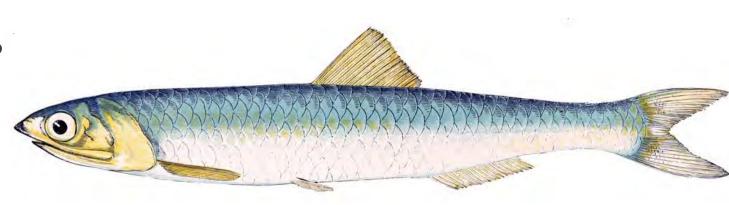


Influence of temperature and food availability on anchovy (*Engraulis encrasicolus*) dynamics as seen through a Dynamic Energy Budget (DEB) model

Grea Groenewald

Department of Biological Sciences & Marine Research Institute (MA-RE), University of Cape Town, South Africa


grea.groenewald@gmail.com

Content

- Background
- Why DEB theory
- How does DEB theory work?
- Method
 - 1) Functional response
 - 2) Temperature
 - 3) Fraction allocated to Maintenance
 - 4) Starvation
- Results
- Where do we go from here?

Background

- South Africa three main species of small pelagic fish (Fig. 1)
 - Anchovy (Engraulis encrasicolus)
 - Sardine (Sardinops sagax)
 - Redeye Round herring (*Etrumeus* whiteheadi)
- Occupy intermediate level in marine food webs
- ► Short lifespan → grow fast and mature early

Fig. 1. Illustrations of a) Anchovy (Engraulis encrasicolus), b) sardine (Sadinops sagax) and c) Redeye Round herring (Etrumeus whiteheadi)

Background (cont.)

- Anchovy target small pelagic fisheries in South Africa since mid-1960s (Fig. 2).
- ► Economically important → well studied
- Objective: effect of food & temperature on growth and reproduction
- Traditionally bioenergetics models
 → powerful tool

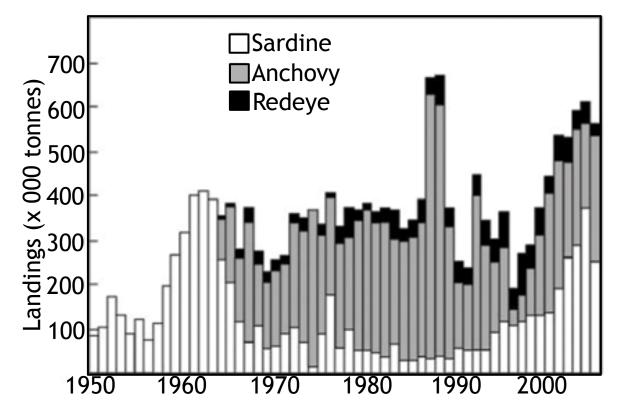
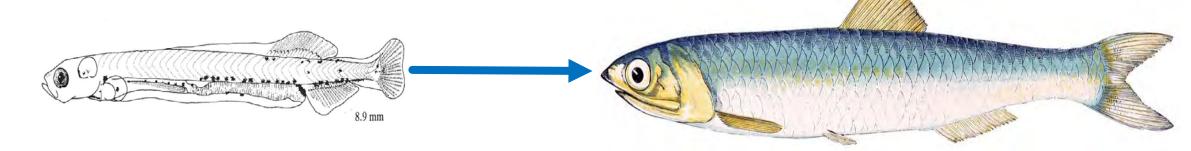
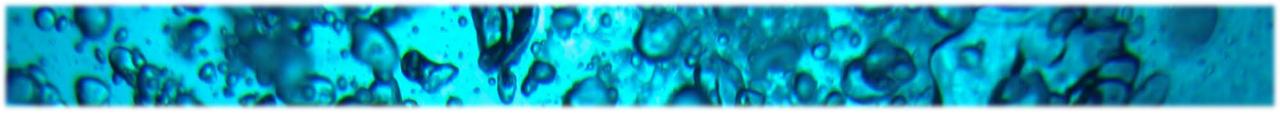


Fig. 2. Fishery data for the three small pelagic fish species caught by purse-seine fisheries for the period 1950-2005 (from Hutchings et al. 2009)


SALE REALERED

Why DEB theory?

- Kooijman(1980s) developed Dynamic Energy Budget (DEB) theory
- Model:
 - Describes
 - \checkmark Rate of assimilation and energy utilization
 - Maintenance, reproduction and growth
 - \checkmark As a function of environment
 - * 12-parameters \rightarrow predict both inter- and intraspecific variation
 - \clubsuit Core model \rightarrow Three state variables:
 - 1. Energy in the reserve E (J)
 - 2. Volume of the structure V(cm³)
 - 3. Energy allocated the reproductive buffer E_R (J)


Why DEB theory?

► Complete life cycle - embryonic \rightarrow juvenile \rightarrow adult

DEB theory used to describe growth and reproduction

- Pecquerie *et al.* (2009) \rightarrow Anchovy in the Bay of Biscay
- Pethybridge *et al.* (2013) \rightarrow Anchovy in the North-western Mediterranean Sea
- ► DEB parameters \rightarrow known

How does it work?

- 1) Food assimilated (p_A) \rightarrow Reserve (E) \rightarrow allocated to maintenance, growth & reproduction
- 2) Metabolism (p_c) \rightarrow Somatic Maintenance (p_M) and maturity maintenance (p_J)
- 3) Growth (p_G) \rightarrow Structure (V)

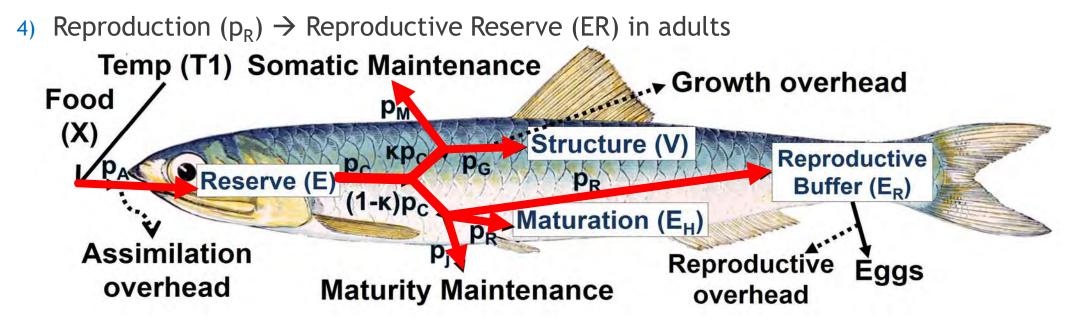


Fig. 3. A conceptual diagram of the standard Dynamic Energy Budget (DEB) showing the fluxes of an individual anchovy. During the juvenile stage the Reproductive buffer $(E_R) = 0$ and during the adult stage Maturation $(E_H) = 0$ (adapted from Pequerie *et al.* (2009)).

SALE REALESCERE

Methods

- ✓ Life cycle parameters →
 Literature
- ✓ DEB parameters → DEB tools
- Experiments
 - 1. Varying *f*
 - 2. Varying *Temperature*
 - 3. Varying к
 - 4. Starvation

Table 1. Life cycle parameters for anchovy Engraulis encrasicolus in the Benguela based on laboratory and field data from various authors at a Reference temperature of 16°C.

Symbol	Value	Units	Description	Author/Authors
a _b	2.28	days	Age at birth	King et al. (1978)
L _b	0.30	cm	Length at Birth	Armstrong and Thomas (1989)
aj	60	days	Age at Metamorphosis	Armstrong and Thomas (1989)
W _{wb}	$= 0.009^{*}(L_{b}^{3})$	g	Wet Weight at Birth	DAFF unpublished data
Lj	3.5	cm	Length at Metamorphosis	Armstrong and Thomas (1989)
L _p	9.5	cm	Length at Puberty	Le Clus (1979)
a _m	1460	days	Life span of fish	
L _m	14.8	cm	Max Length	Waldron et al. (1989)

SALS REALESCERA

Experiment 1

Functional response (f)

Ingestion rate as a function of food density

$$f = \frac{X}{X + kX}$$

X = food density and kX = half saturation constant

- Constant temperature (T1)
- ▶ Values of *f* = 0.1, 0.3, 0.5, 0.7, 0.8, 0.9 and 1
- ► $f = 1 \rightarrow$ unlimited food supply
- ► $f = 0.14 \rightarrow$ near starvation
- Compare results to von Bertalanffy growth curve

Experiment 2

Water Temperature (T1)

Temperature affects metabolism

* Maximum assimilation rate $\{\dot{p}_{Am}\}$

♦ Somatic maintenance rate $[\dot{p}_M]$

Temp Correction:

 $c(T) = \exp\left(\frac{T_A}{T_{Ref}} - \frac{T_A}{T_1}\right) \qquad \qquad T_A = Arrhenius \ temperature \ (9800 \ K) \\ T_{ref} = Reference \ Temperature \ (289 \ K)$

Values T1 = 12 to 24°C varying by 2°C every time

SALLE CALLER

Experiment 3

Fraction allocated to maintenance (κ)

- 🕨 κ-rule
 - * Fixed fraction (κ) of the reserve (E) allocated growth & maintenance.
 - * Fraction $(1-\kappa)$ available for development & reproduction.

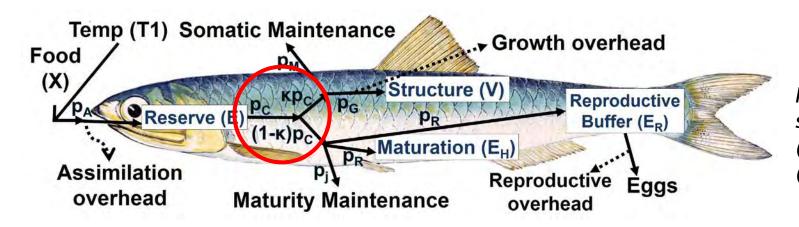


Fig. 3 A conceptual diagram of the standard Dynamic Energy Budget (DEB) (adapted from Pequerie et al. (2009)).

- For this κ = 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8
- Assumes a fixed f and T1

Experiment 4

Starvation study

- Once fish sexually mature f = 0
- Reproductive buffer (E_R) used for Maintenance
- if E_R reaches zero fish is dead
- Rerun experiment for different stages of Ovary development

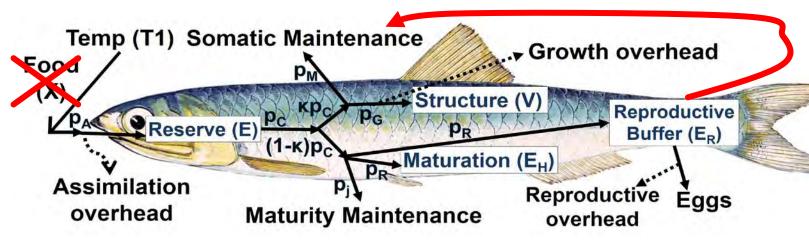
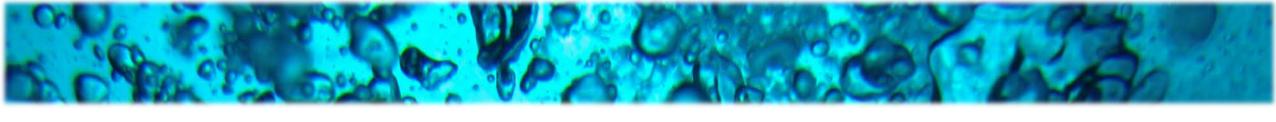



Fig. 3. A conceptual diagram of the standard Dynamic Energy Budget (DEB) (adapted from Pequerie *et al.* (2009)).

Results?

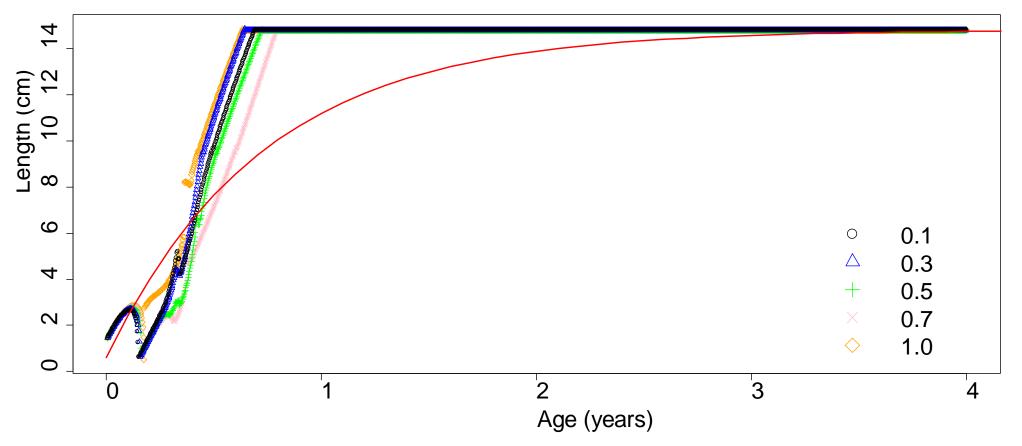


Fig. 4. The growth curves for different values of the functional response (f). f = 1 is for an unlimited food supply and f = 0.1 is near starvation. The anchovy von Bertalanffy growth curve is shown by the red line

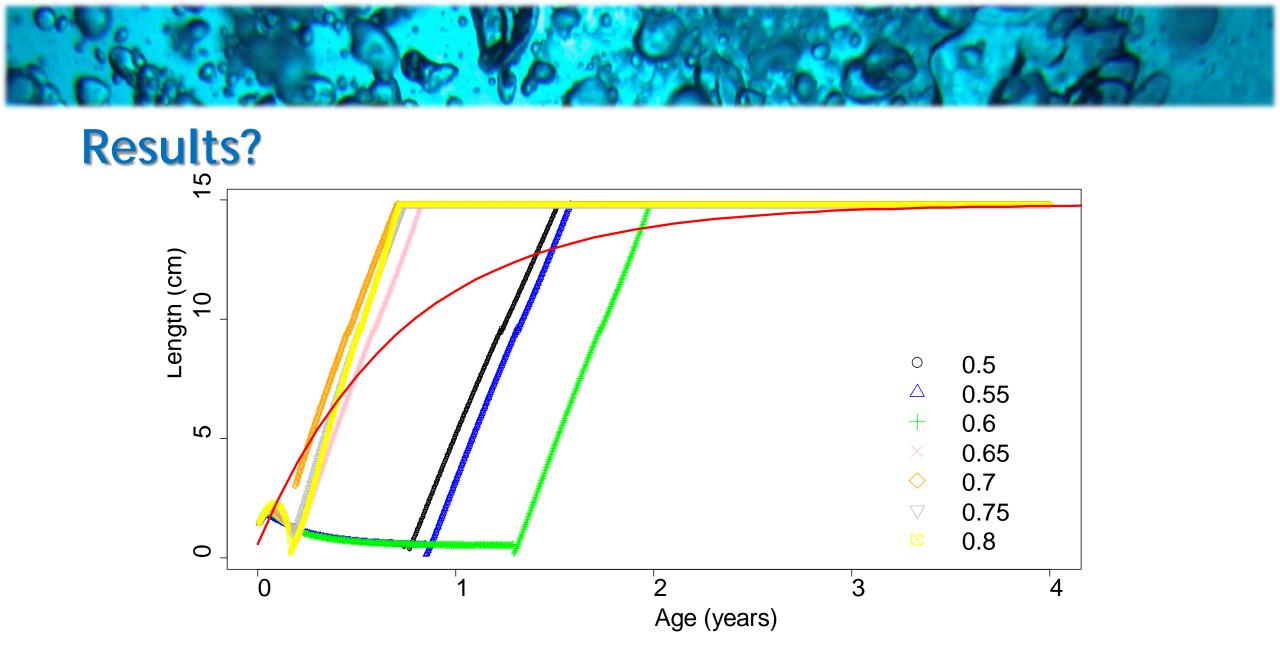
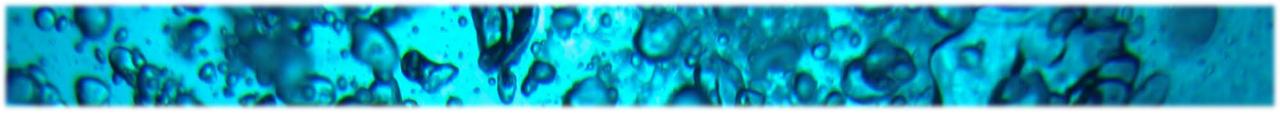



Fig. 5. The growth curves for different values of fraction allocated to maintenance (κ). The anchovy von Bertalanffy growth curve is shown by the red line

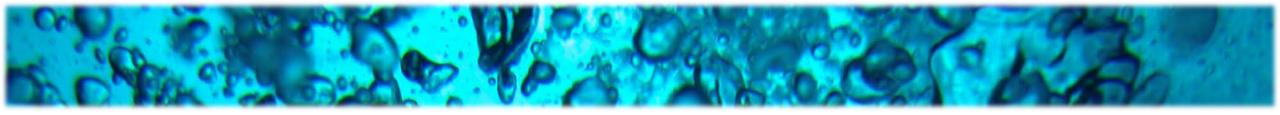
Where do we go from here?

- Debug the model for better results
- Model for:
 - Sardine (Sardinops sagax)
 - Redeye Round herring(*Etrumeus whiteheadi*)
- Create Varying environment
 - Food
 - Temperature
- Problems with Redeye?

99 little bugs in the code.99 little bugs.Take one down, patch it around.127 little bugs in the code...

agriculture, forestry & fisheries

Department: Agriculture, Forestry and Fisheries **REPUBLIC OF SOUTH AFRICA**


boysensity of Cape Town. Hunivesity

Thank You

References

- Armstrong, M. J. & Thomas, R. M. 1989. Clupeoids. In Oceans of life off Southern Africa. Payne, A. I. L. & Crawford, R. J. M. (Eds.). Vlaeberg Publishers, Cape Town, 105-121.
- Hutchings, L., Augustyn, C.J., Cockcroft, A., Van der Lingen, C., Coetzee, J., Leslie, R.W., Tarr, R.J., Oosthuizen, H., Lipinski, M.R., Roberts, M.R., Wilke, C., Crawford, R., Shannon, L.J., & Mayekiso, M. 2009. Marine fisheries monitoring programmes in South Africa. South African Journal of Science 105(5-6): 182-192.
- King, D. P. F., Robertson, A. A. & Shelton, P. A. 1978. Laboratory observations on the early development of the anchovy *Engraulis* capensis from the Cape Peninsula. *Fisheries Bulletin* 10: 37-45.
- Kooijman, S. A. L. M. 2000. Dynamic Energy and Mass Budgets in Biological Systems. Anonymous Seconded. University Press.Cambridge.
- Le Clus, F. 1979. Fecundity and maturity of anchovy *Engraulis capensis* off South West Africa. *Fisheries Bulletin (South Africa)* 11: 26-38.
- Pecquerie, L., Petitgas, P. & Kooijman, S. A. L. M. 2009. Modeling fish growth and reproduction in the context of the Dynamic Energy Budget theory to predict environmental impact on anchovy spawning duration. *Journal of Sea Research* 62: 93-105.
- Pethybridge, H., Roos, D., Loizeau, V., Pecquerie, L. & Bacher, C. 2013. Responses of European anchovy vital rates and population growth to environmental fluctuations: An individual-based modeling approach. *Ecological Modelling* 250: 370-383.
- Waldron, M., Armstrong, M. J. & Prosch, R. M. 1989. Aspects of the variability in growth of juvenile anchovy *Engraulis capensis* in the southern Benguela system. *South African Journal of Marine Science* 8: 9-19.