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Training neural networks require sizeable datasets for meaningful output. It is difficult to ac-

quire large datasets for many types of data. This is especially challenging for individuals and

small organizations. We have taken SinGAN [1], a model that works to address those issues

in the image domain, and extended it to work in the audio domain. Our new model, called

AudioSinGAN, uses deep convolutional generative adversarial networks (DCGAN) trained on

a single audio sample to generate new, unique, audio samples. Like SinGAN, AudioSinGAN

uses a pyramid of unique GANs, each responsible for learning and generating different lev-

els of detail. Our system is capable of generating unique audio with clear features from the

single input audio clip. We explore and discuss the realities of converting and tuning a gen-

erative adversarial network (GAN) built for images into one built for audio and our results.

We also present a database of audio clips generated by AudioSinGAN and use Singular Value

Decomposition to analyze the dataset and confirm that our model successfully generates audio

belonging to unique classes. We also learn that a challenge facing our system is audio that con-

tains multiple audio sources overlapping each other. Finally, we discuss methods to address

this issue including splitting audio into frequency band before processing.
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Chapter 1

Introduction

1.1 Background and Motivation

One of the greatest hurdles of building an effective machine learning system is acquiring

data in sufficient quantity and quality. For example, AlexNet [2] used about 1.2 million training

images to achieve state-of-the-art results at the time. Modern generative adversarial networks

(GANs) often use 50,000 plus images or data points in the training process [3] [4] [5] [6].

The requirement for large datasets means that it is difficult to create a machine learning

system that works with a specific kind of data unless there is a preexisting dataset. For example,

there are publicly available datasets for often studied subjects such as images of faces, images

of handwritten digits, and data used in diagnosing medical problems such as dimensions of

possibly cancerous masses. However, for many types of data, there isn’t an accessible dataset.

This means that if an entity would like to use that type of data with a machine learning system

they would need to either gather a dataset from the real world, synthesize an artificial dataset,

or some combination of the two. This may be costly or difficult for an organization and is

often out of reach for an individual. Finding ways to reduce the data required for machine

learning systems would benefit organizations but more importantly it would benefit individual

researchers and creators. Although this is an issue throughout the machine learning world this

thesis will specifically focus on the issue in regard to Generative Adversarial Networks.
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The work in this thesis is based on a GAN called SinGAN [1]. SinGAN is a system that

works with images but in this work, we convert it to work with audio instead. Because we focus

on converting SinGAN to audio we call our resulting system AudioSinGAN1 2. This system

will be used for generation of new audio based off of a single audio input.

The output from our current system is inferior to machine learning systems such as Wave-

GAN [7] or WaveNet [8] that train on many samples. In its current form the system does not

produce audio samples of high enough quality to be useful for real-world situations. Future

work on the system, however, could allow for use of the system for the generation of audio

in the domains of art, sound design, and accessibility. Examples from past machine learning

systems include speech generation for speech impaired individuals [8] [9] and audio genera-

tion for artistic purposes [10]. Finally, there is potential for AudioSinGAN to be extended in

similar ways to SinGAN for purposes such as audio editing, resampling, and style transfer/har-

monization.

Our goals for this project are to convert SinGAN to work with audio, to test the limits of

our converted AudioSinGAN, to produce and analyze a datset of results and to setup well for

future work on AudioSinGAN. Our contributions are as follows:

1. We created a working version of AudioSinGAN.

2. We explored the necessary adjustments to convert SinGAN to AudioSinGAN.

(a) Model structural changes.

(b) Hyper-parameter tuning.

(c) Helper code rewrites.

3. We provide an in-depth discussion of the process and results.

4. We have created a dataset of audio clips from Audio SinGAN and analyzed it using

Singular Value Decomposition.

5. We discuss AudioSinGAN’s potential for future research.
1Project GitHub: https://github.com/LPfantz/AudioSinGAN
2Audio Samples: https://sites.google.com/view/audiosingan
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1.2 Related Work

One strategy for solving the requirement of large datasets is to augment the architecture to

achieve equal or better results with fewer data points. For example, Nvidia’s StyleGAN2-ada

[11] is a powerful GAN capable of rivaling its predecessor’s StyleGAN [5] and StyleGAN-2

[6] with a training set of only a few thousand images by using an adaptive discriminator where

images are augmented as they are exposed to the discriminator.

Audio generation with neural networks is a relatively well-studied field but it is commonly

done with autoregressive models. One of the better-known examples is WaveNet [8] which

powers Google Assistant. Although when it comes to GANs audio has been less studied than

images, there has been notable work in the area. WaveGan [7] in particular has been an in-

spiration for network architecture while working on this thesis. A number of other interesting

GAN’s have also been created for the purpose of generating audio using one method or another

[9] [12] [13].

When it comes to GANs trained on a single data point, research has largely been based off

of SinGAN [1]. Work has already been done to improve SinGAN within the image domain

[14] [15] [16] as well as in the video domain [17] [18].

One work similar to ours in many ways is MP3Net [19] which is an audio-based GAN that

uses a similar pyramid of different resolution audio scales but still trains on a dataset of many

images.

As far as we know our work is the only research into using GANs to generate audio from

only one training image.

1.3 Process

The process followed for the work on this thesis started with SinGAN [1]. SinGAN is short

for single GAN because it takes in a single image and trains on multiple versions of the image

at different resolutions. For this thesis, we took the SinGAN system and adopted it to work

with audio instead. The process involves fixing bugs in the original system, transforming the
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architecture to work with audio instead of images, experimenting to discover which parameters

work well with audio in the changed system, discovering what type of audio work well with

the system through experimentation and induction from the original visual system, and finally

experimenting with various techniques not used in the original system to try and improve our

new, transformed system.

1.4 Outline

Chapter 2 lays out the theoretical background for neural networks, deep convolutional neu-

ral networks, generative adversarial networks, deep convolutional generative adversarial net-

works and goes into detail about the working of SinGAN. Chapter 3 deals with the process of

converting SinGAN to work with audio and tuning it for optimal results. Chapter 4 discusses

the results of that process and output of AudioSinGAN. Chapter 5 is our conclusion and some

thoughts on future research.
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Chapter 2

From Neural Networks to SinGAN

2.1 Basics of Neural Networks

Neural networks are a machine learning paradigm based on biological nervous systems.

Their conception was motivated by the fact that the nervous systems of animals and especially

humans have capabilities that far exceed those of computers in many ways. The ability to

replicate such capabilities in computers would be (and attempts to achieve this have already

resulted in) large strides forward in our technological capabilities [20]. Many excellent papers

explain the basics of neural networks [21] [22] [23].

Neural networks are mathematical structures built out of nodes called neurons. Neurons are

connected in a variety of different configurations. The classic, fully connected neural network

consists of one or more layers of neurons. The input is fed into the first layer, processed,

and then fed to the next layer ad infinitum until there are no more layers. Then an activation

function or threshold function is applied to calculate the output of the neural network.

Neurons are connected to other neurons in the preceding and the following layer as appli-

cable. Each of these connections has a weight. The output of a neuron is calculated using all

its incoming connections, the corresponding weights, and a bias or threshold belonging to the

receiving neuron. It can be described with Equation 2.1.

netinputi =
∑
j

wij ∗ xj + µi (2.1)

In Equation 2.1 [20] i is the neuron which is receiving input and j represents each neuron

with connections going from it to i. wij is the weight for the connection from j to i and xj is
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the output from j. Finally the µ is the bias for neuron i. Netinputi is the final output of neuron

i.

An activation function is how the final output of a neuron is calculated. Different activation

functions can be used for different situations. An example of one common activation function

which is used in our work is Leaky ReLU (Rectified Linear Units). Leaky ReLU is defined by

Equation 2.2:

f(x) =

ax, x < 0

x, x ≥ 0
(2.2)

This means that when the netinput is calculated it is unaltered by ReLU and if it is negative

then it is multiplied by a value. This value may be something like 0.1, 0.01, or 0.2 as in

SinGAN [1]. Similar to ReLU, the activation function that leaky ReLU is based on, results in

the sparser firing of neurons compared to other activation functions. Sparser firing comes with

several advantages [24]. Figure 2.1 shows the graph of the Leaky ReLU function [25].

Figure 2.1 Leaky ReLU Graph.

A single neuron with five incoming connections using the leaky ReLU activation function

can be visualized as Figure 2.2 which shows a neuron with five incoming connections.

The neuron calculates its net input from the connections and then applies its activation

function and that is the neuron’s output.
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Figure 2.2 An example of a neuron with five inputs using the Leaky ReLU activation
function.

When neural networks are trained an input is fed into the network and the output is calcu-

lated. These weights are adjusted to get different outputs from the same input.

Neural networks are trained through a process called backpropagation. In this process, the

output of a neural network is compared to what would be ideal for the given input and the

difference is calculated and called loss. The weights of connections and biases of neurons are

then altered through gradient descent (or a similar method) and backpropagation to minimize

loss.
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2.1.1 Perceptrons

It’s relatively simple to go from a single neuron to a simple model that can be used in the

real world. The classic example of this is a perceptron as visualized in Figure 2.1.1.

Figure 2.3 An example of a perceptron with five inputs.

A perceptron is effectively just a single neuron set up to take in inputs and give outputs.

Note that in the image the neurons in the input layer aren’t true neurons in that they don’t apply

weights, biases, or an activation function. They simply form connections from the input to the

single true neuron. They could be visualized as just inputs without neurons. However, visual-

izing them as neurons in an input layer makes discussing and visualizing both the perceptron

and the multilayer perceptron easier.
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The classic perceptron wouldn’t use an activation function but instead would use a threshold

function defined as Equation 2.3:

f(x) =

1, x > 0

0, x ≤ 0
(2.3)

The extension of a perceptron is the multilayer perceptron (MLP) as seen in Figure 2.4.

Figure 2.4 An example of a multilayer perceptron with one hidden layer.

This multilayer perceptron has an input layer similar to the perceptron with neurons that

simply pass input through them. It also has a hidden layer that consists of true neurons. Each

input is connected to each neuron in the input layer. In the same vein, each neuron in the hidden

layer is connected to the neuron in the output layer. An MLP may have an arbitrary number of

hidden layers and an arbitrary number of neurons in the hidden layers.

2.1.2 Gradient Descent and Back propagation

A neural network’s output is determined by both its inputs and the values used for its

weights and biases. Training a neural network then involves optimizing its weights and biases
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until the network achieves the desired output. This is done with an algorithm called backprop-

agation (backwards propagation of errors) which uses gradient descent.

Gradient descent starts with calculating a gradient vector defined as Equation 2.4.

∇f(x1, x2, ...xn) =



df
dx1

df
dx2

.

.

.

df
dx3


(2.4)

This gradient vector provides the direction to maximize the output value of the function. Its

magnitude represents the local change in intensity. In practice, the parameters in any function

(including but not limited to a neural network) can be optimized using gradient descent.

The first step in this process is to calculate the gradient (represented by the ∇ symbol). If

we are trying to minimize the output (as we would be with a loss function), we take the negative

of the gradient vector. Secondly, a scalar value is chosen as a learning rate and multiplied by

the gradient vector. Recall that the magnitude represents the local change in intensity. If it is

not decreased using the learning rate, it may overshoot the goal of optimizing the output. The

learning rate is a value less than 1 such as 0.1 or 0.01 and is multiplied by the magnitude.

Once the gradient vector is calculated and adjusted by the learning rate then the value of

each parameter of the function (in the case of neural networks this means weights and biases)

are adjusted by the corresponding value in the reduced vector gradient.

Unless we had too high of a learning rate, over-adjusted our parameters, and overshot our

minimum value, the loss is now less than it was and the process can be repeated as many times

as necessary to keep optimizing the function.
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Figure 2.5 A Three Layer Neural Network.

Neural networks can be thought of as a function composed of many other functions. To

accomplish the task of calculating the gradient of a neural network the backpropagation algo-

rithm was created. We’ll take a toy example with an input layer, a single hidden layer, and an

output layer. Each Layer will have a single neuron. For a visualization see Figure 2.1.2

The cost function can then be described as the result of several functions. In Equation 2.5,

o refers to the single output neuron in the output layer.

c = c(a(

l2∑
j=0

µoj + woj ∗ a(µjk + wjk ∗ xk))) (2.5)

The functions used above are defined below.

Activation Function: a(z) (2.6)

Cost function: c(y′) (2.7)

Weighted Input: zx(x) = xw + µ (2.8)

Weighted Input: zw(w) = xw + µ (2.9)

Weighted Input: zµ(µ) = xw + µ (2.10)

Note that from here on we can treat z as a single variable function that takes in either x, w,

or µ as an input. This is because we will only ever be taking the derivative of c concerning one

value in x. This means that the other two terms are treated as constants. We will denote which

we are using as our parameter with a subscript for z. The cost function uses some method to

measure the difference between the output of the neural network and the target output. The

activation function will take in z and perform some operation on it. We will leave those two

undefined for now as they can be set to many different functions. In practice, the output (or
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result of the activation function) for the final layer, assuming there is only one node in the

output layer, is the output of the neural network. See Equation 2.11.

a = y’ = Output of MLP (2.11)

If we are trying to calculate the derivative relative to a specific parameter, most of the time

the total equation isn’t necessary. Instead, we only need to use the portion of the equation that

is affected by changing the variable. Every other part of the equation is independent of the

parameter and can be treated as a constant. Therefore when we take the derivative it can be

ignored.

This means that if we want to find the derivative of c with relation to woj we can use

Equation 2.12 with function z written out completely:

dc

d
wojc(a(zw(woj))) =

dc

da
∗ da

dz
∗ dzw
dwoj

(2.12)

Backpropagation works backward through the neural network and its first step is to calcu-

late the derivatives of c in relation to the parameters for the connections between the output

layer and the layer that precedes. In other words, it uses the previous formula to calculate dc
dwoj

for every value of j.

When taking the derivative of c in relation to a preceding parameter in the function (i.e.

closer to the input layer) we need to use a longer version of our output function with more

variables. For example, if we want to calculate dc
dwjk

we can use the (still reduced version) of

our original loss function expressed in Equation 2.13.

dc

dwjk

c(a(zx(a(zw(wjk))))) =
dc

da
∗ da

dzx
∗ dzx

da
∗ da

dzw
∗ zw
dwjk

(2.13)
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Notice that in all these equations we exclude terms that are independent of the variables that

we are taking derivatives relative to. In this way, backpropagation works backward through the

neural network calculating the derivatives of the cost function relative to different parameters.

The algorithm saves the results as it works through the neural network to reuse past results

as equations and parts of equations repeat.

Once it has worked back through the network it will have calculated the derivative of the

cost function relative to every parameter in the network. It can now use these derivatives to

perform gradient descent to optimize the neural network and minimize the cost function.

2.2 Convolutional Neural Networks

With traditional neural networks, every input is connected to every neuron in the first hidden

layer. In a color image, this means that there are width x height x channels connections that

need to be considered in the neuron’s activation function and that need to have weights adjusted

during propagation. If more layers are added then every neuron in a layer is connected to every

neuron in the next layer. This results in two problems. First, in a large color image, this means

that there is a lot of computational power required when using the net or training it. Second,

this opens the door for overfitting. Overfitting is a common issue in machine learning where an

algorithm specializes too much in a training set and fails to generalize to the larger data pool

that the training set is drawn from.

One solution to these problems is to use a convolutional neural network [26]. Instead of

connecting a neuron in a given layer to every other neuron in the following layer, we will con-

nect it to a subset of neurons in the following layer. The grouping of neurons in the following

layer connected to the original neuron is called a kernel. In a two dimensional input such as an

image, the kernel can be visualized as a square. With one-dimensional input such as audio, it

can be visualized as a line. Each neuron in a layer is connected to a kernel of neurons in the

next layer. The kernel can be visualized as a square that moves across the layer and at each

location connects to a different neuron in the preceding layer. How far the kernel moves is

called the stride. With a two-dimensional layer and a stride of one when the kernel is moved a
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single column or row is left behind and a new column or row is added. If the stride is two then

two columns or rows are left behind and two columns or rows are added.

Because a group of neurons in one layer connects to s a single neuron in the next layer

the system is usually set up using variables such as kernel size and stride so that each layer is

smaller than the previous layer. If the goal is to have the network perform some transformation

on the data then the output is often smaller than the input due to the convolutional layers

downscaling it. One commonly used solution to this is to add padding around the input. More

data, often numerical 0s (black pixels in an image), are added around the input to increase the

size of the output. For further reading on convolutional neural networks see [27] [28] [29] [30].

2.3 Generative Adversarial Neural Networks

2.3.1 The Basics

The generative adversarial network (GAN) structure, proposed in 2014 by Goodfellow et

al. [31], is an unsupervised machine learning system used for data generation. This type of

system involves two competing neural networks playing an adversarial game. The analogy

given in the originating paper is of money forgers contesting with police. The two adversaries

compete and as the forgers learn and get better at producing fake money the police also learn

and get better at discerning fake money from real. This competition continues until the forgers

can make money that is identical to real currency and the best guess of the police is only as

good as a random guess.

The classic GAN presented by Goodfellow et al. [31] names the two neural networks as the

generator (the forger) and the discriminator (the police). Training data is put into the system

(non-forged money in the analogy) and the generator tries to copy it while the discriminator

tries to distinguish real from fake. The discriminator’s loss is calculated based on how well it

can classify both real data and generated data. Equation 2.14, as presented by the authors in

the classic GAN paper, is used for ascending the discriminator’s stochastic gradient:
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∇θd

1

m

m∑
i=1

[
logD

(
x(i)

)
+ log

(
1−D

(
G
(
z(i)

)))]
(2.14)

The generator’s loss is calculated based on how well the discriminator can classify the gen-

erated data. The classic GAN paper presents the Equation 2.15 for descending the generator’s

stochastic gradient.

∇θd

1

m

m∑
i=1

[
log

(
1−D

(
G
(
z(i)

)))]
(2.15)

Theoretically, the ascension/descent of gradients to optimize the discriminator and gener-

ator continues until the generative neural network can produce output indistinguishable from

the trading data.

Note that the GAN loss function is effectively minimizing the Jensen-Shannon distance.

Jensen-Shannon is built on top of the Kullback-Leibler divergence which is shown in Equa-

tion 2.16.

KL(Pr∥Pg) =
∑
x∈X

Pr log

(
Pr(x)

Pg(x)

)
(2.16)

This divergence has a problem where Pg(x) is 0 causing division by 0. Jensen-Shannon

was introduced as an improvement and is defined by Equation 2.17.

JS (Pr, Pg) = KL (Pr∥Pm) +KL (Pg∥Pm) (2.17)

In this equation Pm = (Pr + Pg)/2 or the average of the two distributions.

While Jensen-Shannon is defined everywhere, it does have its issues. When either Pg(x)orPr(x)

is 0 the result is log 2 no matter how close or far apart the distributions truly are. This decreases

the effectiveness of the loss function as there isn’t a change in loss as the distance between

the two distributions varies. We can say that both the Kullback-Leibler divergence and the
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Jensen-Shannon divergence aren’t continuous. Under certain circumstances, their slopes can’t

be descended by gradient descent to reach a minimum.

GANs may be constructed out of fully connected neural networks. However, in modern

research, they are more commonly built as Deep Convolutional Generative Adversarial Net-

works (DCGANs) [32]. These are GANs built out of deep convolutional networks instead of

fully connected networks. They have many of the advantages that convolutional networks bring

and as demonstrated in their originating paper are excellent when working with images.

2.3.2 WGAN-GP

Due to the problems inherent in the Kullback-Leibler and Shannon-Jensen divergences, the

Wasserstein GANs [33] were introduced. These GANs relabel the discriminator as the critic

and derive their loss functions from the Wasserstein or Earthmover distance. This distance

can be considered to be the cost to transform one distribution into another distribution in the

cheapest way.

EMD(P,Q) = inf
γ∈Π(P,Q)

E(x,y)∼γ[∥x− y∥] (2.18)

Equation 2.18 is not useful as a loss function of a GAN as it is intractable. However, using

the Kantorovich-Rubinstein [34] duality a more useful function can be derived.

min
G

max
D∈D

E
x∼Pr

[D(x)]− E
x̃∼Pg

[D(x̃))

]
(2.19)

In the Kantorovich-Rubinstein duality (Equation 2.19) x is a real data point and D(x) is

the critic’s realness score for it. Similarly, x̃ is a data point created by the generator, and D(x̃)

is the realness score calculated by the critic for that data point. D (the critic) must be a 1-

Lipschitz function. The set of 1-Lipschitz functions is D. Using a Lipschitz function keeps the

critic as a differential function that gradient descent can work with.

To ensure that the critic stays a 1-Lipschitz function the parameters of the neural network

are clipped to stay within set values. While this technique works it is, by the authors of the

original WGAN paper’s [33] own admission, a poor technique. Wasserstein GAN - Gradient
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Figure 2.6 Examples Results from BigGAN. Four success and one mistake.

Penalty (WGAN-GP) [35] was introduced to address this problem. WGAN-GP uses a soft

regulation strategy based on the fact that a 1-Libschitz function has gradients with a norm of at

most 1. WGAN-GP then penalizes by the square difference from one of the gradient’s norms.

2.3.3 GANs and Images

One of the most common usages of GANs is image synthesis. By training a GAN on a

dataset of images it can be optimized to produce realistic images. One example of this is Big-

GAN [3]. BigGAN is a GAN that works with images and specifically focuses on synthesizing

images from complex data sets at high resolutions.

Another interesting research area with GANs is in the picture-to-picture transformations.

An example of this is taking in a sketch (or edges) of an image and outputting a complete,

nearly, photo-realistic image [36] [4] [37]. Another would be producing an image from a se-

mantic segmentation mask [36] [38]. Although style transfer has often been done with methods

other than GANs [39] it can also be done with GANs as it is with SinGAN [1].

PatchGAN [36] is an interesting example and also relevant as SinGAN draws from it.

PatchGAN specializes in image-to-image translation. Examples of domains it’s been used

in include semantic mappings to realistic images such as houses, black and white images to

color, and day images to night images. PatchGAN is named so because it was designed so that

the discriminator only analyzes both the fake and the ground truth images in patches. These

patches are taken in a convolutional pattern so that the entire image is represented. The results
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are averaged and that is used for the output of the discriminator. Working with smaller samples

of images allows the system to create more detailed results.

2.3.4 GANs and Audio

Due to their success with images, there have been attempts to train GANs to produce au-

dio. When working with images the input images are read as floating-point numbers and the

neural network outputs more floating-point numbers which are then transformed into an image.

Things aren’t always so simple with audio. One common approach [12] to working with audio

in machine learning is to transform audio into a spectrogram. This is an image representation

of a sound that allows a neural network to process audio as if it were an image. The GAN

can then produce an image that can be transformed back into raw audio with either a neural

network [40] or a linear transformation. Both of these may lose quality, however, often neural

network solutions perform better than linear transformations [40]. This has the advantage that

it can be processed as an image which is where most GAN research has happened. The other

approach is to use audio directly in the neural network as with WaveGAN [7] and GAN TTS

[9]. Outside of these two approaches, there are a few others such as using midi notes [13]

2.3.5 SinGAN

SinGAN [35] is an innovative deep convolutional generative adversarial neural network

that uses the Wasserstein GAN loss function. SinGAN can generate realistic images based on

a single input image using creative and interesting techniques. We will explain these techniques

in this section and in later sections discuss their uses for generating audio with AudioSinGAN.

The system consists of a pyramid of generative adversarial networks. The individual GANs

are based on PatchGAN [36]. They also use WGAN-GP [35] for a loss function.

To train the system the input image is downsampled by a certain amount for each level

of the pyramid. The lowest level (let it be n) has the smallest version of the input image and

each ascending level has a larger version. At the lowest level of the pyramid, the generator

takes in a noise map and is taught to map it to an image that can fool the discriminator. The
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Figure 2.7 SinGAN’s [1] multilevel pyramid / pipeline.

discriminator, being based on PatchGAN, has a limited receptive field and so can analyze both

the fake images from the generator and the real downsampled image from the discriminator in

fixed chunks of pixels.

The generator at the bottom layer is trained for a set number of epochs. The final, resulting

fake image (let it be z) is upscaled (with bilinear interpolation) and fed into the next level of the

pyramid (let it be n+1.) Here z is combined with a noise map which is fed into the generator

and produces an image which is again combined with z. The generator is therefore performing

an image-to-image task. The GAN is once again trained for the set number of epochs.

At this level n+1, the discriminator, is using a real image that is a downsampled version

of the image input by the user but larger than the version used at level n. The discriminator

analyzes the image in patches (the network’s receptive field) which is the same size at all levels

of the pyramid. This process is repeated for every layer of the pyramid.

The individual GANs in SinGAN are based on PatchGAN [36] and have the signature

feature of the discriminator looking at the image in patches. Because the receptive field (or

patch) is the same at each level even though it is training on different sized versions of the

same image it learns to recreate large structures and similar details on a very downsampled
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version of the image at the low levels of the pyramid. At the high levels, it learns to recreate

textures and fine details as that is all the limited receptive field can handle at one time at that

level of the pyramid.

SinGAN [1] works well on default settings when an image’s superstructures allow for some

variation. For example, in the image presented above of birds flying the random variation in

the structure does not impair how realistic the image is. When there is little room for variance

in superstructures, however, SinGAN struggles. An example of this phenomenon occurs with

faces. On default settings, variations on images of faces come out looking mangled and like

nothing human. However, this can be fixed by training the system on an image of a face

normally but starting from a higher level of the pyramid for sample generation. This results in

superstructures that are the same as the original but textures that have randomness in them. An

example would be a face that is the same but has different patterns of freckles.

SinGAN can also be used for other functions such as harmonization, paint to image, edit-

ing, super-resolution, and single image animation. These are performed by using a trained

GAN pyramid in different ways. Harmonization and paint to image use techniques such as

inputting an image at a higher level of the image pyramid to alter textures while leaving super

structures the same. Editing is performed similarly by taking in an edited version of the train-

ing image and inputting it higher in the pyramid than the bottom level. This way only textures

are changed but the superstructures are left alone. Super-resolution is performed by upscaling

an image, injecting it into the highest level of the pyramid, and then repeating with the output

multiple times. For animation from a single image several random variations are taken and

stitched together as the frames of a video.
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Chapter 3

Adapting SinGAN to Audio

While presenting WaveGAN [7], its creators also discuss the steps they took to bootstrap a

two-dimensional GAN meant for images and convert it for use with audio. They also suggest

their work could be used as a guide for altering image generation models for use with audio.

Not all of their suggestions were relevant to this project due to some differences in the GAN

they started with compared to SinGAN but some of their suggestions were helpful and acted

as a starting point for adapting SinGAN. Firstly, they point out the necessity for flattening the

kernel and stride from two dimensions to one. They also advised removing batch normalization

which we found to be helpful. Finally, t was necessary to alter the number of input channels

from three (ideal for color images) to one (ideal for mono audio).

There was also helper code (see Appendix A) that needed to be changed from loading,

processing, re-sampling, and saving images to doing the same with audio. We also had to set

up tools to run and monitor our system as it ran. Once these tasks were accomplished, we were

free to focus on altering numerous parameters that define the neural networks in our system.

3.1 Platforms / Tools

3.1.1 Torchaudio and bug fixing

SinGAN [1] is built on PyTorch [41] a popular, open-source machine learning framework.

When working with audio we incorporated Torchaudio, a library that is part of the PyTorch

project specifically built for working with audio and machine learning. This library includes

helpful tools for loading, saving, and processing audio. However, because Torchaudio is a
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recent addition to PyTorch we needed to use a more updated version of PyTorch than SinGAN

was built with. Unfortunately, using newer versions of PyTorch caused errors in the system.

Eventually, we discovered the cause of the error and solved it. The portion of the SinGAN

[1] code that handles training the models and updating their optimizers is based on the Deep

Convolutional Generative Adversarial Network (DCGAN) example available from the PyTorch

[41] documentation. However, as an optimization (as mentioned in the SinGAN supplementary

material [42]) SinGAN performs three discriminator steps followed by three generator steps

compared to the DCGAN example which alternates between one step of each.

PyTorch [41] checks for and disallows in-place updates for variables used for gradient

computation. Old versions of PyTorch did not check for in-place operations performed by

optimizers correctly. This allowed the SinGAN [1] code to run as it was. However, in PyTorch

1.5 this was patched, breaking SinGAN. The specific problem occurred because the optimizer

for the generator took a step and then almost immediately backpropagated the error. It is not

clear which specific variable caused the problem but changing the system to alternate the steps

(like the DCGAN example from the PyTorch documentation) involved resetting many variables

and successfully fixed the issue.

3.1.2 Julius

The resampling function built into Torchaudio proved to be a substantial bottleneck to

training the system. To solve this problem we incorporated the library Julius [43]. Julius is

an open-source implementation of the sinc resample algorithm by Julius O. Smith [44]. The

implementation is based on PyTorch and can be run on the GPU. Using Julius and following the

documentation’s guidelines for maximizing speed allowed for much faster training. It is worth

noting that after the code for AudioSinGAN was written Julius was integrated into pyrtoch

[41].
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3.1.3 Google Colab / Drive

We ran all our experiments on Google Colab. Google Colab is a platform built for research

that allows running Python code on Google’s servers with the usage of a GPU for free. Most

of our experiments still took several hours to run and we ran over 300 experiments throughout

our research.

3.1.4 WandB

The creators of SinGAN left behind code to graph loss curves using the Matplotlib library.

However, we elected to use an online tool called Weights and Biases [45] (WandB) due to its

superior ease of organization and tools for analyzing data.

3.2 Tuning Hyper-Parameters / System Variables

Tuning Hyper-parameters was more difficult than initially expected. Each AudioSinGAN

model has three loss functions (generator, critic, and means-square error) for each level of

the pyramid. Often these different loss functions seemed to disagree with each other, and the

loss graphs were also often unhelpful with large sudden jumps or large static sections. There

was no single, clear, consistent loss function to base our search on. We settled on evaluating

results by evaluating generated samples by ear and subjectively determining if the result was

an improvement or not.

The search for hyper-parameters had a baseline in SinGAN’s [1] default hyper-parameters

and recommendations found in other literature. The tuning process was done using an audio

clip of a violin playing a scale and started by trying extreme values both larger and smaller than

the baseline. Then we used progressively less and less extreme values centering around the rec-

ommended values. In every case the results were better around the baseline values. Once that

was established, we used a brute force approach by trying all values near the baseline values. In

some cases the baseline values were optimal and in others values near the baseline values were
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superior. Further value tuning would be helped by developing and using an objective measure-

ment of improvement in training that could be used for (ideally automated) hyper-parameter

tuning.

Table 3.1 shows SinGAN’s original hyper-parameters compared to what we selected for

AudioSinGAN. The following sections go into more detail regarding the various hyper-parameters.

Table 3.1 SinGAN vs AudioSinGAN Hyper-Parameters.

Hyper-Parameter SinGAN AudioSinGAN

Layers 5 3

Epochs 2000 10000

Kernel 3x3 23

Stride 1 1

Dilation 1 12

Receptive Field 11x11 793

Learning Rate - Generator 0.0005 0.0001

Learning Rate - Discriminator 0.0005 0.0004

Loss Function WGAN-GP + MSE WGAN-GP + MSE

Reconstruction Reconstruction

Reconstruction Weight 10 4

Batch Norm Yes No

3.2.1 Resolution levels on SinGAN’s Pyramid

SinGAN uses a pyramid of images at different resolutions and corresponding GANs. When

working with audio we chose to use a pyramid with audio at different sample rates. This is how

many samples of audio are present in each second. A commonly used sample rate for good

quality music is 44.1 kHz or 44,100 samples per second. However, low-quality audio at lower

sample rates is used in some real-world situations. For example, audio sampled at 8kHz is

sometimes used for sound effects [46]. The contrast between Figure 3.1 and Figure 3.2 is a
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visual example of the difference. These illustrate the difference between 44.1 kHz and 8kHz.

Every individual dot is a sample.

Figure 3.1 0.005 seconds of audio at 44.1 kHz.

Figure 3.2 0.005 seconds of audio at 8 kHz.

At the lower resolution, the large structures of the sound wave are maintained but the small

details are lost. This key detail is the same as it is in images of different resolutions where

the superstructures in an image are maintained at low resolution but the details are lost. One

different area is that audio at different sample rates is the same length while images at different

resolutions are considered different sizes.

3.2.2 Sample Rate at Different Scales

SinGAN [1] has a difference of approximately 0.75 between the resolution of each scale

of the pyramid. We roughly followed this example for the different sample rates of audio.

While SinGAN dynamically calculates how many levels to use and the appropriate resolution
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at each level, AudioSinGAN uses set sample rates at each level to optimize re-sampling time.

We calculated the sample rate for each level of the pyramid with a difference of around 0.75

(following Julius’ guidelines for fast re-sampling caused it to not be exact) between scales from

800 Hz to 16000 kHz. Throughout our experimentation, we tried many different variations

such as using more scales or fewer scales. We did not notice too much of a difference between

experiments as long as the scales range from small enough to large enough and as long as there

are enough of scales present (4 or 5 at the minimum). Our final system converts audio input

into mono audio at 16 kHz and uses 9 scales ranging from 800 Hz to 16 kHz.

3.2.3 Learning Rate, Layers, Epochs, and Channels

One of the most important and volatile hyperparameters is the learning rate. Initially, we

suspected that our discriminators had too high of a learning rate and experimented with de-

creasing it. We also tested only updating the discriminator’s weights every few steps. Neither

that technique nor the various learning rates we tried were initially successful. Eventually, on

the recommendation of a blog post on training GANs [47], we tried learning rates of 0.0001

for the generator and 0.0004 for the discriminator. These values for learning rates proved to be

effective and are our final values after tuning.

Two other very important hyperparameters are how many layers are in the neural network

and how many epochs the system is trained for. SinGAN uses 5 layers in both the discriminator

and the generator and trains for 2000 epochs for each level of the pyramid. We found that we

got better results with roughly similar running time by decreasing the number of layers and

increasing the number of epochs. We found that 3 layers and about 10000 epochs worked

better for AudioSinGAN.

We also experimented with how many channels to use between layers. SinGAN starts with

32 channels and then increases it as the image goes up the pyramid and gets larger. We didn’t

find that having more channels than 32 between each level of the pyramid made any noticeable

difference.
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3.2.4 Reconstruction Weight

SinGAN [1] uses both the WGAN-GP [35] loss function and a weighted mean squared error

reconstruction loss function. We experimented with various weights for the reconstruction loss

function and found that about 4 seemed to work well, though it isn’t a particularly delicate

hyperparameter, especially compared to the learning rate.

3.2.5 Receptive Field Size

One of the key points of SinGAN [1] is the GAN’s receptive field. SinGAN uses the

PatchGAN [36] method and so intentionally has a smaller receptive field. Because the receptive

field is static at each level of the pyramid but the resolution increases, the discriminator sees

smaller details at higher levels of the pyramid and larger structures at lower levels. As an image

is generated it works its way up the pyramid with finer details being added at higher levels.

The WaveGAN [7] paper points out that the receptive field for audio systems must be much

larger than for image systems. For example, an A4 note at 16kHz takes 36 samples for a single

cycle. SinGANs naively has an 11 x 11 receptive field according to its creators. For a point

of contrast, WaveGAN has a receptive field of 32,761 and after much experimentation, our

converted system has a receptive field of 793 [48]. One of the variables that control the size of

the receptive field in a convolutional neural network is the kernel size. We experimented with

many kernel sizes to control the receptive field size before settling on 23.

We eventually realized we needed to expand the receptive field size but expanding the ker-

nel didn’t expand the receptive field nearly enough for how much extra computational power is

required. Using dilation [49] of 12 increases the receptive field dramatically without increasing

the processing power required.

3.2.6 Various experiments

We also tried many more varied experiments. We found that SinGANs use of schedulers to

decrease the learning rate as the system trains weren’t helpful to our version of the system and

disabled it. We experimented with using mean absolute error loss instead of mean squared error
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loss for the reconstruction loss but found that the results were inferior. We also experimented

with keeping our sample rate the same at all levels of the pyramid and varying our kernel size

(and therefore receptive field) instead.

3.2.7 Other Experiments

We attempted other experiments that failed to improve our output. These include normal-

izing generator output, updating weights on different numbers of steps, updating discriminator

weights only when the generator’s loss is decreasing, using different loss functions, using batch

normalization, and various changes to the pyramid setup.

3.2.8 Audio Amplitude and Length

To achieve optimal results, it is important to consider the input audio’s amplitude. Ampli-

tude is the height of the crests of the sound wave. Higher amplitudes result in more distinct

waveforms and produce better results. We found it helpful to increase the amplitude of audio

clips as much as we could before feeding them into AudioSinGAN.

The length of the audio clip is also worth paying attention to. If the input audio clip is too

long, then the system will require too many resources to run in a reasonable time frame. If the

system is too short it makes it difficult for there to be clear, distinct structures. We found that

audio clips of about 5 - 10 seconds worked well.

3.2.9 AudioSinGAN Pipeline

Figure 3.3 is an example of AudioSinGAN’s pipeline. It can be contrasted to SinGAN’s

original pipeline in Figure 2.7. Like the original SinGAN model, training starts at the bottom

level of the pyramid. The system learns to produce realistic super-structures in the audio and

then sends the results up the pyramid. At each level the effective patch (or kernel) size gets

smaller and the system fills in finer and finer details.
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SinGAN dynamically determines the number of levels in the pyramid and the resolutions

for each level. As explained in section 3.2.2 AudioSinGAN re-samples any input audio to

16000 hz and then uses set levels and sample rates.

Figure 3.3 A diagram of AudioSinGAN’s Pipeline.

3.2.10 AudioSinGAN Code

The codebase for AudioSinGAN is a heavily modified version of SinGAN [1]. Although

some parts remain unchanged much of it required significant alterations. The altered code

can be found in appendix A. Figure 3.4 is a simple top-down diagram of the code can be

found below. It describes which scripts call functions from each other in a top down ap-

proach. There are three possible starting scripts each with their own main function. The file

main train.py starts training the audio on an input file, resume at.py resumes stopped training,

and random samples.py generated samples from a trained model. The files resume at.py and

AudioSample.py are created by (with resume at.py being heavily based on main train) while

the others are altered versions of SinGAN’s code.
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Figure 3.4 A top-down diagram of AudioSinGAN’s Code.
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3.3 Singular Value Decomposition

More details of singular value decomposition and its applications can be found in [50]. Let

A be an m× n matrix, with m ≥ n. A can be factorized to

A = U

 Σ

0

V T (3.1)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, and Σ ∈ Rn×n is diagonal. If rank(A) =

r < m, n the above factorization of A can be written as,

A = [U1U2]

 Σ1 0

0 0

 V T
1

V T
2

 = U1Σ1V
T
1 (3.2)

where U1 ∈ Rm×r, U2 ∈ Rm×(m−r), Σ1 ∈ Rr×r, V T
1 ∈ Rr×n, and V T

2 ∈ R(n−r)×n.

If rank(A) = r < m, n the above factorization of A can be written as,

A = [U1U2]

 Σ1 0

0 0

 V T
1

V T
2

 = U1Σ1V
T
1 (3.3)

where U1 ∈ Rm×r, U2 ∈ Rm×(m−r), Σ1 ∈ Rr×r, V T
1 ∈ Rr×n, and V T

2 ∈ R(n−r)×n, and the

diagonal entries of Σ1, σ1 ≥ σ2 ≥ . . . σr > 0.

Σ1 =



σ1 0 . . 0

0 σ2 0 . .

. . . . .

. . . . .

0 . . . σr


(3.4)

The simga values σ1, σ2, . . . , σr are called the singular values of A. The columns of V

(v1, v2, . . . , vr) are the right singular vectors of A and the columns of U (u1, u2, . . . , ur) are the

left singular vectors of A. Although, Σ is unique, this factorization is not unique (i.e., can flip

signs of U, V ).

In our application, we construct a matrix A for each audio class such that the columns of A

are the training audio vectors of the selected class. For a given test vector z, we need to find a
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projection on to the column space of A (i.e., the least square solution). The least square error

for Ax = z is same as the least square error for Uy = z (i.e., y = Σ1V
T
1 x. The least square

solution for Uy = z is y = UT z and hence the residual error vector is z−UUT z = (I−UUT )z.

We call the columns of U as singular images.

3.3.1 SVD Algorithm:

a Training:

For the training set of each audio class i (i,e., violin, male voice etc), compute the SVD

of Ai containing each set of vectors of one kind as columns.

b Classification:

For a given test audio vector, compute its relative residual (i.e., ei = ||(I − UiU
T
i )z||2,

least square error) in all audio classes. If one residual is lower than all the others, classify

as that.
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Chapter 4

Results

Although objective evaluation was out of our means we provide some visual examples of

waveforms to demonstrate the output of AudioSinGAN.

4.1 Dataset

We created an initial version of a dataset from the variations created by SinGAN on seven

samples. This dataset is available as both audio files and as a csv with audio vectorized1.

Table 4.1 Dataset Statistics
Sample Name Variations Variation Length

allegro 50 7.2

female voice 50 8.8

flute 50 3.6

male voice 50 7

melodic hardcore 50 7.9

ocarina multiple 50 9.5

violin 50 9

The vectorized dataset has three versions. The full version has the total vectors of all

samples. The limited version has the first 50,000 points of each vector for all samples. Finally,

1DataSet: https://drive.google.com/drive/folders/1oHtNeX1whK9kJaOBwYOm0F2dRmDRxLK5?

usp=sharing
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the small version has the first 50,000 points of the vectors of only the violin and male voice

variations. For each class there are 51 examples including the input audio and 50 variations.

Table 4.2 describes the layout of the csv and Table 4.3 describes class labels.

Table 4.2 Dataset Columns
C1 (int) C2 (int) C3 (binary) C4 (binary) C5+ (float)

Unique ID Class Variation (0) or Original (1) Rejected(0) or Accepted (1) Vectorized Data

Table 4.3 Dataset Classes
Class 0: violin

Class 1: male voice

Class 2: female voice

Class 3: allegro

Class 4: flute

Class 5: melodic hardcore

Class 6: ocarina multiple

4.2 Successes and Failures

AudioSinGAN is sensitive to qualities in the input audio and performs better on some clips

than others. The system performs best on waveforms with multiple, distinct clear structures

which represent an independent sound. The waveform in Figure 4.1 is an example of a wave-

form with clear, distinct waveforms. Each crest is a distinct note played on a violin.

Figure 4.1 Input Violin Waveform

And below are several examples of output. The images of the waveforms in Figure 4.2 show

our success at creating a system that can train on a single audio clip and generate variations on
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it. The output audio clips lack audio quality. Despite this, however, they exhibit varied violin

sounds distinct from what was present in the training clip.

Figure 4.2 Violin Output Audio

To contrast, Figure 4.3 is a waveform with multiple instruments playing together. Our

system doesn’t work well with it because it has many different notes that blend and aren’t

distinct.

Figure 4.3 Allegro Waveform

The waveforms of the results in Figure 4.4 look similar to the original and the audio has

some vague resemblance, but in comparison to the results from the violin the audio quality is

far inferior and there is significantly less interesting audible variation.

More examples and audio samples are available online2.

2Audio Samples: https://sites.google.com/view/audiosingan
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Figure 4.4 Allegro Output

4.3 Violin Audio Analysis

Although we are not experts in the domain of music there are several interesting details

about the systems greatest success: violin. Firstly, it’s worth noting that the violin samples are

generated from the input clip that the system hyper-parameters were tuned to. They system

was effectively optimized to be most successful on audio that meets some criteria pertaining to

our violin clip. We have speculated that this criterion is the frequency of the music. This could

explain why the system performs better on violin compared to flute (the second most successful

case) despite both being scales with a similar structure to the sound wave. For comparison the

violin clip has frequencies ranging from 292 Hz - 2330 Hz while the flute clip has frequencies

ranging from 700 Hz - 5600 Hz.

Another interesting phenomenon from the violin input clip is that the D notes in the scale

come through the clearest in the variations. Both a lower D note and a higher D note are present

in the input clip. The repetition of two versions of the same note could partially explain why

the system reconstructs them most clearly. Another contributing reason could be that the lower

D note has the largest structure in the input sound wave.
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4.4 Analysis using Singular Value Decomposition

With the help of a more knowledgeable musician we went through the violin samples and

labeled them as accepted and rejected. We seek to understand what features define good out-

put data initially through visual examination but more meaningfully through singular value

decomposition as well.

A visual examination of Figures 4.5, 4.6, and 4.7 reveals that the original and accepted

waveforms have clearer distinction between portions of the waveforms while the rejected sam-

ple has a large portion on the left that isn’t distinct.
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Figure 4.5 Original Violin Sample.

0 10000 20000 30000 40000 50000

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Figure 4.6 An Accepted AudioSinGan Generated Violin Variation Using the Original Sample
Given in Figure 4.5.
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Figure 4.7 A Rejected AudioSinGan Generated Violin Variation Using the Original Sample
Given in Figure 4.5.

We performed SVD to attempt to train a model to distinguish between rejected and ac-

cepted violin samples and had poor results. More labeled data, better quality data, and more

experimentation with using data at different scales could help to improve the model. Although

distinguishing rejected from accepted violin samples was not successful, we trained a model

to distinguish between violin samples and human male voice samples and, even on a small

training set, the model was 100% successful. See Figures 4.8 and 4.9 for examples of human

voice waveforms.

See Section 3.3 for an in-depth discussion of training and classification methods. Inter-

estingly, we find that both the violin class and the male voice class have large initial singular

values followed by significantly smaller singular values. See Figures 4.10 and 4.11 for graphs

of the singular values and Figures 4.12 - 4.15 for the waveforms that correspond to the first two

singular values for both classes.

We use SVD (as laid out in section 3.3) to analyze violin and male voice and try and classify

samples from our test set. We use the least square error for each sample to classify them into

the appropriate class. Our model has 100 % success at distinguishing between the two but the

test points are often very close to the boundary. This is especially true with male voice test

samples. Figure 4.16 shows the difference between errors graphed. Table 4.4 and Table 4.5

numerically show the errors and the difference between errors for the samples.
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We also analyze the success rate of the violin-voice classification compared to the rank of

the SVD approximation. We find that the model has a success rate of 95% at rank five and at

rank 18 the model has a success rate of 100%. See Table 4.6 for numerical data and Figure 4.17

for a graph of the data.

We find that the models 100% classification success rate and the high success rate at low

ranks to be indicative of AudioSinGAN producing data belonging to distinct classes. The

closeness of test samples error to class boundaries does show there is still more work to be

done.
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Figure 4.8 Original Male Voice Sample.
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Figure 4.9 A Variation of Male Voice Sample
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Figure 4.10 Singular Values for the Violin Class, Range = {208.7, 37.5, ..., 10.4}
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Figure 4.11 Singular Values for the Male Voice Class, Range = {553.4, 30.4, ..., 14.6}
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Figure 4.12 The First Violin Singular Image corresponding to Singular Value = 208.7
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Figure 4.13 The Second Violin Singular Image corresponding to Singular Value = 37.5

0 2000 4000 6000 8000 10000

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Figure 4.14 The First Male Voice Singular Image corresponding to Singular Value = 553.4
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Figure 4.15 The Second Male Voice Singular Image corresponding to Singular Value = 30.4
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Figure 4.16 The Difference of Least Square Errors (e1-e2) for 20 Test Samples; (1-10) violin
samples, (11-20) - voice samples, success rate = 100%

Table 4.4 Least Squared Errors: Violin Test Samples Rounded to two Decimal Points.

Error Violin (e1) Error Male Voice (e2) Difference (e1 - e2)

7.96 8.50 -0.54

9.40 9.95 -0.55

8.84 9.14 -0.30

11.49 11.87 -0.38

9.44 9.82 -0.38

10.25 10.42 -0.17

7.21 7.67 -0.46

9.68 10.15 -0.47

9.72 10.19 -0.47

7.63 7.86 -0.23
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Table 4.5 Least Squared Errors: Male Voice Test Samples Rounded to two Decimal Points.

Error Violin (e1) Error Male Voice (e2) Difference (e1 - e2)

9.08 8.93 0.15

6.54 6.53 0.01

12.15 12.08 0.07

13.25 13.22 0.03

7.11 7.02 0.09

10.32 10.23 0.09

10.21 10.14 0.07

9.82 9.76 0.06

10.24 10.19 0.05

9.32 9.26 0.06

Figure 4.17 Success Rate of Violin-Voice Classification vs Rank of the SVD approximations
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Table 4.6 Violin-Male Voice Rank and Success Rank
Rank Success Rate % Rank cont. Success Rate % cont.

1 65 21 100

2 75 22 100

3 80 23 100

4 85 24 100

5 95 25 100

6 90 26 100

7 85 27 100

8 85 28 100

9 85 29 95

10 85 30 100

11 90 31 100

12 90 32 100

13 90 33 100

14 95 34 100

15 95 35 100

16 95 36 100

17 95 37 95

18 100 38 95

19 100 39 100

20 100 40 100
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Chapter 5

Future Directions and Conclusion

SinGAN was extended by its original authors to perform several advanced functions. One

of these were style transfer / harmonization where a hybrid image was fed into the system and

the style of one part of the image is given to another. Another was re-scaling images to higher

resolutions. These were performed by taking advantage of SinGAN’s unique structure and

feeding input into high levels of the pyramid to affect texture and not super-structures. Both of

these have potential for being ported to audio. Harmonizing two separate audio clips to blend

together easier would be useful to sound designers. Up-sampling audio with neural networks

is an area already being studied [51] and AudioSinGAN’s pyramid structure has potential for

a unique contribution.

Multiple researchers have sought to improve SinGAN using a variety of techniques with

potential for use in AudioSinGAN. Among these are employing an attention mechanism in the

GAN [14], using alternative activation functions[15], and using ”pixel shuffling” in the input

at each level of the pyramid [16].

One problem we faced in this work was a lack of objective measurement of audio realness

/ results. We started the process of using SVD as a potential solution to this problem. In our

work with SVD we created a model that can tell the violin class apart from the male voice

class with 100% success. Improving our SVD model would allow for better tuning of hyper-

parameters, creation of automatic feedback functions, superior understanding of the model,

and a quick way to showcase the best results of AudioSinGAN.

A challenge faced in this work is the difficulty of classifying audio. This is especially

difficult in cases where there may be multiple instruments or audio sources playing together.
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This issue of overlapping audio is one faced by other researchers as well [52]. One way to

address this would be to handle frequency bands in audio separately.

AudioSinGAN primarily alters an audio clip’s phase and amplitude while generaly not

affecting frequency. However, frequency is a key attribute of audio that would be interesting

to explore in relation to AudioSinGAN. One possible explanation for the system working best

on certain audio clips is that they happen to be within frequency bands that the system was

tuned for. For example, our current system was optimized for violin and performs best on our

violin input clip. Future work should include experimenting with tuning AudioSinGAN for

a variety of types of music with varying frequencies. This could allow for splitting an input

signal into multiple frequency bands and training them on variations of AudioSinGAN tuned

for those frequencies. The pieces could then be combined into the final output. This would

require a digital input audio clip to be converted to analog for splitting into frequencies, then

the frequencies would be converted back to digital for processing, back to analog for mixing

and finally back to digital. See Figure 5.1 on the next page.

A somewhat similar idea has been explored [53] as an attempt for faster and better results

by training multiple levels of SinGAN’s[1] pyramid in parallel with different hyper-parameters.

It would also be interesting to study the individual GANs in such a system by analyzing their

frequency and impulse responses.

We include an initial database of variations for these results. An important future direction

would be to expand and improve that database. An improved database (including an objective

measure of audio quality) along with more advanced usage of signal processing techniques and

SVD would allow for future research and a better understanding of our model and the dataset.
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Figure 5.1 AudioSinGAN splitting audio into frequency bands and recombining it.
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Appendix A: SinGAN vs AudioSinGAN Code

The following code samples are an overview of the changes made to convert SinGAN to

AudioSinGAN. In some cases they are an entire python file and in other cases they are samples

of relevant code. Red highlighted code is SinGAN code we removed and green highlighted

code is code we added. Code that isn’t highlighted is code that there was no need to chage.

Listing A.1 main train.py
1 from SinGAN . m a n i p u l a t e import *

2 from SinGAN . t r a i n i n g import *

3 import SinGAN . f u n c t i o n s as f u n c t i o n s

4 import torchaudio

5 import os

6 import sys

7 from datetime import datetime

8 from SinGAN.AudioSample import AudioSample

9

10

11 class my Logger(object):

12 def init (self):

13 self.console out = sys.stdout

14 self.file = open(”logFile.txt”, ”a”)

15 self.encoding = ”UTF-8”

16

17 def write(self, input):

18 self.console out.write(input)

19 self.file.write(input)

20

21 def close(self):

22 self.file.close()

23

24 def flush(self):

25 pass

26

27 i f n a m e == ’ m a i n ’ :

28

29 sys.stdout=my Logger()

30

31 print(str(sys.argv))

32

33 p a r s e r = g e t a r g u m e n t s ( )

34 parser.add argument(’–input dir’, help=’input image dir’, default=’Input/Images’)

35 parser.add argument(’–input dir’, help=’input image dir’,

36 default=’Input/Audio’) # Changed by Levi Pfantz 10/14/2020

37 p a r s e r . add a rgumen t ( ’−− i n p u t n a m e ’ , help = ’ i n p u t image name ’ , r e q u i r e d =True )

38 p a r s e r . add a rgumen t ( ’−−mode ’ , help = ’ t a s k t o be done ’ , d e f a u l t = ’ t r a i n ’ )

39

40

41 opt = parser.parse args()
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42 o p t = f u n c t i o n s . p o s t c o n f i g ( o p t )

43 opt.batch norm=bool(opt.batch norm)

44 opt.SR pyr=[800, 1600, 2150, 2850, 3825, 5100, 6750, 9000, 12000, 16000]

45

46 opt.ker size pyr = [1205, 3015, 401, 401, 401, 401, 401, 401, 401, 401, 401, 401, 401, 401, 301, 201]

47

48 if opt.single level ¿0:

49 opt.SR pyr=[opt.single level]

50

51

52

53 Gs = []

54 Zs = [ ]

55 r e a l s = [ ]

56 NoiseAmp = [ ]

57 d i r 2 s a v e = f u n c t i o n s . g e n e r a t e d i r 2 s a v e ( o p t )

58

59 if (os.path.exists(dir2save)):

60 print(’trained model already exist’)

61 else:

62 try:

63 os.makedirs(dir2save)

64 except OSError:

65 pass

66 real = functions.read image(opt)

67 functions.adjust scales2image(real, opt)

68 train(opt, Gs, Zs, reals, NoiseAmp)

69 SinGAN generate(Gs,Zs,reals,NoiseAmp,opt)

70

71 if not opt.not cuda:

72 torch.set default tensor type(torch.cuda.FloatTensor)

73

74 if int(opt.wandb) ¿ 0:

75 import wandb

76 wandb.init(project=opt.wandb proj)

77

78 torchaudio.set audio backend(opt.audio backend)

79 inputpath = opt.input dir + ”/” + opt.input name

80

81

82

83 + real = AudioSample(opt, inputpath, sr=16000)

84 opt.stride=int(opt.stride)

85 opt.nfc=int(opt.nfc)

86 opt.min nfc=int(opt.min nfc)

87 print(real.data.shape)

88 functions.adjust scales2data(real, opt)

89 opt.stop scale=len(opt.SR pyr)-1

90 print(real.data.shape)

91 train(opt, real, Gs, Zs, reals, NoiseAmp)

92 SinGAN generate(Gs, Zs, reals, NoiseAmp, opt)

93 my Logger.close()
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Listing A.2 resume at.py
1 # I added t h i s f i l e . When I made i t I s t a r t e d w i t h m a i n t r a i n as a base

2 # so t h e y have a l o t o f o v e r l a p .

3

4 from c o n f i g import g e t a r g u m e n t s

5 from SinGAN . m a n i p u l a t e import *

6 from SinGAN . t r a i n i n g import *

7 import SinGAN . f u n c t i o n s as f u n c t i o n s

8 import t o r c h a u d i o

9 import s y s

10 from d a t e t i m e import d a t e t i m e

11 from SinGAN . AudioSample import AudioSample

12

13 c l a s s my Logger ( o b j e c t ) :

14 def i n i t ( s e l f ) :

15 s e l f . c o n s o l e o u t = s y s . s t d o u t

16 s e l f . f i l e = open ( ” l o g F i l e . t x t ” , ” a ” )

17 s e l f . e n c o d i n g = ”UTF−8”

18

19 def w r i t e ( s e l f , input ) :

20 s e l f . c o n s o l e o u t . w r i t e ( input )

21 s e l f . f i l e . w r i t e ( input )

22

23 def c l o s e ( s e l f ) :

24 s e l f . f i l e . c l o s e ( )

25

26 def f l u s h ( s e l f ) :

27 pass

28

29 i f n a m e == ’ m a i n ’ :

30

31 s y s . s t d o u t =my Logger ( )

32

33 p r i n t ( s t r ( s y s . a rgv ) )

34

35 p a r s e r = g e t a r g u m e n t s ( )

36 p a r s e r . add a rgumen t ( ’−− i n p u t d i r ’ , help = ’ i n p u t image d i r ’ , d e f a u l t = ’ I n p u t / Audio ’ )

37 p a r s e r . add a rgumen t ( ’−− i n p u t n a m e ’ , help = ’ i n p u t image name ’ , r e q u i r e d =True )

38 p a r s e r . add a rgumen t ( ’−−mode ’ , help = ’ t a s k t o be done ’ , d e f a u l t = ’ t r a i n ’ )

39

40 o p t = p a r s e r . p a r s e a r g s ( )

41 o p t = f u n c t i o n s . p o s t c o n f i g ( o p t )

42 o p t . SR pyr =[800 , 1600 , 2150 , 2850 , 3825 , 5100 , 6750 , 9000 , 12000 , 16000]

43

44 i f o p t . s i n g l e l e v e l >0:

45 o p t . SR pyr =[ o p t . s i n g l e l e v e l ]

46

47

48 Gs = [ ]

49 Zs = [ ]

50 r e a l s = [ ]

51 NoiseAmp = [ ]

52 d i r 2 s a v e = f u n c t i o n s . g e n e r a t e d i r 2 s a v e ( o p t )

53

54

55 i f not o p t . n o t c u d a :

56 t o r c h . s e t d e f a u l t t e n s o r t y p e ( t o r c h . cuda . F l o a t T e n s o r )
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57

58 i f i n t ( o p t . wandb ) > 0 :

59 import wandb

60 wandb . i n i t ( p r o j e c t = o p t . wandb pro j )

61

62

63 t o r c h a u d i o . s e t a u d i o b a c k e n d ( o p t . a u d i o b a c k e n d )

64 i n p u t p a t h = o p t . i n p u t d i r + ” / ” + o p t . i n p u t n a m e

65

66

67 r e a l = AudioSample ( opt , i n p u t p a t h , s r =16000)

68 o p t . s t r i d e = i n t ( o p t . s t r i d e )

69 o p t . n f c = i n t ( o p t . n f c )

70 o p t . m i n n f c = i n t ( o p t . m i n n f c )

71 p r i n t ( r e a l . d a t a . shape )

72 f u n c t i o n s . a d j u s t s c a l e s 2 d a t a ( r e a l , o p t )

73 o p t . s t o p s c a l e = l e n ( o p t . SR pyr ) −1

74 p r i n t ( r e a l . d a t a . shape )

75 Gs , Zs , r e a l s t r a s h , NoiseAmp = f u n c t i o n s . l o a d t r a i n e d p y r a m i d ( o p t )

76 d e l r e a l s t r a s h

77 r e a l s = [ ]

78 r e a l s = f u n c t i o n s . c r e a t r e a l s p y r a m i d ( r e a l , r e a l s , opt , v e r b o s e = F a l s e )

79

80 o p t . mode = ’ t r a i n ’

81 Gs=Gs [ 0 : o p t . l e v e l t o r e s u m e a t ]

82 Zs=Zs [ 0 : o p t . l e v e l t o r e s u m e a t ]

83 NoiseAmp=NoiseAmp [ 0 : o p t . l e v e l t o r e s u m e a t ]

84 i n s = t o r c h . f u l l ( [ 1 , r e a l s [ 0 ] . shape [ 0 ] , r e a l s [ 0 ] . shape [ 2 ] ] , 0 , d t y p e = t o r c h . f l o a t 3 2 , d e v i c e = o p t . d e v i c e )

85 i f o p t . l e v e l t o r e s u m e a t < l e n ( o p t . SR pyr ) :

86 t r a i n o n a u d i o r e s u m e ( opt , r e a l , Gs , Zs , r e a l s , NoiseAmp , i n s )

87 SinGAN genera te ( Gs , Zs , r e a l s , NoiseAmp , o p t )

88 my Logger . c l o s e ( )

Listing A.3 config.py
1 p a r s e r . add a rgumen t ( ’−−netG ’ , d e f a u l t = ’ ’ , help =” p a t h t o netG ( t o c o n t i n u e t r a i n i n g ) ” )

2 p a r s e r . add a rgumen t ( ’−−netD ’ , d e f a u l t = ’ ’ , help =” p a t h t o netD ( t o c o n t i n u e t r a i n i n g ) ” )

3 p a r s e r . add a rgumen t ( ’−−manualSeed ’ , type = i n t , help = ’ manual s eed ’ )

4 parser.add argument(’–nc z’,type=int,help=’noise # channels’,default=3)

5 parser.add argument(’–nc im’,type=int,help=’image # channels’,default=3)

6 #Audio noise channles will be the same as audio channels

7 parser.add argument(’–nc z’,type=int,help=’noise # channels’,default=1)

8 #At least initally we’ll be working with 1 channel audio

9 parser.add argument(’–nc aud’,type=int,help=’image # channels’,default=1)

10 p a r s e r . add a rgumen t ( ’−− o u t ’ , help = ’ o u t p u t f o l d e r ’ , d e f a u l t = ’ Outpu t ’ )

11

12 \# n e t w o r k s hyper p a r a m e t e r s :

13 p a r s e r . add\argument ( ’−− n f c ’ , type = i n t , d e f a u l t =32)

14 #parser.add argument(’–batch norm’, action=’store true’, help=’use batch normalization (not yet implemented)’, default=0)

15 parser.add argument(’–batch norm’, type=int, help=’use batch normalization (not yet implemented)’, default=0)

16 p a r s e r . add\ a r g u m e n t ( ’−−min\ n f c ’ , type = i n t , d e f a u l t =32)

17 parser.add argument(’–ker size’,type=int,help=’kernel size’,default=3)

18 # SinGAN’s 3x3 Kernel is flattened to a 9 kernel

19 parser.add argument(’–ker size’,type=int,help=’kernel size’,default=9)

20 p a r s e r . add a rgumen t ( ’−− n u m l a y e r ’ , type = i n t , help = ’ number o f l a y e r s ’ , d e f a u l t =5)

21 p a r s e r . add a rgumen t ( ’−− s t r i d e ’ , help = ’ s t r i d e ’ , d e f a u l t =1)
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22 p a r s e r . add a rgumen t ( ’−− p a d d s i z e ’ , type = i n t , help = ’ n e t pad s i z e ’ , d e f a u l t =0) # math . f l o o r ( o p t . k e r s i z e / 2 )

23

24 parser.add argument(’–dilation’, type=int, help=’dilation at each layer’, default=1)

25 parser.add argument(’–RELU in gen’, type=int, help=’Use RELU instead of leaky RELU in the generator’, default=0)

26

27

28 #pyramid parameters:

29 p a r s e r . add a rgumen t ( ’−− s c a l e f a c t o r ’ , type = f l o a t , help = ’ pyramid s c a l e f a c t o r ’ , d e f a u l t = 0 . 7 5 ) #pow ( 0 . 5 , 1 / 6 ) )

30 p a r s e r . add a rgumen t ( ’−− no i se amp ’ , type = f l o a t , help = ’ a d d a t i v e n o i s e c o n t we ig h t ’ , d e f a u l t = 0 . 1 )

31 \# o p t i m i z a t i o n hyper p a r a m e t e r s :

32 p a r s e r . add a rgumen t ( ’−− n i t e r ’ , type = i n t , d e f a u l t =2000 , help = ’ number o f epochs t o t r a i n p e r s c a l e ’ )

33 p a r s e r . add a rgumen t ( ’−−gamma ’ , type = f l o a t , help = ’ s c h e d u l e r gamma ’ , d e f a u l t = 0 . 1 )

34 parser.add argument(’–lr g’, type=float, default=0.0005, help=’learning rate, default=0.0005’)

35 parser.add argument(’–lr d’, type=float, default=0.0005, help=’learning rate, default=0.0005’)

36 parser.add argument(’–lr g’, type=float, default=0.0001, help=’learning rate, default=0.0005’)

37 parser.add argument(’–lr d’, type=float, default=0.0004, help=’learning rate, default=0.0005’)

38 p a r s e r . add a rgumen t ( ’−− b e t a 1 ’ , type = f l o a t , d e f a u l t = 0 . 5 , help = ’ b e t a 1 f o r adam . d e f a u l t =0 .5 ’ )

39 parser.add argument(’–Gsteps’,type=int, help=’Generator inner steps’,default=3)

40 parser.add argument(’–Dsteps’,type=int, help=’Discriminator inner steps’,default=3)

41 parser.add argument(’–steps’,type=int, help=’Generator inner steps’,default=3)

42 p a r s e r . add a rgumen t ( ’−− l a m b d a g r a d ’ , type = f l o a t , help = ’ g r a d i e n t p e n e l t y we ig h t ’ , d e f a u l t = 0 . 1 )

43 parser.add argument(’–alpha’,type=float, help=’reconstruction loss weight’,default=10)

44 parser.add argument(’–alpha’,type=float, help=’reconstruction loss weight’,default=4)

45 parser.add argument(’–dropout’, type=float, help=’dropout for discriminator’, default=0)

46

47 #added by Levi

48 #use soundfile for windows and sox io for linux / google colab

49 parser.add argument(’–audio backend’, help=’normalize audio input?’, default=’sox io’)

50 parser.add argument(’–norm’, help=’normalize audio input?’, default=1)

51 parser.add argument(’–wandb’, help=’log stuff with wandb, you need to init before hand’, default=0)

52 parser.add argument(’–wandb proj’, help=’wandb Project name’, default=’AudioSinGAN’)

53 parser.add argument(’–update every x’, help=’only update discriminator every x steps’, default=0)

54 parser.add argument(’–steps to update’, help=’how many steps to update on’, default=10)

55 parser.add argument(’–normalize generator output’, type = int, help=’In this experiment I normalize the output of the ’

56 ’generator (before loss is calculated) ’, default=0)

57 parser.add argument(’–normalize before saving’, type = int, help=’normalize audio output before saving as a file’, default=1)

58 parser.add argument(’–use MAE’, type = int, help=’use MAE instead of LSE’, default=0)

59 parser.add argument(’–update only with lower Gloss’, type = int, help=’update discriminator only when GLoss is ’

60 ’decreasing’, default=0)

61 parser.add argument(’–use schedulers’, type = int, help=’use DScheduler to decrease lr after 1600 epochs’, default=0)

62 parser.add argument(’–make input tensor even’, type=int, help=’make input tensor even’, default=1)

63 parser.add argument(’–adjust upsampled’, type=int, help=’adjust generated tensor size as they are up-sampled’, default=1)

64 parser.add argument(’–change channel count’, type=int, help=’at higher levels of GAN pyramid use more channels’, default=0)

65 parser.add argument(’–adjust after levels’, type=int, help=’adjust lr d after level’, default=0)

66 parser.add argument(’–level to resume at’, type=int, help=’level to resume training at’, default=1)

67 parser.add argument(’–alt pyramid exp’, type=int, help=’instead of resampling audio, change kernel size at each ’

68 ’layer of the pyramid’, default=0)

69 parser.add argument(’–pad with noise’, type=int, help=’pad with noise instead of 0s’, default=0)

70 parser.add argument(’–single level’, type=int, help=’use only a single layer of size x’, default=-1)

71 parser.add argument(’–save fake progression’, type=int, help=’use this to save a copy of the fake output every 500 epochs’, default=-1)

72 parser.add argument(’–smooth real labels’, type=int, help=’smooth the real labels of the discriminator’, default=-1)

73 parser.add argument(’–smooth fake labels’, type=int, help=’smooth the fake labels of the discriminator’, default=-1)

74
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75 re turn p a r s e r

Listing A.4 training.py
1 import t o r c h . u t i l s . d a t a

2 import math

3 import wandb

4 import m a t p l o t l i b . p y p l o t a s p l t

5 from SinGAN.AudioSample import AudioSample

6 from SinGAN . i m r e s i z e import i m r e s i z e

7

8 def train(opt,Gs,Zs,reals,NoiseAmp):

9 real = functions.read image(opt)

10

11 def train(opt, real, Gs, Zs, reals, NoiseAmp):

12 i n s = 0

13 s c a l e n u m = 0

14 real = imresize(real ,opt.scale1,opt)

15 reals = functions.creat reals pyramid(real,reals,opt)

16

17 # real.resample by(opt.scale1)

18 real.resample to julius(opt.SR pyr[-1])

19 print(”new shape”, real.data.shape)

20

21 # reals, sr list = functions.creat reals pyramid(real, reals, opt, verbose=False)

22 reals = functions.creat reals pyramid(real, reals, opt, verbose=False)

23 sr list = opt.SR pyr

24 n f c p r e v = 0

25

26 while scale num¡opt.stop scale+1:

27 opt.nfc = min(opt.nfc init * pow(2, math.floor(scale num / 4)), 128)

28 opt.min nfc = min(opt.min nfc init * pow(2, math.floor(scale num / 4)), 128)

29 for x in reals:

30 print(x.device)

31

32 while scale num ¡ opt.stop scale + 1:

33 if opt.change channel count ¿ 0:

34 opt.nfc = min(opt.nfc init * pow(2, math.floor(scale num / 4)), 128)

35 opt.min nfc = min(opt.min nfc init * pow(2, math.floor(scale num / 4)), 128)

36

37 o p t . o u t = f u n c t i o n s . g e n e r a t e d i r 2 s a v e ( o p t )

38 o p t . o u t f = ’%s /%d ’ ( o p t . o u t , s c a l e n u m )}

39

40 t r y :

41 os . m a k e d i r s ( o p t . o u t f )

42 e xc ep t OSError :

43 pass

44 pass

45

46 # plt.imsave(’%s/in.png’ % (opt.out ), functions.convert image np(real), vmin=0, vmax=1)

47 # plt.imsave(’%s/original.png’ % (opt.out ), functions.convert image np(real ), vmin=0, vmax=1)

48 # plt.imsave(’%s/real scale.png’ % (opt.outf), functions.convert image np(reals[scale num]), vmin=0, vmax=1)

49 if opt.alt pyramid exp ¿ 0:

50 level=len(Gs)
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51 opt.ker size=opt.ker size pyr[level]

52

53 D curr, G curr = init models(opt)

54 if (nfc prev == opt.nfc and opt.alt pyramid exp == 0):

55 G curr.load state dict(torch.load(’%s/%d/netG.pth’ % (opt.out , scale num - 1)))

56 D curr.load state dict(torch.load(’%s/%d/netD.pth’ % (opt.out , scale num - 1)))

57

58 z curr, in s, G curr = train single scale(D curr, G curr, reals, sr list, Gs, Zs, in s, NoiseAmp, opt)

59

60 G curr = functions.reset grads(G curr, False)

61 G curr.eval()

62 D curr = functions.reset grads(D curr, False)

63 D curr.eval()

64

65 Gs.append(G curr)

66 Zs.append(z curr)

67 NoiseAmp.append(opt.noise amp)

68

69 torch.save(Zs, ’%s/Zs.pth’ % (opt.out ))

70 torch.save(Gs, ’%s/Gs.pth’ % (opt.out ))

71 torch.save(reals, ’%s/reals.pth’ % (opt.out ))

72 torch.save(NoiseAmp, ’%s/NoiseAmp.pth’ % (opt.out ))

73

74 scale num += 1

75 nfc prev = opt.nfc

76 del D curr, G curr

77 return

78

79 def train on audio resume(opt, real, Gs, Zs, reals, NoiseAmp, in s):

80 scale num = opt.level to resume at

81

82 # real.resample by(opt.scale1)

83 #real.resample to julius(opt.SR pyr[-1])

84 #print(”new shape”, real.data.shape)

85

86 # reals, sr list = functions.creat reals pyramid(real, reals, opt, verbose=False)

87 #reals = functions.creat reals pyramid(real, reals, opt, verbose=False)

88 sr list = opt.SR pyr

89 nfc prev = 0

90

91 for x in reals:

92 print(x.device)

93

94 while scale num ¡ opt.stop scale + 1:

95 if opt.change channel count ¿ 0:

96 opt.nfc = min(opt.nfc init * pow(2, math.floor(scale num / 4)), 128)

97 opt.min nfc = min(opt.min nfc init * pow(2, math.floor(scale num / 4)), 128)

98

99 opt.out = functions.generate dir2save(opt)

100 opt.outf = ’%s/%d’ % (opt.out , scale num)

101

102 #plt.imsave(’%s/in.png’ % (opt.out ), functions.convert image np(real), vmin=0, vmax=1)

103 #plt.imsave(’%s/original.png’ % (opt.out ), functions.convert image np(real ), vmin=0, vmax=1)
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104 plt.imsave(’%s/real scale.png’ % (opt.outf), functions.convert image np(reals[scale num]), vmin=0, vmax=1)

105 try:

106 os.makedirs(opt.outf)

107 except OSError:

108 pass

109

110 D curr,G curr = init models(opt)

111 if (nfc prev==opt.nfc):

112 G curr.load state dict(torch.load(’%s/%d/netG.pth’ % (opt.out ,scale num-1)))

113 D curr.load state dict(torch.load(’%s/%d/netD.pth’ % (opt.out ,scale num-1)))

114 # plt.imsave(’%s/in.png’ % (opt.out ), functions.convert image np(real), vmin=0, vmax=1)

115 # plt.imsave(’%s/original.png’ % (opt.out ), functions.convert image np(real ), vmin=0, vmax=1)

116 # plt.imsave(’%s/real scale.png’ % (opt.outf), functions.convert image np(reals[scale num]), vmin=0, vmax=1)

117

118 z curr,in s,G curr = train single scale(D curr,G curr,reals,Gs,Zs,in s,NoiseAmp,opt)

119 D curr, G curr = init models(opt)

120 #TODO: This next line doesn’t work for the first scale on resume if change channel count is ¿ 0

121 if (nfc prev == opt.nfc) or opt.change channel count==0:

122 G curr.load state dict(torch.load(’%s/%d/netG.pth’ % (opt.out , scale num - 1)))

123 D curr.load state dict(torch.load(’%s/%d/netD.pth’ % (opt.out , scale num - 1)))

124

125 G curr = functions.reset grads(G curr,False)

126 z curr, in s, G curr = train single scale(D curr, G curr, reals, sr list, Gs, Zs, in s, NoiseAmp, opt)

127

128 G curr = functions.reset grads(G curr, False)

129 G c u r r . e v a l ( )

130 D curr = functions.reset grads(D curr,False)

131 D curr = functions.reset grads(D curr, False)

132 D c u r r . e v a l ( )

133

134 Gs . append ( G c u r r )

135 Zs . append ( z c u r r )

136 NoiseAmp . append ( o p t . no i se amp )

137 t o r c h . s ave ( Zs , ’%s / Zs . p t h ’ % ( o p t . o u t ) )

138 t o r c h . s ave ( Gs , ’%s / Gs . p t h ’ % ( o p t . o u t ) )

139 t o r c h . s ave ( r e a l s , ’%s / r e a l s . p t h ’ % ( o p t . o u t ) )

140 t o r c h . s ave ( NoiseAmp , ’%s / NoiseAmp . p t h ’ % ( o p t . o u t ) )

141

142 scale num+=1

143 scale num += 1

144 n f c p r e v = o p t . n f c

145 del D curr,G curr

146 del D curr, G curr

147 re turn

148

149 # On Laptop 100 epochs at first scale takes about 0:49 on debugger. Second scale: On 100 epochs at about 4:45

150 def train single scale(netD, netG, reals, sr list, Gs, Zs, in s, NoiseAmp, opt, centers=None):

151 curr scale = len(Gs)

152 if curr scale == 0:

153 print(”It’s 0!”)

154 if curr scale == 1:

155 print(”It’s 1!”)

156 if curr scale == 2:

157 print(”It’s 2!”)
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158

159 update count = 1

160

161 curr sr = sr list[curr scale]

162 real = reals[curr scale]

163 opt.nzx = real.shape[2] # +(opt.ker size-1)*(opt.num layer)

164

165 opt.nz = real.shape[0]

166 opt.receptive field = int(opt.ker size) + ((int(opt.ker size) - 1) * (int(opt.num layer) - 1)) * int(opt.stride)

167

168 # We aren’t going to worry about padding. It’s easier to just make it 0 (i.e. do nothing) then

169 # completely remove it

170 # pad noise = 0 #int(((opt.ker size - 1) * opt.num layer) / 2)

171 # pad image = 0 #int(((opt.ker size - 1) * opt.num layer) / 2)

172

173

174 def train single scale(netD,netG,reals,Gs,Zs,in s,NoiseAmp,opt,centers=None):

175 pad num = int((opt.ker size - 1) * opt.dilation * opt.num layer * (1/2))

176

177 real = reals[len(Gs)]

178 opt.nzx = real.shape[2]#+(opt.ker size-1)*(opt.num layer)

179 opt.nzy = real.shape[3]#+(opt.ker size-1)*(opt.num layer)

180 opt.receptive field = opt.ker size + ((opt.ker size-1)*(opt.num layer-1))*opt.stride

181 pad noise = int(((opt.ker size - 1) * opt.num layer) / 2)

182 pad image = int(((opt.ker size - 1) * opt.num layer) / 2)

183 if opt.mode == ’animation train’:

184 opt.nzx = real.shape[2]+(opt.ker size-1)*(opt.num layer)

185 opt.nzy = real.shape[3]+(opt.ker size-1)*(opt.num layer)

186 pad noise = 0

187 m noise = nn.ZeroPad2d(int(pad noise))

188 m image = nn.ZeroPad2d(int(pad image))

189

190

191

192 + # Was an if then for animation train here I removed

193

194 a l p h a = o p t . a l p h a

195

196 fixed noise = functions.generate noise([opt.nc z,opt.nzx,opt.nzy],device=opt.device)

197 z opt = torch.full(fixed noise.shape, 0, device=opt.device)

198 z opt = m noise(z opt)

199 fixed noise = functions.generate noise([opt.nc z, opt.nzx], device=opt.device)

200 # This next line updated to bring it inline with later versions of pytorch by

201 # Levi Pfantz on 10/20/2020

202 z opt = torch.full(fixed noise.shape, 0, dtype=torch.float32, device=opt.device)

203 z opt = AudioSample.static pad(z opt, pad num, opt)

204

205 # s e t u p o p t i m i z e r

206 if len(Gs) == 3 and opt.adjust after levels ¿ 0:

207 opt.lr d = 0.0005

208 if len(Gs) == 5 and opt.adjust after levels ¿ 0:

209 opt.lr d = 0.0004

210 if len(Gs) == 7 and opt.adjust after levels ¿ 0:

211 opt.lr d = 0.0003
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212 if len(Gs) == 9 and opt.adjust after levels ¿ 0:

213 opt.lr d = 0.0002

214 if len(Gs) == 11 and opt.adjust after levels ¿ 0:

215 opt.lr d = 0.0001

216

217 o p t i m i z e r D = opt im . Adam( netD . p a r a m e t e r s ( ) , l r = o p t . l r d , b e t a s =( o p t . be ta1 , 0 . 9 9 9 ) )

218 o p t i m i z e r G = opt im . Adam( netG . p a r a m e t e r s ( ) , l r = o p t . l r g , b e t a s =( o p t . be ta1 , 0 . 9 9 9 ) )

219 schedulerD = torch.optim.lr scheduler.MultiStepLR(optimizer=optimizerD,milestones=[1600],gamma=opt.gamma)

220 schedulerG = torch.optim.lr scheduler.MultiStepLR(optimizer=optimizerG,milestones=[1600],gamma=opt.gamma)

221 schedulerD = torch.optim.lr scheduler.MultiStepLR(optimizer=optimizerD, milestones=[1600], gamma=opt.gamma)

222 schedulerG = torch.optim.lr scheduler.MultiStepLR(optimizer=optimizerG, milestones=[1600], gamma=opt.gamma)

223

224 e r r D 2 p l o t = [ ]

225 e r r G 2 p l o t = [ ]

226 D\ r e a l 2 p l o t = [ ]

227 D\ f a k e 2 p l o t = [ ]

228 z\ o p t 2 p l o t = [ ]

229

230

231 final GLoss last = 100

232 final GLoss = 0

233

234 # On Desktop cpu 100 epochs takes about 2:17

235 # on 300 epochs in about 14:45

236 f o r epoch in range ( o p t . n i t e r ) :

237 # If this is the first epoch of the first level then z opt needs to be defined?

238 i f ( Gs == [ ] ) & ( o p t . mode != ’ S R t r a i n ’ ) :

239 z opt = functions.generate noise([1,opt.nzx,opt.nzy], device=opt.device)

240 z opt = m noise(z opt.expand(1,3,opt.nzx,opt.nzy))

241 noise = functions.generate noise([1,opt.nzx,opt.nzy], device=opt.device)

242 noise = m noise(noise .expand(1,3,opt.nzx,opt.nzy))

243 z opt = functions.generate noise([1, opt.nzx], device=opt.device)

244 z opt = z opt.expand(1, 1, opt.nzx)

245 z opt = AudioSample.static pad(z opt, pad num, opt)

246 noise = functions.generate noise([1, opt.nzx], device=opt.device)

247 noise = noise .expand(1, 1, opt.nzx)

248 noise = AudioSample.static pad(noise , pad num, opt)

249 e l s e :

250 noise = functions.generate noise([opt.nc z,opt.nzx,opt.nzy], device=opt.device)

251 noise = m noise(noise )

252 noise = functions.generate noise([opt.nc z, opt.nzx], device=opt.device)

253 noise = AudioSample.static pad(noise , pad num, opt)

254

255 # ###########################

256 # ( 2 ) Update G ne twork : maximize D(G( z ) )

257 # ##########################

258 for j in range(opt.Dsteps):

259 for j in range(opt.steps):

260 # t r a i n w i t h r e a l

261 netD . z e r o g r a d ( )

262

263 # Very First time on Laptop takes:

264 o u t p u t = netD ( r e a l ) . t o ( o p t . d e v i c e )

265 #D real map = output.detach()
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266 errD real = -output.mean()#-a

267 # D real map = output.detach()

268 errD real = -output.mean() # -a

269 if opt.smooth real labels ¿ 0:

270 print(”smooth”)

271 real mod=((torch.rand(1)*0.5)+0.7)

272 errD real = errD real*real mod

273 e r r D r e a l . backward ( r e t a i n g r a p h =True )

274 D x = − e r r D r e a l . i t em ( )

275

276 # t r a i n w i t h f a k e

277 if (j==0) (epoch == 0):

278 # If this is the first step of the first epoch

279 if (j == 0) (epoch == 0):

280 # If this is the first level

281 i f ( Gs == [ ] ) & ( o p t . mode != ’ S R t r a i n ’ ) :

282 prev = torch.full([1,opt.nc z,opt.nzx,opt.nzy], 0, device=opt.device)

283 # We need to setup a previous of random noise since there wasn’t a previous level do derive from

284 prev = torch.full([1, opt.nc z, opt.nzx], 0, dtype=torch.float32, device=opt.device)

285 i n s = p rev

286 prev = m image(prev)

287 z prev = torch.full([1,opt.nc z,opt.nzx,opt.nzy], 0, device=opt.device)

288 z prev = m noise(z prev)

289 prev = AudioSample.static pad(prev, pad num, opt)

290 # This next line updated to bring it inline with later versions of pytorch by

291 # Levi Pfantz on 10/20/2020

292 z prev = torch.full([1, opt.nc z, opt.nzx], 0, dtype=torch.float32, device=opt.device)

293 z prev = AudioSample.static pad(z prev, pad num, opt)

294 o p t . no i se amp = 1

295 elif opt.mode == ’SR train’:

296 z prev = in s

297 criterion = nn.MSELoss()

298 RMSE = torch.sqrt(criterion(real, z prev))

299 opt.noise amp = opt.noise amp init * RMSE

300 z prev = m image(z prev)

301 prev = z prev

302

303 # removed an if else for SR

304

305 e l s e :

306 prev = draw concat(Gs,Zs,reals,NoiseAmp,in s,’rand’,m noise,m image,opt)

307 prev = m image(prev)

308 z prev = draw concat(Gs,Zs,reals,NoiseAmp,in s,’rec’,m noise,m image,opt)

309 # Because SinGAN calculates two different losses (adversarial term and reconstruction)

310 # We will generate two new images with the past scale’s generator and concat them with noise

311 # The result is prev for adversarial and z prev for reconstruction

312 prev = draw concat(Gs, Zs, reals, sr list, NoiseAmp, in s, ’rand’,

313 opt) # Possible issue in draw concat audio

314 prev = AudioSample.static pad(prev, pad num, opt)

315 z prev = draw concat(Gs, Zs, reals, sr list, NoiseAmp, in s, ’rec’, opt)

316

317 c r i t e r i o n = nn . MSELoss ( )

318 # RMSE = Root mean squared error
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319 # Calculate RMSE, We’ll use it when we calculate the reconstruction loss

320 RMSE = t o r c h . s q r t ( c r i t e r i o n ( r e a l , z p r e v ) )

321 opt.noise amp = opt.noise amp init*RMSE

322 z prev = m image(z prev)

323 opt.noise amp = opt.noise amp init * RMSE

324 z prev = AudioSample.static pad(z prev, pad num, opt)

325 e l s e :

326 prev = draw concat(Gs,Zs,reals,NoiseAmp,in s,’rand’,m noise,m image,opt)

327 prev = m image(prev)

328 prev = draw concat(Gs, Zs, reals, sr list, NoiseAmp, in s, ’rand’, opt)

329 prev = AudioSample.static pad(prev, pad num, opt)

330

331 if opt.mode == ’paint train’:

332 prev = functions.quant2centers(prev,centers)

333 plt.imsave(’%s/prev.png’ % (opt.outf), functions.convert image np(prev), vmin=0, vmax=1)

334 # removed an if for paint train

335

336 i f ( Gs == [ ] ) & ( o p t . mode != ’ S R t r a i n ’ ) :

337 n o i s e = n o i s e

338 e l s e :

339 noise = opt.noise amp*noise +prev

340 noise = opt.noise amp * noise + prev

341

342 fake = netG(noise.detach(),prev)

343 fake = netG(noise.detach(), prev)

344 if opt.normalize generator output ¿ 0:

345 prenorm max=torch.max(fake)

346 prenorm min=torch.min(fake)

347 fake = AudioSample.static normalize(fake)

348 o u t p u t = netD ( f a k e . d e t a c h ( ) )

349 e r r D f a k e = o u t p u t . mean ( )

350 if opt.smooth fake labels ¿ 0:

351 fake mod=((torch.rand(1)*0.5)+0.7)

352 errD fake = errD fake*fake mod

353 er rD\ f a k e . backward ( r e t a i n g r a p h =True )

354 D G z = o u t p u t . mean ( ) . i t em ( )

355

356 g r a d i e n t p e n a l t y = f u n c t i o n s . c a l c g r a d i e n t p e n a l t y ( netD , r e a l , fake , o p t . l ambda grad , o p t . d e v i c e )

357 g r a d i e n t p e n a l t y . backward ( )

358

359 er rD = e r r D r e a l + e r r D f a k e + g r a d i e n t p e n a l t y

360 optimizerD.step()

361 temp = errD

362

363 errD2plot.append(errD.detach())

364 if opt.update only with lower Gloss == 0 or final GLoss last ¿= final GLoss:

365 if update count % int(opt.steps to update) == 0 or int(opt.update every x) == 0:

366 optimizerD.step()

367 update count += 1

368

369 ############################

370 # (2) Update G network: maximize D(G(z))

371 ###########################

372 ############################



65

373 # (2) Update G network: maximize D(G(z))

374 ###########################

375

376 for j in range(opt.Gsteps):

377 netG . z e r o g r a d ( )

378

379 o u t p u t = netD ( f a k e )

380 #D fake map = output.detach()

381 # D fake map = output.detach()

382 er rG = − o u t p u t . mean ( )

383 er rG . backward ( r e t a i n g r a p h =True )

384 if alpha!=0:

385 loss = nn.MSELoss()

386 if opt.mode == ’paint train’:

387 z prev = functions.quant2centers(z prev, centers)

388 plt.imsave(’%s/z prev.png’ % (opt.outf), functions.convert image np(z prev), vmin=0, vmax=1)

389 Z opt = opt.noise amp*z opt+z prev

390 rec loss = alpha*loss(netG(Z opt.detach(),z prev),real)

391 if alpha != 0:

392 if opt.use MAE ¿ 0:

393 loss = nn.L1Loss()

394 else:

395 loss = nn.MSELoss()

396

397 # if then for paint train removed

398

399 Z opt = opt.noise amp * z opt + z prev

400 rec loss = alpha * loss(netG(Z opt.detach(), z prev), real)

401 r e c l o s s . backward ( r e t a i n g r a p h =True )

402 r e c l o s s = r e c l o s s . d e t a c h ( )

403 e l s e :

404 Z op t = z o p t

405 r e c l o s s = 0

406

407 if opt.update only with lower Gloss ¿ 0:

408 if update count ¿ 2:

409 final GLoss last=final GLoss

410 final GLoss=errG.detach() + rec loss

411

412

413 optimizerG.step()

414

415 errG2plot.append(errG.detach()+rec loss)

416 errD2plot.append(errD.detach())

417 errG2plot.append(errG.detach() + rec loss)

418 D r e a l 2 p l o t . append ( D x )

419 D f a k e 2 p l o t . append ( D G z )

420 z o p t 2 p l o t . append ( r e c l o s s )

421

422 if epoch % 25 == 0 or epoch == (opt.niter-1):

423 if int(opt.wandb) ¿ 0:

424 if opt.normalize generator output¿0:

425 wandb.log((”prenom max at scale: ” + str(len(Gs))): prenorm max)

426 wandb.log((”prenom min at scale: ” + str(len(Gs))): prenorm min)
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427 wandb.log((”errD at scale: ” + str(len(Gs))): errD.detach())

428 wandb.log((”errG at scale: ” + str(len(Gs))): errG.detach() + rec loss)

429 wandb.log((”D real2plot at scale: ” + str(len(Gs))): D x)

430 wandb.log((”D fake2plot at scale: ” + str(len(Gs))): D G z)

431 wandb.log((”z opt2pot at scale: ” + str(len(Gs))): rec loss)

432

433 if epoch % 25 == 0 or epoch == (opt.niter - 1):

434 p r i n t ( ’ s c a l e %d :[% d%d ] ’ % ( l e n ( Gs ) , epoch , o p t . n i t e r ) )

435

436 if epoch % 500 == 0 or epoch == (opt.niter-1):

437 plt.imsave(’%s/fake sample.png’ % (opt.outf), functions.convert image np(fake.detach()), vmin=0, vmax=1)

438 plt.imsave(’%s/G(z opt).png’ % (opt.outf), functions.convert image np(netG(Z opt.detach(), z prev).detach()), vmin=0, vmax=1)

439 #plt.imsave(’%s/D fake.png’ % (opt.outf), functions.convert image np(D fake map))

440 #plt.imsave(’%s/D real.png’ % (opt.outf), functions.convert image np(D real map))

441 #plt.imsave(’%s/z opt.png’ % (opt.outf), functions.convert image np(z opt.detach()), vmin=0, vmax=1)

442 #plt.imsave(’%s/prev.png’ % (opt.outf), functions.convert image np(prev), vmin=0, vmax=1)

443 #plt.imsave(’%s/noise.png’ % (opt.outf), functions.convert image np(noise), vmin=0, vmax=1)

444 #plt.imsave(’%s/z prev.png’ % (opt.outf), functions.convert image np(z prev), vmin=0, vmax=1)

445

446

447 if epoch % 500 == 0 or epoch == (opt.niter - 1):

448 if epoch % 25 == 0 or epoch == (opt.niter - 1):

449 # plt.imsave(’%s/fake sample.png’ % (opt.outf), functions.convert image np(fake.detach()), vmin=0, vmax=1)

450 z opt to save=netG(Z opt.detach, z prev).detach

451

452 if opt.normalize before saving ¿ 1:

453 fake=AudioSample.static normalize(fake)

454 z opt to save = AudioSample.static normalize(z opt to save)

455

456 if opt.save fake progression ¿ 0:

457 if epoch==0 and not os.path.exists(’%s/savedProgression/’ % (opt.outf)):

458 os.makedirs(’%s/savedProgression/’ % (opt.outf))

459 string=opt.outf+’/savedProgression/’+str(epoch)+’.wav’

460 AudioSample.static save(fake.detach(), curr sr, string)

461

462 AudioSample.static save(fake.detach(), curr sr, ’%s/fake sample.wav’ % (opt.outf))

463 # plt.imsave(’%s/G(z opt).png’ % (opt.outf), functions.convert image np(netG(Z opt.detach(), z prev).detach()), vmin=0, vmax=1)

464 AudioSample.static save(z opt to save, curr sr, ’%s/G(z opt).wav’ % (opt.outf))

465

466 # plt.imsave(’%s/D fake.png’ % (opt.outf), functions.convert image np(D fake map))

467 # plt.imsave(’%s/D real.png’ % (opt.outf), functions.convert image np(D real map))

468 # plt.imsave(’%s/z opt.png’ % (opt.outf), functions.convert image np(z opt.detach()), vmin=0, vmax=1)

469 # plt.imsave(’%s/prev.png’ % (opt.outf), functions.convert image np(prev), vmin=0, vmax=1)

470 # plt.imsave(’%s/noise.png’ % (opt.outf), functions.convert image np(noise), vmin=0, vmax=1)

471 # plt.imsave(’%s/z prev.png’ % (opt.outf), functions.convert image np(z prev), vmin=0, vmax=1)

472

473 t o r c h . s ave ( z o p t , ’\%s / z o p t . p t h ’ \% ( o p t . o u t f ) )

474

475 schedulerD.step()

476 schedulerG.step()

477 if opt.use schedulers ¿ 0:

478 schedulerD.step()

479 schedulerG.step()
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480

481 functions.save networks(netG, netD, z opt, opt)

482 return z opt, in s, netG

483

484 functions.save networks(netG,netD,z opt,opt)

485 return z opt,in s,netG

486

487 def draw concat(Gs,Zs,reals,NoiseAmp,in s,mode,m noise,m image,opt):

488 def draw concat(Gs, Zs, reals, sr list, NoiseAmp, in s, mode, opt):

489 # This function generates output from the previous scale that is up-scaled for the current scale

490 # It does this by starting at the bottom of the pyramid and working it’s way up. At each level it

491 # uses the already trained generators to create output, upscale it and feed it to the next level.

492 # The first option rand (random presumably) generates it’s own random noise maps at each level which

493 # should result in an entirely new, random image. The Next option reconstruction (presumably) uses

494 # the saved noise maps for each level which (if I understand correctly) allows for a recreation of the

495 # image previously used. It is what is used for calculating the reconstruction loss.

496 G z = i n s

497

498 pad num = int(((opt.ker size - 1) * opt.num layer) / 2) * opt.dilation

499

500 i f l e n ( Gs ) > 0 :

501 # This mode generates it’s own noise

502 i f mode == ’ r and ’ :

503 c o u n t = 0

504 pad noise = int(((opt.ker size-1)*opt.num layer)/2)

505 i f o p t . mode == ’ a n i m a t i o n\ t r a i n ’ :

506 p a d n o i s e = 0

507 for G,Z opt,real curr,real next,noise amp in zip(Gs,Zs,reals,reals[1:],NoiseAmp):

508 for G, Z opt, real curr, real next, noise amp in zip(Gs, Zs, reals, reals[1:], NoiseAmp):

509

510 if opt.alt pyramid exp ¿ 0:

511 level = count

512 calc ker size=opt.ker size pyr[level]

513 pad num = int(((opt.ker size - 1) * opt.num layer) / 2) * opt.dilation

514

515 i f c o u n t == 0 :

516 z = functions.generate noise([1, Z opt.shape[2] - 2 * pad noise, Z opt.shape[3] - 2 * pad noise], device=opt.device)

517 z = z.expand(1, 3, z.shape[2], z.shape[3])

518 z = functions.generate noise([1, Z opt.shape[2] - 2 * pad num], device=opt.device)

519 z = z.expand(1, 1, z.shape[2])

520 e l s e :

521 z = functions.generate noise([opt.nc z,Z opt.shape[2] - 2 * pad noise, Z opt.shape[3] - 2 * pad noise], device=opt.device)

522 z = m noise(z)

523 G z = G z[:,:,0:real curr.shape[2],0:real curr.shape[3]]

524 G z = m image(G z)

525 z in = noise amp*z+G z

526 G z = G(z in.detach(),G z)

527 G z = imresize(G z,1/opt.scale factor,opt)

528 G z = G z[:,:,0:real next.shape[2],0:real next.shape[3]]

529 z = functions.generate noise([opt.nc z, Z opt.shape[2] - 2 * pad num], device=opt.device)

530 z = AudioSample.static pad(z, pad num, opt)

531 G z = G z[:, :, 0:real curr.shape[2]]

532 G z = AudioSample.static pad(G z, pad num, opt)
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533 z in = noise amp * z + G z

534 G z = G(z in.detach(), G z)

535 if opt.normalize generator output ¿0:

536 G z=AudioSample.static normalize(G z)

537 G z = AudioSample.resample to julius static(G z, sr list[count], sr list[count + 1])

538

539 if opt.adjust upsampled ¿ 0:

540 if G z.shape[2] ¡ real next.shape[2]:

541 dif = real next.shape[2] - G z.shape[2]

542 G z = torch.cat((G z, torch.zeros([1,1,dif], dtype=torch.float32)), dim=2)

543

544 # G z = imresize(G z, 1 / opt.scale factor, op t)

545 G z = G z[:, :, 0:real next.shape[2]]

546 c o u n t += 1

547 # This function uses Z opt for noise

548 i f mode == ’ r e c ’ :

549 c o u n t = 0

550 for G,Z opt,real curr,real next,noise amp in zip(Gs,Zs,reals,reals[1:],NoiseAmp):

551 G z = G z[:, :, 0:real curr.shape[2], 0:real curr.shape[3]]

552 G z = m image(G z)

553 z in = noise amp*Z opt+G z

554 G z = G(z in.detach(),G z)

555 G z = imresize(G z,1/opt.scale factor,opt)

556 G z = G z[:,:,0:real next.shape[2],0:real next.shape[3]]

557 #if count != (len(Gs)-1):

558 # G z = m image(G z)

559 for G, Z opt, real curr, sr curr, real next, noise amp in zip(Gs, Zs, reals, sr list, reals[1:], NoiseAmp):

560

561 if opt.alt pyramid exp ¿ 0:

562 level = count

563 calc ker size=opt.ker size pyr[level]

564 pad num = int(((opt.ker size - 1) * opt.num layer) / 2) * opt.dilation

565

566 G z = G z[:, :, 0:real curr.shape[2]]

567 G z = AudioSample.static pad(G z, pad num, opt)

568 z in = noise amp * Z opt + G z

569 G z = G(z in.detach(), G z)

570 if opt.normalize generator output ¿0:

571 G z=AudioSample.static normalize(G z)

572 G z = AudioSample.resample to julius static(G z, sr list[count], sr list[count + 1])

573

574 if opt.adjust upsampled ¿ 0:

575 if G z.shape[2] ¡ real next.shape[2]:

576 dif = real next.shape[2] - G z.shape[2]

577 G z = torch.cat((G z, torch.zeros([1,1,dif], dtype=torch.float32)), dim=2)

578

579 # G z = imresize(G z, 1 / opt.scale factor, opt)

580 G z = G z[:, :, 0:real next.shape[2]]

581 # Lines that were commented out in the original function removed here

582 c o u n t += 1

583 re turn G\z

584

585 . . .
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586

587

588 t r a i n s i n g l e s c a l e ( D cur r , G cur r , r e a l s [ : s c a l e n u m + 1] , Gs [ : s c a l e n u m ] , Zs [ : s c a l e n u m ] , i n s , NoiseAmp [ : s c a l e n u m ] , opt , c e n t e r s =

c e n t e r s )

589 z curr, in s, G curr = train single scale(D curr, G curr, reals[:scale num + 1], Gs[:scale num],

590 Zs[:scale num], in s, NoiseAmp[:scale num], opt, centers=centers)

591

592 G curr = functions.reset grads(G curr,False)

593 G curr = functions.reset grads(G curr, False)

594 G c u r r . e v a l ( )

595 D curr = functions.reset grads(D curr,False)

596 D curr = functions.reset grads(D curr, False)

597 D c u r r . e v a l ( )

598

599 Gs [ s c a l e n u m ] = G c u r r

600 Zs [ s c a l e n u m ] = z c u r r

601 NoiseAmp [ s c a l e n u m ] = o p t . no i se amp

602 t o r c h . s ave ( Zs , ’%s / Zs . p t h ’ % ( o p t . o u t ) )

603 t o r c h . s ave ( Gs , ’%s / Gs . p t h ’ % ( o p t . o u t ) )

604 t o r c h . s ave ( r e a l s , ’%s / r e a l s . p t h ’ % ( o p t . o u t ) )

605 t o r c h . s ave ( NoiseAmp , ’%s / NoiseAmp . p t h ’ % ( o p t . o u t ) )

606

607 scale num+=1

608 scale num += 1

609 n f c p r e v = o p t . n f c

610 del D curr,G curr

611 del D curr, G curr

612 re turn

613

614

615 def i n i t m o d e l s ( o p t ) :

616

617 #generator initialization:

618 # generator initialization:

619 netG = models . Gene ra to rConca tSk ip2CleanAdd ( o p t ) . t o ( o p t . d e v i c e )

620 netG . apply ( models . w e i g h t s\ i n i t )

621 i f o p t . netG != ’ ’ :

622 netG . l o a d s t a t e d i c t ( t o r c h . l o a d ( o p t . netG ) )

623 p r i n t ( netG )

624

625 #discriminator initialization:

626

627 # discriminator initialization:

628 netD = models . W D i s c r i m i n a t o r ( o p t ) . t o ( o p t . d e v i c e )

629 netD . apply ( models . w e i g h t s i n i t )

630 i f o p t . netD != ’ ’ :

631 netD . l o a d s t a t e d i c t ( t o r c h . l o a d ( o p t . netD ) )

632 p r i n t ( netD )

633

634

635 re turn netD , netG

Listing A.5 models.py
1 import t o r c h . nn as nn

2 import numpy as np
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3 import t o r c h . nn . f u n c t i o n a l a s F

4 from SinGAN.AudioSample import AudioSample

5

6

7 c l a s s ConvBlock ( nn . S e q u e n t i a l ) :

8 def init (self, in channel, out channel, ker size, padd, stride):

9 def init (self, in channel, out channel, ker size, padd, stride, batch norm, dilation, dropout=0,

10 use RELU=False):

11 super ( ConvBlock , s e l f ) .\ \ i n i t \ \ ( )

12 self.add module(’conv’, nn.Conv2d(in channel, out channel, kernel size=ker size, stride=stride, padding=padd)),

13 self.add module(’norm’, nn.BatchNorm2d(out channel)),

14 self.add module(’LeakyRelu’, nn.LeakyReLU(0.2, inplace=True))

15 self.add module(’conv’,

16 nn.Conv1d(in channel, out channel, dilation=dilation, kernel size=ker size, stride=stride,

17 padding=padd)),

18 # TODO: Get Batch norm working as an optional parameter

19 if batch norm:

20 self.add module(’norm’, nn.BatchNorm1d(out channel)),

21 if use RELU:

22 self.add module(’Relu’, nn.LeakyReLU(inplace=True))

23 else:

24 self.add module(’LeakyRelu’, nn.LeakyReLU(0.2, inplace=True))

25 if dropout ¿ 0:

26 self.add module(’Dropout’, nn.Dropout(p=dropout))

27

28

29 def w e i g h t s i n i t (m) :

30 c l a s s n a m e = m. c l a s s . n a m e

31 if classname.find(’Conv2d’) != -1:

32 if classname.find(’Conv1d’) != -1:

33 m. w e ig h t . d a t a . n o r m a l ( 0 . 0 , 0 . 0 2 )

34 e l i f c l a s s n a m e . f i n d ( ’Norm ’ ) != −1:

35 m. w e ig h t . d a t a . n o r m a l ( 1 . 0 , 0 . 0 2 )

36 m. b i a s . d a t a . f i l l ( 0 )

37

38 c l a s s W D i s c r i m i n a t o r ( nn . Module ) :

39 def i n i t ( s e l f , o p t ) :

40 super ( WDisc r imina to r , s e l f ) . i n i t ( )

41 s e l f . i s c u d a = t o r c h . cuda . i s a v a i l a b l e ( )

42 N = i n t ( o p t . n f c )

43 self.head = ConvBlock(opt.nc im, N, opt.ker size, opt.padd size, 1)

44 self.head = ConvBlock(opt.nc aud, N, opt.ker size, opt.padd size, opt.stride, opt.batch norm,

45 dilation=opt.dilation)

46 s e l f . body = nn . S e q u e n t i a l ( )

47 f o r i in range ( o p t . num\ l a y e r − 2) :

48 N = int(opt.nfc / pow(2, (i + 1)))

49 block = ConvBlock(max(2 * N, opt.min nfc), max(N, opt.min nfc), opt.ker size, opt.padd size, 1)

50 if opt.change channel count ¿ 0:

51 N = int(opt.nfc / pow(2, (i + 1)))

52 else:

53 N = 1

54 block = ConvBlock(max(2 * N, opt.min nfc), max(N, opt.min nfc), opt.ker size, opt.padd size, opt.stride,

55 opt.batch norm, dilation=opt.dilation, dropout=opt.dropout)

56 s e l f . body . add module ( ’ b l o c k%d ’ % ( i + 1) , b l o c k )

57 self.tail = nn.Conv2d(max(N, opt.min nfc), 1, kernel size=opt.ker size, stride=1, padding=opt.padd size)
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58 self.tail = nn.Conv1d(max(N, opt.min nfc), 1, kernel size=opt.ker size, stride=1, dilation=opt.dilation,

59 padding=opt.padd size)

60

61 def f o r w a r d ( s e l f , x ) :

62 x = self.head(x)

63 x = self.body(x)

64 x = self.tail(x)

65 x = self.head(x) # Layer 1

66 x = self.body(x) # Layers 2-4

67 x = self.tail(x) # Layer5

68 re turn x

69

70

71 c l a s s Gene ra to rConca tSk ip2CleanAdd ( nn . Module ) :

72 def i n i t ( s e l f , o p t ) :

73 self.opt = opt

74 super ( Genera to rConca tSk ip2CleanAdd , s e l f ) . i n i t ( )

75 s e l f . i s c u d a = t o r c h . cuda . i s\ a v a i l a b l e ( )

76 N = o p t . n f c

77 self.head = ConvBlock(opt.nc im, N, opt.ker size, opt.padd size,

78 1) # GenConvTransBlock(opt.nc z,N,opt.ker size,opt.padd size,opt.stride)

79 self.head = ConvBlock(opt.nc aud, N, opt.ker size, opt.padd size, opt.stride,

80 opt.batch norm, dilation=opt.dilation,

81 use RELU=opt.RELU in gen) # GenConvTransBlock(opt.nc z,N,opt.ker size,opt.padd size,opt.stride)

82 s e l f . body = nn . S e q u e n t i a l ( )

83 f o r i in range ( o p t . n u m l a y e r − 2) :

84 N = int(opt.nfc / pow(2, (i + 1)))

85 block = ConvBlock(max(2 * N, opt.min nfc), max(N, opt.min nfc), opt.ker size, opt.padd size, 1)

86 if opt.change channel count ¿ 0:

87 N = int(opt.nfc / pow(2, (i + 1)))

88 else:

89 N = 1

90 block = ConvBlock(max(2 * N, opt.min nfc), max(N, opt.min nfc), opt.ker size, opt.padd size, opt.stride,

91 opt.batch norm, dilation=opt.dilation, use RELU=opt.RELU in gen)

92 s e l f . body . add module ( ’ b l o c k%d ’ % ( i + 1) , b l o c k )

93 s e l f . t a i l = nn . S e q u e n t i a l (

94 nn.Conv2d(max(N, opt.min nfc), opt.nc im, kernel size=opt.ker size, stride=1, padding=opt.padd size),

95 nn.Conv1d(max(N, opt.min nfc), opt.nc aud, kernel size=opt.ker size, stride=opt.stride,

96 dilation=opt.dilation, padding=opt.padd size),

97 nn . Tanh ( )

98 )

99

100 def f o r w a r d ( s e l f , x , y ) :

101 x = s e l f . head ( x )

102 x = s e l f . body ( x )

103 x = s e l f . t a i l ( x )

104 # These next two lines exist because y may (and seems to often be, at least for images) bigger

105 # Then x. This trims off some off from each edge to make them the same size. Assumes it’s the same

106 # amount bigger in each dimension

107

108 i n d = i n t ( ( y . shape [ 2 ] − x . shape [ 2 ] ) / 2 )

109 y = y[:, :, ind:(y.shape[2] - ind), ind:(y.shape[3] - ind)]

110 y = y[:, :, ind:(y.shape[2] - ind)]

111 re turn x + y
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Listing A.6 manipulate.py
1 # T h i s i s t h e r e l e v a n t p a r t o f t h e f i l e o n l y

2 def SinGAN generate(Gs,Zs,reals,NoiseAmp,opt,in s=None,scale v=1,scale h=1,n=0,gen start scale=0,num samples=50):

3

4 def SinGAN generate(Gs, Zs, reals, NoiseAmp, opt, in s=None, scale v=1, scale h=1, n=0, gen start scale=0, num samples=50):

5 # i f t o r c h . i s t e n s o r ( i n s ) == F a l s e :

6 i f in\ s i s None :

7 in s = torch.full(reals[0].shape, 0, device=opt.device)

8 in s = torch.full(reals[0].shape, 0, dtype=torch.float32, device=opt.device)

9 i m a g e s c u r = [ ]

10 f o r G, Z opt , no i se amp in z i p ( Gs , Zs , NoiseAmp ) :

11 pad1 = ((opt.ker size-1)*opt.num layer)/2

12 m = nn.ZeroPad2d(int(pad1))

13 pad1 = int(((opt.ker size - 1) * opt.num layer) / 2) * opt.dilation

14

15 if opt.alt pyramid exp ¿ 0:

16 level = n

17 calc ker size=opt.ker size pyr[level]

18 pad1 = int(((opt.ker size - 1) * opt.num layer) / 2) * opt.dilation

19

20 # m = nn.ZeroPad2d(int(pad1))

21 nzx = ( Z op t . shape [2] − pad1 *2) * s c a l e v

22 nzy = (Z opt.shape[3]-pad1*2)*scale h

23 # nzy = (Z opt.shape[3]-pad1*2)*scale h

24

25 i m a g e s p r e v = i m a g e s c u r

26 i m a g e s c u r = [ ]

27

28

29

30 for i in range(0,num samples,1):

31

32 i f n == 0 :

33 z curr = functions.generate noise([1,nzx,nzy], device=opt.device)

34 z curr = z curr.expand(1,3,z curr.shape[2],z curr.shape[3])

35 z curr = m(z curr)

36 z curr = functions.generate noise([1, nzx], device=opt.device)

37 z curr = z curr.expand(1, 1, z curr.shape[2])

38 z curr = AudioSample.static pad(z curr, pad1, opt)

39 e l s e :

40 z curr = functions.generate noise([opt.nc z,nzx,nzy], device=opt.device)

41 z curr = m(z curr)

42 z curr = functions.generate noise([opt.nc aud, nzx], device=opt.device)

43 z curr = AudioSample.static pad(z curr, pad1, opt)

44

45 i f i m a g e s p r e v == [ ] :

46 I prev = m(in s)

47 I prev = AudioSample.static pad(in s, pad1, opt)

48 # I p r e v = m( I p r e v )

49 # I p r e v = I p r e v [ : , : , 0 : z c u r r . shape [ 2 ] , 0 : z c u r r . shape [ 3 ] ]

50 # I p r e v = f u n c t i o n s . upsampl ing ( I p r e v , z c u r r . shape [ 2 ] , z c u r r . shape [ 3 ] )

51 e l s e :

52 I p r e v = i m a g e s p r e v [ i ]

53 I prev = imresize(I prev,1/opt.scale factor, opt)
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54 #I prev = imresize(I prev,1/opt.scale factor, opt)

55 I prev = AudioSample.resample to julius static(I prev, opt.SR pyr[n-1], opt.SR pyr[n])

56 i f o p t . mode != ”SR” :

57 I prev = I prev[:, :, 0:round(scale v * reals[n].shape[2]), 0:round(scale h * reals[n].shape[3])]

58 I prev = m(I prev)

59 I prev = I prev[:,:,0:z curr.shape[2],0:z curr.shape[3]]

60 I prev = functions.upsampling(I prev,z curr.shape[2],z curr.shape[3])

61 I prev = I prev[:, :, 0:round(scale v * reals[n].shape[2])]

62 I prev = AudioSample.static pad(I prev, pad1, opt)

63 I prev = I prev[:,:,0:z curr.shape[2]]

64 #I prev = functions.upsampling(I prev,z curr.shape[2],z curr.shape[3])

65 #I prev = AudioSample.resample to julius static(I prev, opt.SR pyr[n - 1], opt.SR pyr[n])

66 if z curr.shape != I prev.shape:

67

68 if I prev.shape[2] ¡ z curr.shape[2]:

69 dif = z curr.shape[2] - I prev.shape[2]

70 I prev = torch.cat((I prev, torch.zeros([1, 1, dif], dtype=torch.float32)), dim=2)

71 e l s e :

72 I prev = m(I prev)

73 I prev = AudioSample.static pad(I prev, pad1, opt)

74

75 i f n < g e n s t a r t s c a l e :

76 z c u r r = Z op t

77

78 z in = noise amp*(z curr)+I prev

79 z in = noise amp*(z curr)+I prev #z curr: 582, I prev: 492

80 I c u r r = G( z i n . d e t a c h ( ) , I p r e v )

81

82 i f n == l e n ( r e a l s ) −1:

83 i f o p t . mode == ’ t r a i n ’ :

84 d i r 2 s a v e = ’\%s / RandomSamples/\%s / g e n s t a r t s c a l e =\%d ’ \% ( o p t . out , o p t . i n p u t n a m e [ : − 4 ] , g e n s t a r t s c a l e )

85 e l s e :

86 dir2save = functions.generate dir2save(opt)

87 if opt.mode == ’random samples’:

88 dir2save = ’%s/RandomSamples/%s/gen start scale=%d’ % (opt.out, opt.input name[:-4], opt.gen start scale)

89 t r y :

90 os . m a k e d i r s ( d i r 2 s a v e )

91 e xc ep t OSError :

92 pass

93 i f ( o p t . mode != ” h a r m o n i z a t i o n ” ) & ( o p t . mode != ” e d i t i n g ” ) & ( o p t . mode != ”SR” ) & ( o p t . mode != ” p a i n t 2 i m a g e ” )

:

94 plt.imsave(’%s/%d.png’ % (dir2save, i), functions.convert image np(I curr.detach()), vmin=0,vmax=1)

95 #plt.imsave(’%s/%d.png’ % (dir2save, i), functions.convert image np(I curr.detach()), vmin=0,vmax=1)

96 AudioSample.static save(I curr.detach(), opt.SR pyr[-1], ’%s/%d.wav’ % (dir2save, i))

97 # p l t . imsave (’\% s/\% d \%d . png ’ \% ( d i r 2 s a v e , i , n ) , f u n c t i o n s . c o n v e r t i m a g e n p ( I c u r r . d e t a c h ( ) ) , vmin =0 , vmax

=1)

98 # p l t . imsave (’\% s / i n s . png ’ \% ( d i r 2 s a v e ) , f u n c t i o n s . c o n v e r t i m a g e n p ( i n s ) , vmin =0 , vmax =1)

99 i m a g e s c u r . append ( I c u r r )

100 n+=1

101 re turn I c u r r . d e t a c h ( )

Listing A.7 random samples.py
1 from c o n f i g import g e t\ a r g u m e n t s
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2 from SinGAN . m a n i p u l a t e import *

3 from SinGAN . t r a i n i n g import *

4 from SinGAN . i m r e s i z e import i m r e s i z e

5 import SinGAN . f u n c t i o n s as f u n c t i o n s

6

7

8 i f n a m e == ’ m a i n ’ :

9 p a r s e r = g e t a r g u m e n t s ( )

10 parser.add argument(’–input dir’, help=’input image dir’, default=’Input/Images’)

11 parser.add argument(’–input dir’, help=’input image dir’, default=’Input/Audio’)

12 p a r s e r . add a rgumen t ( ’−− i n p u t n a m e ’ , help = ’ i n p u t image name ’ , r e q u i r e d =True )

13 p a r s e r . add a rgumen t ( ’−−mode ’ , help = ’ random samples | r a n d o m s a m p l e s a r b i t r a r y s i z e s ’ , d e f a u l t = ’ t r a i n ’ , r e q u i r e d =True )

14 # f o r random samples :

15 p a r s e r . add a rgumen t ( ’−− g e n s t a r t s c a l e ’ , type = i n t , help = ’ g e n e r a t i o n s t a r t s c a l e ’ , d e f a u l t =0)

16 # f o r r a n d o m s a m p l e s a r b i t r a r y\ s i z e s :

17 p a r s e r . add a rgumen t ( ’−− s c a l e h ’ , type = f l o a t , help = ’ h o r i z o n t a l r e s i z e f a c t o r f o r random samples ’ , d e f a u l t = 1 . 5 )

18 p a r s e r . add a rgumen t ( ’−− s c a l e v ’ , type = f l o a t , help = ’ v e r t i c a l r e s i z e f a c t o r f o r random samples ’ , d e f a u l t =1)

19

20 o p t = p a r s e r . p a r s e a r g s ( )

21 o p t = f u n c t i o n s . p o s t c o n f i g ( o p t )

22 Gs = [ ]

23 Zs = [ ]

24 r e a l s = [ ]

25 NoiseAmp = [ ]

26 dir2save = functions.generate dir2save(opt)

27 opt.SR pyr=[800, 1600, 2150, 2850, 3825, 5100, 6750, 9000, 12000, 16000, 24000, 32000]

28

29

30

31 + if opt.mode == ’random samples’:

32 dir2save = ’%s/RandomSamples/%s/gen start scale=%d’ % (opt.out, opt.input name[:-4], opt.gen start scale)

33 else:

34 dir2save = functions.generate dir2save(opt)

35 i f d i r 2 s a v e i s None :

36 p r i n t ( ’ t a s k does n o t e x i s t ’ )

37 e l i f ( os . p a t h . e x i s t s ( d i r 2 s a v e ) ) :

38 i f o p t . mode == ’ random samples ’ :

39 p r i n t ( ’ random samples f o r image \%s , s t a r t s c a l e=\%d , a l r e a d y e x i s t ’ \% ( o p t . inpu t name , o p t . g e n s t a r t s c a l e ) )

40 e l i f o p t . mode == ’ r a n d o m s a m p l e s a r b i t r a r y s i z e s ’ :

41 p r i n t ( ’ random samples f o r image \%s a t s i z e : s c a l e h=\%f , s c a l e v=\%f , a l r e a d y e x i s t ’ \% ( o p t . inpu t name , o p t .

s c a l e h , o p t . s c a l e v ) )

42 e l s e :

43 t r y :

44 os . m a k e d i r s ( d i r 2 s a v e )

45 e xc ep t OSError :

46 pass

47

48 i f o p t . mode == ’ random samples ’ :

49 real = functions.read image(opt)

50 functions.adjust scales2image(real, opt)

51 inputpath = opt.input dir + ”/” + opt.input name

52 real = AudioSample(opt, inputpath, sr=16000)

53 functions.adjust scales2data(real, opt)

54 opt.stop scale = len(opt.SR pyr) - 1

55 Gs , Zs , r e a l s , NoiseAmp = f u n c t i o n s . l o a d t r a i n e d p y r a m i d ( o p t )

56 in s = functions.generate in2coarsest(reals,1,1,opt)
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57 in s = functions.generate in2coarsest(reals, 1, 1, opt)

58 SinGAN genera te ( Gs , Zs , r e a l s , NoiseAmp , opt , g e n s t a r t s c a l e = o p t . g e n s t a r t s c a l e )

59

60

61 e l i f o p t . mode == ’ r a n d o m s a m p l e s a r b i t r a r y s i z e s ’ :

62 r e a l = f u n c t i o n s . r e a d i m a g e ( o p t )

63 f u n c t i o n s . a d j u s t s c a l e s 2 i m a g e ( r e a l , o p t )

64 Gs , Zs , r e a l s , NoiseAmp = f u n c t i o n s . l o a d t r a i n e d p y r a m i d ( o p t )

65 i n s = f u n c t i o n s . g e n e r a t e i n 2 c o a r s e s t ( r e a l s , o p t . s c a l e v , o p t . s c a l e h , o p t )

66 SinGAN genera te ( Gs , Zs , r e a l s , NoiseAmp , opt , i n s , s c a l e v = o p t . s c a l e v , s c a l e h = o p t . s c a l e h )

Listing A.8 functions.py
1 # T h i s i s t h e r e l e v a n t p a r t o f t h e f i l e o n l y

2

3 def generate noise(size,num samp=1,device=’cuda’,type=’gaussian’, scale=1):

4

5 +def generate noise(size, num samp=1, device=’cuda’, type=’gaussian’, scale=1):

6 #We’re gonna start by only modifying gaussian because that seems to be the default

7 i f type == ’ g a u s s i a n ’ :

8 noise = torch.randn(num samp, size[0], round(size[1]/scale), round(size[2]/scale), device=device)

9 noise = upsampling(noise,size[1], size[2])

10 if type ==’gaussian mixture’:

11 noise1 = torch.randn(num samp, size[0], size[1], size[2], device=device)+5

12 noise2 = torch.randn(num samp, size[0], size[1], size[2], device=device)

13 noise = noise1+noise2

14 noise = torch.randn(num samp, size[0], round(size[1] / scale), device=device)

15 noise = upsampling(noise, size[1])

16 ”””

17 if type == ’gaussian mixture’:

18 noise1 = torch.randn(num samp, size[0], size[1], device=device) + 5

19 noise2 = torch.randn(num samp, size[0], size[1], device=device)

20 noise = noise1 + noise2

21 i f type == ’ un i fo rm ’ :

22 noise = torch.randn(num samp, size[0], size[1], size[2], device=device)

23 noise = torch.randn(num samp, size[0], size[1], device=device)

24 ”””

25 re turn n o i s e

26

27

28 . . . .

29

30

31

32 def np2torch(x,opt):

33 if opt.nc im == 3:

34 x = x[:,:,:,None]

35 x = x.transpose((3, 2, 0, 1))/255

36 else:

37 x = color.rgb2gray(x)

38 x = x[:,:,None,None]

39 x = x.transpose(3, 2, 0, 1)

40 # Function is an eddited version of np2torch

41 # Added by Levi Pfantz on 10/14/2020
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42 def np2torch(x, is not cuda=False):

43 x = t o r c h . from numpy ( x )

44 if not(opt.not cuda):

45 if not (is not cuda):

46 x = move to gpu ( x )

47 x = x.type(torch.cuda.FloatTensor) if not(opt.not cuda) else x.type(torch.FloatTensor)

48 #x = x.type(torch.FloatTensor)

49 x = norm(x)

50 # FloatTensor is a 32bit float data type. I’m going to recommend all input audio is in 32 bit float.

51 x = x.type(torch.cuda.FloatTensor) if not (is not cuda) else x.type(torch.FloatTensor)

52 # x = x.type(torch.FloatTensor)

53 # x = norm(x)

54 re turn x

55

56

57 . . . .

58

59

60 def adjust scales2data(real ,opt):

61 #opt.num scales = int((math.log(math.pow(opt.min size / (real .shape[2]), 1), opt.scale factor init))) + 1

62 opt.num scales = math.ceil((math.log(math.pow(opt.min size / (min(real .shape[2], real .shape[3])), 1), opt.scale factor init))) + 1

63 scale2stop = math.ceil(math.log(min([opt.max size, max([real .shape[2], real .shape[3]])]) / max([real .shape[2], real .shape[3]]),opt.scale factor init))

64

65 def adjust scales2data(real, opt):

66 real = real.data

67 sr = real.sr

68 # opt.num scales = int((math.log(math.pow(opt.min size / (real .shape[2]), 1), opt.scale factor init))) + 1

69 opt.num scales = math.ceil((math.log(math.pow(opt.min size / (real .shape[2]), 1), opt.scale factor init))) + 1

70 scale2stop = math.ceil(math.log(min([opt.max size, real .shape[2]]) / real .shape[2], opt.scale factor init))

71 o p t . s t o p s c a l e = o p t . num\ s c a l e s − s c a l e 2 s t o p

72 opt.scale1 = min(opt.max size / max([real .shape[2], real .shape[3]]),1) # min(250/max([real .shape[0],real .shape[1]]),1)

73 real = imresize(real , opt.scale1, opt)

74 #opt.scale factor = math.pow(opt.min size / (real.shape[2]), 1 / (opt.stop scale))

75 opt.scale factor = math.pow(opt.min size/(min(real.shape[2],real.shape[3])),1/(opt.stop scale))

76 scale2stop = math.ceil(math.log(min([opt.max size, max([real .shape[2], real .shape[3]])]) / max([real .shape[2], real .shape[3]]),opt.scale factor init))

77 opt.scale1 = min(opt.max size / real .shape[2], 1) # min(250/max([real .shape[0],real .shape[1]]),1)

78 realsize = int(sr * opt.scale1)

79 # opt.scale factor = math.pow(opt.min size / (real.shape[2]), 1 / (opt.stop scale))

80 opt.scale factor = math.pow(opt.min size / (realsize), 1 / (opt.stop scale))

81 scale2stop = math.ceil(math.log(min([opt.max size, realsize]) / realsize, opt.scale factor init))

82 o p t . s t o p s c a l e = o p t . n u m s c a l e s − s c a l e 2 s t o p

83 return real

84 return opt.scale1, opt.scale factor

85

86

87 . . . .

88

89

90 def creat reals pyramid(real,reals,opt):

91 real = real[:,0:3,:,:]

92 for i in range(0,opt.stop scale+1,1):

93 scale = math.pow(opt.scale factor,opt.stop scale-i)

94 curr real = imresize(real,scale,opt)

95 reals.append(curr real)
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96 return reals

97

98 def creat reals pyramid(real, reals, opt, verbose=False):

99

100 reals.append(real.data)

101 for i in range(0, opt.stop scale, 1):

102 curr sr=opt.SR pyr[-(1+i)]

103 new sr=opt.SR pyr[-(2+i)]

104 result=AudioSample.resample to julius static(reals[-1], curr sr, new sr)

105 if result.shape[2] % 2 != 0 and opt.make input tensor even ¿ 0:

106 result = result[:, :, 0:result.shape[2] - 1]

107 reals.append(result)

108

109 if verbose:

110 print(”On level:”, i, ”curr sr is”, curr sr, ”new sr is: ”,new sr, ”justed addes shape is: ”, reals[-1].shape)

111 reals.reverse()

112 if True:

113 if os.path.exists(’Audio pyramid’):

114 shutil.rmtree(’Audio pyramid’)

115 os.makedirs(’Audio pyramid’)

116 for x in range(len(reals)):

117 AudioSample.static save(reals[x], opt.SR pyr[x], ’Audio pyramid/%s.wav’ % (str(x)))

118 return reals

119

120 def creat reals pyramid torch(real, reals, opt, verbose=False):

121 sr list=[]

122 for i in range(0, opt.stop scale + 1, 1):

123 scale = math.pow(opt.scale factor, opt.stop scale - i)

124 curr real = real.clone() # for some reason curr real = real.clone().resample by(scale) causes a bug...

125 curr real.resample by(scale)

126 reals.append(curr real.data)

127 sr list.append(curr real.sr)

128 if verbose:

129 print(”On level:”, i, ”New scale is”, scale, ”new sr is: ”,curr real.sr, ”curr real.shape is: ”, curr real.data.shape)

130 return reals, sr list

Listing A.9 AudioSample.py
1

2 import t o r c h a u d i o

3 import t o r c h

4 import j u l i u s

5

6

7 c l a s s AudioSample :

8

9 def i n i t ( s e l f , opt , pa th , c l o n e = F a l s e , d a t a =None , s r =None ) :

10 s e l f . o p t = o p t

11 s e l f . p a t h = p a t h

12 i f not c l o n e :

13 i f o p t . a u d i o b a c k e n d == ” s o u n d f i l e ” :

14 s e l f . da t a , s e l f . s r = t o r c h a u d i o . l o a d ( pa th , n o r m a l i z a t i o n = o p t . norm )

15 e l i f o p t . a u d i o b a c k e n d == ” s o x i o ” :

16 s e l f . da t a , s e l f . s r = t o r c h a u d i o . l o a d ( pa th , n o r m a l i z e = o p t . norm )
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17 i f not o p t . n o t c u d a and t o r c h . cuda . i s a v a i l a b l e ( ) :

18 s e l f . d a t a = s e l f . d a t a . t o ( t o r c h . d e v i c e ( ’ cuda ’ ) )

19

20 # Data i s s t o r e d i n a t e n s o r o f shape 1 ( b a t c h s i z e ) x aud io c h a n n e l s x w i d t h ( f l o a t s i n c h a n n e l )

21 s e l f . d a t a = s e l f . d a t a [ 0 ] . view ( 1 , 1 , −1)

22 i f s e l f . s r != s r :

23 s e l f . r e s a m p l e t o j u l i u s ( s r )

24

25 i f s e l f . d a t a . shape [ 2 ] % 2 != 0 and o p t . m a k e i n p u t t e n s o r e v e n > 0 :

26 s e l f . d a t a = s e l f . d a t a [ : , : , 0 : s e l f . d a t a . shape [ 2 ] − 1 ]

27 e l s e :

28 s e l f . d a t a = d a t a

29 s e l f . s r = s r

30

31 @ s t a t i c m e t h o d

32 def s t a t i c s a v e ( d a t a i n , s r i n , p a t h i n ) :

33 d a t a i n = d a t a i n . t o ( t o r c h . d e v i c e ( ’ cpu ’ ) )

34 t o r c h a u d i o . s ave ( p a t h i n , d a t a i n . view ( 1 , −1) , s r i n , 32)

35

36

37

38 @ s t a t i c m e t h o d

39 def s t a t i c p a d ( d a t a i n , p a d e a c h s i d e b y , o p t ) :

40 i f o p t . p a d w i t h n o i s e < 1 :

41 p a r t 1 = t o r c h . z e r o s ( 1 , d a t a i n . shape [ 1 ] , p a d e a c h s i d e b y , d t y p e = t o r c h . f l o a t 3 2 )

42 p a r t 2 = p a r t 1

43 e l s e :

44 i f o p t . n o t c u d a > 0 :

45 d e v i c e = ’ cpu ’

46 e l s e :

47 d e v i c e = ’ cuda ’

48

49 p a r t 1 = t o r c h . r andn ( 1 , d a t a i n . shape [ 1 ] , p a d e a c h s i d e b y , d e v i c e = d e v i c e )

50 p a r t 2 = t o r c h . r andn ( 1 , d a t a i n . shape [ 1 ] , p a d e a c h s i d e b y , d e v i c e = d e v i c e )

51 d a t a i n = t o r c h . c a t ( ( p a r t 1 , d a t a i n , p a r t 2 ) , dim =2)

52 # d a t a i n=t o r c h . c a t ( ( d a t a i n , p a r t 1 ) , dim =2)

53 re turn d a t a i n

54

55 @ s t a t i c m e t h o d

56 def r e s a m p l e t o j u l i u s s t a t i c ( d a t a i n , s r i n , new sr ) :

57 re turn j u l i u s . r e s a m p l e f r a c ( d a t a i n , s r i n , new sr )

58

59 def r e s a m p l e t o j u l i u s ( s e l f , t a r g e t ) :

60 s e l f . d a t a = j u l i u s . r e s a m p l e f r a c ( s e l f . da t a , s e l f . s r , t a r g e t )

61 s e l f . s r = t a r g e t

62

63

64 def r e s a m p l e b y ( s e l f , s c a l e ) :

65

66 s a v e d s h a p e = s e l f . d a t a . shape

67 i f s a v e d s h a p e [ 1 ] == 1 :

68 newsr = i n t ( s e l f . s r * s c a l e )

69 s e l f . d a t a = ( t o r c h a u d i o . t r a n s f o r m s . Resample ( o r i g f r e q = s e l f . s r , n e w f r e q =newsr ) ( s e l f . d a t a ) [ 0 , 0 , : ] ) . view ( 1 ,

70 1 ,

71 −1)

72 # T h ing s are m o s t l y o n l y s e t u p f o r one c h a n n e l . T h i s i s t h e e x c e p t i o n

73 e l i f s a v e d s h a p e [ 1 ] == 2 :
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74 newsr = i n t ( s e l f . s r * s c a l e )

75 chan1 = ( t o r c h a u d i o . t r a n s f o r m s . Resample ( o r i g f r e q = s e l f . s r , n e w f r e q =newsr ) ( s e l f . d a t a ) [ 0 , 0 , : ] ) . view ( 1 , 1 ,

76 −1)

77 chan2 = ( t o r c h a u d i o . t r a n s f o r m s . Resample ( o r i g f r e q = s e l f . s r , n e w f r e q =newsr ) ( s e l f . d a t a ) [ 0 , 1 , : ] ) . view ( 1 , 1 ,

78 −1)

79 s e l f . d a t a = t o r c h . c a t ( chan1 , chan2 , dim =1)

80 s e l f . s r = newsr

81

82

83

84 @ s t a t i c m e t h o d

85 def s t a t i c n o r m a l i z e ( d a t a i n ) :

86

87 f a c t o r = t o r c h . max ( t o r c h . abs ( d a t a i n ) )

88 i f f a c t o r > 1 :

89 o u t = d a t a i n / f a c t o r

90 re turn o u t

91 e l s e :

92 re turn d a t a i n

93

94 def c l o n e ( s e l f ) :

95 re turn AudioSample ( s e l f . opt , s e l f . pa th , c l o n e =True , d a t a = s e l f . da t a , s r = s e l f . s r )




