Exercise Sheet 1

Exercise 1 (Product of topological groups). Let A be a set and for every $\alpha \in A$, G_{α} a topological group. Show that

$$G := \prod_{\alpha \in A} G_{\alpha}$$

with the product $topology^1$ is a topological group.

Exercise 2 (O(p,q)). We consider the orthogonal group O(p,q) of signature $p,q \ge 1$.

- a) Show that the connected component of the group O(1,1) containing the identity is homeomorphic to \mathbb{R} .
- b) Show that for all $p, q \ge 1$, O(p, q) has a subgroup isomorphic to \mathbb{R} .

Exercise 3 (Compact-Open Topology). Let X, Y, Z be a topological space, and denote by $C(Y, X) := \{f: Y \to X \text{ continuous}\}$ the set of continuous maps from Y to X. The set C(Y, X) can be endowed with the *compact-open topology*, that is generated by the subbasic sets

 $S(K,U) \coloneqq \{ f \in C(Y,X) \mid f(K) \subseteq U \},\$

where $K \subseteq Y$ is compact and $U \subseteq X$ is open.

Prove the following useful facts about the compact-open topology.

If Y is locally compact², then:

- a) The evaluation map $e: C(Y, X) \times Y \to X, e(f, y) \coloneqq f(y)$, is continuous.
- b) A map $f: Y \times Z \to X$ is continuous if and only if the map

$$\hat{f}: Z \to C(Y, X), \quad \hat{f}(z)(y) = f(y, z),$$

is continuous.

¹A basis of the product topology is given by the sets $\prod U_{\alpha}$, where U_{α} open and $U_{\alpha} = G_{\alpha}$ for all but finitely many $\alpha \in A$. ²A subset $C \subseteq Y$ that contains an open subset $U \subseteq Y$ with $y \in U \subseteq C \subseteq Y$ is called a *neighborhood of* $y \in Y$.

²A subset $C \subseteq Y$ that contains an open subset $U \subseteq Y$ with $y \in U \subseteq C \subseteq Y$ is called a *neighborhood of* $y \in Y$. Then Y is called *locally compact* if for every $y \in Y$ there is a set \mathcal{D} of compact neighborhoods of y such that every neighborhood of y contains an element of \mathcal{D} as a subset.

Exercise 4 (General Linear Group $GL(n, \mathbb{R})$). The general linear group

$$\operatorname{GL}(n,\mathbb{R}) := \{A \in \mathbb{R}^{n \times n} | \det A \neq 0\} \subseteq \mathbb{R}^{n \times n}$$

is naturally endowed with the subspace topology of $\mathbb{R}^{n \times n} \cong \mathbb{R}^{n^2}$. However, it can also be seen as a subset of the space of homeomorphisms of \mathbb{R}^n via the injection

$$j\colon\operatorname{GL}(n,\mathbb{R})\to\operatorname{Homeo}(\mathbb{R}^n),$$
$$A\mapsto(x\mapsto Ax).$$

- a) Show that $j(\operatorname{GL}(n,\mathbb{R})) \subset \operatorname{Homeo}(\mathbb{R}^n)$ is a closed subset, where $\operatorname{Homeo}(\mathbb{R}^n) \subset C(\mathbb{R}^n,\mathbb{R}^n)$ is endowed with the compact-open topology.
- b) If we identify $\operatorname{GL}(n, \mathbb{R})$ with its image $j(\operatorname{GL}(n, \mathbb{R})) \subset \operatorname{Homeo}(\mathbb{R}^n)$ we can endow it with the induced subspace topology. Show that this topology coincides with the usual topology coming from the inclusion $\operatorname{GL}(n, \mathbb{R}) \subset \mathbb{R}^{n \times n}$. <u>Hint:</u> Exercise 3 can be useful here.

Exercise 5 (Isometry Group Iso(X)). Let (X, d) be a *compact* metric space. Recall that the isometry group of X is defined as

$$Iso(X) = \{ f \in Homeo(X) : d(f(x), f(y)) = d(x, y) \text{ for all } x, y \in X \}.$$

Show that $Iso(X) \subset Homeo(X)$ is compact with respect to the compact-open topology.

<u>Hint:</u> Use the fact that the compact-open topology is induced by the metric of uniform-convergence and apply Arzelà–Ascoli's theorem, see Appendix A.2 in Prof. Alessandra Iozzi's book.

Exercise 6 (Homeo(\mathbb{S}^1) is not locally compact.). Let $\mathbb{S}^1 \subseteq \mathbb{C} \setminus \{0\}$ denote the circle. Show that Homeo(\mathbb{S}^1) with the compact-open topology is not locally compact.

Exercise 7 (Coverings of topological groups). Let H be a topological group, G a topological space and $p: G \to H$ a covering³. Assume that both H and G are path-connected and locally path-connected. Show that for every $\tilde{e} \in p^{-1}(e_H)$ there is a unique topological group structure on G such that \tilde{e} is the neutral element and p is a group homomorphism.

<u>Hint:</u> You may use the *lifting criterion*: If $p: (\tilde{X}, \tilde{x}_0) \to (X, x_0)$ is a covering and $f: (Y, y_0) \to (X, x_0)$ is a continuous map, where Y is path-connected and locally path-connected, then there is a unique continuous lift $\tilde{f}: (Y, y_0) \to (\tilde{X}, \tilde{x}_0)$ of f, i.e. $p \circ \tilde{f} = f$, if and only if $f_{\star}(\pi_1(Y, y_0)) \subseteq p_{\star}(\pi_1(\tilde{X}, \tilde{x}_0))$.

³A covering $p: G \to H$ is a continuous map such that for every $h \in H$ there is an open neighborhood $U_h \subseteq H$ and a discrete space D_h such that $p^{-1}(x) = \coprod_{d \in D_h} V_d$ and for every $d \in D_h$, $p|_{V_d}: V_d \to U_h$ is a homeomorphism.