clearly be the preferred choice, even though its prediction accuracies are still
inadequate. In comparison the other learners, J4.8 provides the best trade-off between
accuracy and computational time.

In any case, the similar prediction results from all learners indicate that the features
employed by our methodology are discriminative. It is thus safe to conclude that our
methodology is independent not only of the applications and networks, but also of the
machine learning algorithms.

5.4.5 Cross-User Evaluation Results

In the second evaluation phase, we use the data from one user as the training set and
data from the other users as test sets. Each learner is trained by a dataset and then
tested on all other datasets. Other combinations of the data are then selected and
the process repeated until the each dataset has been used as the training set. The
overall performance is the average correctness of all iterations. Table 5.10 reports the
evaluation results of the four learners. It can be seen that the performance of each
learner drops dramatically compared to the previous results. This may be attributed
to the diversity of experience learned from the training set. Datasets collected from
users who have seen many kinds of applications from different classes allow for a
better classification than other datasets that contain less variety of applications. User
2, for instance, regularly plays online games as well as using other applications such
as streaming. A learner using the data from User 2 can better classify other datasets
than that using the data from User 4, who usually uses only web browsers. This
phenomenon is even more evident if we examine deeper in dataset-wise classification
results. As shown in Table 5.11 to 5.15, the classifiers that are induced from the dataset
from User 1 and User 2 always perform well on other datasets, while the classifiers
induced from User 3 and User 4 datasets do not. It can be observed that the classifiers
induced from User 4 perform the worst because User 4 uses only a limited set of
applications and does not have any StrConv applications. Notice that J4.8 performs
better than other learners in most of the tests. This may thus lead us to conclude that
J4.8 is more tolerable to data diversity, whereas Naive Bayes and k-NN do not.

Another reason for the low cross-user performance is that the classification rules
are too specific. The flows of the same class from different users, in spite of their
similar behaviors, might not be exactly the same. For example, consider the following
rule obtained by training PART algorithm on User 1’s data.

proto = TCP AND
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Table 5.10: Cross-user evaluation result - Average correctness of all datasets.
Learners Average Correctness
J4.8 74.15

RIPPER 72.92
PART 71.33

Naive Bayes 68.98
k-NN 66.82

avg_pkt_size_in > 315 AND
avg_pkt_size_in <= 1174: Interactive

In this case, if a flow of class Interactive has the average packet size of 1,200 and it is
transferred with TCP protocol, it will be misclassified as the other class. Apparently,
the rule is too strong. We believe that instead of using exact real values, transforming
those values into discrete ranges of values would yield more generalized rules and thus
better classification results. This issue will be investigated in our future efforts.

At any rate, the correctness of each learner in cross-user evaluation is still in an
acceptable level and could still be useful. Consider a scenario where the learner on a
network device is not yet well trained. One might be able to use the knowledge from
another device as background knowledge until the learner is sufficiently trained.

5.5 Empirical Evaluation - Packet Traces

The next phase of our experiment is to evaluate our flow classification technique on
a large dataset that is collected from a sizable network. This will allow us to see its
feasibility and performance in a large domain with many kinds of applications and
numerous network clients. We will begin by the description of packet traces, in which
the traffic records are stored, followed by our data collection software, FlowStatTrace,
as well as the experiment strategy and results, respectively.

5.5.1 The Packet Traces

In networking research, records of live network traffics are generally stored in the
“packet traces”. A packet trace is a collection of packet records. Depending on its
format, a trace could store packet headers, payloads, other information such as the
packet size, or the time when the packet is captured (i.e., the “timestamp”). Currently,
there are several packet trace formats available, for instance, pcap [MLJ07], Endace
Extensible Record Format (ERF) [End04], and CoralReef trace format [KMK+01].
These formats possess different features such as how much information can be stored
and how precise the records could be. Despite the differences, in principle, they are
just long records of packets that are captured by a sensor. That is, like in live-capture
scenario, the packets are treated and stored individually and one has to sort them
into flows manually. Some trace format, e.g., pcap format, can be use to replay the
network traffic exactly the same way it is captured. In fact, FlowStatLivecan be
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Table 5.11: Cross-user evaluation result (by set) - J4.8
Tested on

Trained by User 1 User 2 User 3 User 4
User 1 98.42 65.10 90.94
User 2 94.54 72.30 43.37
User 3 73.16 79.03 43.05
User 4 82.12 84.36 63.64

Table 5.12: Cross-user evaluation result (by set) - RIPPER
Tested on

Trained by User 1 User 2 User 3 User 4
User 1 98.27 71.63 83.04
User 2 93.69 81.35 36.56
User 3 74.40 78.87 41.26
User 4 85.28 84.73 46.00

Table 5.13: Cross-user evaluation result (by set) - PART
Tested on

Trained by User 1 User 2 User 3 User 4
User 1 92.98 38.76 86.00
User 2 94.05 61.84 36.70
User 3 71.57 79.61 47.11
User 4 88.11 84.93 74.31

Table 5.14: Cross-user evaluation result (by set) - Naive Bayes
Tested on

Trained by User 1 User 2 User 3 User 4
User 1 76.80 61.68 64.14
User 2 92.40 76.41 59.28
User 3 68.61 74.82 55.62
User 4 80.57 78.44 39.03

Table 5.15: Cross-user evaluation result (by set) - k-Nearest Neighbor
Tested on

Trained by User 1 User 2 User 3 User 4
User 1 75.51 78.49 77.58
User 2 89.19 72.97 77.73
User 3 78.76 44.25 58.90
User 4 53.17 43.22 52.03
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modified to read the packet traces and can be further used in our experiments without
much effort. However, with offline records, we do not have restrictions on memory,
storage, and time to process the feature vectors. We can in turn analyze the flow
characteristics in broader aspects. For example, one can extract flows using different
prefixes or different set of features and determine the relationships among them as
well as the classification accuracy6. To enable such thorough investigation on flow
behaviors, a sophisticated flow analyzing software, FlowStatTrace, is implemented. In
the following sections, detailed descriptions of FlowStatTrace and its components will
be provided.

As mentioned earlier, various trace formats are currently available. Regardless of
the format in which the packets are stored, they are in a sense huge sequences of
packets that are transferred across the networks. A packet trace can thus be modeled
as a sequence of packet models as follows.

Definition 5.1 (Packet Trace) Let P be a set of packet models, a packet trace is
a finite sequence

(p1, . . . , pn)

where (∀1 ≤ i ≤ n)pi ∈ P .

The definition above indicates that the packet traces are simply sequences of any
packets, unlike flows, which are sequences of packets with the same 5-tuples values. It
is modeled as a sequence because the packets in the trace always come in order. They
are generally sorted by the timestamps.

Storing the packet sequences means that entire network traffic has to be stored
and that huge data storage space for each user is required. Therefore, collecting
raw flow data from individual users is not practical (although this is possible through
FlowStatLive). In our experiments, we use packet traces that are already available. We
use the traces obtained from the Widely Integrated Distributed Environment (WIDE)
traffic archive [Cho08], which contains partial packet payloads. The advantage of
payload-traces is that we can use a signature-based classification system to precisely
identify the flows service classes. This can be used as the ground truth to evaluate our
flow classification system. The traces from the WIDE project are captured in March
2008 in both directions on a 150 Megabit per second Ethernet external link, which
connects WIDE backbone and its upstream. They contain the first 96 bytes of every
packet’s payload. The whole traces are captured in the course of 72 hours from March
18 - 20. For each day, we selected five two-hour traces from different time periods,
namely, 0:00-02:00, 08:00-10:00, 12:00-14:00, 16:00-18:00, and 20:00-22:00. In total, we
have 30 hours of packet records of real-world traffic with more than 900 GB of data.
Characteristics of the merged traces are summarized in Table 5.16 and 5.17. More
detailed information on the traces is shown in Table D.1 in Appendix D.

5.5.2 Finding Ground-Truth Using Signature-Based FCS

As discussed in Section 3.3, the construction of a dataset requires feature vectors and
corresponding service classes. Feature vectors can be extracted using information avail-

6These issues are important to real-time classification and will be investigated in Chapter 6.
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Table 5.16: Ratio of IPv4 and IPv6 protocols in WIDE traces
Total Data Volume (both IP protocols) 912.41 GB
Percentage of IPv4 Data 99.89%
Percentage of IPv6 Data 0.11%
Total Packets (both IP protocols) 1,609,056,617
Percentage of IPv4 Packets 99.69%
Percentage of IPv6 Packets 0.31%

Table 5.17: Statistics of WIDE traces - Amount of packets and data of each trace.
Traces IPv4 Data (MB) IPv4 Packets IPv6 Data (MB) IPv6 Packets

March 18 338,849.84 581,273,033 301.39 1,427,508
March 19 318,845.56 533,481,966 382.28 1,395,621
March 20 276,612.22 489,262,589 366.55 2,215,900
Total 934,307.62 1,604,017,588 1,050.21 5,039,029

able in packet traces. This is not the case, however, for the classes of flows because
QoS support is not yet well-established and most of the network applications are still
QoS-unaware applications. Furthermore, service class definitions are not standardized
and therefore we cannot rely on the information available in the Type-of-Service field
in the IP header. In the individual-use case, we determine the applications to which
the flows belong using the connection table provided by the operating system. With
packet traces recorded outside of network devices, such luxury is not available, lead-
ing to the development of an entire signature-based flow classification system called
PacketExtract.

Given a packet trace and a set of signatures, PacketExtract searches for the packets
that contain one of the given signatures. Then, if a packet is found, all other packets
in the same flow as well as its the coflow will be separated from the trace and stored in
another trace. PacketExtract therefore does not only classify flows but also extracts
the flows from the packet trace and stores them into a designated file. This process is
iterated until all packets in the trace are analyzed. To differentiate flows, signatures
of an interested service class are given to the program along with a packet trace. As
a result, the target trace file will contain only the packets of the same class. The
mathematical model of PacketExtract is presented below.

Recall that packet payload is defined as a string over hexadecimal alphabets. Let



96 CHAPTER 5. TOWARD AN ADAPTIVE FLOW CLASSIFICATION SYSTEM

Σ∗ be a set of strings, we first define two auxiliary functions that manipulate strings:

concat : Σ∗ × Σ∗ → Σ∗

(b1 . . . bn, c1 . . . cm) 7→


b1 . . . bnc1 . . . cm n > 0,m > 0,
b1 . . . bn n > 0,m = 0,
c1 . . . cm n = 0,m > 0,
ε n = 0,m = 0.

(5.4)

substring : Σ∗ × Σ∗ → {0, 1}
(b1 . . . bn, c1 . . . cm)

7→
{

1 (∀i ∈ {1, . . . , n})(∃j ∈ {1, . . . ,m})bi = cj+(i−1),

0 otherwise. (5.5)

The function concat concatenates two strings together. For example, the concatenation
of two following strings, 48 54 54 50 and 2F 31 2E , is

concat(48 54 54 50, 2F 31 2E) = 48 54 54 50 2F 31 2E.

The function substring checks whether the first string is contained in the second string.
For instance:

substring(2F 31 2E, 48 54 54 50) = 0,

whereas
substring(54 50, 48 54 54 50) = 1.

Then, let F be a set of flows and (pi | 1 ≤ i ≤ n) ∈ F a flow. The payload-
extraction feature is a function defined as follows:

flowPayload : F → Σ∗

(pi | 1 ≤ i ≤ n)

7→
{

concat(payload(p1),flowPayload((pj | 2 ≤ j ≤ n))) n > 1,
payload(p1) n = 1.

In other words, the function flowPayload extracts and concatenates the payloads in
all packets in the flow. Consequently, the length-restricted payload-extraction feature
can be characterized by:

flowPayload′ : F × N+ → Σ∗

(f, l) 7→ flowPayload(prefix(f, l))

Let X1 = Σ∗ be a set of feature vectors. The feature-extraction function corresponding
to the payload-extraction feature is:

E′ : F × N+ → X1

(f, l) 7→ 〈flowPayload(f, l)〉

The signature-based classification considers only the signature. Therefore, the feature
vector has only one element. Generally, signature-based classification systems operate
in real-time as the number of considered packets can be specified beforehand.
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Definition 5.2 (Signature of a Class) Let C = {c1, . . . , ck} be a set of service
classes and Σ+ a set of non-empty strings. Elements of C × Σ+ are called signatures
pairs. A set of signature pairs is denoted by SIG ⊆ C × Σ+. Let (c, s) ∈ SIG , s is
called a signature of c.

Definition 5.3 (Signature-Based Classifier) Let X1 = Σ∗ be a set of feature vec-
tors, SIG a set of signature pairs, and s ∈ Σ∗. A signature-based classifier is a function
defined as follows:

KSIG : X1 → C

(〈s〉) 7→
{
c′ (∃(c′, s′) ∈ SIG)substring(s′, s)
cdefault otherwise.

Intuitively, the classifier searches through the payload for each signature in SIG .
If a signature is found, i.e., there exists a substring in the payload that matches the
signature, the classifier returns the class corresponding to the signature. Otherwise, it
returns a pre-defined default class. Notice that the classifier is bound to a predefined
set of signatures. In the following, a simple flow classification scenario using our
signature-based FCS is presented.

Example 5.4 (Signature-Based Flow Classification System)
Consider the following set of service classes from (3.1). The following is an example of
a set of signature pairs corresponding to those classes.

SIG = {(StrConv , 4A 00 14 01),

(StrConv ,FF FF FF FF),

(RlxConv , 4E 49 43 4B),

(Streaming , 52 54 53 50), (5.6)
(Streaming , 76 69 64 65 6F 2F),

(Interactive, 48 45 4C 4F),

(Background , 53 4D 42)}

Let KSIG be a signature-based classifier that is associated with the set of signatures
described in (5.6). Given a string

CD AD 52 54 53 50 2F 31 2E 30 20 32 30 30 20 4F,

we have

KSIG(〈CD AD 52 54 53 50 2F 31 2E 30 20 32 30 30 20 4F〉) = Streaming .

The signature 52 54 53 50 is a substring of the given string, so the classifier returns
the class associated to the signature. Now, suppose the default class is Background
class and the input string is

E1 6F 02 8C 9E C1 A4 E2 BF
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Table 5.18: Statistics of WIDE traces - Number and percentage of flows identified.
No. of flows Percentage

Identified 35,042,233 25.23
Unidentified 103,856,128 74.77
Total 138,898,361 100

we have
KSIG(〈E1 6F 02 8C 9E C1 A4 E2 BF〉) = Background .

Here, the input string does not contain any signature. The classifier simply returns
a default class, which is the Background class. In the literature, the default class is
different in different implementations and is generally called the Unknown class.

Because a reliable ground truth is of utmost importance to an effective evaluation
of our flow classification system, much effort is put in the signature analysis. Apart
from our own investigations, signatures from other studies including [Pro08], [RG07],
[Pha05], [ZP00], [Pol06], [Yah08] are also employed, resulting in a large collection of
identified signatures from a variety of applications. (See Table 2.3 for a complete list
of applications supported by our signature-based FCS.) This rich set of applications
covers all service classes and most of the applications used thus far in other researches.
Further details of the signatures of each class are provided in Appendix C.1. Using
PacketExtract, 25.23% of more than 138 million flows are identified (see Table 5.18).
71.78% of the identified flows consist primarily of HTTP flows, which belongs to In-
teractive class. Bulk class follows with 16.01%. RlxConv class makes up 12.17% of
all identified flows, followed by Streaming and and StrConv classes with 0.03% and
0.01%, respectively. Table 5.19 summarizes the proportion of each class within each
packet trace. Detailed information about the traces and their statistics is provided in
Appendix D.

At any rate, large networks such as the Internet are overwhelmed with extremely
short flows. These flows do not contain meaningful information but rather are caused
by network control protocols, failed connection requests, pings, etc. We therefore
excluded the short flows from our experimental data by filtering out flows that contain
less than two packets. Additionally, as shown in Table 5.16, the ratio of IPv6 packets
is extremely small in the traces. We consequently chose to discard them and consider
only IPv4 packets.

It is worth noting that, for RlxConv class, the numbers of the flows in each time
slot vary greatly (see Table 5.19). This is because there is a large number of short
simultaneous SSH connections from a few hosts to many other hosts, which are most
likely to be port scanning. However, we do not remove such flows, because, even
though may not be relevant, they still belong to the class. A similar observation is
also found in the last trace of Streaming class. As shown in Table 5.19, in the last
trace, the number of streaming flows is much higher than the other traces, which is
also due to the short simultaneous flows from a few hosts. Again, as they belong to
the class, they are not removed.
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Table 5.19: Statistics of WIDE traces - Number of flows within each class.
Traces StrConv RlxConv Str Int Bulk Total

March 18
00:00 691 1,181,179 128 1,478,524 524,327 3,184,849
08:00 152 543,973 95 1,174,395 398,927 2,117,542
12:00 196 524,260 658 1,904,665 281,186 2,710,965
16:00 260 524,999 441 2,111,387 316,451 2,953,538
20:00 491 605,375 254 1,600,020 336,284 2,542,424

March 19
00:00 724 34,678 141 1,616,291 442,016 2,093,850
08:00 157 30,205 94 1,433,811 356,126 1,820,393
12:00 207 3,937 219 1,705,898 291,616 2,001,877
16:00 301 6,907 273 2,142,470 360,943 2,510,894
20:00 214 4,446 87 1,789,957 413,280 2,207,984

March 20
00:00 144 8,795 88 1,663,293 414,748 2,087,068
08:00 163 5,224 175 1,193,042 346,176 1,544,780
12:00 191 245,931 60 1,700,262 291,830 2,238,274
16:00 255 393,163 77 1,789,793 362,398 2,545,686
20:00 386 151,392 6,073 1,851,004 473,254 2,482,109
Total 4,532 4,264,464 8,863 25,154,812 5,609,562 35,042,233

Total (%) 0.01 12.17 0.03 71.78 16.01

5.5.3 Data Stratification

While the WIDE data set contains more than 35 million feature-vector instances, the
class distributions are highly skewed (see Table 5.19). The number of flows in each class
varies greatly, from only 4,532 instances in the StrConv class to more than 25 million
in the Interactive class. Determining classification performance from such a skewed
dataset would not be sensible. Therefore, the flow instances are equally sampled into a
smaller dataset before the experiments are conducted. In any case, even if the classes
are well distributed, the sampling process would still be inevitable as it would not be
feasible to perform the evaluation on the dataset of 35 million instances.

We have randomly sampled 4,000 instances from each class, constituting a dataset
of 20,000 instances. However, to avoid any biases, the sampling process is done 10
times. This results in 10 datasets, each of which has 20,000 instances stratified with
4,000 instances per class. Note that the number of instances per class is set to 4,000
in this case because it already covers almost all of the 4,532 instances in the StrConv
class.

5.5.4 Evaluation Results

Similar to individual-user datasets, we evaluate our flow classification technique in two
phases. The classification accuracies of various learners will be evaluated first followed
by the time required to learn. With WIDE dataset, it can still perform well in a large
dataset consisting of large number of users.
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As shown in Table 5.20, the results are consistent with those from individual-user
sets — i.e., all but one method yield remarkable accuracy in our experiments. PART,
RIPPER and J4.8 perform particularly well with more than 99% average correctness
compared to the 92.97% achieved by k-NN. Naive Bayes, on the other hand, has
much lower average accuracy of just 42.08%. Moving to per-class correctness, while
other methods can classify flow instances of all classes equally well, Naive Bayes per-
forms poorly on all classes except Bulk as it classifies most of the instances as Bulk.
This shows that the employed features are correlated and the feature-independence
assumption of Naive Bayes does not hold in our domain. Table 5.21 presents per-class
accuracy results, which contradict those of the experiments conducted by Moore and
Zuev [MZ05b] and Williams et al. [WZA06], whereby the Naive Bayes achieved more
than 80% accuracy. It is conjectured that the different between their results and ours
are contributed by the following factors:

• The service class definition: [WZA06] defines service classes over application
protocols. That is, the FCSs have to classify flows into different protocols, such
as FTP, SMTP, HTTP, etc. In our case, service classes are defined by QoS
requirements. Common behaviors within the same protocols might be more
obvious than those within different protocols that belong to the same service
classes defined over QoS requirements.

• Unreliable data: In [MZ05b], the datasets used are unreliable for two reasons.
The first is that about 87% of the instances belong to the “WWW” class (i.e.,
highly skewed); the other reason is that the Naive Bayes learner classifies virtually
all instances to this class. In [WZA06], the ground truth is established based on
protocol ports. Therefore, one can never be certain if the results are reliable.

Nevertheless, given the excellent performance of the other methods, we can still safely
conclude that the features are discriminative in both small and large sets of data,
depending on how the relationships between the features and classes are modeled.

In terms of computational time, the results are also consistent with the individual-
user ones. Naive Bayes outperforms other methods with only half a second learning
time followed by J4.8, PART, and RIPPER respectively. The huge difference in learn-
ing time between individual-user and WIDE datasets is caused by the size of the data.
The results are reported in Figure 5.5 and Table 5.22.

The evaluation results of the WIDE dataset show that SMART is usable, versa-
tile, and the accuracy is also comparable with other the techniques in the literature.
Although the dataset used in the evaluations are not the same the others, most of the
applications and services present in other researches are also present in our dataset (as
shown in Table 2.3). Moreover, the actual types of flows (i.e., the ground truth) in
our dataset are identified by a sophisticated and reliable signature-based FCS. Thus,
our results are more robust than many other methods, especially the ones that rely on
protocol ports to find the ground truths, such as [WZA06], [ZNA05b] and [ML05].
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Table 5.20: Accuracy of learners - evaluated on WIDE dataset.
Learner Accuracy
J4.8 99.35

RIPPER 99.51
PART 99.66

Naive Bayes 42.08
k-NN 92.97

Table 5.21: Per class accuracy
Class J4.8 RIPPER PART Naive Bayes k-NN

StrConv 99.98 99.82 99.91 38.86 99.84
RlxConv 99.15 99.47 99.57 20.95 95.74
Streaming 98.76 99.21 99.36 41.29 92.33
Interactive 98.75 99.02 99.39 19.10 84.31

Bulk 99.97 99.94 99.97 99.39 91.73
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Figure 5.5: Average CPU time taken to learn from WIDE dataset. The learning time of
all algorithms is consistent with that evaluated in individual datasets whereby Naive Bayes
performs the best followed by J4.8, PART, and RIPPER respectively. They all take much
longer time to learn in general, however, because the size of the WIDE dataset is much larger
than the individual ones.
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Table 5.22: Average CPU time taken to learn from WIDE dataset. k-NN learning time is
not included as it is a lazy algorithm.

Learners CPU Time (seconds)
J4.8 4.37

RIPPER 42.35
PART 7.06

Naive Bayes 0.47

5.6 Conclusion

In this chapter, we have described a set of service classes, features, and machine learn-
ing algorithms that are used by our new SMART FCS. Particularly, we have introduced
a new feature, TPUTDiff, which is intended to capture the burstiness of flows. Our
classification methodology is then evaluated in datasets from individual users and large
packet traces to see if it is feasible in both end-user and lower-level network devices.
The results from our individual-user evaluations show that exceptional accuracies can
be achieved in all our diverse datasets, indicating that the employed features are dis-
criminative. The low cross-user prediction accuracies imply that knowledge learned
by a user cannot yet be effectively used in other devices. We believe, however, that
the classification results could be improved by implementing more generalized classi-
fication models. These results have been reported in [AS07a]. It is worth noting that
such individual-users-level evaluations have not been carried out anywhere before. For
the datasets obtained from large packet traces, the results are consistent with the
individual-user sets; apart from Naive Bayes, all learners yield exceptional correctness.
We can thus safely conclude from those experiment results that our choices of features
and learners are sound and can effectively be used in any flow classification task in
general. Nevertheless, since the features used in our experiments are computed using
entire flows, they are not yet suitable for real-time classification.

In the next chapter, the issue of an optimal observation period will be discussed.
We will see how real-time classification can be carried out and what would be the
minimum amount of information required to identify the service class of a flow. We
will also explore ways to improve our TPUTDiff feature such that it can be used in
real-time classification. Furthermore, we will investigate relationships between features
and the required prefix that needs to be observed.



Chapter 6

Classifying Flows in Time

To effectively assist QoS support to QoS-unaware flows, the flow classification has
to be carried out in real-time. It also has to be adaptive to be able to handle the
flows from unknown services. In the previous chapter, we have shown that adaptive
classification is feasible in the real world. In this chapter, we will systematically study
the nature of Internet connections, their features, as well as the possibility of extracting
and classifying flows in real-time.

6.1 Towards Real-Time Flow Classification

Before a flow is analyzed and classified, it has to be abstracted into a feature vector.
Each component in the feature vector is the feature value representing a property or
characteristic of the flow. To be able to capture the true characteristics (i.e., the true
feature values) of the flow, the feature values must be calculated using every packet in
the flow. Doing so, however, is not suitable for real-time classification. We conjecture
that instead of extracting features after the entire flows have been observed, it should
be possible to capture the feature values using only partial flows. In other words, the
flow features should be able to be computed using only a specific prefix.

To verify our hypothesis, the possibility of capturing the characteristics using only
partial flows will be explored in this chapter. We will begin by defining the “distribu-
tion” of feature values and discussing how to compare and analyze the distributions.
Next, the distributions will be computed using different prefixes and these will then
be compared to the one computed using the entire flows. By studying the distribution
differences of various prefixes, one can see how the distributions behave with respect
to the flow prefixes. Then, we will turn to analysis of accuracies achieved by the learn-
ers with respect to the prefixes. Lastly, we will investigate the relationship between
prefixes and discriminability of each feature through an extensive series of empirical
evaluations.

103
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6.2 Feature Values Divergences

In this section, the relationship between feature values and prefixes is studied. The dis-
tributions of the feature values are computed using different prefixes and are compared
to the one using the entire flows. If the distributions of the feature values computed
using up to a prefix are close to those computed using the entire flows, it means that
the feature values should be also able to be estimated using only that prefix.

The focus of this section is to examine the relationship between feature values
and prefixes. A key concept here is the distribution of feature values, which we will
formally define as follows.

6.2.1 Frequency Distribution

Definition 6.1 (Sequence of Observations) Let D be a set and m ∈ N+. A
sequence of observations s over D is a non-empty finite sequence

s = (s1, . . . , sm)

such that (∀1 ≤ i ≤ m)si ∈ D. We callm the length of s or the number of observations
in s and each component in s is called an observation. A set of sequence of observations
over D is denoted by S(D).

Essentially, a sequence of observations is a sequence all of whose components belong
to the same domain. In our context, a sequence of observations is a sequence of
observed feature values.

Definition 6.2 (Frequency) Let D be a set and d ∈ D. The frequency of d in a
sequence (s1, . . . , sm) ∈ S(D) is a function

freq : D × S(D)→ N

(d, (s1, . . . , sm)) 7→


1 + freq(d, (s2, . . . , sm)) if d = s1,m > 1,

freq(d, (s2, . . . , sm)) if d 6= s1,m > 1,

1 if d = s1,m = 1,

0 if d 6= s1,m = 1.

Definition 6.3 (Relative Frequency) Let D be a set and d ∈ D. The relative
frequency of d in a sequence (s1, . . . , sm) ∈ S(D) is a function

RelFreq : D × S(D)→ [0, 1]

(d, (s1, . . . , sm)) 7→ freq(d, (s1, . . . , sm))

m
.

Intuitively, the frequency of an element d in a sequence s is the number of com-
ponents in s whose value equals d. The relative frequency of d is the frequency of d
normalized by the length of the sequence. Consequently, the maximum value of the
relative frequency is one.
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Example 6.4 (Relative Frequency)
Given a sequence of observations

s = (2.4, 0.9, 2.4, 5.8, 0.8),

the relative frequencies of the components in s are::

RelFreq(2.4, s) = 0.4

RelFreq(0.9, s) = 0.2

RelFreq(5.8, s) = 0.2

RelFreq(0.8, s) = 0.2

whereas

RelFreq(10, s) = 0.

With relative frequency, one can compute the distribution of each feature value
relative to other values in the observed sequence. However, analyzing the observed
feature values directly is not practical because individual values could occur a few
times or only once although they are very close to each other (e.g., the values 0.9 and
0.8 in the example above). Therefore, we would like to group the contiguous values
together. We call this grouping a “histogram”, which is a collection of adjacent, non-
overlapping intervals defined over a set of usually real numbers. Each interval is called
a “bin” and the size of a bin is called “width”.

Definition 6.5 (Histogram) Let D be a set, w ∈ R+, and b ∈ N+, a wb-histogram
is a function

Hw,b : R→ N

d 7→


⌊
d

w

⌋
if
⌊
d

w

⌋
< b− 1,

b if
⌊
d

w

⌋
≥ b− 1.

For an element d ∈ D, we call Hw,b(d) the bin of d with bin-width w and total number
of bin b.

Essentially, a histogram is a function that maps an element in d ∈ R to a bin.
Because a bin must be an interval and the histogram must have at least one bin, the
bin-width and the total number of bin cannot be zero. The bin to which a given
value d is assigned is determined by dividing d by the bin-width w. As a result of the
flooring function, if the division result has a remainder, the resulting bin is the (integer)
quotient of the division (i.e., the division remainder is dropped). If the resulting bin
is larger than the preferred total number of bin b, d will be mapped to the last bin.
Therefore, there are b possible bins: 0, . . . , b − 1 and the maximum value that the
histogram can effectively express is w × (b− 1) (as all the higher values belong to bin
b− 1). At any rate, if it is clear from the context or it is irrelevant, the subscript w, b
will be dropped.



106 CHAPTER 6. CLASSIFYING FLOWS IN TIME

Definition 6.6 (Histogram Sequence) Given a sequence (s1, . . . , sm) ∈ S(D), a
histogram sequence induced by Hw,b with respect to s is a sequence

(h1, . . . , hm)

such that (∀1 ≤ i ≤ m)hi = Hw,b(si)

Example 6.3 (continued)
Consider the sequence

s = (2.4, 0.9, 2.4, 5.8, 0.8)

presented earlier and the histogram H1,5, the histogram sequence induced by H1,5 with
respect to s is

h = (2, 0, 2, 4, 0).

The relative frequencies of values in h are:

RelFreq(0, h) = 0.4

RelFreq(2, h) = 0.4

RelFreq(4, h) = 0.2

Definition 6.7 (Frequency Distribution) Given a sequence of observation s =
(s1, . . . , sm) and a histogram function H, the frequency distribution of H with respect
to s is a function defined as

FrH,s : N→ [0, 1]

k 7→ RelFreq(k, (H(s1), . . . ,H(sm)))

In other words, the frequency distribution is the relative frequency of a given value
k with respect to a histogram sequence H. Figure 6.1 illustrates the frequency distri-
bution of the histogram sequence specified in Example 6.3. To avoid ambiguity, we
clearly show the histogram function and sequence of observation from which each fre-
quency distribution is induced. In most cases, however, such pedantry is not necessary.
Therefore, we will use Fr to denote a frequency distribution where it is either unneces-
sary or clear from the context which histogram function and observation sequence are
associated with the frequency distribution.

6.2.2 Frequency Distribution Difference

To be able to systematically study the convergence of distributions, the distribution
difference must be precisely described. In the literature, a number of metrics have
been proposed to measure the difference between two distributions. One of the most
popular measures is called the Kullback-Leibler divergence [CT91] or KL divergence
in short. It is characterized as follows:

DiffKL(FrH,s||FrH,s′) =
∑
k∈N

FrH,s(k) log2

FrH,s(k)

FrH,s′(k)
.
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Figure 6.1: A graph showing distribution of the values from a sequence h = (2, 0, 2, 4, 0)

KL divergence measures expected bits1 required to code the samples from distribution
FrH,s using FrH,s′ . The higher the bits required, the higher the difference. KL diver-
gence derived from the information theory discussed earlier in Section 4.1 is termed
divergence instead of distance because it is not symmetric. It is important to note also
that the two distribution functions must be induced by the same histogram function.
Otherwise, they would not be comparable. The main drawback of the KL divergence is
that the maximum divergence is infinity [CT91]. Precisely, if there exists a k such that

FrH,s(k) > 0 and FrH,s′(k) = 0, then DiffKL(FrH,s||FrH,s′) = FrH,s(k) log
FrH,s(k)

0
=

∞. Therefore, even though KL divergence is widely used, it is not preferable.
Another metric used to measure the distance between two distributions is called

the Bhattacharyya distance [Bha43], which is given by:

DiffB(FrH,s||FrH,s′) = − ln

(∑
k∈N

√
FrH,s(k)× FrH,s′(k)

)
.

Because ln 0 = ∞, DiffB(FrH,s||FrH,s′) = ∞, if FrH,s is orthogonal to FrH,s′ . Thus,
like KL divergence, Bhattacharyya distance is not preferable. In turn, we propose a
difference metric that does not involve infiniteness:

Definition 6.8 (Frequency Distribution Difference) Given a histogram functionH
and sequences of observation s and s′, the difference between two frequency distributions

1In general, the difference is measured in bits because the base of the logarithm is 2. However, the
base of the logarithm is not restricted to two. For instance, the base could also be e, then the unit
would be nats.
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FrH,s and FrH,s′ is defined as

Diff(FrH,s||FrH,s′) =
∑
k∈N
|FrH,s(k)− FrH,s′(k)|.

Intuitively, the distribution difference is the difference of the areas under the two
distribution functions. The area difference will be zero only when the two distributions
are exactly the same. The maximum difference is two and will arise when the distribu-
tions do not overlap at all. Again, we would like to emphasize that two distributions
are comparable only when they are induced from the same histogram function. In the
following example, we will see how the distribution differences are computed. We will
also see how the distributions from different prefixes are related.

Example 6.9 (Distribution Differences)
Consider a set of flow

F = {f1, . . . , fm} (6.1)

with a feature dataTPUTAvg, its length-restricted counterpart, dataTPUTAvg′, and
length l ∈ N+. The following sequences can be obtained:

sfull = (dataTPUTAvg(f1), . . . , dataTPUTAvg(fm)) (6.2)
s[l] = (dataTPUTAvg′(f1, l), . . . , dataTPUTAvg′(fm, l)). (6.3)

The sequence sfull contains values of the features dataTPUTAvg of all flows in F . Each
feature value is calculated using the entire flow. The values in s[l], on the other hand,
are calculated from only l packets. Note that each sequence contains only values of
only one feature.

Let us instantiate the flows f1, . . . , fm in Equation (6.1) with the flows of Streaming
class from WIDE dataset. Then, given a histogram function, H300,30, we obtain the
frequency distribution shown in Figure 6.2. We call a distribution obtained from the
entire flows a “true distribution” as it is calculated using all packets in the flows and,
thus, represents the actual characteristics of the flows.

Now, to see how the prefixes are related to the feature value distributions, we
instantiate the sequence of observations s[l] presented in Equation (6.3) with three
following sequences s[4], s[8], and s[16]:

s[4] = (dataTPUTAvg′(f1, 4), . . . , dataTPUTAvg′(fm, 4)) (6.4)
s[8] = (dataTPUTAvg′(f1, 8), . . . , dataTPUTAvg′(fm, 8)) (6.5)
s[16] = (dataTPUTAvg′(f1, 16), . . . , dataTPUTAvg′(fm, 16)) (6.6)

Figures 6.3 shows the distributions obtained from several flow lengths in comparison to
the true distribution. These distributions are computed from all flows (totaling more
than 8,800) in the WIDE dataset that belong to the Streaming class. As shown in
the figure, as more packets are observed, the distributions will get closer to the true
distribution. In other words, the distributions corresponding to different prefixes are
“converging” toward the true distribution.
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Figure 6.2: A histogram showing distribution of the values of a feature V = dataTPUTAvg
where the width and number of bins are 300 and 30 resp. The pink line is the frequency
polygon of representing the distribution.

Figure 6.4(a)-(c) depict the areas between distributions induced from sequences
(6.4) - (6.6) and the one induced by (6.2), respectively. As shown in the figures, the
differences between the distributions are getting smaller. The difference-prefix plot is
also shown in Figure 6.4(d).

6.3 Packet-Size Difference — A New Real-Time Feature

In the previous chapter, a new feature, TPUTDiff, has been introduced to capture the
burstiness, which is calculated by measuring the differences of throughputs along the
flows. This feature is, however, not suitable for real-time classification as it requires a
certain number of packets per calculation window to ensure the correct estimations of
the throughputs.

Therefore, we introduce here features that, like TPUTDiff, try to capture the
changes of the flow characteristics over time while at the same time exhibit greater
flexibility. These are pktSizeDiff and its coflow counterpart, pktSizeDiffCF, whose
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Figure 6.3: Frequency polygons showing the distributions of feature values using different
flow prefixes. Frsfull

represents the same distribution as the one shown in Figure 6.2. Notice
that the distributions converge on the true distribution as more packets are observed.

precise definitions are given by:

pktSizeDiff : F → R

(pi | 1 ≤ i ≤ n) 7→
∑n−1

i=1 |size(pi)− size(pi+1)|
n

pktSizeDiffCF : F ′ → R

f ′ 7→

{
pktSizeDiff(f ′′) if (∃f ′′ ∈ F)(f ′, f ′′) ∈ Coflow ,
0 otherwise.

Intuitively, both functions try to capture the differences of packet sizes throughout the
flow. Unlike TPUTDiff, they can be computed at any prefix that is more than two.

6.4 Frequency Distributions in Real-World Data

In Example 6.9, we have seen that the distributions of the feature values converge on
the true distribution. However, each of them is the distribution of only one feature and
is obtained from only one class of flow. In this section, we will see if this phenomenon
holds in general through a series of empirical experiments, in which the distributions
of all features are computed using different prefixes. In addition, the distribution
difference corresponding to each feature will also be analyzed.

In Section 5.4, the dataset is obtained directly from multiple users using Flow-
StatLive. The feature vectors are calculated from the observed flows and are stored in
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Figure 6.4: Subfigure (a)-(c) show the frequency distributions differences Diff(Frsfull ||Frsl)
where l = 4, 8, 16 resp. Subfigure (d) presents the differences wrt. the lengths of the flows.
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a database on-the-fly. This approach, however, is not suitable here because, in order
to study the relationship between flow prefix and feature values, the feature values
have to be calculated from multiple prefixes. In other words, multiple feature vectors
corresponding to different flow lengths have to be extracted from the same flow. Doing
so in ordinary mobile devices is not feasible due to restricted storage and computa-
tional power. As a result, the individual-users dataset cannot be used anymore in our
evaluations. We will focus only on the WIDE packet traces and the datasets that are
generated from them.

In the following experiments, two series of datasets are generated: linear-increment
and exponential-increment series. In linear-increment series, a set of length-restricted
datasets is generated such that the corresponding length is increased linearly from 4
to 20. Precisely, from a given raw dataset R, a set of length-restricted features V ′ =
{V ′1 , . . . , V ′d}, and a dataset generator function G′ corresponding to V ′, we generate:

D[l],R = G′(R, l), l ∈ {4, . . . , 20}.

That is, after the generation, we have:

D[4],R,D[5],R, . . . ,D[20],R. (6.7)

For exponential-increment series, the length is increased exponentially:

D[l],R = G′(R, l), l ∈ {22, 23, . . . , 216}.

The following datasets are then created:

D[22],R,D[23],R, . . . ,D[216],R. (6.8)

In addition, a dataset using entire flows is also generated2:

Dfull,R = G(R).

After the all datasets are generated, the distribution difference of each feature is com-
puted using the distributions of feature values in D[l],R and Dfull,R. The following is a
step-by-step description of the process.

Consider the series of linear-increment datasets shown in (6.7). Each dataset
D[l],R, 4 ≤ l ≤ 20, consists of the following elements:

D[l],R = {̇〈x[l]
11, . . . , x

[l]
d1, c1〉, . . . , 〈x[l]

1n, . . . , x
[l]
dn, cn〉}̇

where n is the cardinality of D[l],R, x
[l]
ij , 1 ≤ l ≤ d, denotes the value of feature V ′i of

flow instance j, 1 ≤ j ≤ n, which is calculated using prefix of length l, and cj denotes
the class of the j-th instance. Then, for each feature V ′i , the value of the feature of
each instance is projected into a sequence of observation as follows:

s
[l]
i = (x

[l]
i1, . . . , x

[l]
in).

2Note that the dataset generator, in this case, is an ordinary generator function and not the
length-restricted counterpart.
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Performing the projection on all prefixes, we have

s
[4]
i = (x

[4]
i1 , . . . , x

[4]
in ),

s
[5]
i = (x

[5]
i1 , . . . , x

[5]
in ),

...
s

[20]
i = (x

[20]
i1 , . . . , x

[20]
in ).

A sequence of observation corresponding to Dfull,R is also obtained:

sfull
i = (xfull

i1 , . . . , xfull
in ).

Next, after the frequency distributions of the sequences are computed through a his-
togram H, we have

Fr
H,s

[4]
i

, . . . ,Fr
H,s

[20]
i

and
FrH,sfull

i
.

Finally, the distribution corresponding to each flow length can be compared to that
corresponding to the entire flows.

Diff(Fr
H,s

[4]
i

||FrH,sfull
i

), . . . ,Diff(Fr
H,s

[20]
i

||FrH,sfull
i

) (6.9)

Note though that the differences shown in (6.9) correspond to only one feature.
Figure 6.5 illustrate how the distribution differences behave with respect to the prefixes.
The distributions are obtained from all flows of all classes in the WIDE dataset. In
total, more than 32 million flow instances are considered. As shown in the figure, the
differences tend to converge as more prefixes are observed. At prefix 11, differences of
most of the features drop to less than 0.43.

Let us consider the convergence of feature values more closely. Figures D.1 - D.5 in
Appendix D present distribution differences within each class. As shown in the figures,
the convergences of the distribution differences are relatively similar within the same
class but differ greatly among classes. This could be explained by the average length of
the flows in each class (see Table 6.1). The distributions corresponding to the classes
consist of large flows and take more time to converge, which means that the flows need
to be observed longer in order to effectively estimate their true characteristics. For the
Strict Conversational class, the differences of features drop to < 0.2 at around prefix
of length 512, which is much lower than average flow length of 2165.81. This is also
true for the Streaming class whose average flow length is 3880.90 while the differences
get lower than 0.2 at around prefix of length 512.

Figure D.6 - D.34 illustrate the convergences of each feature. Each graph in each
figure represents the distribution difference with respect to number of prefix and class,
i.e., the graph is obtained from the values of a feature extracted from the flows be-
longing to the same class. This way, one can analyze how the flows of different classes

3The overall area under the two distributions is 2 (each of them has an area of 1). Therefore,
difference of 0.4 from overall area of 2 is equal to 0.4/2 or 20% estimation error.



6.4. FREQUENCY DISTRIBUTIONS IN REAL-WORLD DATA 115

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D
iff

er
en

ce

Prefix

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

D
iff

er
en

ce

Prefix

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

(b)

Figure 6.5: Difference/Prefix plots of all features computed using all flows in WIDE dataset.
The number of each plot indicates which feature is associated to the plot. It corresponds to
the numbers of the features listed in Table 5.1.
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Table 6.1: Average length of flows in each class.
Class Average Flow Length

StrConv 2165.82
RlxConv 12.68
Streaming 3880.90
Interactive 29.40

Bulk 11.00

behave with respect to different prefixes. From the figures, it could be established
that, considering the convergence of feature values, some features are more suitable
for some specific classes while some features are not. For instance, the statistics of
packet sizes of the flows in Strict Conversational, Interactive and Bulk classes (such
as, average, SD, and RMS) are relatively consistent throughout the flows. Conse-
quently, the differences of the feature values are low regardless of how many prefixes
are used to calculate the feature values (see Figure D.15, D.16, and D.19 - D.21). On
the other hand, for streaming flows, those features do not converge as quickly whereas
the packet inter-arrival time (IAT) and its statistics do. The distribution differences
of the corresponding feature values are very low (see Figure D.27 - D.34). This means
that the packet sizes of streaming flows often vary while packet IATs are steady. This
phenomenon is consistent with previous findings. Kuang and Williamson [KW02] have
shown that media streaming using variable-bit-rate (VBR) codecs such as RealMedia
[Rea08] have fluctuated bit rate at short timescales whereby the fluctuation appears
only in the packet sizes, not in the inter-arrival times [RSSD04]. Other works including
[GW94] and [BSTW95] also report similar behaviors.

Our study here provides a useful insight of how features behave over observed flow
length in an entirely new aspect that has not been carried out before in the literature.
In the following sections, we will see if the prefix and the distribution difference also
affect the classification accuracy. Furthermore, we will also see if the features that do
not converge can still be useful in flow classification.

6.5 Prefix and Accuracy

As we have emphasized earlier, real-time classification requires a FCS that can classify
flows within a restricted period of time. Up to now, only little research in real-time
flow classification, such as [BTA+06], [NA06], and [EMA+07], has been carried out
with high accuracy and the flows can be classified after some restricted number of
packets is observed. Due to the choices of features, however, their methods always
require coflows and none of them can classify UDP flows. There is therefore an obvious
need for a real-time classification technique that addresses those limitations. In the
following sections, an analysis of the relationships between observed flow lengths and
the accuracies will be carried out. Firstly, a formal definition of the shortest flow
length will be given. Secondly, we will determine the relationship of the prefixes and
classification accuracies. Finally, further analysis on the smallest set of features that



6.5. PREFIX AND ACCURACY 117

constitute the shortest prefix will be presented. With such analysis, the features that
are actually important and useful in real-time flow classification can be identified.

6.5.1 Saturation Point

In a non-real-time classification setting, the learner induces a classifier from a set of
data, which is generated by a dataset generator function G corresponding to a set of
features V. With G and V, all packets in the flows are used by the feature functions
to generate feature vectors. In real-time classification, instead of using the entire
flow, only l prefix is considered and a length-restricted dataset generator function G′

and a set of length-restricted feature functions V ′ are employed. Because we want to
classify the flow as soon as possible, the smallest l is preferred. Nevertheless, certain
classification accuracy has to be maintained. The following is the formal definition
of the shortest prefix required by a learner to induce a classifier that can achieve the
given accuracy.

Definition 6.10 (Saturation Point) Let F be a set of flows, C a set of service
classes, D set of all datasets, G′ : P(F × C) × N+ → D a length-restricted dataset
generator, K a set of classifiers, and K ∈ K. Given a learner L : D → K, a threshold
α ∈ R, and D ∈ D, a flow length l ∈ N+ is said to be the saturation point corresponding
to α, denoted l∗α, iff l is the minimal flow length such that

Accuracy(K,D) ≥ α

where K = L(G′(R, l)).
The flow length l is called the saturation point if the accuracy of the classifier

induced from the l-dataset reaches the given threshold α. The l-dataset is generated
from a given raw dataset R by the length-restricted dataset generator G′. The learner
then uses the generated dataset to induce a classifier, which will later be evaluated on
a separate test set D.

6.5.2 Determining Preferred Accuracy

The results of the evaluations conducted in Chapter 5 show that all learners except
Naive Bayes, using entire flows and all feature functions, could achieve more than
99% accuracy (see Table 5.3, 5.10, and 5.20). Also, in Section 6.2.1, we have learned
that the feature values converge on true characteristics, though fast convergences do
not imply better classification accuracy. This, in turn, begs the question whether the
learners can still achieve such performances using only partial flows. To answer this
question, a series of analyses — described below — are carried out.

In the following investigations, series of datasets are generated the same way de-
scribed in Section 6.4. That is, for a given raw dataset R, series of datasets similar
to those in (6.7) and (6.8) are generated. We extend the analysis conducted earlier by
inducing classifiers from datasets by feeding them into a learner to obtain the following
sets of classifiers:

L(D[4],R), L(D[5],R), . . . , L(D[20],R) ⇒ K[4],R,K[5],R, . . . ,K[20],R

L(D[22],R), L(D[23],R), . . . , L(D[216],R) ⇒ K[22],R,K[23],R, . . . ,K[216],R.
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G(R, 4) . . . G(R, 20)

R

D[4],R D[20],R

L(D[4],R) L(D[20],R)

K[4],R . . . K[20],R

Figure 6.6: Inducing classifiers from the datasets corresponding to different prefixes. From
the same raw dataset, multiple length-restricted datasets are generated. Here, the length
grows linearly from 4 to 20 as the same learner L is used to induce the classifiers. The only
difference among classifiers are thus the prefixes corresponding to them. In an experiment
not shown here, another series of classifiers is induced by increasing the prefix exponentially.
Also, in the actual experiments, 10 raw datasets are used in order to avoid any biases.

Figure 6.6 illustrates the classifier induction process. The linear and exponential
series consist of 17 and 15 classifiers, respectively. To investigate whether the classifiers
induced from partial flows can be used to classify full-length flows, they are evaluated
on the dataset that is extracted from the entire flow (i.e., the Dfull,R). Five learn-
ers evaluated in the previous chapter — including J4.8 (an implementation variant of
C4.5), RIPPER, PART, Naive Bayes, and k-Nearest Neighbor — will be evaluated
again here, leading to five groups of classifiers for each raw dataset with each corre-
sponding to a learner. Each group consists of two series of classifiers that are linearly
and exponentially generated. Furthermore, to avoid any biases from the uncertainty,
the flows are randomized 10 times resulting in 10 different raw datasets. Thus, in our
experiments, including all 10 raw datasets,

5× 10× (17 + 15) = 1, 600

classifiers are considered. The exact experiment steps are described in the following
listing:
Randomize R into 10 small subsets R1, . . . ,R10.
for j = 1 to 10 do

generate Dfull,Rj
= G(Rj)

for l = 4 to 20 do
generate D[l],Rj

= G′(Rj , l)
induce K[l],Rj

= L(D[l],Rj
)

evaluate aj,l = Accuracy(K[l],Rj
,Dfull,Rj

)
end for
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end for
find the average accuracies of aj,4, . . . , aj,20, 1 ≤ j ≤ 10

The listing above describes the experiment process corresponding to the linear-increment
dataset series. Nevertheless, as in the previous experiments, the evaluation is con-
ducted for exponentially-increasing prefixes (from prefix 22 to 215) as well.

Figure 6.7 reports the results of both evaluations. As shown in the figure, after
prefix 11, all learners except Naive Bayes achieve more than 90% accuracy. As shown
in Figure 6.7(b), the accuracies stay above 90% afterwards. After prefix 128, the
accuracies go above 95% and remain so throughout the evaluations. In other words,
if α = 90%, the saturation point l∗α = 11. It is important to note that the saturation
point is the earliest point that the preferred accuracy α is reached. Thus, it is not
required that the accuracy has to monotonically increase proportional to the prefixes.
The results suggest that, after prefix 11, an acceptable accuracy is already realizable
and we do not have to observe the flow longer than 128 packets as it will not enhance the
performance any further. This means that accurate real-time classification is possible
within only 11 packets, according to our experiments. Moreover, unlike previous real-
time classification approaches such as [BTS06] and [EMA+07], our method, thanks to
its employed features, does not require coflows and can classify both TCP and UDP
flows.

The evaluations above assess the performance of the classifiers with respect to
the prefixes. The objective is to determine whether the learners can tolerate the
variation of values caused by the partial-flow observations. In practice, however, this
is not necessarily the case because, when the classifier classifies an unseen flow, it is
also observed only partially. In other words, since the classifier is induced from the
dataset of length l, there is no need to observe the unseen flow longer than l. It is thus
interesting to see how the classifiers induced from a training set of length l perform over
the test set of the same length. Consequently, we conduct another set of evaluations,
in which the classifiers are induced from l-datasets and evaluated on the same sets
using the cross-validation method.

Figure 6.8 reports the experiment results, which indicate that the performance of
all classifiers except Naive Bayes are extremely high regardless of the prefix used. This
is, nevertheless, not surprising as the classifiers are optimized for specific flow lengths.
Erman et al. [EMA+07] utilize this property and propose a real-time classification
method that employs multiple classifiers, which are trained by the training sets of some
particular lengths. After l packets of a flow are observed, the classifier that corresponds
to l will be invoked to classify the flow. One advantage of such method is that the
classification system benefits from the classifiers specifically optimized for particular
flow lengths. Such approach is, however, rather redundant. As shown in Figure 6.8,
with an appropriate learner, high classification accuracy can be achieved right from
the beginning of observation. Furthermore, even if the entire flow is concerned, Figure
6.7 shows that observing flows after a certain point would not increase the accuracy
any further. The performance of Naive Bayes in fact worsens as prefixes are increased.
This is true when we test the classifier with full flow length as well as in specific prefixes
alike. We believe that, as the prefix increases, different flows (within the same classes)
exhibit higher dissimilarities, which Naive Bayes cannot handle effectively. Also, it
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Figure 6.7: Accuracy/prefix plots - Tested on full flow lengths.
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Figure 6.8: Accuracy/prefix plots - Tested on the same prefixes.

could be contributed by the bias of the learner, which assumes the independency of
features.
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6.6 Selecting Features with Respect to Prefixes

In the previous sections, we have established that the high accuracy can be achieved
using only partial flow and the smallest prefix that yields more than 90% accuracy
is 11. Here, we will investigate further which features are actually “relevant” with
respect to classification accuracy and required prefix. The goal of the investigation is
to identify which features actually contribute to the classification and to determine if
they do so for all prefixes.

We will begin with an introduction to “features selection algorithms”, which are
techniques designed to select a set of optimal features from the whole set of features
with respect to a certain criterion. Then, we will employ one of them to determine
which features are relevant. Finally, the selected set of features will be evaluated to
see if they really are useful.

6.6.1 Introduction to Feature Selection

Feature selection is a method to select a subset of relevant features from a given set
of features with respect to a given criterion. It is one of the most active fields in
machine learning community because, by removing redundant and irrelevant features,
the learning time could be reduced and the learned concept could be more general
leading to a better classification performance [DL97]. Feature selection plays very im-
portant roles in many learning tasks, especially the ones involving large sets of features
such as, text categorization [NMTM00][LK02][YP97], image retrieval [RHC99][SW95],
signal processing [TLY04][Thi07], and genomic analysis [XJK01][YL04].

In essence, feature selection is an instance of a search problem, where each state in
the search space is associated to a candidate feature subset and the search objective is
the best combination of features according to the given criterion [SS98][LM98]. Like
other search problems, it consists of three main aspects: search strategy, evaluation
criterion, and stopping decision. The search strategy determines which feature subset
to be evaluated at each step. It is usually referred to as subset generation process.
After a subset of features is selected, it will be evaluated by an evaluation function,
which measures the “goodness” of the set. If the current set of features is better than
the best one seen so far, the current one will be kept instead. The process of select-and-
evaluate could be iterated until a stopping criterion is met. Feature selection process
is depicted in Figure 6.9.

The feature selection algorithms can be divided, according to their evaluation cri-
teria, into “wrapper” and “filter” models [Lan94][KJ97]. In the wrapper model, a
predetermined learner is used to induce a classifier using the dataset with selected set
of feature. Then, the performance of the induced classifier will be used as the evalua-
tion criterion. The advantage of this approach is that one will get a feature set that
works best with the given learner. Filter approaches, on the other hand, select the
features based on other criteria, which are independent from the learner. Because, in
the evaluation process, filter approaches do have to wait for the learner to induce a
classifier, they are generally faster than the wrapper ones.

In our research, a filter method called Correlation-Based Feature Selection (CFS)
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Figure 6.9: Feature Selection Process.

[Hal98][Hal00] is employed to select the optimal set of features. CFS measures the
goodness of a feature based on rationale that good feature subsets contain features
highly correlated with the class, yet uncorrelated with each other [Hal98]. This means
that CFS measures the goodness of feature sets entirely and not only individual fea-
tures. According to [Liu05], the CFS algorithm suits best to our need as it is aimed
directly at eliminating irrelevant and redundant features. This would provide us a
better insight to characteristics of the feature set. The method was also employed
by Williams et al. [WZA06] to evaluate their sets of features. Also, as a filter algo-
rithm, it is independent to any specific learner. More importantly, it is shown to be
superior over other selection techniques [Hal00][LLW02]. The CFS algorithm and its
selection criteria will be explained in the following section. Further information in
feature selection can be found in, e.g., [DL97], [LM98], [GE03], and [Liu05].

6.6.2 Determining the Smallest Set of Features

The Correlation-based Feature Selection method or CFS evaluates the goodness of
feature sets based on a test theory developed by Ghiselli to design the most effective
composite test (i.e., a set of tests) for predicting an external value [Ghi64]. The
rationale behind the theory is that the values of the features in the set should be
correlated to the classes while they should not be correlated to each other. According
to Hall [Hal98], the most suitable criteria to estimate degree of correlation between
two random variables X and Y is the “symmetrical uncertainty”, given by:

SU(X,Y ) = 2.0×
(

Gain(X,Y )

H(X) +H(Y )

)
where H and Gain are entropy and information gain functions, respectively. The
entropy and information gain correspond to those explained in Section 4.1. Intuitively,
the symmetrical uncertainty measures the information gain of two variables normalized
by the entropy of each variable (in our case, the variables are either a pair of feature
and feature or feature and class) — similar to the concept of information gain used
in C4.5. Now, given a set of features V = V1, . . . , Vd, the goodness of V is given by
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[Hal98]:

EvalCFS(V) =
d× rclass√

d+ d(d− 1)× rfeatures
where rclass and rfeatures are the averages of feature-class and feature-feature correlations
respectively. In the feature-feature case, the correlation is calculated pair-wise among
all features in the feature set. While symmetrical uncertainty is employed as the
evaluation criterion, best-first search strategy is employed as the search strategy.

To determine the most relevant features, we apply CFS algorithm on the datasets
generated from WIDE packet traces, which were used before in previous evaluations.
Then, we will see how often the features are selected among all classes. The results
will be shown in percentage — if a feature is selected four times out of 10 datasets,
its selection rate is 40%. We will begin by applying the feature selection algorithms
on datasets generated from full flow length. Then, we move on to scrutinizing the
features that are selected from l-datasets generated from prefixes of various lengths.

Table 6.2 presents the results of feature selection using CFS. As shown in the table,
10 features are always selected from 10 different sets sampled from the entire packet
traces. These features include protocol, connTime, dataVolume and its coflow coun-
terpart, pktCount and related statistics, and statistics of packet sizes. It is, however,
not always the case in short-prefix scenarios. As shown in Table 6.3, only protocol,
pktCount, and statistics of packet sizes are selected. This means that connection time,
data volume, and overall and ratio of number of packets are less discriminative when
the flows are not fully observed. This makes sense because, within only short obser-
vation period, differences of connection time and total data volume are not apparent.
The sizes of the packets, on the other hand, can be consistently used to classify flows
with different classes. This observation is consistent with other researches that sug-
gested that packet sizes could be effectively used to distinguish flows from different
classes [WZA06][BTS06]. It is important to note that our new feature, pktSizeDiff , is
also always selected. Interestingly, packet inter-arrival time and its statistics are rarely
selected. According to an inspection, this is because the distributions of inter-arrival
times are relatively similar among all classes. (Although, as discussed in Section 6.4,
they tend to converge early in Streaming class.) Such phenomenon was also discerned
by Bernaille [Ber07]. Other studies including [EMA+07] and [WZA06] also obtain
the similar results. This finding may shine negative light on classification approaches
which are based mainly on inter-arrival time, such as [MLK06]. We would like to em-
phasize that evaluations conducted here are focused on the relationship between prefix
and accuracy, which has not been carried out before in the literature.

6.6.3 Applying the Selected Features in Real-Time Classification

In the previous section, the smallest set of features containing the most relevant and
non-redundant features is determined. The features that are consistently discrimi-
native throughout various prefixes are also identified. Here, we will see whether the
selected features can be used to discriminate the flows. To do so, the experiments that
are carried out earlier will be repeated again using only the selected set of features.
More precisely, we will let the learners induce classifiers using the datasets generated
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Table 6.2: Features selected by CFS algorithm from 10 set of full-flow-length datasets. The
percentage in the second column indicate the rate that the features are selected from different
sets. In total, out of 31 features, 10 are always selected. Notice that connTime, dataVolume,
and pktCount and its statistics are always selected.

Selected Features Selection Rate
protocol 100%
connTime 100%
dataVolume 100%

dataVolumeCF 100%
pktCount 100%

pktCountTotal 100%
pktCountRatio 100%
pktSizeSD 100%

pktSizeSDCF 100%
pktSizeRMS 100%
pktSizeDiff 90%
avgPktSize 40%
iatVar 40%

pktSizeRMSCF 30%

Table 6.3: Features selected by CFS algorithm from 10 set of datasets generated from prefix
4-20. The features that are selected less than 50% are discarded.

Selected Features Selection Rate
protocol 100%
pktCount 100%
pktSizeDiff 100%
pktSizeSD 100%
pktSizeRMS 100%
pktSizeDiffCF 98.24%
dataVolume 88.82%

pktSizeRMSCF 65.88%
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from different prefixes. Then, as before, the induced classifiers will be evaluated on
the datasets generated from full flow lengths. This time, however, only the selected
features, which are listed in Table 6.3, are utilized.

Figure 6.10 presents the graphs of accuracy over number of prefixes. As shown in
the Figure, performance of Naive Bayes is dramatically increased for more than 50%
at almost every flow length. Such improvement may be contributed by the strong
bias of Naive Bayes: As it assumes independence among features, removing redun-
dant features should improve the performance of the algorithm [LS94]. To this aspect,
CFS would be a perfect complement to Naive Bayes as it selects only features that
are the least-correlated to each other [Hal98]. Apart from that, despite CFS’s ag-
gressive feature reduction, accuracies of other learners are similar to those using full
set of features (see Figure 6.7(a)). Not only that the learners can still maintain their
outstanding performance, between prefix 9 and 11, the accuracies of all learners are
actually improved. At prefix 10, RIPPER, PART, and k-NN already reach 90% line,
followed closely by J4.8 with 88.42%. This shows that, the features are discriminative,
not only at any specific prefixes, but throughout the flow. Furthermore, removing
irrelevant and redundant features results in more meaningful data, which further leads
to an improved learning capability.

The major benefit from the feature selection, however, is not the accuracy of the
classifiers, but the learning time. As the features that have to be concerned by the
learners are reduced, the learning time is also reduced. This is consistent with the
theoretical computational time. C4.5 decision tree algorithm, in particular, requires
O(dn log n), where d is number of features and n is the number of instances, to build a
decision tree [FW98]. The reason why its complexity is closely related to the number of
features is that it has to compute the gain ratio of each feature every time it expands
a node in the tree. As a result, as shown in Table 6.11, 72.65% improvement in
computational time is gained. Naive Bayes method, whose complexity is linear in the
number of features and instances, also benefits directly from the feature reduction.
Its learning time is reduced by 81.70%. Algorithms whose time complexity does not
directly depend on the number of features also benefit from the reduction. The learning
time of PART, which requires O(kdn log n) time4 to construct a rule set of size k
[FW98], reduces to 64.78%. RIPPER, whose time complexity corresponds to number
of instances (O(n log n)) [Coh95], also gains 27.31% improvement because it requires
less time to compute much fewer feature values.

As shown in Figure 6.10, the accuracies of J4.8, PART, and RIPPER are simi-
lar, but the learning time required by J4.8, which is an implementation of C4.5, is
much smaller than other algorithms — It takes only 1.2 seconds to learn from dataset
of 20,000 instances. Therefore, we select C4.5 as the learner for our SMART flow
classification system.

In this section, we have identified most relevant and non-redundant features, which
are the core features that contribute most to the classification. Our evaluations re-
vealed that flows can be characterized by statistics the packet size, while packet IATs

4The time complexity of PART is rather similar to that of C4.5 because it uses a decision tree to
generate each rule.
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Table 6.4: Comparison of the time required to induce classifiers. The average CPU time
corresponds to the full set and the selected set of features is presented along with the ratio
between learning time before and after applying feature selection.

Learners CPU Time (seconds) Difference (%)Full Feature Set CFS Selected
J4.8 4.37 1.20 72.65

RIPPER 42.35 27.44 27.31
PART 7.06 5.13 35.22

Naive Bayes 0.47 0.09 81.70

and other features are as useful. Also, as shown in our experiment results, using only
appropriate features leads to in better classification performance, especially for Naive
Bayes, as well as much shorter learning time.

6.7 Conclusion

In Chapter 5, we have shown that, using a machine learning algorithm, adaptability
and self-updatable facilities can be integrated into flow classification system. In this
chapter, we have extended our study further to the real-time aspect of flow classification
by focusing on possibility of determining the flow characteristics using only specific
prefixes. In doing so, we have analyzed the differences between the feature values
distributions observed from various prefixes and the full flow lengths. The results show
that the distributions corresponding to different prefixes tend to converge on the true
distribution and the characteristics of a flow might be able to be captured without
observing it entirely. Such investigations have never been carried out before in the
literature. Apart from the distribution convergence, we have shown through a series of
empirical evaluations that the classifiers induced from length-restricted datasets can
be effectively used to classify full-length flows. With all learners except Naive Bayes,
90% accuracy can be achieved using dataset of length 11. Also, novel features that can
be computed at any prefix, pktSizeDiff and pktSizeDiffCF, were introduced. We have
employed a feature selection method, CFS, to select features that are relevant to the
class and non-redundant to each other. It is shown in our experiments that our new
features are relevant to the classification at every prefix. Thanks to the much-reduced
size of the selected set, the learning time is dramatically decreased. The accuracies are
also improved, especially that of Naive Bayes.



Chapter 7

Conclusion and Future Work

As discussed in Chapter 1, a flow classification system (FCS) assisting quality-of-service
(QoS) support has to be accurate, robust, generic, and able to operate in real-time.
Due to the dynamic nature of the Internet, to which new applications are constantly
introduced, static FCSs, such as port-based and signature-based FCS, cannot be used
effectively. Furthermore, most of the current flow-behavior-based FCS does not ad-
dress real-time classification, which is necessary for QoS-support. Although FCSs such
as [BTA+06] and [EMA+07] can carry out the classification using only partial flows,
they do not support UDP connections. This thesis presents Supervised Machine learn-
ing Assisted Real-Time (SMART) Flow Classification System, an innovative real-time
adaptive flow classification system, that addresses all of these limitations.

This chapter summarizes the contributions of our research as well as discussion on
its limitations and future research directions.

7.1 Contributions

SMART, a real-time adaptive FCS has been introduced. SMART is suitable
for QoS-support scenario as addresses all the requirements listed in Chapter 1:

• Accuracy: Evaluation results presented in Chapter 5 and 6 show that our
methodology can be used to classify unseen flows with high accuracy. This is
true in both individual users and large-network cases. The main reason behind
such impressive results is the choice of features, which can be used to effectively
distinguish the flows.

• Robustness: Thanks to its equipped learner, the FCS can learn and adapt itself
to recognize unseen flows without human intervention. Evaluation results show
that machine learning can really be used to in a flow classification scenario.

• Generality: Unlike previous works, our technique is designed from the start to
support UDP flows. It relies only on the common information available in the
IP and transport protocol headers. Therefore, we are convinced that it can be
used in any TCP/IP networks, including the upcoming IPv6 network.
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• Real-time capability: The strongest advantage of our method is its real-time
classification capability. With the innovative concept of flow prefix, we have
shown that only 11 packets are sufficient to achieve more than 90% accuracy.
Our analysis also shows that the distributions of feature values converge on true
distributions and it is not necessary to observe the entire flows to obtain the true
characteristics.

A unified framework for flow classification. In the literature, all previous flow
classification systems are developed separately without a general model that can de-
scribe them. We have proposed instead a solid unified mathematical model, which
describes the flow classification components and processes on an abstract level. As a
result, not only can our model describe and compare the previous approaches, but it
can also precisely define the components of our FCS, especially the feature functions.
Apart from mathematical model, the implementation, deployment and system decom-
position of SMART are also described using Unified Modeling Language (UML). Thus,
our research and experiments can be easily and correctly replicated.

Relevant features and appropriate prefixes are identified. Empirical evalua-
tions carried out in this thesis show that packet size and its statistics, including our
new features, throughput difference and the packet size difference, are discriminative
features, whereas, interestingly, packet inter-arrival time is not. Such phenomenon
holds across all prefixes evaluated in our experiments. Furthermore, as mentioned
above, we are able to pinpoint that 11 packets are enough to deliver an outstanding
classification performance.

The best candidate for flow classification system is identified. Our anal-
ysis suggests that C4.5 offers the best trade-off between classification accuracy and
computational time. In non-real-time classification, it achieves up to more than 99%
correctness in both individual-user and large-network evaluations. In real-time case,
its accuracy reaches 92.34% after observing only 11 packets, while taking only 1.2 sec-
ond to learn from a dataset of 20,000 instances. Also, its induced classification model,
a decision tree, is a white-box classifier, which is easy to comprehend and utilized.

SMART is evaluated on end-user data. None of the existing flow classification
systems are aimed for end-user devices and, to the best of our knowledge, none has
ever collected and performed experiments on individual-user flow data as we have done
here.

A complex analytical framework for flow classification is developed. To
make sure that our experiments are reliable, a sophisticated signature-based FCS is
developed to verify the ground-truths of our data.
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7.2 Future Research Directions

Although SMART, our new flow classification system, has so far proven to be highly
accurate, it is not without limitations. This section provides a discussion on such
restrictions as well as some insights into potential future research.

Embedded device implementation Although SMART is shown to be feasible on
a user device and can capture and process live packets seamlessly, our current system
is still running only on a personal computer. An actual system that is deployed in
embedded devices such as routers and smartphones is yet to be implemented.

Improving cross-user performance From the individual-user and large-networks
evaluations, our technique has empirically proved to be very usable. However, in case
of cross-user classification, the performance is still inadequate. We believe that, by
pre-processing the feature values or adjusting the learner to produce a more generic
classifier, a lucid cross-user classification can be realized.

Automatic prefix adjustment We have so far focused on a single prefix that is
the most appropriate observation point. Although such approach has been shown to
be useful, it should be possible to identify some applications even earlier. A flow
classification system that can determine an appropriate prefix at runtime without
human intervention would indeed be advantageous.

Flow with dynamic QoS-requirements In our research, we have assumed that
each flow has only one class and will not be changed. It does not recognize the
flows that change their QoS requirements during the course of the communication.
This issue may be partially circumvented by deploying multiple classifiers with each
corresponding to a specific prefix. Once the flow reaches such prefix, the classifier will
be activated to reclassify the flow. As long as the appropriate classifier is not activated,
the new class will not be assigned to the flow.

Extending our methodology to other domains SMART is aimed directly at
assisting QoS-support. We believe though that it can also be employed in other flow
classification domains such as network security and administration. Moreover, the
proposed methodology is designed to be used only in networks that are based on
DiffServ model. Studying the possibility and feasibility of extending our work to
IntServ networks would be a compelling and challenging research.
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Appendix A

Machine Learning Algorithms

Algorithm A.1 C4.5
Procedure C4.5(D,V, C)
Input: D: Dataset

V: Set of features
C: Set of classes

Output: T : Decision Tree

1: T ← Empty tree.
2: if For all 〈x, c〉, 〈x′, c′〉 ∈ D, c = c′ then
3: Construct a node N with label c
4: Add N to T
5: return T
6: end if
7: if V = ∅ then
8: Construct a node N with label c∗ where c∗ is the dominant class in D
9: Add N to T

10: return T
11: end if
12: Voriginal ← V

. Continue on the next page.
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13: for all V ∈ V do
14: if codomain D of V is continuous then
15: Extract unique values of feature V in D and store in a sequence s
16: Sort the sequence s
17: MaxGain ← 0
18: for all component si in s do
19: Create a feature V̂ : F → {[−∞, si], (si,+∞]}
20: Gain ← GainRatio(D, V̂ )
21: if Gain > MaxGain then
22: V̂max ← V̂
23: end if
24: end for
25: Replace V with V̂max in V
26: end if
27: end for
28: Vmax ← argmax

V ∈V
GainRatio(D, V )

29: Construct a node N with label Vmax

30: for all x ∈ D do
31: Add new branch with label x below N
32: Dx ← {̇〈x1, . . . , xj , . . . , xd, c〉 ∈ D | xj = x}̇
33: if Dx = ∅ then
34: Construct a node N ′ with label c∗ where c∗ is the dominant class in D
35: Add N ′ to the branch
36: else
37: V ← Voriginal

38: Add a subtree C4.5(Dx, (V \Vmax)) to the branch
39: end if
40: end for
41: return N
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Algorithm A.2 RIPPER
Procedure RIPPER(D)
Input: D: Dataset
Output: R: Set of rules

1: R← ∅
2: d← 64
3: SmallestR ← 0
4: split D into Dc and Dc̄
5: while Dc 6= ∅ do
6: randomly split Dc into Grow c and Prunec

7: randomly split Dc̄ into Grow c̄ and Prune c̄

8: NewRule ← []
9: NewRule ← GrowRule(NewRule,Grow c,Grow c̄)
10: NewRule ← PruneRule(NewRule,Prunec,Prune c̄)
11: if (MDL((R ∪ {NewRule}))− SmallestR) ≥ δ then
12: return R
13: else
14: R ← R ∪ {NewRule}
15: Dc ← Dc\{dc ∈ Dc|CoveredByRule(NewRule, dc)}
16: Dc̄ ← Dc̄\{dc̄ ∈ Dc̄|CoveredByRule(NewRule, dc̄)}
17: if MDL(R) < SmallestR then
18: SmallestR ← MDL(R)
19: end if
20: end if
21: end while
22: for all r ∈ R do
23: randomly split Dc into Grow c and Prunec

24: randomly split Dc̄ into Grow c̄ and Prune c̄

25: Prune c̄ ← Prune c̄\{dc̄ ∈ Prune c̄|CoveredByRuleSet((R\{r}), dc̄)}
26: r′ ← []
27: r′ ← GrowRuleMDL(r′,Grow c,Grow c̄)
28: r′ ← PruneRuleMDL(r′,Prunec,Prune c̄)
29: r′′ ← GrowRuleMDL(r,Grow c,Grow c̄)
30: R′ ← (R\{r}) ∪ r′
31: R′′ ← (R\{r}) ∪ r′′
32: R← ShortestMDL({R,R′, R′′})
33: end for
34: return R
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Algorithm A.3 k-Nearest Neighbor
Procedure k-NN(D,y)
Input: D: Dataset

y: Data instance to be classified
Output: c: the predicted class

1: for all i = 1 to d do
2: vi,max ← largest value of feature Vi in D
3: vi,min ← smallest value of feature Vi in D
4: for all x = 〈x1, . . . , xi, . . . , xm, c〉 ∈ D do

5: xi ←
xi − vi,min

vi,max − vi,min

6: end for
7: end for
8: for j = 1 to k do
9: Initialize zj such that all feature values in it is equal to 1 (i.e. the largest

possible feature value).
10: end for
11: for all x ∈ D do
12: ∆← DiffEuc(x,y)
13: if ∆ is smaller than any element in {z1, . . . ,zk} then
14: Replace the largest instance of {z1, . . . ,zk} with x
15: end if
16: end for
17: c← the majority class of all elements in {z1, . . . ,zk}.
18: return c
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Feature Functions

Some feature functions require additional functions to compute. We call those func-
tions “auxiliary functions”. Let F be a set of flows, F ′ a set of managed flows,
(pi | 1 ≤ i ≤ n) ∈ F , and f ′ ∈ F ′. The auxiliary and features functions are de-
fined as follows:
Auxiliary Functions:

length : F → N+

(pi | 1 ≤ i ≤ n) 7→ n

iat : P × P → N
(p, p′) 7→ |(timestamp(p′)− timestamp(p))|

Features Functions:

protocol : F → P
(pi | 1 ≤ i ≤ n) 7→ protocol(p1)

srcPort : F → N
(pi | 1 ≤ i ≤ n) 7→ srcPort(p1)

dstPort : F → N
(pi | 1 ≤ i ≤ n) 7→ dstPort(p1)

Figure B.1: Features functions and their auxiliary functions. The feature functions whose
names end with CF are the functions that compute the abstraction of the coflow. Observe
that the length of the coflow could exceed the length of the given flow.
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connTime : F → R

(pi | 1 ≤ i ≤ n) 7→ (timestamp(pn)− timestamp(p1))

1000
connTimeCF : F ′ → R

f ′ 7→

{
connTime(f ′′) if (∃f ′′ ∈ F)(f ′, f ′′) ∈ Coflow ,
0 otherwise.

dataVolume : F → N

(pi | 1 ≤ i ≤ n) 7→
n∑
i=1

size(pi)

dataVolumeCF : F ′ → N

f ′ 7→

{
dataVolume(f ′′) if (∃f ′′ ∈ F)(f ′, f ′′) ∈ Coflow ,
0 otherwise.

dataVolumeRatio : F → R

f 7→ dataVolume(f)

dataVolumeCF(f)

pktCount : F → N
(pi | 1 ≤ i ≤ n) 7→ n

pktCountCF : F ′ → N

f ′ 7→

{
pktCount(f ′′) if (∃f ′′ ∈ F)(f ′, f ′′) ∈ Coflow ,
0 otherwise.

pktCountTotal F ′ → N
f ′ 7→ pktCount(f ′) + pktCountCF(coflow(f ′))

pktCountRatio F ′ → N

f ′ 7→


pktCount(f ′)

pktCountCF(f ′′)
if (∃f ′′ ∈ F)(f ′, f ′′) ∈ Coflow ,

0 otherwise.
pktSizeAvg : F → R

(pi | 1 ≤ i ≤ n) 7→ dataVolume((pi | 1 ≤ i ≤ n))

n
pktSizeAvgCF : F ′ → R

f ′ 7→

{
pktSizeAvg(f ′′) if (∃f ′′ ∈ F)(f ′, f ′′) ∈ Coflow ,
0 otherwise.

Figure B.1 (continued)
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pktSizeDiff : F → R

(pi | 1 ≤ i ≤ n) 7→
∑n−1

i=1 |size(pi)− size(pi+1)|
n

pktSizeDiffCF : F ′ → R

f ′ 7→

{
pktSizeDiff(f ′′) if (∃f ′′ ∈ F)(f ′, f ′′) ∈ Coflow ,
0 otherwise.

TPUTDiffω : F → R

f 7→ sumTPUTDiff(f, ω)

packetCount(f)

TPUTDiffCFω : f ′ 7→

{
TPUTDiffω(f ′′) if (∃f ′′ ∈ F)(f ′, f ′′) ∈ Coflow ,
0 otherwise.

pktSizeSD : F → R
(pi | 1 ≤ i ≤ n)

7→


0 if n = 1,√∑n

i=1(size(pi)− pktSizeAvg((pi | 1 ≤ i ≤ n)))2

(n− 1)
otherwise.

pktSizeSDCF : F ′ → R

f ′ 7→

{
pktSizeSD(f ′′) if (∃f ′′ ∈ F)(f ′, f ′′) ∈ Coflow ,
0 otherwise.

pktSizeRMS : F → R

(pi | 1 ≤ i ≤ n) 7→
√∑n

i=1 size(pi)
2

n
pktSizeRMSCF : F ′ → R

f ′ 7→

{
pktSizeRMS(f ′′) if (∃f ′′ ∈ F)(f ′, f ′′) ∈ Coflow ,
0 otherwise.

dataTPUTAvg : F → R

(pi | 1 ≤ i ≤ n) 7→ dataVolume((pi | 1 ≤ i ≤ n))

connTime((pi | 1 ≤ i ≤ n))

dataTPUTAvgCF : F ′ → R

f ′ 7→

{
dataTPUTAvg(f ′′) if (∃f ′′ ∈ F)(f ′, f ′′) ∈ Coflow ,
0 otherwise.

Figure B.1 (continued)
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pktTPUTAvg : F → R
(pi | 1 ≤ i ≤ n) 7→ n

connTime((pi | 1 ≤ i ≤ n))

pktTPUTAvgCF : F ′ → R

f ′ 7→

{
pktTPUTAvg(f ′′) if (∃f ′′ ∈ F)(f ′, f ′′) ∈ Coflow ,
0 otherwise.

iatAvg : F → R

(pi | 1 ≤ i ≤ n) 7→
∑n−1

i=1 iat(pi, pi+1)

n− 1

iatAvgCF : F ′ → R

f ′ 7→

{
iatAvg(f ′′) if (∃f ′′ ∈ F)(f ′, f ′′) ∈ Coflow ,
0 otherwise.

iatSD : F → R
(pi | 1 ≤ i ≤ n)

7→


0 if n < 3,√∑n−1

i=1 (iat(pi, pi+1)− iatAvg((pi | 1 ≤ i ≤ n)))2

(n− 1)− 1
otherwise.

iatSDCF : F ′ → R

f ′ 7→

{
iatSD(f ′′) if (∃f ′′ ∈ F)(f ′, f ′′) ∈ Coflow ,
0 otherwise.

iatRMS : F → R

(pi | 1 ≤ i ≤ n) 7→


iat(p1, p2) if n < 3,√∑n−1

i=1 (iat(pi, pi+1))2

(n− 1)
otherwise.

iatRMSCF : F ′ → R

f ′

{
iatRMS(f ′′) if (∃f ′′ ∈ F)(f ′, f ′′) ∈ Coflow ,
0 otherwise.

iatVar : F → R

f 7→ iatSD(f)

iatAvg(f)

iatVarCF : F ′ → R

f ′ 7→

{
iatVar(f ′′) if (∃f ′′ ∈ F)(f ′, f ′′) ∈ Coflow ,
0 otherwise.

Figure B.1 (continued)



Appendix C

Signature-Based Flow
Classification System

C.1 Payload Signatures

In our experiments, FlowStatTrace, which is a signature-based FCS, is used to find the
true classes of instances (i.e., the ground-truth) in the datasets. To ensure the reliabil-
ity of the data, countless hours of efforts were spent to extract and verify the signatures
of various application protocols used in the evaluations. Most of the signatures are
obtained through a deep-packet inspection approach, which involves capturing packets
of the target protocols and scrutinizing each of them to find common signatures. Apart
from our own analysis, the signatures are derived from other the signature-based clas-
sification and protocol structure studies, including [Pro08], [RG07], [Pha05], [ZP00],
[EMA+07], [Pol06], and [Yah08].

In total, 54 signatures of 24 application protocols are obtained and presented below.
Each signature is located in the first four bytes of the packet. Some signatures are
printable1 protocol syntaxes or commands while some signatures are not. For the
signatures that are printable, they will be represented in two parts as follows.

61 62 63 64 / abcd

The first part, 61 62 63 64, is the hexadecimal representation of the signature. The
second part, abcd, is the protocol signature in represented in ASCII characters. If
there exists a byte in the signature that is not printable, it will be shown as ‘.’. If the
signature is shorter than four bytes or some bytes can be arbitrary values, we use ??
to represent the arbitrary value. For instance:

61 ?? ?? 64 / a??d

1“Printable” means that the characters of a signature can be shown using ASCII code.
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C.2 Strict Conversational Class

Real-time Transport Protocol (RTP)

It is a standardized protocol for delivering video and audio data [SCFJ03]. The RTP
flows typically run on even UDP ports. Its signature is:

80 ?? ?? ?? / .???

The second byte in the signature indicates the media that the RTP packet is carried.
The last two bytes are the packet sequence number. Since the signature is too general,
we also check if the flow is run on even UDP port.

Windows Live Messenger Video

The Windows Live Messenger video protocol is a propriety protocol used in Microsoft
Windows Live Messenger software [Mic07] to perform video or audio conferences. Ac-
cording to the protocol structure documented in [Pol06] and our own analysis, the
following signatures can be used to identify the protocol’s videoconference packets.

4A 00 14 01 / ....
62 80 ?? ?? / ....
44 60 00 00 / ....

Real-Time Online Games

Not only videoconferences or audio calls, recent real-time online games are also sensi-
tive to delay and jitter as well. Therefore, they are also categorized as Strict Conver-
sational. Half-Life, a famous online first-person shooter game, is chosen for evaluation.
This is because the game is extremely popular and all versions of it as well as the
other third-party games that uses its engine share the same signature. The games that
employ Half-Life game engine include Counter-Strike, Quake, and Day Of Defeat. The
following is the protocol signature:

FF FF FF FF / ....

C.3 Relaxed Conversational Class

Secure Shell (SSH)

Secure Shell protocol is a network protocol that enables encrypted data transmission
between two hosts. It is generally used for remote access in Unix or Linux systems.

53 53 48 2D / SSH-
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Instant Messengers

Instant messengers provide user-to-user private chat sessions. They are one of the
most popular services on the Internet. Our signature-based FCS recognizes a number
of such services, including, Microsoft Windows Live Messenger, Yahoo Messenger, and
AOL Instant Messenger.

Microsoft Windows Live Messenger

56 45 52 20 / VER.
41 4E 53 20 / ANS.
55 53 52 20 / USR.
80 78 68 2D / .xh-
49 4D 45 2D / IME-
50 4E 47 0D / PNG.
57 4E 47 20 / WNG.

Yahoo Messenger

59 4D 53 47 / YMSG
59 50 4E 53 / YPNS
59 48 4F 4F / YHOO

AOL Instant Messenger

2A ?? ?? ?? / *...

Internet Relay Chat (IRC)

Internet Relay Chat or IRC, like instant messengers, provides text-based chat sessions
through a network. Unlike instant messenger, however, it is aimed for multi-user com-
munication, where users have to connect to a designated server and join a discussion
“channel” before the chat sessions can take place.

4E 49 43 4B / NICK
4D 4F 44 45 / MODE

Virtual Network Computing (VNC)

VNC is a remote-desktop sharing service, which allows a user from a remote terminal to
share the graphical screen as well as inputs, such as keyboard and mouse, of another
host. It is implemented using Remote FrameBuffer (RFB) protocol [Ric09], whose
packet payloads begin with the following signature.

52 46 42 20 / RFB.
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C.4 Streaming Class

Streaming class consists of applications that provide live or on-demand digital me-
dia content such as live video or audio broadcasts. Examples of such applications
include: Apple QuickTime [Qui08], Microsoft Windows Media Services [MMS08], and
RealNetworks [Rea08]. Most streaming services are implemented over the Real Time
Streaming Protocol (RTSP) [SRL98], which was standardized by the Internet Engi-
neering Task Force (IETF) in 1998. It offers media streaming controls such as play
and pause to the streaming clients. There are also other streaming services that do
not use RTSP to transfer their streams. One of them is Nullsoft SHOUTcast [SHO08]
protocol which we include in our experiment.

Real Time Streaming Protocol (RTSP)

We can distinguish RTSP from other RTSP flows by looking for the RTSP syntax.
According to the [Pro08], the RTSP protocol usually begin with “RTSP” or “rtsp”,
as well as media-control commands. The RTSP packets can be easily captured by
screening the packet payload for the following signatures:

52 54 53 50 / RTSP
72 74 73 70 / rtsp
50 4C 41 59 / PLAY
53 45 54 55 / SETU
4F 50 54 49 / OPTI

Nullsoft SHOUTcast

SHOUTcast protocol command always begin with “icy”. Thus, streams can be captured
with the following signature [Rad08, Pro08]:

69 63 79 2D / icy-

Media Streaming Through HTTP

In the past few years, streaming services using Adobe’s Flash Video technology [Ado]
has grown very popular. Example of these services are YouTube [You08], Google
Video [Goo08], Metacafe [Met08], and many other websites. Such video streams are
encapsulated by HTTP and sent through standard HTTP ports. To distinguish those
services from other services that are also transferred through HTTP, we rely on the
content-type [FB96a, FB96b] specified in the HTTP header.

43 6F 6E 74 65 6E 74 2D 54 79 70 65 3A 20 76 69 64 65 6F 2F /
Content-Type: video/
43 6F 6E 74 65 6E 74 2D 54 79 70 65 3A 20 61 75 64 69 6F 2F /
Content-Type: audio/
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C.5 Interactive Class

Interactive services include, for instance, the world-wide-web, email receiving and send-
ing, and news reading. Examples of the protocols corresponding to those services are
webpages, Post Office Protocol (POP), Simple Mail Transfer Protocol (SMTP), Net-
work News Transfer Protocol (NNTP).

Webpages

Currently, contents of a webpage do not include only texts and images anymore. Other
contents such as video and audio streaming are also found embedded in the ordinary
HTML pages. For Interactive class, only text and image contents are concerned.
Therefore, only the flows with the following content-types are considered.

43 6F 6E 74 65 6E 74 2D 74 79 70 65 3A 20 74 65 78 74 2F /
Content-type: text/
43 6F 6E 74 65 6E 74 2D 74 79 70 65 3A 20 69 6D 61 67 65 2F /
Content-type: image/

Post Office Protocol (POP)

The signature for the Post Office Protocol (POP) are:

50 41 53 53 / PASS
4E 4F 4F 50 / NOOP

These signatures are some of the POP standardized commands. Since the commands
are shared by other protocols such as FTP, we also have look into the transportation
port as well. Apart of matching the signatures above, the packets will be identified as
POP packet when it is sent through the TCP port 110, which is POP standard port.

Simple Mail Transfer Protocol (SMTP)

The Simple Mail Transfer Protocol (SMTP) is a text-based mail transfer protocol. Its
standard port is TCP port 25 and its signatures are:

48 45 4C 4F / HELO
45 48 4C 4F / EHLO
32 32 30 2D / 220-
32 35 30 2D / 250-

As in the case of POP, the signatures are standardized commands, which can also be
found in other protocols. Consequently, the transport port has to be checked as well.

Network News Transfer Protocol (NNTP)

The protocol is mainly used to access news articles on the Internet.
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4D 4F 44 45 / MODE
47 52 4F 55 / GROU
3B 40 3F 2D / ;@?-
2A 58 57 2D / *XW-
42 60 58 2D / B‘X-
3F 47 36 2D / ?G6-

C.6 Background Class

Background class consists of services that are not sensitive to delay or delay varia-
tion. This includes data transferring services such as File Transfer Protocol (FTP),
Server Message Block (SMB) protocol, Simple Mail Transfer Protocol (SMTP), and
peer-to-peer file sharing services. Peer-to-peer file sharing services (or P2P) are ser-
vices that allow users to download preferred files from more than one users at once.
They are called peer-to-peer because they do not require centralized servers to man-
age the file distributions. More information on P2P service can be found in, e.g.,
[SG05] or [ATS04]. In our experiments we focus on four popular P2P services: Bit-
torrent, Gnutella, DirectConnect, and Manolito. The reason why we focus only on
these four P2P services is because their protocols contain clear syntaxes can be clearly
distinguished. Other services either encapsulate themselves in HTTP or do not have
consistent signatures. Apart from the P2P protocols, FTP, SMB, and SMTP are also
concerned.

Bittorrent

It is currently one of the most popular P2P protocols. The clients in the torrent
networks initiate the connection between each other with the command that contains
following signature.

13 42 69 74 / .Bit

Gnutella

Gnutella is a pure peer-to-peer protocol. The network hosts serve as both clients and
servers simultaneously. The protocol could also be encapsulated in HTTP protocol. If
not, the Gnutella packets usually contains the following signatures:

47 4E 55 54 / GNUT
A3 86 97 2D / ...-
47 49 56 20 / GIV

DirectConnect

It is a P2P framework that the clients always have to connect to a server to exchange
files (although files are not provided by the server itself). The DirectConnect protocol
messages always starts with $ follows by a protocol command. The commands that
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we have seen in our data are: MyNick, Lock, and Sup. They can be captured using
the following signatures:

24 4D 79 4E / $MyN
24 4C 6F 63 / $Loc
24 53 75 70 / $Sup

Manolito

It is another peer-to-peer protocol. It uses UDP ports 41170-41350 for network mes-
sages and a random TCP port between 10240 and 20480 to transfer a file. The signature
of Manolito in one of its network messages is:

3D 4B D9 2D / =K?-

File Transfer Protocol (FTP)

FTP is a classical file transferring service. Its protocol is standardized so it can be
easily detected. The signatures that we use to capture its packets are:

50 41 53 53 / PASS
4E 4F 4F 50 / NOOP
4D 4F 44 45 / MODE
32 31 31 2D / 211-
32 32 36 2D / 226-

Since some commands are also used by other protocols, we also use the transport port
to assist the identification.

Server Message Block (SMB) Protocol

Server Message Block (SMB) Protocol is used by Microsoft Windows to provide various
services such as file and printer sharing. The signature to capture SMB packet is:

53 4D 42 ?? / SMB?

Simple Mail Transfer Protocol (SMTP)

The protocol is generally used to transfer emails across the Internet. The SMTP
signatures are as follows.

48 45 4C 4F / HELO
45 48 4C 4F / EHLO
32 32 30 2D / 210-
32 32 30 2D / 220-
32 35 30 2D / 250-
35 35 30 2D / 550-
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Appendix D

Flow Characteristics and Prefixes

Table D.1: Statistics of WIDE traces - Amount of packets and data of each trace.
Traces IPv4 Data (MB) IPv4 Packets IPv6 Data (MB) IPv6 Packets

March 18
00:00 60,476.20 119,292,166 43.89 335,820
08:00 54,980.23 91,867,380 28.70 182,531
12:00 70,357.34 118,436,674 60.31 263,392
16:00 87,682.00 137,723,441 75.33 282,507
20:00 65,354.08 113,953,372 93.16 363,258

March 19
00:00 62,530.49 110,691,621 85.06 271,566
08:00 49,828.59 83,500,722 65.12 241,241
12:00 62,671.58 101,909,997 83.78 356,329
16:00 80,463.85 128,968,144 79.39 277,967
20:00 63,351.05 108,411,482 68.92 248,518

March 20
00:00 58,527.78 98,624,605 131.89 1,366,254
08:00 47,579.19 77,043,197 48.23 195,156
12:00 55,501.56 96,138,934 64.38 226,803
16:00 64,861.18 116,615,339 84.04 227,406
20:00 50,142.51 100,840,514 38.01 200,281
Total 934,307.62 1,604,017,588 1,050.21 5,039,029

149



150 APPENDIX D. FLOW CHARACTERISTICS AND PREFIXES

Table D.2: Statistics of WIDE traces - Number and percentage of flows identified in each
trace.
Traces Total Identified Unidentified Identified (%) Unidentified (%)

March 18
00:00 10,646,926 3,184,849 7,462,077 29.91 70.09
08:00 8,633,413 2,117,542 6,515,871 24.53 75.47
12:00 9,310,384 2,710,965 6,599,419 29.12 70.88
16:00 9,633,095 2,953,538 6,679,557 30.66 69.34
20:00 10,067,802 2,542,424 7,525,378 25.25 74.75

March 19
00:00 9,667,477 2,093,850 7,573,627 21.66 78.34
08:00 7,694,564 1,820,393 5,874,171 23.66 76.34
12:00 7,644,032 2,001,877 5,642,155 26.19 73.81
16:00 10,181,988 2,510,894 7,671,094 24.66 75.34
20:00 10,001,050 2,207,984 7,793,066 22.08 77.92

March 20
00:00 9,291,889 2,087,068 7,204,821 22.46 77.54
08:00 7,055,083 1,544,780 5,510,303 21.90 78.10
12:00 8,017,126 2,238,274 5,778,852 27.92 72.08
16:00 10,551,872 2,545,686 8,006,186 24.13 75.87
20:00 10,501,660 2,482,109 8,019,551 23.64 76.36
Total 138,898,361 35,042,233 103,856,128 25.23 74.77
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Figure D.1: Difference/Prefix plots of all features - StrConv. The number of each plot
indicates which feature is associated to the plot. It corresponds to the numbers of the features
listed in Table 5.1.
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Figure D.2: Difference/Prefix plots of all features - RlxConv. The number of each plot
indicates which feature is associated to the plot. It corresponds to the numbers of the features
listed in Table 5.1.
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Figure D.3: Difference/Prefix plots of all features - Streaming. The number of each plot
indicates which feature is associated to the plot. It corresponds to the numbers of the features
listed in Table 5.1.
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Figure D.4: Difference/Prefix plots of all features - Interactive. The number of each plot
indicates which feature is associated to the plot. It corresponds to the numbers of the features
listed in Table 5.1.
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Figure D.5: Difference/Prefix plots of all features - Bulk. The number of each plot indicates
which feature is associated to the plot. It corresponds to the numbers of the features listed in
Table 5.1.
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Figure D.6: Difference/Prefix plots - connTime
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Figure D.7: Difference/Prefix plots - connTimeCF
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Figure D.8: Difference/Prefix plots - dataVolume
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Figure D.10: Difference/Prefix plots - dataVolumeRatio



161

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D
iff

er
en

ce

Flow Length

StrCnv
RlxCnv

Streaming
Interactive

Bulk

(a) Linear Scale

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

D
iff

er
en

ce

Flow Length

StrCnv
RlxCnv

Streaming
Interactive

Bulk

(b) Exponential Scale

Figure D.11: Difference/Prefix plots - pktCount
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Figure D.15: Difference/Prefix plots - pktSizeAvg
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