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Executive Summary

PICES’ Convention came into force in 1992 while the North Pacific Fisheries Commission’s
(NPFC) Convention on the Conservation and Management of High Seas Fisheries Resources in
the North Pacific Ocean came into force in 2015. In 2019, the two organizations agreed on a
joint NPFC — PICES Framework for Enhanced Scientific Collaboration in the North Pacific Ocean.
This framework identified three broad areas of joint interest to PICES and NPFC including
research on stock assessment for NPFC's priority species, an ecosystem approach to fisheries
management, and vulnerable marine ecosystems (VMEs) in the North Pacific Ocean. The Food
and Agriculture Organizations (FAO) defined VMEs as “groups of species, communities, or
habitats that may be vulnerable to impacts from fishing activities.” NPFC identified four orders
of corals — Alcyonacea, Antipatharia, Gorgonacea, and Scleractinia — as indicators of potential
VMEs, but recognized that sponges and other invertebrates may also be identified as VME
indicator taxa in the future. Although NPFC was formed a few years before the onset of this
joint NPFC — PICES framework, WG32’s activities on the biodiversity of biogenic habitats
support joint research activities related to VMEs.

One of the many motivations for developing a working group to focus on the biodiversity of
biogenic habitat (WG32) are the threats of bottom fishing and climate change to the
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distribution and abundance of corals, sponges, and other organisms that provide habitat for
marine organisms, including commercially valuable species. Biogenic corals and sponges
provide habitat for early life history stages of fishes, and perform important functions in
nutrient cycling and carbon sequestration. Catches of rockfishes and other commercially
important species were higher where corals and sponges occurred as bycatch. The goals of
PICES WG32 centered on collating data on the distribution of corals, sponges, and associated
fauna, using models to predict the distribution of these biogenic habitats, proposing indicators
for assessing them, and reviewing their associations with commercially important species.

The distribution of fauna is more difficult to monitor in marine environments, particularly in the
deep sea. Yet, assessing the distributions of biogenic habitat is a precursor to understanding
their role in the greater dynamics of the entire ecosystem (e.g. biodiversity, ecosystem
functioning, fisheries, etc.). Therefore, predictive modeling methods are often used to estimate
the distribution of marine fauna using available data. Knowledge of the spatial distribution of
species is valuable for understanding ecosystem structure and function. Predictions of species’
ranges from distribution models are often used to inform marine management and
conservation efforts, but few studies justify the model selected or quantify the uncertainty of
the model predictions in a spatial manner.

One of the key activities of WG32 was to review modeling approaches to predict the potential
distributions of species and habitat suitability for biogenic habitats within national waters. Due
to the now numerous species distribution modeling methods, there is some difficulty in
selecting an appropriate algorithm. Habitat modelling approaches that were reviewed by WG32
members included MaxEnt, generalized additive models (GAMs), and Boosted Regression Trees.
During the 2016 PICES annual meeting, WG32 convened a workshop on modeling approaches
for corals and sponges and provided recommendations for data and modeling approaches that
should be considered for those biogenic habitats. Technical aspects of the species distribution
modeling, including the best-practices for generating input data, creating models and
evaluating the results, a data-driven approach to defining bioregions, a multi-scale assessment
of species distribution models, and an assessment of model transferability were also examined
during the workshop.

Members recognized the value of producing multiple models for multiple areas because
oceanic environments are subject to different currents and water masses and different levels of
terrestrial influence can vary drastically in their biogeochemistry. They also recognized the
importance of selecting an appropriate grid cell size and spatially examining uncertainty in
model predictions and how it varies over space.



Across biogenic habitat types, assessment and monitoring efforts shared the following common
themes: defining study objectives, assembling preliminary data, determining scale of interest,
selecting indicators, determining study methods and sampling design, and full protocol review.
Monitoring the status of biogenic habitats is difficult and costly, so WG32 focused on
developing effective indicators for assessing and monitoring diversity and reviewing
associations between biogenic habitats and commercial species. Indicators included trends in
bycatch in commercial fisheries. WG32 members proposed a structured, iterative approach to
designing monitoring programs for marine biogenic habitats that allows for rigorous data
collection to inform management strategies, even when data and resource are limited.

WG32 members developed species distribution models (SDMs) for several major groupings of
biogenic habitat-forming corals and sponges, in part to assess the primary drivers of suitable
habitat for these taxa and to identify potential areas of high diversity of biogenic habitats. Some
members and their collaborators introduced a new method for assessing the validity of VME
indicator taxa (Gorgonians, Alcyonacea, Antipatharia and Scleractinia) and applied association
analysis for identifying VME indicator taxa on the basis of sea-floor visual imagery. Others
reconstructed long-term climate-driven range shifts in biogenic habitats and associated fishes in
the western North Pacific Ocean from tropical to subarctic zones.

A key outcome of WG32’s activities included the identification of large scale environmental and
ecological predictors for the distribution and biodiversity of coral, sponge and associated taxa.
Members put together an exhaustive group of measured and derived predictor variables for the
North Pacific Ocean on a 1 km” grid These predictor variables were made available to all WG32
members through a shared drive, which allowed them to use the layers in their own modeling
efforts.

Overall, WG32 members illustrated the value of SDMs for assessing potentially important
environmental variables that could influence the distributions of biogenic habitat in areas with
historically few observations (e.g. offshore deep waters). By combining multi-model outputs
into a single composite index for corals and sponges, potential areas of suitable habitat for
multiple biogenic habitats were identified. Members showed how multi-models can also be
used to empirically assess areas that have been identified as ecologically and biologically
significant marine areas (EBSAs).

Data availability will likely remain poor in offshore areas. SDMs are one tool that can
extrapolate modelled species-environment relationships into areas where species records are
rare and provide an empirical foundation for hypothesis development. Members also showed
how applying a multi-model and multi-area approach can improve the interpretation of the
modeled species-environment relationships and how to show which areas are predicted by the
model to have high or low levels of uncertainty.



WG32 members also developed a biogeographical scheme for the Upper Bathyal zone (200-
1000m) in the Pacific Ocean using octocoral distributions. The main driver for twelve proposed
biogeographical units seems to be temperature, which is a defining feature of water masses.
Members also investigated how environmental variables influence the distribution of corals,
including those changing as seas warm. Climate change is causing coral declines in southern
Japan due to bleaching but range expansion in northern Japan.
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Background and Overview

This section summarizes the recent Canadian efforts in predictive modelling of the distributions
of biogenic habitat-forming, cold-water corals and sponges (CWCS) in the northeast Pacific region of
Canada (NEPC). Biogenic habitat-forming CWCS are often the focal taxa when applying empirical
frameworks designed to identify sensitive benthic areas or those that are vulnerable to significant
adverse impacts as a result of fishing activities (Ardron et al., 2014; Dunn et al., 2014). These
frameworks focus on criteria that can almost entirely be met by the presence of dense CWCS
communities. Key ecosystem roles that CWCS have include habitat provisioning for early life history
stages of rockfish and sharks (Baillon et al., 2012; Henry et al., 2013), nutrient cycling, and carbon
sequestration (Henry & Roberts, 2007; Oevelen et al., 2009; Chu & Leys, 2010; Chu et al., 2011; Kahn et
al., 2015). Biological traits such as slow growth, low reproductive output and dispersal rates, and long
life spans (Roark et al., 2009; Jochum et al., 2012), make CWCS especially vulnerable to destructive
bottom contact fisheries. Thus, activities that remove or destroy CWCS directly results in the net loss of
the aforementioned ecosystem functions and services.

Our NEPC case study area is the Pacific exclusive economic zone (EEZ) of Canada. This region is
notable for several globally unique biogenic habitat-forming CWCS communities (e.g. glass sponge reefs,
Krautter et al., 2001) and is where the majority of Canadian seamounts are located (>80%, DFO, 2019).
Seamount ecosystems are of noted interest to the scientific community because of their global
biogeography patterns and high productivity. Dense populations of commercially important fish and
communities of biogenic-habitat forming CWCS are frequently found at seamounts (Clark et al., 2011,
Guinotte & Davies, 2014). Historically, the majority of empirical knowledge on the distribution of
habitat-forming CWCS in the NEPC has focused on the samples collected on the continental shelf and

slope with only a sparse number of records coming from the offshore, deep waters in the NEPC.



Published knowledge of biogenic habitat-forming CWCS on NEPC seamounts has come from research
mostly done at two outliers with summits occurring in <30 m depths (Bowie and Cobb seamounts); most
seamounts in the NEPC do not have summits that extend into the epipelagic zone.

Species distribution models (SDMs) were developed for several major groupings of biogenic
habitat-forming CWCS. The goals of these analyses were to assess the primary drivers of suitable habitat
for CWCS in the NEPC, identify potential areas of high CWCS diversity (i.e., areas that were suitable
habitat for multiple CWCS groups), and determine the extent of CWCS suitable habitat at seamounts in
this region. To assess areas as suitable habitat for multiple biogenic habitat-forming CWCS, a ‘CWCS
composite index’ was created from combining spatial predictions from the individual models developed
for each CWCS group. Several environmental data layers (n=32) were generated for SDM development;
methods on how they were generated are described in detail. Additional details describe how historical
CWCS occurrence records were queried and compiled from several regional databases and filtered
before being used in SDM development. The CWCS-composite index was applied to empirically assess
seamounts that have been provisionally identified as ecologically significant habitats within the

Canadian EEZ (Ban et al., 2016).

Data compilation

Environmental data layers

SDMs require environmental data that cover the extent of the area of interest and are selected
for their potential to influence the distribution of modelled taxa. The North Pacific Marine Science
Organization Working Group 32 on Biodiversity of Biogenic habitats (PICES WG32) created an expansive
set of 32, coarse-resolution (1 km?), environmental data layers for use in CWCS SDM development for

the PICES convention area. These data layers were created following the methodology first described by



Davies & Guinotte (2011) and since expanded upon by others (Guinotte & Davies, 2014; Rowden et al.,

2017; Georgian et al., 2019). Variables were obtained from a variety of sources (Table 1) and cover a

range of bathymetry-derived variables, physico-chemical variables, and water column properties that

are useful in predicting the potential distributions of benthic species in major ocean basins elsewhere.

This case study focused on the area that covers the exclusive economic zone of the NEPC.

Table 1. Environmental data layers generated by PICES WG32 with associated data or methods
reference. Shortened variable names are in square parentheses.

Native

Variable name Units Resolution Reference
Bathymetry-derived variables
Bottom depth metres 0.0083° Becker et al., 2009; Sandwell et al., 2014
Aspect — east-facing [eastness] 0.0083° Jenness, 2013a
Aspect — north-facing [northness] 0.0083° Jenness, 2013a
Curvature — General [gencurve] 0.0083° Jenness, 2013a
Curvature — Cross-Sectional [crosscurve] 0.0083° Jenness, 2013a
Curvature — Longitudinal [longcurve] 0.0083° Jenness, 2013a
Slope degrees 0.0083° Jenness, 2013a
Roughness [VRM] 0.0083° Sappington et al., 2007
Bathymetric position index [bpi] 0.0083° Jenness, 2013b
(1000m, 5000m, 10000m 20000m)
Seamounts polygon [seamounts] Yesson et al., 2011
Chemical variables
Alkalinity pmol I 3.6x0.8-1.8° Steinacher et al., 2009
Dissolved inorganic carbon [DIC] pmol 1! 3.6x0.8-1.8° Steinacher et al., 2009
Omega - aragonite (Qarag) [arag] 3.6 x 0.8-1.8° Steinacher et al., 2009
Omega - calcite (Qcarc) [calc] 3.6 x0.8-1.8° Steinacher et al., 2009
Dissolved oxygen [oxygen] ml ]’ 1° Garcia et al., 2014a
Phosphate umol 1 T 1° Garcia et al., 2014b
Silicic acid [dSi] pmol 1! 1° Garcia et al., 2014b
Nitrate pmol 1! 1° Garcia et al., 2014b
Particulate organic carbon [POC] gCm’yr! 0.05° Lutz et al., 2007
Physical variables
Temperature °C 0.25° Locarnini et al., 2013
Salinity pss 0.25° Zweng et al., 2013
Current velocity — regional [regfl] ms’ 0.5° Carton & Giese, 2008
Current velocity — vertical [vertfl] ms’ 0.5° Carton & Giese, 2008
Current direction [curdir] degrees 0.5° Carton & Giese, 2008
Current direction — relative to aspect [curapsect] degrees 0.5° Rooper et al., 2014
3D current-surface angle [curang] degrees 0.5° This study
Surface-layer properties
Chlorophyll-a [chl-a] mgm> 4 km Aqua Modis (NOAA)
Photosynthetically active radiation [PAR] W m™ 4 km Aqua Modis (NOAA)
Sea Surface Temperature [SST] °C 4 km Aqua Modis (NOAA)

Bathymetry




Bathymetry data and their derivatives are ubiquitous in benthic SDM studies. For this study,
bathymetric data (https://topex.ucsd.edu/WWW _html/srtm30_plus.html) were obtained from the
SRTM30+ layer at a native resolution of 0.0083° (~1 km)(Becker et al., 2009; Sandwell et al., 2014). The
SRTM30+ layer (hereafter bathymetry) is derived from Sandwell et al. (2014), the Lamont-Doherty Earth
Observatory Multibeam Synthesis Project, the JAMSTEC Data Site for Research Cruises, the National
Center for Environmental Information (formerly the National Geophysical Data Center) Coastal Relief
Model, and the International Bathymetric Chart of the Oceans.

Several derivative variables were calculated from the bathymetry layer. Slope, aspect, and
curvature were calculated using the toolkit ‘DEM Surface Tools v.2’ (Jenness, 2004, 2013a) for ArcGIS
(v.10.4, ESRI). The slope of each grid cell (in degrees) was calculated using the four-cell method (Horn,
1981; Jones, 1998). Aspect, or the maximum slope direction in degrees, is a circular variable (i.e. the
difference between 0° and 359° is one unit) and thus was converted into two components: north-facing
aspect (sin(aspect)) and east-facing aspect (cos(aspect)). Curvature generally describes the shape of the
seafloor as a proxy to how the water column can interact with the substratum. Three types of curvature
were calculated: general curvature, cross-sectional curvature, and longitudinal curvature. For general
curvature, convex features have more positive values and concave features are more negative. For
cross-sectional curvature, positive values are indicative of local features that may induce water
divergence, and negative values are indicative of features that induce water convergence. Longitudinal
curvature assigns positive values to features where water velocity is expected to decrease and negative
values to features where velocity is expected to increase.

Roughness is a measure of topographical complexity and was calculated using the vector
ruggedness measure (VRM) index method (Sappington et al., 2007). VRM generates a dimensionless

index that incorporates the bathymetry, aspect and slope layers. This process uncouples the slope from



the resulting roughness index calculated for a raster cell by measuring the dispersion of vectors
orthogonal to the terrain surface for a user-defined neighbourhood of cells. Here, the VRM index layer
was generated using a neighbourhood of the adjacent eight cells from the one km? bathymetry layer.
Bathymetric Position Index (BPI) quantifies the relative elevation of a feature relative to the
surrounding seafloor, with positive values indicating features that are elevated and negative values
indicating features that are depressed. BPI values close to zero indicate relatively flat surfaces or areas
with constant slopes. As biological processes are scale-dependent, and because BPI is calculated at a
user-defined scale, a range of BPI layers was generated: 1,000 m (the fine-scale limit of the method
based on the bathymetry layer), 5,000 m, 10,000 m, and 20,000 m. BPI layers were generated using the

Land Facet Corridor Designer using the toolkit ‘Land Face Corridor Designer v1.2’ (Jenness, 2013b).

Oceanographic properties

Data layers for temperature, salinity, dissolved oxygen, and several dissolved nutrients were
generated from data obtained from the World Ocean Atlas (WOA, v.2 2013). Carbonate chemistry
(dissolved inorganic carbon, total alkalinity, Qaraconire, Qcarcire) Were obtained from Steinacher et al.
(2009). Chlorophyll-a (chl-a), sea surface temperature (SST), and photosynthetically active radiation
(PAR) data were generated using mission composites (average of 2002-2016 data) from the
MODIS/Aqua NOAA program at a resolution of 4 km and resampled to match the extent and resolution
of the bathymetry layer without interpolation.

Several layers that characterize current and flow patterns were generated because of the strong
influence of water movement on sessile species distributions (Genin et al., 1986; Leys et al., 2011). A
bottom current velocity layer was generated using data from the Simple Ocean Data Assimilation model

(v.3.4.1, Carton & Giese 2008) averaged as the composite of the years 1990-2007. Current velocities



were calculated in both the horizontal and vertical dimensions, and current direction for each grid cell

was calculated from zonal (U) and meridional (V) velocities according to the formula:

Direction m % » atan 2], [])

Current flows to the south when values are close to +180° and -180°, flows to the east at +90°, flows to
the west at -90°, and flows to the north at 0°.

Two additional current layers were created to capture flow patterns relative to bathymetry. The
first layer generated was a two-dimensional (2D) current layer that quantified current-flow direction
relative to seafloor aspect. In this 2D current layer, values of 0° indicate current flow is in the same
direction as the direction of the steepest slope and values of 180° indicate current flows in the opposite
direction of the steepest slope (sensu Rooper et al. 2014). The second layer generated was a three-
dimensional (3D) current layer that quantified the current direction relative to the seafloor plane. For
this 3D current layer, the slope and aspect layers were used to define the 3D orientation of the seafloor
for each raster cell, from which the direction normal to the plane was defined in Cartesian coordinates.
The direction of the water current was then defined at the seafloor based on the velocities relative to
the east-flowing (x), north-flowing (y), and vertical-flowing (z) directions, and the angle between the two
vectors was calculated. 3D current layer values near 90° indicate the current is flowing near-parallel to
the seafloor and values less than 90° indicate current is flowing into the seafloor (e.g. northward flowing
current into a south-facing seafloor slope).

WOA, carbonate chemistry, and current data layers were transformed to match the extent and
resolution of the bathymetry layer using a variable up-scaling approach that approximates conditions at
the seafloor (Davies & Guinotte, 2011). Each layer was first interpolated to a slightly higher resolution
(0.5°) than its native resolution using inverse distance weighting, resampled to match the extent and
resolution of the bathymetry data, and draped over the bathymetry data within its depth range. WOA

data were available as 102 depth-binned layers from depths of 0-5500 m. Vertical resolution of WOA



depth layers were 5 m (from 0-100 m), 25 m (100-500 m), 50 m (500-2000 m), and 100 m (2000-5500
m). Carbonate chemistry data (Steinacher et al., 2009) were available in 33 depth-binned layers (6, 19,
38, 62,93, 133, 183, 245, 322, 415, 527, 661, 818, 1001, 1211, 1449, 1717, 2014, 2340, 2693, 3072,
3473, 3894, 4329, 4775 m). Simple Ocean Data Assimilation (SODA) current data were available in 50
depth bins (5.0, 15.1, 25.2, 35.4, 45.6, 55.9, 66.3, 76.8, 87.6, 98.6, 110.1, 122.1, 134.9, 148.7, 164.1,
181.3,201.3, 224.8, 253.1, 287.6, 330.0, 382.4, 446.7, 525.0, 618.7, 728.7, 855.0, 996.7, 1152.4, 1320.0,
1497.6, 1683.1, 1874.8, 2071.3, 2271.3, 2474.0, 2678.8, 2884.9, 3092.1, 3300.1, 3508.6, 3717.6, 3926.8,
4136.3, 4345.9, 4555.566, 4765.4, 4975.2, 5185.1, and 5395.0 m). This up-scaling approach has
repeatedly been shown to be effective for many global and regional scale variables (Davies & Guinotte,
2011; Yesson et al., 2012).

All data layers were projected in the world equidistant conic PICES azimuthal equidistance
projection (-180 central meridian, 1.0 km linear unit). The edges of data layers do not completely
extend into the coastal fjords habitats in the NEPC thus this study could not capture this habitat
type which is known to harbour dense populations of CWCS taxa (Leys et al., 2004; Gasbarro et al.,

2018).

Species records

While CWCS communities have been studied extensively in the NEPC, a comprehensive dataset of
georeferenced occurrence records had not been compiled prior to this study. The majority of the CWCS
records came from Fisheries and Oceans Canada (DFO) research and commercial catch databases. CWCS
are recorded as incidental catch in the commercial databases. DFO research records spanned 1963-2017
and include targeted surveys for stock assessments of commercial invertebrate and groundfish

populations and synoptic research bottom trawl surveys used for monitoring biogeographic areas within



the Canadian EEZ. DFO commercial groundfish catch records include fisher and observer logbooks and
dockside validation data from trawl, trap, and longline fisheries throughout this region; only records
from 1996-2017 were used in this study because of recording reliability (M. Surry, DFO pers comm.).
Queries of the DFO databases were done using internal, three-digit DFO codes (n=581) that uniquely
identify CWCS taxa to varying taxonomic levels (e.g. 2A0 = Porifera, 356 = Paragorgia arborea).
Additional records up to 2014 were compiled from the Royal British Columbia Museum (RBCM) archives
which are now available in open access (Wheeler, 2018).

Although over 17,900 individual CWCS records were compiled from the various data sources,
additional data management and quality control and assurance steps were required before species data
could be meaningfully used in SDMs. CWCS records spanned several decades and several levels of
taxonomic resolution (e.g. identified down to only phylum level or down to species level). Up-to-date
taxonomic names and a complete taxonomic hierarchy were manually appended to records and verified
in the World Register of Marine Species (Worms Editorial Board, 2018). A priori, expert-knowledge
guided parsing of the records in order to filter out records that were inappropriate for use in SDMs
focused on biogenic habitat-forming marine CWCS. For example, fresh-water sponges (e.g. Spongila
lacustris) present in the museum records were filtered out based on expert-knowledge. Records of
Calcarea class of sponges were excluded because no biogenic habitat-forming calcareous sponges occur
in the NEPC. Because of the varying degrees of taxonomic resolution, only records with taxonomic
resolution down to at least the class-level for sponges and order-level for corals were used in models.
Records were pooled into six general biogenic habitat-forming CWCS groups. Four of these groups were
orders of cold-water corals: Alcyonacea (soft corals), Scleractinia (stony corals), Antipatharia (black
corals), and Pennatulacea (sea pens). We also modeled the distributions of two classes of sponges:

Hexactinellida (glass sponges) and; Demospongiae (demosponges) (Figure 1).



Figure 1. In situ examples of the major, biogenic habitat-forming cold-water coral and sponges from the
Northeast Pacific Region of Canada. (a) Glass sponge Farrea occa (class Hexactinellida), (b) demosponge
Mycale loveni (class Demospongiae), (c) soft coral Primnoa pacifica (order Alcyonacea); also a gorgonian
coral. (d) Stony corals Desmophyllum sp. (De) and Lophelia pertusa (Lo) (order Scleractinia), (e) black
coral Bathypathes sp. (order Antipatharia), (f) sea pen Umbellula sp. (order Pennatulacea). Scale bars:
(a,b,d) 10 cm, (e-f) 5 cm. No scale bar was available for (c).

Historically, several families of biogenic habitat-forming corals were associated with the now-
defunct order Gorgonacea. However, since it is still common to refer to these corals (now in the order
Alcyonacea) as ‘gorgonians’, we created a gorgonian model by using a subset of records (n=428) in the
‘soft coral’ group that had at least a family-level of identification from the coral families: Anthothelidae,
Paragorgiidae, Corallidae, Keroeididae, Acanthogorgiidae, Plexauridae, Gorgoniidae, Chrysogorgiidae,
Primnoidae, and Isididae following the gorgonian grouping of Miyamoto et al. (2017). Sponge diversity

and plasticity is problematic for species-level identification.

While the majority of glass sponges occurring in the NEPC are biogenic, habitat-forming types,
demosponge diversity occupy niches that range from intertidal to deep-sea with many species in this

region being encrusting, non-habitat forming morphotypes. To prevent intertidal species from adding



uncertainty to models developed for biogenic habitat-forming types, only demosponge records
occurring in >100 m depths were used in the models which improved the performance of the final

models (Chu et al., 2019).

Following Davies & Guinotte (2011), coral and sponge data for each group were gridded to the 1
km? resolution of the environmental data layers and redundant records in each cell were removed (i.e.,
only one presence record per cell per group). Table 2 summarizes the final number of records in each of

the CWCS groups used in this study.

Table 2. The number of records used in group-specific cold-water coral and sponge (CWCS) models.
Trawl-absences were generated from synoptic trawl surveys. The shallow extent of demosponge records
was truncated at 100 m to remove non-biogenic habitat-forming types (e.g. encrusting intertidal spp.).
Depth-range is the observed depth of the presence records. Note that the gorgonian coral presence
records are a subset of the soft coral records (see Methods).

CWCS group Presence Trawl-absences Depth-range (m)

Glass sponges 1494 3248 28-3368
Demosponges 570 3465 100-2660
Soft corals 1960 4030 18-3624
Stony corals 717 4330 24-1388
Sea pens 3050 3678 8-2458
Black corals 51 4351 81-1985
Gorgonian corals 428 4447 41-3624

Species distribution modelling

Generating targeted absence data and depth masking

Individual MaxEnt species distribution models were developed for the seven CWCS groups.

MaxEnt is often used in study areas where data are limited to only species presence data. However, the

predictive power of SDMs is increased with the knowledge of absence locations (Phillips et al., 2009).



Therefore, targeted absence data were generated by taking advantage of the DFO synoptic research
trawl surveys that occur in the study area (Nottingham et al., 2018) rather than use the random
background sampling method that is the default setting in MaxEnt. Since 2003, DFO has followed a
depth-stratified, random sampling trawl design over the area spanning the extent of the presence
records in this study (Figure 2 a,b). Trawl surveys identify all species caught in a trawl thus those without
the occurrence of any of the model-specific CWCS species codes were considered a targeted absence
record (Table 2). DFO synoptic research trawl surveys have been fairly reliable when used to generate
absence data in SDMs that require presence-absence species data (e.g. Random Forest, Beazley et al.,

2018).
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Figure 2. Biogenic habitat-forming cold-water coral and sponge (CWCS) records used in this study. (a)
Presence records for six CWCS groups and the gorgonian coral subgroup. (b) Trawl absence records used
in this study. Location of named seamounts are delineated by a 30 km buffer zone around their
respective summits.



The combined CWCS presence records occupied a depth range of 8-3600 m which reflects the
depths of potential fishing activity in the NEPC. Seamount species are characteristically distributed
within a preferred depth range (Clark et al., 2010). Therefore, the maximum modelled depth was limited
to the depth range occupied by the presence records of each CWCS group (Table 2). MaxEnt (v.3.3.3e,
Phillips et al. 2010) models were run with the default parameters for the convergent threshold (1025),
maximum iteration value (500), and regularization multiplier (1) using the R package ‘dismo’ (Hijmans et

al., 2017)

Environmental variable selection

Although MaxEnt is reasonably robust to multicollinearity among environmental variables used
as predictors of species distributions (Elith et al., 2011), best SDM practices should always reduce the
degree of correlation among model predictors. Using the R package ‘usdm’ (Naimi et al., 2014), variance
inflation factors (VIFs) were examined among environmental variables. Values of the environmental
variables were extracted at the location of the species data and VIFs were calculated starting with the
complete set of environmental data layers. Variables with the highest VIF were iteratively removed until
the final set of variables all had VIF values < 10. Ecophysiologically relevant variables were preferentially
retained (e.g. silicic acid for sponge groups, carbonate chemistry variables for corals) rather than
variables with no direct influence on organism physiology (e.g. depth). This process of variable reduction
was done separately using the species records belonging to each CWCS group. The final set of
environmental variables used in each CWCS model is summarized in Table 3. All models shared 18
variables: east-facing aspect, north-facing aspect, cross-sectional curvature, longitudinal curvature,
slope, roughness, dissolved oxygen, regional current velocity, vertical current velocity, current direction,

current direction relative to aspect, 3D current-surface angle, chlorophyll-a, photosynthetically active



radiation, sea surface temperature, and topographic position index at three scales (1000 m, 5000 m,
20000 m). The normalized relative importance for each variable used in their respective final CWCS
models was assessed using a jack-knife procedure that compared models with and without the variable
and the corresponding decrease in the area under the receiver operating characteristic curve (AUC,

Phillips, 2005).

Table 3. Final sets of environmental data layers used in models. Full name and units for each variable are
summarized in Table 1.

Variable Glass Demo- Soft Stony Black | Sea Gorgonian
sponges sponges | corals | corals | corals | pens | corals

eastness

northness

crosscurve

longcurve

slope

VRM

oxygen

regfl

vertfl

curdir

curaspect

curang

chl-a

PAR

SST

BP11000

BP15000

el el el el e e e Pl Pl Pl Pl Pl

BP120000

el el e el il e L Lo e e Pl Pl Pl Pl P
el el el el il e e L e e Pl Pl Pl Pl P e

BP110000

T el e T E T B B e ET P P el Pl P I Pl B

dsi

el bt Eal P E e I e P e e e P e e e P P
el bl Eal P E e I e P e e e P e e e P P
el Bl e Eal P P I P P e e e P P e e P P

arag

>
>
>

calc

Model validation

Model performance was assessed using five-fold cross-validation where occurrence data
(presence and absences) were randomly sampled to create five equal data partitions that follow the

same data ratio of presence-absence. Models were trained on four folds and tested with the remaining



fold. Each iteration of this procedure (n=5) rotated through the partitions always using a unique
partition of records as the testing data. Mean and standard deviation of AUC, percentage correctly
classified (PCC), correctly predicted presence (sensitivity), correctly predicted absence (specificity), and
kappa was calculated to assess general model performance. Model thresholds were calculated by

maximizing the sum and sensitivity using the R package ‘PresenceAbsence’ (Freeman & Moisen, 2008).

Model predictions of CWCS habitat suitability

A bootstrap resampling procedure (n=200 iterations) was applied to each CWCS model to
generate predictions of habitat suitability and spatially explicit measurements of uncertainty associated
with the predictions at each raster cell (following Anderson et al., 2016; Rowden et al., 2017).
Occurrence data and associated environmental predictors at those locations were randomly sampled
with replacement to match the data ratio of presence and trawl-absences in Table 2. MaxEnt models
were fit to each iteration, and logistic predictions of habitat suitability (0-1) were generated with values
close to one indicating more suitable habitat. Mean and standard deviation (SD) was calculated from the
200 predictions; we use SD to quantify the uncertainty of the model predictions (i.e. predictions are
more variable in areas with high SD).

In addition to generating predictions for each CWCS group, a ‘CWCS composite index’ was
created that combined mean predictions among the four coral orders and two sponge class models. The
gorgonian model outputs were excluded from the CWCS composite index because the species data were
a subset of the Alyconacea model. Rasters of predicted habitat suitability for each CWCS group were
reclassified into binary presence-absence layers using model-specific threshold (average of the five-
folds) and then combined into a single, composite index (Cl) layer where Cl values of six would indicate

suitable habitat for all six biogenic habitat-forming CWCS groups.



Results and Application

Based on the multiple evaluation metrics, CWCS MaxEnt models performed reasonably well (e.g.
AUC values ranged from 0.78-0.91, Table 4). A priori use of expert knowledge to parse the records was
particularly effective as the Demospongiae model performance improved without shallow records (<100
m) when compared to a model that included shallow records (e.g. AUC increased by ~0.6 and sensitivity
increased by 0.11). Water column properties were generally the most important predictors for CWCS
occurring in the study area (Table 5). All CWCS models shared dissolved oxygen ([O,]) as a top-3 ranked
predictor based on relative importance (10-47%). Examination of the marginal response curves for [O;]
indicates the probability of CWCS occurrence is inversely related to [O,] levels in the study area with
maximum probability occurring at the lower [O,] distribution, or ~0.3 ml L™. For both sponge groups, the
top-ranked predictor was silicic acid (24-29%) with maximum probability occurring at the higher end of
the silicic acid distribution or > 100 umol L. All CWCS models predict areas of high habitat suitability
(HSI mean ~1) to occur in the NEPC although to varying extents (Figure 3). Relative extent and locations
of prediction uncertainty also varied but was generally low in predicted areas of high habitat suitability

(Figure 4).

Table 4. Model performance statistics for cold-water coral and sponge MaxEnt models developed for
this study. Values are mean (+1 SD) calculated from five cross-validation folds.

CWCS group AUC Threshold PCC Sensitivity | Specificity Kappa

Glass sponges 0.83 (0.01) | 0.43 (0.02) | 0.76 (0.02) | 0.71 (0.05) [ 0.78 (0.05) | 0.46 (0.03)
Demosponges 0.81(0.02) | 0.38 (0.06) | 0.71 (0.06) | 0.78 (0.11) | 0.70 (0.09) | 0.29 (0.05)
Soft corals 0.86 (0.01) | 0.41 (0.04) | 0.79 (0.02) | 0.77 (0.06) | 0.80 (0.05) | 0.54 (0.02)
Stony corals 0.79 (0.01) | 0.38 (0.05) | 0.70 (0.05) | 0.77 (0.08) | 0.68 (0.07) | 0.27 (0.04)
Black corals 0.91 (0.09) | 0.31(0.12) | 0.97 (0.01) | 0.84 (0.11) | 0.97 (0.01) | 0.39 (0.08)
Sea pens 0.78 (0.01) | 0.57 (0.02) | 0.71 (0.01) | 0.70 (0.06) | 0.71 (0.05) | 0.41 (0.02)
Gorgonian corals | 0.85 (0.01) | 0.32 (0.06) | 0.69 (0.03) | 0.89 (0.04) | 0.67 (0.04) | 0.22 (0.03)




The CWCS composite index resolved extensive areas of suitable habitat on the continental shelf

and slope, between 500 and 1400 m bottom depths, for all six biogenic habitat-forming CWCS groups

(index score = 6, Figure 5). Smaller isolated patches with a composite index = 6 also occur at five

seamounts (Bowie, Hodgkins, Oshawa, Dellwood, and Union) within the Canadian EEZ boundaries. If we

combine the total area with a composite index value of > 5, 95% of the areas of potentially diverse

biogenic habitat in the NEPC occurs on the continental shelf and slope of the study area (19,568 km?)

with the remainder occurring on seamount and seamount-like features occurring in offshore waters

(1,084 km?).

Table 5. Ranked environmental predictors based on normalized, permuted importance for variables

used in cold-water coral and sponge MaxEnt models. Full variable names are in Table 1.

Rank Glass sponges Demosponges Soft corals Stony corals Black corals Sea pens Gorgoniar
Variable % | Variable % | Variable % Variable % | Variable % | Variable % | Variable
1 dsSi 28.0 | dSi 29.9 | oxygen 36.0 | oxygen 20.6 | oxygen 39.0 | oxygen 29.0 | oxygen
2 oxygen 17.4 | chl-a 14.2 | calcite 16.4 | SST 16.2 | chl-a 14.1 | chl-a 134 | PAR
3 PAR 12.8 | oxygen 10.2 | SST 15.7 | aragonite | 15.3 | VRM 11.5 | SST 11.9 | SST
4 regfl 11. | northness 6.6 | PAR 11.8 | PAR 13. | calcite 8.7 | regfl 10. | bpi20000
6 4 0
5 slope 4.9 | slope 6.5 | chl-a 9.6 | dSi 9.2 | SST 6.7 | bpi20000 8.3 | eastness
6 northness 4.8 | curdir 6.2 | VRM 3.1 | vertfl 3.3 | eastness 3.4 | slope 5.8 | curdir
7 chl-a 4.7 | curaspect 5.6 | bpi20000 2.1 | bpi5000 3.2 | northness 3.3 | calcite 5.1 | regfl
8 VRM 3.9 | PAR 4.3 | eastness 1.3 | curdir 3.0 | dSi 3.0 | PAR 3.7 | northness
9 curdir 3.7 | SST 3.0 | northness 1.1 | northness 2.5 | slope 2.4 | curaspect 2.6 | chl-a
10 vertfl 2.0 | bpi20000 2.9 | regfl 1.0 | slope 2.3 | Curapsect 1.8 | northness 2.5 | VRM
11 curaspect 1.6 | eastness 2.6 | slope 0.6 | regfl 2.1 | bpi20000 1.5 | vertfl 2.4 | calcite
12 eastness 1.3 | regf! 2.3 | curaspect 0.5 | eastness 1.8 | curdir 1.5 | eastness 2.3 | slope
13 SST 1.3 | bpil0000 1.9 | vertfl 0.3 | bpi10000 1.6 | longcurve 1.0 | curdir 2.2 | vertfl
14 bpi20000 1.2 | VRM 1.3 | curdir 0.3 | curaspect 1.5 | regfl 1.0 | bpi10000 0.4 | curaspect
15 bpi10000 0.7 | vertfl 0.9 | longcurve 0.04 | chl-a 1.2 | salinity 0.4 | bpi5000 0.1 | bpi5000
16 bpi5000 0.2 | arag 0.7 | bpi10000 0.03 | bpi20000 1.0 | bpi10000 0.3 | curang 0.0 | bpi1000
8
17 crosscurve 0.0 | bpi5000 0.4 | crosscurve 0.01 | VRM 0.9 | PAR 0.2 | VRM 0 | crosscurve
4
18 curang 0.0 | longcurve 0.4 | bpi5000 0.01 | longcurve 0.5 | crosscurve 0.1 | bpi1000 0 | curang
2
19 longcurve 0 | curang 0.1 | curang 0.00 | curang 0.4 | vertfl 0.1 | longcurve 0 | longcurve
1
20 bpi1000 0 | crosscurve 0.0 | bpi1000 0 | bpi1000 0.2 | curang 0.0 | crosscurve 0




5 2
21 bpil000 0.0 crosscurve 0.0 | bpi5000 0.0
4 7 2
22 bpi1000 0

Figure 3. Means of predictions of habitat suitability index (HSI) for (a) Hexactinellida sponges, (b)
Demospongiae sponges, (c) Alcyonacea corals, (d) Scleractinia corals, (e) Antipatharia corals, (f)
Pennatulacea corals, and (g) Gorgonian corals.




Figure 4. Standard deviation of predictions of habitat suitability index (HSI) for (a) Hexactinellida
sponges, (b) Demospongiae sponges, (c) Alcyonacea corals, (d) Scleractinia corals, (e) Antipatharia
corals, (f) Pennatulacea corals, and (g) Gorgonian corals.
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Figure 5. Composite index of areas of suitable habitat for multiple groups of biogenic habitat-forming
cold-water corals and sponges. Colour indicates areas of suitable habitat for multiple CWCS groups
modelled in this study. Circles outline a 30 km radius buffer around the summits of named seamounts in
the NEPC. Green highlighted circles are seamounts identified by Ban et al. (2016) as ecologically and
biologically significant areas. Contours delineating 500 m and 1400 m bottom depth which covers the
majority of the area that is highly suitable habitat for a diversity of habitat-forming CWCS.

Discussion and conclusions

This NEPC case study illustrates the value of species distribution models for assessing potentially

important environmental variables that could influence the distributions of biogenic habitat-forming



CWCS and generating habitat suitability predictions in areas with historically few observations (e.g.
offshore deep waters). Although there is variation in the level of importance among individual predictor
variables included in each CWCS model, severely low [0,] ([0,] < 0.5 ml I') is an important predictor of
habitat suitability for all CWCS groups in the NEPC (Chu et al., 2019). Preliminary assessment of model
predictions has validated the model prediction of severely low [O,] being a strong predictor of biogenic
habitat-forming CWCS in the NEPC. Using underwater vehicles to perform post-hoc, visual surveys
guided by the model predictions; dense communities of CWCS were discovered at Union and Dellwood
seamounts in [0,] < 0.2 ml L (Chu et al. 2019). By combining multi-model outputs into a single CWCS
composite index to represent biogenic habitat diversity, areas of suitable habitat for multiple CWCS can
also be used to empirically assess areas that have been provisionally identified as candidates of
conservation interest (e.g. ecologically and biologically significant areas).

In addition to the importance of validating SDMs using post-hoc data collection, it is important
to outline considerations when interpreting SDM outputs and how to apply them to facilitate future
research directions. While oceanographic characteristics appeared to be the most important predictors
in assessing CWCS habitat suitability, interpretations of results need to be constrained to scale, extent,
and focal taxa of the study. Information on substratum type (e.g. most CWCS require hard substratum)
can influence CWCS recruitment and are often important predictors of CWCS distributions (Krigsman et
al., 2012; Masuda & Stone, 2015). However, these data were unavailable at the resolution and extent of
the study area. Because most of the historical CWCS records in the NEPC have low-taxonomic resolution,
broad-scale models developed for this region require the available species data to be pooled into higher
taxonomic groups. Although the regional models developed in this study still performed reasonably well,
higher taxonomic resolution should generally improve model performance as this would account for

species-specific niche differences which may spatially manifest in studies that focus on smaller scales.



In addition to improving overall data quality, applying different modelling approaches could also
improve the degree of confidence ascribed to outputs and decrease the uncertainty associated with
predictions generated using SDMs. Several different SDMs approaches exist; aspects that differentiate
models in their applied use include species input data requirements (e.g. presence-only, presence-
absence, abundance) and model-specific assumptions and uncertainty. Therefore, ensemble modelling
could be a future step that assesses model-specific uncertainty (Aratdjo & New, 2007) by ‘averaging’
uncertainty among models similar to the forecasting approaches used in climatology (Rooper et al.,
2017). An additional modelling consideration could be to incorporate interspecific relationships into
model assumptions (e.g. Joint SDMs, Harris, 2015), thus modelling community-level habitat patterns
while accounting for interactions among co-occurring species.

Because extensive sampling plans in logistically challenging environments are expensive, data
will continue to be sparse in the immediate future. Assessing the distributions of biogenic habitat-
forming CWCS is a precursor to understanding their role in the greater dynamics of the entire ecosystem
(e.g. biodiversity, ecosystem functioning, fisheries, etc.). In offshore areas where data are scant, data
availability will likely remain poor given the remote setting and the complexities of international
stakeholder dynamics. SDMs are one tool that can extrapolate modelled species-environment
relationships into areas where species records are rare, thus providing an empirical foundation that can
promote hypothesis development which can, in turn, concentrate limited science resources into

targeted data collection in logistically challenging environments (e.g. Chu et al., 2019).
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Abstract

Predictions of species’ ranges from distribution modeling are often used to inform marine
management and conservation efforts, but few studies justify the model selected or quantify
the uncertainty of the model predictions in a spatial manner. This thesis employs a multi-
model, multi-area species distribution modeling (SDM) analysis to develop a higher certainty in
the predictions where similarities exist across models and areas. Partial dependence plots and
variable importance rankings were shown to be useful in producing further certainty in the
results. The modeling indicated that glass sponges (Hexactinellida) are most likely to exist
within the North Pacific Ocean where alkalinity is greater than 2.2 umol I"*and dissolved oxygen
is lower than 2 ml I'". Silicate was also found to be an important environmental predictor. All
areas, except Hecate Strait, indicated that high glass sponge probability of presence coincided
with silicate values of 150 umol It and over, although lower values in Hecate Strait confirmed

that sponges can exist in areas with silicate values of as low as 40 umol I'*. Three methods of



showing spatial uncertainty of model predictions were presented: the standard error (SE) of a
binomial GLM, the standard deviation (SD) of predictions made from 200 bootstrapped
Generalized linear models (GLMs), and the SD of eight commonly used SDM algorithms. Certain
areas with few input data or extreme ranges of predictor variables were highlighted by these
methods as having high uncertainty. Such areas should be treated cautiously regardless of the
overall accuracy of the model as indicated by accuracy metrics (Area Under the receiver
operator characteristic Curve (AUC), a threshold-independent model evaluation indicator and
True Skill Statistic (TSS), a threshold-dependent measure of model accuracy), and such areas
could be targeted for future data collection. The uncertainty metrics produced by the multi-
model SE varied from the GLM SE and the bootstrapped GLM. The uncertainty was lowest
where models predicted low probability of presence and highest where the models predicted
high probability of presence and these predictions differed slightly, indicating high confidence

in where the models predicted the sponges would not exist.

Introduction

Biogeographical patterns for benthic marine taxa are poorly understood due to a lack of
accessible geospatial information. Knowledge of the spatial distribution of species is a crucial
prerequisite for the understanding of ecosystem functioning and processes as well as
conservation management (Reiss et al., 2011). Fauna is more difficult to access and monitor in
marine environments than in terrestrial environments. Due to the resulting limitation of data
on marine taxa, predictive modeling methods are often employed in order to estimate their full

distribution from the available data (Guisan et al., 2000; Guisan et al., 2005). Species



distribution models (SDMs) used for this purpose, also referred to as habitat suitability models
or ecological niche models, estimate the relationship between species’ coordinate data and the
environment within which they exist (Franklin, 2009; Elith et al., 2011). While terrestrial SDM
work is a fairly robust field, marine applications of SDM have been more recent in their
developments (Reiss et al., 2011; Robinson et al., 2011). The field of marine SDM has been
stimulated by increasingly available large-scale environmental data on ocean biogeochemistry
and the need for prediction methods to quantify and estimate changes in species distribution in
response to climatic changes (Reiss et al., 2011). However, a systematic review of 236 published
papers on marine-based SDMs (Robinson et al., 2017) noted some shortcomings typical in the
field. Only 9% of the reviewed studies tested their model results against independent data,
which is generally accepted as an unbiased method of assessing model performance, and 94%
of the reviewed studies failed to report the amount of uncertainty derived from data
deficiencies and model parameters. When model predictions are evaluated against
independent data, there is usually no spatial component to the summary statistics or
visualization of patterns of uncertainty such as spatial clustering or links with specific predictor
variables (Elith et al., 2002b). A popular method of interpreting and calculating prediction
uncertainty involves measuring similarities between distribution predictions, where multiple
taxa, models, areas and/or spatial resolution are tested and the resultant predictions are
compared (Monk et al., 2012; Pennino et al., 2016; Svensson et al., 2013). Besides similarity
calculations, measuring and quantifying prediction uncertainty is an underdeveloped aspect of

marine SDM work, and, along with testing several SDMs, will be explored in this contribution.



This contribution will focus on hexactinellid sponges in the North Pacific Ocean. The
class Hexactinellida (kingdom Animalia, phylum Porifera), consists of between 400-500 species
in two subclasses which contain five orders, 17 families, and 118 genera (Reiswig et al., 1983).
They are often referred to as glass sponges because their skeletons are composed of spicules of
silica. Hexactinellid sponges are sessile, relying on filter-feeding to obtain the macroscopic
detritus material they subsist on (Atwater et al., 2001). After hatching, sponge larvae drift in the
water column for a limited time before settling on the seafloor as juvenile sessile sponges
(Maldonado, 2006). Observations of planktonic larval life in laboratories indicate that most
larvae are anchiplanic, which means they generally remain in the water column for minutes to a
few days, usually less than two weeks (Maldonado, 2006). Larvae are known to disperse under
the influence of hydrodynamic processes that operate at a spatial scale of tens of meters to
kilometers, and are not thought to be affected by active substratum selection, which operates
at a smaller scale of centimeters to meters (Maldonado, 2006). Little is known about dispersion
in hexactinellid sponges, and limited information about species within the hexactinellid class is
available in the dataset used for this contribution. Therefore, it must be mentioned that this
contribution operates under the assumption that glass sponges of different species react
similarly to their environment, due to a lack of more specific data.

When the sponges die, their siliceous skeletons remain and future sponges grow directly
on them, forming reefs. Their skeletons have left a fossil record as far back as the
Cambrian/Pre-Cambrian, which would make them possibly the earliest living metazoans on
earth (Leys, 2003). While they are found in every ocean in the world, they remain a rare taxon

with a seemingly specific set of environmental conditions required to thrive. Research on deep-



sea reef-forming benthic taxa is crucial as they are important indicators of the health of benthic
ecosystems and often increase biodiversity where they are found (Knudby et al., 2013; Beazley
et al., 2013). Their high diversity, large biomass, complex physiology and chemistry, and long
evolutionary history lend sponges (and their endosymbionts) to play a key role in diverse
ecological processes, including but not limited to predation, habitat provision, nutrient cycling,
food chains, and bioerosion (Rutzler, 2004). Unfortunately, benthic marine taxa are vulnerable
to climate change as well as human activities such as fisheries, specifically deep-sea trawling
(Rooper et al., 2017). Glass sponge reefs in the waters off the coast of British Columbia have
recently been permanently protected from trawling and other human activities through the
establishment of marine protected areas (MPAs). Since little is known about the distribution of
this taxon outside British Columbia coastal waters, applying SDMs to glass sponges throughout

the North Pacific Ocean will shed light on this otherwise difficult-to-research taxon.

The primary goals for this research were threefold:

1) To map hexactinellid (glass) sponge distribution for the entire North Pacific Ocean, as well as

several smaller areas, by testing commonly used species distribution modeling methods

2) To assess the model outputs both in terms of the relative importance of different
environmental variables in making predictions about glass sponge presence/absence, as well as

the specific dependence of glass sponge presence probability on these environmental variables



3) To compare existing methods for mapping prediction uncertainty.

Species Distribution Modeling in Marine Environments

Species distribution modeling allows for the understanding of processes that create habitat
distribution patterns and has become increasingly important in the face of threats such as
habitat destruction, species invasions, pollution and climate change (Robinson et al., 2011).
SDM algorithms require high-quality species presence/absence records as well as high-quality
environmental information to infer the macroecological preferences of species (Tyberghein et
al., 2011). By transferring SDMs from terrestrial to marine environments, the validity of the
model and its predictive performance will be affected by the unique physical properties of
marine habitats (Robinson et al., 2011). This is largely due to the fact that marine ecosystems
have significantly less permanence than terrestrial ecosystems; for example, a treeline or
grasslands may remain stable during a timeline of decades, while ecological and physical

conditions in the water are in continual flux (Longhurst, 2007).

Existing Guidance on Model Selection

Model complexity has increased greatly over time from environmental matching (e.g.
BIOCLIM, DOMAIN) to more complex non-linear relationships between species and their
environment (e.g. generalized additive models (GAMs), MaxEnt) (Elith et al., 2009). BIOCLIM is
an early SDM package which relates the bioclimatic environment species exist within to a

number of environmental predictor variables, such as temperature or elevation (Booth et al.,



2013). Due to the now numerous SDM methods, there is some difficulty in selecting an
appropriate algorithm. The advice that would assist making an informed choice of method is
currently scattered throughout literature (Elith et al., 2009). It remains difficult to know which
model is ‘best’ for the given data before comparing multiple models. This contribution
therefore focuses on several commonly used SDMs.

Input data required for SDM work involves biological data: information about the
species (single or multiple species) distribution, and environmental data: usually raster data
describing the landscape the species is found within (Pearson, 2010). Biological data can be
obtained in numerous ways: from surveys, museum collections, or personal collection and may
be presence-only (PO, coordinates of where the species has been observed), or
presence/absence (PA, coordinates of where the species has and has not been observed).
Generally models are thought to have more ecological validity when fit with PA data as
opposed to PO data, however the quality of absence data is often questioned due to possibility
of ‘false absences’, which refers to instances when a species was present but not detected, or
the environment was suitable but the species was absent (Pearson, 2010). Environmental data
refers to predictor variables depicting climate, topography, land cover and vegetation,
substrate, and other physical and chemical attributes of the area being modeled (Franklin et al.,
2010). Spatial scale is often considered when collecting data and has two components: extent
and resolution. Spatial extent refers to the size of the area being modeled and spatial resolution
refers to the size of grid cells of the data. It is often common for datasets with large extents to
have coarse resolution, and small extents to have high resolution (Pearson, 2010). As with other

deep-sea species modeling efforts, due to the lack of information available concerning the



niche environmental preferences of the relevant taxa it is difficult to ascertain the importance
of individual environmental variables prior to modeling. When working with taxa for which
there are limited data, environmental input layers are by necessity often selected primarily
based on their availability and presumed relevance, and less important variables can be

identified and removed during the modeling process.

Statistical Models

The Linear Model

Linear multiple regression models predict the response variable (Y) from a vector of

multiple predictor variables, X = (X1, Xa,...,Xp):

?-i—?‘.;‘ + Klﬁ'] +e
=i (Eq. 1)

where £ is the vector of estimated coefficients and JE?P is an estimated constant known as the

intercept (Franklin et al., 2010). The error term, £, is normally distributed with zero mean and

constant variance, and the variance of Y is constant across observations (Franklin et al., 2010).

Generalized Linear Models (GLMs)



While Franklin & Miller (2010) note that ecological data often violate the assumptions of
the linear model, GLMs are often used in modeling and can be described as extensions of the
linear model that can cope with non-normal distributions of the response variable (Venables et
al., 1994). Distributions that are often used to characterize response variables in ecology
include Gaussian, Poisson, binomial, negative binomial, and gamma (Franklin et al., 2010).

The linear model can be generalized using a link function that describes how the mean
of Y depends on linear predictors, and a variance function that describes how the variance of Y
depends on its mean (Chambers et al., 1992). The equation for the GLM can be seen in

Equation 2:

P
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|=1 (Eq.2)

where the predictor variables (far right side of the equation) are combined to produce a linear
predictor, LP, and the expected value of Y, E(Y), is related to the LP through the link function,

& () (Franklin et al., 2010). Formulating a GLM for SDM involves selecting the response
distribution and the link function (collectively known as the family of the GLM), the variance
function, and the predictors (Franklin et al., 2010). The link function describes how the mean of
Y depends on the linear predictor. For a binary response variable, a binomial distribution and

logit link function are used.

Generalized Additive Models (GAMs)



Generalized additive models (GAMs) differ from GLMs in their ability to identify and
describe a non-linear relationship between response and predictor variables; they are non-

parametric extensions of GLMs (Franklin et al., 2010).

P
J(E(Y))=LP = Py + X X6+
(=1 (Eq. 3)

where the coefficients of the GLM are replaced by a smoothing function, f (Franklin et al.,
2010). The fit of a GAM model is generally evaluated by testing the non-linearity of a predictor
versus the non-parametric fit (Franklin et al., 2010). GAMs are used for characterizing non-
linear response curves of species because they can suggest the shape of the parametric
response curve and are thus more flexible than GLMs (Franklin et al., 2010). GAMs are popular
in SDM work because they tend to have high prediction accuracy, have been subjected to

comparisons with other models and have proven to be useful (Franklin et al., 2010).

Machine Learning Models:

Maximum Entropy (MaxEnt) Distribution Modeling

The MaxEnt model was created in order to make predictions and inferences from
incomplete data (Phillips et al., 2006), for example presence-only data. MaxEnt is one of the

most common forms of SDM and “has been described as especially efficient to handle complex



interactions between response and predictor variables” (Fourcade et al., 2014). MaxEnt is an
acronym created for the concept of maximum entropy modeling (Guinotte et al., 2014), which
extrapolates the likelihood a species has of existing in any specific geographic space. This can
also be defined as a measure of dispersiveness. The underlying principle is that one should
assume uniform distributions are preferred, given certain constraints (Nigam et al., 1999). Since
becoming available in 2004, MaxEnt has been used to publish diverse projects including finding
correlates of species occurrences, mapping current distributions, and other related tasks in
ecological, evolutionary, conservation and biosecurity applications (Elith et al., 2011).

MaxEnt has often been explained as estimating a distribution across geographic space
(Phillips et al., 2006). Elith et al. (2011) give an alternative view: a characterization that focuses
on comparing probability densities in covariate space. Their research examines how MaxEnt can

be understood by looking at Bayes’ rule:

Pr(y = 1|=7) = £ (=)Prly = 1D (=) (Eq. 4)

where ¥ =1 indicates presence, ¥ =0 indicates absence, and < indicates a vector of

environmental covariates. It must be assumed that all environmental variables z are available
landscape-wide, and L is the extent of the landscape (not included in Eq. 4). £(=) can be
defined as the probability density of covariates across L, £1% can be defined as the probability

density of covariates across locations within L where the species is present, and £, can be

defined as where the species is absent (Elith et al., 2011). The quantity to be estimated is the

probability of presence of the species, conditioned on the environment: Pr(pm 1|z



Equation 4 can theoretically be explained by the following: that if the conditional

density of the covariates at presence sites is known, f; ':5], and if the unconditional density of

covariates across the study area is known, f(=) , the prevalence PrlF = 1) is the only remaining

value necessary to calculate the probability of occurrence (Ward, 2007; Elith et al., 2011). First,

MaxEnt’s core output involves estimating the ratio f1G)y f(=) . This gives insight about which
features are important and how suitable one place is compared to another, which is the core of
the MaxEnt model output. This explanation of MaxEnts’ structure by ecologists rather than

statisticians can be helpful in understanding the complicated processes that the data undergo.

Boosted Regression Trees (BRT)

Boosted regression trees (BRT) is an ensemble method for fitting statistical models that
differs from conventional techniques to fit a single parsimonious model; BRTs combine the
strength of two algorithms: regression trees and boosting (Elith et al., 2008). Regression trees
are models that relate a response to their predictors by recursive binary splits, and boosting is
an adaptive method which combines simple models to give improved prediction performance
(Elith et al., 2008).

The decision trees in BRT are tree-based models which partition the predictor space into
rectangles, doing this using a series of rules to identify regions having homogeneous responses
to predictors (Elith et al., 2008). Then, a constant is fitted to each region, with regression trees
fitting the mean response for observations in that region. Fitting a single decision tree is often

done by growing a large tree and afterwards pruning it by collapsing the weakest links



(identified through cross-validation) (Elith et al., 2008). Decision trees are popular because they
allow for information to be represented in an intuitive manner that is easy to visualize. Trees
are insensitive to outliers and are able to accommodate missing data in predictor variables by

using surrogates (Breiman et al., 1984).

Study Area

The Pacific Ocean, the largest and deepest of the earth’s oceans, is about 15 times the size
of the United States, and is almost equal in area to the total land area of the world. The ocean
can be divided by the equator into two separate areas: the north and south. The study area for
this project is contained by the boundaries of the North Pacific Ocean: bordered by the Arctic
Ocean in the north, Asia in the west, the Americas in the east, and the equator in the south. It
provides habitat for thousands of species, including cold-water sponges and corals. Due to the
size of this study area, five sub-areas were delineated within the North Pacific Ocean to account
for the likely varying physical and chemical environments across an area as large as the North
Pacific Ocean. These sub-regions within the North Pacific Ocean include a) The US Exclusive
Economic Zone (EEZ) around Alaska, b) The Canadian EEZ around British Columbia, and c) The
US EEZ around the Washington-Oregon-California coast, as well as d) two smaller areas within
the Canadian EEZ which were manually delineated but roughly correspond to i) Hecate Strait
and ii) the shelf waters west of Vancouver Island (Figs. 1-4). It is likely that there are varying

environments within an area as large as the North Pacific Ocean, as well as varying groups of



sponges. Using a multi-area analysis ensures a more comprehensive attempt at capturing these

potentially different species-environment relations.
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Figure 1. Hexactinellid Sponge Distribution in the North Pacific Ocean with insets of the Gulf of
Alaska and British Columbia coastline.
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Figure 2. Alaska sub-area with contained sponge presence-absence (PA) data.
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Figure 3. British
Columbia, Hecate Strait and Vancouver Island sub-areas with contained sponge PA data.
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Figure 4. United States Washington-Oregon-California sub-area with contained sponge PA data.

Biological Data

Presence and absence glass sponge data were obtained from trawl surveys conducted
by Fisheries and Oceans Canada (DFO) and the US Government. Data from several surveys were
collected and merged to create a dataset containing both presence and absence information
for 42,113 coordinate locations sampled between 1996 and 2016. The dataset contains 16,148
presence points and 25,684 absence points. As can be seen in Figures 1-4, and Table 1, the
species presence/absence points are located largely in coastal waters along the coast of North
America, and out along the Aleutian Islands, with a few data points from Hawaii. No data from
the western North Pacific Ocean were used.

In an attempt to decrease sample bias, the original dataset of 42,113 coordinate points

was thinned based on environmental variation (See Methods section for more detail). After the



data was thinned based on local environmental variation of the predictor variables, the

resultant dataset had 12,467 sponge PA points.

Table 1. Hexactinellid sponge data: location of data points and source.

Data

Geographic Extent

Number
of
Presenc
es

Number
of
Absence
s

US bottom
trawl surveys
from Alaska
(1996-2016)
and US West
Coast (1996-
2004)

1008

22,322

Presence data
from North
Pacific Marine
Science
Organization
(PICES)
Working Group
32

14,134

DFO
commercial
bycatch logs

3530




DFO 251 0
commercial

catch records
aggregated to

1km grid

DFO research 868 0
databases and
museum

records

Total 42,113

Environmental Data

Environmental variables were selected based on availability and presumed likelihood of
being relevant to the distribution of glass sponges. Potential environmental variables relevant
to the distribution of glass sponges have been compiled from various sources through the
North Pacific Marine Science Organization (PICES) Working Group 32 (Table 2). The
environmental data layers are in a raster format, with a cell size of 1000 m by 1000 m, using an
azimuthal equidistant projection with a central meridian of -180. The values reflect the near-sea

floor part of the water column.

Table 2. Environmental variables, units and reference.



Variable Name Units Reference

Alkalinity umol I Steinacher et al. (2009)
Aragonite saturation state Qarac Steinacher et al. (2009)
Aspect degrees Becker et al. (2009)
Calcite saturation state Qarac Steinacher et al. (2009)
Depth m Becker et al. (2009)
Dissolved inorganic carbon pmol I Garcia et al. 2014a
Eastness degrees Wilson et al. (2007)
Nitrate pumol I Garcia et al. 2014b
Northness degrees Wilson et al. (2007)
Oxygen ml I Garcia et al. 2014a
Phosphate pmol I Garcia et al. 2014b
Roughness unitless Wilson et al. (2007)
Rugosity unitless Becker et al. (2009)
Salinity pss Zweng et al. 2013
Silicate pmol I Garcia et al. 2014b
Slope degrees Becker et al. (2009)
Temperature °C Locarnini et al. 2013
TPI (Topographic Position Index) unitless Wilson et al. (2007)
TRI (Terrain Ruggedness Index) unitless Wilson et al. (2007)

Methods

any of
the

choices in

the following methodology section were made in an effort to maximize reproducibility of this

study, however had other methods been selected, the results could have differed. Within the

SDM field, reproducibility is a common problem. Advanced modeling techniques, data selection

and processing require many choices to be made which decreases the replicability yet is

nonetheless common and relatively unavoidable in SDM.

Data Pre-Processing

Spatial sampling bias, a common problem in marine and terrestrial SDM, decreases the

accuracy and interpretability of SDM outputs. Spatial filtering is a common method of removing



spatial bias as a data pre-processing step. For example, Boria et al. (2014) filtered clustered
data to discard any data point within 10 miles of another point, and Varela et al. (2014) applied
an environmental filter which discards presence points that are too clustered in environmental
space. The following steps were taken to spatially thin the data in a manner which takes into
account the differences in areas with high environmental variation and areas with low
environmental variation. The principle at the basis of this method is that areas with low
environmental variation across space require less geographically dense data to cover
environmental variability than do areas with high environmental variation, and they can
therefore be thinned more than areas with high variation in an effort to reduce bias in the

dataset.

1. The local SD of each predictor variable was calculated for a 9 x 9 km window centered
on each cell, and then normalized to a 0-1 scale. The 19 normalized values were then
added together to produce a single raster with a theoretical value range of 0-19,
guantifying local environmental variation across the study area.

2. A histogram was plotted to view the frequency distribution of this local environmental
variation (Fig. 5). If this histogram had been multimodal, spatial areas corresponding to
each local maximum, i.e. clusters of low or high local environmental variation, could
have been identified. However, the histogram was unimodal, so instead quintiles were
calculated to separate the study area into five regions ranging from lowest to highest

local environmental variation. The maximum value for each quintile can be seen in Table
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Figure 5. Histogram showing environmental variance data distribution.

Table 3. Quintile breaks for the variance data (environmental variance values from Figure 5).
20% 40% 60% 80% 100%

1.576018 1.893480 2.200223 2.730262 9.180244

3. Five subsets of the presence/absence data were then generated, one for each quintile,
and semi-variograms were generated based on the bathymetric values from each
subset. Depth was chosen to be the predictor for which to produce semi-variograms for
several reasons: 1) depth often is one of the most important variables in any SDM for
hexactinellid sponges, and 2) it can be used as a proxy for many other variables in this
study.

4. The semi-variograms all used 1000 m bins and a cut-off of 25,000 m to ensure
standardization (Fig. 6). For each plot, the distance at which semi-variance increased to
more than 500 was noted. For the first quintile (representing the area with lowest local
environmental variation) this distance was ~15,000m, for the second quintile it was

~7500m, and for the third, fourth and fifth quintile it was ~2500m. The semi-variance



value of 500 was selected visually to provide a range of reasonable distances that were

considered suitable to inform the scale of spatial thinning.
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Figure 6. Semi-variogram plots showing five quintiles, with semi-variance value of 500 indicated
to show approximate calculation of range value.

5. Based on these semi-variograms, block-based thinning was applied to the
presence/absence data:

i.  Agrid with 15,000 m cell sizes was overlaid on the study area, and the mean
value of the local environmental variation raster was calculated for each cell. For
those cells falling in the first quintile, i.e. with mean local environmental
variation <1.576 (see Table 3), the presence/absence data were aggregated
according to the following rules:

a) If no presence/absence observations were found in the cell, the output

would be empty.



b) If there were at least as many presence as absence observations in the
cell, the output would be a presence point, located in the center of the
cell.

c) If there were more absence than presence observations in the cell, the
output would be an absence point, located in the center of the cell.

ii.  This process was repeated with 7500 m cells applied to points in the second
quintile, and with 2500 m cells applied to points in the third, fourth and fifth
quintiles.

iii.  The outputs were combined to produce a single set of spatially thinned
presence/absence observations. Out of the original 42,113 presence and
absence points, 12,467 remained after thinning. A sample section from the
Aleutian Arc can be seen in Figure 7, showing the difference between the original

points and the thinned points.

Species Distribution Modeling

For each of the predefined areas, the following SDM types were tested using the
‘Biomod2’ (Thuiller et al., 2016) package in R (R Core Team, 2013): GAM, BRT and MaxEnt
(resulting in 18 model-area combinations). The following parameters for modeling were used:

e ‘Number of Evaluation Runs: 3’; Running three evaluations means the calibration
and evaluation is run 3 separate times independently, which allows for a more

robust test of the models when independent data is not available.



e ‘Data Split: 80%’; this sets 80% of the data aside for calibration of models, with
the remaining 20% used for validation.

e Model accuracy measures: KAPPA, TSS, AUC; KAPPA refers to Cohen’s Kappa
Coefficient, and TSS to True Skill Statistic (Zhang et al., 2015). Both Kappa and
TSS are threshold-dependent measures of model accuracy. They range from -1
to +1, where +1 indicates perfect agreement between predictions and
observations and values of 0 or less indicate agreement no better than random
classification (Landis et al., 1977). The Area Under the receiver operator
characteristic Curve (AUC) is an effective, threshold-independent model
evaluation indicator and is also independent of prevalence (i.e. the frequency of
occurrence) of the target species (Zhang et al., 2015). Ranges used to interpret

accuracy metrics from these statistics can be found in Table 4.

Table 4. Model accuracy ranges for AUC, Kappa and TSS measures (Zhang et al., 2015).
Poor Moderate Good/Excellent

AUC <0.7 0.7-0.9 >0.9
Kappa and TSS <04 0.4-0.8 >0.8
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Interpretation of Model Results

Model output can be classified into two types: aspatial and spatial. Aspatial outputs
from models consist of variable importances and partial dependence plots depicting fitted
functions relating probability of occurrence to each selected predictor, while spatial outputs
consist of GIS layers depicting the probability of presence across the study area (Ferrier et al.,
2002).

Variable importance values were calculated for every model-area combination. These
values quantify to what extent each predictor variable contributes to the predictions made by
the model. The variable importance value is calculated as the result of one minus the
correlation between the original prediction and the prediction with only the individual variable
of interest. While the individual values are dependent on the algorithm used, they can still be
used to provide relative information on predictor importances within the model.

Partial dependence plots provide a graphical representation of how likely the species is
to be present, given a gradient of the specific environmental predictor. As with variable
importance, these plots are calculated when the model is built, by averaging every other
predictor variable except the one chosen predictor, and the change in model response is
measured in relation to changes in the one variable. Partial dependence plots showing results
from multiple algorithms can be used to visually compare species responses to environmental
variable values. Partial dependence plots were generated for predictor variables that ranked in
the top 25% in variable importance in several models and areas. The predictor variables chosen
for closer analysis were alkalinity, oxygen, silicate, and phosphate. Additionally, frequency

distribution plots were produced for alkalinity, oxygen, silicate, and phosphate in each area,



showing the percentage of presence (as opposed to absence) data points across the range of
environmental variable values. This information can shed light on which value ranges the
species most commonly exists within. Partial dependence plots can be compared for
similarities. Variable importance was also considered in an effort to find strong trends in how
predictors contribute to different models/areas. It can be posited that if the response curves of
a particular predictor variable are similar across multiple models/areas, the variable importance
is likely to be high as well. When the response curves vary significantly, it is more likely those

variables ranked toward the lower range of variable importance for the model.

Mapping Prediction Uncertainty

For the purpose of testing and comparing uncertainty metrics spatially, a binomial GLM
was fit to the Hecate Strait boundary (Fig. 3), a subset of the original, North-Pacific-wide
dataset. 1,255 presence/absence points were included within the area and three environmental
predictors with high variable importance were selected and clipped to the same extent;
alkalinity, oxygen and silicate. A GLM was selected because it can provide a model-based
uncertainty measure that can be mapped in addition to the actual model predictions. The logit-
link function was selected for the binomial GLM because it is appropriate for binary data and
ensures the predicted values will be between 0 and 1 (Kindt et al., 2005). Three spatially explicit

uncertainty metrics were compared using this GLM model:

GLM Prediction SE



Bootstrapped GLM SD

SD of Multiple Model Predictions

The first uncertainty metric involved producing partial dependence plots from the GLM
outputs and adding confidence intervals to the partial dependence plots. In order to obtain the
predicted values from the estimates of the coefficients, the inverse link function needs to be
calculated. Using the inverse link function, the confidence interval was calculated as the fitted
value plus/minus two times the SE on the link scale. Confidence intervals (Cis) were calculated
for alkalinity, oxygen and silicate. Adding Cls can provide information on why certain areas
would have predictions with high or low confidence. Next (and separate from the Cls), the SE of
the prediction was calculated. SE provides the absolute measure of the typical distance
between the data points and the regression line, in the units of the dependent variable. The SE
of the prediction was then written to a raster and thus the uncertainty of the model can be

seen spatially.

The second uncertainty metric — Bootstrapped GLM SD — was obtained by bootstrapping
the GLM. Bootstrapping is an approach to statistical inference based on building a sampling
distribution for a statistic by resampling repeatedly from the data. 200 bootstrap samples were
created from the data. GLMs were then calibrated on the bootstrap samples, still using
alkalinity, oxygen and silicate as predictors for the models. The calibrated models were then

used to make predictions, and the SD was calculated for the predictions.



The third uncertainty metric — SD of Multiple Model Predictions — aims to test if standard
deviations are geographically comparable among a variety of models. By running eight models
available in the Biomod2 package (GLM, BRT, GAM, FDA, MARS, RF, MAXENT.Phillips and
MAXENT.Tsuruoka) on the Hecate Strait subset, the SD of all the predictions can be calculated,
as for the GLM bootstrapping above. This provided a spatial view of where the models

produced similar results and where they differed.

Results

Model Performance

Model fit statistics and variable importance values from the GAM, BRT, and MaxEnt
models run on the North Pacific basin-wide data, as well as the five sub-areas are presented in
Table 5. Figures 8-11 present the outputs of these models in the form of partial dependence
plots and show the data distribution for alkalinity, oxygen, phosphate and silicate for each
model/area. Only these four variables were selected because they had consistently high
variable importance values.

As can be seen in Table 5, AUC values for the majority of the models were between 0.7-
0.9. These values are interpreted to indicate these models performed moderately well (See
Table 4 for value ranges associated with model accuracy) (Zhang et al., 2015). Two MaxEnt
models for the BC and Alaska areas performed poorly, with AUC values of 0.655 and 0.428

respectively, and the GAM and BRT models for the Vancouver sub-area performed especially



well, with AUC values of 0.946 and 0.978, the highest of all the models and areas. The Kappa
and TSS values reported similar results in terms of models in the North Pacific, BC, and Alaska
generally performing poorly, and models in the Vancouver and Hecate Strait sub-areas

performing well (more detailed results for all models and areas can be found in Table 5).

Variable Importance

For each area and model type, the model assigns a variable importance value to each of
the 19 environmental predictors which were used as input to the model. The variables are
arranged by importance to the model on a scale of 0-1. Individual variables ranked among the
top 25% within each specific model are highlighted in Table 5. Alkalinity is ranked within the top
25% of variables in 13 out of 18 models. Oxygen is the next variable of highest importance
being ranked within the top 25% of variables in 9 out of 18 models. Variables which are ranked
within the top 25% in at least 4 of the 18 models include phosphate, silicate, temperature,
nitrate, depth, omega aragonite, and omega calcite. The remaining variables are ranked within

the top 25% for less than four models.



Table 5. Model Results, Fit Statistics and Variable Importance Values (top 25% of variables in each model are bolded in blue).

North Pacific BCEEZ ALASKA EEZ US WOC EEZ BC Hecate Strait BC Vancouver Island
Model GAM BRT MaxEnt GAM BRT MaxEnt GAM BRT MaxEnt GAM BRT MaxEnt GAM BRT MaxEnt GAM BRT MaxEnt
Kappa 0.371 0.368 0.343 0.321  0.398 0.250 0.330 0.359 0.033 0.620  0.595 0.516 0.449 0.514 0.453 0.818 0.824 0.787
S8 0.447 0.449 0.409 0.378  0.440 0.254 0.491 0.506 0.022 0.618  0.598 0.516 0.425 0.526 0.486 0.825 0.864 0.7
AUC Value 0.799 0.880 0.776 0.750 0.797 0.655 0.804 0.816 0.428 0.890 0.878 0.836 0.777  0.850 0.811 0.946  0.978 0.85
Alkalinity 1 0.410 0.071 1 0.01 0.001 1 0.163 0.024 1 0.22 0.01 1 0.136 0.137 1 0.013 0.002
Omega 0.973 0.003 0.005 0.703 0.008 0 0.837 0.009 0.05 0.679  0.008 0.376 0.832 0.048 0.069 0.68 0.003 0
Aragonite
Aspect 0.011 0.001 0 0.016  0.005 0.001  0.002 0.002 0 0 0.118 0.425 0.102 0.075 0.045  0.002
Omega 0.885 0.009 0.015 1 0.021 0.953 0.014 0.023 0.976 0.011 0.219 1 0.005 0.046 1 0.001
Calcite
Depth 0.303 0.025 0.027 0.509 0.021 0.017 0.256  0.026 0.007 0.043 0.016 0.7 0.622  0.009 0.001 0.718 0.101 0.166
= Dissolved 0.389 0.009 0 0.638  0.002 0.069 0.641  0.008 0.01 0.658  0.005 0.629 0.642  0.013 0.059 0.656  0.003 0.005
9'_ Inorganic
8 Carbon
® Eastness 0.029 0.005 0.011 0.01 0.003 0.066 0.008 0.001 0 0.017  0.003 0.035 0.166  0.006 0 0.059 O 0
v
i’y Nitrate 0.367 0.012 0.028 0.559 0.148 0.249 0.35 0.021 0.117 0.2 0.027 0.322 0.099 0.05 0.076 0.609  0.003 0.314
Q
§ Northness 0.006 0.001 0 0.014  0.003 0 0.001 O 0 0.001 O 0 0.002 0.021 0.012 0.156  0.016 0.003
S Oxygen 0.393 0.020 0.167 0.48 0.007 0.111 0.113  0.108 0.134 0.405 0.127 0.239 1 0.011 0.074 1 0 0.013
% Phosphate 0.156 0.004 0.014 1 0.121 0.13 0.333  0.004 0.003 0.266  0.011 0.018 0.456  0.048 0.011 0.557 O 0
ﬁ Roughness 0.02 0.001 0.012 0.056  0.002 0.113 0.032 0.001 0 0.016  0.001 0.029 0.009 0.003 0 0.641  0.001 0.001
g Rugosity 0.003 0 0.004 0.05 0.03 0.114 0.025 0.001 0.94 0.015  0.003 0 0.029  0.006 0 0.443  0.001 0.001
Salinity 0.021 0.008 0.014 0.633 0.018 0.263 0.116  0.056 0.021 0.017 0.028 0.877 0.589 0.011 0 0.562  0.002 0
Silicate 0.241 0.002 0.028 0.482  0.002 0.071 0.643 0.052 0.003 0.504 0.038 0.001 1 0.008 0.028 0.821  0.001 0.009
Slope 0.002 0.001 0.002 0.051 0.012 0.049 0.041  0.003 0.026 0.036  0.008 0 0.03 0.012 0 0.382  0.053 0
Temp 0.257 0.002 0.001 0.211  0.034 0.059 0.144 0.011 0.041 0.818 0.019 0.411 0.599  0.002 0.034 0.897 0.001 0
TPI 0.024 0.008 0.001 0.012 0.01 0.046 0.028 0.027 0.002 0.031  0.007 0.064 0.003  0.006 0.066 0.31 0.006 0.031
TRI 0.003 0 0 0.004 0.001 0.037 0.032 0.001 0 0.257  0.001 0.021 0.009 0.025 0.087 0.449  0.004 0.002

Figure 8. Partial dependence plots for alkalinity in all areas and models with ranked variable importance.

GAM
1 (lst)

BRT

0.41 (1%

63

MaxEnt
0.071 (2")

Data Distribution For Alkalinity

Percentage of Presence Values



North Pacific

Alaska

ars

(=]

[=10]
o 23

1 (Tied for 1%
1M

ars

Q53

[=10]

1(1%

LR =}
ar

=13

=11}

1 (15'()

LR =}
ar
=13

R i )

[=Li i}
Tt F 13

30
1 (Tied for 1%

ars

(=]

[=10]

=0
0.01 (Tied for 8™

Tm
ars

Q53

[=10]

0.163 (1%

LR =}
ar

=13

=11}

0.22 (1%

LR =}
ar

=13

23

23

=11}

30
0.136 (1%

ars

a5

Qoa
=0

0.001 (14™)

L]

ars

Qoa

0.024 (7™

LR =}
ar

=13

23

23

=11}

0.01 (15"

LR =}
ar

=13

=11}

30
0.137 (1%

ams

=13

=11}

ars

Q53

[=10]

=} <]

[=1i4]

ams

=13

=11}

a0

22

23

24



BC Hecate

1 (Tied for 1%) 0.013 (4™ 0.002 (Tied for 8")

BC Vancouver

Figure 9. Partial dependence plots for oxygen in all areas and models with ranked variable importance.

Data Distribution for Oxygen

A BRT MaxEnt
0.393 (4™ 0.02 (3) 0.167 (1% Percentage of Presence Values

[q]

North Pacific

0.48 (10™) 0.007 (11™) 0.111 (6™)



Alaska

BC Hecate

ams

=13

=11}

0.113 (11™)

LR =}
ar
=13

O S

=11}
4 L ] L}

0.405 (7™

LR =}
ar
=13

=11}
4 L ] L}

1 (Tied for 1%

LR =}
ar

=13

=11}
) & B 8

1 (Tied for 1%

ams
(=1 -]

“ Y, e

=11}

0.108 (2™

LR =}
ar

=13

=11}

0.127 (2™

LR =}
ar

=13

=11}

1 i
0.011 (Tied for 10™)

LR =}

i . T

=13

=11}

- | 3
0 (Tied for 19™)

ams

=13

=11}

0.134 (2™

LR =}
ar

=13

=11}

s

0.239 (7™

LR =}
ar

=13

ams

=13

ams

=13

=11}

ams

=13

=11}

ams

=13

=11}

ams

=13

=11}

-



BC Vancouver

Figure 10. Partial dependence plots for phosphate in all areas and models with ranked variable importance.
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Figure 11. Partial dependence plots for silicate in all areas and models with ranked variable importance.
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Partial Dependence Plots

Partial dependence plots generated for alkalinity, oxygen, phosphate and silicate can be
seen in Figures 8-11. Table 5 presents depth as a frequently important variable in this analysis
of glass sponges. Partial dependence plots from multiple models and areas show that as the
taxon encounters depths shallower than 1000 m, the probability of presence decreases,
confirming they are more likely to be found in deep waters (Fig. 12). Figure 13 shows the taxon
data in the BC Vancouver sub area. It can be easily noted here that the majority of the presence
values are in the deeper waters. It is important to note that glass sponges also exist in shallow

waters, as evidenced by the glass sponge reefs of coastal British Columbia (Fig. 15).
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Figure 12. Partial dependence plots for depth from GAM, GLM, and random forest (RF) models.
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Each plot has three lines for each time the evaluation was run.
Figure 13. Bathymetry and species data points within BC Vancouver Island sub-area (grey line is
missing data).

Alkalinity

Figure 8 shows partial dependence plots and ranked variable importance for alkalinity,
for each of the 18 model-area combinations. Within the North Pacific area, all three models
suggest a high probability of glass sponge presence within highly alkaline waters. In the British
Columbia area, the GAM model suggests an increase in glass sponge presence probability with
alkalinity values higher than 2.2 pmol I'*, a trend that is also present in each of the sub-areas.
The BC Hecate area, in particular, suggests an increased probability of presence for glass
sponges in alkalinity values of 2.2 umol I and higher. All three models produced comparable
partial dependence plots for this area, where variable importance values for alkalinity rank 1°**
out of 19 variables for all three models. Finally, the data distribution plot for alkalinity values in
the BC Hecate area shows a high percentage of presence values in alkalinity ranges of between
2.15 and 2.25 pmol I*. The BC Vancouver area has a comparable GAM response curve as BC
Hecate Strait, however the BRT and MaxEnt models for BC Vancouver have lower variable
importance ranks and do not show an increase in probability of presence with increased
alkalinity values. The BC Hecate Strait area has a range of alkalinity values of 1.855 —2.308 umol

I, while most other areas have a maximum of closer to 2.4 or 2.5 pmol I™".

Oxygen



Partial dependence plots for oxygen (Fig. 9) are interestingly varied as well; the general
trend seen in GAM models from several of the areas suggests an increased probability of
presence with lower oxygen values, except that the GAM model for the BC area suggests the
opposite. Oxygen was 10" in variable importance in the GAM model for the BC area, which
means there is less indication in the model that glass sponges are strongly influenced by
oxygen. The GAM plot for the BC area is interesting because it presents a pattern opposite to
the oxygen plots for other areas, opposite to the plots for other models, and opposite to the
data distribution itself. The variable importance values for oxygen in these models are not as
consistently high as for alkalinity. The data distribution plots for all of the areas show a greater

proportion of presence values in area with relatively low oxygen concentrations.

Phosphate

Response curves for phosphate can be seen in Figure 10 and present a wide variety of
possible responses of probability of sponge presence in relation to phosphate content. Due to
the lower variable importance values, it is more difficult to find strong environmental trends in
the data. Phosphate was within the top three variables influencing the GAM, BRT and MaxEnt
models within the BC area. For the remaining areas, the variable importances range from 4" to
last (19”‘). The plots from the BC area indicate that probability of sponge presence increases
with phosphate levels of roughly 3 umol I'* and higher. The next highest variable importance

values are a result of the BRT and MaxEnt models for the BC Hecate Strait area. Phosphate was



4™ in variable importance for these two models and both indicate a slight increase in

probability of presence between 2.0 and 2.5 pmol I,

Silicate

Models which indicated that higher silicate content is more suitable for sponges
included MaxEnt (North Pacific Ocean, BC Hecate Strait and BC Vancouver), and GAM (Alaska,
US, BC Hecate Strait and BC Vancouver) (Fig. 11). The data distribution plots largely indicate a
greater proportion of presence values with increasing silicate value. The two partial
dependence plots with the highest variable importance values (3rd) are the MaxEnt model in
the North Pacific area and the BRT model in the US area. While both these plots indicate a
general increase in probability of presence in relation to an increase in silicate levels, the BRT
model in the US also indicates an increased probability of presence with very low silicate
contents. Generally, because silica plots have lower variable importance values than alkalinity
or oxygen plots, less weight can be placed on their accuracy. The silicate GAM plot for the BC

area produced an opposite result to the remaining plots.

Spatial Predictions

Figure 14 shows the predicted probability of glass sponge presence from the BRT, GAM

and MaxEnt models for Alaska, in the form of a raster prediction probability of presence.
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Figure 14. Model predictions from BRT, GAM, and MaxEnt models for the Alaska area.

Alaska was selected for this section because it is a smaller area than the North Pacific
(which is a large area, thus making predictions difficult to see in detail) but larger than the BC
and US areas (which are quite small and have less variation in predictions of probability of

presence). The AUC values for these three models respectively are 0.816, 0.804, and 0.428,



meaning the BRT and GAM models performed very well and the MaxEnt model performed
poorly. The MaxEnt model for the Alaska area is the model that performed least well across all
models and areas, and as can be seen in Figure 14c, the area is divided into red (high probability
of presence) and blue (low probability of presence) without much variation between those two
predictions. Figure 14a and b show much more variation of probability of presence across the

prediction.

Uncertainty Metrics: BC Hecate Strait

Uncertainty refers to a lack of sureness or confidence about something (Elith et al.,
2002b). Most outputs of SDM work are presented with confidence, with no indication of
uncertainties, but it has been proposed that maps of uncertainty would help in the
interpretation of these predictions (Elith et al., 2002b). The Hecate Strait sub-area in BC was
used for the uncertainty metric analysis because of its high environmental variation and
interesting patterns of alkalinity, oxygen and silicate distributions. The prediction from a GLM
run on this area can be seen in Figure 15, along with the outlines of the Hecate Strait/Queen

Charlotte Sound Glass Sponge Reefs Marine Protected Area (MPA).



GLM Prediction of Glass Sponge Suitability in Hecate Strait
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Figure 15. GLM prediction of glass sponge probability of presence in Hecate Strait with MPA
boundaries.

The Northern Reef and part of the Central Reef are contained within the Hecate Strait
boundaries employed for this study. The MPA boundaries overlap with moderately high
suitability for glass sponges; providing some confidence in the model predictions and their real-
world accuracy, despite the MPA area boundaries not falling within the highest probability of

presence areas (red areas).



Standard Error of GLM Prediction

Figure 16 shows the partial
dependence plots for alkalinity, oxygen
and silicate for the GLM model of the BC
Hecate Strait area, with model-based
confidence intervals added. Generally, the

confidence intervals are narrow,

corresponding to a low expected error, for

predictor value ranges with many data
points, shown in the figure as a high
density of red/blue lines. Value ranges
with wider intervals have fewer data
points. If the areas with wide confidence
intervals overlap spatially, the relevant
areas are likely to produce less certain
predictions.

The SE of the GLM fit was written
to a raster and can be seen in Figure 17a.

Area 2 in Figure 17a has high uncertainty.

Figure 16. Partial dependence
plots for alkalinity, silicate, and
oxygen with estimated confidence

intervals.
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gure 17. Uncertainty metrics mapped to Hecate Strait: a) SE of GLM prediction, b) SD of
bootstrapped GLM, and c) SD of multiple models.



There are very clear environmental gradients throughout Hecate Strait which can be visually
confirmed to have an influence on the uncertainty metrics. Area 1 in Figure 17a has low
alkalinity and silicate levels with high oxygen levels (Figs. 19-21). This combination of
environmental values generally coincides with absence data for glass sponges, which the
models interpret as unsuitable habitat. The SE in Fig. 17a is low, indicating high certainty in the
prediction of low probability of sponge presence. Area 2 in Figure 17a has high uncertainty
values. Area 2 corresponds with opposite niche environmental characteristics to Area 1; very
high alkalinity levels, very high silica levels, and very low oxygen levels, all of which are value
ranges that are poorly represented in the data. As can be seen in the partial dependence plots
(Fig. 16), these value ranges are associated with low data density and high Cls. The GLM is
forced to make predictions for these areas based on a combination of few data points with
similar values and extrapolation from more data-dense value ranges, which leads to extreme
predictions and higher uncertainty.

Standard Deviation of Bootstrapped GLMs

Figure 17b presents the result of bootstrapping the binomial GLM 200 times, calculating
the SD for each cell and then writing this result to a raster. This method of spatially showing
prediction uncertainty yields similar results to the initial method of calculating the SE from the
GLM. It shares an area of high uncertainty with the first method (Area 2), which was noted as

having extreme values of all three input predictors. This method, as well as the first method,
does not show Area 1 to have high SE, indicating consistency across methods.

Standard Deviation of Multiple SDMs

Finally, Figure 17c presents the result of running multiple SDMs and mapping the SD of
the model predictions. The models used and their individual predictions can be seen in Figure
18. This method shows the highest uncertainty to exist in the lower right corner of Hecate
Strait, which corresponds to medium uncertainty in the first two methods. While taking a
different approach from the first two methods, this final method is equally as important for
determining spatial uncertainty from predictive models and yields interesting results that could
aid policy makers in making informed decisions based on SDMs. Area 1 in Figure 17c has low SD
because the majority of the SDMs produced a similar probability of presence for this area (Fig.

18). This is a consistent result from all three methods, indicating low uncertainty in



environments considered unsuitable for the taxon in question. The areas that are yellow and
orange yield higher error values because the models produced different results, despite having
been calibrated with the same data. Each of the specific model outputs showed the highest
probability of species to be in the area which has high standard deviation in Figure 17c. The
resultant high SD is a result of this being the area of the model output that changes the most

with different SDMs.
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Figure 18. Predictions of glass sponge probability of presence in Hecate Strait: a) GLM, b) GAM,
c) BRT, d) RF, e) FDA, f) MARS, g) MaxEnt Phillips, and h) MaxEnt Tsuroaka.

Discussion

Aspatial Model Predictions: Partial Dependence Plots and Variable Importance



As a method of assessing the validity of models, partial dependence plots and variable
importance rankings were presented and analyzed. The results presenting partial dependence
plots and variable importance values from the GAM, BRT and MaxEnt models can provide
information about 1) the ability of the model to describe the environment-species
relationships, and therefore 2) the potential for using the model to make inferences about the
ecology of glass sponges and characteristics of their habitats.

In addition to standard model performance metrics such as AUC, TSS and Kappa, ranked
variable importance and partial dependence plots can inform how certain or uncertain an SDM-
based prediction is. If a multi-model and multi-area approach has been used for the modeling,
and a given environmental variable has high importance values across multiple model types and
areas, a higher confidence can be placed in that variable having a non-spurious effect on the
distribution of the response variable, e.g. glass sponges in the present case. It is likely that the
use of more models, and more environmentally distinct areas would serve to strengthen the
multi-model, multi-area approach even more. The expected result from performing a multi-
area, multi-model approach was that strong habitat preferences will be reflected similarly in
partial dependence plots from different models and areas, while weak habitat preferences will
not.

Using this approach, the partial dependence plots for alkalinity strongly suggest a causal
relationship between alkalinity and glass sponge presence. According to the model results, glass
sponge probability of presence increases in conjunction with higher alkalinity values, specifically
at concentrations of 2.1 pmol I or 2.2 umol I and higher. While several of the areas modeled

produced this trend, the BC Hecate area displays arguably the most consistent result based on



the fact that all of the three models for this area ranked alkalinity as first out of nineteen other
variables. Less confidence can be placed in certain areas and models where alkalinity is ranked
lower and the associated response curves are inconsistent with those of high variable
importance. For example, MaxEnt models in BC and US areas have alkalinity importance
rankings of 14th and 15th respectively, and neither of the corresponding partial dependence
plots provide any useful ecological information about how sponges respond to alkalinity levels.
Although the models are too complex to provide a definitive explanation, it is likely that the BC
and US areas have other environmental variables which are more influential for the model, and
therefore the relationship between sponge presence and alkalinity is more difficult for the
model to identify. Every highly ranked (top 25 percentile) partial dependence plot of alkalinity
shows an increased probability of presence associated with high alkalinity values, generally
above 2.2 umol I'*. Areas of Hecate Strait which meet these alkalinity values are relatively few

and can be seen in Figure 19.
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Figure 19. Alkalinity values across Hecate Strait.

According to the partial dependence plots with high variable importance rankings, a
high probability of glass sponge presence is associated with low oxygen values, generally below
2mll Deep-water sponges, and many other invertebrates, use little oxygen and have adapted
to live in low-oxygen environments, for example during low tide or in benthic sediments (Leys
et al., 2018). Leys and Kahn (2018) note that glass sponges tolerate long-term hypoxic
conditions by reducing their filtration rate and feeding activity. Filtration, they concluded, is
costly to glass sponges and attempting to slow their filtration has driven innovations in their
morphology and physiology (Leys et al., 2018). Chu et al. (2019) also found that dissolved

oxygen was a highly ranked positive predictor of habitat for cold-water coral and sponge



grounds in the Canadian northeast Pacific Ocean. As a result of this finding, Chu et al. (2019)
predicted that cold-water coral and sponge taxa would have lower oxygen requirements in
comparison to highly mobile taxa such as fish. It was also found, in an attempt to validate the
models predicting that cold-water corals and sponges are likely to occur in severely low oxygen
environments, that these taxa exist in oxygen levels as low as 0.2 ml I"* at the Union and
Dellwood seamounts (both are southwest of the southern point of Haida-Gwaii). Figure 20
shows the distribution of oxygen content across Hecate Strait. It is important to note how
related oxygen and alkalinity are to each other in this area. With many sponges existing in high-
alkalinity, low-oxygen waters, it is difficult to know whether this is because of the high
alkalinity, the low oxygen, some combination of the two, or a third variable that is also
correlated with both alkalinity and oxygen. This illustrates the benefit of using a multi-area
approach, because these two variables may be less related in other areas which have also been

modeled.
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Figure 20. Oxygen values across Hecate Strait.

Silicate was not often returned from the models as one of the top 25% of variables,
however certain models and areas did produce silicate as the most important variable. These
included MaxEnt for the North Pacific area, GAM and BRT for the Alaska area, BRT for the US
area, and GAM for the BC Hecate Strait area. Out of these, most show an increased probability
of glass sponge presence with high levels of silicate. High levels of silicate often overlap with

high levels of alkalinity within Hecate Strait (compare Fig. 19 and Fig. 21).

Figure 21. Silicate values across Hecate Strait.

In published literature, it has been indicated that glass sponges need high levels of
dissolved silica (Leys et al., 2004; Austin., 1984; Chu et al., 2019). Chu et al. (2019) found that
silicic acid

was a Silicate (pmol 1-1) top

me High | 748863

132247

'i{\ \
)

predictor for sponge groups because biogenic silica (biogenic silica occurs when dissolved



silicate transforms to particulate skeletal matter (Treguer et al., 1995)) can constitute over 90%
of the biomass of cold-water sponges. Silicate levels are high in both the Antarctic Ocean as
well as the coastal northeast Pacific Ocean, which are both regions of high glass sponge
abundance (Leys et al., 2004; Treguer et al., 1995). Interestingly, the Hecate Strait area shows
an increased probability of glass sponge presence at much lower levels of silicate than the
remaining areas tested within this contribution. Many areas indicate high probability of glass
sponge presence in areas with silicate values of 150 umol I"!, however Hecate Strait indicates
high probability of presence beginning where silicate values reach over 40 pmol I'*. The highest
level of silicate within the Hecate Strait subarea is 74 umol I, Whitney et al. (2004) identified
silicate levels of over 40 pmol I around sponge reefs in Hecate Strait, thus confirming this
result.

Evaluating partial dependence plots in addition to model accuracy metrics as an
additional way to assess SDM outputs is a descriptive and largely qualitative exercise. The
challenge is that there can be valuable information concerning ecological relationships, but also
nonsensical and spurious relationships, presented in these plots. But there is value in producing
multiple models for multiple areas because oceanic environments subject to different currents
and water masses and different levels of terrestrial influence can vary drastically in their
biogeochemistry. This contribution presented one approach to disentangling the two; by
looking for species-environment relationships that are strong (as indicated by high variable
importance), consistent between model types and consistent between different areas, it is
possible to extract only those relationships most likely to be caused by ecological processes.

The two anomalous plots mentioned in the results section, the oxygen and silicate plots from



the GAM model for the BC area, presented the opposite relationships of what the remaining
models presented. These two plots are an excellent example of why it is important to not make
inferences about ecological relationships based on single-model and single-area partial
dependencies.

Using ranked variable importance values and selecting a threshold for a confidence cut-
off can provide a quantitative measure of accuracy. Providing a measure of probable accuracy
alongside model outputs can be helpful for environmental managers and stakeholders who
require numerical models to estimate species distribution to design effective spatial

management measures for conservation and protection.

Spatial Model Uncertainty Predictions

Spatially examining the uncertainty of model predictions is not commonly done in SDM
studies, however it is important that potential users of SDM products have an understanding of
the predictive accuracy of models and how this may vary across geographic space (Elith et al.,
2005). Most evaluation metrics of predictive performance use a comparison of predictions
against observations at a particular set of sites (Fielding et al., 1997). As also done in this
contribution, statistics such as kappa and AUC values are widely used to assess whether
predictions are suitably accurate for their intended use, however these statistics are somewhat
restricted because they do not assess the predictions in geographic space and do not allow for

exploration of spatial errors (Elith et al., 2005; Elith et al., 2002a; Fielding et al., 1997).



Confidence Intervals and Standard Error

It is suggested in SDM literature that plotting Cls around model predictions could be
crucial to the interpretation of the models’ performance, particularly mapping Cls of these
predictions (Elith et al., 2002b; Elith et al., 2005). Cls around plotted responses (such as partial
dependence plots) help show where species-predictor variable relationships are most uncertain
(Ferrier et al., 2002). Adding these error metrics is instrumental for producing models which can
be understood as ecological realities (Elith et al., 2005). Figure 16 shows Cls added to partial
dependence plots of alkalinity, oxygen and silicate. The largest Cl on each plot correlates with
the lowest density of data points in each variable. Sponge data where silicate values are greater
than 55 pumol I'* have the highest uncertainty, as there are fewer data points for silicate values
over this threshold. As mentioned earlier, silicate levels in Hecate Strait have been documented
to be lower than surrounding areas, yet glass sponges remain in great abundance in Hecate
Strait.

According to Figure 15, the highest probability of glass sponge presence within Hecate
Strait coincides with areas comprised of high alkalinity, very low oxygen, and medium-high
silicate levels. Hecate Strait is a shallow asymmetric channel between Haida Gwaii and the
northern mainland of British Columbia (Perry et al., 1994). It is a unique area due to its shape; it
is roughly 140km wide at its southern end and narrows to 48km in the north, covering around
23,000km? with depth values reaching down to 494m. The shallowest part is the northwest
area, which has low alkalinity levels, high oxygen levels and low silicate levels. This is also the

area for which the lowest probability of presence for glass sponges was predicted (Fig. 15). This



northwest area (labelled as Area 1 in Fig. 17) shows consistently low uncertainty with all three
methods. All models used predicted low probability of sponge presence in this area, due to its
physical characteristics mentioned previously, and all methods of quantifying uncertainty show
low uncertainty in this area, indicating it is highly probably this area is unsuitable for sponges.

Using Cls as the only means of quantifying the uncertainty of SDM predictions is not a
complete method, according to Elith et al. (2002b), who mention that uncertainty in model
outputs is not explicitly accounted for in the Cls of GLMs. They suggest that bootstrapped Cls
can better account for different sources of uncertainty rather than simply applying Cls to GLM
predictions. This is an interesting avenue for further work on spatially quantifying model
uncertainty, as only the SE of the GLM fit and SD of the bootstrapped GLMs were calculated in
the work that underlies this contribution. Area 2 was identified as an area of highly uncertain
predictions by both the SE of the GLM fit and the SD of the bootstrapped GLMs. The
bootstrapped runs of the GLM produce very consistent predictions in the northwest part of
Hecate Strait (Area 1). The third method of measuring uncertainty involved running eight SDMs
on the same data used for the prior methods and then calculating SE of all eight predictions.
Figure 17c presents high SE values around the southeast corner of Hecate Strait. This area has
medium uncertainty in the first two methods, indicating slight differences in model predictions.
The eight models produced consistent predictions for the northwest area of Hecate Strait,
suggesting with a low level of uncertainty that sponge probability of presence in this area is
low.

One method of comparing these three metrics of estimating uncertainty is by looking at

the original biological input data. Area 1 mostly contains absence values and almost no



presence values (Fig. 19), therefore it seems that when every model shows low probability of
presence, one can assume with some confidence it is likely correct. Additionally, Area 1 is
shallow, has high levels of oxygen and low levels of both silicate and alkalinity, which are
environmental conditions that are the opposite of what models generally predict as suitable
habitat for sponges. Figure 17a, b and c present Area 1 as having low uncertainty, indicating all
assign low uncertainty to the prediction of low probability of presence in this area.

These results allow for the conclusion that if the model predicts low probability of
presence, it has higher certainty in this prediction than in predictions of high probability of
presence. The first two methods differ from the last method in what they show, but the first
two methods show medium uncertainty in the same areas which are highly uncertain in the last
method (the areas where the models all predict relatively high probability of presence, but of
varying values and slightly different geographic spreads of this high probability of presence).
This leads to the conclusion that uncertainty is generally lowest where the models predict the
species not to be, and highest where the models predict the highest probability of species
presence to be.

Both bootstrapping a model and running multiple SDMs are useful methods of
calculating prediction uncertainty, and both these methods could be extremely useful for
providing planners with information to consider when employing the predictions in

conservation planning and decision making (Ferrier et al., 2002).

Limitations



Numerous limitations exist within SDM work; not all models are transposable to distinct
environments, they are strongly dependent on the considered scale, they are difficult to
implement in a management context, many models are not easily interpretable, and software is
not always available to practitioners (Guisan et al., 2005). Alongside these limitations, a
consistent limitation is the fact that any model will rely heavily on the quality of the input data.
This study used a spatial data thinning method based on local environmental variation to
eliminate the spatial sampling bias that was present in the original data set. Spatial bias is a
common limitation in the SDM field because it may cause biased model results and it is difficult
to tell if the species-environment relationships in the model are representative of the real
world or if they are a function of how the data was sampled. When using biological data from
another organization, such is the case here, it can be challenging to find sufficient details about
the data to ensure its quality. There are also limitations in the interpretation of regression-
based models and machine learning models. The two methods produce different results. For
example, calculating uncertainty metrics is more easily done from regression models as
opposed to machine learning models. This contribution compared a regression-based model
with two machine learning models. A final limitation often overlooked in SDM studies is the
spatial dependency of accuracy of the model outputs. Presenting the error spatially is an
important aspect of SDM moving forward, as it will be easily understood by those in
environmental management who are unfamiliar with the modeling methods. Spatially

presented error metrics add value to the already used aspatial error metrics.



Conclusion

By analyzing a variety of commonly used SDMs and examining different spatial and
aspatial metrics to quantify model accuracy and uncertainty, this contribution has shown how
applying a multi-model and multi-area approach can improve the interpretation of the modeled
species-environment relationships. It has also shown how different methods of uncertainty
mapping can provide increased insight as to which areas are predicted by the model to have
high/low levels of uncertainty.

Running three models on six areas showed that partial dependence plots can differ
substantially between model types and adjacent geographical areas. It is therefore necessary to
not overstate the ecological results presented in individual plots, and to be careful while
interpreting them ecologically. One way to assess the ecological interpretability of partial
dependence plots is to perform a multi-model, multi-area study, and compare plots across
models and areas prior to drawing ecological inferences.

Based on the results presented in this contribution, it appears that glass sponges are
most likely to be found in areas with alkalinity values greater than 2.2 umol I and oxygen
values lower than 2 ml I'*. While silicate was also an important environmental predictor, the
results for the probability of sponge presence in relation to silicate are more variable. Every
area except Hecate Strait indicated that glass sponges are more likely to exist in areas with
silicate values of 150 umol I'* and over, however lower values in Hecate Strait confirm sponges

can exist in areas with silicate values of 40 umol I*and over.



While model accuracy metrics like AUC and TSS contain important information about
the ability of a model to produce good predictions, spatial uncertainty metrics can outline areas
where predictions are more or less likely to be correct. There is a small area in the south of
Hecate Strait (Area 2) that both the GLM and the bootstrapped GLM indicate as being subject
to highly uncertain predictions. Such areas should be treated cautiously regardless of the
overall accuracy of the model as indicated by the accuracy metrics, and such areas could be
targeted for future data collection.

Finally, it was shown that different approaches to estimating prediction uncertainty can
yield different but important results. This can be seen in Hecate Strait: predictions for the
shallow, low-alkalinity area in the northwest part of Hecate Strait (Area 1) are consistent
between models (all models give low probability of sponge presence), consistent between
bootstrapped runs of the GLM models and the SE of the GLM model (which also all predict low
probability of sponge presence), and are also consistent with the data points from that area.
This indicates we are very confident in the model prediction of low probability of sponge
presence in Area 1. The highest uncertainty corresponds to areas where models have presented
high probability of presence, since these areas do not all overlap neatly, the uncertainty arises

from these varying predictions.
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Mapping biogenic habitats: distribution of glass sponge reefs and key variables likely to
influence their condition

Anya Dunham
Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
Background

Glass sponge bioherms, or reefs, are unique biogenic habitats found along the coasts of
western Canada and the United States. Sponge reefs were known only from fossil records until
analogous live reefs were discovered in Hecate Strait and Queen Charlotte Sound in the 1980s
(Conway et al., 1991). More recently, the reefs were found in Southeast Alaska (Stone et al.,
2014) and in Chatham Sound near the border between Canada and Alaska (Shaw et al., 2018). A
number of smaller reefs have also been discovered in the Strait of Georgia and Howe Sound
(Conway et al., 2005, 2007; Cook et al., 2008; Chu and Leys, 2010; Clayton and Dennison, 2017;
DFO, 2018; Dunham et al., 2018), hereinafter referred to as the Salish Sea.

The reefs in the Salish Sea are built by the Dictyonine glass sponges Aphrocallistes vastus
and Heterochone calyx. These sponges possess rigid three-dimensional skeletal frameworks
that remain intact after the sponges' death (Leys et al., 2007). The reefs are formed when larval
sponges settle onto exposed skeletons of dead sponges and fine sediments entrained in bottom
currents are baffled and trapped by the dead reef matrix, solidifying reef structure (Leys et al.,
2004; Krautter et al., 2006). The bulk of the reef thus consists of dead sponge matrix cemented
by sediments, with only the most recent generation growing 1-2m above the reef surface

(Conway et al., 2001).
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Several studies have provided insight into the ecosystem function of the glass sponge
reefs. The reefs contribute to the productivity of benthic ecosystems by forming habitat for
diverse communities of invertebrates and fish (Chu and Leys, 2010; Cook et al., 2008; Dunham
et al., 2015; Marliave et al., 2009), act as regionally important silica sinks (Chu et al., 2011;
Tréguer and De La Rocha, 2013), and, being one of the densest known communities of deep-
water filter feeders, link benthic and pelagic environments through carbon and nitrogen
processing (Kahn et al., 2015). However, understanding of the reefs' overall role in the Salish
Sea ecosystem was limited, as most of the empirical work to date has been constrained to a few

well-studied areas.

Research summary

Members of PICES Working Group 32 and collaborators undertook research to map
glass sponge reefs in the Salish Sea, quantify their condition and ecosystem function, describe
biodiversity associated with the reefs, and identify drivers behind live sponge cover variation
(Dunham et al., 2018a,b; DFO, 2018; Conway et al., 2019). Standardized visual surveys using a
Remotely Operated Vehicle (ROV) were undertaken and quantitative assessments of all known
reef complexes in the Strait of Georgia (Dunham et al., 2018a), as well as the newly discovered
and mapped reefs in Howe Sound (DFO, 2018) were completed. An information-theoretic
approach was used to examine six seabed terrain characteristics (rugosity, slope, curvature,
broad and fine bathymetric position indices [BBPI and FBPI, respectively], and minimum depth

surveyed), bottom current estimates, and two measures of potential human impact (density of
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anthropogenic objects and past fishing pressure) as predictor variables for live reef-building
sponge percent cover.

The reefs varied widely in their estimated sponge cover: mean live reef-building sponge
cover ranged from 0.2% to 17.5% (Fig. 1A) and dead sponge cover ranged from 0.1% to 42%
(Fig. 1C). The frequency of occurrence of habitat categories also varied between reef complexes
(Fig. 1D). Sponge rubble was observed in all reefs; rubble cover ranged from 0.1% to 14% (Fig.

1B).
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Figure 1. Reef-building sponge cover and condition across 19 reefs: (A) live reef-building sponge
percent cover per image, mean + 95% confidence Interval, (B) sponge rubble percent cover per
image, mean + 95% confidence Interval (C) dead reef-building sponge percent cover per image,
mean + 95% confidence Interval, and (D) frequencies of occurrence of habitat categories per
reef. Reproduced from Dunham et al. (2018a).
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The reefs were found to support diverse and abundant communities of invertebrates
and fish, with 115 unique taxonomic groups observed (Dunham et al., 2018a, online
supplement S7). Expected species richness differed between reef complexes and ranged
between 18 and 69.

For live reef-building sponge percent cover, the best fit model that explained 75% of the
variation included the following explanatory variables: range of rugosity, curvature, minimum
depth, and the interactions of range of rugosity with curvature and depth. In general, reefs with
a broader range of rugosity had higher live sponge cover. However, for reefs located on
strongly concave slopes (i.e. negative profile curvature values), increased rugosity range led to
lower live sponge cover. The deeper the reef was located the more concave the slope had to be
before an increase in rugosity range switched from increasing to decreasing live sponge cover
(Fig. 2).

Overall, differences in live cover appeared to be largely driven by seabed terrain
characteristics.

In general, reefs with a broader range of rugosity exhibited higher live sponge cover. This may
be explained by the more rugose seafloor generating local turbulence that may deliver nutrient-
rich water to filter-feeding sponges. In addition, more rugose areas may promote infilling of the
dead reef matrix with sediment which is crucial for supporting the reef mass and preventing
sponge skeletons from dissolving in ambient seawater over time (Krautter et al., 2006), thus
enabling reef existence and growth. However, for reefs located on strongly concave slopes, and
especially those in relatively shallow waters, increased rugosity led to lower live sponge cover.

These areas may be experiencing turbulence and suspended sediment concentrations that are
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too high to support reef-building glass sponges. Our results support the conclusion that glass

sponge reefs require a delicate balance of turbidity and suspended sediment concentration.
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Figure 2. Predicted live reef-building sponge cover from the model with seabed terrain variables
that explained 75% of variation between reefs: % cover * rugosity-range + curvature + depth+
rugosity-range * curvature + rugosity-range* depth. Predicted values less than 0 are displayed
as 0% cover for clarity. Curvature gradient is from concave to convex. Reproduced from
Dunham et al. (2018a).

Members of PICES Working Group 32 and collaborators also reviewed glass sponge reef
geological expressions (geomorphologies) across all known locations in the Pacific Ocean and
combined these observations with available ecological datasets on sponge cover (Conway et al.,
2019). The reef morphologies that develop over time are remarkably variable. We found a
significant association between reef morphologies and the patch size of live reef habitat and
live reef patch isolation. Ridge and bioherm reef morphologies support larger patches of live

reef habitat surrounded by distinct areas of dead or dead and buried reef. Conversely, the small
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wave and thin biostrome reef morphologies typically have many small patches of live reef
habitat surrounded by mixed live and dead reef. This supports the hypothesis that there is a link
between the geologic reef morphology and the distribution of suitable habitat for live sponges
within the reef. However, regardless of the reef morphology, live reef occurred more commonly
on the slopes up to the promontories of the reef form. Overall, the development of the diverse
sponge reef morphologies and associated reef habitats appear to be driven by both physical
and biological factors.

Reef-forming glass sponges are long-lived, but slow growing, exceptionally fragile, and
thus slow to recover, especially from impacts that damage the reef’s skeletal framework. Most
reefs have been impacted by bottom-contact fishing activities. Using recent visual surveys
conducted in Hecate Strait, Chatham Sound, and the Georgia Basin as reference baseline (2010-
2017) and aggregating surveyed habitats at the geomorphic feature level (i.e. all BC sponge
reefs), glass sponge reefs can be assigned a condition score of 4 (poor) following classification
of Ward (2011). It is important to note, however, that condition varies widely between reefs,
and that the current level of glass sponge reef ecology and ecosystem function knowledge is
not sufficient to confidently and comprehensively define and assess reef health. Therefore, this
condition score should be interpreted with caution. The reef habitat trend over the last 5 years
can be best characterized as stable. Because temporal data to support a trend in reef status
requires a time frame of over 5 years (Dunham et al., 2018b), this estimate is based on expert
judgement and associated confidence level is low. Integrated, comprehensive monitoring that
employs relevant metrics of reef health at appropriate spatial and temporal scales and provides

well-resolved time series is necessary to further understand sponge reef ecosystems, to assess
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the effectiveness of recently enacted protection measures (MPA, fishing closures), and to
ensure adaptive management responsive to the state of the protected areas (Conway et al.,

2019).
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Potential indicators for assessing and monitoring diversity of biogenic habitats
Anya Dunham
Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
Background

Understanding the ecology and functioning of various biogenic habitats has shed light
on their vital importance for the continued conservation of natural resources and associated
ecosystem services. As resource management moves toward holistic, habitat-based approaches
such as ecosystem-based fisheries management (Pikitch et al., 2004), there is a growing need
for management actions that promote healthy biogenic habitats. These management actions
require ecological monitoring with clear research questions, appropriate indicators, and a well-
designed data collection process to produce robust data and useful outcomes (Underwood &
Chapman, 2013). A recently developed framework for biological monitoring (Reynolds,
Knutson, Newman, Silverman, & Thompson, 2016) offered an overarching view of the steps
required for successful monitoring programs and emphasized the importance of linkages
among various planning decisions. However, for data-limited biogenic habitats, designing
monitoring programs can be challenging. The structure and functioning of such habitats and
underlying ecosystem-level processes (e.g., spatial extent, magnitude of natural variability in
abundance and distribution of foundation species, species-habitat associations) are not well
understood, often due to these habitats being remote and/or deep, limiting accessibility, and
increasing monitoring costs. These limitations may jeopardize effective management and

conservation of these habitats, many of which are threatened by human activities (Rossi,
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Bramanti, Gori, & Orejas Saco del Valle, 2017). A clear road map for designing robust, efficient

monitoring programs in the face of data and resource limitations was required.

Research summary

Members of PICES Working Group 32 and collaborators reviewed recent publications
(2012-2017) to obtain an overview of benthic assessment and monitoring approaches,
methods, and indicators across a range of relatively well-studied marine biogenic habitats.
Common themes relevant for all habitat types were identified and, drawing upon these themes,
a systematic approach for establishing monitoring programs for data-limited biogenic habitats
was developed (Loh et al., 2019).

Biogenic habitat monitoring efforts largely focus on the characteristics, distribution, and
ecological function of foundation species, but may target other habitat-forming organisms,
especially when community shifts are observed or expected, as well as proxies of habitat status,
such as indicator species. Broad-scale methods cover large spatial areas and are typically used
to examine the spatial configuration of habitats, whereas fine-scale methods tend to be
laborious and thus restricted to small survey areas but provide high-resolution data. Recent,
emerging methods enhance the capabilities of surveying large areas at high spatial resolution
and improve data processing efficiency, bridging the gap between broad- and fine-scale
methods. Although sampling design selection may be limited by habitat characteristics and
available resources, it is critically important to ensure appropriate matching of ecological,

observational, and analytical scales.
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Across biogenic habitat types, assessment and monitoring efforts share the following
common themes: defining study objectives, assembling preliminary data, determining scale of
interest, selecting indicators, determining study methods and sampling design, and full protocol
review. Drawing on these common themes, we propose a structured, iterative approach to
designing monitoring programs for marine biogenic habitats that allows for rigorous data
collection to inform management strategies, even when data and resource limitations are

present (Fig. 3).
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Figure 3. Flowchart illustrating the development of a monitoring protocol for marine biogenic
habitats. Gray boxes contain considerations (to facilitate evaluation of available data, methods,

115



and protocols), and green boxes denote decisions. Key times for iteration back through earlier
steps are denoted by the return dashed arrows. Reproduced from Loh et al. (2019).

As part of this project, members of PICES Working Group 32 and collaborators also
produced (1) an overview of the applicability, advantages, and disadvantages of broad- and
fine-scale survey methods for biogenic habitats; and (2) a summary of attributes, representative
indicators, and associated metrics used for biogenic habitat assessments, with corresponding
survey methods (Loh et al. 2019). These summaries can be used for developing monitoring
programs for any type of biogenic habitat in the North Pacific and elsewhere in the world.

In oceans impacted by human pressures, biogenic habitat assessment and monitoring
are crucial for attributing causes of decline and for providing solutions to mitigate habitat
damage from anthropogenic impacts and monitoring environmental change (Downs et al.,
2005). Systematic monitoring approaches, as laid out in Loh et al. (2019), are urgently required
to implement science-based management, evaluate the success of protective measures, and

guide adaptive management strategies for data-limited marine biogenic habitats.
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Climate change and the distribution of habitat-forming shallow-water corals
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Background

Tropical and subtropical islands are associated with coral reefs, which provide
ecosystem services, including fisheries, tourism and coastal protection. This is especially true to
reef islands that are composed fully of reef-derived materials. Global-scale environmental
changes, including climate change, have been causing significant change on corals. Japan
provides an ideal setting to examine these changes, because it covers a wide latitudinal range,
stretching from subtropical to temperate areas, and latitudinal limits of coral reefs and coral
distributions are observed around the Japanese islands.

Seas around Japan showed significant sea surface temperature (SST) rises (0.8°C—
1.3°C/100 years in annual mean values)
(http://www.data.jma.go.jp/kaiyou/data/shindan/a_1/japan_warm/japan_warm.html), and
the rising SSTs could have caused two consequences on Japanese corals: decline in the south
due to anomalously high SSTs in summer that caused coral bleaching, and range expansion in
the north due to rising winter SSTs that allowed survival of warm-water corals in winter. The

latter may be associated with decline of macroalgae.

Research Summary
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Members of PICES Working Group 32 and collaborators have worked on the detection and

projection of these issues as follows:

Bleaching in the south (Kumagai et al., 2018b)

Excessive SSTs can cause coral bleaching, resulting in coral death and decreases in
coral cover. A SST threshold of 1°C over the climatological maximum is widely used to predict
coral bleaching. In this study, we refined thermal indices predicting coral bleaching at high-
spatial resolution (1 km) by statistically optimizing thermal thresholds, as well as considering
other environmental influences on bleaching such as ultraviolet (UV) radiation, water turbidity,
and cooling effects. We used a coral bleaching dataset derived from the web-based monitoring
system Sango Map Project, at scales appropriate for the local and regional conservation of
Japanese coral reefs. We recorded coral bleaching events in the years 2004—-2016 in Japan. We
revealed the influence of multiple factors on the ability to predict coral bleaching, including
selection of thermal indices, statistical optimization of thermal thresholds, quantification of
multiple environmental influences, and use of multiple modeling methods (generalized linear
models and random forests). After optimization, differences in predictive ability among thermal
indices were negligible. Thermal index, UV radiation, water turbidity, and cooling effects were
important predictors of the occurrence of coral bleaching. Predictions based on the best model

revealed that coral reefs in Japan have experienced recent and widespread bleaching.
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Range shift in the north (Kumagai et al., 2018a)

Coral and macroalgal communities are threatened by global stressors. However,
recently reported community shifts from temperate macroalgae to tropical corals offer
conservation potential for corals at the expense of macroalgae under climate warming.
Although such community shifts are expanding geographically, our understanding of the driving
processes is still limited. Here, we reconstruct long-term climate-driven range shifts in 45
species of macroalgae, corals, and herbivorous fishes from over 60 years of records (mainly
1950-2015), stretching across 3,000 km of the Japanese archipelago from tropical to subarctic
zones. Based on a revised coastal version of climate velocity trajectories, we found that
prediction models combining the effects of climate and ocean currents consistently explained
observed community shifts significantly better than those relying on climate alone. Corals and
herbivorous fishes performed better at exploiting opportunities offered by this interaction. The
contrasting range dynamics for these taxa suggest that ocean warming is promoting
macroalgal-to-coral shifts both directly by increased competition from the expansion of tropical
corals into the contracting temperate macroalgae, and indirectly via deforestation by the
expansion of tropical herbivorous fish. Beyond individual species’ effects, our results provide
evidence on the important role that the interaction between climate warming and external
forces conditioning the dispersal of organisms, such as ocean currents, can have in shaping
community level responses, with concomitant changes to ecosystem structure and functioning.

Furthermore, we found that community shifts from macroalgae to corals might accelerate with
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future climate warming, highlighting the complexity of managing these evolving communities

under future climate change.

Literature cited
Kumagai, N.H., Garcia Molinos, J., Yamano, H., Takao, S., Fujii, M., and Yamanaka, Y.
(2018a) Ocean currents and herbivory drive macroalgal-coral community shift under
climate warming. Proceedings of the National Academy of Sciences of the United
States of America, 115, 8990-8995.
Kumagai, N.H., Yamano, H., and Sango Map Project Committee (2018b) High-
resolution modeling of thermal thresholds and environmental influences on coral
bleaching for local and regional reef management. PeerJ, 6: e4382; DOI
10.7717/peerj.4382

121



Selection of the proper spatial resolution for habitat modeling of cold-water corals
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Background

Cold-water corals are benthic cnidarians that generally inhabit deep-sea floors of the
world ocean. Some deep-sea corals form complex, reef-like structures and provide habitats for
other animals. Due to their slow growth, long life span, and slow recovery from physical
damage, cold-water corals are claimed as important components of vulnerable marine
ecosystems (VMEs). The assessment and management of impacts on VMEs are urgent tasks for
deep sea bottom fisheries to fulfill the global requests for ecosystem-based fishery

management. Habitat suitability modeling of cold-water corals has been used to estimate the

priority areas of conservation interests. Habitat suitability modeling of cold-water corals are
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conducted at various spatial resolutions partially due to the limited availability of data from the
deep-sea environment. Whereas coarse spatial resolutions, such as 1-degree grid-cells, are
helpful for broader strategic consideration of the selection of priority areas for conservation on
regional and global scales, fine spatial resolutions are required for tactical management at local
scale. Members of PICES Working Group 32 and collaborators examined the effects of spatial
resolution of bathymetric data on habitat suitability modeling of cold-water corals at a local
scale, namely on seamounts. Large cold-water gorgonian corals on the southern Emperor
Seamounts in the high seas of the central North Pacific Ocean were used as an example for
planning the spatial management of the deep-sea habitat. The grid-cell size of the bottom
bathymetry raster generated from the multi-beam echo sounder data was manipulated to
investigate the effects of the spatial resolution of bathymetric data on terrain attributes and

habitat suitability modeling of these corals.

Research Summary

The WG32 members and collaborators have worked on the consideration of spatial
resolutions as follows (Miyamoto et al., 2017). Species occurrence data and high-resolution
multi-beam bathymetry data were collected by ship-borne surveys in the Emperor Seamounts
area in 2009 - 2013. Depth and terrain parameters were generated at six different grid cell sizes
from 25 x 25 m to 800 x 800 m and used as environmental variables for habitat analysis (Fig 1).
The values of terrain parameters showed different patterns at smaller (< 100 m) and larger (>

100 m) grid cell sizes (Fig 2). Accordingly, the topographic structures expressed by the raster
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maps changed with the grid cell sizes. Maxent habitat models showed higher prediction
accuracy at smaller grid cell sizes, and predicted high habitat suitability at such locations as
ridges on upper slopes and terrace edges and surface undulation on seamount tops, suggesting
the importance of sloped and/or irregular sea floor as habitat of large gorgonian corals. Within
the available data, the model of 25 m grid-cell resolution showed the best performance in
habitat modeling of cold-water corals on the Emperor Seamounts. The sea floor structures
predicted to be suitable for large gorgonians were consistent with the biological characteristics

of large gorgonians. It was confirmed that MaxEnt models gave satisfactory performance at

smaller grid-cell sizes (= 200 m). The variation in terrain attribute values also differed between

smaller (= 100 m) and larger (2 200 m) grid-cell sizes. These results demonstrate that it is

desirable to obtain bathymetric grid data at resolutions of 100 m or less for the purpose of
predicting the distributions of corals at a local scale (e.g. within a seamount). It is important to
decide the optimum spatial resolution in consideration of the objective of analysis, data

availability and geographical or biological characteristics.
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Figure 1. Example of maps of depth and three
terrain attributes [slope, bathymetric position
index (BPI) and vector ruggedness measure
(VRM)] at three grid-cell sizes for the Colahan
seamount. Red dots represent location where
large gorgonians were observed or collected.
Reproduced from Miyamoto et al. (2017).
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Figure 2. Boxplots of terrain parameter as six grid-cell sizes on the three seamounts studied.
Boxplots show median (thick black lines), range (dashed lines), upper and lower fifth and 95th
percentiles (boxes), and outliers (points). X-axis indicates grid-cell sizes. BPI, bathymetric
position index; VRM, vector ruggedness measure. Reproduced from Miyamoto et al. (2017).
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Background

Some species of cold-water corals are known to provide biogenic habitats to other
animals on the deep sea-floor in several areas of the world ocean. Due to their slow growth,
long life span and slow recovery from physical damage, as well as the habitat forming property,
cold-water corals are considered as important components of vulnerable marine ecosystems
(VMESs). In the Emperor Seamounts area of the North Pacific Ocean, four orders of cold-water
corals; i.e., Gorgonians (Scleraxonia, Holaxonia and Calcaxonia), Alcyonacea (excluding
Gorgonians), Antipatharia, and Scleractinia, were selected as VME indicator taxa by the North
Pacific Fisheries Commission (NPFC), and the bycatch threshold was set at a tentative value
similar to other Regional Fisheries Management Organizations (RFMOs). However,
appropriateness of these indicator species has not been examined scientifically. In this study,
benthic samples collected through bottom surveys from 2009 to 2014 were identified and listed
for delineating the characteristics of benthic animal fauna in the Emperor Seamounts area. The
association analysis was applied to examine the validity of candidate VME indicator taxa as the

biodiversity indicator through examination of their co-occurrence with other benthic animals.
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Research Summary

Members of PICES Working Group 32 and collaborators have introduced a new method
for assessing the validity of VME indicator taxa as follows (Miyamoto and Kiyota, 2017). The
benthos samples collected by R/V Kaiyo-maru in the past six years were used to evaluate the
effectiveness of four orders of cold-water corals (i.e., Gorgonians, Alcyonacea, Antipatharia and
Scleractinia) and other benthic animals as VME indicator taxa in the Emperor Seamounts area.
The benthos samples were identified and listed, and their occurrence frequencies and total
weights were calculated (Fig 1).

Then association analysis, which is often used for discovering hidden relationships
among purchased items in market transaction data (Blattberg et al., 2008), was applied to the
occurrence data per sampling haul to explore the co-occurring relationships of benthic animals.
For example, an association rule which indicates that many customer purchasing item A also
purchase item B is expressed in the form of {A} > {B} (Silverstein et al., 1998, Hahsler et al.,
2005). In this expression, {A} is called the antecedent part and {B} is called the consequent part.
In this study, such association rules were explored that indicate co-occurrence of benthic taxa
such as “A habitat where benthos taxon A occurs is also inhabited by taxon B”. The haul-by-haul
occurrence data were applied to the association analysis, and those rules that include one of
the six candidate VME indicator taxa, i.e., Gorgonians, Alcyonacea (sea fans), Antipatharia
(black corals), Scleractinia (stone corals), Stylasterina (hydrocorals) or Porifera (sponges), in the

consequent part were extracted. The effectiveness of an association rule is evaluated by the
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values of Support, Confidence and Lift. Gorgonians and Scleractinia showed high occurrence
frequencies and large total wet weight (Fig 2). The occurrence frequencies of Stylasterina,
Alcyonacea, Antipatharia and Porifera were low, but the total wet weight of Porifera was
relatively high because of the large water content. Many association rules that include
Gorgonians or Scleractinia in the consequent part were extracted and showed high confidence
and lift values. Only a small number of association rules were extracted for Porifera, and no
rules were extracted for Alcyonacea, Antipatharia and Stylasterina. These results demonstrate
that Gorgonians and Scleractinia frequently co-exist with other benthic animals and suggest
their potential as VME indicator taxa in the Emperor Seamounts area. This study presents a new
method to assess characteristics of benthic communities and to screen for potential indicator

taxa based on the analysis of co-occurrence tendencies among benthic taxa.
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Figure 1. Frequency of occurrence (A) and total wet-weights (B) of benthic megafauna collected
by scientific surveys in the southern Emperor Seamounts area. Only top 25 groups are shown in
this figure. Alcyonacea®* excluding Gorgonians (Scleraxonia, Holaxonia and Calcaxonia).
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Figure 2. Example of results of Gorgonians association analysis. Most effective association rules
had Gorgonians in the consequent part and other taxa in the antecedent parts.
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Research Summary

Members of PICES Working Group 32 and collaborators further explored another usage
of the association analysis for identifying VME indicator taxa on the basis of visual seafloor
surveys. The visual images of the sea-floor were collected through the observation surveys
using the drop camera system operated by R/V Kaiyo-maru in the Emperor Seamounts area.
The benthic animals taken in each sea-floor footage were identified to family or order levels
(Porifera, Stylasterina, Pennatulacea, Gorgonians, Alcyonacea (excluding Gorgonians),
Antipatharia, Scleractinia, Actiniaria, Corallimorpharia, Zoantharia, jellyfish, Gastropoda,
Cephalopoda, Polychaeta, Crustacea, Crinoidea, Asteroidea, Ophiuroidea, Echinoidea and
Pisces), and their occurrence frequencies were calculated. Using the density of benthic taxa in
sampling locations as multivariate distance data, the sea-floor photographing sites or benthic
taxa were classified into clusters according to Ward’s method. The Canonical Correspondence
Analysis (CCA) was applied to characterize the benthic community by environmental
parameters (depth, flatness, softness, and roughness). Cluster analysis indicated that the survey

sites were classified into two large clusters such as hard bottom or soft bottom, and further
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classified into 6 clusters relevant to the variations of depth, flatness, softness and roughness.
CCA plot demonstrated the influence of sea-floor features on benthos occurrence (Fig 1).

Then association analysis, which is commonly used for discovering hidden relationships
among purchased items in market transaction data (Blattberg et al., 2008) and also applied to
assess the validity of benthic indicator taxa (Miyamoto and Kiyota, 2015), was applied to the
occurrence data per sea-floor photographing site to explore the co-occurring relationships of
benthic animals. Association rules that represent strong relationship like A (condition part) >B
(conclusion part) were extracted. The Gorgonians showed 27 effective association rules that
included 10 taxa as antecedent (Table 1). Only a small number of effective rules were extracted
when Scleractinia or Porifera were placed in the consequent. The extracted rules with
Scleractinia or Porifera as the consequent included few taxa as antecedents. These results
demonstrate that Scleractinia and Porifera are less effective as indicators of the benthic
communities in the Emperor Seamounts area than Gorgonians. In summary, the composition of
the benthic community varied greatly depending on the bottom substratum, and Gorgonians
were dominant benthos on hard bottom that occupied many stations. Association analysis

demonstrated co-occurrence of Gorgonians with many other benthic animals.
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Table 1. Number of effective association rules that include candidate vulnerable marine
ecosystem indicator taxa as the consequent part.
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Background

DNA that originated from various sources, such as mucus, metabolic waste, and
damaged tissues, from multicellular organisms exists in seawater and is called environmental
DNA (eDNA). Recently eDNA has begun to be employed in aquatic environmental research, and
it is also being used to monitor marine biodiversity. However, we are not aware of any reports
that have attempted to use eDNA from seawater to monitor coral reefs. In this study, we
performed tank experiments with running seawater as an initial proof of the concept.

Corals release massive amounts of soluble mucus, which transfers large amounts of
energy and nutrients to the reef substrate. Due to the symbiont’s natural rate of increase,
corals steadily release Symbiodinium cells into the surrounding environment, suggesting that
close to reefs, seawater should contain detectable quantities of DNA from both corals and
Symbiodinium. Recently whole genome sequences of an Acropora coral and Symbiodinium have
been published, and next-generation sequencing (NGS) technologies have been used to

investigate coral reef biodiversity. For easier assessment of the species diversity of reef building
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corals, we developed a novel method for monitoring of Acropora corals from environmental

DNA (eDNA) in seawater using NGS.

Research Summary

We performed a tank experiment with running seawater using 19 Acropora species; A.
acuminata, A. austera, A. awi, A. cytherea, A. carduus, A. digitifera, A. echinata, A. florida, A.
grandis, A. hyacinthus, A. intermedia, A. spl aff. echinata, A. microphthalma, A. muricata, A.
nasuta, A. selago, A. tenuis (Shinzato et al., 2018). Complete mitochondrial genomes of all the
Acropora species were assembled to create a database and major types of their Symbiodinium
symbionts were identified. Then eDNA was isolated by filtering inlet and outlet seawater from
the tanks. We detected all of the tested Acropora types from eDNA samples. Proportions and
numbers of DNA sequences were both positively correlated with masses of corals in the tanks.

In this trial, we detected DNA sequences from as little as 0.04 kg of Acropora colony, suggesting

that existence of at least one adult Acropora colony (~30 cm diameter = 1 kg) per m? at depths

<10m could be detected using eDNA in the field. Although this is the initial attempt to detect
coral and Symbiodinium simultaneously from eDNA in seawater, this method may allow us to

perform high-frequency, high-density coral reef monitoring of coral species composition and
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their health conditions without specialized skills to identify coral species using morphological
traits.
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Background and Overview

This chapter summarizes the recent contributions by the USA and its WG32 members (Sam
Georgian, John Guinotte, Chris Rooper and Les Watling) to assess the distribution, abundance
and species associations of deep-sea corals and sponges within the EEZ. It should be noted that
the USA conducts extensive research on deep-sea coral and sponge within its EEZ and much of

that research is summarized in reports by NOAA's Deep Sea Coral Research and Technology

Program (https://www.fisheries.noaa.gov/national/habitat-conservation/deep-sea-coral-

habitat). The most recent report on the state of deep-sea coral and sponge ecosystems was
published in 2017 (Hourigan et al. 2017) and contains an expanded summary of the work on
deep-sea corals and sponges in the USA. Here we focus on the research activities that were

linked conceptually, temporally or directly to PICES WG32 activities and terms of reference.

Coral and sponge ecosystem data in the USA

Records of deep-sea coral and sponge presence and abundance in the North Pacific Ocean have

been historically collected through a number of scientific activities by research organizations in
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the USA. These include data from the extensive fisheries-independent surveys of ecosystems on
the US West Coast and Alaska (both longline and bottom trawl) where the relative abundance
and species of corals and sponges are recorded. It also includes a number of other studies using
visual survey methods, such as submersibles, remote operated vehicles, autonomous
underwater vehicles and towed camera systems. Often these data have records of associated
fish and invertebrate assemblages. In North Pacific Ocean waters a number of studies have
documented associations of Rockfishes (Sebastes sp.) and other demersal fish species with
deep-sea corals and sponges, as well as identifying some key relationships between fish

reproduction and these ecosystems.

Beginning in about 2015 these historical data have been housed in a publicly accessible data

portal (https://deepseacoraldata.noaa.gov/). From 2014-2019, members of WG32 compiled

data from studies in Alaska and the US West Coast and contributed these data (n > 10,000
observations) to the publicly accessible database making it available to the wider PICES
community. The database follows the standards of OBIS-USA and is an extension of the
international Darwin Core Standard. Key points for these aggregated data are:
e Most studies that collect data on coral and sponge distribution in the USA have records
included in a publicly available database that is updated quarterly
e Carein the use of these data is needed, as the quality can vary. A source listed for each

data record can be used to check the validity and suitability for a given analysis

Modelling approaches
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One of the key activities of WG32 was to review modeling approaches to predict the potential
distributions of species and habitat suitability for corals and sponges (e.g., MaxEnt, Boosted
Regression Trees, or high resolution bathymetry-based models) within National EEZs. During
the 2016 PICES annual meeting a 2-day workshop was held on modeling approaches for deep-
sea corals and sponges. It was co-convened by Drs. Kwang-Sik Choi (Korea), Janelle Curtis
(Canada), Masashi Kiyota (Japan) and Chris Rooper (USA). The outcomes of the workshop were
recommendations for data and modeling approaches that should be considered for deep-sea
coral and sponge ecosystems. Technical aspects of the species distribution modeling, including
the best-practices for generating input data, creating models and evaluating the results, data
driven approach to define bioregions, a multi-scale assessment of species distribution models,
and an assessment of the model transferability were also examined during the workshop. The
workshop also included a “hands-on” exercise of building some preliminary models of corals
and sponges for data limited taxa in the North Pacific Ocean. The goals of the modeling session
were to 1) evaluate existing environmental variables/mechanisms effecting basin-wide
distribution of coral and sponge, 2) construct preliminary basin-wide habitat models for taxa
including glass sponges and corals in the North Pacific Ocean and, 3) provide model-based
information for predicting potential changes in distributions of coral and sponge with climate
change. An example of the model predictions for Antipatharia in the North Pacific Basin
developed during the workshop are shown in Figure 1, with the important variables predicting

the distribution shown in Table 1.
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In addition to the PICES workshop in 2016, a number of concurrent modeling efforts for Alaska
and US West Coast were conducted by WG32 members. A maximum entropy model was used
to predict habitat suitability for deep-sea corals on the US West Coast (Guinotte and Davies
2014), a generalized additive modeling approach was used to predict the distribution,
abundance and diversity of corals and sponges in the Aleutian Islands and eastern Bering Sea
(Rooper et al. 2014, Rooper et al. 2016). In the Gulf of Alaska, a suite of modeling methods
(maximum entropy, general linear models, generalized additive models, boosted regression
tree and random forest) were evaluated and used in an ensemble to predict the distribution of
corals and sponges. In all, these efforts resulted in predictions of the distribution of coral taxa
for the entire USA EEZ in the North Pacific. These models continue to be developed and
improved (Guinotte et al. 2017) as new data and techniques become available. Key findings
from this work are:

e Model validation using independently collected data is important to consider

e Ensemble models can perform better across a range of species than individual models

e The modeling method has less effect on the result than the quality of the underlying

predictor and distribution data

Environmental and ecological predictors

A key outcome in modeling the distribution of deep-sea coral and sponge ecosystems in the
North Pacific Ocean that was advanced within WG32 was the identification of large scale

environmental and ecological predictors for the distribution and biodiversity of coral, sponge
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and associated taxa. Dr. Samuel Georgian (USA) and colleagues put together an exhaustive
group of measured and derived predictor variables for the North Pacific Ocean on a 1 km? grid
(Table 2; Figure 3). These included bathymetric and terrain variables as well as environmental
variables thought to influence the distribution of deep-sea corals and sponges. A number of
topographical variables were created, as complex seafloor features generally elevate local
currents, which increases larval dispersal, food supply, sediment and waste removal, and
dissolved oxygen flux (e.g., Dorschel et al., 2007). Since cold-water corals are filter feeders and
therefore reliant on the vertical transfer of surface productivity (Duineveld et al., 2007), the
particulate organic carbon (POC) flux (mg C m™ d™) to the seafloor was also included as a proxy
for food availability. The saturation state of the calcite polymorph of calcium carbonate,
temperature (°C), salinity (psu), and dissolved oxygen (ml L'™!) were included due to their known
biological relevance to cold-water octocorals (Mortensen & Buhl-Mortensen, 2004) and
importance in previous habitat suitability models (Quattrini et al., 2013; Georgian et al., 2014;
Etnoyer et al., 2017). Finally, the distribution of hard bottom substrates was included as the
availability of hard substrata is essential for coral recruitment in a number of cold-water corals

(e.g., Georgian et al., 2014) including Paramuricea (Mortensen et al., 2007).

Bathymetric data for the North Pacific were obtained from the SRTM30+ layer (Becker et al.
2009; Sandwell et al. 2014) downloaded from: topex.ucsd.edu/WWW_html/srtm30_plus.html.
Ocean data in the SRTM30+ layer are derived from Sandwell et al. (2014), the LDEO Ridge

Multibeam Synthesis Project, the JAMSTEC Data Site for Research Cruises, the NGDC Coastal
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Relief Model, and the International Bathymetric Chart of the Oceans. The native resolution of

the SRTM30+ layer is 0.0083° or approximately one kilometer.

A suite of terrain variables was constructed using the SRTM30+ bathymetry layer. Slope, aspect,
roughness, and curvature were calculated using the ArcGIS (v.10.4, ESRI) toolkit ‘DEM Surface
Tools’ (v.2, Jenness 2004; Jenness 2013a), and the topographic position index were calculated
using the toolkit ‘Land Face Corridor Designer (v1.2, Jenness et al. 2013b). The slope of each
grid was measured in degrees and calculated using the 4-cell method which has been shown to
outperform other methods (Horn 1981, Jones 1998). Aspect represents the direction of the
maximum slope and was converted to an index of ‘eastness’ using a sine transformation and an
index of ‘northness’ using a cosine transformation. Curvature describes the shape of the
seafloor to quantify how water should interact with the terrain. We calculated three types of
curvature: general curvature, cross-sectional curvature, and longitudinal curvature. General
curvature assigns more positive values to more convex features, and more negative values to
more concave features. Cross-sectional curvature assigns positive values to features where
water is expected to locally diverge, and negative values to features where water is expected to
locally converge. Longitudinal curvature assigns positive values to features where water is
expected to decelerate, and negative values to features where water is expected to accelerate.
Roughness is a measure of topographical complexity and was calculated as the ratio of surface
area to planimetric area. Topographic Position Index (TPI) quantifies the elevation of a feature
relative to the surrounding seafloor, with positive values indicating features that are elevated

and negative values indicating features that are depressed. Values close to zero may indicate
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either flat surfaces or areas with constant slopes. As TPl is heavily dependent on the analysis
scale, and because benthic organisms may be simultaneously affected by both fine- and broad-
scale features, we calculated TPl at multiple scales: 1,000 m (the finest resolution allowed by
the bathymetry), 5,000 m, 10,000 m, and 20,000 m. Seamount locations were obtained from
Yesson et al. (2011), and include all seafloor features greater than 1000 m in height with a

conical shape.

Environmental variables believed a priori to influence the distribution of benthic marine
organisms were obtained from a variety of sources (Table 1). Dissolved oxygen, salinity,
temperature, and nutrient data were obtained from the World Ocean Atlas (v.2 2013).
Carbonate data (Qarag, QcaL, dissolved inorganic carbon, and total alkalinity) were obtained
from Steinacher et al. (2009). Chlorophyll a, sea surface temperature (SST), and
photosynthetically available radiation (PAR) data were obtained as mission composites (average
of 2002-2016 data) from NOAA’s Aqua MODIS program at a resolution of 4 km, and were
resampled to match the extent and resolution of the bathymetry data with no interpolation.
Particulate organic carbon (POC) flux at the seafloor was obtained from Lutz et al. (2007).
Bottom current velocity data were obtained from the Simple Ocean Data Assimilation (SODA
v.3.4.1) model (Carton et al. 2005), with data averaged as the composite of the years 1990-
2007. Current velocities were calculated as both horizontal and vertical velocities (m s-1).
Current direction for each grid cell was calculated from zonal (U) and meridional (V) velocities

according to the formula:
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Direction=180/m x atan2  [(([u],[v])])

with values of +180° and -180° indicating that the current flows to the south, +90° to the east, -
90° to the west, and 0° to north. A current layer that quantifies the direction of current flow
relative to the aspect of the seafloor was also calculated, with values of 0° indicating that the
current flows the same direction that the steepest slope is facing, and values of 180° indicating
that the current flows opposite to the direction of the steepest slope (sensu Rooper et al.

2014).

Benthic variables (WOA data, carbonate data, and current data) were transformed to match the
extent and resolution of the bathymetry layer using a variable up-scaling approach that
approximates conditions at the seafloor (Davies and Guinotte 2011). Briefly, each gridded layer
was first interpolated to a slightly higher resolution (0.5°) than its native resolution using
inverse distance weighting, resampled to match the extent and resolution of the bathymetry
data, and draped over the bathymetry data within its depth range. This technique has been
demonstrated to work effectively for many global and regional scale variables (Davies and
Guinotte 2011; Yesson et al. 2012). WOA data were available as 102 depth-binned layers from
depths of 0-5500 m, with a vertical resolution of 5 m (from 0-100 m), 25 m (100-500 m), 50 m

(500-2000 m), and 100 m (2000-5500 m). Carbonate data (Steinacher et al. 2009) were
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available in 33 depth-binned layers: 6, 19, 38, 62, 93, 133, 183, 245, 322, 415, 527, 661, 818,
1001, 1211, 1449, 1717, 2014, 2340, 2693, 3072, 3473, 3894, 4329, 4775 m. SODA current data
were available in 50 depth bins: 5.03355, 15.10065, 25.21935, 35.35845, 45.57635, 55.86325,
66.26175, 76.80285, 87.57695, 98.62325, 110.0962, 122.1067, 134.9086, 148.7466, 164.0538,
181.3125, 201.2630, 224.7773, 253.0681, 287.5508, 330.0078, 382.3651, 446.7263, 524.9824,
618.7031, 728.6921, 854.9935, 996.7153, 1152.376, 1319.997, 1497.562, 1683.057, 1874.788,
2071.252,2271.323, 2474.043, 2678.757, 2884.898, 3092.117, 3300.086, 3508.633, 3717.567,

3926.813, 4136.251, 4345.864, 4555.566, 4765.369, 4975.209, 5185.111, and 5395.023 m.

These predictor variables were made available to all WG32 members through a shared drive
and allowed individuals and groups from the PICES community to utilize the layers in their own
modeling efforts within their own EEZ’s. Key aspects of this predictor data set are:
e A wide variety of variables have been compiled into raster layers for use in modeling the
distribution of deep-sea corals and sponges.
e The data captures long-term and large-scale patterns in variables for the North Pacific

Ocean

Preliminary North Pacific-Wide Deep-Sea Coral Models

This suite of environmental data was used to construct preliminary habitat suitability models
for a number of deep-sea coral taxa across the North Pacific Ocean. Models were constructed

using a presence-only Maxent approach. The inclusion of correlated environmental variables
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may inhibit model performance and interpretation (e.g., Huang et al. 2011). Therefore, highly
correlated variables (Figure 2) were removed based on their relationship with other variables
and performance in preliminary Maxent models. The final variable set included the saturation
state of calcium carbonate (either as calcite or aragonite depending on the biology of each
taxon), seafloor roughness, temperature, silicate, topographic position index (TPI; 20,000 m
scale), dissolved oxygen, dissolved inorganic carbon, total alkalinity, regional current flow, and

vertical current flow.

Georeferenced occurrence data were obtained for each taxon from the NOAA Deep Sea Coral
and Sponge Portal. While a common source of error in species distribution models, spatial bias
in the sampling of occurrence data considerably weakens the performance and interpretability
of models (Phillips et al. 2009), and is often found in presence-only deep-sea species datasets
due to the difficulties associated with sampling design in the deep-sea. However, it is possible
to reduce the effects of sampling bias by selecting targeted background data that reflect the
same bias as the occurrence data (Phillips et al. 2009). Given the relatively high sampling bias
observable in our field surveys, we generated a targeted set of background points in addition to
a random set of points (see Figure 1). To generate background points preferentially in areas
that have been more extensively surveyed, we first created a two-dimensional kernel density
estimate of sampling effort based on the presence locations for each taxon. This created a
probability grid from which 10,000 background points were sampled according to the
probability grid weights. Previous studies using a similar approach to reduce the influence of

sampling bias found that model performance was significantly improved (Fitzpatrick et al.
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2013). Habitat suitability models were produced using this targeted-background approach in a
Maxent environment run with default model parameters for the following taxa: Scleractinia
(stony corals), Antipatharia (black corals), Pennatulacea (sea pens), and Primnoa (preliminary

results in Figure 4).

Proposed Biogeography of the Upper Bathyal Benthos in the Pacific Ocean Based on Octocoral

Distributions

One of the topics for discussion during WG32 meetings was the global biogeography of benthic
invertebrates and how invertebrates are taxonomically organized in the PICES area.
Biogeographical classification schemes such as Briggs’ biogeographic provinces (Briggs 1974)
and the Marine Ecoregions of the World (MEOW) (Spaulding et al. 2007) have been developed
for continental shelf depths, however, the lack of faunal data in the deep sea has led to the
development of biogeographical units based on oceanographic characteristics (Watling et al.
2013). During the lifetime of WG32, Dr. Natalie Summers and Dr. Les Watling developed a
biogeographical scheme for the Upper Bathyal (200-1000m) in the Pacific Ocean using octocoral

distributions.

They retrieved over 200 000 octocoral data records from the Deep Sea Coral Data Portal
(DSCDP), Ocean Biogeographic Information System (OBIS), Tropical Deep-Sea Benthos program
(French National Museum of Natural History), Queensland Museum from the CIDARIS

expeditions, and records retrieved from the Siboga expedition reports. They used cluster
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analysis to test octocoral distributions against four different biogeographical classification
schemes used in the shallower and deeper zones of the ocean as well as one used for

subdividing the mesopelagic.

The four classifications used were based on: 1) The MEOW classification in the Pacific (Spalding
et al. 2007) from the coast to 200m depth (immediately above the Upper Bathyal), which
consisted of 72 ecoregions containing at least one octocoral genus; 2) Watling et al. (2013)
Lower Bathyal Provinces from 800 to 3500m in the Pacific; 3) Sutton et al. (2017) 14
Mesopelagic Provinces in the Pacific based on daytime mesopelagic faunal communities as well
as environmental proxies derived from the MEOW ecoregions; 4) The three-dimensional
Ecological Marine Unit (EMU) classification based on temperature, salinity, dissolved oxygen,
nitrate, phosphate, and silicate data obtained from the 2013 World Ocean Atlas, which using
cluster analysis resulted in 9 EMUs in the Pacific Ocean. The latter is the only scheme that

divides the Upper Bathyal into several depth zones (Sayre et al., 2017).

All classification schemes produced mostly concordant patterns with three major faunal
distribution barriers: the North Pacific Current isolates the subarctic units by creating a steep
temperature gradient; the Subantarctic Front separates the Subantarctic from the rest of the
Pacific Ocean; and the East Pacific Barrier separates the East Pacific Ocean from the Central and
West Pacific Ocean. Two other smaller but distinct provinces are the Indo-Pacific where Lower
Bathyal genera are found in the Upper Bathyal, and Torres Strait/Coral Sea characterised by

mesophotic genera. Dr. Summers and Dr. Watling proposed 12 Upper Bathyal provinces for the
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Pacific Ocean based on octocoral distributions (Figure 4). The main driver for these units seems
to be temperature, a defining feature of water masses. These units could potentially be
subdivided into smaller regions based on habitat. Additionally, the clustering of EMUs provides
evidence that the Upper Bathyal should in certain regions be divided vertically into two depth
zones based on water masses. Key findings recommended to PICES WG32 members from this
work include:
e There was consistency in results across multiple biogeographic classification schemes
indicating strong trends in the data on octocorals,
e The biogeography of octocorals in the North Pacific are largely consistent with the
oceanographic barriers created by temperature and
e There are four separate biogeographic provinces for octocoral (Figure 5) found in the

PICES region.

Indicators of diversity of biogenic habitats

Deep-sea coral and sponge ecosystems in the North Pacific Ocean are influenced by multiple
climatological threats, such as rising sea temperature, harmful algal blooms, marine invasive
species, hypoxia, and eutrophication. They are also affected by direct anthropogenic activities
such as sea bed mining and bottom fishing. These multiple threats can act synergistically, but
perhaps differently, from region to region to change ecosystem structure, function and
dynamics. A goal of PICES WG32 was to advance the monitoring of deep-sea coral and sponge

ecosystems.
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In the USA, the major threats to deep-sea corals and sponges are fishing and climate change.
Monitoring the status of deep-sea corals and sponges is difficult and costly, so effective
indicators of biogenic habitat health are needed. One group of indicators that has been
developed in the USA are trends in bycatch (Figure 6) in commercial fisheries. Another indicator
is the abundance of deep-sea corals and sponges estimated using multispecies geo-spatial
modeling techniques (Thorson et al. 2015) applied to fishery independent trawl survey data.
Finally, the spatial extent and trend over time in bottom contacting fishing effort can be used as
an indicator of potential fishing impacts on deep-sea corals and sponges. These data and
indicators are currently updated and reported annually in the Ecosystem Status Reports of
Stock Assessment and Fishery Evaluation documents for Alaska (Zador et al. 2019). The data
and trends over time are also available to be downloaded
(https://access.afsc.noaa.gov/reem/ecoweb/index.php). These indicators do not necessarily
capture the diversity of deep-sea corals and sponges, but they indicate instead what the
population status might be and document the potential threats due to fishing activity. Further
work is needed on this topic, especially work to integrate the spatially explicit fishing effort with
the distribution models for deep-sea corals and sponges. Key recommendations to PICES WG32
members for this work include:

e There is a need to share relevant fisheries and environmental data that addresses trends

and threats to biodiversity
e There is a need for the develop marine spatial planning tools and tools to measure

marine protected area performance
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Associations between commercial species and biogenic habitats

In the US EEZ of the North Pacific Ocean there have been a number of recent studies that have
examined the association of commercially important fish and invertebrate species and deep-sea
coral and sponge ecosystems. On a larger scale (ecosystem) the studies have demonstrated a
strong correlation between rockfishes (Sebastes sp.) and corals and sponges in bottom trawl
survey catches (Sigler et al. 2015, Laman et al. 2016, Thorson and Barnett 2017, Laman et al.
2019). In these studies, higher catches of rockfishes (and some other commercially important
species) is higher where corals or sponges also occur in the catch. This indicates spatial
correlation in density across large areas. The strength of these correlations is variable however,
with stronger associations in Alaska than on the US West Coast. However, functional
relationships are difficult to resolve using bottom trawl survey data.

Two new studies conducted by members of WG32 have examined the seasonal use of deep-sea
coral and sponge habitat and cross-ecosystem associations at differing scales in Alaska. These
studies found that the associations documented for rockfishes were consistent across seasons;
indicating that rockfishes exhibit the same habitat associations during all times of the year
(Conrath et al. 2019). Since most previous work in Alaska has focused on only summertime

distributions, this is an important finding.

In a second study, comparisons of habitat associations for rockfishes were compared for the

same species group across two different ecosystems (the Aleutian Islands and eastern Bering
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Sea) at scales ranging from 1 m to 1000’s of km. The study found that rockfishes, in particular,
utilized habitat in the same ways in both ecosystems (Rooper et al. 2019). This was in spite of
the large differences in quantity and quality of habitat between the two ecosystems. In all, this
study found that having more structured habitats (deep-sea coral and sponge) led to a greater
abundance of rockfishes, regardless of the larger ecosystem characteristics. The key findings of
these studies and others assessed by WG32 members were:
° Deep-sea corals and sponges serve as important habitats for commercially
important rockfishes in the Northeastern Pacific Ocean
o The associations between rockfishes and habitat are constant over seasonal and
annual time periods and over all spatial scales examined
° A higher abundance of structured habitats, such as deep-sea corals and sponges

leads to an increased abundance of rockfishes

Conclusions

Deep-sea coral and sponge ecosystems in the USA EEZ of the North Pacific Ocean are widely
distributed. Data on deep-sea corals and sponges have been collated into a global database
that is publicly available. The work of WG32 has advanced our knowledge of deep-sea coral and
sponge ecosystem distributions by providing a motivation and tools for modeling presence,
absence and abundance of deep-sea corals and sponges. Variables developed in workshops
sponsored by WG32 have also been crucial to moving the distribution modeling forward on a

relevant scale (1 km) for management. Since the working group was formed, published models
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for all regions of the USA EEZ have been developed and used in management. In addition, some
key work in the USA has documented the importance of deep-sea coral and sponge ecosystems
to supporting productivity of commercially important fish stocks, particularly rockfishes.
Current monitoring efforts relative to deep-sea corals and sponges in the USA EEZ focus
primarily on time series of abundance, bycatch and fishing effort. The monitoring could be

improved with more focused studies that address the biodiversity of biogenic habitats.
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Tables

Table 1. Variables important in modeling the distribution of Antipatharia in the North Pacific
Ocean. Two alternative models are shown, one without a bias grid correction for sampling
distribution and one corrected for the sampling bias. AUC is the area under the receiver-
operator curve (an indication of overall model fit).

Variable % Contribution % Contribution
without bias grid  with bias grid

Calcite 58.6 65.5

Roughness 14.3 3.6

Temperature 7.8 11.2

Silicate 4.2

TP1 20,000 m 3.6 3.8

Dissolved Oxygen 3.3 --

DIC 3.2 -

Alkalinity - 2.1

Regional currents - 2.1

Vertical currents - 2.0

AUC 0.945 (0.004) 0.925 (0.003)
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Table 2. Geophysical and environmental variables available for modeling the distribution of
deep-sea corals and sponges in the North Pacific Ocean.

Native

Variable name Filename Units . Reference
Resolution
Bathymetry srtm30 meters 0.0083° Becker et al. 2009
Sandwell et al. 2014
Terrain variables
Aspect aspect degrees 0.0083° Jenness 2013a
Aspect — Eastness eastness 0.0083° Jenness 2013a
Aspect — Northness northness 0.0083° Jenness 2013a
Curvature — General gencurve 0.0083° Jenness 2013a
Curvature — Cross-Sectional  crosscurve 0.0083° Jenness 2013a
Curvature — Longitudinal longcurve 0.0083° Jenness 2013a
Roughness roughness 0.0083° Jenness 2013a
Slope slope degrees 0.0083° Jenness 2013a
Topographic Position Index  tpi 0.0083° Jenness 2013b
Seamounts seamounts Yesson et al. 2011
Environmental variables
Alkalinity alk_stein pmol I 3.6x0.8-1.8° Steinacher et al. (2009)
Dissolved inorganic carbon  dic_stein pmol I 3.6x0.8-1.8° Steinacher et al. (2009)
Omega aragonite (Qarac) arag_stein 3.6x0.8-1.8° Steinacher et al. (2009)
Omega calcite (Qcarc) calc_stein 3.6x0.8-1.8° Steinacher et al. (2009)
Dissolved oxygen dissox ml It 1° Garcia et al. 2014a
Salinity salinity pss 0.25° Zweng et al. 2013
Temperature temp °C 0.25° Locarnini et al. 2013
Phosphate phosphate pmol I 1° Garcia et al. 2014b
Silicate silicate pmol I 1° Garcia et al. 2014b
Nitrate nitrate pmol I 1° Garcia et al. 2014b
Particulate organic carbon POC gCm?yrt 0.05° Lutz et al. (2007)
Regional current velocity regfl ms? 0.5° Carton et al. (2005)
Vertical current velocity vertfl ms? 0.5° Carton et al. (2005)
Current direction curdir degrees 0.5° Carton et al. (2005)
Current relative to aspect curaspect degrees 0.5° Rooper et al. (2014)
Chlorophyll a chla mg m> 4 km Aqua Modis (NOAA)
1otosynthetically Available PAR W m? 4 km Aqua Modis (NOAA)
Radiation
Sea Surface Temperature SST °C 4 km Aqua Modis (NOAA)
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Figures

@Black corals

Figure 1. Example models of the distribution for Antipatharia developed by WG32 during the
2016 modeling workshop. The predictions were developed from maximum entropy models
without (Panel A) and with (Panel B) a correction for sampling density (Panel C).
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Figure 2. Pearson correlations and cluster analysis of variables available for modeling the
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Figure 3. Maps of individual variables available for modeling the distribution of deep-sea corals
and sponges in the North Pacific Ocean.

Scleractinia (Stony Corals)

Pennatulacea (Sea Pens)
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Primnoa

Figure 4. Preliminary habitat suitability models for deep-sea coral taxa in the North Pacific
Ocean.

168



60" E 80" E 120°E 150°E 180° 150*°W  120°W  80°W  B0*W  30'W o S
70" N+ '
- .1 = L, | h
50° N & “UNorth - . L 20e M
Seaof 7. .~ Pacific |
sapan .~ North East
-"’.5 Pacific
..f I
30" N+ ! .. -30° N
- H i
= Central s e
y West Pacific
South
China Sea i

10° N+ P i L 10° N

N Central East

! Pacific /
L i o
'"f‘n'F“‘-:": Ty Central [
M West Pacific \
10" S5+ Y =107 3
Coral ; \
Sea f
0" S Central 30" S
entra
k ."“ West Pacific
- I—
o » =
507 54 # Subantarctic 507 5
Ll L] L] L] L] L] Ll L] L)
90" E 120" E 150 E 180" 150" W 120" 'W a0® w 60" W 30w

Figure 5. Proposed Upper Bathyal Provinces for the Pacific Ocean based on analysis of 20,000

records of octocorals in the Pacific Ocean.

169



Tl Cateh gt}

Tl Caxcn )

el Catch gt}

ccHE8E

Aleutian Islands

[EEEE] T
ST
Fis ] |
: Fils
19U 19 R IS L L JULL U SO ST SR UL

Fennatulacesrn

il

EREEFEEE E%i,iﬁiiii EEE 5 H
AE Sponge

SO0 ~
BoecEE
bhe e 1
AnAnTn
SAnOrE
a

TR 1FI? 190 1T RV OO0 SN0 MO0 TN MO0 A0A0 017 3084 3G

%

o engSe0
L

Jan-03

Jan-05

Sep-03
May-04
Sep-05
May-06
Jan-07

Habitat Disturbed - All Gears
Cumulative to December 2016

Sep-07
May-08

Jan-09
Sep-09

May-10

Jan-11
Sep-11
May-12
lan-13
Sep-13
May-14
Jan-15
Sep-15
May-16

—p| o—FRS —GOA
=] L

170



Figure 6. Examples of indices used for monitoring biogenic habitats in Alaska. Total bycatch
(panel A) in groundfish fisheries (A. Whitehouse, Alaska Fisheries Science Center, NMFS), time-
series of abundance of deep-sea corals and sponges in the Gulf of Alaska (panel B), time series
of area impacted by fishing gear in Alaska regions (panel C) and cumulative spatial distribution
of fishing effort (panel D) (J. Olson, Alaska Regional Office, NMFS).
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Conclusions

WG32 members collaborated effectively with each other and accomplished the overarching
vision of contributing a deeper understanding of the diversity and distribution of biogenic
habitats in the North Pacific Ocean, and by doing so, enhancing the ability to engage in

ecosystem-based fisheries management.

A key outcome of WG32’s activities included the identification of large scale environmental and
ecological predictors for the distribution and biodiversity of coral, sponge and associated taxa.
Predictor variables on a 1 km? grid were made available to all WG32 members through a shared

drive, which allowed them to use the layers in their own modeling efforts.

Because extensive sampling plans in logistically challenging environments are expensive, data
on biogenic habitats will continue to be sparse, particularly in the deep sea, in the immediate
future. Hence WG32 reviewed modeling approaches to predict the potential distributions of
species and habitat suitability for corals and sponges and identified environmental and
ecological predictors of patterns in the distribution and biodiversity of corals, sponges, and
associated taxa. WG32 focussed on the technical development of habitat modeling and
ecological indicators for data-limited taxa in the deep sea.

MaxEnt habitat models showed higher prediction accuracy at smaller grid cell sizes, and
predicted high habitat suitability at such locations as ridges on upper slopes and terrace edges

and surface undulation on seamount tops, suggesting the importance of sloped and/or irregular
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sea floor as habitat of large gorgonian corals. These results demonstrate that it is desirable to
obtain bathymetric grid data at resolutions of 100 m or less for the purpose of predicting the
distributions of corals at a local scale (e.g. within a seamount). It is important to decide the
optimum spatial resolution in consideration of the objectives, data availability and geographical

or biological characteristics.

Species distribution models developed by WG32 members and their collaborators suggested
that glass sponge reefs require a delicate balance of turbidity and suspended sediment
concentration. Another study suggested that the thermal index, UV radiation, and water
turbidity were important predictors of the occurrence of coral bleaching, which has affected
coral reefs in Japan. That same study found that prediction models combining the effects of
climate and ocean currents consistently explained observed community shifts significantly

better than those relying on climate alone.

When it comes to applying and interpreting species distribution models in marine ecosystems,

WG32 suggested keeping three points in mind:

e Ensemble models can perform better across a range of species than individual models

e The modeling method has less effect on the result than the quality of the underlying
predictor and distribution data

e [tisimportant to validate model predictions using independently collected data

whenever possible
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WG32 members also focused on proposing potential indicators for assessing and monitoring
the diversity of biogenic habitats, and documenting associations between commercially
important species and biogenic habitats. Systematic monitoring approaches are needed to

guide adaptive management strategies for data-limited marine biogenic habitats.

WG32 members demonstrated that habitat-forming species are associated with many
commercial fishes and invertebrates. Association analysis demonstrated that Gorgonians
frequently co-existed with other benthic animals in the Emperor Seamounts area. One study
proposed a new method to assess characteristics of benthic communities and to screen for
potential indicator taxa based on the analysis of co-occurrence tendencies among benthic taxa.

Other analyses found that areas with more deep-sea corals and sponges had more rockfishes.

The work of WG32 has advanced our knowledge of deep-sea coral and sponge ecosystem
distributions by providing tools for modeling presence, absence and abundance of deep-sea
corals and sponges. Variables developed in workshops sponsored by WG32 have also been
crucial to moving the distribution modeling forward on a relevant scale (i.e. 1 km?) for
management. Since the working group was formed, published models for all regions of the USA
EEZ have been developed and used in management. In addition, some key work in the USA has
documented the importance of deep-sea coral and sponge ecosystems to supporting

productivity of commercially important fish stocks, particularly rockfishes. Current monitoring
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efforts relative to deep-sea corals and sponges focus primarily on time series of abundance,
bycatch and fishing effort. The monitoring could be improved with more focused studies that

address the biodiversity of biogenic habitats.

SDMs are one tool that can extrapolate modelled species-environment relationships into areas
where species records are rare, thus providing an empirical foundation that can promote
hypotheses development which can, in turn, concentrate limited science resources into
targeted data collection in logistically challenging environments. Enhancing our community’s
ability to better predict where diverse biogenic habitats occurs is an important precursor to
understanding how these habitats support other elements of the ecosystem, including

commercially valuable species.
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Recommendation

WG32 members recommend that PICES engage in further research on biodiversity in the North
Pacific Ocean. Specifically, members recommend that PICES convene a new Working Group on
Biodiversity of Seamounts, with a focus on understanding the distribution of benthic, demersal,
and pelagic species that are associated with seamounts. Seamounts are unique habitats and are
biodiversity hotspots with high rates of endemism. They can host diverse communities of benthic
filter feeders, including corals and sponges. The biodiversity of fishes is also high; almost 800
species of fish have been recorded from seamounts, representing half of the orders of fishes. As
such, seamounts are important sources of food. There are approximately 100,000 seamounts
worldwide and their abundance is greatest in the North Pacific Ocean. The ecology of only a few
seamounts has been studied, in part because of how deep and remote most are. The difficulty in
studying the ecology of seamounts means that they are poorly understood habitats in terms of the
benthic, demersal, and pelagic species that they support. A Working Group on Biodiversity of
Seamounts would build on the contributions of WG32 by mapping the distribution of seamount
biodiversity and expanding research in some of the unique and abundant ecosystems of the North

Pacific Ocean for PICES.

The merits of a new Working Group on Biodiversity of Seamounts include (1) the application of
concepts developed by WG32, (2) new data to better understand factors that influence the
distribution and trends in seamount biodiversity and test key questions about the interactions

among taxa that differ in life history (e.g. plankton, filter feeders, fish, mammals), (3)
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identification of indicators to monitor change, (4) development of hypotheses to forecast
responses to multiple stressors, which is aligned with the spirit of FUTURE, (5) maps of the
distribution of benthic, demersal, and pelagic biodiversity and its indicators, (5) a new research
avenue for PICES with clear linkages to the activities of other PICES activities, including BIO

Committee and the NPFC — PICES Framework for Enhanced Scientific Collaboration in the North

Pacific Ocean.

WG32’s focus on biogenic habitat provided a proof of concept on how to undertake collaborative
biodiversity research in the North Pacific Ocean. Major applications of the science products
developed by a Working Group on Biodiversity of Seamounts would be the provision of further
technical guidance on the application of SDMs, maps of known and predicted distributions of the
benthic, demersal, and pelagic taxa associated with seamounts, and the development of seamount

biodiversity indicators.
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