D-MATH Prof. Dr. Manfred Einsiedler Andreas Wieser

Exercise sheet 12

1. (Sums of convex sets). Let X be a locally convex vector space, let $K \subset X$ be a nonempty compact convex set and let $A \subset X$ be a non-empty closed convex subset. Let α, β be scalars. Show that $\alpha A + \beta K$ is closed¹ and convex.

HINT: For simplicity you may assume that X is metrizable. Using filters or nets this assumption is not needed.

- **2.** (Generalization to complex normed spaces). Let *X* be a locally convex complex (!) vector space.
 - a) We generalize Theorem 8.73 to convex subsets of X. So let $K \subset X$ be closed and convex and suppose that $z \in X \setminus K$. Prove that there is a continuous linear functional ℓ on X and a constant $c \in \mathbb{R}$ with

$$\operatorname{Re}(\ell(y)) \le c < \operatorname{Re}(\ell(z))$$

for all $y \in K$.

HINT: Look at the proof of Theorem 7.3.

- **b**) Assume that X is normed. Generalize Corollary 8.74 to convex subsets of X.
- 3. (Separation of convex sets I). Let X be a locally convex real vector space and let $A, K \subset X$ be two disjoint non-empty closed convex subsets.
 - a) Suppose that K is compact. Show that there is a continuous linear functional on X and a constant $c \in \mathbb{R}$ so that

$$\ell(y) \le c < \ell(z)$$

for all $y \in A$ and $z \in K$.

HINT: Use Exercise 1.

Turn the page.

¹The sum of two closed convex subsets does not need to be closed – see Exercise 5, Sheet 1.

b) We now want to explain why it is not sufficient to assume that K is closed. Consider the real Banach space $X = L^2_{\lambda}([0, 1])$ where λ is the Lebesgue measure and the subsets

 $A = \{ f \in L^2_{\lambda}([0,1]) : f \ge 1 \text{ almost everywhere} \}, B = \{ bx : b \in \mathbb{R} \}.$

Show that there is no non-zero continuous linear functional ℓ on $L^2_{\lambda}([0,1])$ with $\ell(y) \leq c \leq \ell(z)$ for all $y \in A$ and $z \in B$ and some constant $c \in \mathbb{R}$.

HINT: Given $f \in L^2_{\lambda}([0,1])$ and $\epsilon > 0$ there is $g \in L^2_{\lambda}([0,1])$ with $||g||_2 \le \epsilon$ and $f + g \ge 1 - bx$ for some constant b.

- 4. (Separation of convex sets II). Let X be a locally convex real vector space and let A, B ⊂ X be two disjoint non-empty closed convex subsets. Suppose that A has non-empty interior. Show that there is a non-zero continuous linear functional l on X and a constant c ∈ ℝ so that l(y) ≤ c ≤ l(z) for all y ∈ A and z ∈ B.
- 5. (Density of extremal points). In this exercise we want to exhibit a compact convex subset K of $C_{\mathbb{R}}([0,1])$ whose extreme points are dense in the subset. Consider

$$K = \{ f \in C([0,1]) : f(0) = 0, f \text{ is } 1\text{-Lipschitz} \}$$

a) Show that K is indeed compact and convex (in the norm topology).

HINT: Use the theorem of Arzelà-Ascoli.

- **b**) Prove that a function $f \in K$ which is piecewise linear and has slope ± 1 (where-ver f is differentiable) is extremal.
- c) Show that the functions f as in b) are dense in K.

HINT: For $g \in K$ and $\epsilon > 0$ one can start to construct a function f as in b) by proceeding with slope 1 (starting from 0) until $|g(x) - x| = \epsilon$.

6. (Density in the bidual). Let X be a real Banach space and consider the canonical embedding $\iota: X \to X^{**}$ (see Corollary 7.9). Show that $\iota(\overline{B_1^X})$ is dense in $\overline{B_1^{X^{**}}}$.

HINT: Let K be the weak*-closure of $\iota(\overline{B_1^X})$, which is a compact convex subset, and assume that there is $\ell \in \overline{B_1^{X^{**}}} \setminus K$. Apply Theorem 8.73 for the weak*-topology on X^{**} . See also Lemma 8.13.