A tale of two krill: who, when, where, and how many? The euphausiids *Euphausia pacifica* and *Thysanoessa spinifera* in the coastal upwelling zone off the Oregon Coast, USA

C. Tracy Shaw, Leah R. Feinberg, Jennifer Fisher, and William T. Peterson

Time series off Newport, OR (NH line)

- Sampled twice per month starting in 1996
- Adult euphausiids sampled with night bongo tows from 2001-present (13 years so far)
- Environmental conditions
 - warm & cold PDO phases
 - timing of spring and fall transition dates
 - duration of upwelling
 - 2002 anomalously cold due to intrusion of subarctic water

Target Species

Adults of both species ~1-2 mg C per individual

Euphausia pacifica

- Generally found at and beyond the shelf break (>200 m depth)
- Intense period of spawning during summer upwelling season
- Present in cool & warm ocean conditions
- Do not store lipids

- Generally found on the shelf (<200 m depth)
- Spawn before & during upwelling, no intense period
- Prefer cooler ocean conditions
- Store lipids

Ocean Conditions

	Spring	Fall	Duration of	
	transition	transition	upwelling	Ocean temp.
Year	(ST)	(FT)	(mo)	(PDO phase)
2001	2-Mar	12-Nov	8.5	Cool
2002	21-Mar	6-Nov	7.7	Cool
2003	22-Apr	15-Oct	5.9	Warm
2004	20-Apr	7-Nov	6.7	Warm
2005	25-May	29-Sep	4.2	Warm
2006	22-Apr	31-Oct	6.4	Warm
2007	15-Mar	27-Sep	6.5	Cool
2008	30-Mar	24-Oct	6.9	Cool
2009	8-Mar	6-Oct	7.1	Cool
2010	9-Apr	13-Oct	6.2	Cool
2011	31-Mar	16-Sept	5.6	Cool
2012	3-May	11-Oct	5.4	Cool

Biomass – E. pacifica adults

- Climatology 5-10 mg C m⁻³ year-round (but averages aren't everything)
- High interannual variability (or is it patchiness?)
- Lowest biomass consistently in June
- High biomass occurs in both cool and warm years

Biomass – T. spinifera adults

- Nov-June $\sim 0.5 \text{ mg C m}^{-3}$
- July-Oct 1-2 mg C m⁻³
- High interannual variability (or patchiness?)
- Higher biomass values occur in cold years, rare in warm years

E. pacifica cross-shelf biomass cool vs. warm PDO

Cross-shelf biomass essentially the same for cool and warm PDO *E. pacifica* might even prefer a little warming

T. spinifera cross-shelf biomass cool vs. warm PDO

- •Biomass offshore essentially the same for cool and warm PDO
- •Biomass inshore decidedly higher during cool conditions

PDO & biomass anomaly

No distinct pattern 2001-2004 (PDO cool → warm)

Predominantly positive 2005 until mid-2008 (PDO warm → cool)

Predominantly negative mid-2008 to present (PDO cool)

PDO & biomass anomaly

- •Positive anomaly 2001-2003 even though PDO warm starting 2003
- •Largely negative 2004-2012 even though PDO cool starting 2008

Biomass – the general answer

Average biomass (mg C m ⁻³)	NH05- NH25	NH20- NH25
E. pacifica	16.45	34.41
T. spinifera	1.41	1.49

- E. pacifica more abundant than T. spinifera
- E. pacifica clearly concentrated offshore
- T. spinifera biomass similar inshore and offshore
- Averages are not what matter to predators

Lipid Data Caveats

- Lipid samples are from 2010-2012
 - All lipid measurements from krill collected during cold conditions
 - No data on how lipid content might be affected in warm years
- Lipid data may not represent:
 - Abundance
 - Species composition
 - Length frequency
 - Full range of possible values per length or month category

Lipids by length

Large range of lipid content for animals of similar lengths Cannot use length as a proxy for lipid content

Lipids by month

- Lipid >2mg/animal exclusively T. spinifera
- Available May-October (~upwelling season)

Adult Density (monthly average)

Adult Biomass (monthly average)

Adult Lipid (monthly average)

T. spinifera – lower density than E. pacifica but higher lipid content could make them an equally valuable food source

Krill math

• Biomass: 1-2 mg C per adult, both species

- Lipid content (max. per adult)
 - -T. spinifera = 11 mg E. pacifica = 2 mg

Things to consider...

- Abundance isn't everything
 - E. pacifica much more abundant than T. spinifera
 - T. spinifera may also be an important food source:
 - higher potential lipid per krill
 - inshore distribution
 - availability during upwelling
- Are we measuring what we should be measuring?
 - Density/biomass/carbon may not be the important factors from the perspective of foraging predators
 - How does patchy distribution affect density and biomass estimates?
 - How does this impact modeling efforts?

Value of long-term time series data

How would our view of euphausiid population dynamics off the Oregon coast differ if it were based on any consecutive 3-year time period from the last 12 years?

Future Plans?

- Zooplankton ecologist specializing in krill
- Experience includes:
 - Work in Antarctica, Bering Sea, Oregon Coast,
 Yellow Sea
 - Sorting preserved zooplankton samples
 - Experiments with live euphausiids
 - Working at sea on large and small research vessels
- Available January 2014
- Contact: tracy.shaw@noaa.gov tracy.shaw@oregonstate.edu croaker555@gmail.com

Acknowledgements

- Research vessels: Elakha, Wecoma, Atlantis, Frosti, Miller Freeman, McArthur II, New Horizon, Shimada
- Funding sources: NOAA/NWFSC, ONR/NOPP, NSF/CoOP/COAST, NOAA-GLOBEC, NSF/CoOP/RISE, NOAA-SAIP

