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ABSTRACT: Efficient viral or nonviral delivery of nucleic acids is
the key step of genetic nanomedicine. Both viral and synthetic
vectors have been successfully employed for genetic delivery with
recent examples being DNA, adenoviral, and mRNA-based Covid-
19 vaccines. Viral vectors can be target specific and very efficient
but can also mediate severe immune response, cell toxicity, and
mutations. Four-component lipid nanoparticles (LNPs) containing
ionizable lipids, phospholipids, cholesterol for mechanical proper-
ties, and PEG-conjugated lipid for stability represent the current
leading nonviral vectors for mRNA. However, the segregation of
the neutral ionizable lipid as droplets in the core of the LNP, the
“PEG dilemma”, and the stability at only very low temperatures
limit their efficiency. Here, we report the development of a one-
component multifunctional ionizable amphiphilic Janus dendrimer (IAJD) delivery system for mRNA that exhibits high activity at a
low concentration of ionizable amines organized in a sequence-defined arrangement. Six libraries containing 54 sequence-defined
IAJDs were synthesized by an accelerated modular-orthogonal methodology and coassembled with mRNA into dendrimersome
nanoparticles (DNPs) by a simple injection method rather than by the complex microfluidic technology often used for LNPs. Forty
four (81%) showed activity in vitro and 31 (57%) in vivo. Some, exhibiting organ specificity, are stable at 5 °C and demonstrated
higher transfection efficiency than positive control experiments in vitro and in vivo. Aside from practical applications, this proof of
concept will help elucidate the mechanisms of packaging and release of mRNA from DNPs as a function of ionizable amine
concentration, their sequence, and constitutional isomerism of IAJDs.

■ INTRODUCTION

The delivery of exogenously produced nucleic acids into cells
and/or their nucleus to modify protein expression by viral and
nonviral vectors represents one of the most fundamental
concepts of nanomedicine.1 Both viral and nonviral delivery
systems exhibit advantages and disadvantages. Viral vectors
have high transfection efficiency (95%)1a and higher specificity
for cell targeting including for unnatural cells.1g Some
drawbacks of viral gene delivery include immunogenicity,2a

cytotoxicity,2b difficulty of assembly,2c inflammatory responses
to repeated administration,1h and the potential for insertional
mutagenesis.1f Nonviral delivery has higher biosafety and
exhibits lower toxicity and immunogenicity, but it is less
transfection efficient (1−2%)1f and the vectors are less stable
than the viral ones.1h Covalent3a−f and supramolecular
dendrimers3g−i complexed on their cationic periphery groups
with the nucleic acid have been employed as nonviral vectors
for cell transfection of DNA. Four-component lipid nano-
particles (LNPs)1e,4 containing ionizable lipids,4a,b phospholi-
pids, cholesterol for improved mechanical properties, and a

PEG-conjugated lipid that provides stability represents the
current leading nonviral vector for the delivery of mRNA.
Shortcomings of LNP production and stability are exemplified
by a T-tube of a microfluidic device required for their
assembly6 and the need for long-term storage at extremely low
temperatures (−70 °C).1k Their design, synthesis, and
assembly were inspired from that of stealth liposomes
developed to deliver low molar mass drugs.5 Since RNA is
less stable than DNA due to enzymatic degradation, it must be
protected by encapsulation before being released in the cell. At
acidic pH (pH 3 to 5) LNPs can encapsulate large quantities of
mRNA when the pKa of the ionizable amine is less than 7.1i,7

At physiological pH (7.4)7 LNPs have a nearly neutral surface

Received: June 4, 2021

Articlepubs.acs.org/JACS

© XXXX American Chemical Society
A

https://doi.org/10.1021/jacs.1c05813
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
PE

N
N

SY
L

V
A

N
IA

 o
n 

Ju
ly

 2
9,

 2
02

1 
at

 2
3:

17
:5

3 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dapeng+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Elena+N.+Atochina-Vasserman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Devendra+S.+Maurya"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ning+Huang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qi+Xiao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nathan+Ona"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nathan+Ona"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Matthew+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hamna+Shahnawaz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Houping+Ni"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kyunghee+Kim"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Margaret+M.+Billingsley"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Darrin+J.+Pochan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Darrin+J.+Pochan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+J.+Mitchell"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Drew+Weissman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Virgil+Percec"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.1c05813&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c05813?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c05813?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c05813?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c05813?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c05813?fig=tgr1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/jacs.1c05813?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org/JACS?ref=pdf


charge and a high positive charge at the endosomal pH. In
endosomal membranes the electrostatic interaction between
the cationically charged LNPs and the naturally occurring
anionic lipids was suggested to be responsible for the release of
the RNA.7 One of the major limitations of the four-component
vector is the unknown distribution of its four components in
the LNP. The segregation of the neutral ionizable lipid as an
oil phase in the core of the LNPs is considered to be
responsible for their very low transfection efficiency (1−2%).7
The second deficiency of the LNP originating from the PEG-
conjugated lipid is known as the “PEG dilemma”.8 The PEG
conjugated to LNP increases their circulation time in the blood
after intravenous injection. However, the same PEG-LNP is
known to decrease gene expression by up to 4 orders of
magnitude by reducing intracellular trafficking of cellular
uptake and endosomal escape.8

A charge-altering releasable transporter concept for the
delivery of mRNA was recently elaborated by the Waymouth
laboratory.9 This new delivery protocol is unrelated to the viral
and nonviral LNP-based methodologies discussed above.
Artificial and synthetic vesicles, such as liposomes10 and
polymersomes,11 have been elaborated for both drug delivery
and also as mimics of natural cells. Our laboratory developed a
new class of synthetic vesicles with excellent mechanical
properties and stability including in serum, named dendri-
mersomes (DSs), which are assembled from amphiphilic Janus
dendrimers (JDs).12 Amphiphilic JDs with sugars conjugated
on their hydrophilic region, denoted Janus glycodendrimers
(JGDs), self-assemble into glycodendrimersomes (GDSs),
which mimic the glycans of biological membranes and bind
sugar-binding proteins.12 Both JDs and JGDs self-assemble
into monodisperse DSs and GDSs with unilamellar or
multilamellar structures by simple injection rather than by
the microfluidic technology, and their dimensions can be
predicted.12a−e,13a−c Sequence-defined JGDs13b−f self-assemble
by simple injection into GDSs. It has been demonstrated that a
lower sugar density in a defined sequence elicits higher
bioactivity to sugar-binding proteins.13b−d,f This concept
informs a design principle for active soft and living matter
with potential applications in cellular biology12f−k,d and gene
delivery.12i The goal of this publication is to report the design
of a one-component multifunctional sequence-defined ioniz-
able amphiphilic Janus dendrimer (IAJD) delivery system that
coassembles with mRNA by simple injection into dendrimer-
some nanoparticles (DNPs) using principles elaborated with
JDs and JGDs.12,13 Screening experiments with six libraries
containing 54 IAJDs were performed both in vitro and in vivo.
They demonstrated the proof of concept of DNPs, their
potential applications, and utility as a model to elucidate
fundamental aspects of the complex nonviral delivery systems
and as future delivery systems for mRNA-based therapeutics.

■ RESULTS AND DISCUSSION
A Brief Comparison of the Four-Component LNPs

with One-Component DNPs. One of the major advantages
of the synthetic vectors used for the delivery of mRNA consists
in their unlimited synthetic capabilities. The transformation of
the four-component LNP into a one-component DNP
represents a demonstration of this synthetic capability (Figure
1). Figure 1a illustrates the process involved in the assembly of
one-component LNPs. The four-component composition
containing various ratios of the ionizable lipid, phospholipid,
PEG-lipid, and cholesterol is prepared as a solution in ethanol.

This ethanol solution is mixed with a microfluidic device or T-
tube with a pH 3 to 5 buffer solution and with an aqueous
solution of mRNA. The mRNA used in the acidic buffer
solution is produced and stored in neutral water. The resulting
nanoparticles containing mRNA are analyzed by dynamic light
scattering (DLS) to determine the diameter (D, nm) and the
polydispersity index (PDI) of the LNPs, dialyzed to pH 7.4,
analyzed by DLS again, and stored at −70 °C before the in
vitro or in vivo experiments were performed.
Figure 1b illustrates the same process for the one-

component DNPs. The IAJD containing an ionizable amine
incorporated in a precise sequence is dissolved in ethanol. The
ethanol solution is injected into an acidic buffer solution
containing mRNA (pH 3 to 5.2). Depending on the original
pH of the buffer, the resulting DNPs containing mRNA already
have a pH between 4.5 and 7.3 and after DLS analysis can be
used for in vitro and in vivo experiments before or after dialysis.
Long-term storage of DNPs is at 5 °C. Figure 1c illustrates the
schematic transition from the extracellular to the intracellular
process for both LNPs and DNPs. Once injected, both the
LNP and DNP approach the corresponding cells and get
encapsulated via endocytosis. The extracellular pH is 7.4, and
therefore, LNPs and DNPs enter the cell with an almost
neutral surface. Subsequently, the endocytosis of LNPs or
DNPs deposits them into endosomes, the pH of which
decreases from 6.8 to 4.5 during their maturation into
lysosomes due to ATP-dependent proton pumps on the
endosomal membrane.15 Therefore, both LNPs and DNPs get
reprotonated, interact with the naturally occurring anionic
lipids, and release the mRNA into the cytoplasm, which allows
the ribosome to generate the new proteins.4 When the
ionizable amines from LNPs are segregated in their center,

Figure 1. Schematic representation of (a) four-component LNPs for
mRNA delivery; (b) one-component DNPs for mRNA delivery; (c)
cell-entry and release process of the LNP or DNP.
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reprotonation of their periphery cannot occur, and as a result,
the release of mRNA in the cell has reduced efficiency (1−
2%).4

Accelerated Modular-Orthogonal Synthesis of the
Six Libraries of IAJDs. Modular-orthogonal methodologies
for the synthesis of sequence-defined amphiphilic Janus
glycodendrimers were elaborated by our laboratory.12,13

Accelerated modular-orthogonal methodologies (Figure 2)
for the synthesis of single−single (a single hydrophobic
combined with a single hydrophilic dendron),12d,e,j twin−
twin (two identical hydrophobic and two identical hydrophilic
dendrons),12a,a and hybrid twin-mix (two identical hydro-
phobic and two different hydrophilic dendrons)13b−f rely on
related but improved and accelerated synthetic principles
originally developed and employed for the synthesis of
sequence-defined JGDs.12b,13b−f Two different orthogonal

protective groups, 4-methoxybenzyl ether and benzyl ether,
were employed in the new methodology.16 The six libraries
synthesized are schematically shown in Figure 2c. Four of these
libraries are based on single−single IAJDs. Nine IAJDs are
available in library 1, seven in library 2, six in library 3, and
three in library 4. Library 5 is based on the twin−twin IAJDs
generated from IAJD1 to IAJD9 of library 1 and IAJD33 of
library 3. Library 6 contains 19 hybrid twin-mix IAJDs selected
from all libraries. The selection process was determined by the
activity in vivo and in vitro of their single−single components,
and the number associated with the corresponding IAJD
illustrates the design process driven by DNP activity. The
hydrophilic parts of these IAJDs contain sequence-defined
compositions based on the dimethylaminobutanoate (DMBA),
dimethylaminopropanoate (DMPA), dimethylaminoacetate
(DMA), piperidinebutanoate (PIP), and methylpiperazinebu-

Figure 2. Schematic representation of the six libraries of 54 sequence-defined IAJDs (c). Structures of all their modules (a, b). The accelerated
modular-orthogonal synthesis of IAJDs is outlined in (c).
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tanoate (MPRZ) ionizable amines (Figure 2a module A,
module B, and the box from the bottom part of Figure 2c).
They were selected based on the pKa of their corresponding

ionizable lipids available in the literature.4a,14 The symbols
employed in the schematic representation of these sequence-
defined IAJDs are shown in the square from the bottom part of
Figure 2c. A benzyl ether group, marked in red, was employed
to isolate the ionizable amines and construct different
sequences in the hydrophilic part of the IAJDs. Aromatic

groups such as benzyl ethers are known to interact as
hydrogen-bond acceptors in molecular recognition with
cations including ammonium groups both in biology and in
synthetic supramolecular chemistry.17 This cation−π inter-
action is weaker than the traditional H-bond (about 3 kcal/
mol)17a and, therefore, can mediate a dynamic control of the
pKa of the ionizable amines. In the protonated state of the
amine, the cation−π interaction can increase its pKa

17 while in
the nonprotonated state it may facilitate an interaction of the
benzyl ether with the nucleic bases of the mRNA to enhance
coassembly or segregate in the hydrophobic part of the DNPs
to stabilize the assembly. To our knowledge, this cation−π
interaction was not employed before in the design of nonviral
delivery vectors for mRNA. The hydrophobic parts of the
IAJDs contain both linear and branched alkyl groups of
different length (Figure 2b, modules C, D, E, Figure 2c,
Scheme S3). The hydrophilic acid components of these IAJDs
are shown in Figure 2a (module A) and Figure S1, while their
synthesis is described in Scheme S1. The structures of the
hydrophobic benzyl amines are shown in Figure 2b (module
C). Their synthesis is shown in Scheme S2. Combining all
these modules in an orthogonal way, as illustrated in Figure 2c,
provides, in an accelerated manner, the six libraries of IAJDs.
The synthesis of the twin−twin part of the hydrophobic IAJDs
is illustrated in Scheme S4. The synthesis of library 1 is shown
in Scheme S5, of library 2 in Scheme S6, of library 3 in Scheme
S7, of library 4 in Scheme S8, of library 5 in Scheme S9, and of
library 6 in Schemes S10, S11, and S12. The detailed structures
of all libraries of IAJDs together with their pKa values and short

Figure 3. Cryo-TEM images of DNP vesicles self-assembled from
IAJD9 (a) and from IAJD27 (b) in the absence of mRNA in TRIS
buffer (4.0 mg/mL, pH = 7.4). Their dimensions determined by DLS
(D = 92 nm, PDI = 0.238 for IAJD9 assemblies and D = 75 nm, PDI
= 0.201 for IAJD27 assemblies) match very well the data from the
cryo-TEM experiments. Vesicles of IAJD27 contain n-undecyl groups
in their hydrophobic part and seem more fragile12m than the vesicles
of IAJD9 containing n-dodecyl groups.

Figure 4. Luciferase expression in HEK293T cells with DNPs encapsulating luciferase-mRNA. Color codes for the self-assembly conditions of
DNPs are in the top left corner. The two left-side insets show luminescence vs concentration dependences for IAJD33- and IAJD34-based DNPs.
The top right-side insets show luminescence vs concentration and pH dependences for IAJD9- and IAJD22-based DNPs. Data have been calculated
and represented as mean ± SD (standard deviation). Each experiment was performed at least three times.
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names are presented in Figures S3 (libraries 1, 2, 3, 4), S4
(library 5), and S5 (library 6).
Self-Assembly of DNP Vesicles from IAJDs and of

DNPs by Coassembly of IAJDs with mRNA by Simple
Injection. The simple injection methodology employed
previously for the self-assembly of uniform12a,c DSs from
JDs12a,c,13d and of GDSs from JGDs13a with predictable
dimensions and narrow PDI was adapted to the self-assembly
by injection of a solution of IAJDs and coassembly of IAJDs
together with mRNA. Simple injection of an ethanol solution
of IAJDs into a neutral buffer such as TRIS produces uniform
DNPs with dimensions that are, as in the case of DSs12a,c,d and
GDSs,13a concentration dependent. However, these DNPs are
not stable in PBS buffer. Injection of an ethanol solution of
IAJD into an acidic citrate or acetate buffer solution of pH 3 to
5.2 containing mRNA resulted in coassembly of IAJD with
mRNA into uniform DNPs (Tables S1 to S7, Figures S7 to
S19). More than 98% of mRNA is coassembled within the
interior of the DNPs (Table S8). These DNPs can be used for
in vitro and in vivo transfection experiments before or after
dialysis to pH 7.4. Most of these DNPs are stable at 5 °C for
more than 135 days (Table S10, Figure S20) including in
serum (Table S11). Analysis of the DNPs without mRNA by
cryo-TEM demonstrated that they are vesicles with dimensions
and PDIs similar to those determined by DLS (Figure 3).

More detailed cryo-TEM data of DNPs without and with
mRNA and their analysis will be reported soon.

In Vitro Transfection Activity of DNPs in Human
Embryonic Kidney (HEK) 293T Cells. HEK293T cells were
seeded into 96-well plates (20 000 cells/well/200 μL) and
cultured for 18−20 h at 37 °C in 5% CO2 complete cell culture
media. Screening experiments were performed with non-
optimized DNPs containing naked nucleoside-modified
mRNA18 of molar mass 664 341 encoding firefly luciferase
(Luc-mRNA). A constant concentration of Luc-mRNA of 125
ng/well was used. The transIT (TransIT-mRNA transfection
kit from Mirus Bio) and MC3-based LNPs (MC3: DLin-MC3-
DMA, which is an FDA-approved LNP for siRNA delivery)4a

were used as positive controls for cell transfection at a
concentration of Luc-mRNA of 125 ng/well, identical to that
of the tested DNPs. Subsequently cells were cultured for 18−
20 h, the medium was aspirated under reduced pressure by a
glass pipet, and cells were lysed with 30 μL/well of cell culture
lysis reagent (Promega). The luminescence intensity corre-
sponding to the luciferase protein expressed was characterized
and analyzed.
All 54 IAJDs from Figure 2 were coassembled by injection

with mRNA18 in DNPs and were used in these experiments
without dialysis. Tables S1, S2, S3, S4, and S5 summarize the
conditions employed for the preparation of the DNPs, their
diameter (in nm), and PDI as obtained by DLS experiments

Figure 5. In vivo transfection results of DNPs. Details of these experiments are available in Table S7. Diameters and polydispersities of DNPs (both
in black) and pKa values of IAJDs (in blue) are shown under the number of the IAJD molecule. All these data are printed on top of each mouse
image. The scale of luminescence values is also shown.
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and the luminescence results. Each experiment was performed
at least three times. The results from Tables S1 to S5 were
combined together with some optimization experiments for
IAJD33, IAJD34, IAJD9, and IAJD22 and plotted in the insets
in Figure 4. Out of 54 DNPs, 44 (81%) showed activity in vitro
(Figure 4). Without optimization, two of them, DNP9- and
DNP22-based DNPs, display higher activity than the positive
controls LNP based on MC3 and TransIT, while four of them,
DNP8, DNP9, DNP21, and DNP22, show higher activity than
the most commonly used positive control LNP based on
MC3.4

In Vivo mRNA Delivery in Mice with DNPs. Six- to 8-
week-old female or male mice were used in these experiments.
Four to 7 h after injection with a 100 μL solution of DNP
encapsulated with 10 μg of Luc-mRNA the mice were imaged
10 min after intraperitoneal injection with D-luciferin, 15 mg/
mL at 10 μL/g of body weight. The exposure time was 15 s to
1 min. For imaging of the organs, mice were sacrificed, the
organs were immediately collected, and bioluminescence
imaging was performed. Table S7 summarizes all DNP
injection assembly data including D in nm and PDI determined
by DLS together with the results obtained in vivo. Figure 5
shows all mice experiments including the D in nm and PDI of
DNPs (both in black on top of the mouse image) and the pKa
values of the corresponding IAJDs (in blue also on top of the
mouse image) of all compounds used for delivery experiments.

The results from Figures 4 and 5 provide a proof of concept
for the one-component multifunctional sequence-defined
ionizable amphiphilic Janus dendrimer delivery systems for
mRNA even if optimized results are not yet available. The
summary of the results from Figure 5 indicates that there seem
to be no correlation between the activity of the DNPs in vivo
and the same experiments in vitro (Figure 4). We are not able
yet to explain this lack of correlation between in vitro and in
vivo experiments. Although more experiments are required to
clarify the dependence between pKa and activity in vitro and in
vivo, the results from Figure 5 show that the most active IAJD
33, 34, and 31 based DNPs do not have the lowest pKa values.
The results from Figure 5 also demonstrate that there is quite a
tolerance of the activity of DNPs to their diameters and
polydispersity. Larger than 100 nm diameter DNPs appear to
be as active as lower than 100 nm diameter DNPs (Figure 5).
However, quantitative correlations for the dependences of
activity with pKa and DNP dimensions must be studied. The
stability of the dimension of 40 DNPs was investigated as a
function of time at 5 °C. Unoptimized experiments showed
that the dimensions of 19 out of 40 DNPs were very stable
after being stored at 5 °C for up to 135 days (Figure 7).
Almost all these DNPs were assembled from IAJDs containing
a benzyl ether in their hydrophilic part (Table S9). A very
interesting series of activity trends is observed when the data
from Figures 5 and 6 are compared. IAJD9, IAJD22, IAJD33,

Figure 6. Quantification of luciferase signal from in vivo images of Figure 5 and Table S7.
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and IAJD34 single−single compounds form remarkably stable
DNPs that also show high in vitro or in vivo activity (Figure 6).
IAJD46 is the twin−twin of IAJD33. On the other hand, the
activity of the DNP46 is about half that of DNP33 (Figures 6
and 7). The hybrid twin-mix IAJD47 is also based on the
structure of IAJD33 or half of the structure of IAJD46.
However, the activity of the DNP47 is much lower than that of
both DNP33 and DNP46. Even more interesting is the

comparison of single−single IAJD9 with the hybrid twin-mix
IAJD32 (Figures 6 and 7).
Figure 6 plots the results from Figure 5. Without any

optimization, out of the 54 DNPs investigated, 31 (57%) show
activity in vivo. Two of them, DNP33 and DNP34,
demonstrated very high activity in the lung. Single−single
IAJD9-derived DNP9 exhibits good activity (Figure 6) and
stability (Figure 7). At the same time the corresponding hybrid
twin-mix IAJD32-based DNP32 derived from IAJD9 and a
single PEG of degree of polymerization 45 (Figure 2) also
exhibits excellent stability (Figure 7) but is completely inactive
in mice (Figure 6). In order to clarify this result, we prepared
several coassembled DNPs based on very active IAJDs and a
small concentration of IAJD32. One example is the DNP
assembled from IAJD33 and 2% IAJD32 (compare Figure 7f
with Figure 6). The stability of this combined DNP is excellent
(Figure 7f) and is comparable with that of DNP32 assembled
from IAJD32 alone. However, the in vivo activity of DNP
coassembled from IAJD33 with 2% IAJD32 is only a small
fraction of the activity of the DNP33 (Figure 6). This trend
confirms the reports on the PEG interfering with cellular
uptake known as the “PEG dilemma”.8 Therefore, while the
insertion of a small fraction of PEG conjugated to an IAJD can
dramatically increase the stability of the resulting DNP, it also
decreases even more dramatically its activity in vivo.
Incorporation of short groups of oligooxyethylene with
different degrees of polymerization (DP) and chain ends12 or
carbohydrate13 fragments in the structure of single−single,
twin−twin, or even hybrid twin-mix IAJDs could provide a
solution to this problem. Research along this line with PEG of
DP = 3, 4, 8, 12, 18, 22, and 45 and with lactose13a,d is in
progress. Some preliminary data performed with DNP9,
DNP43 (DP = 3), DNP52 (DP = 4), DNP53 (DP = 8),
and DNP32 (DP = 45) (Figure 2) indicate, before
optimization, a decrease followed by an increase and
subsequently another decrease of the in vivo activity when

Figure 7. Examples of excellent stability of DNPs assembled from (a) IAJD9; (b) IAJD22; (c) IAJD33; (d) IAJD34; (e) IAJD32; (f)
IAJD33+IAJD32 (2%); (g) IAJD46; and (h) IAJD47.

Figure 8. Comparison of the concentration and sequence of the
ionizable amines of IAJDs on activity of DNPs in vitro and in vivo.
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DP of PEG increases in the hybrid twin-mix architecture of
IADSs (Figure 2).
The Role of Ionizable Amine Concentration and

Sequence on the Activity of the Corresponding DNPs.
We demonstrated that the binding activity of sugars located on
the surface of the GDSs assembled from amphiphilic JGDs
toward sugar-binding proteins increases by decreasing the
concentration of the sugar in a sequence-defined process.12b−f

This unexpected trend was explained by self-organization, on
the periphery of the GDSs, leading to a morphology that
facilitated higher binding activity between the sugar and the
proteins at lower concentrations of sugar (Figure S33).13d,f

Figure 8 plots representative activity data for the sequence-
defined IAJD-derived DNPs for both in vitro and in vivo
experiments. Low or no activity was observed at high

concentrations of ionizable amines in the structure of the
IAJD, and extremely high activities were observed at lower
ionizable amine concentration in very specific sequences.
Without discussing in great detail, the results from Figure 8
provide a mechanism to engineer the activity of DNPs via the
sequence and concentration of their ionizable amines. The
change in activity observed in Figure 8 is much higher than
that observed in the case of sequence-defined dendrimersomes
(Figure 2 from ref 13d shown in Figure S33).12d

Some Comments on Potential Targeted Delivery of
mRNA and Reproducibility of in Vitro and in Vivo
Transfection Experiments. Figures 9 and 10 summarize
representative organ delivery data selected from the experi-
ments reported in Figure 5. They illustrate the luminescence
intensity reflecting delivery activity in the heart, lung, liver, and
spleen as a function of the structure of the IAJD employed in
the design of the structure of the DNP used in the delivery of
mRNA. The highest luminescence is exhibited by single−single
IAJD33 and IAJD34 forming DNPs (108) in the lung. The next
highest is based on the IAJD31, IAJD46, and IAJD27 (107)
DNPs and is also in the lung.
These lung activities are higher than the activity in the lung

of the control experiment with LNP based on the FDA-
approved MC3 (Figure 10). It is important to realize that
organ activities from Figure 10 are much higher than overall
mouse activities from Figures 6 and 9. The next higher activity
is in the liver (Figures 9 and 10). Without optimization, the
luminescence in the liver is 106 for IAJD31- and IAJD34-based
DNPs and 105 for IAJD30-, IAJD33-, and IAJD46-based
DNPs. They are smaller than the values of the MC3-based
control experiment, which is 108. The highest activity in the
spleen is for IAJD29-, IAJD30-, and IAJD37-based DNPs (105)
and IAJD27-based DNP (104). The control experiment with
MC3-based LNP is 107 in the spleen. Notably, dendrimersome
nanoparticles self-organized from twin−twin and single−single
JDs without ionizable amines, and mRNA and IAJD1 and
IAJD9 are distributed in vivo to all organs with higher
distribution in the liver especially for twin−twin JD and IAJD9

Figure 9. Images of the mice organs from the in vivo experiments presented in Figure 5.

Figure 10. Representative images of mRNA delivery to different
organs by one-component DNPs.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.1c05813
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

H

https://pubs.acs.org/doi/suppl/10.1021/jacs.1c05813/suppl_file/ja1c05813_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c05813/suppl_file/ja1c05813_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.1c05813?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c05813?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c05813?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c05813?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c05813?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c05813?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c05813?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c05813?fig=fig10&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.1c05813?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(Figure S34). The most active DNPs were tested both in vitro
(Figure 4) and in vivo (Figure 6) up to six times. Excellent
reproducibility was obtained in all cases except for DNP9,
which shows very good reproducibility in vitro but poor
reproducibility in vivo. Experiments are in progress to elucidate
this issue. The results reported here indicate that one-
component IAJDs could also provide a potential strategy to
target different organs.

■ CONCLUSIONS
The design and accelerated modular-orthogonal synthesis of
six libraries containing 54 multifunctional sequence-defined
ionizable amphiphilic Janus dendrimers are reported. All 54
IAJDs coassemble with mRNA by simple injection in acidic
buffers to generate dendrimersome nanoparticles with
predictable dimensions and narrow polydispersity. The
dimensions of these DNPs are stable for over 135 days at 5
°C. Among the 54 DNPs encapsulating Luciferase-mRNA, 44
(81%) showed activity in vitro and four of them showed higher
activity than the four-component lipid nanoparticles obtained
from the FDA-approved MC3 control experiment. Thirty one
(57%) DNPs displayed activity in vivo, with two of them
exhibiting higher activity than the MC3 control experiment in
the lung. This lung activity is exceptional for synthetic delivery
of mRNA and could be, according to our knowledge, one of
the highest demonstrated thus far.19 These unoptimized
preliminary experiments provide proof of concept for the
one-component multifunctional sequence-defined amphiphilic
Janus dendrimer as an efficient delivery system for mRNA. Just
like in the case of sequence-defined GDSs (Figure S33), this
one-component delivery platform is more active at low
ionizable amine concentration incorporated in a suitable
sequence-defined arrangement (Figure 8). These sequence-
defined IAJDs and DNPs will be employed to elucidate the
mechanisms of encapsulation and release of mRNA from
supramolecular virus-like assemblies and for the production of
vaccines and drugs. It is expected that their ionizable amine
fragments may not be able to segregate in the center of their
DNPs, as they do in the case of LNPs. Finally but importantly,
the DNPs reported here represent some of the most interesting
and challenging hybrid natural−synthetic complex systems20

with numerous potential applications in health sciences.
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