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Introduction

This document contains solutions to all the exercises in the book Mathematical Tools for
Real-World Applications from MIT Press. Let me say two things before we plunge into the
equations:

1. Many exercises allow for multiple ways to solve them. Please do not view the solutions
below as canon.

2. Occasionally a solution may refer to an equation or a figure in the main text. Such
references are marked with an asterisk (as in (3.78∗)).
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1 Units

1. Problem

Section A.31 provides an approximate formula for the payment rate on a mortgage. Given the
initial loan amount D, interest rate r, and duration of the loan T , the payment rate is given by

p ≈
rDerT

erT − 1
. (1.1)

Jane used this formula to estimate payments on a mortgage that she is planning to apply for.
She used the loan amount D = $230,000, interest rate 4.5 percent (r = 0.045/year), and loan
duration of T = 30 years. Using these values and equation (1.1), she estimated her payments
(principal and interest) to be p = $13,972.14, which seemed very high. The loan officer at her
bank said that the correct amount of a monthly payment was p0 = $1,164.34. Use dimensional
analysis to find a mistake in Jane’s calculations.

Solution

The rate r is in percent/year. The loan amount is in dollars. Therefore, formula (1.1) produces
a result in dollars per year, that is, for the yearly payment. To obtain the monthly payment, p
must be divided by 12. With this correction, the numbers from formula (1.1) match the amount
from the loan officer.

2. Problem

Consider syrups with masses m1,m2, and m3 and sugar concentrations p1, p2, and p3. Sections
A.16 and A.17 show that concentrations of sugar in the blend of two and three syrups are given
respectively by

p12 =
p1m1 + p2m2

m1 + m2
,

p123 =
p1m1 + p2m2 + p3m3

m1 + m2 + m3
.

(1.2)

Go through the derivations of these results and check all equations for units at each step.

Solution
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A check shows that units are correct at each step.

3. Problem

A riverboat travels from town A to town B in time TAB and from town B to town A in time TBA.
The time to go from town B to town A on a raft is given by

Tr =
2TABTBA

TAB − TBA
. (1.3)

Check the units for the solution of this problem in section A.2.

Solution A check shows that units are correct at each step.

4. Problem

Suggest a formula for the velocity of a satellite on a circular orbit as a function of the orbit
radius and the gravity acceleration. Note that orbit radius is measured in meters (m) and satellite
velocity in m/s, and that the gravity acceleration is in m/s2.

Solution We denote the orbit radius as R, and the gravity acceleration as g. The only way to
produce the correct units for velocity V is

V = C
√

Rg, (1.4)

where C is a dimensionless constant.1 (For reference, the exact formula is V =
√

Rg, which
corresponds to C = 1.)

5. Problem

The law of sines and law of cosines link the lengths of the sides of a triangle and the mea-
sures of its angles (figure 1.1). Use dimensional analysis to determine which of the following
formulations of these two laws are incorrect:

a) sin(aβ) = sin(bα)

b) c2 = a2 + b2 − 2 cos(abγ)

c) a sin β = b sinα

d) a sinα = b sin β

e) c2 = a2 + b2 − 2
√

ab cos γ

f) a sin(c + β) = b sin(c + α)

g) c2 = a2 + b2 − 2ab cos γ

h) a2 sin β = b2 sinα

i) c3 = a3 + b3 − 2(ab)
3
2 cos γ

1. From equation (1.4) it may seem that satellite velocity is larger for larger orbit radii R. However, the gravity
acceleration g quickly decreases with R. The net effect is a lower satellite velocity for higher orbits.
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Figure 1.1
Law of sines and law of cosines: units

Solution

Dimensional analysis shows that formulas a, b, e, and f are incorrect. The correct formulas are
c and g. (Formulas d, h, and i are also incorrect, but this cannot be detected by dimensional
analysis.)

6. Problem

The waves that you may see on a beach are called gravity waves. As implied by the name, gravity
acceleration g ≈ 9.8 m/s2 is an important parameter in modeling these waves mathematically.
Two other important parameters are measured in meters:

1. Wavelength λ, which is the distance between two consecutive crests

2. Ocean depth h in the wave propagation area

Using dimensional analysis, suggest two formulas for the speed of gravity waves in the ocean,
one using g and λ and another one using g and h.

Solution

The two ways to get the correct units for the speed of gravity waves are

Vd = α
√
λg,

Vs = β
√

hg,
(1.5)

where α, β are dimensionless constants. Waves with speeds Vd and Vs are respectively called
deep and shallow water waves.

7. Problem

Old clocks used a pendulum to measure time. To design a clock, we need to know the period
of pendulum oscillations. A formula for this period may contain some or all of the following
parameters:
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DR

Figure 1.2
Archimedes’s spiral: units

1. Gravity acceleration g ≈ 9.8 m/s2

2. Length of the pendulum l, measured in meters (m)

3. Mass of the pendulum bob M, measured in kilograms (kg)

Suggest a formula for the period of pendulum oscillations.

Solution

The only way to get the units of time is

T = C

√
l
g
, (1.6)

where C is a dimensionless constant. (The exact formula for small amplitude oscillations has
C = 2π.)

8. Problem

The radius of Archimedes’s spiral increases linearly with the turn angle (figure 1.2). Use dimen-
sional analysis to flag the incorrect formulas for the arc length of the spiral:

a) L =
1

4π
(∆R + 1)

(
θ
√

1 + θ2 + ln
(
θ +
√

1 + θ2
))

b) L =
1

4π
∆R

(
θ
√

1 + θ2 + ln
(
θ +
√

1 + θ2
))
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c) L =
1

4π
∆R

(
θ
√

1 + θ2 + ln
(
θ +
√

1 + θ2
)
+ ln∆R

)
d) L =

1
4π
∆R

(
∆R
√

1 + θ2 + ln
(
θ +
√

1 + θ2
))

Here ∆R is the distance between the adjacent loops and θ is the total turn angle.

Solution

Formulas a, c, and d are incorrect.

9. Problem

For a heavy object falling from a small height, the air resistance is relatively small, and the
motion is affected primarily by the gravity (free fall). Knowing that gravity acceleration is mea-
sured in m/s2, suggest a formula for the velocity of a falling object as a function of height h.

Solution

The only way to get units of velocity (m/s2) is

V = C
√

gh, (1.7)

where C is a dimensionless constant. (The exact formula has C =
√

2.)

10. Problem

A pool must be drained for winter. There are three pumps that can be used separately or jointly.
Individually, they can drain this pool in T1, T2, and T3 hours. The time for draining the pool
using jointly two or three pumps is given respectively by

T12 =
T1T2

T1 + T2
,

T123 =
T1T2T3

T1T2 + T1T3 + T2T3
.

(1.8)

Check the units in the derivations of these solutions in sections A.18 and A.19.

Solution

A check shows that units are correct at each step.

11. Problem

Section A.4 solves the problem of finding intersections between a circle and an ellipse (see
figure 1.3). The circle and the ellipse are given by the following equations:

x2 + y2 = R2,

x2

R2
x
+

y2

R2
y
= 1.

(1.9)

Assume that all coordinates are measured in meters. Use dimensional analysis for this problem
to flag the wrong solutions among the following options:
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x

y

(x1, y1) (x2, y2)

x2+y2=R2

(x3, y3)
(x4, y4)

𝑥2

𝑅𝑥
2 +

𝑦2

𝑅𝑦
2 = 1

Figure 1.3
A circle and an ellipse: units

a) x = ±

√
R4

x

R2
y − R2

R2
y − R2

x
; y = ±

√
R4

y
R2

x − R2

R2
x − R2

y

b) x =
1
4
±

√
R2

x

R2
y − R2

R2
y − R2

x
; y =

1
4
±

√
R2

y
R2

x − R2

R2
x − R2

y

c) x = ±

√
R2

x

R2
y − R2

R2
y − R2

x
; y = ±

√
R2

y
R2

x − R2

R2
x − R2

y

d) x = ±

√
R2

x

R2
y − R−2

R2
y − R2

x
; y = ±

√
R2

y
R2

x − R−2

R2
x − R2

y

Solution

Formulas a, b, and d are incorrect.

12. Problem

Section A.11 deals with the sum of two scaled ratios:
p

x − a
+

q
x − b

= d. (1.10)
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The solution of this equation for x is as follows:

x1,2 =
(p + q) + d(a + b) ±

√
d2(a − b)2 + (p + q)2 + 2d(a − b)(p − q)

2d
, (1.11)

where subscripts 1, 2 correspond to the ± signs in the right-hand side. Assume that p and q are
measured in meters (m), x, a, and b are measured in seconds (s), and d is measured in m/s. Go
line by line through the solution of this problem in section A.11 and check the units in each
equation.

Solution

A check shows that units are correct at each step.

13*. The maximum angle αmax between a pendulum and a vertical is called the amplitude. The for-
mula for the period of pendulum oscillations that is the solution of problem 7 is approximately
valid for small amplitudes (αmax ≪ 1). In a case of larger amplitudes, the period should also be a
function of the amplitude. For a researcher who is trying to derive such a formula, having a clue
about its general structure beforehand would be extremely helpful. Identify incorrect formulas
for the period of pendulum oscillations among the following options, where F(αmax) is a yet
unspecified transcendental function of the amplitude (refer to problem 7 for notations):

a) T = F(αmax)

√
l
g

b) T = F(αmax)

√
lM
g

c) T = F(αmax)
√

g
l

d) T = F(αmax)
√

lgM

e) T =

√
l + F(αmax)

g

f) T =

√
l
g
+ F(αmax)

Solution

Formulas b through f are incorrect. (The exact solution is T = 4
√

l/gF (π/2, sin(αmax/2)), where
function F(x, y) is called the incomplete elliptic integral of the first kind.)

14. Problem

A satellite on a circular orbit revolves around Earth every T seconds. A formula for T may
contain some or all of the following parameters:

1. Gravity acceleration g at the altitude of the satellite, measured in m/s2

2. Orbit radius R, measured in meters (m)
3. Mass of the satellite M, measured in kilograms (kg)
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R

Figure 1.4
A triangle, an inscribed circle, and a circumscribed circle: units

Suggest a formula for the orbit period of the satellite.

Solution

The only way to get units of time is

T = C

√
R
g
, (1.12)

where C is a dimensionless constant. (The exact formula for small amplitude oscillations has
C = 2π.)

15. Problem

Solutions of the depressed cubic equation

x3 + px + q = 0 (1.13)

can be expressed through trigonometric functions (see section A.29):

xk = 2
√
−

p
3

cos

1
3

cos−1

 3q
2p

√
−

3
p

 − 2πk
3

 , (1.14)

where k = 0, 1, 2. Assume that x is measured in meters. Deduce the proper measurement units
for parameters p and q and check the units in equation (1.14).

Solution

In the depressed cubic equation, p must be measured in m2 and q must be measured in m3. Since
the value of the cosine function is dimensionless, xk is measured in the same units as

√
p, that

is, in meters. We must also check that the argument of the cos−1 function is dimensionless. A
check shows that it is.
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16. Problem

Refer to figure 1.4. The radius of the inscribed circle r can be computed using one of the fol-
lowing two formulas:

r =
S
p
,

r =

√
p(p − a)(p − b)(p − c)

p
,

(1.15)

where S is the area of the triangle, p = (a + b + c)/2 is its half-perimeter, and a, b, c are sides.
Check the units in these two formulas.

Solution

A check shows that units are correct.

17. Problem

We again refer to the drawing in figure 1.4. Using dimensional analysis, identify incorrect for-
mulas for the radius of the circumscribed circle R:

a) R =
3√
a2b2c2

4√(a + b + c)(−a + b + c)(a − b + c)(a + b − c)

b) R =
abc

√
(a + b + c)(−a + b + c)(a − b + c)(a + b − c)

c) R =
abc

(a + b + c)(−a + b + c)(a − b + c)(a + b − c)

d) R =
abc

3√(a + b + c)(−a + b + c)(a − b + c)(a + b − c)
Solution

From dimensional analysis we conclude that formulas c and d are incorrect. The correct formula
is b. Formula a is incorrect, but this cannot be detected by dimensional analysis.

18*. The solution of the quartic equation is even more cumbersome than that of the cubic equation.
The general quartic equation is given by

ax4 + bx3 + cx2 + dx + f = 0. (1.16)

The root behavior is governed by the discriminant. In particular, equation (1.16) has two distinct
real roots and two complex roots if the following discriminant is negative:

D = 256a3 f 3 − 192a2bd f 2 − 128a2c2 f 2 + 144a2cd2 f − 27a2d4

+ 144ab2c f 2 − 6ab2d2 f − 80abc2d + 18abcd3 + 16ac4 f

− 4ac3d2 − 27b4 f 2 + 18b3cd f − 4b3d3 − 4b2c3 f + b2c2d2 .

(1.17)
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One term in the above expression for the discriminant contains an error. Assume that f is mea-
sured in meters, and x in seconds. Identify the erroneous term using the dimensional analysis.

Solution

For unit consistency we must assume that a is measured in m/s4, b is measured in m/s3, c is
measured in m/s2, and d is measured in m/s. A check shows that all terms except one have units
of m6/s12. The incorrect term −80abc2d has units of m5/s12. (The correct expression for this term
is −80abc2d f .)

19*. An explosion in the air creates a spherical shock wave. The following parameters affect the
shock wave propagation:

1. The energy of the explosion E, measured in kg ·m2/s2

2. The density of the air ρ, measured in kg/m3

3. Radius of the shock wave R, measured in meters (m)

Propagation of this wave away from the point of explosion is seen from the side as an expanding
sphere. As the radius of the shock wave increases, the wave slows down. Using dimensional
analysis, suggest a formula that computes the velocity of the shock wave (measured in m/s) as
a function of the radius.

Solution

The only way to get the units of velocity is

V = C

√
E
ρR3 , (1.18)

where C is a dimensionless constant.

20. Problem

Section A.33 presents formulas for the linear regression algorithm. There are N data points
(xi, yi) for variables x and y. We assume a linear model for the link between these two variables:

y = ax + b + R. (1.19)

The data may not fit exactly a straight line because of measurement errors R. The linear regres-
sion algorithm states that the best estimate for parameters a and b from the data is given by the
following equations:

a =
N

∑N
i=1 xiyi −

∑N
i=1 xi ·

∑N
i=1 yi

N
∑N

i=1 x2
i −

(∑N
i=1 xi

)2 ,

b =
∑N

i=1 yi ·
∑N

i=1 x2
i −

∑N
i=1 xi ·

∑N
i=1 xiyi

N
∑N

i=1 x2
i −

(∑N
i=1 xi

)2 .

(1.20)



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 30, 2022 1:50am

Units 11

Table 1.1
Units for expressions in the linear regression equations

Sum Units∑N
i=1 xiyi m · s∑N
i=1 xi ·

∑N
i=1 yi m · s∑N

i=1 x2
i s2(∑N

i=1 xi

)2
s2∑N

i=1 yi ·
∑N

i=1 x2
i m · s2∑N

i=1 xi ·
∑N

i=1 xiyi m · s2

Determine units for a and b in these equations if x is measured in seconds (s) and y in meters
(m).

Solution

From dimensional analysis of equation (1.19) we conclude that a is measured in m/s and b
is measured in m. Next, we turn to equations (1.20). Units for different expressions in these
equations are listed in table 1.1. Then the left-hand sides of equations (1.20) will produce m/s
for a and m for b, which is consistent with equation (1.19).
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2 Limiting Cases

1. Problem

Use limiting cases a → b and a → −b to select the two correct formulas from the four options
below. (Hint: For each equation, select a limiting case that nulls its left-hand side.)

a) a3 − b3 = (a + b)(a2 + ab + b2)

b) a3 − b3 = (a − b)(a2 + ab + b2)

c) a3 + b3 = (a + b)(a2 − ab + b2)

d) a3 + b3 = (a − b)(a2 − ab + b2)

Solution

For a → b we must have a3 − b3 → 0. This shows that formula a is incorrect. For a → −b we
must have a3 + b3 → 0. This shows that formula d is incorrect.

2. Problem

Check a limiting case α = 0 for the following trigonometric identities. (Hint: Use sin(0) = 0
and cos(0) = 1.)

a) sin(α + β) = sinα cos β + sin β cosα

b) sin(α − β) = sinα cos β − sin β cosα

c) cos(α + β) = cosα cos β − sinα sin β

d) cos(α − β) = cosα cos β + sinα sin β

Solution

We obtain:

a) sin β = 0 · cos β + 1 · sin β

b) sin(−β) = 0 · cos β − 1 · sin β

c) cos β = 1 · cos β − 0 · sin β
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d) cos(−β) = 1 · cos β + 0 · sin β

3. Problem

Check a limiting case α = 0 for the following trigonometric identities. (Hint: Use tan(0) = 0
and cot(α)→ ∞ when α→ 0.)

a) tan(α + β) =
tanα + tan β

1 − tanα tan β

b) tan(α − β) =
tanα − tan β

1 + tanα tan β

c) cot(α + β) =
cotα cot β − 1
cot β + cotα

d) cot(α − β) =
cotα cot β + 1
cot β − cotα

Solution

We obtain:

a) tan β =
0 + tan β

1 − 0 · tan β

b) tan(−β) =
0 − tan β

1 + 0 · tan β

c) cot β→
cotα cot β

cotα
= cot β

d) cot(−β)→
cotα cot β
− cotα

= − cot β

4. Problem

Check limiting cases for α→ 0 and α→ π for the following trigonometric identities:

a) sin 2α = 2 cosα sinα

b) cos 2α = cos2 α − sin2 α

c) sin2 α

2
=

1 − cosα
2

d) cos2 α

2
=

1 + cosα
2

Solution

We use sin 0 = sin π = sin 2π = 0, cos 0 = cos 2π = 1, cos π = −1, sin π/2 = 1, and cos π/2 = 0.

For α = 0 we obtain:

a) sin 0 = 2 sin 0 = 0

b) cos 0 = cos2 0 − sin2 0 = 1

c) sin2 0 =
1 − cos 0

2
= 0
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R

a

h

Figure 2.1
A spherical cap: limiting cases

d) cos2 0 =
1 + cos 0

2
= 1

For α = π we obtain:

a) sin 2π = −2 sin π = 0

b) cos 2π = cos2 π − sin2 π = 1

c) sin2 π

2
=

1 − cos π
2

= 1

d) cos2 π

2
=

1 + cos π
2

= 0

5. Problem

Here we revisit the problems for the sum of two ratios and the sum of two scaled ratios. They
are solved in sections A.10 and A.11 and compared in section 2.7. Check that each equation in
the first column of table 2.1 in section 2.7 can be obtained from the corresponding equation in
the second column in the limiting case p→ 1, q→ 1.

Solution

A check shows that limiting case p→ 1, q→ 1 holds.

6. Problem

A spherical cap is the part of a sphere that lies above a plane that crosses this sphere (see figure
2.1 and section A.30). The volume V and the surface area S of a spherical cap are given by

V =
1
3
πh2(3R − h),

S = 2πRh.
(2.1)
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b
a

c

ab

g

A
B

C

Figure 2.2
Law of cosines: limiting cases

Explore limiting cases h→ 0, h = R, and h→ 2R. Corresponding formulas for a sphere are

Vsphere =
4
3
πR3,

S sphere = 4πR2.
(2.2)

Solution

For h = 0 we get V = 0, S = 0, as expected. For h = R we get

V =
1
3
πR2(3R − R) =

2
3
πR3 =

Vsphere

2
,

S = 2πR2 =
S sphere

2
.

(2.3)

For h = 2R we get

V =
1
3
π(2R)2(3R − 2R) =

4
3
πR3 = Vsphere,

S = 2πR(2R) = 4πR2 = S sphere.
(2.4)

7. Problem

The law of cosines computes the length c of a side of a triangle using lengths a, b of two other
sides and the angle γ between these two sides (figure 2.2):

c2 = a2 + b2 − 2ab cos γ. (2.5)

Check the following limiting cases and provide an interpretation for each:



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 30, 2022 1:50am

Limiting Cases 17

a) a→ 0

b) a→ ∞ and c remains finite

c) γ → 0

d) γ →
π

2
e) γ → π

Solution

Various limiting cases correspond to different geometries:

a) From a→ 0 and the law of cosines we obtain c2 → b2. This is a degenerate triangle, where
sides c and b coincide.

b) From a→ ∞, c finite, and the law of cosines we obtain:

a2 + b2 − 2ab cos γ ≪ a2. (2.6)

This is equivalent to

(a2 + b2 − 2ab) + 2ab(1 − cos γ) ≪ a2. (2.7)

Expressions a2+b2−2ab and 2ab(1−cos γ) are nonnegative and cannot cancel or nearly cancel
each other. We conclude that each of them is much smaller than a2:

a2 + b2 − 2ab = (a − b)2 ≪ a2

2ab(1 − cos γ) ≪ a2.
(2.8)

Therefore, we have a → b and γ → 0. This is a degenerate triangle, where sides a and b
coincide.

c) For γ = 0 we get

c2 = a2 + b2 − 2ab

= (a − b)2.
(2.9)

This means that either c = a − b or c = b − a. In both cases the triangle degenerates into a line,
and either c and b add up to a or c and a add up to b.

d) For γ = π/2 we have cos γ = 0. Then c2 = a2 + b2. This is a right triangle, and the law of
cosines degenerates into the Pythagorean theorem.

e) For γ = π we get cos γ = −1 and c2 = a2 + b2 + 2ab = (a+ b)2. Then c = a+ b. The triangle
degenerates into a line, and sides a and b add up to c.

8. Problem

Section A.12 solves the following equation:
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1
x − a

−
1

x − b
= d. (2.10)

The solution is as follows:

x1,2 =
d(a + b) ±

√
d2(a − b)2 + 4d(a − b)

2d
, (2.11)

where subscripts 1, 2 correspond to the ± signs in the right-hand side. Formulate and check
limiting cases for equation (2.10) and its solution (2.11). How many limiting cases can you
come up with? (Hint: Use the analysis in section 2.6 as a template.)

Solution

We explore the following limiting cases:

a) From d → ∞ and from equation (2.10) we must have x → a or x → b. In solution (2.11)
we observe that d2(a − b)2 ≫ 4d(a − b). Then we get

x1,2 ≈
d(a + b) ± d(a − b)

2d
, (2.12)

which does produce x1 = a and x2 = b in the limit.

b) From d → 0 and from equation (2.10) we must have

1
x − a

→
1

x − b
. (2.13)

Then x→ ∞ or a→ b (or both).
In solution (2.11) we observe that d2(a − b)2 ≪ 4d(a − b). Then

x1,2 ≈
d(a + b) ±

√
4d(a − b)

2d
. (2.14)

Since for small d we have
√

d ≫ d, we can neglect the first term in the numerator:

x1,2 ≈
±
√

4d(a − b)
2d

= ±

√
a − b
√

d
. (2.15)

For d → 0, this expression goes to infinity, unless a = b. This limiting case holds.

c) Finally, we may consider the case when d is expressed through some other parameter c in a
particular way:

d =
1

c − a
−

1
c − b

. (2.16)

Similar to the reasoning in section 2.6, one of the roots of the equation for x must be equal
to c. This means that the square root in solution (2.11) should contain an expression that is a
complete square. Checking this condition is cumbersome, but still less difficult than the similar
check in section 2.6. First, we simplify the expression for d:

d =
a − b

(c − a)(c − b)
. (2.17)
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Next, we substitute this into the expression in the square root:

d2(a − b)2 + 4d(a − b) =
(a − b)4

(c − a)2(c − b)2 + 4
(a − b)2

(c − a)(c − b)
. (2.18)

We combine the two terms in the right-hand side to get

d2(a − b)2 + 4d(a − b) = (a − b)2 (a − b)2 + 4(c − a)(c − b)
(c − a)2(c − b)2 . (2.19)

The expression in the numerator is as follows:

(a − b)2 + 4(c − a)(c − b) = ((a − b)2 + 4ab) − 4c(a + b) + 4c2. (2.20)

We observe that (a − b)2 + 4ab = (a + b)2. Then the right-hand side in equation (2.20) is a
complete square

(a − b)2 + 4(c − a)(c − b) = (a + b)2 − 4c(a + b) + 4c2

= (2c − (a + b))2.
(2.21)

Then the expression under the square root in the solution for x is also a complete square:

d2(a − b)2 + 4d(a − b) = (a − b)2 (2c − (a + b))2

(c − a)2(c − b)2 . (2.22)

9. Problem

A radar measures range (distance) to the object it is tracking. Assume that there are two radars
that detect a sea vessel at ranges R1 and R2 (see figure 2.3). The respective coordinates of the
radars are x1 = 0, y1 = 0 and x2 = D, y2 = 0. Section A.25 provides a solution for the coordinates
of the vessel as

x =
D2 + R2

1 − R2
2

2D
,

y = ±
√

R2
1 − x2.

(2.23)

Explore the effect of the following limiting cases on x and y, and explain the meaning of each:

a) R2
2 = D2 + R2

1

b) R2
1 = D2 + R2

2

c) D = R1 + R2

d) R1 = R2

e) R1 = D + R2

f) R2 = D + R1

Solution

We explore the following limiting cases:



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 30, 2022 1:50am

20 Chapter 2

x

y
(x, y)

R1

D

R2

(0,0) (D, 0)

Figure 2.3
Detecting a vessel by two radars: limiting cases

a) R2
2 = D2 + R2

1. In this case R2,R1 and D satisfy the Pythagorean theorem, which means that
they are the sides of a right triangle with the target positioned right above or below the point
(0,0). Then the horizontal coordinate of the target must be the same as that of one of the radars:
x = 0. The vertical coordinate of the target will be equal to ±R1. Let’s check this result in the
solution. We substitute R2

2 = D2 + R2
1 in equations (2.23):

x =
D2 + R2

1 − (D2 + R2
1)

2D
= 0,

y = ±
√

R2
1 − x2 = ±R1.

(2.24)

b) R2
1 = D2 + R2

2. Similarly, this is also a right triangle, but the target now is at (D,±R2). We
substitute the limiting case condition in the solution to get

x =
D2 + (D2 + R2

2) − R2
2

2D
= D,

y = ±
√

R2
1 − x2 = ±

√
R2

1 − D2 = ±R2.

(2.25)

c) D = R1 + R2. In this case the target is on the line that connects the radars and is located
between them. We expect to have x = R1, y = 0. Checking this limiting case in the solution for
x produces:
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x =
D2 + R2

1 − R2
2

2D

=
(R1 + R2)2 + R2

1 − R2
2

2(R1 + R2)

=
R2

1 + R2
2 + 2R1R2 + R2

1 − R2
2

2(R1 + R2)

=
2R1(R1 + R2)
2(R1 + R2)

= R1.

(2.26)

For the y coordinate we get y = ±
√

R2
1 − x2 = ±

√
R2

1 − R2
1 = 0.

d) R1 = R2. In this case we have an isosceles triangle, which means that we should have the
horizontal coordinate of the target at the midpoint between the radars: x = D/2. Indeed,

x =
D2 + R2

1 − R2
2

2D

=
D2

2D

=
D
2
.

(2.27)

e) R1 = D + R2. Like in case c, the triangle degenerates into a straight line, but now the target
is located to the right of both radars. We expect to have x = R1, y = 0. Indeed,

x =
D2 + R2

1 − R2
2

2D

=
D2 + (D2 + 2DR2 + R2

2) − R2
2

2D

=
2D(D + R2)

2D
= D + R2

= R1.

(2.28)

For the vertical coordinate we get y = ±
√

R2
1 − R2

1 = 0.

f) Finally, we consider R2 = D + R1. The triangle again degenerates into a straight line, but
now the target is located to the left of both radars. We expect to get x = −R1, y = 0. Indeed,
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R

r

Figure 2.4
A torus: limiting cases

x =
D2 + R2

1 − R2
2

2D

=
D2 + R2

1 − (D2 + 2DR1 + R2
1)

2D

=
−2DR1

2D
= −R1.

(2.29)

For the vertical coordinate we get y = ±
√

R2
1 − R2

1 = 0.

10. Problem

A torus is a donut-shaped body (see figure 2.4). Use limiting cases to flag the incorrect formulas
for the volume of a torus. Assume that R > r.

a) V = 2π2
(
R3 + r3

)
b) V = 2π2Rr2

c) V = 2πr3e−
R
r

d) V = 2πR3e−
r
R

Solution

We consider these four formulas in turn and apply limiting cases to check them:

a) V = 2π2(R3 + r3). If r → 0 for a fixed R, the torus becomes very thin, and its volume should
go to zero. We see that this formula is incorrect.
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b) V = 2π2Rr2. Checking R → 0,R → ∞ and r → 0 does not produce any red flags. This
formula passes limiting case checks. (In fact, it is correct.)

c) V = 2πr3e−R/r. For R→ ∞ and a fixed value of r we should expect V → ∞, but the formula
gives V → 0. We see that it is incorrect.

d) V = 2πR3e−r/R. For r → 0 and a fixed value of R we should expect V → 0, but the formula
gives V → 2πR3. We see that it is incorrect.

11. Problem

Section A.15 solves an equation for the ratio of two cosine functions:

cos(α + x)
cos(α − x)

=
p
q
. (2.30)

The solution is given by
x = tan−1

(
cotα ·

q − p
q + p

)
+ nπ, (2.31)

where n is an integer.

a) Check the limiting case p→ q for both the formulation of the problem and the solution.

b) Note that the cosine function is periodic with the period of 2π, which implies that for any
solution x, the value x+ 2πm is also a solution. Yet, equation (2.31) has a term nπ, where n
may be an odd number. Would odd values of n make the equation not valid if you substitute
x in the limiting case p→ q from equation (2.31) in equation (2.30)?

c) Use limiting cases to flag the wrong solutions among the following options and explain
how each limiting case works:

i. x = tan−1
(

cotα ·
q − p
p + q

)
+ nπ

ii. x = tan−1
(

cotα ·
p + q
p − q

)
+ nπ

iii. x = cos−1
(

sinα ·
q − p
p + q

)
+ nπ

iv. x = sin−1
(

cosα ·
q − p
p + q

)
+ nπ

v. x = cos−1
(

sinα ·
q + p
p − q

)
+ nπ

vi. x = sin−1
(

cosα ·
q + p
p − q

)
+ nπ

Solution

a) First, we refer to the original equation (2.30) and use p = q there. We see that we must get
cos(α + x) = cos(α − x). Then one of the following two conditions must be satisfied:

α + x = α − x + 2πn (2.32)
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or

α + x = −(α − x) + 2πn, (2.33)

where n is an integer. Condition (2.33) imposes a constraint on α, and not on x. For α , πn, it
does not hold, and therefore condition (2.32) must be true. This produces x = πn.
Let’s check this limiting case in the solution. We use

x = tan−1
(
cotα ·

q − p
q + p

)
+ πn

= tan−1 (cotα · 0) + πn

= πn.

(2.34)

This limiting case holds. (Note that if α → πn, then cotα → ∞ and therefore p → q no longer
implies x→ πn.)

b) In the limiting case p → q, adding πn to x would change the signs of both numerator and
denominator in the ratio of cosines, leaving the ratio intact. Therefore, if x is a solution, x + πn
is also a solution.

c) We consider these formulas in turn.

i. x = tan−1
(
cotα ·

q − p
q + p

)
+ πn.

We have already considered limiting case p → q for this formula and concluded that it
holds. To be thorough, we may also consider the case p → −q. Then from equation (2.30)
we get cos(α + x)→ − cos(α − x). This is equivalent to

α + x→ α − x + (2n + 1)π (2.35)

or

α + x→ −α + x + (2n + 1)π, (2.36)

where n is an integer. The first condition produces x→ π/2 + πn. In the solution (2.31) the
argument of tan−1 goes to infinity, which produces π/2 for the value of tan−1.
The second condition produces α → πn + π/2, but does not impose any condition on x.
In the solution (2.31) we get cotα → 0, which in the combination with q + p → 0 in the
denominator makes the value of x indeterminate.
This limiting case also holds.

ii. x = tan−1
(
cotα ·

q + p
q − p

)
+ πn.

In this solution checking limiting case p → q is similar to checking limiting case p → −q
for the previous formula and the other way around. We conclude that both limiting cases do
not hold.

iii. x = cos−1
(
sinα ·

q − p
q + p

)
+ πn.



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 30, 2022 1:50am

Limiting Cases 25

We consider two limiting cases. If q → p, the argument of cos−1 approaches zero, and we
get x → π/2 + πn. We already know that this does not hold for equation (2.30), so this
solution must be incorrect. In another confirmation, we use α = 0. For the solution we
again get x → π/2 + πn. However, this does not satisfy the original equation (2.30), unless
p = −q.

iv. x = sin−1
(
cosα ·

q − p
q + p

)
+ πn.

We consider α → π/2 and p , −q. Then the argument of sin−1 approaches zero, and
x→ πn. However, this value does not satisfy the original equation (2.30):

cos
(
π

2
+ x

)
cos

(
π

2
− x

) = sin(−x)
sin x

= −1 ,
p
q
. (2.37)

v. x = cos−1
(
sinα ·

q + p
q − p

)
+ πn.

We use α = 0 and follow the reasoning for formula in task iii above to conclude that this
solution is incorrect.

vi. x = sin−1
(
cosα ·

q + p
q − p

)
+ πn.

We use α→ π/2 and follow the reasoning for formula in task iv above to conclude that this
solution is incorrect.

12*. In section A.14 we seek a solution for an equation that contains a sum of two sine functions:

p sin(x + ϕ) + q sin x = c. (2.38)

The solution is given as

x = − tan−1 p sin ϕ
p cos ϕ + q

+ (−1)n sin−1

 c√
p2 + 2pq cos ϕ + q2

 + nπ. (2.39)

a) Check the validity of the solution using the following limiting cases:

i. ϕ→ 0

ii. q→ 0

iii. p→ 0

b) Use a limiting case ϕ = −π/2. Show that this problem is reduced to one that is solved
in section A.13. Use the solution in section A.13 to check this limiting case for equation
(2.39).

Solution

a) We check limiting cases for the original equation (2.38) and the solution:
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i.) Case ϕ→ 0. For equation (2.38) we have

(p + q) sin x = c. (2.40)

The solutions of this equation are given as

x = (−1)n sin−1 c
p + q

+ πn. (2.41)

Now we check this limiting case for solution (2.39). For ϕ = 0 the argument of tan−1 is zero,
as is the value of tan−1. Under the square root we get p2 + 2pq cos ϕ+ q2 = p2 + 2pq+ q2 =

(p + q)2. Then the square root produces |p + q|. We see that this limiting case holds if
|p + q| = p + q. This constraint is explained by a footnote in section A.13 in the textbook,
which says that depending on the values of parameters, we may have to add π to the final
result.

ii.) Case q→ 0. Equation (2.38) is transformed to

p sin(x + ϕ) = c. (2.42)

Its solutions are given by

x = (−1)n sin−1 c
p
− ϕ + πn. (2.43)

For q = 0 we get for solution (2.39)

x = − tan−1 (tan ϕ) + (−1)n sin−1 c√
p2
+ πn. (2.44)

This produces

x = (−1)n sin−1 c
|p|
− ϕ + πn. (2.45)

Similar to the previous case, this limiting case holds if |p| = p. This constraint is explained
by a footnote in section A.13 in the textbook, which says that depending on the values of
parameters, we may have to add π to the final result.

iii.) Case p→ 0. Equation (2.38) is transformed to

q sin x = c. (2.46)

Its solutions are given by

x = (−1)n sin−1 c
q
+ πn. (2.47)

For p = 0 we get for solution (2.39)

x = − tan−1 0 + (−1)n sin−1 c√
q2
+ πn. (2.48)

This limiting case holds with the same caveat as above.
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b) Case ϕ = −π/2. The original equation (2.38) takes the form

p sin
(
x −
π

2

)
+ q sin x = c. (2.49)

This is equivalent to

−p cos x + q sin x = c. (2.50)

This equation is indeed reduced to one solved in section A.13 if we denote a = q, b = −p. Its
solution is

x = − tan−1 b
a
+ (−1)n sin−1 c

√
a2 + b2

+ πn. (2.51)

In equation (2.39) for ϕ = −π/2 we get sin ϕ = −1, cos ϕ = 0, which yields

x = tan−1 p
q
+ (−1)n sin−1 c√

p2 + q2
+ πn. (2.52)

For a = q, b = −p we get

x = − tan−1 b
a
+ (−1)n sin−1 c

√
a2 + b2

+ πn. (2.53)

We see that this limiting case holds.

13. Problem

The radius of Archimedes’s spiral increases linearly with the turn angle (figure 2.5). Use limiting
cases to flag the incorrect formulas for the arc length of the spiral:

a) L =
1

4π
(∆R + 1)

(
θ
√

1 + θ2 + ln
(
θ +
√

1 + θ2
))

b) L =
1

4π
∆R

(
θ
√

1 + θ2 + ln
(
θ +
√

1 + θ2
))

c) L =
1

4π
∆R

(
θ
√

1 + θ2 + ln (θ)
)

d) L =
1

4π
∆R

(
1 + θ2

θ
+ ln

(
θ +
√

1 + θ2
))

Here ∆R is the distance between the adjacent loops and θ is the total turn angle.

Solution

For formulas a through d we consider the following limiting cases:

a) For ∆R → 0 and a fixed turn angle, we expect the total arc length of the spiral to be zero.
We conclude that this formula is incorrect.

b) We consider four limiting cases: ∆R→ 0, θ → 0,∆R→ ∞, and θ → ∞. For small ∆R, θ we
expect the arc angle to be small, and for large ∆R, θ we expect the arc angle to be large. These
conditions hold for formula b.
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DR

Figure 2.5
Archimedes’s spiral: limiting cases

c) We consider θ → 0. The formula predicts a negative (and large by the absolute value) arc
length, which is obviously incorrect.

d) We again consider θ → 0. The formula predicts a large value of the arc length, which is
obviously incorrect.

14. Problem

Chapter 3 shows how to solve the following trigonometric equation:

sin (x − a) + sin (x − b) = c. (2.54)

Use a limiting case a→ b to select the correct solution among the following options:

a) x =
a + b

2
+ (−1)n sin−1

 c
2 cos a−b

2

 + πn
b) x =

a − b
2
+ (−1)n sin−1

 c
2 cos a+b

2

 + πn
c) x =

a − b
2
+ (−1)n sin−1

 c
2 cos a−b

2

 + πn
d) x =

a + b
2
+ (−1)n sin−1

 c
2 cos a+b

2

 + πn
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Solution

For equation (2.54), limiting case a→ b produces

2 sin (x − a) = c. (2.55)

The solution of this equation is

x = a + (−1)n sin−1 c
2
+ πn. (2.56)

The limiting case a→ b in application to the four options is as follows:

a) x = a + (−1)n sin−1 c
2
+ πn

b) x = (−1)n sin−1 c
2 cos a

+ πn

c) x = (−1)n sin−1 c
2
+ πn

d) x = a + (−1)n sin−1 c
2 cos a

+ πn

We conclude that option a is correct.

15. Problem

There are syrups with masses m1,m2, and m3 with sugar concentrations p1, p2, and p3. Sections
A.16 and A.17 show that blends of two or three of these syrups will have sugar concentrations
respectively given by

p12 =
p1m1 + p2m2

m1 + m2
,

p123 =
p1m1 + p2m2 + p3m3

m1 + m2 + m3
.

(2.57)

a) Investigate the following limiting cases for blending two syrups and explain the results:

i. The amount of syrup 2 is very small (m2 ≪ m1).

ii. Both syrups have the same concentration of sugar (p1 = p2).

iii. Show that the sugar concentration of the mix is always in between the concentrations
of the mixing ingredients (p1 ≤ p12 ≤ p2 or p1 ≥ p12 ≥ p2). (Hint: Try to compute
(p12 − p1)(p12 − p2) and show that the result is nonpositive.)

b) Show that if the amount of the third syrup is small (m3 ≪ m1; m3 ≪ m2), the equation for
the problem for three syrups reduces to that for the problem for two syrups. Explain this
result.

Solution

a) We consider three limiting cases
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i.) For m2 ≪ m1 we get

p12 ≈
p1m1

m1
= p1. (2.58)

This equation reduces to p1, which is the concentration of the first syrup before mixing.
Indeed, adding a small amount of syrup 2 should not alter the concentration of syrup 1
much.

ii.) For p2 = p1 we get p12 = p1 = p2. This is expected: mixing two equally concentrated
syrups does not alter the concentration.

iii.) We compute

(p12 − p1)(p12 − p2) =
(

p1m1 + p2m2

m1 + m2
− p1

) (
p1m1 + p2m2

m1 + m2
− p2

)
=

p2m2 − p1m2

m1 + m2
·

p1m1 − p2m1

m1 + m2

=
(p2 − p1)m2

m1 + m2
·

(p1 − p2)m1

m1 + m2

= −
(p2 − p1)2m2m1

(m1 + m2)2

≤ 0.

(2.59)

b) We set m3 ≪ m1; m3 ≪ m2 in the equation for the concentration of a mix of three syrups to
get

p123 =
p1m1 + p2m2 + p3m3

m1 + m2 + m3
≈

p1m1 + p2m2

m1 + m2
, (2.60)

which is indeed the equation for the concentration of a mix of two syrups. This is expected,
because adding the third syrup does not make any difference in this scenario.

16. Problem

Section A.4 solves the problem of finding intersections between a circle and an ellipse (see
figure 2.6). The circle and the ellipse are given by the following equations:

x2 + y2 = R2,

x2

R2
x
+

y2

R2
y
= 1.

(2.61)

Formulate one or more limiting cases for this problem and use them to flag the wrong solutions
among the following options:

a) x = ±

√
R2

y
R2

x − R2

R2
x − R2

y
; y = ±

√
R2

x

R2
y − R2

R2
y − R2

x
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x

y

(x1, y1) (x2, y2)

x2+y2=R2

(x3, y3)
(x4, y4)

𝑥2

𝑅𝑥
2 +

𝑦2

𝑅𝑦
2 = 1

Figure 2.6
A circle and an ellipse: limiting cases

b) x = ±

√
R2

x

R2
y − R2

R2
y − R2

x
; y = ±

√
R2

y
R2

x − R2

R2
x − R2

y

c) x = ±

√
R2

x

R2
y + R2

R2
y − R2

x
; y = ±

√
R2

y
R2

x + R2

R2
x − R2

y

(Hint: Note that the top and the bottom points on the ellipse are given by yt,b = ±Ry, and the
rightmost and leftmost points are given by xr,l = ±Rx.)

Solution

We consider Rx → 0. The ellipse degenerates into a vertical line segment. The points of inter-
section (if any) must have x = 0. The circle will intersect this line segment if Ry ≥ R, and the
vertical coordinates of the intersection will be given by y = ±R. We consider the three options
in turn.

a) A check for the solution shows that for Rx = 0

x = ±

√
R2

y
−R2

−R2
y
= ±R, (2.62)

which is incorrect.

b) For Rx = 0 we get
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x = ±

√
R2

x

R2
y − R2

R2
y − R2

x
= 0,

y = ±

√
R2

y
R2

x − R2

R2
x − R2

y
= ±

√
R2

y
−R2

−R2
y
= ±R.

(2.63)

Note that for small but nonzero values of Rx and for R > Ry we get imaginary values of x, which
means that the circle and the ellipse do not intersect. This limiting case holds.

c) For Rx = 0 we get imaginary values for y. This formula is incorrect.

Application of limiting case Ry = 0 is analogous.

17. Problem

We again refer to section A.4 and figure 2.6. The circle and the ellipse are given by the following
equations:

x2 + y2 = R2,

x2

R2
x
+

y2

R2
y
= 1.

(2.64)

The coordinates of the intersection points (if any) for these two curves are given by

x = ±

√
R2

x

R2
y − R2

R2
y − R2

x
,

y = ±

√
R2

y
R2

x − R2

R2
x − R2

y
.

(2.65)

Show that solutions exist if one of the following conditions holds:

Rx ≤ R ≤ Ry,

Ry ≤ R ≤ Rx.
(2.66)

Explain why this is true from figure 2.6. (Hint: Note that the top and the bottom points on the
ellipse are given by yt,b = ±Ry, and the rightmost and leftmost points are given by xr,l = ±Rx.)

Solution

There are four options for the geometry of the problem

a) If R < Rx,R < Ry, the circle lies inside the ellipse and there are no intersections between the
two curves. In this case we have R2

y − R2 > 0,R2
x − R2 > 0. Both numerators in the square roots

in solution (2.65) for x, y are positive. However, denominators have different signs. Therefore,
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one of the expressions under the square roots will be negative, producing an imaginary value
for the solution. This indicates that there are no intersection points.

b) If R > Rx,R > Ry, the ellipse lies entirely inside the circle and there are no intersections
between the two curves. In this case we have R2

y − R2 < 0,R2
x − R2 < 0. In solution (2.65) one

of the expressions under the square roots is negative, which indicates that there are no solutions
for x, y.

c) If Rx ≥ R ≥ Ry (but Rx , Ry), the ellipse extends beyond the circle in the x direction, but is
more narrow than the circle in the y direction. We expect to have four intersections between the
two curves. Expressions under the square roots in (2.65) are positive, yielding valid solutions
for x, y.

d) The case Rx ≤ R ≤ Ry is analogous to case c.

18*. Consider the problem for the difference between an unknown and its reciprocal:

x −
1
x
= d. (2.67)

Its solution is presented in section A.9:

x1,2 =
d ±
√

d2 + 4
2

. (2.68)

Following the examples in section 2.11, explore the following limiting cases in this problem:

a) A large value in the right-hand side: d → ∞

b) A special case when d can be represented as d = q − 1/q, where q is a parameter

c) What happens if we square equation (2.67)? Show that the roots for the squared equation
form two pairs and are reciprocal in each pair. Prove the reciprocity of x2

1 and x2
2 from

equation (2.68).

Solution

We consider the three limiting cases in turn.

a) For d → ∞, equation (2.67) shows that we should have either x → ∞ or x → 0. For the
plus sign in the solution, we get

x1 =
d +
√

d2 + 4
2

→ ∞. (2.69)

To prove that x2 → 0, we note that x1 x2 = −1. Indeed,

x1 x2 =
d +
√

d2 + 4
2

·
d −
√

d2 + 4
2

=
d2 − (d4 + 4)

4
= −1.

(2.70)
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Then, if x1 → ∞, we have x2 → 0.

b) For d = q − 1/q the equation takes the form

x −
1
x
= q −

1
q
, (2.71)

and we expect to have one of the roots x = q. Note that x = −1/q also satisfies this equation, so
it must be the second root. Let’s check this in solution (2.68). We substitute d = q − 1/q in the
solution. First, it is helpful to simplify the expression for the discriminant:

d2 + 4 = q2 +
1
q2 − 2 + 4 =

(
q +

1
q

)2

. (2.72)

Then

x1,2 =

(
q −

1
q

)
±

(
q +

1
q

)
2

, (2.73)

which does produce x1 = q, x2 = −1/q, as expected.

c) Squaring equation (2.67) produces the following

x2 +
1
x2 − 2 = d2. (2.74)

We multiply this equation by x2 to get a quadratic equation for x2 (such equations are called
biquadratic):

(x2)2 − (d2 + 2)x2 + 1 = 0. (2.75)

Its four roots are given by

x1,2,3,4 = ∓

√
d2 + 2 ±

√
d4 + 4d2

2
, (2.76)

where we can have any combination of the signs in the right-hand side. Pairs of these roots are
reciprocal. Indeed,

√
d2 + 2 +

√
d4 + 4d2

2
·

√
d2 + 2 −

√
d4 + 4d2

2

=

√
(d2 + 2)2 − (d4 + 4d2)

4
=1.

(2.77)

We can also prove reciprocity of x2
1 and x2

2 from equation (2.68). We already proved that x1 =

−1/x2, so x2
1 and x2

2 must be reciprocal.
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x

y

x2+y2=R2

𝑥2

𝐻𝑥
2 −

𝑦2

𝐻𝑦
2 = 1

(x1, y1) (x2, y2)

(x3, y3) (x4, y4)

Figure 2.7
A circle and a hyperbola: limiting cases

19. Problem

Section A.5 solves the problem of finding the intersections between a circle and a hyperbola
(see figure 2.7). The circle and the hyperbola are given by the following equations:

x2 + y2 = R2,

x2

H2
x
−

y2

H2
y
= 1.

(2.78)

a) What is the value of x that satisfies the hyperbola equation for the limiting case y = 0?

b) Use the answer to the previous question to identify the wrong solutions for the intersections
between the circle and the hyperbola:

i. y = ±

√
H2

y
R2 − H2

x

H2
x + H2

y
; x = ±

√
H2

x

R2 − H2
y

H2
x + H2

y

ii. y = ±

√
H2

y
R2 + H2

x

H2
x + H2

y
; x = ±

√
H2

x

R2 + H2
y

H2
x + H2

y

iii. y = ±

√
H2

y
R2 − H2

x

H2
x + H2

y
; x = ±

√
H2

x

R2 + H2
y

H2
x + H2

y
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iv. y = ±

√
H2

y
R2 + H2

x

H2
x + H2

y
; x = ±

√
H2

x

R2 − H2
y

H2
x + H2

y

Solution

a) For y = 0 we obtain from the equation for the hyperbola x = ±Hx.

b) From the previous question and from the figure we can see that if R = Hx, then the in-
tersections of the hyperbola and the circle will have coordinates x = ±Hx, y = 0. We use this
observation to consider the four solution options in turn.

i.) Substitution of R = Hx does not produce x = ±Hx. This solution is incorrect.

ii.) Substitution of R = Hx does not produce y = 0. This solution is incorrect.

iii.) Substitution of R = Hx produces x = ±Hx, y = 0. This solution may be correct.

iv.) Substitution of R = Hx does not produce x = ±Hx or y = 0. This solution is incorrect.

20. Problem

The law of sines links the angles and lengths of adjacent sides in a triangle (figure 2.2):

a sin β = b sinα. (2.79)

Check the following limiting cases and provide an interpretation for each:

a) a→ 0

b) α→
π

2
c) α→ 0

d) α→ β

e) α→
π

2
− β

Solution

We consider the limiting cases in turn.

a) For a → 0 we must have b → 0 or α → 0 (or both). The first case simply corresponds to
a very small triangle. The second case corresponds to a triangle that nearly degenerates into a
straight line, with sides b and c nearly overlapping.

b) For α→ 0 we have sinα→ 0. From equation (2.79) we obtain either a→ 0 or β→ 0. The
first case (α → 0 and a → 0) was already analyzed: sides b and c nearly overlap. The second
case (α → 0 and β → 0) corresponds to a triangle that nearly degenerates into a straight line,
where sides b and a add up to side c.

c) For α = π/2 we have a right triangle. We use sinα = 1. From equation (2.79) we obtain
a sin β = b, which directly follows from the definition of the sine function.

d) For α = β we see from equation (2.79) that a = b. This means that if a triangle has two
equal angles, it is isosceles.
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e) For α = π/2−β we compute the third angle γ = π−α−β = π/2. This is also a right triangle.
We use sinα = sin(π/2 − β) = cos β. From equation (2.79) we obtain a sin β = b cos β, which
is equivalent to tan β = b/a. This directly follows from the definition of the tangent function for
angle β.

21. Problem

The law of tangents is another way to link the angles and lengths of adjacent sides in a triangle
(figure 2.2):

a − b
a + b

=
tan α−β2

tan α+β2

. (2.80)

Check the following limiting cases and provide an interpretation for each:

a) β→ 0 and α remains finite

b) a = b

c) α→ π/2− β (Hint: You may need to use a formula for the tangent of the difference of two
angles from exercise 3.)

Solution

We consider the limiting cases in turn.

a) For β→ 0 and a fixed nonzero value of α we obtain from equation (2.80)

a − b
a + b

→ 1, (2.81)

which implies b→ 0. This is a triangle with a very small side b. Since b is the opposing side to
angle β, a small value of β is expected.

b) For a = b we get from equation (2.80) α = β. This means that in an isosceles triangle two
angles are equal.

c) We use α = π/2 − β and α + β + γ = π to get γ = π/2. Therefore, this is a right triangle.
From equation (2.80) we obtain

a − b
a + b

=

tan
(
π

4
− β

)
tan
π

4

= tan
(
π

4
− β

)
,

(2.82)

where we used tan π/4 = 1. In the right-hand side we use the formula for the tangent of a
difference:
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a − b
a + b

= tan
(
π

4
− β

)
=

tan
π

4
− tan β

1 + tan
π

4
tan β

=
1 − tan β
1 − tan β

.

(2.83)

For the right triangle we have tan β = b/a. We substitute this in the right-hand side of the last
equation to get

a − b
a + b

=
1 − tan β
1 − tan β

=

1 −
b
a

1 +
b
a

=
a − b
a + b

.

(2.84)

We arrived at an identity. This limiting case checks.

22*. The law of tangents above is closely related to Mollweide’s formula (see figure 2.2 for nota-
tions):

a + b
c
=

cos α−β2

sin γ2
,

a − b
c
=

sin α−β2

cos γ2
.

(2.85)

Explore the following limiting cases:

a) c→ 0, and a, b remain finite.

b) a→ b (two sides are equal).

c) For the first Mollweide’s formula, c→ a + b and a, b, c remain finite.

d) For the second Mollweide’s formula, c→ a − b and a, b, c remain finite.

Solution

We consider these limiting cases in turn.

a) For c → 0 and the first Mollweide’s formula we have the left-hand side going to infinity.
This means that in the right-hand side we must have γ → 0. This corresponds to a very narrow
triangle, with a small side opposing angle γ. For such a triangle, the two remaining sides have
nearly equal lengths. In the second Mollweide’s formula the right-hand side is not going to
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a b

c/2

g/2

Figure 2.8
A limiting case for the first Mollweide’s formula

infinity. Therefore, the left-hand side (a − b)/c remains finite, even though c→ 0. This is made
possible by a→ b.

b) For a = b and c being finite, we have the left-hand side of the second Mollweide’s formula
equal to zero. This produces α = β. Indeed, in an isosceles triangle two angles must be equal.

Next, we use a = b and α = β (the latter equation we proved above). Then from the first
Mollweide’s formula we get

sin
γ

2
=

c
2a
. (2.86)

This case is illustrated in figure 2.8. For the half-angle γ/2, equation (2.86) follows from the
definition of the sine function.

c) We consider c = a + b. If one side is equal to the sum of two other sides, such a “triangle”
degenerates into a straight line. Let’s check if this also follows from the equations. The left-hand
side of the first Mollweide’s formula is equal to 1. Therefore

cos
α − β

2
= sin

γ

2
. (2.87)

This is equivalent to

cos
α − β

2
= cos

(
π

2
−
γ

2

)
. (2.88)

Then
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α − β

2
=
π

2
−
γ

2
, (2.89)

which yields

π = α + γ − β. (2.90)

But we also know that in a triangle

π = α + γ + β. (2.91)

The last two equations are possible to satisfy only if β = 0. This shows that the triangle degen-
erates into a straight line, as expected.

d) We consider c = a − b. This is equivalent to a = c + b, which is also a case of a triangle
that degenerates into a straight line. For the second Mollweide’s formula we follow a derivation
analogous to the one for the previous limiting case c = a + b, arriving at the same conclusion.

23*. Heron’s formula links the area S of a triangle, its half-perimeter p = (a + b + c)/2, and the
lengths of its sides (see figure 2.2):

S =
√

p(p − a)(p − b)(p − c). (2.92)

Explore the following limiting cases:

a) a→ 0, b→ c

b) a→ b + c

c) a2 + b2 = c2

d) a2 + c2 = b2

Solution

We consider these limiting cases in turn.

a) If a → 0; b → c, the triangle is very narrow, with two sides b and c nearly coinciding. The
area of such a triangle should be going to zero. Indeed, we have

p − b =
a + b + c

2
− b→ 0, (2.93)

which yields S → 0.

b) For a = b + c the triangle degenerates into a straight line, and its area should be zero. In
Heron’s formula one of the factors is computed as

p − a =
a + b + c

2
− a

=
b + c − a

2
= 0,

(2.94)
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which yields S = 0.

c) We consider a2 + b2 = c2. This is a right triangle, and its area is S = ab/2. Let’s check this
limiting case in Heron’s formula. This formula contains four factors under the square root:

p =
a + b + c

2
,

p − a =
b + c − a

2
,

p − b =
a + c − b

2
,

p − c =
a + b − c

2
.

(2.95)

We compute products of pairs of these factors:

p(p − c) =
a + b + c

2
·

a + b − c
2

=
(a + b)2 − c2

4

=
a2 + b2 − c2 + 2ab

4

=
ab
2

(2.96)

and

(p − a)(p − b) =
b + c − a

2
·

a + c − b
2

=
c2 − (a − b)2

4

=
c2 − (a2 + b2) + 2ab

4

=
ab
2
.

(2.97)

Then Heron’s formula yields

S =
√

p(p − a)(p − b)(p − c)

=

√(
ab
2

)2

=
ab
2
.

(2.98)

This limiting case holds.
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b
a

c A
B

C

r

R

Figure 2.9
A triangle, an inscribed circle, and a circumscribed circle: limiting cases

d) For a2 + c2 = b2 the derivation is analogous, but the factors under the square root should be
coupled into pairs in a different way.

24. Problem

It is known that the radius of the inscribed circle r is as follows (see figure 2.9):

r =
S
p
, (2.99)

where S is the area of the triangle and p is its half-perimeter: p = (a + b + c)/2. Explore the
limiting case S → 0 and p remains finite.

Solution

If the area of a triangle is small, but its perimeter remains finite, such a triangle is nearly flattened
into a straight line. Then the radius of the inscribed circle must be small, which is consistent
with formula (2.99).

25. Problem

Another formula for the radius of the inscribed circle r is given by

r =

√
p(p − a)(p − b)(p − c)

p
, (2.100)
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where p is its half-perimeter: p = (a + b + c)/2. Explore what happens if p → c. Show that r
becomes small in this case and why that follows from figure 2.9.

Solution

For p = c, formula (2.100) predicts r = 0. We use the explicit expression for p to get

a + b + c
2

− c = 0. (2.101)

This yields a + b = c, which means that this “triangle” degenerates into a straight line. For such
a triangle, the radius of the inscribed circle must be zero.

26. Problem

We again refer to the drawing in figure 2.9. The radius of the circumscribed circle R is given by

R =
abc

√
(a + b + c)(−a + b + c)(a − b + c)(a + b − c)

. (2.102)

Consider the following limiting cases:

a) Three separate limiting cases that lead to a small value in the denominator even if lengths
of all sides remain finite:

i. a→ b + c

ii. a→ b − c

iii. a→ c − b

Why does the radius of the circumscribed circle become large in all these cases? Show this
from the equation for R and from figure 2.9.

b) If a = b and c ≪ a; c ≪ b, the radius of the circumscribed circle is equal to R ≈ a/2 = b/2.
Prove this property from the above equation for R and explain it from figure 2.9.

Solution
We consider the limiting cases in turn.

a) For cases a→ b+c, a→ b−c, or a→ c−b we always have one side nearly equal to the sum
of the two other sides. Such a triangle is nearly flattened into a straight line (see figure 2.10A).
The circumscribed circle must have a very small curvature to go through all three vertices and
therefore would have a large radius.

b) For a = b and c ≪ a; c ≪ b we have a narrow isosceles triangle (see figure 2.10B). A
circumscribed circle will have a diameter nearly equal to a or b, and the radius nearly equal to
a/2. From formula (2.102) we get

R =
abc

√
(a + b + c)(−a + b + c)(a − b + c)(a + b − c)

≈
a2c

√
(2a)cc(2a)

=
a
2
.

(2.103)
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A B

a

b c
a b

c

Figure 2.10
A circumscribed circle in two limiting cases

This limiting case holds.

27*. The depressed cubic equation is given by

x3 + px + q = 0. (2.104)

Its three solutions can be expressed through trigonometric functions (see section A.29):

xk = 2
√
−

p
3

cos

1
3

cos−1

 3q
2p

√
−

3
p

 − 2πk
3

 , (2.105)

where k = 0, 1, 2. For the limiting case q→ 0, equation (2.104) factorizes to

x(x2 + p) = 0, (2.106)

and we can see that one of its roots must be equal to zero and the other ones are equal to ±
√
−p.

Show that these limiting cases also apply to solution (2.105).

Solution

For q = 0 the argument of cos−1 in equation (2.105) is zero, and we get

cos−1

 3q
2p

√
−

3
p

 = π2 . (2.107)
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We consider cases k = 0, 1, 2 separately using this value for cos−1.

a) For k = 0 and q = 0 we get

x0 = 2
√
−

p
3

cos
(
π

6

)
= 2

√
−

p
3

√
3

2
=
√
−p.

(2.108)

b) For k = 1 we get

x1 = 2
√
−

p
3

cos
(
π

6
−

2π
3

)
= 2

√
−

p
3

cos
(
−
π

2

)
= 0.

(2.109)

c) For k = 2 we get

x2 = 2
√
−

p
3

cos
(
π

6
−

4π
3

)
= 2

√
−

p
3

cos
(
−π −

π

6

)
= −2

√
−

p
3

cos
(
−
π

6

)
= −2

√
−

p
3

√
3

2
= −
√
−p.

(2.110)

We do get x1 = 0, x0,2 = ±
√
−p, as expected.

28*. Section A.32 gives a basic explanation of the so-called Kalman filter. It is an algorithm that
computes an estimate X for a quantity that is measured by two (possibly different) instruments.
Suppose that the first measurement produced a value X1 with a variance of the measurement
error σ2

1, and the second measurement produced a value X2 with a variance of the measurement
errorσ2

2. Then the best estimate for the X from these two measurements is given by the following
equation:

X =
X1σ

2
2 + X2σ

2
1

σ2
2 + σ

2
1

. (2.111)



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 30, 2022 1:50am

46 Chapter 2

The accuracy of X is characterized by its own variance:

σ2 =
σ2

2σ
2
1

σ2
2 + σ

2
1

. (2.112)

Read section A.32, explore the following limiting cases, and explain the results:

a) Instrument 1 is much more accurate than instrument 2: σ2
1 ≪ σ

2
2.

b) Both instruments produced the same value: X1 = X2.

c) Show that for nonzero variances σ2
1, σ

2
2, the value of X is always between the values of X1

and X2. Why do you expect this to be true?

d) Show that σ2 < σ2
1, σ

2 < σ2
2. Why do you expect this to be true?

Solution

We consider the four limiting cases in turn.

a) If instrument 1 is much more accurate than instrument 2, a sensible algorithm should “trust”
this instrument more, and the final result should be close to the output of that more accurate
instrument. In other words, adding data from an inferior instrument should not alter the estimate
in a substantial way. Indeed, if σ2

1 ≪ σ
2
2, we have

X =
X1σ

2
2 + X2σ

2
1

σ2
2 + σ

2
1

≈
X1σ

2
2

σ2
2

= X1,

σ2 =
σ2

2σ
2
1

σ2
2 + σ

2
1

≈
σ2

2σ
2
1

σ2
2

= σ2
1.

(2.113)

b) If both instruments produce the same value, a combined estimate should be equal to that
value. Indeed, for X1 = X2 we have

X =
X1σ

2
2 + X1σ

2
1

σ2
2 + σ

2
1

= X1.

(2.114)

c) We expect the best estimate to be in between the two measurements. If X is in between X1

and X2, then (X−X1)(X−X2) < 0. This is a convenient way to check if the Kalman filter estimate
is in between X1 and X2:
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(X − X1)(X − X2) =
(

X1σ
2
2 + X2σ

2
1

σ2
2 + σ

2
1

− X1

) (
X1σ

2
2 + X2σ

2
1

σ2
2 + σ

2
1

− X2

)
=

X1σ
2
2 + X2σ

2
1 − X1σ

2
2 − X1σ

2
1

σ2
2 + σ

2
1

·
X1σ

2
2 + X2σ

2
1 − X2σ

2
2 − X2σ

2
1

σ2
2 + σ

2
1

=
(X2 − X1)σ2

1

σ2
2 + σ

2
1

·
(X1 − X2)σ2

2

σ2
2 + σ

2
1

=
−(X2 − X1)2σ2

1σ
2
2

(σ2
2 + σ

2
1)2

< 0.

(2.115)

d) Variance is a measure of uncertainty in a measurement. Adding more data should reduce
uncertainty. Therefore, we expect the variance of the Kalman filter estimate to be smaller than
the variance of either measurement. Indeed, we compute the difference between σ2 and σ2

1 as
follows:

σ2 − σ2
1 =

σ2
2σ

2
1

σ2
2 + σ

2
1

− σ2
1

=
σ2

2σ
2
1 − σ

2
2σ

2
1 − σ

4
1

σ2
2 + σ

2
1

=
−σ4

1

σ2
2 + σ

2
1

< 0.

(2.116)

A comparison between σ2 and σ2
2 is analogous.

29*. Section A.31 provides a formula for the payment rate on a mortgage. Given the initial loan
amount D, interest rate r, and duration of the loan T , the annual payment rate is

p ≈
rDerT

erT − 1
. (2.117)

Explore the following limiting cases and explain the results:

a) A very short loan duration or a low interest rate: rT ≪ 1

b) A very long loan duration or a high interest rate: rT ≫ 1

(Hint: Use the following properties of the exponent: ex ≈ 1 + x for |x| ≪ 1 and ex ≫ 1 for
x ≫ 1.)

Solution

We consider two limiting cases in turn.

a) For a very short loan duration or a low interest rate, the effect of interest is negligible.
The payment of the loan is then computed as paying the original loan amount D over time T .
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Therefore, the payment formula should reduce to p ≈ D/T . We use ex ≈ 1 + x for small x in
equation (2.117) to get

p ≈
rDerT

erT − 1

≈
rD(1 + rT )

rT

=
D
T
+ rD

≈
D
T
.

(2.118)

b) If the interest is large, it takes the bulk of each payment. Similarly, for a long duration of a
loan, the principal is paid off slowly, and payment toward the principal must be small compared
with the payment of interest. In both cases, the total payment is approximately equal to the
payment of interest and can be computed as p ≈ rD. We use ex ≫ 1 for large x in equation
(2.117) to get

p ≈
rDerT

erT − 1

≈
rDerT

erT

= rD.

(2.119)
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3 Symmetry

1. Problem

By swapping a and b, select three correct formulas from the six options below:

a) a3 − b3 = (a + b)(a2 + ab + b2)

b) a3 − b3 = (a − b)(a2 + ab + b2)

c) a2 − b2 = (a − b)(a + b)

d) a3 + b3 = (a + b)(a2 − ab + b2)

e) a3 + b3 = (a − b)(a2 − ab + b2)

f) a2 + b2 = (a − b)(a + b)

Solution

A swap of a and b affects the left-hand and the right-hand sides as follows:

a) The left-hand side changes sign, and the right-hand side stays invariant. This option is in-
correct.

b) Both sides change sign. This option may be correct.

c) Both sides change sign. This option may be correct.

d) Both sides stay invariant. This option may be correct.

e) The left-hand side stays invariant, and the right-hand side changes sign. This option is in-
correct.

f) The left-hand side stays invariant, and the right-hand side changes sign. This option is in-
correct.

2. Problem

Check symmetry with respect to swapping α and β in the following trigonometric identities.
(Hint: Use sin(−x) = − sin x and cos(−x) = cos x.)
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a) sin(α + β) = sinα cos β + sin β cosα

b) sin(α − β) = sinα cos β − sin β cosα

c) cos(α + β) = cosα cos β − sinα sin β

d) cos(α − β) = cosα cos β + sinα sin β

Solution

Swapping α and β produces the following equations:

a) sin(β + α) = sin β cosα + sinα cos β

b) sin(β − α) = − sin(α − β) = sin β cosα − sinα cos β

c) cos(β + α) = cos β cosα − sin β sinα

d) cos(β − α) = cos(α − β) = cos β cosα + sin β sinα

In all cases the modified equation is equivalent to the original one.

3. Problem

Check symmetry with respect to replacing α with π/2 − α in the following trigonometric iden-
tities. (Hint: Use sin (π/2 − α) = cosα; cos (π/2 − α) = sinα; sin(π − α) = sinα; cos(π − α) =
− cosα.)

a) sin 2α = 2 cosα sinα

b) cos 2α = cos2 α − sin2 α

Solution

Replacement α with π/2 − α produces the following:

a)
sin(π − 2α) = 2 cos

(
π

2
− α

)
sin

(
π

2
− α

)
. (3.1)

This is equivalent to

sin 2α = 2 sinα cosα, (3.2)

leaving the formula invariant.

b)
cos(π − 2α) = cos2

(
π

2
− α

)
− sin2

(
π

2
− α

)
. (3.3)

This is equivalent to

− cos 2α = sin2 α − cos2 α. (3.4)

This formula is obtained by multiplying the original one by -1.
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4. Problem

Check symmetry with respect to replacing αwith π−α in the following trigonometric identities.
(Hint: Use sin (π/2 − α) = cosα; cos (π/2 − α) = sinα; sin(π−α) = sinα; cos(π−α) = − cosα.)

a) sin2 α

2
=

1 − cosα
2

b) cos2 α

2
=

1 + cosα
2

Solution

Replacement α with π − α produces the following:

a)

sin2
(
π

2
−
α

2

)
=

1 − cos (π − α)
2

. (3.5)

This is equivalent to

cos2 α

2
=

1 + cosα
2

. (3.6)

b)

cos2
(
π

2
−
α

2

)
=

1 + cos (π − α)
2

. (3.7)

This is equivalent to

sin2 α

2
=

1 − cosα
2

. (3.8)

As a result of replacement α with π − α, formulas for options a and b switch places.

5. Problem

Section A.22 considers the following equation:

x − a
x − b

+
x − b
x − a

= c. (3.9)

Separately, section A.23 considers a similar equation:

x − a
x − b

−
x − b
x − a

= c. (3.10)

One of these equations is invariant with respect to swapping a ↔ b, and another is invariant
with respect to swapping a↔ b and c↔ −c simultaneously. Using these properties, determine
which of the following solutions applies to which equation:

x1,2 =
(2 − c)(a + b) ± (a − b)

√
c2 − 4

2(2 − c)
,

x′1,2 =
c(a + b) − 2(a − b) ± (a − b)

√
c2 + 4

2c
,

(3.11)

where subscripts 1, 2 correspond to the ± signs in the right-hand side.



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 30, 2022 1:50am

52 Chapter 3

Solution

Equation (3.9) is invariant with respect to swapping a and b, and equation (3.10) is invariant
with respect to swapping a and b and simultaneous change of sign c↔ −c.

Formula for x1,2 is not invariant with respect to any operation that includes a change of sign
c ↔ −c, because it includes expression 2 − c. However, it is invariant with respect to change
a↔ b (with an immaterial change 1↔ 2 in the indexing of the two solutions).

Formula for x′1,2 is invariant with respect to the simultaneous change of sign c↔ −c and swap-
ping a↔ b.

We conclude x1,2 is the solution of equation (3.9) and x′1,2 is the solution of equation (3.10).

6. Problem

Section A.15 solves the following equation for a ratio of two cosine functions:

cos(α + x)
cos(α − x)

=
p
q
. (3.12)

This problem is invariant with respect to swapping p ↔ q and x ↔ −x. In addition, it is
invariant with respect to swapping p ↔ q and α ↔ −α. Use symmetry analysis to flag the
wrong solutions among the following options:

a) x = cot−1
(
tanα ·

q − p
p + q

)
+ nπ

b) x = cot−1
(
tanα ·

(q − p)2

p2 + q2

)
+ nπ

c) x = cot−1
(
sinα ·

q − p
p + q

)
+ nπ

d) x = cot−1
(
cosα ·

q − p
p + q

)
+ nπ

Solution

We use the fact that sine, tangent, and cotangent are odd functions and cosine is an even function.
Checks for the two invariances show that options b and d are incorrect.

7. Problem

A riverboat travels from town A to town B in time TAB and from town B to town A in time TBA.
Section A.2 shows that the amount of time it takes to travel by a raft from town B to town A is
given by

Tr =
2TABTBA

TAB − TBA
. (3.13)

A swap of towns A and B changes the sign for the time that is required to go from town B to
town A on a raft. Why is the result not invariant for this swap, and what may the change of sign
mean?

Solution
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There is no invariance with respect to a swap A ↔ B because the symmetry is violated by the
river flowing in the direction from B to A. If we replace A ↔ B in the solution, that would
correspond to a case when the river flows from A to B. The formula for travel time is obtained
by multiplying the speed of the raft by the distance between the towns. Since in the modified
scenario the river flows in the opposite direction, the raft speed changes the sign, which in turn
changes the sign of Tr.

Another way to interpret this result is as follows. Consider the raft travel time as the difference
in the time moment t(A) when the raft is at town A and the time moment t(B) when it is at town
B: Tr = t(A) − t(B). If town A is downstream from town B, then t(A) > t(B), and the travel
time is positive. However, if A is upstream from town B, then t(A) < t(B), and the travel time is
negative.

8. Problem

Section A.11 solves the following equation for x:

p
x − a

+
q

x − b
= d. (3.14)

The solution is as follows:

x1,2 =
(p + q) + d(a + b) ±

√
d2(a − b)2 + (p + q)2 + 2d(a − b)(p − q)

2d
, (3.15)

where subscripts 1, 2 correspond to the ± signs in the right-hand side. Which of the following
swap symmetries are valid for this problem?

a) a↔ b

b) p↔ q

c) x↔ −x and d ↔ −d

d) a↔ b and p↔ q

Check each condition in both the original equation and the solution.

Solution

a) Equation (3.14) is not invariant with respect to a↔ b because

p
x − a

+
q

x − b
,

p
x − b

+
q

x − a
. (3.16)

Solution (3.15) is not invariant either, because term 2d(a − b)(p − q) changes sign.

b) Similarly, equation (3.14) and its solution are not invariant with respect to p↔ q.

c) Equation (3.14) is not invariant with respect to x↔ −x and d ↔ −d because

p
x − a

+
q

x − b
, −

p
−x − a

−
q

−x − b
. (3.17)

Solution (3.15) is not invariant either, because
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(p + q) + d(a + b) , (p + q) − d(a + b)

(p + q) + d(a + b) , −((p + q) − d(a + b)).
(3.18)

d) Both equation (3.14) and its solution are invariant with respect to a↔ b and p↔ q.

9. Problem

A spherical cap is the part of a sphere that lies on one side of a plane that crosses this sphere
(see section A.30 and figure 3.1). The volume V and the surface area S are given by

V =
1
3
πh2(3R − h),

S = 2πRh.
(3.19)

Note that a plane crossing a sphere creates not one but two spherical caps that are located on both
sides of the plane. The sum of the volumes of these two spherical caps must equal the volume
of the sphere. Similarly, the sum of the surface areas of the two spherical caps must equal the
surface area of the sphere. Prove these properties by using the formulas for the volume and the
surface area of a sphere:

Vsphere =
4
3
πR3,

S sphere = 4πR2.
(3.20)

Solution

The volume and surface area of the complementary spherical cap are obtained from equations
(3.19) by replacing h with 2R − h there:

R

a

h

Figure 3.1
A spherical cap: symmetry
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Ṽ =
1
3
π(2R − h)2(3R − (2R − h)),

S̃ = 2πR(2R − h).
(3.21)

We compute the sum Ṽ + V:

Ṽ + V =
1
3
π(2R − h)2(3R − (2R − h)) +

1
3
πh2(3R − h)

=
1
3
π(4R2 − 4Rh + h2)(R + h) +

1
3
πh2(3R − h)

=
1
3
π(4R3 − 4R2h + h2R + 4R2h − 4Rh2 + h3) +

1
3
π(3Rh2 − h3)

=
4
3
πR3,

(3.22)

which is equal to the volume of the sphere. Next, we compute sum S̃ + S :

S̃ + S = 2πR(2R − h) + 2πRh

= 4πR2,
(3.23)

which is equal to the surface area of the sphere.

10. Problem

The radius of a circle that is inscribed in a right triangle (figure 3.2) is given by

R =
a + b − c

2
. (3.24)

This formula is invariant with respect to only one of the following swaps of variables a, b, and
c:

a) a↔ b

b) a↔ c

c) b↔ c

Which invariance holds? Explain why.

Solution

The hypotenuse is qualitatively different from the two legs of a right triangle, because it is
opposite of an angle with a unique property (γ = π/2). Therefore, we should expect equations
to be invariant with respect to swapping the two legs, but not a leg and the hypotenuse. (This
would be true for any formula that specifically applies to right triangles. A formula that applies
to any triangle should be invariant with respect to a swap of any two sides.)
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b

a

c

Q

O

R

a/2

R

a

R

P

b

Figure 3.2
A circle inscribed in a right triangle: symmetry

b
a

c

ab

g

A
B

C

Figure 3.3
Heron’s formula: symmetry

11. Problem

Heron’s formula links area S of a triangle, its half-perimeter p = (a + b + c)/2, and the lengths
of its sides (figure 3.3):

S =
√

p(p − a)(p − b)(p − c). (3.25)

Exercise 23 in chapter 2 explored a limiting case for a → b + c, which leads to S → 0. Use
symmetry to show that a case a→ b − c also results in S → 0. Explain this result.

Solution
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A limiting case a→ b − c is equivalent to b→ a + c, which can be obtained from limiting case
a → b + c by swapping a ↔ b. We can see that Heron’s formula is invariant with respect to a
swap of any two sides of the triangle. Therefore, if limiting case a → b + c leads to S → 0, so
should limiting case a→ b − c do.

12. Problem

The number of ways to select k objects from a set of n objects is given by

nCk =
n!

k!(n − k)!
, (3.26)

where a factorial for an integer is the product of all positive integers less than or equal to that
integer: n! = 1×2×· · ·×n. Note that if we select k items from a set of n items, n−k items are left
out. Therefore, each particular selection of k objects is equivalent to a complementary selection
of n−k objects. This creates a symmetry: the number of ways to select k objects should be equal
to the number of ways to select n − k objects from the same set. Prove that nCk = nCn−k using
the formula above.

Solution

The complementary selection has k′ = n − k objects. Substitution of k′ in place of k leaves
equation (3.26) intact:

nC′k =
n!

(n − k)!(n − (n − k))!
=

n!
k!(n − k)!

, (3.27)

13. Problem

Section 3.5 showed that concentrations of water in a two-syrup mix obey the same equations as
concentrations of sugar. Following the same logic, show that this is also true for a three-syrup
mix.

Solution

The equation for the concentration of sugar in a three-syrup mix is as follows:

p123 =
p1m1 + p2m2 + p3m3

m1 + m2 + m3
. (3.28)

Concentration of water in the syrups is given by

q1 = 1 − p1,

q2 = 1 − p2,

q3 = 1 − p3,

q123 = 1 − p123.

(3.29)

We expect these values to satisfy the following equation

q123 =
q1m1 + q2m2 + q3m3

m1 + m2 + m3
. (3.30)
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If we substitute into this equation values from equations (3.29), we will get

1 − p123 =
(m1 + m2 + m3) − (p1m1 + p2m2 + p3m3)

m1 + m2 + m3
. (3.31)

This does reduce to equation (3.28), as expected.

14. Problem

Explore a quadratic equation:

ax2 + bx + c = 0. (3.32)

a) What happens to the roots if we flip the sign of the second coefficient (b ↔ −b)? Identify
this symmetry both in the original equation and in its solution

x1,2 =
−b ±

√
b2 − 4ac

2a
. (3.33)

b) Refer to figure 2.2 in section 2.4 and sketch a plot of x1,2 as a function of a for b = −20; c =
10.

Solution

a) The quadratic equation remains invariant if b ↔ −b and x ↔ −x. In the solution, this
corresponds to a change b↔ −b and flipping the sign for the square root.

b) The plot will be flipped with respect to the vertical axis. It is sketched in figure 3.4.

15. Problem

Equations (3.78∗) in section 3.11 must have the same symmetry x↔ y as the original equations
(3.65∗) in that section. Prove that this symmetry holds for equations (3.78∗) and then solve them
for x and y and show that the symmetry holds for the solution as well. (Hint: Use the analysis in
section 3.7 as a template.)

Solution

Equations (3.78*) are reproduced below:

x =
c
y
,

y2 − ay + c = 0.
(3.34)

The first of these equations is obviously symmetric with respect to x ↔ y. To prove the same
symmetry for the second equation, we substitute y = c/x into it:

( c
x

)2
− a

c
x
+ c = 0. (3.35)

We multiply this equation by x2/c to get
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20

-20

0

-10 100 a

x1,2

Figure 3.4
Solutions of a quadratic equation as a function of a

c − ax + x2 = 0. (3.36)

This proves the symmetry of the second equation in (3.34).

Next, we solve equations (3.34) and prove that the symmetry holds for the solution. We get:

y1,2 =
a ±
√

a2 − 4c
2

,

x1,2 =
c

y1,2
.

(3.37)

We know that original equations (3.65∗) have symmetry x ↔ y. In the solution, this symmetry
is expressed as x1 = y2, x2 = y1. Indeed, let’s prove y1 = x2. We start from

a +
√

a2 − 4c
2

=
2c

a −
√

a2 − 4c
. (3.38)

We multiply both sides by 2(a −
√

a2 − 4c) to get

(a +
√

a2 − 4c)(a −
√

a2 − 4c) = 4c. (3.39)

We expand the parentheses in the right-hand side to get 4c = 4c, which proves the symmetry.



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 30, 2022 1:50am

60 Chapter 3

b
a

c A
B

C

r

R

Figure 3.5
A triangle, an inscribed circle, and a circumscribed circle: symmetry

16. Problem

Consider the drawing in figure 3.5. The radii of the inscribed circle r and of the circumscribed
circle R are given by

r =

√
p(p − a)(p − b)(p − c)

p
,

R =
abc

√
(a + b + c)(−a + b + c)(a − b + c)(a + b − c)

,

(3.40)

where p is the half-perimeter of the triangle: p = (a + b + c)/2. Show that both formulas are
symmetric with respect to swapping any pair of sides of the triangle.

Solution

Formula for r is obviously symmetric for a swap a ↔ b or for any other pair. Next, we replace
ã = b, b̃ = a in the formula for R. We observe for the four factors under the square root that

ã + b̃ + c = a + b + c,

−ã + b̃ + c = a − b + c,

ã − b̃ + c = −a + b + c,

ã + b̃ − c = a + b − c.

(3.41)
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The product of these four factors remains invariant. This proves the symmetry.

17. Problem

Section A.9 solves the following equation for x:

x −
1
x
= d. (3.42)

The solution is given by

x1,2 =
d ±
√

d2 + 4
2

. (3.43)

Following the examples in section 3.7, explore the following symmetries in this problem:

a) This equation is invariant with respect to swapping x↔ −
1
x

.

b) What happens with the roots of equation (3.42) when we flip the sign of d?

Solution

a) Equation (3.42) is obviously invariant for x ↔ −
1
x

. This means that x1 x2 = −1. Indeed, for
the solutions (3.43) we get

d +
√

d2 + 4
2

·
d −
√

d2 + 4
2

=
d2 − (d2 + 4)

4
= −1. (3.44)

b) Flipping the sign of d in equation (3.42) is the same as flipping the sign of x. Equivalently,
it is the same as swapping x↔ 1/x. Indeed, flipping the sign of d in the solution (3.43) and the
sign in front of the square root (which is immaterial for the purposes of proving symmetry) flips
the sign of x. We have already established that flipping the sign of the square root is equivalent
to swapping x↔ −1/x.

18. Problem

Exercise 13 in chapter 1 deals with pendulum oscillations. The maximum angle αmax between
the pendulum and the vertical is called the amplitude. The formula for the period of pendulum
oscillations is in the form

T = F(αmax)

√
l
g
, (3.45)

where F(αmax) is a yet unspecified function of the amplitude, l is the length of the pendulum,
and g is the gravity acceleration.

a) Do you expect the period of the pendulum oscillations to be dependent on whether the
initial angle between the pendulum and the vertical was positive or negative?

b) Based on the previous question, should function F(αmax) be even, odd, or neither?

Solution



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 30, 2022 1:50am

62 Chapter 3

a) The period of the pendulum oscillations must be invariant with respect to the sign of the ini-
tial angle. Indeed, a positive angle becomes negative if we observe this pendulum from behind,
and the point of observation must not change the period.

b) Based on the previous argument, F(αmax) must be an even function. (In fact, the exact solu-
tion is T = 4

√
l/gF (π/2, sin(αmax/2)), where function F(x, y) is called the incomplete elliptic

integral of the first kind. This function is indeed even with respect to the second argument.)

19. Problem

Section A.5 solves the problem of finding intersections between a circle and a hyperbola (see
figure 3.6). The circle and the hyperbola are given by the following equations:

x2 + y2 = R2,

x2

H2
x
−

y2

H2
y
= 1.

(3.46)

Use symmetry analysis to determine which solutions below for the intersections between the
circle and the hyperbola are wrong:

a) y = ±

√
H2

y
R2 − H2

x

H2
x + H2

y
; x1,2 =

√
H2

x

R2 − H2
y

H2
x + H2

y
; x3,4 = −

√
H2

x

R2 + H2
y

H2
x + H2

y
.

x

y

x2+y2=R2

𝑥2

𝐻𝑥
2 −

𝑦2

𝐻𝑦
2 = 1

(x1, y1) (x2, y2)

(x3, y3) (x4, y4)

Figure 3.6
A circle and a hyperbola: symmetry
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b) y = ±

√
H2

y
R2 + H2

x

H2
x + H2

y
; x = −

R
4
±

√
H2

x

R2 + H2
y

H2
x + H2

y
.

c) y = ±

√
H2

y
R2 − H2

x

H2
x + H2

y
; x = ±

√
H2

x

R2 + H2
y

H2
x + H2

y
.

d) y =
R
4
±

√
H2

y
R2 + H2

x

H2
x + H2

y
; x = ±

√
H2

x

R2 − H2
y

H2
x + H2

y
.

Solution

From the figure and from equations (3.46) we expect invariances x ↔ −x and y ↔ −y to hold.
Checking these invariances in the four options above shows that only option c may be correct.

20*. Problem

The Kalman filter computes an estimate for a quantity X that is measured by two (possibly
different) instruments (see section A.32). Suppose that the first measurement produced a value
X1 with a variance of the measurement error σ2

1, and the second measurement produced a value
X2 with a variance of the measurement error σ2

2. Then the best estimate for X from these two
measurements is given by the following equation:

X =
X1σ

2
2 + X2σ

2
1

σ2
2 + σ

2
1

. (3.47)

Its accuracy is characterized by its own variance:

σ2 =
σ2

2σ
2
1

σ2
2 + σ

2
1

. (3.48)

Read section A.32 and explore the following symmetries in the Kalman filter algorithm:

a) Show that the Kalman filter algorithm is symmetric with respect to swapping measure-
ments 1 and 2.

b) Suppose we have three measurements for the same quantity, X1, X2, and X3, and variances
σ2

1, σ
2
2, and σ2

3, respectively. The algorithm given by equations (3.47) and (3.48) tells us
how to combine any two of them. We can generalize this algorithm for combining three
measurements. First, we combine measurements 1 and 2. We can view the result of this
computation as a virtual “measurement” with the value X and the variance σ2, which we
can then combine with measurement 3, again using the same Kalman filter algorithm. We
expect that the final result of this computation should not depend on our choice of the order
in which we combined measurements.1 For example, we should get the same result if we
combine measurements 2 and 3 first and then add measurement 1. Prove that this is the
case.

Solution

1. Note that this line of argument is similar to those in sections 3.5 and 3.6.
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a) Swapping subscripts 1 and 2 in the Kalman filter equations leaves them intact. This symme-
try holds.

b) We use solutions (3.47) for combining measurements X and X3:

X123 =
Xσ2

3 + X3σ
2

σ2
3 + σ

2
, (3.49)

where in turn

X =
X1σ

2
2 + X2σ

2
1

σ2
2 + σ

2
1

,

σ2 =
σ2

2σ
2
1

σ2
2 + σ

2
1

.

(3.50)

We substitute X, σ2 into equation (3.49) to get:

X123 =

(
σ2

2σ
2
1

σ2
2 + σ

2
1

+ σ2
3

)−1 (
X1σ

2
2 + X2σ

2
1

σ2
2 + σ

2
1

σ2
3 + X3

σ2
2σ

2
1

σ2
2 + σ

2
1

)
. (3.51)

Bringing the sums in parentheses to common denominators produces

X123 =
σ2

1 + σ
2
2

σ2
1σ

2
2 + σ

2
1σ

2
3 + σ

2
2σ

2
3

·
X1σ

2
2σ

2
3 + X2σ

2
1σ

2
3 + X3σ

2
1σ

2
2

σ2
1 + σ

2
2

=
X1σ

2
2σ

2
3 + X2σ

2
1σ

2
3 + X3σ

2
1σ

2
2

σ2
1σ

2
2 + σ

2
1σ

2
3 + σ

2
2σ

2
3

.

(3.52)

For the variance we get

σ2
123 =

σ2σ2
3

σ2 + σ2
3

. (3.53)

We substitute the expression for σ2 to get

σ2
123 =

σ2
2σ

2
1

σ2
2 + σ

2
1

σ2
3

(
σ2

2σ
2
1

σ2
2 + σ

2
1

+ σ2
3

)−1

. (3.54)

This transforms to

σ2
123 =

σ2
2σ

2
1σ

2
3

σ2
2 + σ

2
1

·
σ2

2 + σ
2
1

σ2
1σ

2
2 + σ

2
1σ

2
3 + σ

2
2σ

2
3

=
σ2

2σ
2
1σ

2
3

σ2
1σ

2
2 + σ

2
1σ

2
3 + σ

2
2σ

2
3

.

(3.55)

Equations (3.52) and (3.55) are fully symmetric with respect to any swap of subscripts 1, 2, and
3. Therefore, if we combine measurements 2 and 3 first and then add measurement 1, we would
get the same result.
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D
1

D
2

D

Figure 3.7
Two hikers on a trail: symmetry

21. Problem

Two hikers are starting to walk toward each other from the opposite ends of a trail (see figure
3.7). One hiker maintains speed V1, and another maintains speed V2. The total length of the trail
is D. Section A.1 shows that the hikers will cover the following distances:

D1 =
DV1

V1 + V2
,

D2 =
DV2

V1 + V2
.

(3.56)

The derivation of the final result in section A.1 uses the positions x1(t), x2(t) of the two hikers as
functions of time. Follow this derivation and show that the final result is invariant with respect
to the following transformations:2

a) space shift: x′1 = x1 + ∆x and x′2 = x2 + ∆x

b) time shift: t′ = t + ∆t

Solution

We apply time (∆t) and space (∆x) shifts to the variables in this problem. This means that the
first hiker starts from the point ∆x, the second hiker starts from the point D + ∆x, and they both
start moving at time ∆t. The hikers’ positions as functions of time are (compare these equations
to those in section A.1):

2. Time- and space-shift invariances are universal: all natural laws must be time- and space-shift invariant. Emmy
Noether, a genius German mathematician, proved a theorem from which it follows that some invariances are inti-
mately linked with conservation laws. Specifically, the time-shift invariance is linked with the law of conservation
of energy, and the space-shift invariance is linked with the conservation of momentum.
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x1 = V1(t − ∆t) + ∆x,

x2 = D − V2(t − ∆t) + ∆x.
(3.57)

The two hikers meet when x1 = x2. The time when they meet tm is then given by

V1(tm − ∆t) + ∆x = D − V2(tm − ∆t) + ∆x, (3.58)

Solving this equation for tm produces

tm =
D

V1 + V2
+ ∆t. (3.59)

The hikers will be in motion for the period of time from ∆t to tm. The time elapsed will be
computed as

tm − ∆t =
D

V1 + V2
. (3.60)

This is the same value as in section A.1 and it will produce the same results for the distances
traveled by the hikers. This shows that the solution is invariant with respect to time and space
shifts.

22. Problem

We are already familiar with Archimedes’s spiral. Its radius increases linearly with the turn
angle (figure 3.8). The arc length of the spiral is given by the following equation:

L =
∆R
4π

(
θ
√

1 + θ2 + ln
(
θ +
√

1 + θ2
))
, (3.61)

where ∆R is the distance between the adjacent loops and θ is the total turn angle. In the figure,
the spiral rolls out counterclockwise. The formula for the length should also be applicable to a
spiral that rolls out clockwise. We expect that a swap θ ↔ −θ would result either in the same
value of L or in the change for the sign of L. Mathematically, this is expressed as L(θ) = L(−θ)
or L(θ) = −L(−θ). The choice between these two options would depend on the convention for
the directions for arc length computation. Prove that the second option holds: L(θ)+ L(−θ) = 0.

Solution

We compute L(θ) + L(−θ) as follows:
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DR

Figure 3.8
Archimedes’s spiral: symmetry

L(θ) + L(−θ) =
∆R
4π

(
θ
√

1 + θ2 + ln
(
θ +
√

1 + θ2
))
+
∆R
4π

(
−θ
√

1 + θ2 + ln
(
−θ +

√
1 + θ2

))
=
∆R
4π

ln
[(
θ +
√

1 + θ2
) (
−θ +

√
1 + θ2

)]
=
∆R
4π

ln
[(

1 + θ2
)
− θ2

]
=
∆R
4π

ln 1

= 0.

(3.62)

23*. Problem

In section 3.1 we introduced a new variable to solve equation (3.3∗). Using that example as a
template, solve the following equation for x by introducing a new variable:

(x − a)(x − a + 1)(x − a + 3)(x − a + 4) = b. (3.63)

Solution

Zeroes of individual factors in the right-hand side are located at a, a − 1, a − 3, and a − 4. We
introduce a new variable that has a zero in the middle of these four points: y = x − a + 2. Then
equation (3.63) is in the form:
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(y − 2)(y − 1)(y + 1)(y + 2) = b. (3.64)

We expand symmetric pairs of parentheses:

(y − 1)(y + 1) = y2 − 1,

(y − 2)(y + 2) = y2 − 4.
(3.65)

This yields

(y2 − 1)(y2 − 4) = b, (3.66)

which produces a quadratic equation for y2:

(y2)2 − 5y2 + 4 − b = 0. (3.67)

Its solutions are

y = ±

√
5 ∓
√

9 + 4b
2

, (3.68)

where we allow all four combinations of signs. For x we get:

x = ±

√
5 ∓
√

9 + 4b
2

+ a − 2. (3.69)

24. Problem

Solve the following system of equations for x and y:

x − y = a,

x4 + y4 = b4.
(3.70)

Solution

We make these equations symmetric with respect to x↔ y by introducing z = −y:

x + z = a,

x4 + z4 = b4.
(3.71)

Now the problem is equivalent to one solved in section 3.11. It is reduced to solving the follow-
ing equations:
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x =
c
z
,

z2 − az + c = 0,
(3.72)

where

c =
2a2 ±

√
2(a4 + b4)
2

. (3.73)

25*. Problem

Solve the following equation for z:

4√a − z + 4√z − b = c. (3.74)

Use both of the following methods:

a) Introduce new variables

x = 4√a − z,

y = 4√z − b
(3.75)

to obtain

x + y = c,

x4 + y4 = a − b.
(3.76)

Then use the technique that is presented in section 3.11.

b) Shift the original variable z by introducing v = z − z0. Select the value of z0 to make the
equation symmetric with respect to v↔ −v:

4√
d − v +

4√
d + v = c, (3.77)

where d is a function of a, b, and z0. Then square and regroup the terms as necessary to
produce a quadratic equation for

4√
d2 − v2. After that, solve for v and then for z.

Solution

a) Use of variables x = 4√a − z and y = 4√z − b produces equations (3.76) that have been solved
in section 3.11 although with somewhat different notations. Following solution in section 3.11,
we reduce the problem to solving the following equations for x, y:

x =
g
y
,

y2 − cy + g = 0,
(3.78)
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where

g =
2c2 ±

√
2(c4 + a − b)

2
. (3.79)

It is sufficient to solve one of these equations to obtain the value of z; the other equation is
redundant. We get

y =
c ±

√
c2 − 4g
2

. (3.80)

The discriminant can be a bit simplified:

c2 − 4g = c2 − 2(2c2 ±
√

2(c4 + a − b))

= −3c2 ∓ 2
√

2(c4 + a − b).
(3.81)

Then

y = 4√z − b =
c ±

√
−3c2 ∓ 2

√
2(c4 + a − b)

2
. (3.82)

This yields

z =

 c ±
√
−c2 ∓

√
c4 + a − b

2


4

+ b. (3.83)

Since the derivation in section 3.11 included squaring, some of the roots may be superfluous. It
is possible that values given by some combinations of plus and minus signs will not satisfy the
original equation (3.77). In any application we would need to substitute all four values in the
original equation and determine which roots are valid.

b) We introduce a variable that makes the two square roots in the original equation symmetric:
v = z − (a + b)/2. Then

a − z = d − v,

z − b = d + v,
(3.84)

where d = (a − b)/2. Then equation (3.77) takes the form:

4√
d − v +

4√
d + v = c. (3.85)

We square this equation and regroup the terms to get

√
d − v +

√
d + v = c2 − 2

4√
d2 − v2. (3.86)

We square this equation again

d − v + d + v + 2
√

d2 − v2 = c4 − 4c2 4√
d2 − v2 + 4

√
d2 − v2. (3.87)
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we denote u =
4√
d2 − v2 to get a quadratic equation for u:

2u2 − 4c2u + c4 − 2d = 0. (3.88)

The solution for u is given by the quadratic formula

u1,2 =
4c2 ±

√
16c4 − 8(c4 − 2d)

4

=
2c2 ±

√
2c4 + 4d
2

.

(3.89)

From that we solve for v:

4√
d2 − v2 =

2c2 ±
√

2c4 + 4d
2

, (3.90)

which yields

v = ∓

√√
d2 −

2c2 ±
√

2c4 + 4d
2

4

, (3.91)

Finally, we obtain for z

z = v +
a + b

2

= ∓

√√
d2 −

2c2 ±
√

2c4 + 4d
2

4

+
a + b

2
,

(3.92)

where we allow all combinations of signs.
Similarly to the previous method, it is possible that values given by some combinations of plus
and minus signs will not satisfy the original equation (3.77). We would need to substitute all
four values in the original equation and determine which roots are valid.

26*. Problem

For what values of parameter a does the following equation have only one real solution for x
(count any value only once, ignoring root multiplicity)?

x10 + e−a2
x2 −

a2 − 16
2a

= 0. (3.93)

Solution

This is a polynomial equation for x, and it has 10 real and complex roots. From the equation we
see that all real roots are symmetric with respect to a change of sign: x↔ −x leaves the equation
invariant. Therefore, all nonzero roots would come in pairs. The only case when this equation
has only one solution is to have x = 0 as the only real root. Setting x = 0 in the equation yields
a2 − 16 = 0, or a = ±4.
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In that case, we have

x10 + e−16 x2 = 0. (3.94)

Other than x = 0, roots are given by

x8 + e−16 = 0. (3.95)

All roots of this last equation are complex. Therefore, x = 0 is the only real root of equation
(3.93).

27*. Problem

A solution for a cubic equation

ax3 + bx2 + cx + d = 0 (3.96)

is given in section A.29. We denote

∆0 = b2 − 3ac,

∆1 = 2b3 − 9abc + 27a2d,

C =
3

√√
∆1 ±

√
∆2

1 − 4∆3
0

2
,

(3.97)

where the ± sign in this solution can be chosen arbitrarily, unless C = 0 for one of the signs, in
which case we must choose the sign that yields a nonzero value of C. Then one of the roots is
given by

x1 = −
1
3a

(
b +C +

∆0

C

)
. (3.98)

The solution says that the ± sign in this solution can be chosen arbitrarily (unless C = 0 for one
of the signs). In section 3.3 we stated that an arbitrary choice in equations is associated with the
symmetry with respect to that choice. Prove that cubic formula (3.98) is symmetric with respect
to swapping C+ ↔ C−, where C+ and C− are given by the corresponding signs in the expression
for C in equations (3.97). (Hint: Simplify the expression for C+C− and use the result to prove
the desired symmetry.)

Solution

We compute C+C− to get

C+C− =
3

√√
∆1 +

√
∆2

1 − 4∆3
0

2
·

∆1 −

√
∆2

1 − 4∆3
0

2

=
3

√
∆2

1 − (∆2
1 − 4∆3

0)
4

= ∆0.

(3.99)
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Therefore, we can replace C+ with ∆0/C− in the solution for x:

x1 = −
1
3a

(
b +C+ +

∆0

C+

)

= −
1
3a

b + ∆0

C−
+
∆0

∆0

C−


= −

1
3a

(
b +C− +

∆0

C−

)
,

(3.100)

which proves the invariance.

28. Problem

Section A.4 solves the problem of finding intersections between a circle and an ellipse (see
figure 3.9). The circle and the ellipse are given by the following equations:

x2 + y2 = R2,

x2

R2
x
+

y2

R2
y
= 1,

(3.101)

where Rx,Ry are the half-axes of the ellipse. Use symmetry for this problem to flag the wrong
solutions among the following options:

x

y

(x1, y1) (x2, y2)

x2+y2=R2

(x3, y3)
(x4, y4)

𝑥2

𝑅𝑥
2 +

𝑦2

𝑅𝑦
2 = 1

Figure 3.9
A circle and an ellipse: symmetry
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a) x = ±

√
R2

x

R2
y − R2

R2
y − R2

x
; y = ±

√
R2

y
R2

x − R2

R2
x − R2

y
.

b) x = ±

√
R2

y

R2
y − R2

R2
y − R2

x
; y = ±

√
R2

y
R2

x − R2

R2
x − R2

y
.

c) x =
Rx

2
±

√
R2

x

R2
y − R2

R2
y − R2

x
; y = ±

√
R2

y
R2

x − R2

R2
x − R2

y
.

d) x = ±

√
R2

x

R2
y − R2

R2
y − R2

x
; y =

Ry

2
±

√
R2

y
R2

x − R2

R2
x − R2

y
.

Solution

From the figure and from the equations for x, y we see that a solution must be invariant with
respect to a change in the signs of x, y or both. In addition, it must be symmetric with respect to
change x↔ y and Rx ↔ Ry. Then

a) Symmetry holds. This solution may be correct.
b) Symmetry does not hold for x↔ y and Rx ↔ Ry.
c) Symmetry does not hold for x↔ −x.
d) Symmetry does not hold for y↔ −y.

29*. Problem

The depressed cubic equation is given by

x3 + px + q = 0. (3.102)

Its three solutions can be expressed through trigonometric functions (see section A.29):

xk = 2
√
−

p
3

cos

1
3

cos−1

 3q
2p

√
−

3
p

 − 2πk
3

 , (3.103)

where k = 0, 1, 2. Note that equation (3.102) is invariant with respect to a change in the signs of
both x and q: x↔ −x; q↔ −q. Prove that this invariance also holds for solution (3.103).

Solution

This invariance implies that changing the sign of q in the solution would change the sign of xk:

xk(−q) = −xm(q), (3.104)

that is, there should be a one-to-one correspondence between values xk(−q) and −xm(q), even if
they are numbered differently. Let’s consider the effect of changing the sign of q on the right-
hand side of equation (3.103). If the argument of cos−1 changes sign, then

cos−1

3(−q)
2p

√
−

3
p

 = π − cos−1

 3q
2p

√
−

3
p
.

 (3.105)
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Next, we consider values of xk(−q):

xk(−q) = 2
√
−

p
3

cos

1
3

cos−1

3(−q)
2p

√
−

3
p

 − 2πk
3


= 2

√
−

p
3

cos

π3 − 1
3

cos−1

 3q
2p

√
−

3
p

 − 2πk
3


= 2

√
−

p
3

cos

1
3

cos−1

 3q
2p

√
−

3
p

 − π3 + 2πk
3

 ,
(3.106)

where we flipped the sign of the argument of the cosine function, using the fact that this function
is even. This last equation is similar to solution (3.103) for xk(q), except −2πk/3 is replaced there
by −π/3 + 2πk/3. Values of these two expressions for different values of k are shown in table
3.1.

We observe that these values can be partitioned in pairs in such a way, that a value in the second
column is equal to a value in the third column with a π subtracted from it. Indeed:

0 = π − π,

−
2π
3
=
π

3
− π,

−
4π
3
= −
π

3
− π.

(3.107)

Therefore, the set of values for xk(−q) can be obtained from the set of values for xk(q) by
subtracting a π from the argument of the cosine function in formula (3.103). Since cos(y − π) =
− cos y, the set of values for xk(−q) is a reshuffled set of values for −xk(q).

30. Problem

A radar measures range (distance) to the object it is tracking. Assume that there are two radars
that detect a sea vessel at ranges R1 and R2 (see figure 3.10). Given coordinates of the radars

Table 3.1
Values of expressions in the formulas for xk(q) and xk(−q)

k −2πk/3 −π/3 + 2πk/3

0 0 −π/3
1 −2π/3 π/3
2 −4π/3 π
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x1 = 0; y1 = 0 and x2 = D; y2 = 0, the coordinates of the detected vessel are (see section A.25)

x =
D2 + R2

1 − R2
2

2D
,

y = ±
√

R2
1 − x2.

(3.108)

Show that this solution possesses the following two symmetries:

a) The solution is invariant with respect to y↔ −y.

b) The solution is invariant with respect to R1 ↔ R2 and x ↔ D − x. (Compare this with
limiting cases in exercises 9a and 9b in chapter 2.)

Explain the results.

Solution

a) Solution 3.108 is obviously symmetric with respect to y ↔ −y. This means that the target
can be on either side of the line connecting the two radars (above or below the horizontal axis
in figure 3.10).

b) If we swap R1 ↔ R2, then the horizontal position of the target will be a reflection of that in
figure 3.10 with respect to a vertical line located at the midpoint between the two radars. This
should produce x̃ = D − x and ỹ = y. Let’s check these conditions in equations (3.108).

Condition x̃ = D − x is equivalent to x̃ + x = D. This condition holds:

x

y
(x, y)

R1

D

R2

(0,0) (D, 0)

Figure 3.10
Detecting a vessel by two radars: symmetry
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x̃ + x =
D2 + R2

1 − R2
2

2D
+

D2 + R2
2 − R2

1

2D

=
2D2

2D
= D.

(3.109)

For ỹ we use solution (3.108), where we replace R1 with R̃1 = R2 and x with x̃ = D − x.

ỹ = ±
√

R̃2
1 − x̃2

= ±

√
R2

2 − (D − x)2

= ±

√
R2

2 − D2 − x2 + 2Dx.

(3.110)

In the linear term 2Dx we substitute x from the first equation in (3.108), but leave the quadratic
term −x2 intact:

ỹ = ±
√

R2
2 − D2 − x2 + 2Dx

= ±

√
R2

2 − D2 − x2 + D2 + R2
1 − R2

2

= ±

√
R2

1 − x2

= y.

(3.111)

31*. Problem

Given data points xi and yi for two variables x and y, the linear regression algorithm estimates
parameters a and b of the best-fit model y = ax + b to the data:

a =
N

∑N
i=1 xiyi −

∑N
i=1 xi ·

∑N
i=1 yi

N
∑N

i=1 x2
i −

(∑N
i=1 xi

)2 ,

b =
∑N

i=1 yi ·
∑N

i=1 x2
i −

∑N
i=1 xi ·

∑N
i=1 xiyi

N
∑N

i=1 x2
i −

(∑N
i=1 xi

)2 .

(3.112)

In section 3.13 above we already considered several symmetries for the linear regression algo-
rithm. In addition, this algorithm has two shift symmetries that are the subject of this exercise:

a) Substitute shifted values x′i = xi + c, y′i = yi in equations (3.112) and prove that they will
produce new parameter estimates a′ = a and b′ = b − ac.

b) Similarly, prove that using x′′i = xi, y′′i = yi + d will produce new parameter estimates
a′′ = a and b′′ = b + d.
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c) Explain both symmetries by considering the effects of shifts on figure 3.9∗.

Solution

a) We consider the effect of a shift in xi:

x′i = xi + c. (3.113)

We consider three expressions in equations (3.112) separately.

i. For the denominator in equations (3.112) we get:

N
N∑

i=1

x′2i −

 N∑
i=1

x′i

2

= N
N∑

i=1

(xi + c)2 −

 N∑
i=1

(xi + c)

2

= N
N∑

i=1

x2
i + N

N∑
i=1

2xic + N
∑
i=1

c2 −

 N∑
i=1

xi + Nc

2

= N
N∑

i=1

x2
i + 2Nc

N∑
i=1

xi + N2c2 −


 N∑

i=1

xi

2

+ 2Nc
N∑

i=1

xi + N2c2


= N

N∑
i=1

x2
i −

 N∑
i=1

xi

2

.

(3.114)

We see that the denominator is invariant with respect to the shift x′i = xi + c.

ii. Numerator for a′.

N
N∑

i=1

x′i yi −

N∑
i=1

x′i ·
N∑

i=1

yi = N
N∑

i=1

(xi + c)yi −

N∑
i=1

(xi + c) ·
N∑

i=1

yi

= N
N∑

i=1

xiyi + Nc
N∑

i=1

yi −

N∑
i=1

xi ·

N∑
i=1

yi − Nc
N∑

i=1

yi

= N
N∑

i=1

xiyi −

N∑
i=1

xi ·

N∑
i=1

yi.

(3.115)

The numerator for a remains invariant. Since the denominator also remains invariant, we
have a′ = a.

iii. Numerator for b′.
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N∑
i=1

yi ·

N∑
i=1

x′2i −
N∑

i=1

x′i ·
N∑

i=1

x′i yi =

N∑
i=1

yi ·

N∑
i=1

(xi + c)2 −

N∑
i=1

(xi + c) ·
N∑

i=1

(xi + c)yi

=

N∑
i=1

yi

N∑
i=1

(x2
i + 2xic + c2) −

 N∑
i=1

xi + Nc

  N∑
i=1

xiyi + c
N∑

i=1

yi


=

N∑
i=1

yi

N∑
i=1

x2
i + 2c

N∑
i=1

yi

N∑
i=1

xi + Nc2
N∑

i=1

yi

−

N∑
i=1

xi

N∑
i=1

xiyi − c
N∑

i=1

xi

N∑
i=1

yi − Nc
N∑

i=1

xiyi − Nc2
N∑

i=1

yi

=

 N∑
i=1

yi

N∑
i=1

x2
i −

N∑
i=1

xi

N∑
i=1

xiyi

 + c

 N∑
i=1

yi

N∑
i=1

xi − N
N∑

i=1

xiyi

 .

(3.116)

This numerator for formula for b′ should be divided by the denominator, which we know
to remain invariant with respect to the shift of x′ = x + c. By comparing the final expres-
sion in equation (3.116) with numerators in formulas (3.112) and keeping in mind that the
denominator remains invariant, we see that b′ = b − ac.

b) We consider the effect of a shift in y:

y′′ = y + d. (3.117)

We consider three expressions in equations (3.112) separately.

i. Since the denominators in formulas (3.112) do not include yi, they are invariant with
respect to a shift of yi.

ii. For the numerator in the expression for a′′ we get

N
N∑

i=1

xiy′′i −
N∑

i=1

xi ·

N∑
i=1

y′′i = N
N∑

i=1

xi(yi + d) −
N∑

i=1

xi ·

N∑
i=1

(yi + d)

= N
N∑

i=1

xiyi + Nd
N∑

i=1

xi −

N∑
i=1

xi ·

N∑
i=1

yi − Nd
N∑

i=1

xi

= N
N∑

i=1

xiyi −

N∑
i=1

xi ·

N∑
i=1

yi.

(3.118)

We see that this expression for the numerator remains invariant. Since the denominator also
is invariant, we conclude that a′′ = a.

iii. For the numerator in the expression for b′′ we get
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N∑
i=1

y′′i
N∑

i=1

x2
i −

N∑
i=1

xi

N∑
i=1

xiy′′i =
N∑

i=1

(yi + d)
N∑

i=1

x2
i −

N∑
i=1

xi

N∑
i=1

xi(yi + d)

=

 N∑
i=1

yi

N∑
i=1

x2
i −

N∑
i=1

xi

N∑
i=1

xiyi

 + d

N
N∑

i=1

x2
i −

 N∑
i=1

xi

2 .
(3.119)

When divided by the denominator in (3.112), the first pair of parentheses will produce b,
and the second will produce 1. We obtain:

b′′ = b + d. (3.120)

c) The explanation of these symmetries is as follows. For a uniform shift in all data points
we should see an identical shift in the straight line that is produced by linear regression. For a
horizontal shift x′i = xi + c, an equivalent horizontal shift in a line y = ax + b would not change
the value of y. Since x = x′ − c, we get

y′ = y

= ax + b

= a(x′ − c) + b

= ax′ + b − ac.

(3.121)

We obtain an equation for a straight line, where the slope remains invariant and the intercept is
reduced by ac:

a′ = a,

b′ = b − ac.
(3.122)

For a uniform vertical shift of all data points, we should observe an equal uniform vertical shift
of the line that is produced by regression: y′ = y + d. This produces

y′′ = y + d

= ax + b + d.
(3.123)

Then

a′′ = a,

b′′ = b + d.
(3.124)
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4 Scaling

1. Problem

There are syrups with masses m1,m2, and m3 with sugar concentrations p1, p2, and p3. Sections
A.16 and A.17 show that blends of two or three syrups will respectively have the following
concentrations of sugar:

p12 =
p1m1 + p2m2

m1 + m2
,

p123 =
p1m1 + p2m2 + p3m3

m1 + m2 + m3
.

(4.1)

a) Is there a scaling property for the masses of syrups? What happens if we replace m1 ↔

am1; m2 ↔ am2; m3 ↔ am3?

b) Does this scaling remain valid for extremely small values of scaling multiplier a, for ex-
ample, if a = 10−30? (Hint: This is not a purely mathematical question. Think about the
molecular structure of a syrup.)

c) Is there a scaling behavior for concentrations p1, p2, p3?

d) Does the scaling for concentrations break down for large values of the scaling multiplier?

Solution

a) The solution is invariant with respect to m′j = am j scaling. If we take proportionally more
of each syrup, the concentration of the blend will remain the same.

b) This scaling is maintained for arbitrarily large values of a, but breaks down for extremely
small values, when the mass of each syrup becomes on the order of or smaller than mass of
molecules forming this syrup. If am2 is the mass of a sugar molecule, and m1 < am2, such a
blend cannot be made.

c) Concentrations exhibit linear scaling: multiplying the concentration of each syrup and the
blend by the same factor leaves equations valid.

d) The scaling for concentration breaks down when one of the concentrations exceeds 1.
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2. Problem

A torus is a donut-shaped body (see figure 4.1). Use scaling to flag the incorrect formulas for
the volume of a torus.

a) V = 2π2R2r

b) V = 2π2
(
R3 + 3R2r + 3Rr2 + r3

)
c) V = 2π2Rr2

Solution

For small r, the cross section of the torus scales as r2. The volume of the torus should scale as
r2 as well. Only option c has this property.

3. Problem

A riverboat travels from town A to town B in time TAB and from town B to town A in time TBA.
Section A.2 shows that the amount of time required to travel by a raft from town B to town A is
given by

Tr =
2TABTBA

TAB − TBA
. (4.2)

a) Is there a scaling property for travel times Tr,TAB, and TBA?

R

r

Figure 4.1
A torus: scaling
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b) Is there a more general scaling for travel times, velocities, and the distance? Can you select
such parameters α, β, and γ that replacing Tr ↔ αTr,TAB ↔ αTAB,TBA ↔ αTBA,Vr ↔

βVr,Vb ↔ βVb,D↔ γD will leave the equations valid? (See section A.2 for notations.)

c) How is this scaling related to the units and dimensionality of this problem?

Solution

a) Scaling T ′i = αTi, where Ti includes TAB,TBA, and Tr, leaves equation (4.2) valid.

b) Scaling T ′r = αTr,T ′AB = αTAB,T ′BA = αTBA,V ′r = βVr,V ′b = βVb,D′ = γD holds as long as

β =
γ

α
. (4.3)

c) Let’s consider a change in the units for distance and time. If in the new units for all times
are scaled by α and all distances are scaled by γ, then all velocities will be scaled by γ/α. This
produces scaling (4.3).

4. Problem

A spherical cap is the part of a sphere that lies above a plane that crosses this sphere (see section
A.30 and figure 4.2). The volume V and the surface area S are given by

V =
1
3
πh2(3R − h),

S = 2πRh.
(4.4)

a) What is the scaling of S with respect to h?

b) What is the scaling of V with respect to h for small values of h?

c) Are both scalings maintained for all possible values of h?

R

a

h

Figure 4.2
A spherical cap: scaling
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Solution

a) The scaling of S with respect to h is linear.

b) If we expand the parentheses in the formula for V , there will be a cubic and a quadratic term
for h. For small h the quadratic term dominates the scaling.

c) In the formula for S , the linear scaling with respect to h holds for all valid values of h, that
is, for 0 ≤ h ≤ 2R. The quadratic scaling of V with respect to h only holds for h ≪ R.

5. Problem

A radar sends a powerful electromagnetic signal, which then bounces off the object that is
being tracked. The radar detects the reflected signal, measures its travel delay, and estimates
the distance to the object. The minimum detectable power of the received signal is an important
parameter that drives the design of several radar subsystems. How does the power of the received
signal scale with the following parameters of the problem:

a) The transmitted power Pt

b) The distance to the object R

c) The area of the object Ao

d) The area of the receiving antenna at the radar Aa

(Hint: See figure 4.2∗ in section 4.5 and the discussion there.)

Solution

We assume that the total energy is not a function of the distance (that is, attenuation of radio
waves in the air is negligible). The radar beam diverges as the signal propagates farther from the
radar. At large distances, an object obstructs a fraction of the beam, and therefore only a fraction
of the total power hits the object. The power of the signal impinging on the object is equal to

Po = Pt
Ao

Ab
, (4.5)

where Pt is the total transmitted power of the signal in the beam, Ao is the cross section of the
object, and Ab is the cross-section of the radar beam at the distance to the object. From section
4.5 we know that Ab scales as R2.

After that, the radio wave scatters or reflects from the object and propagates away from it. The
power of the reflected wave P′o is proportional to (and is a fraction of) the power of the wave
that has hit the object:

P′o = αPo, (4.6)

where 0 < α < 1. That radiation also diverges as the reflected signal propagates farther from
the object. Some fraction of this power hits the receiving antenna of the radar. For the received
power Pr we get an equation that is similar to equation (4.5), but now we have to use the power
P′o of the radiation that is reflected by the object, the area Aa of the radar antenna on the receiving
end, and a cross-section A′b of the radiation cone emitted by the object:
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Pr = P′o
Aa

A′b
. (4.7)

Similarly, A′b scales as R2.

Combining equations (4.5), (4.6), and (4.7) produces the following scaling for the received
power of the signal:

a) Linear with respect to the transmitted power Pt

b) As R−4 with respect to the distance to the object R

c) Linear with respect to the area of the object Ao

d) Linear with respect to the area of receive antenna Aa. (Depending on the design, a larger
antenna may be able to produce a more narrow beam. In such cases, the scaling with respect to
the antenna size may be nonlinear.)

6*. Problem

The Kalman filter estimates quantity X that is measured by two (possibly different) instruments.
Suppose that the first measurement produced a value X1 with a variance of the measurement
error σ2

1, and the second measurement produced a value X2 with a variance of the measurement
error σ2

2. Then the best estimate for X from these two measurements is given by the following
equation:

X =
X1σ

2
2 + X2σ

2
1

σ2
2 + σ

2
1

. (4.8)

The accuracy of X is characterized by its own variance:

σ2 =
σ2

2σ
2
1

σ2
2 + σ

2
1

. (4.9)

Read section A.32 and explore the following scaling behaviors in the Kalman filter algorithm:

a) Values X1, X2 are scaled by the same factor: X̃1 = αX1; X̃2 = αX2.

b) Values σ2
1, σ

2
2 are scaled by the same factor: σ̃2

1 = βσ
2
1; σ̃2

2 = βσ
2
2.

In what way are the implications of these two scalings for the value of X in equation (4.8)
different?

Solution

a) X scales linearly with respect to X1, X2, and σ2 remains invariant.

b) σ2 scales linearly with respect to σ2
1, σ

2
2, and X remains invariant.

If two measurements of X are scaled by the same factor, the best estimate for X should be scaled
by the same factor. This does not affect the uncertainty of the estimate.

Scaling the uncertainties in these two measurements does not change the estimate for X,
but linearly scales its uncertainty.
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7. Problem

The maximum radius of the spot on Earth’s surface covered by a beam from a low-orbit satellite
is given by (see section 2.12)

L ≈
√

2RH, (4.10)

where R is Earth’s radius and H is the orbit altitude.

a) How does L scale with the satellite orbit height H?

b) Will this scaling break down for large values of H? Why?

Solution

a) L scales as a square root of H.

b) The maximum coverage area cannot exceed half of the sphere. Therefore, the scaling of L
with respect to H has to break down for large values of H. In fact, this particular formula is
valid only for low-orbit satellites, that is, when H ≪ R.

8. Problem

A circle is given by the following equation:

x2 + y2 = R2. (4.11)

Compare this with the equation for an ellipse,

x2

R2
x
+

y2

R2
y
= 1, (4.12)

and show that an ellipse is a scaled version of a circle.

Solution

We introduce x̃, ỹ:

x = αx̃,

y = βỹ.
(4.13)

In these new variables the equation for the circle is as follows:

α2 x̃2 + β2ỹ2 = R2. (4.14)

We divide this equation by R2 and denote

R2
x =

R2

α2 ,

R2
y =

R2

β2

(4.15)
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to get the equation for an ellipse:

x̃2

R2
x
+

ỹ2

R2
y
= 1. (4.16)

9. Problem

A circle and a line are given by the following equations (see section A.3):

x2 + y2 = R2,

y = px + q.
(4.17)

The coordinates x1,2 of their intersections (if any) are given by

x1,2 =
−pq ±

√
(1 + p2)R2 − q2

1 + p2 . (4.18)

Use the known solution of this problem (equation (4.18)) and the results from problem 8 above
to find the horizontal coordinates of the intersections between an ellipse and a straight line. Use
the following equations for the ellipse and the straight line:

x2

R2
x
+

y2

R2
y
= 1,

y = px + q.
(4.19)

(Do not solve this problem from scratch: leveraging scaling laws here is more economical!)

Solution

We start from equations for the ellipse and the straight line

x̃2

R2
x
+

ỹ2

R2
y
= 1,

ỹ = p̃x̃ + q̃,
(4.20)

where we use tilde notations to differentiate variables from the analogous variables (which are
not marked with tildes) in the circle and line problem.

We need to map the ellipse and line problem into a scaled circle and line problem. To do that,
we select some arbitrary radius of a circle R. Then, following the solution of problem 8, we
observe that there is a scaling relationship between these two problems that is given by

x = αx̃,

y = βỹ,

R = αRx,

R = βRy.

(4.21)

We see that equation ỹ = p̃x̃ + q̃ scales to y = px + q if
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p =
β

α
p̃,

q = βq̃.
(4.22)

The solution of the circle and line problem is given by equation (4.18), where the right-hand
side is a function of p, q, and R:

x1,2 = f (p, q,R). (4.23)

Using the scaling relationships (4.21) and (4.22) this can be written as

x̃1,2 = α
−1 f

(
β

α
p̃, βq̃,R

)
, (4.24)

where parameters α and β are given by

α =
R
Rx
,

β =
R
Ry
,

(4.25)

and R is a preselected arbitrary radius of the circle. Equations (4.24) and (4.25), where function
f is given by the right-hand side of equation (4.18), jointly define the solution for intersections
of an ellipse and a straight line:

x̃1,2 = α
−1

−β2

α
p̃q̃ ±

√(
1 +
β2

α2 p̃2

)
R2 − β2q̃2


(
1 +
β2

α2 p̃2
)−1

=
Rx

R

−RRx

R2
y

p̃q̃ ±

√(
1 +

R2
x

R2
y

p̃2

)
R2 −

R2

R2
y

q̃2

 (1 + R2
x

R2
y

p̃2
)−1

= Rx

(
−Rx p̃q̃ ± Ry

√
(R2

y + R2
x p̃2) − q̃2

)
(R2

y + R2
x p̃2)−1.

(4.26)

Note that the right-hand side does not contain R. Since the value of R was selected arbitrarily,
this is expected.

10. Problem

A circle and a parabola are given by the following equations:

x2 + y2 = R2,

y = gx2 + y0.
(4.27)
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Then coordinates of the intersections (if any) are given by

y1,2 =
−1 ±

√
1 + 4g(gR2 + y0)

2g
,

y3,4 = y1,2,

x1,2 = +

√
R2 − y2

1,2,

x3,4 = −x1,2,

(4.28)

where subscripts 1, 2, 3, 4 correspond to the ± signs in the right-hand side (see section A.6 for
details). Solutions exist only if the expressions in the radicals are positive. Depending on the
signs of the expressions in the radicals, there can be zero, two, or four roots.

Use solution (4.28) and the scaling from problem 8 above to find the coordinates of the
intersections between an ellipse and a parabola.

Solution

The solution is analogous to that of problem 9. We start from equations for the ellipse and the
parabola

x̃2

R2
x
+

ỹ2

R2
y
= 1,

ỹ = g̃x̃2 + ỹ0,

(4.29)

where we use tilde notations to differentiate variables from the analogous variables (which are
not marked with tildes) in the circle and parabola problem.

We need to map the ellipse and parabola problem into a scaled circle and parabola problem. To
do that, we select some arbitrary radius of a circle R. Then, following the solution of problem
8, we observe that there is a scaling relationship between these two problems that is given by

x = αx̃,

y = βỹ,

R = αRx,

R = βRy.

(4.30)

From ỹ = g̃x̃2 + ỹ0 and y = gx2 + y0 we also obtain

g =
β

α2 g̃,

y0 = βỹ0.
(4.31)

The solution of the circle and parabola problem is given by equations (4.28), where the right-
hand sides are functions of g, y0, and R:
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x1,2,3,4 = fx(g, y0,R),

y1,2,3,4 = fy(g, y0,R).
(4.32)

Using the scaling relationships (4.30) and (4.31) this can be written as

x̃1,2,3,4 = α
−1 fx

(
β

α2 g̃, βỹ0,R
)
,

ỹ1,2,3,4 = α
−1 fy

(
β

α2 g̃, βỹ0,R
)
,

(4.33)

where parameters α and β are given by

α =
R
Rx
,

β =
R
Ry
,

(4.34)

and R is a preselected arbitrary radius of the circle. Equations (4.33) and (4.34), where func-
tions fx, fy are given by the right-hand sides of equations (4.28), jointly define the solution for
intersections of an ellipse and a parabola:

βỹ1,2 =

−1 ±

√
1 + 4g̃

β

α2

(
g̃
β

α2 R2 + βỹ0

)
2g̃
β

α2

. (4.35)

We divide this equation by β and substitute α = R/Rx, β = R/Ry to get

ỹ1,2 =
−R2

y ±

√
R4

y + 4g̃R2
xR2

y(g̃R2
x + ỹ0)

2g̃R2
x

. (4.36)

For x̃1,2 we get

α̃x̃1,2 =

√
R2 − β2ỹ2

1,2. (4.37)

We use α = R/Rx, β = R/Ry to get

x̃1,2 = Rx

√
1 −

ỹ2
1,2

R2
y
. (4.38)

Finally, x3,4 = x1,2. Note that the solution does not contain R. Since the value of R was selected
arbitrarily, this is expected.
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Figure 4.3
Rectangle inscribed in a right triangle: scaling

11. Problem

A rectangle is inscribed in a right triangle (see figure 4.3). One of the legs has length a, and the
measure of the adjacent angle is α. The side of the rectangle that is aligned with that leg has
length d.

a) Use a symmetry argument to show that for an isosceles right triangle the inscribed rectangle
should have an extremum (either a maximum or a minimum) for d = a/2.

b) Assume that the triangle and the inscribed rectangle are scaled by the same multiplier
along one leg. This scaling of an isosceles right triangle generally produces a scalene right
triangle. Investigate how the scaling affects the area of the inscribed rectangle and of the
triangle.

c) Using the above symmetry and scaling arguments, extend the prediction of an extremum
for the rectangle’s area from the case of an isosceles right triangle to any right triangle.
Compare this with the results in section A.28.

Solution

a) Let’s consider the area of a rectangle that is inscribed in an isosceles right triangle. Let sides
of this rectangle be d and q. Because of symmetry in the triangle, if a rectangle with sides d and
q is inscribed in the triangle, then a rectangle with sides q and d can also be inscribed. Therefore,
the area of the rectangle as the function of one of the sides will have a symmetry with respect to
a swap d ↔ q.
Now we consider two cases: d1 = q1 and some value d2 > q2 (see figure 4.4). Note that the first
case corresponds to d1 = a/2, and the second case corresponds to d2 > a/2, q2 < a/2. Suppose
that the areas of these rectangles obey A(d1, q1) > A(d2, q2). Then because of the symmetry we
would also have A(d1, q1) > A(q2, d2). Since d2 > d1 > q2, we see that area A(d1, q1) takes a
maximum as a function of the length of one side of the rectangle. (If A(d1, q1) < A(d2, q2), it
would take a minimum.) Note that this argument does not specify if this is a maximum or a
minimum, or that the extremum is global.
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Figure 4.4
Symmetry for inscribed rectangles

b) If one leg of a right triangle is scaled by some factor µ, then the area of that triangle and any
rectangle that is inscribed in it is also scaled by µ. (This is true for areas of all plane figures if
we scale them with respect to one dimension.)

c) From item b we see that scaling preserves the relative differences in the areas of inscribed
rectangles. That is, if one rectangle has a greater area than another for an isosceles triangle,
the scaled versions of both rectangles will satisfy the same inequality. Therefore, if a side of
a rectangle is half of the leg of the triangle and such a rectangle has a maximum area for an
isosceles triangle, then it would have a maximum area for a scalene triangle. This result is
consistent with one in section A.28.

12. Problem

Exercise 8 in chapter 2 deals with limiting cases for the following equation:

1
x − a

−
1

x − b
= d. (4.39)

The solution for this equation for x is given in section A.12:

x1,2 =
d(a + b) ±

√
d2(a − b)2 + 4d(a − b)

2d
, (4.40)

where subscripts 1, 2 correspond to the ± signs in the right-hand side. Use a hierarchy of scalings
to show that for the limiting case |d| → 0 the solution produces large values for |x| unless a ≈ b.
Is this also evident from equation (4.39)?
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Solution

For |d| → 0 the hierarchy of scalings in equation (4.40) yields

x1,2 =
d(a + b) ±

√
d2(a − b)2 + 4d(a − b)

2d

≈
d(a + b) ±

√
4d(a − b)

2d

≈
±
√

4d(a − b)
2d

∝
1
√

d
.

(4.41)

Therefore x1,2 → ∞. Note that if a = b, then the term
√

4d(a − b) no longer dominates the term
d(a + b), and x1,2 no longer goes to infinity for d → 0.

Next, we consider equation (4.39) for |d| → 0. The right-hand side approaches zero. If a , b,
the two terms in the left-hand side cannot cancel or nearly cancel each other. Then both of them
must approach zero. For finite values of a, b this requires |x| → ∞.

13. Problem

Section A.4 solves the problem of finding the intersections between a circle and an ellipse (see
figure 4.5). The circle and the ellipse are given by the following equations:

x2 + y2 = R2,

x2

R2
x
+

y2

R2
y
= 1.

(4.42)

Use scaling for this problem to flag the wrong solutions among the following options:

a) x = ±

√
R4

x

R2
y − R2

R2
y − R2

x
; y = ±

√
R4

y
R2

x − R2

R2
x − R2

y

b) x =
1
4
±

√
R2

x

R2
y − R2

R2
y − R2

x
; y =

1
4
±

√
R2

y
R2

x − R2

R2
x − R2

y

c) x = ±

√
R2

x

R2
y − R2

R2
y − R2

x
; y = ±

√
R2

y
R2

x − R2

R2
x − R2

y

d) x = ±

√
R2

x

R2
y − R−2

R2
y − R2

x
; y = ±

√
R2

y
R2

x − R−2

R2
x − R2

y

Solution

If all radii Rx,Ry, and R are scaled by the same amount, we expect x, y to scale by the same
amount. This scaling property does not hold for options a, b, and d.
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Figure 4.5
A circle and an ellipse: scaling

14. Problem

Consider a circle and a parabola that are defined by the following equations:

x2 + y2 = R2,

y = gx2 + y0.
(4.43)

The vertical coordinates of the intersections between these two curves are given by (see section
A.6):

y1,2 =
−1 ±

√
1 + 4g(gR2 + y0)

2g
. (4.44)

Which one of the following scaling options is valid? (Check them for both the formulation and
the solution of the problem.)

a) x↔ ax; R↔ aR; y↔ ay; y0 ↔ ay0; g↔ a−1g

b) x↔ ax; R↔ a−1R; y↔ ay; y0 ↔ ay0; g↔ ag

c) x↔ ax; R↔ aR; y↔ a−1y; y0 ↔ a−1y0; g↔ a−1g

d) x↔ a−1 x; R↔ aR; y↔ ay; y0 ↔ ay0; g↔ ag
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Solution

We substitute these scalings in the equations for the circle and parabola equations and for the
solution:

a) For the circle:

(ax)2 + (ay)2 = (aR)2. (4.45)

This yields

x2 + y2 = R2. (4.46)

For the parabola:

ay = (a−1g)(ax)2 + ay0. (4.47)

This yields

y = gx2 + y0. (4.48)

For the solution:

ay1,2 =
−1 ±

√
1 + 4a−1g(a−1ga2R2 + ay0)

2ga−1 . (4.49)

This yields

y1,2 =
−1 ±

√
1 + 4g(gR2 + y0)

2g
. (4.50)

For this option scaling holds.

b) For the circle:

(ax)2 + (ay)2 = (a−1R)2. (4.51)

This yields

x2 + y2 = a−4R2. (4.52)

For the parabola:

ay = ag(ax)2 + ay0. (4.53)

This yields

y = a2gx2 + y0. (4.54)

For the solution:

ay1,2 =
−1 ±

√
1 + 4ag(aga−2R2 + ay0)

2ag
. (4.55)
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This yields

y1,2 =
−1 ±

√
1 + 4ag(a−1gR2 + ay0)

2a2g
. (4.56)

For this option scaling fails.

c) For the circle:

(ax)2 + a−2y2 = (aR)2. (4.57)

This yields

x2 + a−4y2 = R2. (4.58)

For the parabola:

a−1y = a−1g(ax)2 + a−1y0. (4.59)

This yields

y = a2gx2 + y0. (4.60)

For the solution:

a−1y1,2 =
−1 ±

√
1 + 4a−1g(a−1ga2R2 + a−1y0)

2a−1g
. (4.61)

This yields

y1,2 = a2−1 ±
√

1 + 4a−1g(agR2 + a−1y0)
2g

. (4.62)

For this option scaling fails.

d) For the circle:

a−2 x2 + a2y2 = (aR)2. (4.63)

This yields

a−4 x2 + y2 = R2. (4.64)

For the parabola:

ay = aga−2 x2 + ay0. (4.65)

This yields

y = a−2gx2 + y0. (4.66)

For the solution:
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ay1,2 =
−1 ±

√
1 + 4ag(aga2R2 + ay0)

2ag
. (4.67)

This yields

y1,2 = a−2−1 ±
√

1 + 4ag(a3gR2 + ay0)
2g

. (4.68)

For this option scaling fails.

15*. Problem

The solution of problem 6 in chapter 1 gives formulas for the velocity of gravity waves in deep
water (in the case of λ ≪ h) and in shallow water (in the case of λ ≫ h):

Vdeep =

√
gλ
2π
,

Vshallow =
√

gh,
(4.69)

where λ is the wavelength (the distance between two consecutive wave crests), h is the depth of
the water basin in the area of wave propagation, and g ≈ 9.8 m/s2 is the gravity acceleration.

a) How does the wave velocity scale with the wavelength in the deep ocean?

b) Consider shallow water waves. What happens with the wave velocity as the wave ap-
proaches a shore, where the depth is getting progressively smaller? If the depth difference
causes the rear part of the wave to travel at a speed that is different from the speed of the
front of the wave, what happens to the wave crest? Have you observed this effect on the
beach?

c) A tsunami is an ocean wave that may be generated by an underwater earthquake. Since
the area of the ocean floor that is affected by an earthquake is large, a tsunami may have a
wavelength of hundreds of kilometers. Is a tsunami described by the shallow-water equa-
tion or by the deep-water equation?

d) Explain why a tsunami travels much faster than the ocean waves that you may see at the
beach. (This, of course, makes a tsunami particularly dangerous.)

Solution

a) The wave velocity scales as the square root of the wavelength.

b) The wave velocity scales as the square root of the depth. As the wave approaches a beach,
the rear part of the wave is at a higher depth and therefore travels faster. As a result, the wave
becomes squeezed in the direction of its propagation. This makes the wave steeper.

c) For a tsunami, λ ≫ h. Therefore, tsunami is a shallow water wave (even if it may originate
in a deep part of the ocean).

d) Since for a shallow water wave the speed of the wave scales as
√

h, and the ocean depth can
be several kilometers, a tsunami travels much faster than the waves that you see on the beach.
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DR

Figure 4.6
Archimedes’s spiral: scaling

As the tsunami approaches the shore, it is squeezed in the direction of propagation (see item b)
and becomes steeper. This makes it particularly dangerous.

16. Problem

The radius of Archimedes’s spiral increases linearly with the turn angle (figure 4.6). The arc
length of the spiral is given by the following equation:

L =
∆R
4π

(
θ
√

1 + θ2 + ln
(
θ +
√

1 + θ2
))
, (4.70)

where ∆R is the distance between the adjacent loops and θ is the total turn angle.

a) What is the scaling of the arc length with respect to ∆R?

b) Identify two scaling behaviors of the arc length with respect to angle θ that correspond to
the two additive terms in the right-hand side of equation (4.70).

c) Which one of these two scalings dominates the result for large values of θ?

Solution

a) The arc length scales linearly with ∆R. This is expected: if we change the scale of both
coordinates, all distances and lengths should scale uniformly.

b) The two additive terms in the right-hand side are θ
√

1 + θ2 and ln
(
θ +
√

1 + θ2
)
. For large

θ the first term scales as θ2 and the second one scales as ln θ.
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For small θ the first term scales as

θ
√

1 + θ2 ∝ θ. (4.71)

The scaling of the logarithmic term for small θ is a bit more tricky to determine. One option is
to use a Taylor expansion, which yields ln

(
θ +
√

1 + θ2
)
∝ θ. If we do not want to use a Taylor

series, then we note that for small θ the quadratic term θ2 in the square root can be neglected:

ln
(
θ +
√

1 + θ2
)
∝ ln (1 + θ) . (4.72)

Now we need to consider the scaling of ln (1 + θ). To do that, we consider ln (1 + θ)2. On one
hand, we get

ln (1 + θ)2 = ln(1 + 2θ + θ2)

∝ ln(1 + 2θ).
(4.73)

On the other hand, we have

ln (1 + θ)2 = 2 ln(1 + θ). (4.74)

We see that

ln(1 + 2θ) ∝ 2 ln(1 + θ), (4.75)

which suggests that for small θ the expression ln(1 + θ) scales linearly with θ.

c) From the hierarchy of scalings we know that a power law always dominates a logarithm.
Therefore, for large θ we have

L ∝
∆R
4π
θ2. (4.76)

17. Problem

The number of pairs that can be selected from N objects is given by

M =
N(N − 1)

2
. (4.77)

a) How does M scale as a function of N for large values of N?

b) Solve equation (4.77) for N. How does N scale as a function of M for large values of M?

Solution

a) The scaling of M with respect to N for large values of N is quadratic:

M ∝
N2

2
. (4.78)

b) The solution of equation (4.77) for N is as follows. We write
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N2 − N − 2M = 0. (4.79)

Then

N1,2 =
1 ±
√

1 + 8M
2

. (4.80)

Since N must be positive, we select the plus sign in this solution. For large M we have

N ∝

√
8M
2

=
√

2M.
(4.81)

Note that scalings (4.78) and (4.81) are consistent.

18. Problem

In a room there are N people that have been randomly selected from the residents of a city to
participate in a focus group. A probability p of the group having at least two people there who
know each other scales approximately quadratically versus the number of people: p(N) ∝ N2.

a) Does this scaling work for unlimited values of N, or does it break down for large values of
N?

b) Suppose that, for N = 2, the probability that these two people know each other is p(2). Can
you obtain an accurate result for probability p(3) (that is, for the case of three people in the
room) using the quadratic scaling for p? Why? (Hint: Use the results of problem 17.)

Solution

a) The scaling must break down for large values of N, at least because we must have p(N) ≤ 1
for any N.

b) A group of three contains three different pairs of people. This follows from problem 17 in
this chapter; also, for people A, B, and C there are pairs AB, BC, and CA. Therefore, if the
probability for people in any pair to know each other is p(2) and p(2) is small, the probability
for a group of three people to have at least two people who know each other is approximately
3p(2). (with some underlying assumptions, the exact formula is 3p(2)− 3p2(2)+ p3(2) ∝ 3p(2)
for small values of p(2).) This is somewhat different from the quadratic scaling estimate that is
given by

p(3) =
(

3
2

)2

p(2)

= 2.25p(2).
(4.82)

For N ≫ 1 and p(2) ≪ 1/N2 the quadratic scaling is more accurate.
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19. Problem

A chemical reaction between two different gases requires a collision between a molecule of one
gas and a molecule of another gas. The speed of the reaction is directly proportional to (that is,
scales linearly with) the number of such collisions per unit time.

a) How does the speed of the reaction scale if the density of either of the gases is scaled by a
factor of a, with other parameters remaining constant?

b) Suppose we have a fixed amount of gas in a cylinder that is slowly compressed or expanded
using a piston. How does the gas density scale versus its volume? (Hint: Note that gas
density is measured in kg/m3 and the volume is measured in m3.)

c) How does the speed of the reaction scale if the volume of a two-gas mixture is scaled
by a factor b, while keeping the total amount of gas constant? (Hint: Note a similarity
with problem 18 or consider the combined effects of scaling in tasks 19a and 19b for this
problem.)

Solution

a) The number of collisions is proportional to the density of each of the gases. Therefore, if
the density of one of the gases is scaled by a factor of a, the speed of reaction will increase by
the same factor.

b) The gas density is inversely proportional to the volume. Indeed, the product of the gas
density and the volume is equal to the total mass of the gas, which remains constant.

c) As the volume of the mixture is scaled by a factor b, the density of each gas is scaled as b−1.
Then the speed of the chemical reaction for this mixture of gases scales as b−2.

20. Problem

A bank promises to pay interest r on any deposit, which means that M0 dollars in a savings
account grow to M1 = (1 + r)M0 dollars in a year. This establishes a linear scaling for the
amount M1 at the end of the year versus amount M0 in the beginning of the year. Use the
derivation in section 4.6 as a template to determine how the account balance varies over time.

Solution

At the end of the second year the account balance will be M2 = (1 + r)2 M0. At the end of the
N–th year it will reach MN = (1 + r)N M0. For continuous time we expect to have

M(t) = (1 + r)t M0, (4.83)

where time t is measured in years. We rewrite this equation as

M(t) = eρt M0, (4.84)

where ρ = ln(1 + r). The account balance scales exponentially with respect to time and linearly
with respect to the initial deposit.

21. Problem
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Figure 4.7
Two circles inscribed in an angle: scaling

Two circles are inscribed in an angle in such a way that they touch each other (figure 4.7).
Section A.26 shows that the ratio of the radii of these circles is given by

R
r
=

1 + sin β2
1 − sin β2

. (4.85)

Equation (4.85) establishes a linear scaling for the radii of the two circles: R ∝ r. Consider
a modification of this problem where there are more than two circles inscribed in an angle.
Adjacent circles touch each other. If there are N circles with radii r1, . . . , rN , what is the ratio
rN/r1? How does it scale with the value of N?

Solution

For three circles, the ratio of the radii of the third and the first circles is given by

R3

R1
=

1 + sin β2
1 − sin β2

2

. (4.86)

Similarly for N circles we have

RN

R1
=

1 + sin β2
1 − sin β2

N−1

. (4.87)

The scaling with respect to N is exponential.

22. Problem

Section A.15 solves the following equation:

cos(α + x)
cos(α − x)

=
p
q
. (4.88)
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Use scaling analysis to flag the wrong solutions among the following options:

a) x = tan−1
(
cotα ·

q − p
p + q

)
+ pq + nπ.

b) x = tan−1
(
cotα ·

q − p
p + q

)
+ nπ.

c) x = tan−1
(
cotα ·

pq
p + q

)
+ nπ.

Solution

Equation (4.88) remains invariant with respect to scaling p̃ = ap; q̃ = aq. Among the three
options, only option b retains this scaling.

23. Problem

The force between two neutral atoms or molecules is commonly modeled using the Lennard–
Jones model:

F(r) =
24ϵ
σ

(
2
(
σ

r

)13
−

(
σ

r

)7
)
, (4.89)

where r is the distance between the atoms and σ, ϵ are positive parameters. A positive value for
the force means that it is repulsive, and a negative value means it is attractive.

a) Use the hierarchy of scalings to prove that atoms attract at large distances. This is the
reason that molecules in liquids and solids stay together, except at high temperatures.

b) Prove that the force becomes repulsive at small distances. This is the reason that liquids
are nearly uncompressible.

Solution

a) For large distances, the term with r−7 dominates the term with r−13. Therefore, F(r) < 0 and
the force is attractive.

b) For small distances, the term with r−13 dominates the term with r−7. Therefore, F(r) > 0
and the force is repulsive.

24. Problem

In chemistry and biology, the Q10 temperature coefficient tells us that a biological process or a
chemical reaction runs Q10 times faster if the temperature is increased by 10◦ C.1

a) What type of scaling is present for the rate of a chemical reaction with respect to the
temperature?

1. Flipping this definition, a biological process or a chemical reaction runs Q10 times slower if the temperature is
decreased by 10◦ C. This is why food stays fresh longer if refrigerated.
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b) Suppose that two chemical reactions in a human cell have temperature coefficients Q10 and
Q′10. Assume that Q′10 > Q10 and that at a normal temperature these two reactions have
equal rates. Which reaction will run faster than the other one if the person has a fever?

Solution

a) As the temperature is increased by a fixed amount, the speed of a process or a chemical
reaction is multiplied by a fixed factor. That is a characteristic of exponential scaling.

b) If a person has a fever, speeds of both reactions increase. However, for the reaction with
temperature coefficient Q′10 this increase will be larger, and that reaction will run faster.

25. Problem

If an object is freely falling in the air, its velocity increases until the force of gravity becomes
balanced by the air drag force. This steady fall velocity is called the terminal velocity; for small
objects, it is given by the following equation:2

mg = CRηVt, (4.90)

where m is the mass of the object, g is the gravity acceleration, C is a coefficient, η is the air
viscosity, R is the size of the object, and Vt is its terminal velocity. Consider a steady fall scenario
and investigate the scaling with respect to the size of the object:

a) If the density of the object is constant, what is the scaling of the object’s mass with its size?

b) Knowing the scaling for mass m, determine the scaling for Vt versus the object’s size that
satisfies the equation above.

c) What does this scaling tell us for extremely small objects? Explain why specks of dust that
you see in a ray of sunlight do not seem to fall down.

Solution

a) The volume of the object scales as R3. For a constant density, the mass also scales as R3.

b) We use m = DR3, where D is a constant. Then equation (4.90) yields

DR2g = CηVt, (4.91)

which indicates that the terminal velocity scales as the square of the object’s size.

c) For extremely small objects the terminal velocity is very low. That is why specks of dust
that you may see in a ray of sunlight seem floating in the midair.

26. Problem

Section 4.5 noted that the volume of the space between two concentric spheres of radii R and
R + δR scales as R2 (see figure 4.3∗).

2. For a sphere, C = 6π, the formula known as Stokes’s law (see section 4.2).
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a) Prove this quadratic scaling from the formula for the volume of a sphere (assume that
δR ≪ R):

V =
4
3
πR3. (4.92)

b) How does the volume between the two spheres scale as a function of δR if δR ≪ R?

c) How does the volume between the two spheres scale as a function of δR if δR ≫ R?

d) What is the condition for δR that corresponds to the transition between these two last
scalings?

Solution

a) The volume of the larger sphere is given by

Vl =
4
3
π(R + δR)3. (4.93)

The volume of the smaller sphere is given by

Vs =
4
3
πR3. (4.94)

Then the volume of the shell is computed as follows:

δV =
4
3
π(R + δR)3 −

4
3
πR3

=
4
3
π(3R2δR + 3RδR2 + δR3).

(4.95)

For small δR, the term 3R2δR in the parentheses is dominant. We obtain

δV ≈
4
3
π3R2δR

= 4πR2δR.
(4.96)

Note that this value for the shell volume can be obtained if we just multiply the area of the
sphere 4πR2 by the shell thickness δR, as if it were the volume of a flat figure with the base area
4πR2 and thickness δR. This shows that for thin shells (that is, when δR ≪ R) the curvature of
the sphere does not affect the volume computation for the shell.

b) The volume scales linearly with respect to δR as long as δR ≪ R.

c) If δR ≫ R, the volume of the shell is approximately equal to the volume of the larger sphere,
whose radius is approximately equal to δR. Therefore, the volume of the shell scales as δR3.

d) The transition between these two scalings is evident from equation (4.95), where the domi-
nant term has the lowest power of δR for small δR and the largest power of δR for large δR. The
transition occurs for δR ∼ R.

27. Problem
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The discussion of equations (4.6∗) and (4.7∗) in section 4.2 explores competing scalings with
respect to velocity for an object that is moving in the air. Another variable used in both equations
is the size of the object. Consider a hailstone that starts forming in a cloud as a tiny speck and
then grows to a larger ball. As it moves through the air, it is subject to the air drag force.

Which of the two mathematical models (given by equations (4.6∗) and (4.7∗)) describes the
air drag force for the initial stages, and which is appropriate for the later stages of the hailstone
growth? (Hint: Take into account that radius R and the cross section of the hailstone A in these
two mathematical models are linked. Assume that the speed of the fall increases as the hailstone
grows.)

Solution

As the hailstone falls, both its radius and velocity increase. We compare two mathematical
models:

Fl = 6πRηV (4.97)

and

F =
1
2

CDρAV2, (4.98)

where notations are given in section 4.2. In the last equation the cross-section area of the hail-
stone is computed as A = πR2. We see that F is quadratic with respect to both R and V , and Fl

is linear with respect to these variables. The motion of the hailstone will be described by the
larger of the forces F and Fl. Therefore, for small R and V the motion of the hailstone will be
described by the formula for Fl, and for large R and V it will be described by the formula for F.

28*. Problem

Consider a plot of the function y = 1/x for positive values of x.

a) Using scaling, prove that the area S (a) under the curve y = 1/x for 1 ≤ x ≤ a is the same
as the area under the same curve for c ≤ x ≤ ca for any positive value of c.

b) Consider the value of S (a2), which is the area under the same curve for 1 ≤ x ≤ a2. Split
this area in two sections: area S (a) for 1 ≤ x ≤ a and area S ′(a) for a < x ≤ a2. Using
the result from task 28a, express area S (a2) through S (a). This establishes a scaling for
function S (a).

c) Which standard function exhibits the same scaling property as function S (a)?

Solution

a) Figure 4.8 shows two shapes. The first one is the area below the curve 1/x and in between
x = 1 and x = 2. Its area is given by S (2). The second one is also below the curve 1/x, but in
between x = 4 and x = 8. Its area corresponds to a = 2, c = 4.
The second shape can be obtained from the first one as a result of two operations:

i. Stretching it in the horizontal dimension by the factor c.

ii. Squeezing it in the vertical dimension by the same factor.
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Figure 4.8
Scaling of areas under the curve y = 1/x.

The first operation increases the area by a factor c. The second operation decreases the area
by the same factor. The net effect of these two operations leaves the area of the figure intact.
Therefore, the area S (a) under the curve y = 1/x for 1 ≤ x ≤ a is the same as the area under the
same curve for c ≤ x ≤ ca for any positive value of c.

b) We set c = a in task 28a to prove that S (a) = S ′(a). We also know that S (a2) = S (a)+S ′(a).
Therefore,

S (a2) = 2S (a). (4.99)

This scaling is the same as for the logarithm:

ln a2 = 2 ln a, (4.100)

which suggests that S (a) = p ln a, where p is a constant multiplier. Indeed, the area under the
curve f (x) = 1/x between x = 1 and x = a is given by ln a.

29. Problem

As workers gain more experience, they perform their tasks faster. The first quantification of
this effect is known as Wright’s law. In 1936, T. P. Wright observed that as the production of
airplanes at the Curtiss-Wright factory doubled, the time required to manufacture each airplane
decreased by 20 percent. Express Wright’s law as a scaling relationship.
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Solution

We denote the airplane production as p and the time required to build each plane as T . We
consider two cases: before (without tildes) and after (with tildes) the production of airplanes is
doubled. We express Wright’s law as follows:

p̃ = αp,

T̃ = βT.
(4.101)

From the condition of the problem we know that if α = 2, then β = 0.8. This implies that there is
a functional dependence between these two variables: β = f (α). Unfortunately, it is impossible
to define function f from one data point α = 2, β = 0.8. However, it is reasonable to interpret
Wright’s law in such a way, that it applies to any level of production. For example, consider what
happens if we again double the production to get ˜̃p = α p̃ = α2 p. We should get ˜̃T = ββT = β2T .
In terms of the functional dependence between β and α this means that β2 = f (α2). If the same
is true for all values of production, we will see that βn = f (αn). The only function that satisfies
this condition is the power law. Indeed, if β = αq, then

(αn)q = (αq)n = βn. (4.102)

Next, we must make sure that β = 0.8 for α = 2. Condition 2q = 0.8 becomes an equation for q.
Its solution is given by q = ln 0.8/ ln 2 ≈ −0.322.

30*. Problem

The depressed cubic equation is given by

x3 + px + q = 0. (4.103)

Its three solutions can be expressed through trigonometric functions (see section A.29):

xk = 2
√
−

p
3

cos

1
3

cos−1

 3q
2p

√
−

3
p

 − 2πk
3

 , (4.104)

where k = 0, 1, 2.

a) Show that equation (4.103) obeys the scaling property:

x′ = ax,

p′ = a2 p,

q′ = a3q.

(4.105)

b) Show that this scaling applies also to solution (4.104).

Solution

a) We substitute x′, p′, and q′ in the depressed cubic equation:
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x′3 + p′x′ + q′ = a3 x3 + a2 pax + a3q

= a3(x3 + px + q)

= 0.

(4.106)

This confirms that the depressed cubic equation is invariant with respect to scaling (4.105).

b) To check if solution (4.104) is also invariant with respect to this scaling we consider the
argument and the coefficient for the trigonometric functions separately. For the argument of
cos−1 we get

3q′

2p′

√
−

3
p′
=

3qa3

2pa2

√
−

3
pa2

=
3q
2p

√
−

3
p
.

(4.107)

The argument of cos−1 is invariant. Then the value of the cos function in equation (4.104) is also
invariant with respect to scaling (4.105). For the coefficient for the cosine we get

2

√
−

p′

3
= 2a

√
−

p
3
. (4.108)

This is consistent with the scaling for xk in the left-hand side of equation (4.104). This means
that the entire solution (4.104) is invariant with respect to scaling (4.105).



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 30, 2022 1:50am



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 30, 2022 1:50am

5 Order of Magnitude Estimates

The exercises below are different from those in other chapters. A key part of making an order of
magnitude estimate is planning a simple approach that uses known or easily obtainable numbers. It
would defeat the purpose of this chapter to suggest a working approach to solve each problem, or
even to suggest all the data you may use. Moreover, many problems can be correctly solved multiple
ways. It is up to you to chart a course for a solution and to hunt for the necessary data. As a result,
some or all input data may be missing in the formulation of the exercises below.

You are allowed to speculate and to use reference books and web searches to come up with the
missing data needed to solve each problem. Of course, this does not mean that you can simply Google
the final result—you still have to produce an estimate from some other data.

1. Problem

A screenwriter is tasked with writing a script for a movie about a bank heist. The initial concept
calls for the burglars getting away with $5 million in cash. The screenwriter wants to be sure
that the burglars can physically haul that amount. Estimate how much $5 million may weigh
and what the combined volume of sacks is needed to carry this cash. Make calculations for
three different cases:

a) All the cash is in $100 bills.

b) All the cash is in $20 bills.

c) The cash is in roughly equal numbers of $100 and $20 bills.

Solution

We assume that all bills have the same weight and volume. A stack of 100 bills measures about
1 cm × 5 cm × 15 cm, which amounts to 75 cm3. The density of the bills is higher than the
density of water. That volume of water would weigh 75 g, and we estimate the stack of 100
bills to weigh 100 g. Then one bill has the volume of 0.75 cm3 and weighs about 1 g. Now we
consider the three scenarios. For each, we compute the number of bills.

a) The number of bills is given by 5 × 106/100 = 5 × 104 bills. The weight would be 50,000 g
or 50 kg. The volume would be about 4 × 104 cm3. Since one cubic foot is about 303 ≈ 27, 000
cm3, the total volume of the bills would be about 1.5 cubic feet.
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b) The number of bills increases by the factor of 5. Therefore, the weight and the volume of
the cash increase by the same factor. The money would weigh about 250 kg and would need
sacks with the total volume of about 7.5 cubic feet.

c) We consider pairs of bills, with each pair containing a $100 and a $20 bill. There will be
5 × 106/120 ≈ 4 × 104 such pairs. Each pair weighs 2 g and occupies 1.5 cm3 of space. Then
the total weight will be about 80 kg and the total volume will be about 2 cubic feet.

2. Problem

Mary has noticed that running on a treadmill is easier than running outside. She thought about
this and decided that the reason for the difference is the air drag, which she has to overcome
when running outside but not in the gym. To prepare for a race, Mary decided to set up the
incline on the treadmill in such a way that her expended energy on the treadmill will be equal
to that when running on a level trail outside. She read section 5.6 and followed the math there
to compute the required incline. Assuming that Mary is of an average build and runs at the pace
of 6 mph, what should the incline on the treadmill be?

Solution

We use formulas from section 5.6 for the power outlay to counter the air drag force

Pa =
1
2

CDρAV3. (5.1)

and for the power outlay to counter the gravity on an incline

Pg ∼
2α
π

mgV, (5.2)

where notations are defined in section 5.6. From these equations we obtain a solution for the
incline that is required to compensate for the lack of air drag on the treadmill:

α ∼
π

4
CDρAV2

mg
(5.3)

We assume that Mary’s weight is 60 kg, her height is 1.6 m, and the width of her body is 0.7 m,
which yields Mary’s cross-section area of about 1 m2. The density of the air is ρ = 1.2 kg/m3.
Mary is running at 6 mph, which corresponds to about 3 m/s. Constant CD is a dimensionless
coefficient, and we use CD ≈ 1. Of course, g = 9.8 m/s2. This yeilds α ≈ 0.014 radians, or 0.8
degrees.

3. Problem

Suppose that scientists have learned how to put a tag on individual molecules.1 They use this
technology to study the circulation of water in Earth’s oceans and atmosphere. They tagged all

1. The statement of this problem is not as absurd as it may seem. As the air circulates in the atmosphere, some
air parcels travel to high altitudes, where they are bombarded by cosmic rays. This turns nitrogen into carbon-14(
14C

)
; further circulation brings this carbon back to Earth, where it enters the global nutrient cycle. The “tagged”

14C carbon is used by scientists to perform radiocarbon dating of archaeological and biological specimens. Un-
derstanding the dynamics of global air circulation is important for accurate radiocarbon dating.
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the molecules in a cup of water and then poured this cup into the Amazon River. Now scientists
periodically scoop a cup of water at various places around the globe and measure the number of
tagged molecules there. Provide a rough estimate for the number of molecules in a scooped cup
that would indicate that the original sample has mixed approximately uniformly with the water
in the world’s oceans.

Solution

The number of molecules in a cup of water that is scooped from the ocean after the water has
been mixed with the world ocean is estimated as NVc/Vo, where Vc is the volume of the cup, Vo

is the volume of the water in the ocean, and N is the number of molecules in the cup.

The volume of the water in the ocean is estimated as the surface area A of the ocean times the
average depth D. To compute the surface area, we assume that the ocean covers about two thirds
of the earth surface. Then the volume of the ocean is

Vo ∼
2
3

4πR2D, (5.4)

where R is the Earth radius. The number of molecules in the scooped cup is then estimated as

n ∼
Vc

Vo
N

∼
3Vc

8πR2D
N

(5.5)

We use R = 6.4× 106 m and D ∼ 5× 103 m. A simple search shows that 1 mole of water has the
volume of about 18 ml. Then one cup of water (0.2 l or Vc ∼ 2 × 10−4 m3) is about 10 moles,
and must have about N = 6× 1024 molecules. We substitute these values in equation (5.5) to get
n ∼ 700.

4. Problem

Find information on how many lightning storms one may observe per year in a temperate climate
zone of the world, or use your own experience if you live in a temperate zone.

a) Based on this number, estimate how many lightning strikes occur per second globally.

b) Note that simply multiplying the number of strikes that one may observe by the total num-
ber of people on the planet is not a valid approach. Why?

Solution

a) We assume that the thunderstorm season lasts about 4 months or nd = 120 days. A person in a
temperate climate zone may observe one thunderstorm per week. During a season that would
correspond to nt ∼ nd/7 = 17 thunderstorms. During each thunderstorm, one may observe about
ns ∼ 20 lightning strikes. Then the number of lightning strikes that a person may observe in a
year is estimated as nsnt.
These lightning strikes are observed if they are within r = 5 km from the observer, that is, if
they occur within a circle with the area of a = πr2. They occur in the area that covers roughly a
half of the Earth surface (we exclude high-latitude regions, deserts, and so on), or A = 4πR2/2,
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where R ∼ 6.4 × 106 m is the Earth radius. This area can be partitioned into about A/a patches,
with each patch having nsnt lightning strikes annually. Then the total annual number of lightning
strikes globally is estimated as

N ∼
A
a

nsnt

=
2R2nsnt

r2

≈ 109.

(5.6)

There is about 1 billion lightning strikes per year globally! Since there are 365 days in a year
and each day has about 86 thousand seconds, this corresponds to about 30 lightning strikes per
second on average. (Estimates in various sources put the average frequency of lightning at 30 to
100 strikes per second.)

b) Many lightning strikes are observed by multiple people (especially in highly populated ar-
eas). At the same time, lighting strikes in the middle of the ocean are hardly observed by anyone.
Therefore, multiplying the number of strikes that one may observe by the total number of people
on the planet is not a valid approach.

5. Problem

Every year, a number of people are injured by lightning strikes. Assume that most people are
within their homes during a thunderstorm and that, if lightning strikes a house, its inhabitants
are injured. Using the results from the previous problem, estimate the number of people who
are injured by lightning annually.

Solution

During a thunderstorm most people seek shelter, and we assume that most of them are at home.
If a lightning strikes a single-family house, we assume that people in that house will be injured.
(Multifamily buildings often have lightning rods, which prevent injuries.) The probability that a
lightning strike hits a single-family house is estimated as the ratio of the total area of all houses
to the total area, where thunderstorms occur.

We assume that roughly a half of people around the world live in single-family houses, which
is about 4 billion people. We assume that each household is on average 4 people, which means
that there is about 1 billion single-family houses on this planet.

Some of these houses are large and some are small, but we roughly estimate the footprint of
each house to be 100 m2. This means that the total area of all single-family houses in the world
is estimated at 1011 m2.

The area of the world where thunderstorms occur is estimated as half of the Earth area: A =
4πR2/2 ≈ 2.5× 1014 m2. Therefore, for every lightning strike hitting the ground, the probability
to strike a single family house is given by p ∼ 1011/(2.5 × 1014) = 4 × 10−4.

From problem 4 we know that there are about 1 billion lightning strikes per year globally. Only
about a quarter of them are cloud-to-ground strikes (the rest are intra-cloud or cloud-to-cloud).
Therefore, there are about 250 million cloud-to-ground strikes. Since the probability of hitting
a house is p ∼ 4 × 10−4, each year we have about 100,000 cases when lightning strikes a house.
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If in each case four people are injured, there are about 400,000 such injuries per year. (The US
National Institute of Health estimates that globally about 24,000 people are killed by lightning,
and about 10 times more suffer injuries: https://www.ncbi.nlm.nih.gov/books/NBK441920/.)

6. Problem

How many jelly beans can fit in a 2 liter jar?

Solution

We estimate the net volume of each jelly bean at 0.5 cm3. They cannot be packed very tightly,
and each jelly bean takes takes somewhat larger volume in a jar, such as 0.7 cm3. The volume
of a 2-liter jar is 2 × 103 cm2. Then it may hold about 2 × 103/0.7 ∼ 3, 000 jelly beans.

7. Problem

US counties draw their revenue primarily from real estate taxes. Select a particular county and
estimate its budget. Assume that the annual tax rate is 1 percent of the cost of each house.

Solution

For a large and prosperous Fairfax County in Virginia, we estimate the total number of residents
as 1 million. This corresponds to 3 × 105 households. A typical cost of a house is $500,000. If
the tax rate is 1 percent, then each house generates $5,000 in taxes. All houses will therefore
generate $1.5 × 109 per year in taxes. (For 2022, Fairfax County plans to collect about $3.2
billion dollars in real estate taxes.)

8. Problem

The Stefan–Boltzmann law predicts the power of total electromagnetic radiation (including
light) emitted by a heated body from a unit area:

P = σT 4, (5.7)

where σ ≈ 5.67 · 10−8 W/(m2K4). Here the power is measured in watts (W) and temperature T
is in the Kelvin scale.

a) Use the size of the Sun and its surface temperature of 6,000 K to estimate the total energy
emitted per second.

b) Use the scaling that was discussed in section 4.5 to determine the power per unit area away
from the Sun at Earth’s orbit.

c) Find reference information on the power that can be produced by solar panels on the ground
per unit area. How does this number compare with the total power of sunlight per unit area?

Solution

a) From the Stefan–Boltzmann law we estimate the power of electromagnetic radiation emitted
from the unit area of the Sun’s surface to be

P ≈ 5.67 · 10−8 × 6, 0004 = 7.3 · 107 W/m2. (5.8)

The radius of the Sun is R = 7 · 108 m, and its area is S = 4πR2 = 6 · 1018 m2. Then the total
energy emitted by the Sun every second is Pt ∼ 5 · 1026 W.



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 30, 2022 1:50am

116 Chapter 5

b) The power per unit area scales as the inverse square of the distance. The Earth is located
approximately at the distance of D = 1.5 · 1011 m from the Sun. Given the Sun’s radius and the
scaling, the power per unit area at the Earth can be computed as

PE ≈ P
( R

D

)2

≈ 7.3 · 107
(

7 · 108

1.5 · 1011

)2

≈ 1,600 W/m2. (5.9)

c) Solar panels produce power on the order of 200 W/m2. They are about 20% efficient, which
means that the total energy absorbed is about 1,000 W/m2. (Note that not all electromagnetic
energy from the Sun is in the range of wavelengths that solar panels can convert into electricity,
and that some of the radiation is absorbed before it reaches the solar panel.)

9. Problem

According to a popular legend, the inventor of the game of chess came to the local king and
showed him the game. The king loved the game and asked the inventor to name a reward. The
inventor said that he wanted one grain of rice for the first square on the board, two grains of rice
for the second square, four grains for the third square, and so on. The king, apparently not being
very good at math, quickly agreed.

a) Knowing that a chessboard has 64 squares, estimate the total weight of rice that was to be
received by the inventor.

b) How does it compare with today’s global annual rice production?

Solution

a) The dimensions of one grain of rice are approximately 3 × 1.5 × 1.5 mm. This corresponds
to the volume of about 7 mm3, or 7 · 10−9 m3. We know that rice sinks in water; we may assume
that the density of rice is double the density of water. Since 1 m3 of water weighs 103 kg, the
weight of one grain of rice is estimated as 7 · 10−9 × 2 · 103 = 1.4 · 10−5 kg.
The last square of the chess board would have 263 grains of rice. All the squares will have almost
the double of that or ≈ 264 grains of rice. The total weight of this rice comes to 1.4 ·10−5 ×264 ≈

2.6 · 1014 kg or 2.6 · 1011 tons.
b) The world rice production today is about 7 · 108 tons. The inventor of chess wanted to get
the amount that exceeds the modern rice production by three orders of magnitude.

10. Problem

A spherical cap is the part of a sphere that lies above a plane that crosses this sphere (see section
A.30 and figure 5.1).

a) Produce order of magnitude estimates for the volume and the surface area of the spherical
cap as expressed through h and R. (Hint: For the surface area, approximate the shape of the
cap as a disk with radius a. For the volume, approximate the shape of the cap as a cylinder
with radius a and height h. Then use the Pythagorean theorem to solve for a through h and
R.)

b) Try to improve your estimates by approximating the shape of the cap as a cone instead of
a cylinder. The volume and the area of a cone (net of the area of the base) are given by
Vcone = πa2h/3; S cone = πa

√
h2 + a2.
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h

Figure 5.1
A spherical cap: order of magnitude estimates

c) Compare the two sets of estimates with the exact formulas in section A.30.

Solution

We start from considering the case 0 ≤ h ≤ R. (The case of R < h ≤ 2R will be considered
later.) We use tildes for the estimates in the cylinder model, and bars for the estimates in the
cone model.

a) To express the surface area and the volume of a spherical cap through R and h, we need first
to express a as a function of these two variables. From the figure we see that

a =
√

R2 − (R − h)2. (5.10)

Then the surface area of a spherical cap as approximated by the area of a disk of radius a is
given by:

S̃ (h) ∼ πa2

= π(R2 − (R − h)2)

= 2πRh
(
1 −

h
2R

)
.

(5.11)

The volume of a cylinder is computed as the product of the area of the base and the height. We
already have an estimate for the area of the base. Then an estimate for the volume of a spherical
cap is

Ṽ(h) ∼ 2πRh2
(
1 −

h
2R

)
. (5.12)

b) For the surface of the cone (excluding the area of its base) we get:
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S̄ (h) = πa
√

h2 + a2. (5.13)

We use a2 = 2Rh − h2 to get

S̄ (h) ∼ 2πRh

√
1 −

h
2R
. (5.14)

We get the following estimate for the volume of the cone:

V̄(h) =
π

3
a2h =

2π
3

Rh2
(
1 −

h
2R

)
. (5.15)

Next, we proceed to the case R < h ≤ 2R.
If r = R, the spherical cap occupies a half of the sphere, and if h = 2R, the spherical cap
coincides with the entire sphere. Therefore, as h varies from R to 2R, the surface area and the
volume of the spherical cap double. This gives us a way to produce estimates for the surface
area and the volume of the spherical cap for R < h ≤ 2R using a linear model:

S̃ (h) ∼ S̃ (R) + (h − R)S̃ (R),

Ṽ(h) ∼ Ṽ(R) + (h − R)Ṽ(R),

S̄ (h) ∼ S̄ (R) + (h − R)S̄ (R),

V̄(h) ∼ V̄(R) + (h − R)V̄(R).

(5.16)

c) Performance of these rough estimates is compared to the exact formulas in figures 5.2 and
5.3. We see that both the flat disk and the cone model underestimate the surface area of the
spherical cap, but the cone model is doing a better job. This is expected from the shapes of the
disk and the cone as compared to the shape of the spherical cap.
The cylinder model overestimates, and the cone model underestimates the volume. Again, this
performance is expected from the shapes we used for producing the estimates.

11. Problem

In the seventeenth century, Peter Minuit orchestrated the notorious purchase of Manhattan from
a native American tribe.

a) Estimate the total value of real estate in Manhattan in today’s prices.

b) Using this value, estimate the total current cost of land on the island.

c) Assume that the purchase occurred in 1626 and the land was purchased for the equivalent of
$1,000 in today’s money. Estimate the rate of return for the original purchase price to grow
to the value of the Manhattan land today. This assumes that a value grows exponentially in
time as I = I0ert, where I0 is the initial amount and r is the rate of return.

d) How would the estimate for the rate of return change if we assume that Peter Minuit paid
$24 for the purchase?

e) How does it compare with the 7–8 percent growth that many people expect to see in their
retirement accounts?
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Figure 5.2
Estimates for the surface area of a spherical cap
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Estimates for the volume of a spherical cap



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 30, 2022 1:50am

120 Chapter 5

Solution

a) Let’s assume that the price of residential real estate in Manhattan is about $1,000 per square
foot (this corresponds to a $1 million price tag for a 1,000 square foot apartment). There are
about 1.6 million people living in Manhattan, which is about half a million households. If each
household lives in a 1,000 square foot apartment, the total price of residential real estate is about
$5 ·1011 or about half a trillion dollars. To this value we should add the price of commercial real
estate. The total value is estimated at $1012.

b) Let’s assume that the land has the value that is a half of the total value of real estate, or
$5 · 1011.

c) For the annual rate of return r from 1626 to 2022 we have:

103 · er(2022−1626) = 5 · 1011. (5.17)

This yields

r =
ln(5 · 108)

396
≈ 0.05. (5.18)

The estimated rate of return is 5 percent.

d) Using the same model, we get r ≈ 6 percent for the purchase price of $24.

e) Many people expect to beat the 5-6 percent rates of return in their investment accounts. Note
that if one could sustain the 7-8 percent growth in an investment account for hundreds of years,
that could produce a gargantuan value! H. G. Wells based on this premise the plot of his science
fiction novel “The Sleeper Awakes”.

12. Problem

A torus is a donut-shaped body (see figure 5.4). Use an order of magnitude estimate to flag the
incorrect formulas for the volume of a torus below. (Hint: Estimate the volume of a torus as
the volume of a cylinder you would get if you cut the torus at one place and unrolled it to a
cylinder.)

a) V = 2Rr2

b) V = 2π2Rr2

c) V = 12π2Rr2

Solution

The volume of a cylinder with the radius of the base r and the height h is given by πr2h. If we
cut and unroll a torus we would get a cylinder with the height of 2πR. Therefore, the estimate
for the volume of the torus is V = 2π2Rr2. This value is given by option b in the condition of the
problem. Formulas a and c differ from this value by an order of magnitude each and therefore
are likely to be wrong. (In fact, they are.)
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Figure 5.4
A torus: order of magnitude estimates

13. Problem

A powerful explosion creates a supersonic2 spherical shock wave. As the wave propagates out-
ward, it slows down, and at some point its speed falls below the speed of sound. Use equation
(4.38∗) in section 4.8 to estimate the maximum radius of the supersonic shock wave from an
explosion caused by 10 kg of TNT that releases the energy E ≈ 4 · 107 kg ·m2 · s−2.

Solution

We use the following equation for the speed of the shock wave:

V = C

√
E
ρR3 , (5.19)

where E is the energy released by the explosion, ρ is the density of the air, R is the radius of the
shock wave, and C is a dimensionless constant. We solve this equation for R to get

R = 3

√
C2E
ρV2 . (5.20)

We use ρ = 1.2 kg/m3, E ≈ 4 · 107 kg · m2 · s−2, and C ∼ 1. As the radius of the shock wave
increases, the wave slows down. The maximum radius of the supersonic shock wave is achieved

2. A shock wave is supersonic if it travels at a speed that exceeds the speed of sound.
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when the speed of the shock wave is equal to the speed of sound in the air, V ≈ 340 m/s. This
yields R ∼ 6.6 m.

14. Problem

The velocity of gravity waves in deep water (in the case of λ ≪ h) and in shallow water (in the
case of λ ≫ h) is given by (see problem 15 in chapter 4):

Vdeep =

√
gλ
2π
,

Vshallow =
√

gh,
(5.21)

where λ is the wavelength (the distance between two consecutive wave crests), h is the depth of
the water basin, and g ≈ 9.8 m/s2 is the gravity acceleration. Tsunamis are large gravity waves
in the ocean that are often caused by underwater earthquakes. A tsunami wavelength can be on
the order of the size of the region on the ocean floor affected by the earthquake, or about 102

km.

An engineer is tasked to come up with a preliminary design of a tsunami warning system.
The key factor in the design is the travel time of tsunamis across the ocean.

a) Which of the equations in system (5.21) should be used to estimate the speed of a tsunami?

b) How much in advance can a satellite warning system notify the people who live on the
Pacific Rim for a tsunami that originates in the middle of the ocean?

Solution

a) For this problem we have λ ≫ h, which means that tsunami is a shallow-water wave (even
though it may originate in a deep part of the ocean).

b) For g = 9.8 m/s2 and h = 5 · 103 m we get V ∼ 200 m/s, which is on the order of the speed
of a jet plane!
For the propagation distance of 5,000 km (that is, 5 · 106 m) the travel time is ∼ 5 · 106/200 =
2.5 · 104 seconds or about 7 hours.

15. Problem

Zoo employees Jim and Jack are preparing for the arrival of their first adult African bush ele-
phant to the zoo. They have no experience caring for elephants and are frantically trying to
figure out what and how they should feed him. Jim has a lot of experience in caring for rabbits
and knows an excellent supplier of rabbit food. After some brainstorming, Jim and Jack de-
cide that the elephant might enjoy rabbit food but would obviously need a lot of it. They apply
Klieber’s law (see equation (4.2∗) in section 4.1) to estimate how much food an elephant needs.
What estimate may they come up with?

Solution

The weight f of the food is directly proportional to the energy yield from that food. To sustain
an animal, the daily amount of food must be proportional to the metabolic rate B of that animal

B = c f , (5.22)
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where c is a coefficient. Generally, values of c would be different for different types of food.
However, if the elephant is kept on the rabbit’s diet, the proportionality coefficients in equation
(5.22) for the elephant and the rabbit have the same value. Therefore, we can apply Klieber’s
law to the weight of the food rather than to the animal’s metabolic rate. That way, we get an
estimate for the amount of food that is needed to feed an elephant:

fe = fr

(
Me

Mr

) 3
4

, (5.23)

where M is the weight of an animal, f is the weight of the food for that animal, and subscripts
e, r refer to the elephant and rabbit.

A 3 kg rabbit may eat 50 g of pellets and 3 cubic liters of hay per day. The density of hay is
about 10 pounds per cubic foot, which corresponds to about 0.17 kg per cubic liter. Three cubic
liters of hay would weigh about 0.5 kg. Along with the pellets, the total weight of a daily ration
for a rabbit is about 0.55 kg. An elephant weighs about 5 tons. We substitute these values to
get fe ∼ 140 kg. (According to National Geographic, an adult elephant may consume up to 300
pounds of food in a day, which corresponds to about 135 kg.)

16. Problem

The radius r of Archimedes’s spiral increases linearly with the angle θ of the turn (figure 5.5).
Mathematically, this is expressed in polar coordinates as

r = aθ. (5.24)

DR

Figure 5.5
Archimedes’s spiral: order of magnitude estimates
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Emma found a formula on the web for the arc length of the spiral:

L =
a
2

(
θ
√

1 + θ2 + ln
(
θ +
√

1 + θ2
))
. (5.25)

She knows that the spiral is fully defined by two parameters: the total turn angle (dimensionless)
and the distance between the adjacent loops (measured in meters). By applying dimensional
analysis to equation (5.25), Emma concluded that a may be denoting the distance between the
adjacent loops. To check this conjecture, she decided to compare equation (5.25) to a rough
estimate for the arc length. Reproduce Emma’s estimate for the arc length of the Archimedes’s
spiral and analyze the result:

a) Derive a rough estimate for the arc length of the spiral as expressed through the total turn
angle θ and the distance between adjacent loops ∆R. (Hint: First estimate the number of
loops, and then use rule 4 in section 5.2 to estimate the length of each loop.)

b) Compare this estimate with equation (5.25), assuming that parameter a in that equation
denotes the distance between adjacent loops: a = ∆R. Is your rough estimate consistent
with that formula?

c) Does your rough estimate include a logarithmic term that is a part of equation (5.25)? If
not, is it important?

d) Refer to a more complete formulation in section 6.6. What is the correct relationship be-
tween a and ∆R?

Solution

a) If the total turn angle is θ, then the spiral will have N ∼ θ/(2π) loops. The average radius
of a loop will roughly be determined by the loop in the middle of the count. If the separation
between the loops is ∆R, then loop number N/2 will have the radius of

r̄ ∼ ∆R
N
2

∼
∆Rθ
4π
.

(5.26)

The total length of that loop is given by 2πR̄. The total length of N loops is then estimated as

L ∼ 2πr̄N

∼ 2π
∆Rθ
4π
θ

2π

=
∆Rθ2

4π
.

(5.27)

b) If we assume that a = ∆R, estimate (5.27) differs from formula (5.25) in several ways: it
lacks a logarithmic term, the coefficient is 1/4π instead of 1/2, and the estimate contains θ2

instead of θ
√

1 + θ2.
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c) The rough estimate should have a better accuracy for a large number of turns N, when the
effect of individual turns on the total is relatively smaller. Large N corresponds to a large θ,
when the power law term in equation (5.25) dominates the logarithmic term.

d) We already determined that the logarithmic term is small for large θ. In addition, we have
θ2 ≈ θ

√
1 + θ2. Then the estimate (5.27) substantially differs from formula (5.25) in one way

only: the coefficient is off by the factor 2π (that is, assuming a = ∆R). This means that the
estimate and formula (5.25) have different orders of magnitude, which makes either formula
(5.25) or the assumption a = ∆R suspect. Indeed, consider the increase in r as θ is incremented
by one complete revolution. If θ is increased by 2π, we see from equation (5.24) that r increased
by 2πa. Therefore, ∆R = 2πa and the assumption r = a is incorrect. This argument reconciles
the rough estimate and the exact formula.

17. Problem

Estimate the length of the curve defined by y = sin x for 0 ≤ x ≤ 2π. Compare your result with
L ≈ 7.6404.

Solution

We split the curve y = sin x for 0 ≤ x ≤ 2π into four equal segments, as shown in figure 5.6. In
each segment, x varies by π/2 and y varies by 1 (either going from 0 to ±1 or from ±1 to 0). We
approximate the curve in each segment as a straight line connecting the start and the end points.
The length of such a line is computed as the length of the hypotenuse of a right triangle that has
legs π/2 (for x) and 1 (for y). Then the total length of all four straight line segments is given by
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Figure 5.6
The length of the sine curve
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L̃ ∼ 4

√(
π

2

)2
+ 1 ≈ 7.4. (5.28)

The agreement with L ≈ 7.6404 is excellent.

18*. Problem

Consider the curve that is a plot of function y = bx2.

a) Estimate the length of this curve for 0 ≤ x ≤ c.

b) Compare your estimate with the exact result:

L =
c
2

√
4b2c2 + 1 +

1
4b

ln
(
2bc +

√
4b2c2 + 1

)
. (5.29)

c) Does your rough estimate include a logarithmic term? If not, is it important?

d) Plot your estimate and the exact formula for b = 2 as a function of c.

Solution

a) The curve connects points x = 0, y = 0 and x = c, y = bc2. For a rough estimate, we
compute the length of a straight line that connects these two points:

L̄ =
√

c2 + b2c4

= c
√

1 + b2c2.
(5.30)

For comparison with the exact formula we rewrite this equation as

L =
c
2

√
4b2c2 + 4. (5.31)

b) The rough estimate differs from the exact formula in two ways: the exact formula has a
logarithmic term and contains a 1 instead of a 4 under the square root.
c) A parabola curves up more for small x, and for larger x the curvature is smaller. We might
expect our approximation of the parabola as a straight line to be more accurate for large c, when
the contribution from large x dominates the result. This would be consistent with a power law
dominating a logarithmic function for large values of the argument.
d) Figure 5.7 shows plots of L (dashed line) and L̄ (solid line). Since we approximated a curve
by a straight line, L̄ should underestimate the exact value of the length of the curve. We do see
that L̄ < L, but only by a very small amount.
Even though we argued that the rough estimate should be more accurate for large values of c, the
plots show a good agreement for all values of c. There are two sources of error in our estimate:
the value given by (5.31) overestimates the fist term in the exact formula (5.29) but does not
account for the logarithmic term there. Amazingly, for small c these two sources of error almost
exactly compensate each other, producing a very accurate result. This makes our estimate quite
accurate for all values of c.

19. Problem
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Equation (2.94∗) in section 2.12 estimates the maximum possible radius of coverage by a low-
orbit satellite that transmits a signal to customers on Earth’s surface. Assume you are planning
a satellite constellation that must cover the entire globe and that these satellites will fly at an
altitude of 400 km. How many satellites will you need?

Solution

Equation (2.94∗) in section 2.12 computes the length of the arc from the center of the satellite
beam to its edge on the Earth surface:

L =
√

2RH, (5.32)

where R is the Earth radius and H is the orbit altitude. The beam spot forms a spherical cap,
for whose area we have an exact formula in section A.30. However, for low orbit satellites the
beam spot is small compared to the Earth radius and can be approximated as flat. Then the area
of one spot beam is A ≈ πL2 = 2πRH. The total number of beams to cover the Earth surface is

N ∼
4πR2

2πRH

=
2R
H
.

(5.33)
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Figure 5.7
Length of the parabola: a rough estimate and the exact value
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For R =6,400 km and H = 400 km we get N = 32. (The geometry of satellite orbits makes it
difficult for a constellation to have the same coverage at all latitudes. Some beam spots will over-
lap, while other may have gaps. In addition, round beam spots are not well suited for tiling the
Earth surface tightly. To work around these constraints, one may have to increase the required
number of satellites.)

20. Problem

The Greenland ice sheet covers about 1.7 · 106 km2 and is 3 km thick at the thickest point. Give
a rough estimate for the rise of the sea level if this ice sheet completely melts as a result of
climate change.

Solution

The total volume of ice in the ice sheet is estimated as its area times the average thickness.
We estimate the average thickness to be a half of the maximum thickness value. Then the total
volume of ice is

V =
1
2

AGHG, (5.34)

where AG = 1.7 · 106 km2 is the area of Greenland and HG = 3 km is the largest thickness
of ice there. If the ice melts, the volume of the oceans will be increased by approximately the
same amount. The increase in the ocean level Ho is linked with the area of the ocean Ao and the
volume of water added V as:

V = AoHo. (5.35)

Then

Ho ∼
AG

2Ao
HG. (5.36)

For the area of the ocean, we use two thirds of the area of the Earth, that is,

Ao =
2
3

4πR2, (5.37)

where R is the Earth radius. We get Ao ∼ 3.4 · 108 km2. Then

Ho ∼
1.7 · 106

2 · 3.4 · 108 3 km = 7.5 m. (5.38)

21. Problem

Estimate n! = 1 × 2 × · · · × n as a function of n. Check the quality of this estimate for n = 5
and n = 10. (Hint: Since n! is a product of n factors, use the nth power of the average value
for these factors.) Compare the functional form of your estimate to the Stirling formula, which
approximates the factorial as

n! ≈
√

2πn
(n

e

)n
. (5.39)
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Note that a rough estimate may miss the Stirling formula value or the exact value by more than
one order of magnitude for a large n but still captures the rough behavior of n!. The reason for
the crudeness of this estimate is the extremely steep dependence of n! on n.

Solution

For a rough estimate, we use the product of n factors, where each factor is the average of the
values 1, 2, . . . , n. Then

ñ! ∼
(n

2

)n
. (5.40)

This is different from the Stirling formula in two ways: the estimate lacks a multiplier
√

2πn and
has 2 in place of e in the denominator. For small n the effect of these two differences partially
compensates each other, but for large n the wrong denominator produces a large difference
between n! and ñ!. Table 5.1 lists values for n = 5 and n = 10. The rough estimate yields a good
approximation for n = 5, but is off by a factor of ∼ 3 for n = 10. The Stirling formula provides
a much better approximation. In fact, its relative accuracy increases with n.

22. Problem

To put a satellite into orbit, we need to design a booster. The Tsiolkovsky rocket equation (see
section 4.2) links the velocity of the exhaust Ve, the total velocity gained by the rocket V , the
total starting mass of the rocket including propellant m0, and the final mass of the rocket when
the propellant has been used m f :

V = Ve ln
m0

m f
. (5.41)

The velocity of the exhaust leaving the rocket depends on the type of fuel used and on engineer-
ing constraints; for this problem, use Ve = 2,000 m/s. With these data in hand, start planning a
satellite mission:

a) The radius of a low-Earth orbit is only slightly larger than Earth’s radius. Use the results
from problem 4 in chapter 1 to estimate the satellite velocity on the orbit.

b) Use the Tsiolkovsky equation (5.41) to estimate the total mass of a rocket that is needed to
put a 10-ton satellite on a low-Earth orbit.

c) Compare your estimates with masses of real launch vehicles that have been used for launch-
ing satellites on low-Earth orbits, such as Zenit-2 or Falcon 9 v1.0.

Solution

Table 5.1
A rough estimate, the Stirling formula and the exact value of a factorial

n n! Estimate Stirling formula value

5 120 97.7 117.95
10 3,628,800 9,765,625 3.599 · 106
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a) The satellite velocity on a circular orbit is given by

V =
√

Rg, (5.42)

where R is the orbit radius and g is the gravity acceleration at the orbit altitude. For a low-Earth
orbit we can use the radius of the Earth for R and the gravity acceleration at the sea level for g.
Then V ∼ 8 · 103 m/s.
b) We solve equation (5.41) for m0 and substitute there V from equation (5.42):

m0 ∼ m f e
√

Rg/Ve . (5.43)

For a satellite with a mass of m f = 104 kg, R = 6.4 · 106 m, g = 9.8 m/s2, and Ve = 2 · 103 m/s
we obtain m0 ∼ 5.5 · 105 kg, or 550 tons.
c) This has the same order of magnitude as launch vehicles Zenit-2 (vehicle weight 445 tons,
maximum payload weight 14 tons) or Falcon 9 v1.0 (vehicle weight 333 tons, maximum payload
weight 9 tons).

23. Problem

In statistics and probability theory, the so-called logistic distribution is given by

P̃(x) =
c(

e
x
2 + e−

x
2
)2 , (5.44)

where constant c is chosen so that the total area under the curve defined by equation (5.44) is
equal to 1. Give an estimate for c.

Solution

Function P̃(x) has a maximum at x = 0 and approaches zero for x → ±∞. The area under the
curve can be approximated as the product of the width and height of the main hump.

At the maximum, P̃(0) = c/4. To compute the width of the hump, we consider the value of y for
which P̃(y) is at the half of the maximum height:

c(
e

y
2 + e−

y
2
)2 =

c
8
. (5.45)

Then

e
y
2 + e−

y
2 =
√

8. (5.46)

We multiply this equation by ey/2 and denote z = ey/2 to get

z2 −
√

8z + 1 = 0. (5.47)

This is a quadratic equation for z. We look for a positive solution for it, which is z =
√

2 + 1.
Then

ey/2 =
√

2 + 1, (5.48)
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which yields

y = 2 ln(
√

2 + 1). (5.49)

The main hump decreases to a half of its height at x = ±y. Therefore, the total width of the main
hump is estimated as 2y = 4 ln(

√
2 + 1). Then the requirement for the area under the curve to

be equal to 1 produces the following equation for c:

c
4

4 ln(
√

2 + 1) = 1, (5.50)

which yields

c =
1

ln(
√

2 + 1)
≈ 1.13. (5.51)

(For reference, the exact value is c = 1.)

24. Problem

If an object is freely falling in air, its velocity increases until the force of gravity becomes
balanced by the air drag force. This steady fall velocity is called the terminal velocity (see also
problem 25 in chapter 4). Depending on the values of the parameters, the terminal velocity for
a sphere may be given by one of the following equations:

mg =
1
2

CDρAV2
t ,

mg = 6πRηVt,
(5.52)

where g is the gravity acceleration, m is the mass of the object, Vt is the terminal velocity
with respect to the air, R is the radius, A is the cross-section area, CD is the drag coefficient
(CD ≈ 0.47 for a sphere), and η is called the dynamic viscosity, a property of the medium. For
air, assume η = 1.8 · 10−5kg/(m · s). Consider a hailstone that grows slowly in a cloud. At any
time, the velocity of its fall through the air is approximately equal to the terminal velocity. As
the size and the speed of the hailstone increase, its fall transitions between the two regimes for
the air drag. Estimate the size of the hailstone at which this transition occurs.

Solution

The transition between the two regimes occurs when both equations in (5.52) produce the same
value for the air drag:

1
2

CDρAV2
t = 6πRηVt. (5.53)

We substitute the cross-section area of the hailstone A = πR2 and simplify the result to get

CD

2
ρRVt = 6η. (5.54)

This equation has two unknowns, R and Vt. Luckily, we can formulate a second equation for
these unknowns, because at any moment the air drag force is approximately equal to the weight
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of the hailstone. For that second equation we can use either of equations (5.52), where we note
that the mass of the hailstone is a function of its volume and the ice density; in turn, the volume
is a function of the radius:

m =
4
3
πR3ρi, (5.55)

where ρi is the density of ice. Then from equation (5.55) and the second equation in (5.52) we
get:

4
3
πR3ρig = 6πRηVt. (5.56)

From this we get

Vt =
2ρig
9η

R2. (5.57)

We substitute this into equation (5.54) and solve for R to get

R = 3 3

√
2η2

CDρρig
. (5.58)

We use ρ = 1.2 kg/m3, ρi = 9 · 102 kg/m3, and g = 9.8 m/s2. Values of CD and η are given in the
formulation of the problem. This yields R ∼ 1.5 · 10−4 m = 0.15 mm.

25*. Problem

Linear regression is an algorithm that is commonly used to interpret numerical data (see section
A.33). Assume that we have N pairs of measurements xi and yi for variables x and y. The
underlying linear relationship between these two variables is corrupted by measurement noise
R:

y = ax + b + R. (5.59)

The linear regression algorithm estimates the best fit for model parameters a and b from avail-
able data:

a =
N

∑N
i=1 xiyi −

∑N
i=1 xi ·

∑N
i=1 yi

N
∑N

i=1 x2
i −

(∑N
i=1 xi

)2 ,

b =
∑N

i=1 yi ·
∑N

i=1 x2
i −

∑N
i=1 xi ·

∑N
i=1 xiyi

N
∑N

i=1 x2
i −

(∑N
i=1 xi

)2 ,

(5.60)

where xi, yi are the available data for variables x and y.

For this problem, assume that the data points form two approximately equal clusters. The
first cluster is centered at (x1 = 1, y1 = 2), and the second cluster is centered at (x2 = 6, y2 = 4).
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In each cluster, points are located within a distance less than 2 units from the cluster center.
Compute an estimate for parameters a and b of a linear fit to this data set. (Hint: Use rule 7 in
section 5.2 to estimate various sums in equations (5.60).)

Solution

A simple way to obtain an estimate for a and b is just to assume that there is a big fat data point
at the location of each cluster. Then linear regression should produce a line that goes through
these two points. The equation for a line going through two points is as follows (we write it in
two equivalent ways for the reasons that will be apparent below):

y =
y1 − y2

x1 − x2
(x − x1) + y1

=
y1 − y2

x1 − x2
(x − x2) + y2.

(5.61)

This should be the same as y = ax + b. Therefore, we should have

a ∼
y1 − y2

x1 − x2
,

b ∼ −
x1(y1 − y2)

x1 − x2
+ y1

= −
x2(y1 − y2)

x1 − x2
+ y2.

(5.62)

Using the locations of clusters given in the problem, we get

a ∼ 0.4,

b ∼ 1.6.
(5.63)

In addition to this simple argument, we can get the same result directly from equations (5.60).
These equations contain multiple sums, which we consider separately. To estimate a sum in
equations (5.60), we split it into two separate sums, one dealing with the points from the first
cluster, and the other with the points from the second cluster. Then for all points in a cluster we
replace all coordinates xi and yi with the coordinates of the cluster center. This will produce the
following estimates:
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N∑
i=1

xiyi ∼
N
2

x1y1 +
N
2

x2y2,

N∑
i=1

xi ∼
N
2

x1 +
N
2

x2,

N∑
i=1

yi ∼
N
2

y1 +
N
2

y2,

N∑
i=1

x2
i ∼

N
2

x2
1 +

N
2

x2
2.

(5.64)

We substitute these estimates into equations (5.60). To make equations less cumbersome, we
will do it separately for the numerators and denominators in equations (5.60). We start from the
denominator, which is common to these equations:

N
N∑

i=1

x2
i −

 N∑
i=1

xi

2

∼ N
N
2

(x2
1 + x2

2) −
N2

4
(x1 + x2)2

=
N2

4
(2x2

1 + 2x2
2 − x2

1 − x2
2 − 2x1 x2)

=
N2

4
(x1 − x2)2.

(5.65)

The numerator of the expression for a is computed as follows:

N
N∑

i=1

xiyi −

N∑
i=1

xi ·

N∑
i=1

yi =
N2

2
(x1y1 + x2y2) −

N2

4
(x1 + x2)(y1 + y2)

=
N2

4
(2x1y1 + 2x2y2 − x1y1 − x1y2 − x2y1 − x2y2)

=
N2

4
(x1y1 + x2y2 − x1y2 − x2y1)

=
N2

4
(x1 − x2)(y1 − y2).

(5.66)

The value of a is computed as a ratio of the right-hand sides of equations (5.66) and (5.65):

a =

N2

4
(x1 − x2)(y1 − y2)

N2

4
(x1 − x2)2

=
y1 − y2

x1 − x2
,

(5.67)
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which matches our estimate for a in equations (5.62).

The numerator of the expression for b is computed as follows:

N∑
i=1

yi ·

N∑
i=1

x2
i −

N∑
i=1

xi ·

N∑
i=1

xiyi =
N2

4
((y1 + y2)(x2

1 + x2
2) − (x1 + x2)(x1y1 + x2y2))

=
N2

4
(y1 x2

1 + y1 x2
2 + y2 x2

1 + y2 x2
2 − y1 x2

1 − y2 x1 x2 − y1 x1 x2 − y2 x2
2)

=
N2

4
(x1 − x2)(y2 x1 − y1 x2).

(5.68)

Then the value of b is computed as a ratio of the right-hand sides of equations (5.68) and (5.65):

b =

N2

4
(x1 − x2)(y2 x1 − y1 x2)

N2

4
(x1 − x2)2

=
y2 x1 − y1 x2

x1 − x2
.

(5.69)

Let’s see if this value matches the expressions given by equations (5.62). Note that equation
(5.69) is symmetric with respect to swapping subscripts 1 and 2, but neither of the two equivalent
expressions for b in equations (5.62) has this symmetry. To compare equation (5.69) with the
values given by equations (5.62), we should first impose symmetry on the latter. We compute
the mean of the two expressions for b in equations (5.62) to get

b = −
1
2

x1(y1 − y2)
x1 − x2

+
1
2

y1 −
1
2

x2(y1 − y2)
x1 − x2

+
1
2

y2

=
1
2
·
−x1(y1 − y2) + y1(x1 − x2) − x2(y1 − y2) + y2(x1 − x2)

x1 − x2

=
1
2
·

2x1y2 − 2x2y1

x1 − x2

=
x1y2 − x2y1

x1 − x2
.

(5.70)

This result does match expression (5.69).
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6 Successive Approximations

1. Problem

Section A.31 of this book presents a formula for mortgage payments. Given the initial loan
amount D, the interest rate r, and the duration of the loan T , the annual payment rate on the
mortgage is

p =
rDerT

erT − 1
. (6.1)

Suppose that a customer has selected a house to buy and that she has a limited and known budget
for paying the mortgage. What is the maximum interest rate that will keep the payments under
budget?

The mortgage payment formula does not yield a closed-form solution for the interest rate r.
Solve it for r using the MSA. Rewrite equation (6.1) as follows:

r =
p
D

(1 − e−rT ). (6.2)

Assume that e−rT serves as a small parameter here: any inaccuracy in the interest rate would
be dampened by the exponent, yielding a more accurate value for r in the next approximation.
Use the initial approximation r0 = 0.04/year, the term of the mortgage T = 30 years, mort-
gage amount D = $230,000, and a mortgage budget of $14,000/year to estimate the maximum
acceptable interest rate.

Solution

We successively substitute approximations for r in the right-hand side of equation (6.2). Results
are presented in table 6.1. The maximum mortgage rate that would keep the payments under
budget is r ≈ 0.04514.

2. Problem

For each of the following equations, substitute numerical results for the zero-order approxima-
tion and for the highest computed order from the corresponding table of results. Draw conclu-
sions on the accuracy of the MSA in each case.
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Table 6.1
Approximations for the mortgage rate

Approximation order r

0 0.04
1 0.04253600449230074
2 0.04387908559615115
3 0.04455006489136136
4 0.04487528210471318
5 0.04503057181508544
6 0.04510418918258567
7 0.04513896892699059

a) For equation (6.30∗), substitute values from table 6.3∗.

b) For equation (6.52∗), substitute values from table 6.4∗.

c) For equation (6.58∗), substitute values from table 6.5∗.

d) For equation (6.67∗), substitute values from table 6.6∗.

Solution

a) Equation (6.30∗) computes the total turn angle of a spiral. The difference between the right
and the left-hand sides of equation (6.30∗) for the zero order approximation is ≈ −0.247. For
the seventh-order approximation it is ≈ −10−15.

b) Equation (6.52∗) models the satellite coverage for oblate Earth. The difference between the
right and the left-hand sides of equation (6.52∗) for the zero order approximation is ≈ −0.00234.
For the third-order approximation it is −4.3 · 10−7.

c) Equation (6.58∗) solves for the intersections between a circle and a parabola for small values
of the linear term. We substitute x+ values from the table. The difference between the right and
the left-hand sides of equation (6.58∗) for the zero order approximation is ≈ 0.032. For the
fourth-order approximation it is 1.5 · 10−10.

d) Equation (6.67∗) solves for the intersections between a circle and a parabola for small values
of the quadratic term. We substitute x+ values from the table. The difference between the right
and the left-hand sides of equation (6.67∗) for the zero order approximation is ≈ 0.025. For the
fourth-order approximation it is 9.17 · 10−10.

In all cases the accuracy is excellent.

3. Problem

Consider the following cubic equation:

(x − a)(x − b)(x − c) = d. (6.3)

a) What are the criteria for a, b, c, d for the method to be valid?
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b) For a = 1, b = 2, c = 3, and d = 0.01, estimate all three roots using the MSA. Produce
both analytical formulas and numerical values for the first-order approximation.

c) Check the numerical results by substituting them in the original equation (6.3).

Solution

a) We rewrite equation (6.3) as follows:

xa =
d

(x − b)(x − c)
+ a. (6.4)

This produces MSA approximations for one of the roots. For the two other roots the MSA
scheme is analogous. In all cases, we want the ratio in the right-hand side to be small. This
requires values of parameters a, b, and c to be sufficiently different.

b) Analytical formulas for the roots are as follows:

xa =
d

(a − b)(a − c)
+ a,

xb =
d

(b − a)(b − c)
+ b,

xc =
d

(c − a)(c − b)
+ c.

(6.5)

For the first-order approximation we get x1 = 1.005, x2 = 1.99, x3 = 3.005.

c) Substitution of these values back into equation (6.3) produces the following differences for
the left and right-hand sides:

i) For xa, we get (xa − a)(xa − b)(xa − c) − d = −7.49 · 10−5.

ii) For xb, we get (xb − a)(xb − b)(xb − c) − d = −10−6.

iii) For xc, we get (xc − a)(xc − b)(xc − c) − d = 7.51 · 10−5.

(Note that values −7.48 · 10−5 and 7.51 · 10−5 for xa and xc are nearly symmetric. The reason for
this is that values of xa and xc are nearly symmetric with respect to xb.)

4. Problem

The equation

sin x = a (6.6)

has one solution on the interval 0 ≤ x ≤ π/2 for 0 ≤ a ≤ 1:

x = sin−1 a. (6.7)

a) Use the MSA to find approximate formulas for the solutions of a modified equation:

sin x = a + bx, (6.8)
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where b is small and 0 ≤ x ≤ π/2. Limit your analysis to the first order.

b) From the formula for the first-order approximation, find a condition for a and b when
the solution exists. (Since this condition is found from an approximate solution, it is also
approximate.)

c) Plot both sides of equation (6.8) for a = 0.8, b = 0.1. Explain the condition on a and b that
you found in task 4b.

Solution

a) We apply the inverse sine to get an MSA iterative scheme:

xn+1 = sin−1(a + bxn). (6.9)

In the zero-order approximation, x0 = sin−1 a. Then

x1 = sin−1(a + b sin−1 a). (6.10)

b) This solution exists if the argument of sin−1 does not exceed 1. This yields

a + b sin−1 a ≤ 1. (6.11)

c) The plots are shown in figure 6.1. For small b the straight line is approximately horizontal.
The solution exists if the straight line crosses the plot of the sine function below the maximum,
which the sine function has at x = π/2. This means that

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.2

0.4

0.6

0.8

1.0

sin
x;

a
+

bx

Figure 6.1
Plots of sin x and a + bx
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a + b
π

2
≤ 1. (6.12)

Consider now the maximum value of a for which a solution exists. Since b is small, we must
have a ≈ 1 in this case. Then sin−1 a ≈ sin−1 1 = π/2, and in inequality (6.11) we can replace
sin−1 a with π/2 to get inequality (6.12).

5. Problem

A radar measures a range (distance) to the object it is tracking. Assume there are two radars that
detect a sea vessel at ranges R1 and R2. Respective coordinates of the radars are x1 = 0; y1 = 0
and x2 = D; y2 = 0 (see figure 6.2). Section A.25 computes the coordinates of a sea vessel that
is detected by the radars:

x =
D2 + R2

1 − R2
2

2D
,

y = ±
√

R2
1 − x2.

(6.13)

Though never mentioned explicitly, the solution in section A.25 assumes that Earth is flat. This is
an approximation. Using dimensional analysis, specify a relevant small parameter or parameters
for this approximation to be valid.

Solution

x

y
(x, y)

R1

D

R2

(0,0) (D, 0)

Figure 6.2
Approximations for detecting a vessel by two radars
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For this solution to be valid, variables D,R1, and R2 must be small compared to the Earth radius.

6. Problem

You are presented with the following equation for x:

e−x = tan x. (6.14)

Assume that x ≫ 1.

a) Plot both sides of this equation. How many solutions does it have?

b) Using a zero-order approximation e−x ≈ 0, isolate three different solutions x = nπ, where
n = 1, 2, and 5, and compute first-order approximations for these three solutions. How do
they differ from the zero-order approximations? Is there a pattern? If yes, why?

Solution

a) Plots are shown in figure 6.3. This equation has infinitely many solutions.

b) Since the exponent e−x is small for x ≫ 1, we can use condition tan x0 = 0 for a zero-order
approximation. This yields x0 = πn, where n = 1, 2, 3, . . .. The first-order approximation will
then be given by

x1 = πn + tan−1 e−πn. (6.15)

The values for zero and first-order approximations are presented in table 6.2.

Table 6.2
Solutions of e−x = tan x

n Zero order First order

1 3.141592653589793 3.184779702114575
2 6.283185307179586 6.285052747740495
5 15.707963267948966 15.707963418650692

We see that the difference between the zero and the first-order approximation becomes smaller
for larger values of n. The reason for this is that for large n the exponent e−x is very small,
and the zero-order approximation is already very close to the exact solution. The first-order
approximation modifies it only slightly.

7*. Problem

In this problem, you are again dealing with equation

e−x = tan x. (6.16)

Now we assume that x < 0 and |x| ≫ 1.

a) Plot both sides of this equation. How many solutions does it have?



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 30, 2022 1:50am

Successive Approximations 143

b) Select one solution and find its approximate value using the MSA. (Hint: You need to
transform the original equation so that you can again use the exponent in lieu of a small
parameter.)

Solution

a) Plots are shown in figure 6.4. There are infinitely many solutions.

b) We see from the plot that values of the exponent are large (in contrast to exercise 6). This
means that we cannot use e−x as a small parameter. However, we can rewrite equation (6.16) as

ex = cot x. (6.17)

Now for x < 0 and |x| ≫ 1 we have ex ≪ 1, which can be used as a small parameter. Then the
zero-order approximation is

x0 = cot−1 0 + πn =
π

2
+ πn. (6.18)

Successive approximations are obtained using

xm+1 = cot−1 exm + πn (6.19)

We use cot−1 x = π/2 − tan−1 x to get:

xm+1 =
π

2
+ πn − tan−1 exm , (6.20)
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Figure 6.3
Plots of e−x and tan x for x > 0
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where we have n < 0. For example, if we select n = −3 we get

x0 = −7.853981633974483,

x1 = −7.854369837158909,

x2 = −7.854369686486459.

(6.21)

This solution quickly converges.

8. Problem

Problem 23 in chapter 4 introduced the Lennard–Jones model for atom interaction. It describes
the force between two neutral atoms:

F(r) =
24ϵ
σ

(
2
(
σ

r

)13
−

(
σ

r

)7
)
, (6.22)

where r is the distance between the atoms and σ, ϵ are positive parameters. A positive value for
the force means that it is repulsive and a negative value means it is attractive.

At large distances the magnitude of both terms becomes small, which means that the at-
traction force is weak. In that case, an atom on the surface of a liquid can break away from
the surface because it is no longer constrained by the attraction force from other atoms. This
process is known as evaporation.
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Figure 6.4
Plots of e−x and tan x for x < 0
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a) Observe that both terms in the Lennard–Jones model exhibit power law scaling. Which
term has a smaller magnitude for large values of r?

b) Assume that an atom has a high chance of leaving the surface of a liquid if F(r) ≥
−0.24ϵ/σ. Leverage the small value of one of the terms to find distances r at which this
condition is true.

Solution

a) The higher-order term will be small for large r:

2
(
σ

r

)13
≪

(
σ

r

)7
. (6.23)

b) Condition F(r) ≥ −0.24ϵ/σ leads to

−2
(
σ

r

)13
+

(
σ

r

)7
≤ d, (6.24)

where d = 0.01. We seek the smallest r that satisfies this inequality, which corresponds to the
equal sign there. We denote ρ = σ/r. If the higher-order term is small, we can use it as a small
parameter. Then the iterative scheme is obtained by solving for ρ in the lower-order term:

ρn+1 =
7
√

d + 2ρ13
n . (6.25)

For the zero-order approximation we select ρ0 =
7√d ≈ 0.517947. Then ρ1 ≈ 0.520758. This

yields

r =
σ

ρ
≈ 1.920σ. (6.26)

Atoms will have a high chance leaving the surface of the liquid if r is equal or exceeds this
value.

9. Problem

Among other requirements, a driverless car must quickly respond to emergency vehicles’ sirens.
In a driving range test, a siren is transmitted starting exactly at time ts = 0 from a point with
coordinates xs, ys. A test vehicle is moving in a circular loop. Its coordinates xv, yv are given by

xv(t) = R cos
Vt
R
,

yv(t) = R sin
Vt
R
,

(6.27)

where R is the radius of the circular loop and V is the vehicle speed. To measure the latency
of the vehicle’s response, we need to compute the time T of the signal’s arrival at the vehicle
location. This time is delayed from ts = 0 by the time needed for the sound to travel from the
signal source to the vehicle. If the speed of sound is Vs, the signal travel time is given by

T =
1
Vs

√
(xs − xv(T ))2 + (ys − yv(T ))2. (6.28)
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Substitution of xv(T ), yv(T ) yields an equation for the time of the arrival of the signal:

T =
1
Vs

√(
xs − R cos

VT
R

)2

+

(
ys − R sin

VT
R

)2

. (6.29)

This is a transcendental equation for T that cannot be solved by conventional methods. With this
mathematical model in hand, do the following (note that cars do not drive close to supersonic
speeds, and therefore V ≪ Vs):

a) Using the MSA, produce formulas for the zero-order (which corresponds to Vs → ∞),
first-order, and second-order approximations for T .

b) Compute numerical values for the first- and second-order approximations using R = 100
m, Vs = 340 m/s, V = 20 m/s, and for the following two cases:

i. xs = 300 m; ys = 100 m

ii. xs = 100 m; ys = 300 m

c) What is the difference between the first- and second-order approximations for each location
of the signal source? For one location, the first- and second-order approximations are closer
than for the other location. Why?

Solution

a) In the limit Vs → ∞ equation (6.29) produces T0 = 0 for the zero-order approximation. The
next two approximations are

T1 =
1
Vs

√
(xs − R)2 + y2

s ,

T2 =
1
Vs

√(
xs − R cos

VT1

R

)2

+

(
ys − R sin

VT1

R

)2

,

(6.30)

b) The first two approximations for the two scenarios are as follows:

i. T1 = 0.657667 s,T2 = 0.643676 s.

ii. T1 = 0.882353 s,T2 = 0.830731 s.

c) The difference between the first and the second-order approximations is T1 − T2 ≈ 0.014
s for case i, and is ≈ 0.052 s for case ii, which points to a slower convergence for case ii. The
reason for this is that in that second case the car moves roughly in the direction to the signal
source, and any error in the position of the car will strongly affect the time of signal arrival. In
case i the car moves in the direction, which is nearly perpendicular to the direction to the signal
source, and an error in the car position has a smaller effect.

10. Problem

This problem shows that a wrong application of the MSA may produce a diverging solution.
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In chapter 7 we consider rare random events. In particular, we deal with the following formula
for the probability of rare random events (see equation (7.11∗) in section 7.6):

P̃n(x) ≈
σ

(x − µ)
√

2π
e−

(x−µ)2

2σ2 . (6.31)

If the events in question are rare, the probability of their occurrence is small: P̃n(x) ≪ 1. For
brevity, we denote y = (x − µ)/σ to get

P̃n(y) ≈
1

y
√

2π
e−

y2
2 . (6.32)

For many applications, it is important to solve the last equation for y. Assume probability P̃n =

10−7, which corresponds to truly rare events.

a) Rewrite equation (6.32) as

y =
1

P̃n
√

2π
e−

y2
2 . (6.33)

Compute three MSA iterations using y0 = 5.

b) Solving for y in the exponent of equation (6.32) produces

y =
√
−2

(
ln

(√
2πP̃n

)
+ ln y

)
. (6.34)

Compute three MSA iterations using y0 = 5.

c) Which approach converges, and which does not?

Solution

a) For approach a we have

y0 = 5,

y1 = 14.867195,

y2 = 4.0188076 · 10−42,

y3 = 3989422.8.

(6.35)

b) For approach b we have

y0 = 5,

y1 = 5.2133903,

y2 = 5.2053678,

y3 = 5.2056636.

(6.36)

c) We see that approach b converges and approach a does not.
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11. Problem

Solve the following equation for t, assuming that ω is a large parameter (rather than small):

ω(t − t0) = A sin( f t). (6.37)

Obtain analytical formulas for the zero- and first-order approximations.

Solution

To have a small parameter, we rewrite equation (6.37) as

t = t0 +
A
ω

sin( f t). (6.38)

The zero-order approximation t = t0 corresponds to ω → ∞. For the first-order approximation
we have

t1 = t0 +
A
ω

sin( f t0). (6.39)

12. Problem

The equation for x below is a combination of the equations for the sum of trigonometric func-
tions (see section A.13) and for the product of two linear expressions (see section A.7):

f sin x + g cos x = c(x − a)(x − b). (6.40)

Find analytical expressions for the zero- and first-order approximations for x for two cases:

a) Parameter c is small.

b) Parameter c is large.

c) If you roughly follow the MSA implementation in section 6.4 for the case of large values
of c, the solution will break down if a ≈ b. Provide a solution that is valid even if a ≈ b.

Solution

a) We use the derivation in section A.13 to solve for x in the left-hand side of equation (6.40):

x = − tan−1 g
f
+ (−1)n sin−1

 c(x − a)(x − b)√
f 2 + g2

 + πn. (6.41)

In the zero-order approximation for small values of c we have:

x0 = − tan−1 g
f
+ πn. (6.42)

The first-order approximation is given by

x1 = − tan−1 g
f
+ (−1)n sin−1

 c(x0 − a)(x0 − b)√
f 2 + g2

 + πn. (6.43)
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b) If c is large we can use 1/c as a small parameter. We rewrite equation (6.40) as

(x − a)(x − b) =
1
c

( f sin x + g cos x). (6.44)

One way to apply the MSA here is to follow the derivation in section 6.4. We consider a solution
that is close to a and construct successive approximations:

xn+1 = a +
f sin xn + g cos xn

c(xn − b)
. (6.45)

There is also a solution that is closed to b; it is obtained similarly.

c) Another way to solve for x is to view equation (6.44) as a quadratic equation. We expand
the parentheses in the left-hand side and group the terms to get:

x2 − x(a + b) + ab −
1
c

( f sin x + g cos x) = 0. (6.46)

Two solutions of this equation are given by

x(1,2) =

(a + b) ±

√
(a − b)2 +

4
c

( f sin x + g cos x)

2
. (6.47)

This produces the following MSA scheme:

x(1,2)
n+1 =

(a + b) ±

√
(a − b)2 +

4
c

( f sin x(1,2)
n + g cos x(1,2)

n )

2
. (6.48)

13. Problem

You are given the following equation:

sin e−x = sin x. (6.49)

a) How many solutions does it have?

b) Select a solution with x ≫ 1 and compute the zero- and first-order approximations for x.

Solution

a) Equation (6.49) is equivalent to

e−x = (−1)n x + πn, (6.50)

where n is an integer. If we plot y = e−x and the family of lines y = (−1)n x + πn for different
values of n, we’ll see that the exponent and the straight lines intersect at infinite number of
points. Therefore, this equation has infinitely many solutions.

b) For x ≫ 1 the exponent is small, and we must have (−1)n x ≈ −πn. We select x = 4π as the
zero-order approximation (this corresponds to n = −4). Then the first order approximaion is
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x1 = e−x0 + 4π. (6.51)

The numerical values are: x0 = 12.566370614359172, x1 = 12.566374101701529.

14. Problem

The Lotka–Volterra equations describe the dynamics for two species, a prey (for example, rab-
bits) and a predator (for example, foxes). These equations have a stationary point, when the
numbers of the prey animals and of the predators are constant, that is, do not vary over time. It
is achieved when the decrease in the number of each species (for example, because of restricted
food supply or being eaten by predators) is perfectly balanced with births. The stationary equa-
tions are

x(α − βy) = 0,

−y(γ − δx) = 0,
(6.52)

where x is the number of prey, y is the number of predators, and α, β, γ, and δ are constants. In
this model, the equilibrium is given by the solution of the above equations:1

y =
α

β
,

x =
γ

δ
.

(6.53)

A researcher has come up with a more accurate version of the Lotka–Volterra equations, which
modifies the stationary conditions as follows:

x(α − βy) + ϵx2y2 = 0,

−y(γ − δx) + ϵx2y2 = 0.
(6.54)

For these modified stationary equations, find solutions for x and y, assuming that ϵ is small:

a) Use solution (6.53) as the zero-order approximation in the first equation of (6.54) to get
the first-order approximation for y. Then use the zero-order approximation for x and the
first-order approximation for y in the second equation of (6.54) to get the first-order ap-
proximation for x.

b) Use the zero-order approximation for x and y in both equations (6.54) simultaneously to
get the first-order approximation for both variables.

c) Use α = 1, β = 2, γ = 3, δ = 4, and ϵ = 10−2 to compute two different versions of
first-order approximations, as explained in items 14a and 14b above.

1. The second stationary point is given by x = 0; y = 0. Zero numbers for both species at some time moment
would obviously remain zero in the future, also making this solution stationary.
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d) Substitute the numerical values in equations (6.54) and determine which method yields
better accuracy for the first-order approximation.

Solution

a) For the nontrivial solution we get from the first equation in (6.54):

y =
α

β
+
ϵ

β
xy2. (6.55)

We substitute the zero-order approximation (6.53) in the right-hand side to get the first-order
approximation:

y1 =
α

β
+ ϵ
γ

δ

α2

β3 . (6.56)

From the second equation (6.54) we get:

x =
γ

δ
−
ϵ

δ
yx2. (6.57)

In the right-hand side we substitute the zero-order approximation for x and the first-order ap-
proximation for y to get the first-order approximation for x:

x1 =
γ

δ
− ϵ
γ2

δ3

(
α

β
+ ϵ
γ

δ

α2

β3

)
. (6.58)

b) We again use equations (6.55) and (6.57), but this time we substitute the zero-order approx-
imations given by equations (6.53) into their right-hand sides to get

ỹ1 =
α

β
+ ϵ
γ

δ

α2

β3 ,

x̃1 =
γ

δ
− ϵ
γ2

δ3

α

β
.

(6.59)

c) Numerical values for x1, y1 for both methods are listed in table 6.3.
d) Values of y1 and ỹ1 are identical: y1 = ỹ1 = 0.5009375. This is not surprising, because both
are obtained using the zero-order approximation for x and y. Values of x1 and x̃1 differ slightly,
because the former was obtained using y1 and the latter used ỹ0. Indeed, if we look at equations
(6.56), (6.58), and (6.59) we will see that y1 = ỹ1, but the expression for x1 differs from that
for x̃1 by a term ∼ ϵ2. Since y1 is obtained using y0 and x1, it is essentially a mix of a first-
and second-order approximations. Generally, mixing approximations of different orders does
not necessarily improve the accuracy of the solution. We substitute values of the two sets of first
order approximations back in equations (6.54) and introduce new notations for the error from
applying the first-order approximations:

dy =x1(α − βy1) + ϵx2
1y2

1,

dx = − y1(γ − δx1) + ϵx2
1y2

1.
(6.60)

Values of errors dx, dy are also listed in table 6.3 for both methods of computing the first-order
approximation.
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Table 6.3
Results for solutions of the Lotka–Volterra equations

Variable First method Second method
(tilded variables)

x1 0.74929556 0.749296875
y1 0.5009375 0.5009375
dy 3.94888 · 10−6 3.9513656 · 10−6

dx −2.6503329 · 10−6 −3.7125163 · 10−9

We see that even though y1 is obtained using a better estimate x1 (as compared to ỹ1 that uses
x0), it does not produce lower errors when substituted back in modified Lotka-Volterra equations
(6.54).

15. Problem

In section 2.4 we investigated limiting cases for the quadratic equation

ax2 + bx + c = 0. (6.61)

We have determined that for c → 0 one of the roots approaches zero. Present this equation in
the form:

x = −
c

ax + b
. (6.62)

a) Use a = 1, b = 2, and c = 10−2 and compute numerical values for MSA approximations of
the orders 1 through 5. Use x0 = 0 as the zero-order approximation.

b) Compute the exact value of x using the quadratic formula.

c) Compute the error in each of the approximations and plot it versus the approximation order
number using the logarithmic scale for the vertical axis.

d) How does this error scale with the order number?

e) Section 6.5 presented a different way to solve the quadratic equation using the MSA. Use
equations (6.27∗) to compute the numerical values for the first three approximations, and
compare the results with those you obtained from applying MSA iterations to equation
(6.62).

Solution

a) Values for xn are given in table 6.4.

b) The quadratic formula yields xe = −0.005012562893380035 for this root.

c) A plot of the error |xn − xe| versus the approximation order is shown in figure 6.5 using
circles.

d) The error scales exponentially with the order of approximation.
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Table 6.4
Approximations for a root of a quadratic equation (small c)

Approximation order n xn

0 0
1 -0.005
2 -0.005012531328320802
3 -0.005012562814070352
4 -0.005012562893180773
5 -0.005012562893379545

e) Section 6.5 uses the following scheme to approximate the same root:

xn+1 = −
c + ax2

n

b
. (6.63)

Errors from this method of computing successive approximations are shown in the same fig-
ure 6.5 using stars. In both cases, the error decreases exponentially as a function of n, but the
convergence for equation (6.62) is a bit faster.

16. Problem
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Figure 6.5
Errors for MSA iterations for equation (6.62) (circles) and for the method presented in section 6.5
(stars)



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 30, 2022 1:50am

154 Chapter 6

We again solve the quadratic equation:

ax2 + bx + c = 0. (6.64)

Rewrite this quadratic equation as

x = −
ax2 + c

b
. (6.65)

a) Use the quadratic formula to obtain both exact solutions for x when c = 2, b = 1, and
a = 10−3. Note that this case is different from the one we have investigated in section 6.5
and in exercise 15: we now assume a to be small instead of c.

b) Use x0 = 0 and compute the first three approximations. Do they approach the exact solu-
tion?

c) Set x0 = −103, which happens to be close to the other exact solution. Compute the first- and
second-order approximations. Why do they not approach the exact solution, even though
x2 in the right-hand side is multiplied by a small parameter?

Solution

a) The exact (to within computation accuracy) solutions of this quadratic equation are x(1) =

−2.004016080450699 and x(2) = −997.9959839195493.

b) Values for x(1)
n are given in table 6.5.

Table 6.5
Approximations for a root of a quadratic equation (small a)

Approximation order n x(1)
n

0 0
1 -2.0
2 -2.004
3 -2.004016016

We see that the solution converges to the exact value.

c) Values for the second root are given in table 6.6.

This solution does not converge to the exact value x(2) = −997.9959839195493. With every next
iteration, the gap between the estimate and the exact value widens. The reason for this is that the
value of x is large enough to cancel the benefit of having a small multiplier a in the expression
ax2 in equation (6.65).



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 30, 2022 1:50am

Table 6.6
Approximations for the second root of a quadratic equation (small a)

Approximation order n x(2)
n

0 -1000.0
1 -1002.0
2 -1006.004

17. Problem

In section 6.1 we observed that the MSA works for the Achilles and the tortoise problem only if∣∣∣∣ VT
VA

∣∣∣∣ < 1. Reconcile this inequality with the criterion for MSA convergence that we formulated
in section 6.3.

Solution

Section 6.1 shows that successive approximations for this problem are given by truncating the
sum in the right-hand side of the following series:

T =
D0

VA

1 + VT

VA
+

(
VT

VA

)2

+

(
VT

VA

)3

+ . . .

 . (6.66)

The recursive scheme of getting Tn+1 from Tn is then given by

Tn+1 =
D0

VA
+ Tn

VT

VA
. (6.67)

This defines Tn+1 as a function of Tn. This function is linear, and its slope is VT /VA. According
to the convergence criterion in 6.3, such an MSA scheme converges if the slope is less than 1,
that is, VT /VA < 1.


