
MAHATMA GANDHI INSTITUTE OF TECHNOLOGY

COMPUTER SCIENCE AND
ENGINEERING

COURSE FILE

Subject: SOFTWARE ENGINEERING

Class: III/ IV B. Tech (CSE) I-SEM

Prepared By

Dr. D. Koteswara Rao

Ms. Gousiya Begum

Ms. K.Sunitha

Faculty of CSE Dept

ACADEMIC YEAR
2021-2022

INDEX

S.No Name of the Experiment Page No.

1 JNTUH Syllabus 1

2 Course Plan and Lesson Plan 2

3 CO PO PSO Mapping 5

4 UNIT-1 6

5 UNIT-2 17

6 UNIT-3 29

7 UNIT-4 50

8 UNIT-5 65

9 Questions from University Papers 71

10 Assignment and MID Term Exam Papers 77

11 Recent Process Models (Content beyond
syllabus)

80

12 Question Bank 82

R18 B.TECH CSE III YEAR

CS502PC: SOFTWARE ENGINEERING

III Year B.Tech. CSE I-Sem L T P C
 3 0 0 3
Course Objectives

1. The aim of the course is to provide an understanding of the working knowledge of the
techniques for estimation, design, testing and quality management of large software
development projects.

2. Topics include process models, software requirements, software design, software testing,
software process/product metrics, risk management, quality management and UML diagrams

Course Outcomes

1. Ability to translate end-user requirements into system and software requirements, using e.g.
UML, and structure the requirements in a Software Requirements Document (SRD).

2. Identify and apply appropriate software architectures and patterns to carry out high level design
of a system and be able to critically compare alternative choices.

3. Will have experience and/or awareness of testing problems and will be able to develop a simple
testing report

UNIT - I
Introduction to Software Engineering: The evolving role of software, changing nature of software,
software myths.
A Generic view of process: Software engineering- a layered technology, a process framework, the
capability maturity model integration (CMMI), process patterns, process assessment, personal and
team process models.
Process models: The waterfall model, incremental process models, evolutionary process models, the
unified process.

UNIT - II
Software Requirements: Functional and non-functional requirements, user requirements, system
requirements, interface specification, the software requirements document.
Requirements engineering process: Feasibility studies, requirements elicitation and analysis,
requirements validation, requirements management.
System models: Context models, behavioral models, data models, object models, structured methods.

UNIT - III
Design Engineering: Design process and design quality, design concepts, the design model.
Creating an architectural design: software architecture, data design, architectural styles and patterns,
architectural design, conceptual model of UML, basic structural modeling, class diagrams, sequence
diagrams, collaboration diagrams, use case diagrams, component diagrams.

UNIT - IV
Testing Strategies: A strategic approach to software testing, test strategies for conventional software,
black-box and white-box testing, validation testing, system testing, the art of debugging.
Product metrics: Software quality, metrics for analysis model, metrics for design model, metrics for
source code, metrics for testing, metrics for maintenance.

UNIT - V
Metrics for Process and Products: Software measurement, metrics for software quality.
Risk management: Reactive Vs proactive risk strategies, software risks, risk identification, risk
projection, risk refinement, RMMM, RMMM plan.

MAHATMA GANDHI INSTITUTE OF TECHNOLOGY, GANDIPET, HYDERABAD – 75.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE PLAN

B. Tech.(CSE-3) III Year I – Semester : Academic Year : 2021 – 2022
Name of the faculty : D. KOTESWARA RAO
Name of the subject : SOFTWARE ENGINEERING

S.
No

Unit Brief details of Unit
No. of

periods
required

Remarks

1 I Introduction to Software Engineering: The evolving role of
software, changing nature of software, software myths. A Generic
view of process: Software engineering- a layered technology, a
process framework, the capability maturity model integration
(CMMI), process patterns, process assessment, personal and team
process models. Process models: The waterfall model, incremental
process models, Evolutionary process models, the unified process.

12 -

2 II Software Requirements: Functional and non-functional
requirements, user requirements, system requirements, interface
specification, the software requirements document. Requirements
engineering process: Feasibility studies, requirements elicitation
and analysis, requirements validation, requirements management.
System models: Context models, behavioral models, data models,
object models, structured methods.

08 -

3 III Design Engineering: Design process and design quality, design
concepts, the design model. Creating an architectural design:
software architecture, data design, architectural styles and patterns,
architectural design, conceptual model of UML, basic structural
modeling, class diagrams, sequence diagrams, collaboration
diagrams, use case diagrams, component diagrams.

10 -

4 IV Testing Strategies: A strategic approach to software testing, test
strategies for conventional software, black-box and white-box
testing, validation testing, system testing, the art of debugging.
Product metrics: Software quality, metrics for analysis model,
metrics for design model, metrics for source code, metrics for
testing, metrics for maintenance.

8 -

5 V Risk management: Reactive vs Proactive Risk strategies, software
risks, Risk identification,Risk projection, Risk refinement, RMMM,
RMMM Plan. Quality Management: Quality concepts, Software
quality assurance, Software Reviews, Formal technical reviews,
Statistical Software quality Assurance, Software reliability, The ISO
9000 quality standards.

7 -

TOTAL PERIODS: 45

Signature of the Faculty Signature of the HoD Signature of the Principal

MAHATMA GANDHI INSTITUTE OF TECHNOLOGY, GANDIPET, HYDERABAD – 75.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
LESSON PLAN

B. Tech.(CSE-3) III Year I – Semester : Academic Year : 2021 – 2022
Name of the faculty : D. KOTESWARA RAO
Name of the subject : SOFTWARE ENGINEERING

S.
No

Unit
No.

Date Topic
No. of

Periods
Cumulative

Periods
1.

I

06/09/2021 Introduction to Software Engineering 1 1

1.
08/09/2021

The evolving role of software ,Changing Nature of
Software

1 2

2. 13/09/2021 Software myths 1 3

3.
15/09/2021 A Generic view of process: Software engineering- a

layered technology, a process framework
1 4

4.
17/09/2021 the capability maturity model integration (CMMI),

process patterns
1 5

5. 20/09/2021 Process models: The waterfall model 1 6

6.
22/09/2021
& 24/09/2021

incremental process models 2 8

7.
27/09/2021 &
29/09/2021

Evolutionary process models 2 10

8. 01/10/2021 the unified process 1 11

9. 04/10/2021 Process assessment, Personal and team process models. 1 12

10.

II

08/10/2021 Introduction to Requirements engineering,
Functional requirements

1 13

11.
20/10/2021 Non-functional requirements, Interface

specification
1 14

12. 22/10/2021 user requirements, system requirements 1 15

13.
25/10/2021 The software requirements document,

Requirements engineering process: Feasibility studies
1 16

14. 27/10/2021 Requirements elicitation and analysis 1 17

15. 29/10/2021 Requirements validation, requirements management 1 18

16. 01/11/2021 System models: Context models, behavioral models 1 19

17. 03/11/2021 Data models, object models, structured methods. 1 20

18.

III

05/11/2021 Design Engineering: Design process and design quality 1 21

19.
08/11/2021
to 13/11/2021

I - MID Exam

20. 15/11/2021 Design concepts 1 22

21. 17/11/2021 The design model 1 23

22. 19/11/2021 Creating an architectural design: software architecture 1 24

23. 22/11/2021 Architectural styles and patterns 1 25

24. 24/11/2021 Architectural design 1 26

25. 26/11/2021 Conceptual model of UML 1 27

26. 29/11/2021 Basic structural modeling 1 28

27. 01/12/2021 Class diagrams, sequence diagrams 1 29

S.
No

Unit
No.

Date Topic
No. of

Periods
Cumulative

Periods

28.
03/12/2021 Collaboration diagrams, use case diagrams, component

diagrams
1 30

29.

IV

06/12/2021 Testing Strategies: A strategic approach to software
testing, test strategies for conventional software

1 31

30. 08/12/2021 Test strategies for conventional software 1 32

31. 10/12/2021 black-box testing 1 33

32. 13/12/2021 white-box testing 1 34

33. 15/12/2021 validation testing, system testing, the art of debugging 1 35

34.
17/12/2021 Product metrics: Software quality, metrics for analysis

model
1 36

35. 20/12/2021 metrics for design model, metrics for source code 1 37

36. 22/12/2021 Metrics for testing, metrics for maintenance. 1 38

37.

V

24/12/2021 Risk management: Reactive vs Proactive Risk
strategies

1 39

38. 27/12/2021 Software risks, Risk identification, Risk projection 1 40

39. 29/12/2021 Risk refinement, RMMM, RMMM Plan 1 41

40.
31/12/2021 Quality Management: Quality concepts, Software

quality assurance
1 42

41. 03/01/2022 Software Reviews, Formal technical reviews 1 43

42.
05/01/2022 Statistical Software quality Assurance, Software

reliability, The ISO 9000 quality standards
1 44

43. 07/01/2022 Discussion of Previous year question papers 1 45

Note: Dussehra Vacation: From 11th Oct. 2021 to 16th Oct. 2021

Signature of the Faculty Signature of the HoD Signature of the Principal

CO-PO MAPPING

Subject Name: Software Engineering (R18) Year: III
Subject Code: CS502PC Semester: I

CS502PC. 1 Ability to apply different Process Models.

CS502PC. 2 Ability to identify minimum requirements for the development of application.

CS502PC. 3 Ability to translate requirements to high level design models.

CS502PC. 4 Ability to conduct appropriate testing strategies and methods.

CS502PC. 5 Ability to measure software using metrics and conduct quality tasks.

Subject Name: CS502PC-Software Engineering

CO'S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS1 PS2

CO1 3 2 - - - - - - 3 2 2 -
CO2 2 3 - - - - - 2 3 3 - - 2 3
CO3 2 2 - - 3 - - - 2 3 - - 2 3
CO4 2 2 - - 3 - - 2 3 2 2 - 2 3
CO5 2 2 - - - - - - 1 2 3 -

Average 2.2 2.2 - - 1.2 - - 0.8 2.4 2.4 1.4 - 1.2 1.8

1. Software characteristics:

 1. Software is developed or engineered; it is not manufactured in the classical sense.

In both software development and hardware manufacturing activities, high quality is achieved

through good design, but the manufacturing phase for hardware can introduce quality problems that

are nonexistent for software. Both activities require the construction of a “product,” but the

approaches are different. Software costs are concentrated in engineering. This means that software

projects cannot be managed as if they were manufacturing projects.

 2. Software doesn’t “wear out.”

Figure 1, depicts failure rate as a function of time for hardware. The relationship, often called the

“bathtub curve,” indicates that hardware exhibits relatively high failure rates early in its life due to

manufacturing defects; defects are corrected and the failure rate drops to a steady-state level for

some period of time. As time passes, however, the failure rate rises again as hardware components

suffer from the cumulative effects of dust, vibration, temperature extremes, etc. Stated simply, the

hardware begins to wear out.

Software is not susceptible to the environmental maladies that cause hardware to wear out. In

theory, the failure rate curve for software should take the form of the “idealized curve” shown in

Figure 2. Undiscovered defects will cause high failure rates early in the life of a program. However,

these are corrected and the curve flattens as shown. Software doesn’t wear out. But it does

deteriorate! During its life, software will undergo change. As changes are made, it is likely that

errors will be introduced, causing the failure rate curve to spike as shown in the “actual curve”.

Before the curve can return to the original steady-state failure rate, another change is requested,

causing the curve to spike again. Slowly, the minimum failure rate level begins to rise—the

software is deteriorating due to change.

Fig:1 depicts failure rate as a function of time for hardware. Fig:2 failure rate curve for software.

 3. Although the industry is moving toward component-based construction, most software

continues to be custom built.

Standard screws and off-the-shelf integrated circuits are only two of thousands of standard

components that are used by mechanical and electrical engineers as they design new systems. In the

hardware world, component reuse is a natural part of the engineering process. In the software world,

it is something that has only begun to be achieved on a broad scale.

A software component should be designed and implemented so that it can be reused in many

different programs. Modern reusable components encapsulate both data and the processing that is

applied to the data, enabling the software engineer to create new applications from reusable parts.

For example, today’s interactive user interfaces are built with reusable components that enable the

creation of graphics windows, pull-down menus, and a wide variety of interaction mechanisms. The

data structures and processing detail required to build the interface are contained within a library of

reusable components for interface construction.

2. Software Application Domains:

Today, seven broad categories of computer software present continuing challenges for software

engineers:

System software—a collection of programs written to service other programs. Some system

software (e.g., compilers, and editors) processes complex, but determinate, information structures.

Other systems applications (e.g., operating system components, networking software) process

largely indeterminate data. In either case, the systems software area is characterized by heavy

interaction with computer hardware;

Application software—stand-alone programs that solve a specific business need. Applications in

this area process business or technical data in a way that facilitates business operations or

management/technical decision making. Application software is used to control business functions

in real time (e.g., point-of-sale transaction processing, real-time manufacturing process control).

Engineering/scientific software—has been characterized by “number crunching” algorithms.

Applications range from astronomy to volcanology, from automotive stress analysis to space shuttle

orbital dynamics, and from molecular biology to automated manufacturing.

Embedded software—resides within a product or system and is used to implement and control

features and functions for the end user and for the system itself. Embedded software can perform

limited and esoteric functions (e.g., key pad control for a microwave oven).

Product-line software—designed to provide a specific capability for use by many different

customers. Product-line software can focus on a limited and esoteric marketplace (e.g., inventory

control products) or address mass consumer markets (e.g., word processing, spreadsheets, computer

graphics, multimedia, entertainment, database management).

Web applications—called “WebApps,” in their simplest form, WebApps can be little more than a set

of linked hypertext files that present information using text and limited graphics. However,

WebApps are evolving into sophisticated computing environments that not only provide stand-alone

features, computing functions, and content to the end user, but also are integrated with corporate

databases and business applications.

Artificial intelligence software—makes use of nonnumerical algorithms to solve complex problems

that are not amenable to computation or straightforward analysis. Applications within this area

include robotics, expert systems, pattern recognition (image and voice), artificial neural networks,

theorem proving, and game playing.

3. Software myths- erroneous beliefs about software and the process that is used to build it. They

appear to be reasonable statements of fact (sometimes containing elements of truth), they have an

intuitive feel, and they are often promulgated by experienced practitioners who “know the score.”

Today, most knowledgeable software engineering professionals recognize myths for what they are-

misleading attitudes that have caused serious problems for managers and practitioners alike.

Management myths- Managers with software responsibility, like managers in most disciplines, are

often under pressure to maintain budgets, keep schedules from slipping, and improve quality.

Myth: We already have a book that’s full of standards and procedures for building software. Won’t

that provide my people with everything they need to know?

Reality: The book of standards may very well exist, but is it used? Are software

practitioners aware of its existence? Does it reflect modern software engineering practice? In many

cases, the answer to all of these questions is “no.”

Myth: If we get behind schedule, we can add more programmers and catch up

Reality: As new people are added, people who were working must spend time educating the

newcomers, thereby reducing the amount of time spent on productive development effort. People

can be added but only in a planned and well coordinated manner.

Myth: If I decide to outsource the software project to a third party, I can just relax and let that firm

build it.

Reality: If an organization does not understand how to manage and control software projects

internally, it will invariably struggle when it outsources software projects.

Customer myths- the customer believes myths about software because software managers and

practitioners do little to correct misinformation. Myths lead to false expectations, and dissatisfaction

with the developer.

Myth: A general statement of objectives is sufficient to begin writing programs—we can fill in the

details later.

Reality: a comprehensive and stable statement of requirements is not always possible.

Unambiguous requirements are developed only through effective and continuous communication.

Myth: Software requirements continually change, but change can be easily accommodated because

software is flexible.

Reality: the impact of change varies with the time at which it is introduced. When requirements

changes are requested early (before design or code has been started), the cost impact is relatively

small. However, as time passes, the cost impact grows rapidly.

Practitioner’s myths- myths that are still believed by software practitioners have been fostered by

over 50 years of programming culture. Old ways and attitudes die hard.

Myth: Once we write the program and get it to work, our job is done.

Reality: Industry data indicate that between 60 and 80 percent of all effort expended on software

will be expended after it is delivered to the customer for the first time.

Myth: Until I get the program “running” I have no way of assessing its quality.

Reality: One of the most effective software quality assurance mechanisms can be applied from the

inception of a project—the technical review.

Myth: The only deliverable work product for a successful project is the working program.

Reality: A working program is only one part of a software configuration that includes many

elements. A variety of work products (e.g., models, documents, plans) provide a foundation for

successful engineering and, more important, guidance for software support.

Myth: Software engineering will make us create voluminous and unnecessary documentation and

will invariably slow us down.

Reality: Software engineering is not about creating documents. It is about creating a quality

product. Better quality leads to reduced rework. And reduced rework results in faster delivery times.

Regrettably, habitual attitudes and methods foster poor management and technical practices, even

when reality dictates a better approach. Recognition of software realities is the first step toward

formulation of practical solutions for software engineering.

Some Short Notes:

Legacy software: older programs—often referred to as legacy software. This is causing headaches for large

organizations who find them costly to maintain and risky to evolve. There is sometimes one additional characteristic

that is present in legacy software—poor quality. Legacy systems sometimes have inextensible designs, convoluted code,

poor or nonexistent documentation, test cases and results that were never archived, a poorly managed change history.

Role of software: software has dual role: product and as the vehicle for delivering a product.

Software: is: (1) instructions that when executed provide desired features, function, and performance; (2) data

structures that enable the programs to adequately manipulate information, and (3) descriptive information in both hard

copy and virtual forms that describes the operation and use of the programs.

Process flow: describes how the framework activities (communication, planning, modeling, construction, deployment)

and the actions and tasks that occur within each framework activity are organized with respect to sequence and time.

4. Process
Framework:

A software process is a framework for the activities, actions, and tasks that are required to build

high-quality software. Each framework activity is populated by a set of software engineering

actions. Each software engineering action is defined by a task set that identifies the work tasks that

are to be completed, the work products that will be produced, the quality assurance points that will

be required, and the milestones that will be used to indicate progress.

A generic process framework for software engineering defines five framework activities—

communication, planning, modeling, construction, and deployment. In addition, a set of umbrella

activities—project tracking and control, risk management, quality assurance, configuration

management, technical reviews, and others—are applied throughout the process.

Process flow—describes how the framework activities and the actions and tasks that occur within

each framework activity are organized with respect to sequence and time. A linear process flow

executes each of the five framework activities in sequence, beginning with communication and

culminating with deployment . An iterative process flow repeats one or more of the activities before

proceeding to the next. An evolutionary process flow executes the activities in a “circular” manner.

Each circuit through the five activities leads to a more complete version of the software. A parallel

process flow executes one or more activities in parallel with other activities.

5. Process Patterns:

A process pattern provides you with a template —a consistent method for describing problem

solutions within the context of the software process. By combining patterns, a software team can

solve problems and construct a process that best meets the needs of a project. Patterns can be

defined at any level of abstraction. A pattern might be used to describe a problem (and solution)

associated with a complete process model (e.g., prototyping). Patterns can be used to describe a

problem (and solution) associated with a framework activity (e.g., planning) or an action within a

framework activity (e.g., project estimating).

Ambler [Amb98] has proposed a template for describing a process pattern:

Pattern Name. The pattern is given a meaningful name describing it within the context of the

software process (e.g., TechnicalReviews).

Forces. The environment in which the pattern is encountered and the issues that make the problem

visible and may affect its solution.

Type. Stage pattern—defines a problem associated with a framework activity for the process. An

example of a stage pattern might be EstablishingCommunication. Task pattern—defines a problem

associated with a software engineering action or work task and relevant to successful software

engineering practice (e.g., RequirementsGathering is a task pattern). Phase pattern—define the

sequence of framework activities that occurs within the process. An example of a phase pattern

might be SpiralModel.

Initial context. Describes the conditions under which the pattern applies. Prior to the initiation of the

pattern: (1) What organizational or team-related activities have already occurred? (2) What is the

entry state for the process? (3) What software engineering information or project information

already exists?

Problem. The specific problem to be solved by the pattern.

Solution. Describes how to implement the pattern successfully. This section describes how the

initial state of the process is modified as a consequence of the initiation of the pattern.

Resulting Context. Describes the conditions that will result once the pattern has been successfully

implemented. Upon completion of the pattern: (1) What organizational or team-related activities

must have occurred? (2) What is the exit state for the process? (3) What software engineering

information or project information has been developed?

Related Patterns. Provide a list of all process patterns that are directly related to this one.

Known Uses and Examples. Indicate the specific instances in which the pattern is applicable. For

example, Communication is mandatory at the beginning of every software project, is recommended

throughout the software project, and is mandatory once the deployment activity is under way.

6. Process assessment and improvement:

The existence of a software process is no guarantee that software will be delivered on time, that it

will meet the customer’s needs, or that it will exhibit the technical characteristics that will lead to

long-term quality characteristics. Process patterns must be coupled with solid software engineering

practice. In addition, the process itself can be assessed to ensure that it meets a set of basic process

criteria that have been shown to be essential for a successful software engineering.

A number of different approaches to software process assessment and improvement have been

proposed:

Standard CMMI Assessment Method for Process Improvement (SCAMPI)—provides a five-step

process assessment model that incorporates five phases: initiating, diagnosing, establishing, acting,

and learning.

CMM-Based Appraisal for Internal Process Improvement (CBA IPI)— provides a diagnostic

technique for assessing the relative maturity of a software organization; uses the SEI CMM as the

basis for the assessment.

SPICE (ISO/IEC15504)—a standard that defines a set of requirements for software process

assessment. The intent of the standard is to assist organizations in developing an objective

evaluation of the efficacy of any defined software process.

ISO 9001:2000 for Software—a generic standard that applies to any organization that wants to

improve the overall quality of the products, systems, or services that it provides. Therefore, the

standard is directly applicable to software organizations and companies.

7. Unified process:

Unified Process, a framework for object-oriented software engineering using unified modeling

language (UML). Today, the Unified Process (UP) and UML are widely used on object-oriented

projects of all kinds. The iterative, incremental model proposed by the UP can be adapted to meet

specific project needs.

The Unified Process is an attempt to draw on the best features and characteristics of traditional

software process models. The Unified Process recognizes the importance of customer

communication and methods for describing the customer’s view of a system (the use case). It

emphasizes the important role of software architecture. It suggests a process flow that is iterative

and incremental, providing the evolutionary feel that is essential in modern software development.

Phases of the Unified Process:

The inception phase of the UP encompasses both customer communication and planning activities.

Fundamental business requirements are described through a set of preliminary use cases that

describe which features and functions each major class of users desires. A rough architecture for the

system is proposed. Architecture at this point is nothing more than a tentative outline of major

subsystems and the function and features that populate them. Planning identifies resources, assesses

major risks, defines a schedule, and establishes a basis for the phases that are to be applied as the

software increment is developed.

The elaboration phase encompasses the communication and modeling activities of the generic

process model. Elaboration refines and expands the preliminary use cases that were developed as

part of the inception phase and expands the architectural representation to include five different

views of the software. In addition, the plan is carefully reviewed at the culmination of the

elaboration phase to ensure that scope, risks, and delivery dates remain reasonable. Modifications to

the plan are often made at this time.

The construction phase develops or acquires the software components that will make each use case

operational for end users. To accomplish this, requirements and design models that were started

during the elaboration phase are completed. All necessary and required features and functions for

the software increment are then implemented in source code. The unit tests are designed and

executed for each. In addition, integration activities (component assembly and integration testing)

are conducted.

In the transition phase of the UP, software is given to end users for beta testing and user feedback

reports both defects and necessary changes. The software team creates the necessary support

information (e.g., user manuals, troubleshooting guides, installation procedures) that is required for

the release.

The production phase of the UP coincides with the deployment activity of the generic process.

During this phase, the ongoing use of the software is monitored, support for the operating

environment (infrastructure) is provided, and defect reports and requests for changes are submitted

and evaluated.

8. The Waterfall Model:

It can serve as a useful process model in situations where requirements are fixed and work is to

proceed to completion in a linear manner. There are times when the requirements for a problem are

well understood—when work flows from communication through deployment in a reasonably

linear fashion.

This situation is sometimes encountered when well-defined adaptations or enhancements to an

existing system must be made. The waterfall model, sometimes called the classic life cycle,

suggests a systematic, sequential approach to software development that begins with customer

specification of requirements and progresses through planning, modeling, construction, and

deployment, culminating in ongoing support of the completed software. Among the problems that

are sometimes encountered when the waterfall model is applied are:

1) Real projects rarely follow the sequential flow that the model proposes.

2) It is often difficult for the customer to state all requirements explicitly

3) The customer must have patience. A working version of the program(s) will not be available until

late in the project time span.

9. Incremental Process Models:

There may be a compelling need to provide a limited set of software functionality to users quickly

and then refine and expand on that functionality in later software releases. In such cases, you can

choose a process model that is designed to produce the software in increments. For example, word-

processing software developed using the incremental paradigm might deliver basic file

management, editing, and document production functions in the first increment; more sophisticated

editing and document production capabilities in the second increment;

When an incremental model is used, the first increment is often a core product. That is, basic

requirements are addressed but many supplementary features remain undelivered. The core product

is used by the customer. As a result of use and/or evaluation, a plan is developed for the next

increment. The plan addresses the modification of the core product to better meet the needs of the

customer and the delivery of additional features and functionality. This process is repeated

following the delivery of each increment, until the complete product is produced. Incremental

development is particularly useful when staffing is unavailable for a complete implementation by

the business deadline that has been established for the project.

10. Evolutionary Process Models:

Prototyping: Often, a customer defines a set of general objectives for software, but does not

identify detailed requirements for functions and features. In this case, a prototyping paradigm may

offer the best approach. The prototype can serve as “the first system.” Ideally, the prototype serves

as a mechanism for identifying software requirements. The prototyping paradigm begins with

communication. You meet with other stakeholders to define the overall objectives for the software,

identify whatever requirements are known, and outline areas where further definition is mandatory.

A prototyping iteration is planned quickly, and modeling (in the form of a “quick design”) occurs. A

quick design focuses on a representation of those aspects of the software that will be visible to end

users. The quick design leads to the construction of a prototype. The prototype is deployed and

evaluated by stakeholders, who provide feedback that is used to further refine requirements.

The Spiral Model:

the spiral model is an evolutionary software process model that couples the iterative nature of

prototyping with the controlled and systematic aspects of the waterfall model. It provides the

potential for rapid development of increasingly more complete versions of the software.

Using the spiral model, software is developed in a series of evolutionary releases. During early

iterations, the release might be a model or prototype. During later iterations, increasingly more

complete versions of the engineered system are produced. Each pass through the planning region

results in adjustments to the project plan. Cost and schedule are adjusted based on feedback derived

from the customer after delivery. Unlike other process models that end when software is delivered,

the spiral model can be adapted to apply throughout the life of the computer software. The spiral

model is a realistic approach to the development of large-scale systems and software. Because

software evolves as the process progresses, the developer and customer better understand and react

to risks at each evolutionary level. The spiral model uses prototyping as a risk reduction mechanism

but, more important, enables you to apply the prototyping approach at any stage in the evolution of

the product.

Short Notes: Personal software process- the Personal Software Process (PSP) emphasizes personal measurement of

both the work product that is produced and the resultant quality of the work product. In addition PSP makes the

practitioner responsible for project planning (e.g., estimating and scheduling) and empowers the practitioner to control

the quality of all software work products that are developed. The PSP model defines five framework activities:

planning, high-level design, high-level design review, development, postmortem.

Team software process (TSP)- because many industry-grade software projects are addressed by a team of practitioners,

the goal of TSP is to build a “selfdirected” project team that organizes itself to produce high-quality software. The

following objectives for TSP:Build self-directed teams that plan and track their work, establish goals, and own their

processes and plans; show managers how to coach and motivate their teams.

Process assessment: assessing a process to ensure that it meets a set of basic process criteria that have been shown to

be essential for a successful software engineering.

Software process : is a framework for the activities, actions, and tasks that are required to build high-quality software

(or) a collection of work activities, actions, and tasks that are performed when some work product is to be created.

Umbrella activities: are applied throughout a software project and help a software team manage and control progress,

quality, change, and risk.

Software engineering layers: tools, methods, process, a quality focus.

An activity: strives to achieve a broad objective (e.g., communication with stakeholders). An action (e.g., architectural

design) encompasses a set of tasks that produce a major work product (e.g., an architectural design model). A task

focuses on a small, but well-defined objective (e.g., conducting a unit test) that produces a tangible outcome.

Requirements, Requirements Engg, System Models (UNIT-II)

1. Functional and non-functional requirements:

Software requirements are often classified as functional and non-functional. Functional

requirements are statements of services the systems should provide, how the system should react

particular inputs, how the system should react to particular inputs, and how the system should

behave in particular situations. In some cases, these may also explicitly state what the system

should not do. These depend on the type of software being developed, the expected users of the

software, and the general approach taken by the organization when writing requirements. When

expressed as user requirements functional requirements usually described in an abstract way that

can be understood by system users. The functional user requirements define specific facilities to

be provided by the system. Functional system requirements vary from general requirements

covering what the system should do to very specific requirements.

Non-functional requirements: These are constraints on the services (or) functions offered by the

system. They include timing constraints, constraints on development process, and constraints

imposed by standards. These often apply to the system as a whole, rather than individual system

features (or) services. These may affect the overall architecture of a system rather than individual

components.

Types of non-functional requirements-

Product requirements- specify or constrain the behavior of the software. Examples: performance-

how fast it must execute, how much memory it needs, etc.

Organisational requirements- are derived from policies and procedures in the customer's and

developer's oranization. Example: how system will be used (operational process requirements)

External requirements- are derived from the factors external to the system and development

process. Examples: interoperability requirements, legislative requirements, etc.

Requirements engineering- the process of establishing the services that the customer requires

from a system and the constraints under which it operates and is developed. The requirements

themselves are the descriptions of the system services and constraints that are generated during

the requirements engineering process. It may range from a high-level abstract statement of a

service or of a system constraint to a detailed mathematical functional specification.

2. User requirements/ System requirements:

User requirements- the high-level abstract statements in a natural language and using diagrams

of what services the system is expected to provide to system users and constrainsts under which

it must operate. User requirements are quite general.

System requirements- are more detailed descriptions of the software system's functions, services

and operational constrainsts. The system requirements documents should define exactly what is

to be implemented. The system requirements provvide more specific information about the

services and functions of the system that is to be implemented.

Example: Mental health care patient management system (MHC-PMS)

 User Requirements Definition

1. The MHC-PMS shall generate monthly management reports showing the cost of

drugs prescribed by each clinic during that month.

 System Requirements Specification

1.1 On the last working day of each month, a summary of drugs prescribed, their cost,

and prescribing clincs shall be generated.

1.2 The system shall automatically generate the report for printing after 17:30 on the last

working day of the month.

1.3 A report shall be created for each clinic and shall list drug names, the total number of

prescriptions, the number of doeses and the total cost of the drugs.

1.4 If drugs are available in different dose units, separate reprots shall be created for each

dose unit.

1.5 Access to all cost reports shall be restricted to authorized users listed on a

management access control list.

3. Requirements engineering process:

Requirements
specification

Requirements
validation

Requirements
elicitation

System requirements
specification and

modeling

System
requirements

elicitation

User requirements
specification

User
requirements

elicitation

Business requirements
specification

Prototyping

Feasibility
study

Reviews

System requirements
document

Fig: shows the interleaving of activities to carry out requirements engineering process.

This includes four high-level activities: feasibility study, elicitation and analysis, specification,

and validation. Feasibility study consists of assessing if the system is useful to the business or

not. The purpose of requirements elicitation and analysis is for discovering requirements.

Specification means converting the requirements into some standard form. Validation involves

checking that the requirements actually define the system that the customer wants.

In practice, requirements engineering is an iterative process in which the activities are

interleaved.

In the above diagram, activities are organized as an iterative process around a spiral, with output

being a system requirements document. Early in the process, most effort will be spent on

understanding high-level business and non-functional requirements, and the user requirements

for the system. Later in the process, in the outer rings of the spiral, most effort will be devoted to

eliciting and understanding the detailed system requirements. The number of iterations around

the spiral can vary so the spiral can be exited after some or all of the user requirements have been

elicited.

4. Requirements elicitation and analysis:

After an initial feasibility study, the next stage of requirements engineering process is

requirements elicitation and analysis. Here, software engineers work with all stakeholders such

as customers and system end-users to find out the application domain, what services the system

should provide, the required performance, hardware constraints and so on. A system stakeholder

is anyone who should have some direct or indirect influence on the system.

Elicitation and analysis consists of different activities: Requirements discovery, Requirements

classification and organization, prioritization and negotiation, and specification.

Discovery- it is the process of interacting with stakeholders of the system to discover

requirements. Domain requirements from stakeholders and documentations are also discovered

during this activity.

Classification and organization: It takes unstructured collection of requirements, groups related

requirements and organizes them into coherent clusters. The most common way of grouping

requirements is to use a model of the system architecture to identify sub-systems and to associate

requirements with each sub-system.

Prioritization and negotiation: when multiple stakeholders are involved, requirements will

conflict. It is concerned with prioritizing requirements, and finding and resolving requirements

conflicts through negotiation. Usually stakeholders have to meet to resolve differences and agree

an compromise requirements.

Specification: requirements are documented and input into the next round of the spiral. Formal

and informal documents may be produced.

5. Validation techniques:

Reviews: the requirements are analyzed systematically by a team of reviews who check for errors

and inconsistencies.

Prototyping: an executable model of the system that is demonstrated to end-users and customers.

They can experiment with this model to see if it meets their real needs.

Test case generation: requirements should be testable. If the tests for the requirements are

devised as part of the validation process, this often reveals requirements problems. If a test is

difficult, this means requirements will be difficult to implement.

System Modeling

System modeling is the process of developing abstract models of a system, with each model

presenting a different view (or) perspective of that system. System modeling means representing

the system using some kind of graphical notation, which is always based on notations in the

UML.

Model is an abstraction of the system being studied rather than alternative representation of that

system. An abstraction deliberately simplifies and picks out the most salient characteristics. Ex.

an abstraction of the book’s key points. Models are used during the requirements engineering

process to help derive the requirements for a system.

6. System models- we may develop different models to represent the system from different

perspectives:

1) An external perspective (or) context model- we model the context (or) environment of the

system.

2) An interaction perspective (or) interaction model- when you model the interaction

between a system and its environment (or) between the components of a system.

3) A structural perspective (or) structural model- we model the organization of system (or)

the structure of the data that is processed by the system.

4) A behavioral perspective (or) behavioral model- when you model the dynamic behavior

of the system and how it responds to events.

We use the following UML diagrams to create different kind of models:

1) Activity diagrams- show the activities involved in a process (or) in data processing.

2) Use case diagrams – show the interactions between a system and its environment.

3) Sequence diagrams- show interactions between actors and the system and between

system components.

4) Class diagrams- show the classes in the system and its associations between these events.

5) State diagrams- show how the system reacts to internal and external events.

Context models: the context models normally show that the environment includes several other

automated systems. However, they do not show the types of relationships between the systems in

the environment and the system that is being specified. At the early stage in the specification of

a system, we should decide on the system boundaries. This involves working with stakeholders

to decide what functionality should be included in the system and what is provided by the

system's environment. So that decisions should be made early inthe process to limit the system

cost and time needed for understanding the system requirements and design. In MHC-PMS, the

advantage of relying on other systems for patient information is that we avoid duplicating data.

The disadvantage using other systems may make it slower to access information.

Interaction models:

There are two approaches to interaction modeling: use case diagrams, sequence diagrams.

All systems involve interaction of some kind. This can be user interaction, interaction between

the system being developed and other systems, and between components of the system.

Modeling user interaction heighlights the communication problem that may arise. Modeling

component interation helps us understand if a proposed system structure is likely to deliver the

required performance and dependability.

Use case modeling was developed by Jacobson. This is widely used to support requirements

elicitation. Use case diagrms give faily simple overview of an interaction. A use case can be

taken as a simple scenario that describes what user expects from a system. Each use case

represents a discrete task that involves external interaction with a system. A use cse is shown as

an ellipse with actors as stick figures. Stick figure indicates human/ external system/ hardware

interaction. Sequence diagrams in the UML are primarily used to model the interaction

between the actors and the objects in a system and the interactions between the objects

themselves. A sequence diagrms shows the sequence of interactions that take place during a

particular use case (or) use case instance. In our example diagram models the interactions

involved in the View patient information use case, where medical receptionist ca see patient

information. Objects/actors are listed along the top of the diagram, with dotted line drawn

vertically from these. Interations between objects are indicated by annotated arrows. The

rectangle on the dotted lines indicates the lifeline of the object concerned. You read the sequence

of interaction from top to bottom. The annotations on the arrows indicate the calls to the object,

their parameters, and the return values.

Structural Models: these display the organization of a system in terms of the components that

make up the system and their relationships. Here, class diagrams are used when modeling object

oriented system. Class diagram gives structural model to show the classes in a system and

associations between the classes. When you are developing a model, the first stage is usually to

look at the world, identify objects, and represent these as classes. The simplest way of writing

these is to write the class name in a box. You can also note the existence of an association by

drawing a line between classes.

Behavioral Models: these are models of the dynamic behavior of the system as it is executing.

They show what happens (or) what is supposed to happen when a system responds to a stimulus

from its environment. You can think of these stimuli as being of two types:

1) Data- some data arrives that has to be processed by the system. (Data driven modeling)-

here, data flow diagrms are used. (UML does not support these diagrams).

2) Events- some event happens that triggers system processing. Events may have associated

data but this is not always the case.

UML supports event-based modeling using state diagrams. State diagrams show a finite system

states and events that cause transitions from one state to another. Event modeling shows how a

system responds to external/internal events.

System Design (UNIT-III)

7. Design Concepts:

Abstraction- at the highest level of abstraction, a solution is stated in broad terms using the

language of the problem environment. At lower levels of abstraction, a more detailed description

of the solution is provided. Finally, at the lowest level of abstraction, the solution is stated in a

manner that can be directly implemented.

A procedural abstraction refers to a sequence of instructions that have a specific and limited

function. An example of a procedural abstraction would be the word “open” for a door. Open

implies a long sequence of procedural steps (e.g., walk to the door, reach out and grasp knob,

turn knob and pull door, step away from moving door, etc.).

A data abstraction is a named collection of data that describes a data object. The data abstraction

for door would encompass a set of attributes that describe the door (e.g., door type, swing

direction, opening mechanism, weight, dimensions).

Architecture- architecture is the structure or organization of program components

(modules), the manner in which these components interact, and the structure of data

that are used by the components. One goal of software design is to derive an architectural

rendering of a system. This rendering serves as a framework from which more detailed design

activities are conducted.

Patterns- a design pattern describes a design structure that solves a particular design problem

within a specific context and amid “forces”. The intent of each design pattern is to provide a

description to determine (1) whether the pattern is applicable to the current work, (2) whether the

pattern can be reused and (3) whether the pattern can serve as a guide for developing a similar,

but functionally or structurally different pattern.

Separation of Concerns- it suggests that any complex problem can be more easily handled if it

is subdivided into pieces that can each be solved and/or optimized independently. A concern is a

feature or behavior that is specified as part of the requirements model for the software. By

separating concerns into smaller, and therefore more manageable pieces, a problem takes less

effort and time to solve.

Modularity- is the most common manifestation of separation of concerns. Software is divided

into separately named and addressable components, sometimes called modules, that are

integrated to satisfy problem requirements.

Rather than monolithic software (i.e., a large program composed of a single module), you should

break the design into many modules, hoping to make understanding easier and, as a

consequence, reduce the cost required to build the software.

Information Hiding- modules should be specified and designed so that information (algorithms

and data) contained within a module is inaccessible to other modules that have no need for such

information. Hiding implies that effective modularity can be achieved by defining a set of

independent modules that communicate with one another only that information necessary

to achieve software function.

Functional Independence- the concept of functional independence is a direct outgrowth of

separation of concerns, modularity, and the concepts of abstraction and information hiding.

Functional independence is achieved by developing modules of software so that each module

addresses a specific subset of requirements and has a simple interface when viewed from other

parts of the program structure.

Refinement- a program is developed by successively refining levels of procedural

detail. Refinement is actually a process of elaboration. You begin with a statement of function (or

description of information) that is defined at a high level of abstraction. You then elaborate on

the original statement, providing more and more detail as each successive refinement

(elaboration) occurs.

Aspects- as requirements analysis occurs, a set of “concerns” is uncovered. Some of these

concerns span the entire system and cannot be easily compartmentalized. Consider two

requirements, A and B. Requirement A crosscuts requirement B “if a software decomposition

has been chosen in which B cannot be satisfied without taking A into account. An aspect is a

representation of a crosscutting concern. In an ideal context, an aspect is implemented as a

separate module (component) rather than as software fragments that are “scattered” or “tangled”

throughout many components. To accomplish this, the design architecture should support a

mechanism for defining an aspect—a module that enables the concern to be implemented across

all other concerns that it crosscuts.

Refactoring- refactoring is a reorganization technique that simplifies the design (or code) of a

component without changing its function or behavior. When software is refactored, the existing

design is examined for redundancy, unused design elements, inefficient or unnecessary

algorithms, poorly constructed or inappropriate data structures, or any other design failure that

can be corrected to yield a better design.

Short Notes:

A cohesive module performs a single task, requiring little interaction with other components in other parts of a

program. Stated simply, a cohesive module should (ideally) do just one thing. Coupling is an indication of

interconnection among modules in a software structure. In software design, you should strive for the lowest possible

coupling. Simple connectivity among modules results in software that is easier to understand and less prone to a

“ripple effect” caused when errors occur at one location and propagate throughout a system.

Different ways of writing a system requirements: natural languge sentences-requirments are written using

numbered sentences in natural language, structured natural language- uses a programming language to write

requirements, graphical notations- graphical models are used to define functional requirements for the system,

mathematical specifications- mathematical concepts such as finite-state machines, sets are used to write

requirements with no ambiguity.

Structure of the Software requirements document (or) SRS: it consists of preface, introduction, glossary, user

requirements definition, system architecture, system requirements specification, system models, system evolution,

appendices, index.

Activity diagrams: are intended to show the activites that make up a system process and the flow of control from

one activity to another. Start is indicated by filled circle; end is indicated by filled circle inside another circle.

Rectangles with round corners represent activities. Arrows represent the flow of work from one activity to another. A

solid bar is used to indicate activity co-ordination. Arrows may be annotated with guards.

Fig: types of non-functional requirements

Fig: context model of MHC-PMS

Fig: activity diagram of detention of mental patient

Fig: Use case diagram- use cases of Medical Receptionist

Fig: class diagram of MHC-PMS

(UNIT-III)

 (Topics on Architectural design, Component-level design needs to given later)

1) The Golden rules for user interface design (UI Design)

i. Place the user in control.

ii. Reduce the user’s memory load.

iii. Make the interface consistent.

i). Place the user in control.

a) Define interaction modes in a way that does not force a user into unnecessary

actions. For example, if spell check is selected in a word-processor menu, the user should be able to

enter and exit the mode with little or no effort.

Provide for flexible interaction. Because different users have different interaction preferences, for

example, software might allow a user to interact via keyboard commands, mouse movement.

Allow user interaction to be interruptible. the user should be able to interrupt the sequence to do

something else. The user should also be able to “undo” any action.

Hide technical internals from the casual user. The user should not be aware of the operating

system, file management functions.

ii). Reduce the user’s memory load.

The more a user has to remember, the more error-prone the interaction with the system will be. The

interface should be designed to reduce the requirement to remember past actions, inputs, and

results.

Establish meaningful defaults. The initial set of defaults should make sense for the average user.

However, a “reset” option should be available, enabling the redefinition of original default values.

Define shortcuts that are intuitive. When mnemonics are used (e.g., alt-P to do the print function),

the mnemonic should be tied to the action in a way that is easy to remember (e.g., first letter of the

task to be invoked).

iii). Make the Interface Consistent

The interface should present and acquire information in a consistent fashion.

Allow the user to put the current task into a meaningful context. It is important to provide

indicators (e.g., window titles, graphical icons, consistent color coding) that enable the user to know

the context of the work at hand. The user should be able to determine where he has come from and

what alternatives exist for a transition to a new task.

Maintain consistency across a family of applications. A set of applications should all implement

the same design rules so that consistency is maintained for all interaction.

2) Interface Analysis and Design Models

The overall process for analyzing and designing a user interface begins with the creation of

different models of system function. Four different models come into play when a user interface is

to be analyzed and designed.

The software engineer establishes a user model and it establishes the profile of end users of the

system. The software engineer creates a design model, the end user develops a mental image that is

often called the user’s mental model or the system perception, and the implementers of the system

create an implementation model. The user’s mental model is the image of the system that end users

carry in their heads. The implementation model combines the outward manifestation of the

computerbased system (the look and feel of the interface). Each of these models may differ

significantly. Your role, as an interface designer, is to reconcile these differences and derive a

consistent representation of the interface.

User interface design process:

The analysis and design process for user interfaces is iterative and can be represented

using a spiral model. The user interface analysis and design process encompasses four distinct

framework activities: (1) interface analysis and modeling, (2) interface design, (3) interface

construction, and (4) interface validation. The spiral implies that each of these tasks will

occur more than once, with each pass around the spiral representing additional elaboration of

requirements and the resultant design. In most cases, the construction activity involves prototyping-

the only practical way to validate what has been designed.

Interface analysis focuses on the profile of the users who will interact with the system. Skill level,

business understanding, and general receptiveness to the new system are recorded; and different

user categories are defined. For each user category, requirements are elicited. In essence, you work

to understand the system perception for each class of users.

Once general requirements have been defined, a more detailed task analysis is conducted. Those

tasks that the user performs to accomplish the goals of the system are identified, described, and

elaborated (over a number of iterative passes through the spiral). Finally, analysis of the user

environment focuses on the physical work environment.

The information gathered as part of the analysis action is used to create an analysis model for the

interface. Using this model as a basis, the design action commences. The goal of interface design is

to define a set of interface objects and actions (and their screen representations) that enable a user to

perform all defined tasks in a manner that meets every usability goal defined for the system.

Interface construction normally begins with the creation of a prototype that enables usage scenarios

to be evaluated. As the iterative design process continues, a user interface tool kit may be used to

complete the construction of the interface.

Interface validation focuses on (1) the ability of the interface to implement every user task correctly,

(2) the degree to which the interface is easy to use and easy to learn, and (3) the users’ acceptance of

the interface as a useful tool in their work.

Interface analysis:

User interface design, understanding the problem means understanding (1) the end users who will

interact with the system, (2) the tasks that end users must perform, (3) the content that is presented,

and (4) the environment in which these tasks will be conducted. User analysis- the only way that

you can get the user mental image and the design model to converge is to understand the users

themselves as well as how these people will use the system. Information from sources such as User

interviews, sales input, marketing input, support input; is used for user analysis. Task Analysis and

Modeling- the use case is developed to show how an end user performs some specific work-related

task. This use case provides a basic description of one important work task for the system. From it,

you can extract tasks, objects, and the overall flow of the interaction. Analysis of Display Content-

the output data objects that are produced by an application. These data objects may be (1) generated

by components, (2) acquired from data stored in a database that is accessible from the application.

Analysis of the Work Environment- In some applications the user interface is placed in a

“user-friendly location” (e.g., proper lighting, good display height, easy keyboard access), but in

others (e.g., a factory floor or an airplane cockpit), lighting may be suboptimal, noise may be a

factor, a keyboard or mouse may not be an option, display placement may be less than ideal. The

interface designer may be constrained by factors that mitigate against ease of use.

3) Interface design steps

Once interface analysis has been completed, all objects and actions required by the end user have

been identified in detail and the interface design activity commences. Interface design is an iterative

process. Each user interface design step occurs a number of times, elaborating and refining

information developed in the preceding step.

The following are the steps for designing user interface model:

1. Using information developed during interface analysis, define interface objects and actions.

2. Define events (user actions) that will cause the state of the user interface to change. Model this

behavior.

3. Depict each interface state as it will actually look to the end user.

4. Indicate how the user interprets the state of the system from information provided through the

interface.

You should (1) always follow the golden rules , (2) model how the interface will be implemented,

and (3) consider the environment (e.g., display technology, operating system, development tools)

that will be used.

Applying Interface Design Steps

The definition of interface objects and the actions is an important step in interface design. To do

this, user scenarios are parsed. That is, a use case is written. Nouns (objects) and verbs (actions) are

isolated to create a list of objects and actions.

Once the objects and actions have been defined and elaborated iteratively, they are categorized by

type. Target, source, and application objects are identified. A source object (e.g., a report icon) is

dragged and dropped onto a target object (e.g., a printer icon). The implication of this action is to

create a hard-copy report. When you are satisfied that all important objects and actions have been

defined (for one design iteration), screen layout is performed. Like other interface design activities,

screen layout is an interactive process in which graphical design and placement of icons, definition

of descriptive screen text, specification and titling for windows, and definition of major and minor

menu items are conducted.

4) User interface design evaluation:

Once you create an operational user interface prototype, it must be evaluated to determine whether

it meets the needs of the user. The user interface evaluation cycle takes the form shown in above

Figure. After the design model has been completed, a first-level prototype is created. The prototype

is evaluated by the user, who provides you with direct comments about the interface.

You can collect a variety of qualitative and quantitative data that will assist in evaluating the

interface. To collect qualitative data, questionnaires can be distributed to users of the prototype.

Questions can be: (1) simple yes/no response, (2) numeric response, (3) percentage (subjective)

response. If quantitative data are desired, a form of time-study analysis can be conducted. Users are

observed during interaction, and data—such as number of tasks correctly completed over a standard

time period, frequency of actions, sequence of actions, time spent- are collected and used as a guide

for interface modification.

Design modifications are made based on user input, and the next level prototype is created. The

evaluation cycle continues until no further modifications to the interface design are necessary. If

you identify and correct potential problems early, the number of loops through the evaluation cycle

will be reduced and development time will shorten.

5) Design Issues

As the design of a user interface evolves, four common design issues almost always surface: system

response time, user help facilities, error information handling, and command labeling. It is far

better to establish each at the beginning of software design, when changes are easy and costs are

low.

Response time. In general, system response time is measured from the point at which the user

performs some control action (e.g., hits the return key or clicks a mouse) until the software responds

with desired output or action. System response time has two important characteristics: length and

variability. If system response is too long, user frustration and stress are inevitable. Variability refers

to the deviation from average response time. Low variability enables the user to establish an

interaction rhythm, even if response time is relatively long. For example, a 1-second response to a

command will often be preferable to a response that varies from 0.1 to 2.5 seconds.

Help facilities. Almost every user of an interactive, computer-based system requires help now and

then. In most cases, however, modern software provides online help facilities that enable a user to

get a question answered or resolve a problem without leaving the interface.

Error handling. Because no one really likes bad news, few users will like an error message no

matter how well designed. But an effective error message philosophy can do much to improve the

quality of an interactive system and will significantly reduce user frustration when problems do

occur.

Menu and command labeling. The typed command was once the most common mode of

interaction between user and system software and was commonly used for applications of every

type. Conventions for command usage should be established across all applications. It is confusing

and often error-prone for a user to type alt-D when a graphics object is to be duplicated in one

application and alt-D when a graphics object is to be deleted in another. The potential for error is

obvious.

Application accessibility. As computing applications become ubiquitous, software engineers must

ensure that interface design encompasses mechanisms that enable easy access for those with special

needs. Accessibility for users who may be physically challenged.

Internationalization. The challenge for interface designers is to create “globalized” software. That

is, user interfaces should be designed to accommodate a generic core of functionality that can be

delivered to all who use the software. Localization features enable the interface to be customized for

a specific market.

6). An Example System-SafeHome system:

It is Preliminary screen layout-

Preliminary use case: I want to gain access to my SafeHome system from any remote location via the Internet. Using

browser software operating on my notebook computer (while I’m at work or traveling), I can determine the status of the

alarm system, arm or disarm the system, reconfigure security zones, and view different rooms within the house via

preinstalled video cameras.

To access SafeHome from a remote location, I provide an identifier and a password. These define levels of access (e.g.,

all users may not be able to reconfigure the system) and provide security. Once validated, I can check the status of the

system and change the status by arming or disarming SafeHome. I can reconfigure the system by displaying a floor plan

of the house, viewing each of the security sensors, displaying each currently configured zone, and modifying zones as

required. I can view the interior of the house via strategically placed video cameras. I can pan and zoom each camera to

provide different views of the interior.

To provide a brief illustration of the design steps noted previously, consider a user scenario for the

SafeHome system. The following homeowner tasks, objects, and data items are identified:

• accesses the SafeHome system, • enters an ID and password to allow remote access

• checks system status, • arms or disarms SafeHome system

• displays floor plan and sensor locations, • displays zones on floor plan

• changes zones on floor plan, • displays video camera locations on floor plan

• selects video camera for viewing, • views video images (four frames per second)

• pans or zooms the video camera

Objects (boldface) and actions (italics) are extracted from this list of homeowner tasks. The

majority of objects noted are application objects. However, video camera location (a source object)

is dragged and dropped onto video camera (a target object) to create a video image (a window with

video display).

A preliminary sketch of the screen layout for video monitoring is created. To invoke the video

image, a video camera location icon, C, located in the floor plan displayed in the monitoring

window is selected. In this case a camera location in the living room (LR) is then dragged and

dropped onto the video camera icon in the upper left-hand portion of the screen. The video image

window appears, displaying streaming video from the camera located in the LR. The zoom and pan

control slides are used to control the magnification and direction of the video image. To select a

view from another camera, the user simply drags and drops a different camera location icon into the

camera icon in the upper left-hand corner of the screen.

The layout sketch shown would have to be supplemented with an expansion of each menu item

within the menu bar, indicating what actions are available for the video monitoring mode (state). A

complete set of sketches for each homeowner task noted in the user scenario would be created

during the interface design.

Note:

You are suggested to Prepare an example Swimlane diagram.

UNIT-III

(Design Conepts, Architectural design, Component-level design) (Note: Diagrams

given in the ending pages.)

1) Object-Oriented Design Concepts

The object-oriented (OO) paradigm is widely used in modern software engineering. Analysis

Classes- the requirements model defines a set of analysis classes. Each describes some element of

the problem domain, focusing on aspects of the problem. The level of abstraction of an analysis

class is relatively high.

As design model evolves, we will define a set of design classes that refine the analysis classes by

providing design detail that will enable the classes to be implemented, and implement a software.

Five different types of design classes, each representing a different layer of the design

architecture, can be developed: • User interface classes define all abstractions that are necessary for

human computer interaction (HCI).

• Business domain classes are often refinements of the analysis classes defined earlier. The classes

identify the attributes and services (methods) that are required to implement some element of the

business domain. • Process classes implement lower-level business abstractions required to fully

manage the business domain classes.

• Persistent classes represent data stores (e.g., a database) that will persist beyond the execution of

the software. • System classes implement software management and control functions that enable

the system to operate and communicate within its computing environment and with the outside

world.

As the architecture forms, the level of abstraction is reduced as each analysis class is transformed

into a design representation. Four characteristics of a well-formed design class:

Complete and sufficient. A design class should be the complete encapsulation of all attributes and

methods. Sufficiency ensures that the design class contains only those methods that are sufficient,

no more and no less.

Primitiveness. Methods associated with a design class should be focused on accomplishing one

service for the class. Once the service has been implemented with a method, the class should not

provide another way to accomplish the same thing.

High cohesion. A cohesive design class has a small, focused set of responsibilities and single-

mindedly applies attributes and methods to implement those responsibilities.

Low coupling. Within the design model, it is necessary for design classes to collaborate with one

another. If a design model is highly coupled the system is difficult to implement, to test, and to

maintain over time.

2) The Design Model

The design model can be viewed in two different dimensions shown in Figure 1. The process

dimension indicates the evolution of the design model as design tasks are executed. The abstraction

dimension represents the level of detail as each element of the analysis model is transformed into a

design equivalent and then refined iteratively. In Figure 1 , the dashed line indicates the boundary

between the analysis and design models.

The elements of the design model use the UML diagrams that were used in the analysis model. The

difference is that these diagrams are refined and elaborated as part of design; more implementation-

specific detail is provided, and architectural structure and style, components that reside within the

architecture, and interfaces between the components and with the outside world are all emphasized.

In Figure, the model elements indicated along the horizontal axis are not always developed in a

sequential fashion. In most cases preliminary architectural design sets the stage and is followed by

interface design and component-level design, which often occur in parallel. The deployment model

is usually delayed until the design has been fully developed.

You can apply design patterns at any point during design. These patterns enable you to apply

design knowledge to domain-specific problems that have been encountered and solved by others.

Data-design elements- data design (or data architecting) creates a model of data that is represented

at a high level of abstraction (the customer/user’s view of data). This data model is then refined into

progressively more implementation-specific representations.

Architectural Design Elements- The architectural model is derived from three sources:

information about the application domain; (2) specific requirements model elements such as data

flow diagrams, analysis classes, their relationships and collaborations; and (3) the availability of

architectural styles and patterns. The architectural design element is usually depicted as a set of

interconnected subsystems. Each subsystem may have it’s own architecture.

Interface design elements: The interface design for software is similar to a set of detailed drawings

(and specifications) for the doors, windows, and external utilities of a house. The interface design

elements for software depict information flows into and out of the system and how it is

communicated among the components. There are three important elements of interface design: (1)

the user interface (UI); (2) external interfaces to other systems, and (3) internal interfaces between

various design components.

Component-Level Design Elements- The component-level design for software is the equivalent to

a set of detailed drawings (and specifications) for each room in a house. The component-level

design describes the internal detail of each software component. The component-level design

defines data structures, algorithmic detail for all processing, and an interface. A UML activity

diagram can be used to represent processing logic. Detailed procedural flow for a component can be

represented using either pseudocode or flowchart.

Deployment-Level Design Elements- indicate how software functionality and subsystems will be

allocated within the physical computing environment. During design, a UML deployment diagram

is developed and then refined. It shows the computing environment but does not explicitly indicate

configuration details.

Architectural Design

3) Taxonomy of Architectural Styles

Architectures are shown in figure 3(a), (b), (c), (d).

Each style describes a system category that encompasses (1) a set of components (e.g., a database,

computational modules); (2) a set of connectors that enable “communication, coordination and

cooperation” among components; (3) constraints that define how components can be integrated; (4)

semantic models that enable a designer to understand the overall properties of a system.

Data-centered architectures: A data store (e.g., a file or database) resides at the center of this

architecture and is accessed frequently by other components that update, add, delete, or otherwise

modify data within the store. Data-centered architectures promote integrability- existing

components can be changed and new client components added to the architecture without concern

about other clients.

Data-flow architectures: This architecture is applied when input data are to be transformed

through a series of computational or manipulative components into output data. A pipe-and-filter

pattern has a set of components, called filters, connected by pipes that transmit data from one

component to the next. Each filter, works independently of those components upstream and

downstream, is designed to expect data input of a certain form, and produces data output (to the

next filter) of a specified form.

Call and return architectures: This architectural style enables you to achieve a program structure

that is relatively easy to modify and scale. Main program nvokes a number of program components

that in turn may invoke still other components.

Layered architectures: A number of different layers are defined, each accomplishing operations

that progressively become closer to the machine instruction set. At the outer layer, components

service user interface operations. At the inner layer, components perform operating system

interfacing. Intermediate layers provide utility services and application software functions.

Object-oriented architectures: The components of a system encapsulate data and the operations

that must be applied to manipulate the data. Communication and coordination between components

are accomplished via message passing.

4) Architectural Genres genre implies a specific category within the overall software domain.

Grady Booch suggests the following architectural genres for software-based systems:

Artificial intelligence—Systems that simulate human cognition, locomotion; Commercial and

nonprofit—Systems that are fundamental to the operation of a busines; Communications—Systems

that provide the infrastructure for transferring and managing data, for connecting users of that data;

Content authoring—Systems that are used to create or manipulate textual or multimedia artifacts;

Devices—Systems that interact with the physical world to provide some point service for an

individual; Entertainment and sports—Systems that manage public events or that provide a large

group entertainment experience; Financial—Systems that provide the infrastructure for transferring

and managing money; Games—Systems that provide an entertainment experience for individuals or

groups; Government—Systems that support the conduct and operations of a local, state, federal,

global, or other political entity. Other genres are industrial, legal, medical, militaty, operating

Each genre represents a unique challenge. As an example, consider the software architecture for a

game system. Game systems require the computation of intensive algorithms, sophisticated

computer graphics, streaming multimedia data sources, real-time interactivity via conventional and

unconventional inputs.

Architectural patterns address an application-specific problem within a specific context and under

a set of limitations and constraints. The pattern proposes an architectural solution that can serve as

the basis for architectural design. A specific domain or genre and that one or more architectural

styles may be appropriate for that genre. For example, the overall architectural style for an

application might be call-and-return or object-oriented. But within that style, you will encounter a

set of common problems that might best be addressed with specific architectural patterns.

5) Architectural Design Steps

Examples are given in Figures 4, 5, 6, 7.

a) Representing the System in Context- a software architect uses an architectural context diagram

(ACD) to model the manner in which software interacts with entities external to its boundaries. The

generic structure of the architectural context diagram consists of systems that interoperate with the

“target system”are represented as: Superordinate systems—those systems that use the target system

as part of some higher-level processing scheme. • Subordinate systems—those systems that are used

by the target system and provide data or processing that are necessary to complete target system

functionality. • Peer-level systems—those systems that interact on a peer-to-peer basis. • Actors—

entities (people, devices) that interact with the target system by producing or consuming

information that is necessary for requisite processing. Each of these external entities communicates

with the target system through an interface (the small shaded rectangles). In Figure, SafeHome

security function ACD is given. Example ACD is given in Figure 2.

b) Defining Archetypes

An archetype is a class or pattern that represents a core abstraction that is critical to the design of an

architecture for the target system. The target system architecture is composed of these archetypes,

which represent stable elements of the architecture. Archetypes can be derived by examining the

analysis classes. For our example the SafeHome home security function, you might define the

following archetypes:

• Node. Represents a cohesive collection of input and output elements of the home security

function. For example a node might be comprised of (1) various sensors and (2) a variety of alarm

(output) indicators.

• Detector. An abstraction that encompasses all sensing equipment that feeds information into the

target system.

• Indicator. An abstraction that represents all mechanisms (e.g., alarm siren, flashing lights, bell) for

indicating that an alarm condition is occurring.

• Controller. An abstraction that depicts the mechanism that allows the arming or disarming of a

node. Recall that the archetypes form the basis for the architecture but are abstractions that must be

further refined as architectural design proceeds. The above archetypes are illustrated in Figure.

c) Refining the Architecture into Components

As the software architecture is refined into components, the structure of the system begins to

emerge. Each of these top-level components would have to be elaborated iteratively. The design

details of all attributes and operations would not be specified until component-level design. The

overall structure is shown in UML component diagram in Figure. Transactions are acquired by

external communication management as they move in from components that process the SafeHome

GUI and the Internet interface. This information is managed by a SafeHome executive component

that selects the appropriate product function (in this case security). The control panel processing

component interacts with the homeowner to arm/disarm the security function. The detector

management component polls sensors to detect an alarm condition, and the alarm processing

component produces output when an alarm is detected.

d) Describing Instantiations of the System

The major software components have been identified. However, further refinement (recall that all

design is iterative) is still necessary. To accomplish this, an actual instantiation of the architecture is

developed. By this We mean that the architecture is applied to a specific problem with the intent of

demonstrating that the structure and components are appropriate.

Component-Level Design

Component-level design occurs after the first iteration of architectural design has been completed.

At this stage, the overall data and program structure of the software has been established. The intent

is to translate the design model into operational software. It is possible to represent the component-

level design using a programming language. An alternative approach is to represent the component-

level design using some intermediate (e.g., graphical, tabular, or text-based) representation that can

be translated easily into source code.

A component is a modular building block for computer software. The OMG Unified Modeling

Group defines a component as “. . . a modular, deployable, and replaceable part of a system that

encapsulates implementation and exposes a set of interfaces.”

6) An Object-Oriented View

 In object-oriented software engineering, a component contains a set of collaborating classes. Each

class within a component has been fully elaborated to include all attributes and operations. all

interfaces that enable the classes to communicate and collaborate with other design classes must

also be defined. To accomplish this, you begin with the requirements model and elaborate analysis

classes (relate to the problem domain) and infrastructure classes (relate to support services for the

problem domain). The data structures, interfaces, and algorithms defined should conform to a

variety of well-established design guidelines.

To illustrate this, consider software to be built for a sophisticated print shop. The overall intent of

the software is to collect the customer’s requirements at the front counter, cost a print job, and then

pass the job on to an automated production facility. During requirements engineering, an analysis

class called PrintJob was derived. During architectural design, PrintJob is defined as a component.

In the Component-level design, the details of the component PrintJob must be elaborated to provide

sufficient information to guide implementation. The interfaces computeJob and initiateJob imply

communication and collaboration with other components. For example, the operation

computePageCost() might collaborate with a PricingTable component that contains job pricing

information. Finally, the mechanisms required to implement the interface are designed. For object-

oriented software, this may encompass the description of all messaging that is required to effect

communication between objects within the system. Example elaboration of a design component is

shown in Figure 9.

Traditional View:

During component-level design, each module is elaborated. The module interface is defined

explicitly. That is, each data or control object that flows across the interface is represented. The data

structures that are used internal to the module are defined. The algorithm that allows the module to

accomplish its intended function is designed. The behavior of the module is sometimes represented

using a state diagram. To illustrate this, consider the module ComputePageCost. The intent of this

module is to compute the printing cost per page based on specifications provided by the customer.

Data required to perform this function are: number of pages in the document, total number of

documents to be produced, one- or two-side printing, color requirements, and size requirements.

These data are passed to ComputePageCost via the module’s interface. ComputePageCost uses

these data to determine a page cost that is based on the size and complexity of the job—a function

of all data passed to the module via the interface. Page cost is inversely proportional to the size of

the job and directly proportional to the complexity of the job. Component-level design for

ComputePageCost is shown in Figure 8.

7) Basic Design Principles.

The Open-Closed Principle (OCP). “A moule [component] should be open for extension but

closed for modification”. You should specify the component in a way that allows it to be extended

(within the functional domain that it addresses) without the need to make internal (code or logic-

level) modifications to the component itself.

The Liskov Substitution Principle (LSP). “Subclasses should be substitutable for their base

classes”. It suggests that a component that uses a base class should continue to function

properly if a class derived from the base class is passed to the component instead.

Dependency Inversion Principle (DIP). “Depend on abstractions. Do not depend on concretions”.

Abstractions are the place where a design can be extended without great complication. The more a

component depends on other concrete components, the more difficult it will be to extend.

The Interface Segregation Principle (ISP). “ Many client-specific interfaces are better than one

general purpose interface”. ISP suggests that you should create a specialized interface to serve each

major category of clients. Only those operations that are relevant to a particular category of clients

should be specified in the interface for that client.

The Common Closure Principle (CCP). “Classes that change together belong together.” Classes

should be packaged cohesively. When classes are packaged as part of a design, they should address

the same functional or behavioral area.

The Common Reuse Principle (CRP). “Classes that aren’t reused together should not be grouped

together”. When one or more classes within a package changes, the release number of the package

changes. All other classes or packages that rely on the package must now update to the most recent

release of the package and be tested.

8) Conducting Component-Level Design

Component-level design is elaborative in nature. You must transform information from

requirements and architectural models into a design representation that provides sufficient detail to

guide the construction (coding and testing) activity. Examples are given in Figures 10, 11 and 12.

The following steps are for component-level design, when it is applied for an object-oriented

system.

Step 1. Identify all design classes that correspond to the problem domain. Using the

requirements and architectural model, each analysis class and architectural component is elaborated.

Step 2. Identify all design classes that correspond to the infrastructure domain. Classes and

components in this category include GUI components (often available as reusable components),

operating system components, and object and data management components.

Step 3. Elaborate all design classes that are not acquired as reusable components. Elaboration

requires that all interfaces, attributes, and operations necessary to implement the class be described

in detail. Design heuristics (e.g., component cohesion and coupling) must be considered. conducted.

Step 3a. Specify message details when classes or components collaborate.

The requirements model makes use of a collaboration diagram to show how analysis classes

collaborate with one another. It is sometimes useful to show the details of these collaborations by

specifying the structure of messages that are passed between objects within a system.

Step 3b. Identify appropriate interfaces for each component. An interface is the equivalent of an

abstract class that provides a controlled connection between design classes. Every operation within

the abstract class (the interface) should be cohesive; that is, it should exhibit processing that focuses

on one limited function or subfunction.

Step 3c. Elaborate attributes and define data types and data structures required to implement

them. In general, data structures and types used to define attributes are defined within the context of

the programming language that is to be used for implementation.

Step 3d. Describe processing flow within each operation in detail. This may be accomplished

using a programming language-based pseudocode or with a UML activity diagram.

Step 4. Describe persistent data sources and identify the classes required to manage them. In

most cases, these persistent data stores are initially specified as part of architectural design.

However, as design elaboration proceeds, it is often useful to provide additional detail about the

structure and organization of these persistent data sources.

Step 5. Develop and elaborate behavioral representations for a class or component. UML state

diagrams were used as part of the requirements model to represent the externally observable

behavior of the system. During component-level design, it is sometimes necessary to model the

behavior of a design class.

Step 6. Elaborate deployment diagrams to provide additional implementation detail. During

component-level design, deployment diagrams can be elaborated to represent the location of key

packages of components. In some cases, specific hardware and operating system environment(s)

that will be used is (are) specified and the location of component packages within this environment

is indicated.

Step 7. Refactor every component-level design representation and always consider

alternatives. The first component-level model you create will not be as complete, consistent, or

accurate as the nth iteration you apply to the model. It is essential to refactor as design work is

conducted.

1) Design process model:

2) Architectural context diagram for SafeHome software system:

3) Taxonomy / Classification of Architectural Styles:
a) Data- centered architecture

b) Data-flow centered architecture

c) Call and return architeture

d) Layered architecture

4) UML relationships for SafeHome security function archetypes

5) Overall architectural structure for SafeHome with top-level components

6) Context-level DFD for the SafeHome security function

7) Level 1 DFD for the SafeHome security function

8) Component-level design for ComputePageCost

9) Component-level Desgin:Elaboration of a design component

10) UML activity diagram for compute-PaperCost()

11)Collaboration diagram with messaging

12) Refactoring interfaces and class definitions for PrintJob

Software testing (Unit-IV)

 (Note: Discussion on various kinds of metrics will be given along with Unit-V notes)

Software testing strategy provides a road map that describes the steps to be conducted and how

much effort, time, and resources will be required for testing. Any testing strategy must incorporate

test planning, test case design, test execution, and resultant data collection and evaluation.

Generic characteristics of software testing strategies:

1) To perform effective testing, you should conduct effective technical reviews

2) Testing begins at the component level and works “outward” toward the integration of the system.

3) Testing is conducted by the developer of the software and (for large projects) an independent test

group.

4) Testing and debugging are different activities, but debugging must be accommodated in any

testing strategy.

1) Verification and Validation:

Software testing is often referred to as verification and validation (V&V). Verification means the

set of tasks to ensure that software correctly implements a specific function. Validation means a

different set of tasks to ensure that the software is traceable to customer requirements.

Boehm [Boe81] states : Verification: “Are we building the product right?” , Validation: “Are we

building the right product?”

Verification and validation includes a wide array of Software Quality Assurance activities: technical

reviews, quality and configuration audits, performance monitoring, simulation, feasibility study,

documentation review, database review, algorithm analysis, development testing, usability testing,

qualification testing, acceptance testing, and installation testing.

2) Software Testing Strategy :

The software process may be viewed as the spiral in Figure given below. To develop computer

software, you spiral inward. Initially, system engineering defines the role of software and leads to

software requirements analysis. Moving inward along the spiral, you come to design and finally to

coding.

To test computer software, you spiral out in a clockwise direction along streamlines. Unit testing

begins at the vortex of the spiral and concentrates on each unit (e.g., component, class, or WebApp

content object) of the software. Unit test focuses on each component individually and ensures that it

functions properly as a unit. Integration testing, where the focus is on design and the construction of

the software architecture. Validation testing, where requirements are validated against the software.

Validation testing provides assurance that software meets all informational, functional, behavioral,

and performance requirements. Software, once validated, must be combined with other system

elements (e.g., hardware, people, databases). System testing verifies that all elements are properly

connected and that overall system function/performance is achieved. It consists of the software and

other system elements are tested as a whole.

3) Validation testing:

Whether it is conventional software or object-oriented software or Web apps, no diference in the

testing strategy. If a software requirements specification has been developed, it contains validation

criteria that forms the basis for a validation-testing approach.

Software validation is achieved through a series of tests. A test plan outlines the classes of tests to

be conducted, and a test procedure defines specific test cases that are designed to ensure that all

functional requirements are satisfied, all behavioral characteristics are achieved, all content is

accurate and properly presented, all performance requirements are attained, documentation is

correct, and usability and other requirements are met (e.g., transportability, compatibility, error

recovery, maintainability). After each validation test case has been conducted, one of two possible

conditions exists: (1) The function or performance characteristic is accepted or (2) a deviation from

specification is found and a deficiency list is created.

An important element of the validation process is a configuration review (audit). The intent of the

review is to ensure that all elements of the software configuration have been properly developed,

are cataloged.

Alpha and Beta Testing

Software develpers use a process called alpha and beta testing to uncover errors that the end user

able to find. The alpha test is conducted at the developer’s site by a group of representative users.

The software is used in a natural setting, recording errors and usage problems. Alpha tests are

conducted in a controlled environment.

The beta test is conducted at one or more end-user sites. While doing alpha testing, the developer

generally will not present. It is a “live” application of the software in an environment. The customer

records all problems (real or imagined) that are encountered during beta testing and reports to the

developer.

A variation on beta testing, called customer acceptance testing, is sometimes performed when

custom software is delivered to a customer under contract. The customer performs a series of

specific tests in an attempt to uncover errors before accepting the software.

4) System testing:

System testing is actually a series of different tests whose primary purpose is to fully exercise the

computer-based system. Although each test has a different purpose, all work to verify that system

elements have been properly integrated and perform allocated functions.

Recovery Testing computer-based systems must recover from faults and resume processing with

little or no downtime. A system must be fault tolerant- faults must not cause overall system function

to cease. Recovery testing is a system test that forces the software to fail in a variety of ways and

verifies that recovery is properly performed. If recovery requires human intervention, the mean-

time-to-repair (MTTR) is evaluated to determine whether it is within acceptable limits. Security

Testing any computer-based system that manages sensitive information is a target for improper or

illegal penetration. Security testing attempts to verify that protection mechanisms built into a system

will protect it from improper penetration.

Stress Testing Stress tests are designed to confront programs with abnormal situations. Stress

testing executes a system in a manner that demands resources in abnormal quantity, frequency, or

volume. For example, (1) input data rates may be increased by an order of magnitude, (2) test cases

that require maximum memory are executed.

Performance Testing For real-time and embedded systems, software that does not conform to

performance requirements is unacceptable. Performance testing is designed to test the run-time

performance of software within the context of an integrated system. Performance testing occurs

throughout all steps in the testing process.

Deployment Testing In general, software must execute on a variety of platforms and under more

than one operating system environment. Deployment testing, exercises the software in each

environment in which it is to operate. It examines all installation procedures and specialized

installation software that will be used by customers, and all documentation that will be used to

introduce the software to end users.

5) Debugging

Debugging has one objective, to find and correct the cause of a software error or defect. Debugging

is not testing but often occurs as a consequence of testing. That is, when a test case uncovers an

error, debugging is the process that results in the removal of the error. The debugging process

begins with the execution of a test case. Results are assessed and a lack of correspondence between

expected and actual performance is encountered.

In many cases, the noncorresponding data are a symptom of an underlying cause. The debugging

process attempts to match symptom with cause, thereby leading to error correction. The debugging

process will usually have one of two outcomes: (1) the cause will be found and corrected or (2) the

cause will not be found. In the latter case, the person performing debugging may suspect a cause,

design a test case to help validate that suspicion, and work toward error correction in an iterative

fashion. In general, three debugging strategies have been proposed (1) brute force, (2) backtracking,

and (3) cause elimination. The brute force category of debugging is probably the most common

method for isolating the cause of a software error. We apply brute force debugging methods when

all else fails. Here, memory dumps are taken, run-time traces are invoked, and the program is

loaded with output statements. We hope that somewhere, we will a clue that can lead to the cause of

an error.

Backtracking can be used successfully in small programs. Beginning at the site where a symptom

has been uncovered, the source code is traced backward (manually) until the cause is found. As the

number of source lines increases, the number of potential backward paths may become large. Cause

elimination—data related to the error occurrence are organized to isolate potential causes. A “cause

hypothesis” is devised and the data are used to prove or disprove the hypothesis.

6) White-box testing using white-box testing, sometimes called glass-box testing methods, you can

derive test cases that (1) guarantee that all independent paths within a module have been exercised

at least once, (2) exercise all logical decisions on their true and false sides, (3) execute all loops at

their boundaries and within their operational bounds, and (4) exercise internal data structures to

ensure their validity.

i) Basis path testing is a white-box testing technique. Here, a flow graph is created for the

representation of control flow. Flow graph consists of nodes that represent one or more procedural

statements. The arrows called edges that represent flow of control. An edge must terminate at a

node. A flow graph should be drawn only when the logical structure of a component is complex.

The flow graph allows you to trace program paths more readily. An example flow graph of “if”

control flow is shown in Figure given below.

An independent path is any path through the program that introduces at least one new set of

processing statements or a new condition. When stated in terms of a flow graph, an independent

path must move along at least one edge that has not been traversed before the path is defined.

How do you know how many paths to look for? cyclomatic complexity defines the number of

independent paths and provides you with an upper bound for the number of tests that must be

conducted to ensure that all statements have been executed at least once. Cyclomatic complexity

can be the number of regions of the flow graph.

The basis path testing method can be applied to a procedural design or to source code. The

following steps can be applied to do basis path testing.

1) Using the design or code as a foundation, draw a corresponding flow graph.

2) Determine the cyclomatic complexity of the resultant flow graph.

3) Determine a basis set of linearly independent paths.

4) Prepare test cases that will force execution of each path in the basis set.

Graph matices-A data structure, called a graph matrix, can be quite useful for developing a

software tool that assists in basis path testing. A graph matrix is a square matrix whose size (i.e.,

number of rows and columns) is equal to the number of nodes on the flow graph. Each row and

column corresponds to an identified node, and matrix entries correspond to connections (an edge)

between nodes.

ii) Control structure testing: the basis path testing technique is one of techniques for control

structure testing. Though it is simple and highly efficient, It is not sufficient in itself. Condition

testing is a test-case design method that exercises the logical conditions contained in a program

module. If a condition is incorrect, then at least one component of the condition is incorrect.

Therefore, types of errors in a condition include Boolean operator errors (incorrect/missing/extra

Boolean operators), Boolean variable errors, Boolean parenthesis errors, relational operator errors,

and arithmetic expression errors. The condition testing method focuses on testing each condition in

the program to ensure that it does not contain errors.

iii)Data flow testing method selects test paths of a program according to the locations of

definitions and uses of variables in the program. To illustrate the data flow testing approach, assume

that each statement in a program is assigned a unique statement number and that each function does

not modify its parameters or global variables.

Loops are the cornerstone for the vast majority of all algorithms implemented in software. And yet,

we often pay them little heed while conducting software tests.

iv) Loop testing is a white-box testing technique that focuses exclusively on the validity of loop

constructs. Four different classes of loops can be defined: simple loops, concatenated loops, nested

loops, and unstructured loops. Simple loops. The following set of tests can be applied to simple

loops, where n is the maximum number of allowable passes through the loop.

1. Skip the loop entirely.

2. Only one pass through the loop.

3. Two passes through the loop.

7) Black-Box testing:

Black-box testing, also called behavioral testing, focuses on the functional requirements of the

software. This testing techniques enable you to derive sets of input conditions that will fully

exercise all functional requirements for a program. Black-box testing attempts to find errors in the

following categories: (1) incorrect functions, (2) interface errors, (3) errors in data structures, (4)

behavior or performance errors, and (5) initialization and termination errors. Unlike white-box

testing, which is performed early in the testing process, blackbox testing tends to be applied during

later stages of testing.

Graph-Based Testing Methods- software testing begins by creating a graph of important objects

and their relationships and then devising a series of tests that will cover the graph so that each

object and relationship is exercised and errors are uncovered. To accomplish these steps, you begin

by creating a graph—a collection of nodes that represent objects, links that represent the

relationships between objects, node weights that describe the properties of a node (e.g., a specific

data value or state behavior), and link weights that describe some characteristic of a link.

Equivalence Partitioning equivalence partitioning is a black-box testing method that divides the

input domain of a program into classes of data from which test cases can be derived. Test-case

design for equivalence partitioning is based on an evaluation of equivalence classes for an input

condition. An equivalence class represents a set of valid or invalid states for input conditions.

Typically, an input condition is either a specific numeric value, a range of values, a set of related

values, or a Boolean condition.

Boundary Value Analysis

A greater number of errors occurs at the boundaries of the input domain rather than in the “center.”

It is for this reason that boundary value analysis (BVA) has been developed as a testing technique.

Boundary value analysis leads to a selection of test cases that exercise bounding values. Boundary

value analysis is a test-case design technique that complements equivalence partitioning. Rather

than selecting any element of an equivalence class, BVA leads to the selection of test cases at the

“edges” of the class. Rather than focusing solely on input conditions, BVA derives test cases from

the output domain as well.

Orthogonal Array Testing

There are many applications, the number of input parameters is small and the values that each of the

parameters may take are clearly bounded. However, as the number of input values grows and the

number of discrete values for each data item increases, exhaustive testing becomes impractical.

Orthogonal array testing can be applied to problems in which the input domain is relatively small

but too large to accommodate exhaustive testing. The orthogonal array testing method is

particularly useful in finding region faults—an error category associated with faulty logic within a

software component. When orthogonal array testing occurs, an L9 orthogonal array of test cases is

created. In the L9 orthogonal array, test cases are “dispersed uniformly throughout the test domain”.

The orthogonal array testing approach enables you to provide good test coverage with far fewer test

cases.

8) Risk Management

Risk analysis and management are actions that help a software team to understand and manage

uncertainty. A risk is a potential problem-it might happen, it might not. More commonly, the

software team does nothing about risks until something goes wrong. Then, the team flies into action

in an attempt to correct the problem rapidly. Risk always involves two characteristics: uncertainty-

the risk may or may not happen; and loss-if the risk becomes a reality, unwanted consequences or

losses will occur.

A reactive strategy monitors the project for likely risks. Resources are set aside to deal with them,

should they become actual problems. A proactive strategy begins long before technical work is

initiated. Potential risks are identified, their probability and impact are assessed, and they are ranked

by importance. Then, the software team establishes a plan for managing risk. The primary objective

is to avoid risk, but because not all risks can be avoided, the team works to develop a contingency

plan that will enable it to respond in a controlled and effective manner.

Software risks- if project risks become real, it is likely that the project schedule will slip and that

costs will increase. If a technical risk becomes a reality, implementation may become difficult or

impossible. Business risks threaten the viability of the software to be built. Known risks are those

that can be uncovered after careful evaluation of the project plan, the business and technical

environment. Predictable risks are extrapolated from past project experience (e.g., staff turnover,

poor communication with the customer, dilution of staff effort as ongoing maintenance requests are

serviced). Unpredictable risks can and do occur, but they are extremely difficult to identify in

advance.

Risk identification is a systematic attempt to specify threats to the project plan. Identifying known

and predictable risks, the project manager takes a first step toward avoiding them when possible and

controlling them when necessary. There are two types of risks: generic risks and product-specific

risks. Generic risks are a potential threat to every software project. Product-specific risks can be

identified only by those with a clear understanding of the technology, the people, and the

environment that is specific to the software that is to be built. One method for identifying risks is to

create a risk item checklist. The checklist can be used for risk identification and focuses on some

subset of known and predictable risks. Some of the known and pridictable risk categories are

product size—risks associated with the overall size of the software to be built or modified.

Development environment—risks associated with the availability and quality of the tools to be used

to build the product. Staff size and experience—risks associated with the overall technical and

project experience of the software engineers who will do the work.

Risk projection, also called risk estimation, attempts to rate each risk in two ways (1) the

probability that the risk is real and (2) the consequences of the problems associated with the risk,

should it occur. You work along with other managers and technical staff to perform four risk

projection steps:

1. Establish a scale that reflects the perceived likelihood of a risk.

2. Delineate the consequences of the risk.

3. Estimate the impact of the risk on the project and the product.

4. Assess the overall accuracy of the risk projection so that there will be no misunderstandings.

Developing a Risk Table a risk table provides you with a simple technique for risk projection. You

begin by listing all risks in the first column of the table. This can be accomplished with the help of

the risk item checklists. Each risk is categorized in the second column (e.g., PS implies a project

size risk, BU implies a business risk). The probability of occurrence of each risk is entered in the

next column of the table. The probability value for each risk can be estimated by team members

individually. One way to accomplish this is to poll individual team members in round-robin fashion

until their collective assessment of

risk probability begins to converge. The categories for each of the four risk components
performance, support, cost, and schedule—are averaged to determine an overall impact value. High-
probability, high-impact risks percolate to the top of the table, and low-probability risks drop to the
bottom.
Risk Refinement:

During early stages of project planning, a risk may be stated quite generally. As time passes and

more is learned about the project and the risk, it may be possible to refine the risk into a set of more

detailed risks, each somewhat easier to mitigate, monitor, and manage. Refinement helps to isolate

the underlying risks and might lead to easier analysis and response. One way to do this is to

represent the risk in condition-transition-consequence (CTC) format.

9) Mitigation, Monitoring, Management:

All of the risk analysis activities have a single goal—to assist the project team in developing a

strategy for dealing with risk. An effective strategy must consider three issues: risk avoidance, risk

monitoring, and risk management and contingency planning. If a software team adopts a proactive

approach to risk, avoidance is always the best strategy. This is achieved by developing a plan for

risk mitigation. For example, assume that high staff turnover is noted as a project risk. To mitigate

this risk, you would develop a strategy for reducing turnover. Among the possible steps to be taken

are: • Meet with current staff to determine causes for turnover (e.g., poor working conditions, low

pay). • Mitigate those causes that are under your control before the project starts.

As the project proceeds, risk-monitoring activities commence. The project manager monitors

factors that may provide an indication of whether the risk is becoming more or less likely. In the

case of high staff turnover, the general attitude of team members based on project pressures, the

degree to which the team has jelled, interpersonal relationships among team members, potential

problems with compensation and benefits, and the availability of jobs within the company and

outside it are all monitored.

Risk management and contingency planning assumes that mitigation efforts have failed and that

the risk has become a reality. Example, the project is well under way and a number of people

announce that they will be leaving. If the mitigation strategy has been followed, backup is available,

information is documented, and knowledge has been dispersed across the team.

The RMMM plan:

The risk management steps can be organized into a separate risk mitigation, monitoring, and

management plan (RMMM). The RMMM plan documents all work performed as part of risk

analysis and is used by the project manager as part of the overall project plan. Once RMMM has

been documented and the project has begun, risk mitigation and monitoring steps commence. Risk

mitigation is a problem avoidance activity. Risk monitoring is a project tracking activity with

three primary objectives: (1) to assess whether predicted risks do occur; (2) to ensure that risk

aversion steps defined for the risk are being properly applied; and (3) to collect information that can

be used for future risk analysis.

Process and Project Metrics (UNIT- IV)

Measurement can be used throughout a software project to assist in estimation, quality control,

productivity assessment, and project control. It can be used by software engineers to help assess the

quality of work products and to assist in tactical decision making as a project proceeds

1) Software process and project metrics are quantitative measures that enable you to gain insight

into the efficacy of the software process and the projects that are conducted using the process as a

framework. Basic quality and productivity data are collected. These data are then analyzed,

compared against past averages, and assessed to determine whether quality and productivity

improvements have occurred. Metrics are also used to pinpoint problem areas so that remedies can

be developed and the software process can be improved.

Process vs. Project metrics:

Process metrics are collected across all projects and over long periods of time. Their intent is to

provide a set of process indicators that lead to long-term software process improvement. Project

metrics enable a software project manager to (1) assess the status of an ongoing project, (2) track

potential risks, (3) uncover problem areas before they go “critical,” (4) adjust work flow or tasks,

and (5) evaluate the project team’s ability to control quality of software work products.

Process metrics

Referring to Figure 1 (triangle inside circle) , process sits at the center of a triangle connecting

three factors that have influence on software quality and organizational performance. The skill and

motivation of people, the complexity of the product, the technology have a substantial impact on

impact on quality and team performance. In addition, the process triangle exists within a circle of

environmental conditions that include the development environment (e.g., integrated software

tools), business conditions (e.g., deadlines, business rules), and customer characteristics (e.g., ease

of communication and collaboration).

You can only measure the efficacy of a software process indirectly. That is, you derive a set of

metrics based on the outcomes that can be derived from the process. Outcomes include measures of

errors uncovered, defects delivered to and reported by end users, work products delivered

(productivity), human effort expended, calendar time expended, schedule conformance, and other

measures. You can also derive process metrics by measuring the characteristics of specific software

engineering tasks. For example, you might measure the effort and time spent performing the

umbrella activities and the generic software engineering activities.

Grady argues that there are “private and public” uses for different types of process data. Because it

is natural that individual software engineers might be sensitive to the use of metrics collected on an

individual basis. Examples of private metrics include defect rates (by individual), defect rates (by

component), and errors found during development. Some process metrics are private to the software

project team but public to all team members. Examples include defects reported for major software

functions (that have been developed by a number of practitioners), errors found during technical

reviews, and lines of code or function points per component or function.

Project Metrics

Metrics collected from past projects are used as a basis from which effort and time estimates are

made for current software work. As a project proceeds, measures of effort and calendar time

expended are compared to original estimates (and the project schedule). The project manager uses

these data to monitor and control progress. Project metrics are used to minimize the development

schedule by making the adjustments necessary to avoid delays and mitigate potential problems and

risks. These are also used to assess product quality on an ongoing basis and modify the technical

approach to improve quality.

As technical work commences, other project metrics begin to have significance. Production rates

represented in terms of models created, review hours, function points, and delivered source lines are

measured. In addition, errors uncovered during each software engineering task are tracked. As the

software evolves from requirements into design, technical metrics are collected to assess design

quality and to provide indicators that will influence the approach taken to code generation and

testing.

2) Software Measurement: software metrics can be categorized into direct measures and indirect

measures. The direct measures of the product include lines of code (LOC) produced, execution

speed, memory size, and defects reported over some set period of time. Indirect measures of the

product include functionality, quality, complexity, efficiency, reliability, maintainability, and many

other “–abilities”.

The software metrics domain can be partitioned into process, project, and product metrics and noted

that product metrics that are private to an individual are often combined to develop project metrics

that are public to a software team. Project metrics are then consolidated to create process metrics

that are public to the software organization as a whole.

a) Size-Oriented Metrics:

Size-oriented software metrics are derived by normalizing quality and/or productivity measures by

considering the size of the software that has been produced. We can choose lines of code as a

normalization value. A set of simple size-oriented metrics can be developed for each project:

• Errors per KLOC (thousand lines of code)

• Defects per KLOC

• $ per KLOC

• Pages of documentation per KLOC

Size-oriented metrics are not universally accepted as the best way to measure the software process.

b) Function-Oriented Metrics: Function-oriented software metrics use a measure of the

functionality delivered by the application as a normalization value. The most widely used function-

oriented metric is the function point (FP). Computation of the function point is based on

characteristics of the software’s information domain and complexity.

The function point, like the LOC measure, is controversial. Proponents claim that FP is

programming language independent, making it ideal for applications using conventional and

nonprocedural languages, and that it is based on data that are more likely to be known early in the

evolution of a project, making FP more attractive as an estimation approach.

c) Reconciling LOC and FP Metrics

The relationship between lines of code and function points depends upon the programming

language that is used to implement the software and the quality of the design. A number of studies

have attempted to relate FP and LOC measures. Function points and LOC-based metrics have been

found to be relatively accurate predictors of software development effort and cost. However, in

order to use LOC and FP for estimation, an historical baseline of information must be established.

d) Object-Oriented Metrics

Lorenz and Kidd suggest the following set of metrics for OO projects:

Number of scenario scripts. A scenario script (analogous to use cases) is a detailed sequence of

steps that describe the interaction between the user and the application.

Number of key classes. Key classes are the “highly independent components” that are defined

early in object-oriented analysis. The number of these is an indication of the amount of effort

required to develop the software.

Number of support classes. Support classes are required to implement the system but are not

immediately related to the problem domain. Examples might be user interface (GUI) classes,

database access and manipulation classes, and computation classes.

Average number of support classes per key class. If the average number of support classes per

key class were known for a given problem domain, estimating (based on total number of classes)

would be greatly simplified.

Number of subsystems. A subsystem is an aggregation of classes that support a function that is

visible to the end user of a system. Once subsystems are identified, it is easier to lay out a

reasonable schedule in which work on subsystems is partitioned among project staff.

e) Use-Case–Oriented Metrics

Use cases are used widely as a method for describing customer-level or business domain

requirements that imply software features and functions. It would seem reasonable to use the use

case as a normalization measure similar to LOC or FP. Use cases describe (indirectly, at least) user-

visible functions and features that are basic requirements for a system. The use case is independent

of programming language. In addition, the number of use cases is directly proportional to the size of

the application in LOC and to the number of test cases that will have to be designed to fully

exercise the application.

Because use cases can be created at vastly different levels of abstraction, there is no standard “size”

for a use case. Researchers have suggested use-case points (UCPs) as a mechanism for estimating

project effort and other characteristics. The UCP is a function of the number of actors and

transactions implied by the use-case models and is analogous to the FP in some ways.

3) Metrics for software Quality Although there are many measures of software quality,

correctness, maintainability, integrity, and usability provide useful indicators for the project team.

Metrics for measuring the quality are given below:

Defect Removal Efficiency. A quality metric that provides benefit at both the project and process

level is defect removal efficiency (DRE). In essence, DRE is a measure of the filtering ability of

quality assurance and control actions as they are applied throughout all process framework

activities. When considered for a project as a whole, DRE is defined in the following manner:

DRE = E/(E+D), where E is the number of errors found before delivery of the software to the end

user and D is the number of defects found after delivery. The ideal value for DRE is 1.

Product Metrics

A key element of any engineering process is measurement. We can use measures to better

understand the attributes of the models that you create and to assess the quality of the engineered

products or systems that you build. Direct measures, such as voltage, mass, velocity, or temperature,

are uncommon in the software world. Because software measures and metrics are often indirect,

they are open to debate.

4) Metrics for the requirements model.

a) Function-Based Metrics. The function point (FP) metric can be used effectively as a means for

measuring the functionality delivered by a system. Using historical data, the FP metric can then be

used to (1) estimate the cost required (2) predict the number of errors and (3) forecast the number of

components and/or the number of projected source lines in the implemented system.

Function points are derived using an empirical relationship based on countable measures of

software’s information domain and qualitative assessments of software complexity. Information

domain values are defined in the following manner: (Refer diagram for FPs computation)

Number of external inputs (EIs). Each one originates from a user or is transmitted from another

application and provides distinct application-oriented data or control information. Inputs are often

used to update internal logical files (ILFs).

Number of external outputs (EOs). Each one is derived data within the application that provides

information to the user. Examples. reports, screens, error messages, etc.

Number of external inquiries (EQs). Each one is defined as an online input that results in the

generation of some immediate software response in the form of an online output.

Number of internal logical files (ILFs). Each one is a logical grouping of data that resides within

the application’s boundary and is maintained via external inputs.

Number of external interface files (EIFs). Each one is a logical grouping of data that resides

external to the application but provides information to the application.

To compute function points (FP), the following relationship is used:

FP= count total * [0.65 + 0.01 * ∑ (Fi)]

b) Metrics for Specification Quality.

A list of characteristics that can be used to assess the quality of the requirements model and the

corresponding requirements specification: specificity (lack of ambiguity), completeness,

correctness, understandability, verifiability, internal and external consistency, achievability,

concision, traceability, modifiability, precision, and reusability. Each can be represented using one

or more metrics.

nr requirements in a specification, such that n r =n f + nnf

where nf is the number of functional requirements and nnf is the number of non-functional (e.g.,

performance) requirements.

To determine the specificity (lack of ambiguity) of requirements, which a metric that is based on

the consistency of the reviewers’ interpretation of each requirement:

Q1= nui/ nr

Information
Domain Value Count simple average complex

Weighting factor

External Inputs (EIs)

External Outputs (EOs)

External Inquiries (EQs)

Internal Logical Files (ILFs)

External Interface Files (EIFs)

3 4 6

4 5 7

3 4 6

7 10 15

5 7 10

=

=

=

=

=

Count total

3

3

3

3

3

where nui is the number of requirements for which all reviewers had identical interpretations. The

closer the value of Q to 1, the lower is the ambiguity of the specification.

The completeness of functional requirements can be determined by computing the ratio

Q2= nu/(ni*ns)

where nu is the number of unique functional requirements, ni is the number of inputs defined or

implied by the specification, and ns is the number of states specified. The Q2 ratio measures the

percentage of necessary functions that have been specified for a system.

5) Metrics for the Design Model

The design of complex software-based systems often proceeds with virtually no measurement.

Design metrics for software are available, but the vast majority of software engineers continue to be

unaware of their existence. Design metrics for computer software, like all other software metrics,

are not perfect.

Architectural design metrics focus on characteristics of the program architecture with an emphasis

on the architectural structure and the effectiveness of modules or components within the

architecture. Card and Glass define three software design complexity measures: structural

complexity, data complexity, and system complexity.

For hierarchical architectures (e.g., call-and-return architectures), structural complexity of a module

i is defined in the following manner:

S(i)= f2
 out (i)

where f out (i) is the fan-out of module i.

Data complexity provides an indication of the complexity in the internal interface for a module i

and is defined as

D(i) =v(i)/(f out (i) +1)

where v(i) is the number of input and output variables that are passed to and from module i. Finally,

system complexity is defined as the sum of structural and data complexity,

specified as

C(i) = S(i) + D(i)

6) Metrics for Source code

Halstead uses the following primitive measures to develop expressions for the overall program

length, potential minimum volume for an algorithm, the actual volume (number of bits required to

specify a program), the program level (a measure of software complexity), the language level (a

constant for a given language), and other features such as development effort, development time,

and even the projected number of faults in the software.

These may be derived after code is generated or estimated once design is complete. The primitive

measures are:

n1 = number of distinct operators that appear in a program

n2 = number of distinct operands that appear in a program

N1 = total number of operator occurrences

N2 = total number of operand occurrences

Halstead shows that length N can be estimated

N = n1 log 2 n 1 + n2 log 2 n 2

and program volume may be defined

V = N log 2 (n 1 + n 2)

It should be noted that V will vary with programming language and represents the volume of

information (in bits) required to specify a program. Theoretically, a minimum volume must exist for

a particular algorithm.

7) Metrics for Testing

Architectural design metrics provide information on the ease or difficulty associated with

integration testing and the need for specialized testing software (e.g., stubs and drivers). Cyclomatic

complexity (a component-level design metric) lies at the core of basis path testing. In addition,

cyclomatic complexity can be used to target modules as candidates for extensive unit testing.

Modules with high cyclomatic complexity are more likely to be error prone than modules whose

cyclomatic complexity is lower. For this reason, you should expend above average effort to uncover

errors in such modules before they are integrated in a system.

a) Halstead Metrics Applied to Testing

Testing effort can be estimated using metrics derived from Halstead measures. Using the definitions

for program volume V and program level PL, Halstead effort e can be computed as

PL =1/ ((n1/2) * (N2/n2))

e=V/PL

b) Metrics for Object-Oriented Testing

Binder suggests a broad array of design metrics that have a direct influence on the “testability” of

an OO system. The metrics consider aspects of encapsulation and inheritance.

Lack of cohesion in methods (LCOM). The higher the value of LCOM, the more states must be

tested to ensure that methods do not generate side effects.

Percent public and protected (PAP). It indicates the percentage of class attributes that are public

or protected. High values for PAP increase the likelihood of side effects among classes.

Public access to data members (PAD). It indicates the number of classes (or methods) that can

access another class’s attributes, a violation of encapsulation. High values for PAD lead to the

potential for side effects among classes.

Number of root classes (NOR). This metric is a count of the distinct class hierarchies that are

described in the design model.As NOR increases, testing effort also increases.

Fan-in (FIN). fan-in in the inheritance hierarchy is an indication of multiple inheritance. FIN > 1

indicates that a class inherits its attributes and operations from more than one root class. FIN > 1

should be avoided when possible.

Number of children (NOC) and depth of the inheritance tree (DIT). Superclass methods will have

to be retested for each subclass.

8) Metrics for Maintenance

All of the software metrics introduced for requirements model, design, coding, testing in the above

can be used for the development of new software and the maintenance of existing software.

However, metrics designed explicitly for maintenance activities have been proposed.

Software maturity index (SMI) is a metric that provides an indication of the stability of a software

product. The following information is determined:

MT = number of modules in the current release

Fc = number of modules in the current release that have been changed

Fa = number of modules in the current release that have been added

Fd = number of modules from the preceding release that were deleted in the current release

The software maturity index (SMI) is computed in the following manner:

SMI =(M T – (F a + F c + F d))/ M

As SMI approaches 1.0, the product begins to stabilize. SMI may also be used as a metric for

planning software maintenance activities.

(UNIT-V)

Software Quality Assurance (SQA)

If a software team stresses quality in all software engineering activities, it reduces the amount of

rework that it must do. That results in lower costs, and more importantly, improved time-to-market.

It is important to define software quality at a number of different levels of abstraction. Once you

understand what quality is, a software team must identify a set of SQA activities that will filter

errors out of work products before they are passed on.

1) A Software Quality Assurance Plan is created to define a software team’s SQA strategy. During

modeling and coding, the primary SQA work product is the output of technical reviews. During

testing, test plans and procedures are produced. Other work products associated with process

improvement may also be generated.

Find errors before they become defects! That is, work to improve your defect removal efficiency,

thereby reducing the amount of rework that your software team has to perform.

Software quality assurance (often called quality management) is an umbrella activity that is

applied throughout the software process. It is a “planned and systematic pattern of actions” that are

required to ensure high quality in software.

Software quality assurance (SQA) encompasses (1) an SQA process, (2) specific quality assurance

and quality control tasks, (3) effective software engineering practice (methods and tools), (4)

control of all software work products and the changes made to them, (5) a procedure to ensure

compliance with software development standards, and (6) measurement and reporting mechanisms.

The people who perform SQA must look at the software from the customer’s point of view. Does

the software adequately meet the quality factors? Has software development been conducted

according to preestablished standards? Have technical disciplines properly performed their roles as

part of the SQA activity? The SQA group attempts to answer these.

2) Software quality assurance encompasses a broad range of activities that focus on the

management of software quality.

Standards. The IEEE, ISO have produced a broad array of software engineering standards. The job

of SQA is to ensure that standards that have been adopted are followed.

Reviews and audits. Technical reviews are a quality control activity

performed by software engineers for software engineers. Their intent is to uncover errors. Audits are

a type of review performed by SQA personnel with the intent of ensuring that quality guidelines are

being followed for software engineering work.

Testing. Software testing is a quality control function that has one primary goal—to find errors. The

job of SQA is to ensure that testing is properly planned and efficiently conducted.

Error/defect collection and analysis. The only way to improve is to measure how you’re doing.

SQA collects and analyzes error and defect data to better understand how errors are introduced and

what software engineering activities are best suited to eliminating them.

Change management. Change is one of the most disruptive aspects of any software project. If it is

not properly managed, change can lead to confusion, and confusion almost always leads to poor

quality. SQA ensures that adequate change management practices have been instituted.

Education. The SQA organization takes the lead in software process improvement and is a

sponsor of educational programs.

Security management. With the increase in cyber crime and new govern-

ment regulations regarding privacy, SQA ensures that appropriate process and technology are used

to achieve software security.

Safety. SQA may be responsible for assessing the impact of software failure and for initiating those

steps required to reduce risk.

Risk management. the SQA organization ensures that risk management activities are properly

conducted and that risk-related contingency plans have been established.

SQA works to ensure that software support activities (e.g., maintenance, help lines, documentation,

and manuals) are conducted or produced with quality as a dominant concern.

3) SQA tasks, goals, and metrics

Software quality assurance is composed of a variety of tasks associated with two different groups of

people—the software engineers who do technical work and an SQA group. Software engineers

perform quality control activities by applying solid technical methods and measures, conducting

technical reviews, and performing well-planned software testing.

SQA Tasks

The SQA group is to assist the software team in achieving a high-quality end product. The Software

Engineering Institute recommends a set of SQA actions that address quality assurance planning,

oversight, record keeping, analysis, and reporting. These actions are performed by an independent

SQA group that:

Prepares an SQA plan for a project. The plan identifies evaluations to be performed, audits and

reviews to be conducted, standards that are applicable to the project, procedures for error reporting

and tracking, work products that are produced by the SQA group, and feedback that will be

provided to the software team.

Participates in the development of the project’s software process description. The software

team selects a process for the work to be performed. The SQA group reviews the process

description for compliance with organizational policy, internal software standards and other parts of

the software project plan.

Reviews software engineering activities to verify compliance with the defined software

process. The SQA group identifies, documents, and tracks deviations from the process and verifies

that corrections have been made.

Audits designated software work products to verify compliance with those defined as part of the

software process. Periodically reports the results of its work to the project manager.

Ensures that deviations in software work and work products are documented and handled according

to a documented procedure. Records any noncompliance and reports to senior management.

Noncompliance items are tracked until they are resolved.

The SQA tasks(actions) described above are performed to achieve a set of goals:

Requirements quality. The correctness, completeness, and consistency of the requirements model

will have a strong influence on the quality of all work products that follow. Example metrics-

number UML models, number of UML errors.

Design quality. Every element of the design model should be assessed by the software team to

ensure that it exhibits high quality and that the design itself conforms to requirements. Example

metrics- number of components, number of patterns and existence of architectural model.

Code quality. Source code and related work products must conform to local coding standards and

exhibit characteristics that will facilitate maintainability. Example metrics include variable naming

conventions, percent internal comments, Cyclomatic complexity.

Quality control effectiveness. A software team should apply limited resources in a way that has the

highest likelihood of achieving a high-quality result. Example metrics- number of errors found,

origin of error, actual vs. budgeted completion time.

4) Statistical software quality assurance It implies the following steps: 1. Information about

software errors and defects is collected and categorized. 2. An attempt is made to trace each error

and defect to its underlying cause. 3. Using the Pareto principle (80 percent of the defects can be

traced to 20 percent of all possible causes), isolate the 20 percent (the vital few). 4. Once the vital

few causes have been identified, move to correct the problems that have caused the errors and

defects.

The application of the statistical SQA and the Pareto principle can be summarized in a single

sentence: Spend your time focusing on things that really matter, but first be sure that you understand

what really matters!

This relatively simple concept represents an important step toward the creation of an adaptive

software process in which changes are made to improve those elements of the process that introduce

error.

5) Six Sigma for Software Engineering Six Sigma is the most widely used strategy for statistical

quality assurance in industry today. It is “is a rigorous and disciplined methodology that uses data

and statistical analysis to measure and improve a company’s operational performance by identifying

and eliminating defects’ in manufacturing and service-related processes”. The Six Sigma

methodology defines three core steps:

• Define customer requirements and deliverables and project goals via well-defined methods of

customer communication.

• Measure the existing process and its output to determine current quality performance (collect

defect metrics).

• Analyze defect metrics and determine the vital few causes. If an existing software process is in

place, but improvement is required, Six Sigma suggests two additional steps:

• Improve the process by eliminating the root causes of defects.

• Control the process to ensure that future work does not reintroduce the causes of defects.

These core and additional steps are sometimes referred to as the DMAIC (define, measure, analyze,

improve, and control) method.

If an organization is developing a software process (rather than improving an existing process), the

core steps are augmented as follows:

• Design the process to (1) avoid the root causes of defects and (2) to meet customer requirements.

• Verify that the process model will avoid defects and meet customer requirements.

This variation is sometimes called the DMADV (define, measure, analyze, design, and verify)

method.

6) Software Reliability

Software reliability can be measured directly and estimated using historical and developmental data.

Software reliability is defined in statistical terms as “the probability of failure-free operation of a

computer program in a specified environment for a specified time”. To illustrate, program X is

estimated to have a reliability of 0.999 over eight elapsed processing hours. In other words, if

program X were to be executed 1000 times and require a total of eight hours of elapsed processing

time (execution time), it is likely to operate correctly (without failure) 999 times. Failure is

nonconformance to software requirements. the correction of one failure may in fact result in the

introduction of other errors that ultimately result in other failures. all software failures can be traced

to design or implementation problems rather than physical wear.

Measures of Reliability and Availability

a) If we consider a computer-based system, a simple measure of reliability is meantime-between-

failure (MTBF):

MTBF = MTTF+ MTTR

where the MTTF and MTTR are mean-time-to-failure and mean-time-to-repair respectively.

b) An alternative measure of reliability is failures-in-time (FIT)—a statistical measure of how many

failures a component will have over one billion hours of operation. Therefore, 1 FIT is equivalent to

one failure in every billion hours of operation.

Software availability is the probability that a program is operating according to requirements at a

given point in time and is defined as

Availability= (MTTF*100%)/(MTTF+MTTR)

The MTBF reliability measure is equally sensitive to MTTF and MTTR. The availability measure is

somewhat more sensitive to MTTR, an indirect measure of the maintainability of software.

Software Safety

Software safety is a software quality assurance(SQA) activity that focuses on the identification and

assessment of potential hazards that may affect software negatively and cause an entire system to

fail. If hazards can be identified early, software design features can be specified that will either

eliminate or control potential hazards. A modeling and analysis process is conducted as part of

software safety. Initially, hazards are identified and categorized by criticality and risk. Analysis

techniques such as fault tree analysis, real-time logic, and Petri net models can be used to predict

the chain of events that can cause hazards and the probability that each of the events will occur to

create the chain. Once these system-level hazardsare identified, analysis techniques are used to

assign severity and probability of occurrence. To be effective, software must be analyzed in the

context of the entire system. Once hazards are identified and analyzed, safety-related requirements

can be specified for the software. That is, the specification can contain a list of undesirable events

and the desired system responses to these events. The role of software in managing undesirable

events is then indicated.

Software reliability uses statistical analysis to determine the likelihood that a software failure will

occur. However, the occurrence of a failure does not necessarily result in a hazard. Software safety

examines the ways in which failures result in conditions that can lead to a hazard.

7) The ISO 9000 Quality standards:

A quality assurance system implements quality management. Quality assurance systems are created

to help organizations ensure their products and services satisfy customer expectations. These

systems cover a wide variety of activities including planning, controlling, measuring, testing and

reporting, and improving quality levels throughout the development and manufacturing process.

ISO 9000 describes quality assurance elements in generic terms that can be applied to any business

regardless of the products or services offered.

The requirements delineated by ISO 9001:2000 address topics such as management responsibility,

quality system, contract review, design control, document and data control, product identification

and traceability, process control, inspection and testing, corrective and preventive action, control of

quality records, internal quality audits, training, servicing, and statistical techniques. In order for a

software organization to become registered to ISO 9001:2000, it must establish policies and proce-

dures to address each of the requirements just noted and then be able to demonstrate that these

policies and procedures are being followed.

The following outline defines the basic elements of the ISO 9001:2000 standard.

Establish the elements of a quality management system.

Develop, implement, and improve the system.

Document the quality system.

Describe the process.

Produce an operational manual.

Develop methods for controlling (updating) documents.

Support quality control and assurance.

Promote the importance of quality among all stakeholders.

Focus on customer satisfaction.

Establish review mechanisms for the quality management system.

Identify review methods and feedback mechanisms.

Define follow-up procedures.

Identify quality resources including personnel, training, and infrastructure elements.

Establish control mechanisms for planning, customer requirements, technical activities

For project monitoring and management

Define methods for remediation.

Assess quality data and metrics.

8) SQA Plan

The SQA Plan provides a road map for software quality assurance. Developed by the SQA group,

the plan serves as a template for SQA activities for each software project. The standard recommends

a structure that identifies: (1) the purpose and scope of the plan, (2) a description of all software

engineering work products (e.g., models, documents, source code), (3) all applicable standards and

practices, (4) SQA actions and tasks (including reviews and audits) and their placement throughout

the software process, (5) the tools and methods that support SQA actions and tasks, (6) software

configuration management procedures, (7) methods for assembling, safeguarding, and maintaining

all SQA-related records, and (8) organizational roles and responsibilities relative to product quality.

PART – A (Short Answer Questions)

S. No Questions
Blooms

Taxonomy
Level

Course

Outcome

UNIT – I
1 Explain is legacy software? Knowledge 1
2 Demonstrate all the applications of software? Knowledge 2

3 List the types of software myths? Knowledge 2
4 Discuss the architecture of layered technology? Understand 2
5 List all the umbrella activities in process framework? Understand 2
6 Explain is process pattern? Knowledge 2
7 List the types of software models? Understand 2
8 List the types other software process models? Understand 2
9 Explain software component? explain its uses Understand 2
10 Explain process assessment? Knowledge 2
11 List the models in CMMI? Knowledge 2
12 Explain the levels in continuous model in CMMI? Understand 2
13 Compare between perspective and iterative process models? Understand 2
14 Explain staged model in CMMI? Knowledge 2

15 Write the other name of waterfall model and who invented waterfall
model? Understand

2

16 Explain Boehm model? Understand 2
17 List the phases in unified process model?? Understand 2
18 List the types of patterns? Knowledge 3
19 Explain PSP and TSP? Knowledge 3
20 Explain high speed adaptation model? Understand 3

UNIT - II
1 Explain the kinds of system requirements? Knowledge 3
2 Explain functional requirement? Knowledge 3
3 Explain nonfunctional requirement? Understand 3

www.alljntuworld.in JNTU World

Downloaded From JNTU World (http://www.alljntuworld.in)

JN
TU W

orld

4 Explain domain requirements? Understand 3
5 List kinds of nonfunctional requirements? Knowledge 3
6 Explain example of functional requirement? Understand 3
7 Explain user requirements in detail? Understand 3
8 Explain system requirement in detail? Understand 4

9 Explain interface and list out how many types of there and what are
they? Knowledge

4

10 Explain the term stake holder? Knowledge 4
11 Explain requirements gathering?? Knowledge 4
12 Explain requirement validation? Understand 5
13 Explain requirement review? Understand 5
14 Explain data dictionary? Understand 5
15 Discuss data flow model? Knowledge 5
16 Explain state machine model of a microwave oven? Knowledge 5
17 List kinds of behavioral and object models? Knowledge 5
18 Design class hierarchy for library by using in heritance model? Knowledge 5

19 Describe ethnography? Understand 5

20 Explain viewpoints and types of viewpoints? Understand 5

UNIT - III
1 Explain why design is important in design engineering? Knowledge 4

2 Discuss analysis and design model? Understand 4

3 Describe quality attributes and its guidelines? Understand 5

4 List the design concepts? Knowledge 5

5 Justify the importance of refactoring? Understand 5

6 Discuss on low coupling? Understand 5

7 Define software architecture with its importance? Understand 5

8 Explain taxonomy of architectural styles? Knowledge 5

9 Write short notes on architecture patterns? Knowledge 6

10 Compare function oriented and object oriented design? Understand 6

11 Define top-down and bottom-up design model? Knowledge 6

12 Write short notes on coupling? Knowledge 6

13 List out the steps for conducting component level design? Knowledge 6

14 Write short notes on cohesion? Knowledge 6

15 Design the class based components? Understand 6

16 List out the golden rules for interface design? Understand 7

17 Write short notes on interface design steps? Knowledge 7

18 Describe design evaluation? Knowledge 7

19 List out all the design issues? Understand 7

20 Explain process in user interface design? Understand 7

UNIT - IV

 1 Compare verification and validation? Knowledge 6

 2 Write short notes on unit testing? Knowledge 6

 3 Describe smoke testing? Knowledge 6

 4 List out the steps for bottom-up integration? Knowledge 6

 5 List out the steps for top-down integration? Understand 7

 6 Write short note on integration testing? Understand 7

 7 Compare Quality assurance vs. Quality Control? Knowledge 7

 8 Define CASE tools? Knowledge 7

 9 Write short notes on validation testing? Knowledge 7

 10 Explain art of debugging? Understand 7

 11 Describe regression testing? Knowledge 9

 12 List out the steps for integration step documentation? Knowledge 9

 13 Describe performance testing? Knowledge 9

 14 Write short notes on glass box testing? Knowledge 9

 15 Explain behavioral testing? Understand 9

 16 List the quality factors of McCall’s? Understand 9

 17 List the quality factors of ISO 9126? Knowledge 9

 18 Define the following terms measures, metrics, and indicators? Understand 9

 19 Write short notes on product metric land scrape? Understand 9

 20 List out the metrics for analysis model? Understand 9

UNIT - V

www.alljntuworld.in JNTU World

Downloaded From JNTU World (http://www.alljntuworld.in)

JN
TU W

orld

1 Define reactive and proactive risk strategies? Knowledge 8
2 List out the generic subcategories of predictable risks? Understand 8

3 Define risk components? Understand 8

4 List out the conditions for risk refinement? Knowledge 9

5 Write about quality concepts? Understand 9
6 Write short notes on formal technical reviews? Understand 9
7 List out review guidelines?? Understand 9
8 Describe six sigma for software? Knowledge 9
9 Write about the classification of case tool? Knowledge 9

10 Write a short notes on ISO 9000 quality standards? Understand 9
11 Write the formulae for measures of reliability and availability? Knowledge 9
12 Explain about software cost estimation? Knowledge 10
13 Write short note on the various estimation techniques? Knowledge 10

14 Define software risks and what are the types of software risks? Knowledge 10
15 Describe risk components and drivers? Understand 10
16 Write the purpose of timeline chart? Understand 10

17 Expand RMMM in RMMM plan? Knowledge 10
18 Define software reliability? Understand 10
19 Define quality and quality control in quality management? Understand 11

20 Write short notes on risk identification? Understand 11

PART – B (Long Answer Questions)

S. No Questions

Blooms

Taxonomy

Level

Course

Outcome

UNIT – I

1 Explain the evolving role of software? Knowledge 1

2 Define software and explain the various characteristics of software? Knowledge 2

3
Describe “Software myth”? Discuss on various types of software

myths and the true aspects of these myths?
Knowledge 2

4
Explain software Engineering? Explain the software engineering

layers?
Understand 2

5 Explain in detail the capability Maturity Model Integration (CMMI)? Understand 2

6
Describe with the help of the diagram discuss in detail waterfall

model. Give certain reasons for its failure?
Knowledge 2

7 Explain briefly on (a) the incremental model (b) The RAD Model? Understand 2

8 Explain the Spiral model in detail? Understand 2

9
Describe With the help of the diagram explain the concurrent

development model?
Understand 2

10
Explain unified process? Elaborate on the unified process work

products?
Knowledge 3

11 Explain specialized process models? Knowledge 3

12 Explain different software applications? Knowledge 3

13 Explain the paradigms do you think would be most effective? Why? Understand 3

14 Explain product and process are related? Understand 3

15 Explain personal and team process models? Understand 3

16 Explain process frame work activities? Knowledge 3

17 Explain the purpose of process assessment? Knowledge 3

18 Explain changing nature of software in detail? Knowledge 3

19
Explain and contrast perspective process models and iterative process

models?
Understand 3

20 Explain about the evolutionary process models? Understand 3

UNIT – II

1 Write short notes on user requirements. What are requirements? Knowledge 3

2 Compare functional requirements with nonfunctional requirements? Knowledge 3

3 Discuss system requirements in a detail manner? Understand 3

4 Explain requirement engineering process? Understand 3

5 Discuss briefly how requirement validation is done? Knowledge 3

6

Discuss your knowledge of how an ATM is used; develop a set of

use-cases that could serve as a basis for understanding the
requirements for an ATM system?

Understand 3

www.alljntuworld.in JNTU World

Downloaded From JNTU World (http://www.alljntuworld.in)

JN
TU W

orld

7

Describe four types of non-functional requirements that may be

placed on a system. Give examples of each of these types of

requirement?

Understand 3

8
Explain how requirements are managed in software project

management?
Understand 4

9 Explain context models? Knowledge 4

10 Explain Behavioral models? Knowledge 4

11 Explain Data models? Knowledge 4

12 Explain Object models? Understand 4

13
Explain in which circumstances would you recommend using

structured methods for system development?
Understand 4

14 Explain SRS document and explain along with its contents? Understand 4

15 Explain interface specification in detail? Knowledge 4

16
Discuss how requirements are felicitated and validated in software
project?

Knowledge 4

17
Discuss how feasibility studies are important in requirement

engineering process?
Knowledge 4

18
Demonstrate class hierarchy for library by using interface

specification?
Understand 4

19 Explain inheritance model? Understand 4

20 Explain state machine model with a suitable example? Understand 4

UNIT - III

1

Explain a two level process? Why should system design be finished

before the detailed design, rather starting the detailed design after the

requirements specification? Explain with the help of a suitable

example

Knowledge 4

2

Discuss briefly the following fundamental concepts of software

design:

i) Abstraction

ii) Modularity

iii) Information hiding

Understand 4

3

Explain briefly the following:

i) Coupling between the modules,
ii) The internal Cohesion of a module

Understand 5

4
 Discuss the fundamental principles of structured design. Write notes

on transform analysis?
Knowledge 5

5 Explain software architecture in a detail manner? Understand 5

6 Explain software design? Explain data flow oriented design? Understand 5

7 Explain the goals of the user interface design? Understand 5

8 Discuss briefly about the golden rules for the user interface design? Knowledge 5

9 Discuss interface design steps in a brief manner? Knowledge 6

10 Explain how the design is evaluated? Understand 6

11 Explain design processing along with its quality? Knowledge 6

12 Explain the design concepts in software engineering? Understand 6

13 Explain pattern based software design in a detail manner? Understand 6

14 Elaborate model for the design? Understand 6

15 Discuss architectural styles and patterns? Knowledge 6

16 Explain with a neat diagram of architectural design? Knowledge 6

17 Elaborate modeling component level design? Knowledge 6

18 Describe mapping data flow into software architecture? Understand 6

19 Explain the guide lines of component level design? Understand 6

20 Describe the way of conducting a component level design? Understand 6

UNIT- IV

1
Explain about the importance of test strategies for conventional

software?
Knowledge 6

2 Discuss black box testing in a detailed view? Apply 6

3 Compare black box testing with white box testing? Apply 6

4 Compare validation testing and system testing? Knowledge 6

5 Discuss software quality factors? Discuss their relative importance? Understand 7

6 Discuss an overview of quality metrics? Understand 7

7
Explain should we perform the Validation test – the software

developer or the software user? Justify your answer?
Apply 7

8 Explain about Product metrics? Knowledge 7

www.alljntuworld.in JNTU World

Downloaded From JNTU World (http://www.alljntuworld.in)

JN
TU W

orld

9 Explain about Metrics for maintenance? Knowledge 7

10 Explain in detail about Software Measurement? Understand 7

11
Explain about Metrics for software quality?

Knowledge
7

12 Explain strategic approach to software testing Understand 7

13 Describe test strategies for conventional software Understand 7

 14 Describe validation testing Understand 7

 15 Write a long notes on system testing Knowledge 7

 16 Demonstrate art of debugging Knowledge 7

 17 Discuss a framework for product metrics Knowledge 7

18 Demonstrate metrics for analysis model Understand 7

19 List the metrics for the design model Understand 7

20 Describe metrics for source code and for testing Understand 7

UNIT - V

1 Explain about software risks? Knowledge 8

2
Elaborate the concepts of Risk management Reactive vs Proactive

Risk strategies?
Understand 8

3 Explain about RMMM Plan? Understand 8

4 Explain about Quality concepts? Knowledge 9

5 Explain software quality assurance? Understand 9

6 Explain about formal technical reviews? Understand 9

7 Explain in detail ISO 9000 quality standards? Understand 9

8 Discuss risk refinement? Knowledge 9

9 Compare reactive with proactive risk strategies? Knowledge 9

10 Discuss software reliability? Understand 9

11 Briefly explain about formal approaches to SQA? Knowledge 9

12 Demonstrate statistical SQA? Understand 9

13 Define software reliability along with its terms? Understand 9

 14 Explain risk projection in detail? Understand 9

 15 Explain seven principals of risk management? Knowledge 9

 16 Explain software reviews in brief? Knowledge 9

 17 Explain six sigma for software engineering? Knowledge 9

 18 Explain quality management with their terms? Understand 9

 19 Demonstrate risk identification? Understand 9

 20 Describe developing a risk table? Understand 9

PART – C (Problem Solving and Critical Thinking Questions)

Blooms
Course

S. No Questions Taxonomy Outcome
Level

UNIT – I

1 Describe the law of conservation of familiarity in your own words? Knowledge 1

2 Suggest a few ways to build software to stop deterioration due to
change? Knowledge 1

3 Try to develop a task set for the communication activity? Apply 2

4 What is the purpose of process assessment? Why has SPICE been
developed as a standard for process assessment?

Knowledge
2

5 Discuss the meaning of “cross-cutting concerns” in your words? Knowledge 2

UNIT – II

1 Identify and briefly describe four types of requirements that may be
defined for computer based system?

Knowledge 3

2 List out plausible user requirements for the following functions
a) Cash dispensing function in a bank ATM?
b) Spelling check and correcting function in a word processor?

Knowledge 3

3 Suggest how an engineer responsible for drawing up a system
requirements specification might keep track of the relationship
between functional and non- functional requirements?

Knowledge 4

4 Suggest who might be stakeholders in a university student record
system. Explain why it is almost inevitable that the requirements of
different stakeholders will conflict in some way?

Knowledge 4

5 Explain who should be involved in requirements review? draw a Apply 4

www.alljntuworld.in JNTU World

Downloaded From JNTU World (http://www.alljntuworld.in)

JN
TU W

orld

process model showing how a requirements review might be
organized?

UNIT – III

1 State how do we assess quality of a software design? Knowledge 5

2 Suggest a design pattern that you encounter in a category of everyday
things?

Apply 5

3 Provide examples of three data abstractions and the procedural
abstractions that can be used to manipulate them?

Apply 5

4 Explain the difference between a data base that services one or more
conventional business applications and data warehouse?

Knowledge 5

5 Demonstrate the architecture of a house or building as a metaphor,
draw comparison with software architecture. How are the disciplines
of classical architecture and software architecture similar? How do
they differ?

Apply 5

UNIT – IV

1 Provide a few examples that illustrate why response time variability
can be an issue?

Knowledge 6

2 Develop two additional design principles “place the user in control”? Apply 6

3 Develop two additional design principles “make the interface
consistent”?

Apply 7

4 Develop a complete test strategy for the safe home system. Document
it in a test specification.

Apply 7

5 Provide examples for unit testing? Apply 7

UNIT – V

1 Quality and reliability are related concepts but are fundamentally
different in number of ways. Discuss them?

Apply 8

2 You have been given the responsibility for improving quality of
software across your organization. What is the first thing that you
should do? What’s next?

Apply 8

3 Some people argue that an FTR should assess programming style as
well as correctness is this a good idea? Why?

Apply 8

4 Is it possible to assess the quality of software if the customer keeps
changing what it is supposed to do?

Apply 9

5 Create a risk table for the project that if you are the project manager
for a major software company. you have been asked to lead a team
that’s developing “next generation “word- processing software?

Apply 9

www.alljntuworld.in JNTU World

Downloaded From JNTU World (http://www.alljntuworld.in)

JN
TU W

orld

SE Assignment-1.

Write your assignment in NOT less than 4 pages (use pencil for diagrams)

For 501-515 Roll numbers:

Explain unified process (UP) model with neat sketch.
Define process assessment. Explain CMMI for process assessemnt..

Roll Numbers 516-530:

Define functional, non-functional requirements.
Give differences between user requirements and system requirements.
Requirements elicitation in detail.

Roll Numbers 530-545:

Compare various software process models. Describe spiral and incremental models with diagrams.
Changing nature of software.

Roll Numbers 546-560 and LE Students:

Describe software process framework.
Requirements validation process (checks to perfom validation and validation techniques).

 Chaitanya Bharati P.O., Gandipet, Hyderabad- 500 075

SUBJECT : Software Engineering Duration : 1 Hr

Date & Session : 08/11/2021 (AN) Maximum Marks : 10 Marks

Year, Class & Section : III / IV B. Tech CSE & IT Roll Number :

NOTE:Answer any TWO questions. All questions carry equal marks. Marks

1
a) What is myth? Explain different software myths. CO1 3 M

b) Justify why Software Engineering is a layered technology.
CO1 2 M

2

a) Give brief note on CMMMI.
CO1 2 M

b) Compare and contrast different proces models.
CO1 3 M

3
a) Differentiate User and System requirements.

CO2 2 M

b) Enumerate and Explain the structure of SRS document.
CO2 3 M

4

a) Explain the Requirements discovery methods.
CO2 3 M

CO3
2 M

Paper set By: Department of CSE & IT

 MAHATMA GANDHI INSTITUTE OF TECHNOLOGY

III B.Tech, I - SEM, I - MID DESCRIPTIVE EXAM - A.Y: 2021-22

Course
Outcomes

b)Explain the following Design Concepts: Abstraction, Information hiding,

Modularity, Refactoring.

 10

MAHATMA GANDHI INSTITUTE OF TECHNOLOGY

III B.Tech. I Sem , I MID –OBJECTIVE EXAM, A.Y: 2021-22

Subject: Software Engineering Hall Ticket. No: ______________
Year, Branch & Section: III/IV, CSE & IT Date and Session: 08/11/2021(AN)
Answer All Questions. All Questions Carry Equal Marks. Time: 20 Min. Marks: 10

1. Which among the following is Umbrella activity? []

A) Planning B) Construction C) Risk management D) Design

2. Which process model is suitable when requirements are fixed? []
A) Incremental B) Waterfall C) Prototype D) Spiral

3. In incremental model, the first increment is __________________ []

A) Increment B) Core product C) Failure D) Plan

4. In_________ model, multiple software teams works in parallel on different s/w functions. []

A) Waterfall B Unified C) Personal D) RAD

5. Quick Plan and Quick Design activities leads to construction of_____________ []

A) Prototype B) Code C) Iteration D) Increment

6. Which of the following is not an External requirement? []

A) Ethical B) Efficiency C) Legislative D) Safety/ Privacy

7. Which of the following OOPs principle enables code reusability []
A) Aggregation B) Association C) Inheritance D) Polymorphism

8. In__, Social Scientist spends considerable time observing & analyzing how people actually work []
A) Interviewing B) Ethnography C) Scenario D) Viewpoints

9. Which framework activity produces feedback report_______________ []

A) Communication B) Planning C) Modeling D) Deployment

10. ___________ Requirements provide detailed description of services from the stakeholder. []

A) User B) System C) Domain D) Non-functional

11. Software doesn’t __________, but it does deteriorate.
12. The bedrock that supports Software Engineering________________.
13. _________________is proven solutions to the process-related problem.
14. Waterfall model is also called as________________________
15. _____________ Model can be used to apply throughout the entire life cycle of application.
16. CASE stands for _______________________________.
17. The process of finding out, Analyzing, Documenting and Checking the services and constraints is

called as______________________.
18. _________________ assesses if the system is useful to the business or not.
19. Requirements Elicitation is also called as_________________________.
20. _____________ is an iterative process of translating requirements into blueprint of the system.

Paper set By: Department of CSE & IT

 Chaitanya Bharati P.O., Gandipet, Hyderabad- 500 075

SUBJECT : Software Engineering Duration : 1 Hr

Date & Session : 10/01/2022 (AN) Maximum Marks : 10 Marks

Year, Class & Section : III / IV B. Tech CSE & IT Roll Number :

NOTE:Answer any TWO questions. All questions carry equal marks. Marks

1
a) Discuss various Architectural Styles with neat sketch. CO3 3 M

b) Draw a class diagram for a Web-Based Food- Ordering system such as “Swiggy”. CO3 2 M

2

a) What is Debugging? Explain the Product Metrics for Source Code, Testing.

CO4
2 M

b) Elaborate any three testing Strategies for Conventional Software.

CO4
3 M

3

a) Distinguish White-box and Block-box testing. Explain the techniques of White-box testing.

CO4
3M

b) Provide the format of Risk Information Sheet.
CO5 2 M

4

a) Explain Formal Technical Reviews.
CO5 3 M

b) List and Explain various Software Risks.
CO5 2 M

Paper set By: Department of CSE & IT

 MAHATMA GANDHI INSTITUTE OF TECHNOLOGY

III B.Tech, I - SEM, II - MID DESCRIPTIVE EXAM - A.Y: 2021-2022

Course
Outcom

es

 10

MAHATMA GANDHI INSTITUTE OF TECHNOLOGY

III B.Tech. I Sem , II MID –OBJECTIVE EXAM, A.Y: 2021-2022

Subject: Software Engineering Hall Ticket. No: ______________
Year, Branch & Section: ________________ Date and Session: 10/01/2022 & AN
Answer All Questions. All Questions Carry Equal Marks. Time: 20 Min. Marks:10
1. The main purpose of integration testing is to remove____________ []

a)Design errors b) Analysis errors c) Procedure errors d) Interface errors

2. A _____________ is a modular building block for computer software. []

a) Component b) System c) Device d) None of these

3. Risk Table does not include_____________ []

a) Risk b) Probability c) Impact d) Testing

4. What is MTTF? []

a) Max Time To Failure b) Mean Time To Failure c) Min Time To Failure d) Median Time To Failure

5. ___________ is a characteristic or attribute of something. []

a)Error b) Bug c) Defect d) Quality

6. According to Pareto’s principle, x% of defects can be traced to y% of all causes. What is the ratio? []

a) 60, 40 b) 70, 30 c) 80, 20 d) No such principle exists

7. The primary objective of Formal Technical Reviews is to find _________ during the process so that they do not

become defects after release of the software. []

a) Errors b) Equivalent faults c) Failure cause d) None of the mentioned

8. ________ Risk strategy does nothing about risks until something goes wrong. []

a) Reactive b) Pro-active c) Both a &b d)Active

9. _________is the probability of failure-free operation of a computer program in specified environment for a

specified time. []

a) Correctness b) Maintainability c) Integrity d) Reliability

10. _______ Test is conducted by the end users. []

a) Alpha Testing b) System Testing c) Beta Testing d) Unit Testing

11. ________________________ focuses on testing the smallest unit of the software.

12. _______________________is the re-execution of some subset of tests to ensure that changes have not propagated.

13. ____________________ is a software testing method in which the functionalities of software applications are

tested without having knowledge of internal code structure and implementation details.

14. ________________________is a part-of –relationship.

15. _______________________is the process of removal of errors.

16. RMMM stands for ___.

17. Building blocks of UML are________________, __________________, & _____________.

18. MTBF =__________+____________.

19. The FTR is actually a class of reviews that includes__________________ and _______________.

20. McCall’s quality factors are____________, ______________, _______________.

Paper set By: Department of CSE & IT

Question Bank

UNIT-I

1. Explain software Myths in detail.

2. Explain software engineering as a layered Technology with neat digram.

3. Explain software process framework and umbrella activities with neat figure.

4. Describe CMMI levels and its significance.

5. Evolving role of software (or) Dual role of software.

6. Process models: Spiral model, Incremental model, Unified process.

UNIT-II

1. Distinguish between functional and Non-funtional requirements.

2. Discuss the structure of Software Requirements Specification (SRS) document and its chapters in
detail.

3. Explain requirements engineering activities in detail with spiral digram.

4. Requirements discovery (or) Elicitation approaches: interviewing, usecases, scenarios,
ethnography.

5. Models may be asked for any E-commerce application (ex. Amazon, Swiggy etc.)
Know graphical symbols involved in the following Software system models:

Context models (context diagram);
Interation models (Use-case, sequence diagrams);
Structural models (class-diagram, component diagram).
Behavioral models – activity, state diagrams.
Object models - see Pressman text-book.

Unit-IV

1. Discuss project metrics for all 5 stages of software development such as requiments gathering,
design, coding, testing, maintenance.

2. Art of debugging with neat diagram.

3. Black-box testing strategies with diagrams .

4. Testing strategies for conventtional software with neat spiral diagram.

Unit-V

1. Formal Technical Reviews (FTR) in detail.

2. Software Quality Assurance (SQA) activities.

3. Proactive vs. Reactive risk strategies.

4. RMMM- risk monitoring mitigation and managment in detail.

5. Risk information sheet with example.(RMMM plan)

6. Risk table. (Risk identification, risk projection.)

	MAHATMA GANDHI INSTITUTE OF TECHNOLOGY
	COURSE FILE
	MID Descriptive Q.P Format
	MID Descriptive Q.P Format

