Geophysical Research Abstracts, Vol. 11, EGU2009-10028-2, 2009 EGU General Assembly 2009 © Author(s) 2009

Structural relaxation and colour in the spinel-magnesiochromite $(MgAl_2O_4-MgCr_2O_4)$ and gahnite-zincochromite $(ZnAl_2O_4-ZnCr_2O_4)$ solid solution series

U. Hålenius (1), G.B. Andreozzi (2), and H. Skogby (1)

(1) Swedish Museum of Natural History, Department of Mineralogy, Stockholm, Sweden (ulf.halenius@nrm.se, +46 (08) 51954031), (2) Università di Roma "La Sapienza, Dipartimento di Scienze della Terra, Roma, Italy

Recent studies on binary mineral solid solution series utilising synchrotron based x-ray absorption spectroscopies have indicated strong structural relaxation. For instance, it has been suggested that the real Cr-O bond distances remain nearly constant (relaxation parameter (ε) of 0.85, where ε =1 equals full relaxation) over the entire compositional range of the MgAl₂O₄-MgCr₂O₄ series (Juhin et al. 2007).

In the present study we have measured room temperature optical absorption spectra of synthetic single crystals of the $ZnAl_{2-2x}Cr_{2x}O_4$ (0.03 \leq x \leq 1) and $MgAl_{2-2x}Cr_{2x}O_4$ (0.02 \leq x \leq 1) series with the aim to explore the real architecture of the structure and in particular the Cr-O distance as function of composition.

Our crystals were synthesized by means of flux-growth methods under atmospheric pressure and temperature profiles resulting in an estimated cation ordering temperature of ca 850°C. Crystals close to the spinel (*sensu stricto*) and gahnite end-member compositions were faintly red in colour. With increasing Cr-content the crystals become more intensely red-coloured and at the higher Cr-contents there is a distinct shift towards a dark greenish colouration. These colour changes are reflected in the measured optical spectra by the position and intensity of the two spin-allowed electronic d-d transitions in octahedrally coordinated Cr^{3+} at ca $18000 \, (^4A_{2g} - ^4T_{2g} \, (^4F) \, transition)$ and $25000 \, cm^{-1} \, (^4A_{2g} - ^4T_{1g} \, (^4F) \, transition)$. The energy of the first transition (ν_1 -band) is ca $1200 \, cm^{-1}$ lower in magnesiochromite than in weakly Cr-doped spinel (x=0.02) and ca $1400 \, cm^{-1}$ lower in zincochromite than in gahnite with the lowest Cr-content (x=0.03). Concomitantly the energy of the second transition (ν_2 -band) decreases with increasing Cr-content in both series by ca. $1800 \, cm^{-1}$.

From the position of the ν_1 -band, a decrease in crystal field splitting, 10Dq, for six-coordinated Cr³⁺ with increasing Cr-content in the MgAl_{2-2x}Cr_{2x}O₄ and ZnAl_{2-2x}Cr_{2x}O₄ series of 6.5 and 7.5 %, respectively, is determined. Based on a Cr-O bond distance for the CrO₆ polyhedron in magnesiochromite and zincochromite of 1.995 and 1.991 Å respectively (O'Neill and Dollase, 1994) and applying the ligand field relationship 10Dq≈C⋅R⁻⁵ (R equals the M-O distance of the MO₆-polyhedron), Cr-O bond distances in gahnite and spinel with Cr-contents at trace levels are determined to 1.959 and 1.969 Å, respectively. These M-O bond distances are considerably longer than the M-O distances determined for end member gahnite and spinel by XRD-methods (1.9137 and 1.9280 Å, respectively; O'Neill and Dollase, 1994) and shows that there is considerable structural relaxation of M-O bonds in the two present spinel series. The relaxation parameter, ε , determined from the optical absorption spectra is 0.59 and 0.63 for the ZnAl_{2-2x}Cr_{2x}O₄ and MgAl_{2-2x}Cr_{2x}O₄ and series, respectively. These values are lower than those suggested from X-ray absorption spectroscopy (Juhin et al. 2007), which may be explained by second nearest neighbour interactions. In contrast to what may be expected, the interelectronic repulsion parameter, B, for VI Cr³⁺ decreases with increasing Cr-content and apparent Cr-O bond length in both of the present spinel series. This indicates that interactions between Cr-atoms in neighbouring octahedra become important at increasing Crcontent and result in more covalent Cr-O bonds. This in turn suppresses the energy of ${}^4A_{2q} - {}^4T_{2q}$ (4F) transition (and calculated 10Dq-values) in octahedrally coordinated Cr³⁺. Consequently, the values of structural relaxation parameters determined from the optical absorption spectra must be regarded as minimum numbers.

Literature

Juhin, A., Calas, G., Cabaret, D. and Galoisy, L. (2007): Structural relaxation around Cr³⁺ in MgAl₂O₄. Physical

Review, B76, 054105.

O'Neill, H.St.C. and Dollase, W.A. (1994): Crystal structures and cation distributions in simple spinels from powder XRD structure refinements: $MgCr_2O_4$, $ZnCr_2O_4$, Fe_3O_4 and the temperature dependence of cation distribution in $ZnAl_2O_4$. Physics and Chemistry of Minerals, 20, 541-555.