Surgical Considerations in Lower Extremity Amputation

> Tina Dreger, MD Orthopaedic Trauma Fellow University of Missouri

Disclosures

None
Original presentation by Brett Crist, MD

Objectives

- Understand the indications for lower extremity amputation
- Understand the principles and goals of lower extremity amputation
- Review specific levels of amputation and important considerations for each
- Review special considerations involving lower extremity reconstruction

Lower Extremity: Purpose

Ambulation/locomotion

Indications for Amputations

 Trauma — Acute

– Chronic

Medical Co-morbidities

Amputation Due to Trauma

• Trauma -20-40 y/o males -16% of amputations -45% of amputees

Indications for Amputation

• LEAP

- 569 patients followed prospectively
- Amp vs. limb salvage
- -2 and 7 year data
- -Hospitalization
- -White collar

-=?

Bosse et al. NEJM 2002; JBJS 2005

Indications for Amputation

Lack of plantar sensation

- Not equal automatic amputation
- >50% of salvages with initial lack of plantar sensation recovered by 2 years

Bosse et al. JBJSAm 2005

Indications for Amputation

- Military
 - Pushing the envelope
 Extremity War Injuries
 Symposia

Amputations Among Military

- Increased number of 3 and 4 extremity amputees
- IED's = infection
- Soldiers with tourniquets
- Significant psychological and societal implications

Indications for Amputations

- Infection
 - 2° to diabetes

Peripheral Vascular Disease

 – 2° to diabetes (71%)
 – 80% of lower extremity amputees

Indications for Amputations

- Neurological disorders
 - Peripheral neuropathy 2^o to diabetes
 - Lack of protective sensation
- Burn
- Congenital deformities
- Malignant tumors

 Clear margin

Successful Amputation

 Removal of dysfunctional/devitalized tissue

-easy

 Reconstruction of a durable residual limb
 – challenging

Goals of Amputation Surgery

- Preservation of Length
 - Prevention of adjacent joint contractures
- Preservation of function
 - Minimize energy expenditure
- Early return to function
 - Early prosthetic fitting when possible
- Painless residual limb
 - Prevention of symptomatic neuromas
 - Minimize phantom limb pain
- Preservation of Life

Energy Expenditure

- Normal energy expenditure
 - -Walking
 - -O2 consumption

Level of amputation
 Higher = more energy

Amputation Level	Energy Above Baseline (%)	Speed (m/min)	O2 Cost (mL/kg/m)
Long transtibial	10	70	0.17
Average transtibial	25	60	0.20
Short transtibial	40	50	0.20
Bilateral transtibial	41	50	0.20
Transfemoral	65	40	0.28
Wheelchair	0-8	70	0.16

Gottschalk, Frank; Rehabilitation: Gait, Amputations, Prostheses, Orthoses, and Neurologic Injury, Chpt. 10.

General Amputation Principles

- Skin
- Muscle
- Nerves
- Blood Vessels
- Bone

Skin

• Painless, pliable, nonadherent scar

Scar placement and prosthetic wear
 Viable level

Coverage:
 –Flap coverage
 –Skin graft

Muscle

- Myofascial closure Provides minimal muscle stabilization Myoplasty Balances opposing muscle groups Myodesis Attach muscle to bone Tenodesis
 - Attach tendon to bone

Nerves

- Avoiding painful neuromas
 - 1. Separate nerve from vessels
 - Traction nerve and sharply transect
 -Retracts to safety
 - 3. Nerve preparation -Injection of alcohol

Blood Vessels

Suture ligate major vessels

Full-thickness skin flaps
 Minimize wound necrosis

Hemostasis prior to closure
 Drains

Bone

- Minimize sharp edges
 Beveling/filing
- Narrow metaphyseal flare/condyles
- Cap intramedullary canal
 Minimize bleeding
- Minimize periosteal stripping
 Exostosis

Levels of Amputation

Levels of Amputation

• Toe

• Modified Symes

- Ray resection
- Partial forefoot
- Transmetatarsal
- Symes

BKA

- Through knee
- AKA
- Hip Disarticulation
- Hemipelvectomy

- Interphalangeal
 - Leave cartilage
 - Trim condyles
- Transect tendons and nerves
 Do not sew tendons together
- Great toe
 - Leave 1cm
 - Foot balance and function

Ray Resection and Partial Foot

- Includes toe and part of metatarsal
- Preserve 1st MT length
 Orthosis
 - -Foot balance
- Avoid sharp bony prominences
- Multiple lateral rays

Transmetatarsal

Considered

- 2 or more medial rays
- More than one central ray
- Preserve length
- Maintain arch and metatarsal cascade
- Avoid Achilles
 contracture
 - Achilles lengthening

Transmetatarsal

в

Ng et al. JAAOS 2010

Negatives for Transmetatarsal

- -Foot balance
- -Prosthetic fit
- -Wound healing
 - 33% primary wound closure
 - 56% may require revision to higher level

Symes

Ankle disarticulation

- Required
 Viable heel pad
- Modifications
 Malleoli excision
 Incision

Symes

Benefits – Longer limb/less energy -High level walkers - End bearing for obese patients Ambulate without prosthesis

Negatives

- -Wound healing
- Compliance
- Heel pad instability

• Must preserve posterior tibial arterial supply

Ε

D

Ng et al. JAAOS 2010

Below Knee Amputation

- Most common
- Longer is better
 Always?
 Soft tissue
- Minimum to utilize BKA prosthesis

- 2.5 cm per 30cm pt height
- 5cm distal to the tubercle

Below Knee Amputation: Techniques

Long posterior myocutaneous flap

Modify skin flaps based upon available skin

• ID neurovascular structures

Isolate fibula and transect 1.5cm above tibia

• Tibial cut

• Bevel bone cuts

Ligate vessels and transect nerves

• Myodesis vs. myoplasty

Below Knee Amputation

Staged

- Traumatic or infection
- Guillotine
 - Allows soft tissues and bone to declare

Ertl Procedure

• Tibiofibular synostosis

Indication

- Young
- Proximal tib/fib instability
- High activity level

• Outcomes

- Functional scores = no benefit (Ng et al. JAAOS 2010)
Technique

– Fibula cut at same level -Leave medial periosteal hinge - Connect to tibia Metal • Suture

Ng et al. JAAOS 2010

- 45y/o s/p MCC
- Police officer
- Right open femur fx
- Right open tib/fib with vascular insufficiency
- Ex-fix
- Multiple debridements
- Progressive necrosis

X-Table

RES

- Femur infected

 ABX beads
 IV abx
 debridements
- 2 STSG
- Suture removal
- 11mo

After prosthesis

 c/o knee pain and crepitance

BKA at all costs

Improved energy expenditure

- Soft tissue reconstruction to maintain length and knee function
 - Skin graft or substitute
 - Muscle flap

More functional prosthesis

 40y/o male s/p BKA due to mangled lower extremity after go-cart accident

 Within 2 weeks of BKA and DPC

 Infected
 Necrotic skin

Options

Revision to AKA

 Reconstruct soft tissue weightbearing surface

• Multiple debridements

 Negative pressure wound therapy (NPWT)

• STSG low probability

Muscle flap required
 Gracillis rotation
 flap

• Gracillis covering tibia

STSG over muscle

Through Knee Amputation/Knee Disarticulation

- Prosthetists
 - -Thumbs up or down

• End bearing residual limb

 Soft tissue coverage

 Improved with posterior flap technique

Indications

- Trauma
- Infection
- Dysvascular
- Nonambulatory

- *Risk of knee contractures with BKA

Through Knee Amputation/Knee Disarticulation

Benefits

- End bearing surface
- -Sitting comfort
- -Longer lever arm
- Balanced thigh muscles
- Prosthetic
 suspension (femoral condyles)

Negatives

- -Knee height
- Soft tissue coverage

Technique

 Suture patellar tendon to cruciates

 Patella not distal to femur

Posterior Flap Technique

Doug Smith, MD

Through Knee Amputation/Knee Disarticulation

• LEAP study

Slowest walking speed
Least satisfaction

—12/18 no gastroc coverage->poor prosthetic tolerance

Mackenzie et al. JBJS 2004

Above Knee Amputation

Maintain length

Energy expenditure

 Recurrent infected total knee arthroplasty

 Alternative to knee fusion

Technique

- Fish mouth incision
 Modify to prevent weight bearing on incision
- Myodese adductors
- Myodese quad and hamstrings
- No myodesis = poor function and pain
 Femur moves within muscular sleeve

Above Knee Amputation

Case Example: Maintain length at all cost

- 32 y/o s/p MCC
- Left open tibial shaft fx
- Left open bicondylar tibial plateau fx
- Left open femoral shaft fx
- Left femoral neck fx
- Left clavicle fx
- Left ulna fx

• Rides horses

• No residual pain

Hip Disarticulation

Indications

- Preservation of life
- Co-morbid pt with infection and sepsis
- Necrotizing fasciitis
- Non-ambulators (paraplegics)
- Advanced ischemic disease
- Tumor

Hip Disarticulation

- Problems
 - -Wound management
 - -Sitting balance
 - -No prosthesis?
 - May choose not to wear
 - Use crutches anyway

Technique

Lateral position

 Medial and lateral skin flaps

Use muscles to fill dead space

• Wound complications

Hemipelvectomy

- Indications
 - Same as hip disarticulation
 - Tumor more common
 - More common in military recently

- Procedure of last resort
- Poor functional outcome

Technique

- Semi-lateral position
- Large posterior flap
- Keep as much of the hemi pelvis as possible for sitting balance

Complications

Amputation Site Breakdown

Early

Delayed wound healing

 Immunocompromised
 Malnourished
 Infection

Marginal necrosis
 Appropriate surgical technique

Amputation Site Breakdown

Late

 Deep infection

 Usually associated with PVD/DM/amputation for infected hardware

Adherent skin

Poor prosthetic fit

Infection

- Debridement
- Antibiotics
- Local wound care
- Secondary healing

 Prolonged wound healing
- Revision amputation

Amputation Site Prominence

- Overgrowth
- Bone spur
- Muscle atrophy
- Failed myoplasty/myodesis
- Skin hypertrophy
- Bursitis
- Bulbous/floppy residual limb
 - Poor surgical technique

Indications for Revision Amputation

Tissue prominence

 Poor prosthetic fit
 Limited function
 Pain
 Skin at risk

Heterotopic Ossification/Bone Spur

- Associated with:
 - Severe trauma
 - Excessive manipulation of periosteum
 - Residual bone after osteotomy
- May require surgical resection if problematic
 Recurrence of HO

Indications for Revision Amputation

Neurologic Complications

- Neuroma
- Phantom limb sensation

Neuroma

All nerve transections form neuromas

Painful
 – Positive Tinel's

- Causes
 - Poor surgical technique
 - High pressure area
 - Crush injury

Phantom Limb Pain

• May be nonpainful

Painful

 –Up to 85% in LE
 –~40-69% in UE

Phantom Limb Pain

Surgical

 Dehydrogenated alcohol and marcaine into epineureum

- Non-surgical
 - Neurontin
 - Shown effective
 - Vitamin C?

– Regional anesthetics perioperatively?

Joint Contracture

Usually related to short lever arm

Contracture release and tenolysis may be required if fixed deformity

Summary

- Lower extremity amputations are much more common than upper extremity
- Restoring function is important
 - Reconstruction
 - Prosthesis
- Preserve length and joint motion
- Avoid complications
- Patient counseling/support

Questions?

Thank You

ORTHO TRAUMA

Email: dregert@health.missouri.edu

References

- Smith DG, Michael JW, Bowker JH, American Academy of Orthopaedic Surgeons. Atlas of amputations and limb deficiencies : surgical, prosthetic, and rehabilitation principles. 3rd ed. Rosemont, IL: American Academy of Orthopaedic Surgeons; 2004.
- 2. Scott et al. Traumatic and Trauma-related Amputations I and II. JBJSAm Dec 2010
- 3. Ng and Berlet. Evolving Techniques in Foot and ankle Amputations. JAAOS April 2010