Exercise sheet 12

1. (Sums of convex sets). Let X be a locally convex vector space, let $K \subset X$ be a nonempty compact convex set and let $A \subset X$ be a non-empy closed convex subset. Let α, β be scalars. Show that $\alpha A+\beta K$ is closed ${ }^{1}$ and convex.

Hint: For simplicity you may assume that X is metrizable. Using filters or nets this assumption is not needed.
2. (Generalization to complex normed spaces). Let X be a locally convex complex (!) vector space.
a) We generalize Theorem 8.73 to convex subsets of X. So let $K \subset X$ be closed and convex and suppose that $z \in X \backslash K$. Prove that there is a continuous linear functional ℓ on X and a constant $c \in \mathbb{R}$ with

$$
\operatorname{Re}(\ell(y)) \leq c<\operatorname{Re}(\ell(z))
$$

for all $y \in K$.
Hint: Look at the proof of Theorem 7.3.
b) Assume that X is normed. Generalize Corollary 8.74 to convex subsets of X.
3. (Separation of convex sets - I). Let X be a locally convex real vector space and let $A, K \subset X$ be two disjoint non-empty closed convex subsets.
a) Suppose that K is compact. Show that there is a continuous linear functional on X and a constant $c \in \mathbb{R}$ so that

$$
\ell(y) \leq c<\ell(z)
$$

for all $y \in A$ and $z \in K$.
Hint: Use Exercise 1.

[^0]b) We now want to explain why it is not sufficient to assume that K is closed. Consider the real Banach space $X=L_{\lambda}^{2}([0,1])$ where λ is the Lebesgue measure and the subsets
$$
A=\left\{f \in L_{\lambda}^{2}([0,1]): f \geq 1 \text { almost everywhere }\right\}, B=\{b x: b \in \mathbb{R}\} .
$$

Show that there is no non-zero continuous linear functional ℓ on $L_{\lambda}^{2}([0,1])$ with $\ell(y) \leq c \leq \ell(z)$ for all $y \in A$ and $z \in B$ and some constant $c \in \mathbb{R}$.
Hint: Given $f \in L_{\lambda}^{2}([0,1])$ and $\epsilon>0$ there is $g \in L_{\lambda}^{2}([0,1])$ with $\|g\|_{2} \leq \epsilon$ and $f+g \geq 1-b x$ for some constant b.
4. (Separation of convex sets - II). Let X be a locally convex real vector space and let $A, B \subset X$ be two disjoint non-empty closed convex subsets. Suppose that A has non-empty interior. Show that there is a non-zero continuous linear functional ℓ on X and a constant $c \in \mathbb{R}$ so that $\ell(y) \leq c \leq \ell(z)$ for all $y \in A$ and $z \in B$.
5. (Density of extremal points). In this exercise we want to exhibit a compact convex subset K of $C_{\mathbb{R}}([0,1])$ whose extreme points are dense in the subset. Consider

$$
K=\{f \in C([0,1]): f(0)=0, f \text { is 1-Lipschitz }\}
$$

a) Show that K is indeed compact and convex (in the norm topology).

Hint: Use the theorem of Arzelà-Ascoli.
b) Prove that a function $f \in K$ which is piecewise linear and has slope ± 1 (wherever f is differentiable) is extremal.
c) Show that the functions f as in b) are dense in K.

Hint: For $g \in K$ and $\epsilon>0$ one can start to construct a function f as in b) by proceeding with slope 1 (starting from 0) until $|g(x)-x|=\epsilon$.
6. (Density in the bidual). Let X be a real Banach space and consider the canonical embedding $\iota: X \rightarrow X^{* *}$ (see Corollary 7.9). Show that $\iota\left(\overline{B_{1}^{X}}\right)$ is dense in $\overline{B_{1}^{*^{* *}} \text {. }}$

Hint: Let K be the weak ${ }^{*}$-closure of $\iota\left(\overline{B_{1}^{X}}\right)$, which is a compact convex subset, and assume that there is $\ell \in \overline{B_{1}^{X * *}} \backslash K$. Apply Theorem 8.73 for the weak*-topology on $X^{* *}$. See also Lemma 8.13.

[^0]: ${ }^{1}$ The sum of two closed convex subsets does not need to be closed - see Exercise 5, Sheet 1 .

