MAIZE GENETICS COOPERATION

NEWSLETTER

75

August 15, 2001

Department of Agronomy

and
U.S. Department of Agriculture

University of Missouri
Columbia, Missouri

The Maize Genetics Executive Committee

Jeff Bennetzen, Chair, Class of 2006
Ron Phillips, Class of 2006
Mike Freeling, Class of 2002
Pat Schnable, Class of 2002
Sarah Hake, Class of 2003
Virginia Walbot, Class of 2003
Vicki Chandler, Class of 2004
Ed Coe, Class of 2004
Jim Birchler, Class of 2005
Sue Wessler, Class of 2005

Year 2002 Maize Genetics Conference Steering Committee

Sarah Hake, Co-Chair
Sue Wessler, Co-Chair
Christine Chase, Local Organizer
Gunther Feix
David Jackson
Robert Meeley
Pat Schnable
Lynn Senior
Torbert Rocheford
Dave Weber
Ex Officio
Karen Cone, Treasurer
Mary Polacco
Marty Sachs

Table of Contents i
Selected Web Sites iv
The Maize Genetics Executive Committee V
Progress Toward Sequencing The Maize Genome vii
I. FOREWORD 1
II. REPORTS FROM COOPERATORS 2
ALBANY, CALIFORNIA
Some observations on the grassy tillers (gt1) mutant --Colasanti, J 2
AMES, IOWA
Information from Castle-Wright experiment --Simic, D, Hallauer, AR 3
BEIJING, CHINA
A mutant for sh2 kernel type from high Space induced --Zeng, M, Yang, T 4
BERGAMO, ITALY
Phylogenetic analysis reveals that a maize member of the MSI/RbAp sub-family of WD-repeat proteins clusters in an evolutionary separate group --Lanzanova, C, Locatelli, S, Hartings, H, Rossi, V 4
Maize Rpd3-type histone deacetylase interacts with maize retinoblastoma-related protein --Locatelli, S, Lanzanova, C, Motto, M, Rossi, V 5
BIHAR, INDIA
Gene action for knob number in corn --Mandal, SS, Akhtar, SA5
Knob in relation to altitude --Mandal, SS, Akhtar, SA, Sinha, NK, Srivastava, M 5
Membrane permeability as a marker of low temperature resistance in maize --Sinha, NK, Mandal, SS, Handoo, JK, Srivastava, AK 6
BROOKINGS, SOUTH DAKOTA
Allelism of chromosome 2 endosperm mutants --Whalen, RH 6
BUFFALO, NEW YORK AND LONDON, ONTARIO, CANADA AND TAIPEI, TAIWAN, REPUBLIC OF CHINA
3D visualization of stem by MRI technology --Cheng, P-C, Chen, J-H, Lin, C-P, Sun, C-K, Walden, DB, Cheng, WY 6
BUFFALO, NEW YORK AND LONDON, ONTARIO, CANADA AND TAIPEI, TAIWAN, REPUBLIC OF CHINA AND MELBOURNE, AUSTRALIA
Stem development in na1/na1 and na2/na2 --Cheng, WY, Cheng, P-c, Gu, M, Gan, X, Chung, H-W, Walden, DB 6
CHESTNUT HILL, MASSACHUSETTS
Transposable element in maize anther culture-derived microspore-plants and their progenies --Ting, YC, Tran, L 9
Conditional expression of maize vegetative cloning gene --Ting, YC, Tran, L 9
CHISINAU (KISHINEV), MOLDOVA
Maize productivity: an example of non-allelic interaction --Chernov, AA, Mihailov, ME 9
Male gametophyte viability of waxy maize in conditions of low temperature --Kravchenko, OA, Kravchenko, AN 10
Studying some features of maize genetics and developmental biology using electrophysiological techniques --Lysikov, VN. 10
Influence of selection of haploid sporophyte on reaction of diploid maize population exposed to γ-irradiation --Rotarenco, VA, Chalyk, ST 14
The influence of post-radiation treatments on genetic processes and mutation frequency --lkhim, YG15
Digenic control of lemon colour of aleurone in maize grains --Mihailov, ME, Chernov, AA. 16
COLUMBIA, MISSOURI
Fast, simple, inexpensive, safe and reliable method to prepare maize samples for PCR --Carson, CB, Coe, EH, Jr. 16
Mapping the leaf burn1 mutant --Carson, CB, Robertson, J, Bennett, J, Melia-Hancock, S, Coe, EH, Jr. 17
COLUMBIA, MISSOURI AND URBANA, ILLINOIS
Genetic mapping of zebra3 --Rugen, M., Stinard, PS, Cone, KC17
COLUMBUS, OHIO
The C-terminal domain of the maize P1 gene has a putative activation domain --Smialek, JL, Hernandez, JM, Grotewold, E. 18
CORVALLIS, OREGON
Evolution of new targeting specificity in duplicate genes for tetrapyrrole biosynthesis --Williams, P, Hardeman, K, Rivin, CJ 18
FORT COLLINS, COLORADO
Recombination frequency for maize inbred line KYS using recombination nodules --Anderson, LK, Stack, SM 20
Synaptonemal complex karyotype for maize --Anderson, LK, Stack, SM 20
HAMBURG, GERMANY
Identification of genes induced during early kernel development in Zea mays (L.) --Lorbiecke, R, Kukula, J, Paul, C, Wienand, U 20
Small transposable elements isolated from transcripts of the intensifier alleles in and In-D --Pusch, I, Herrmann, M, Hoogvliet, O, Prause, A, Scheffler, B, Lorbiecke, R, Wienand, U 21
Characterisation of ZmKCS-1 and ZmKCS-2, two β-ketoacyl-CoA-synthases from maize, possibly involved in seedling wax biosynthesis --Frenzel, K, Janke, SA, Brettschneider, R, da Costa e Silva, O, Wienand, U 21
The Etched1 gene product of Zea mays contains a zinc ribbon-like domain and is homologous to the eucaryotic transcription elongation factor TFIIS --da Costa e Silva, O, Garg, P, Wassmann, M, Lorbiecke, R, Lauert, P, Peters, U, Scanlon, M, Hsia, A-P, Wienand, U. 21
IRKUTSK, RUSSIA
The study of cold shock protein CSP 310 function in maize mitochondria --Grabelnych, OI, Pobezhimova, TP, Kolesnichenko, AV Voinikov, VK 21
An influence of cold stress on temperature of maize shoots --Kolesnichenko, AV, Pobezhimova, TP, Grabelnych, OI, Tourchaninova, VV, Voinikov, VK 22
The study of an influence of cold stress on lipid peroxidation at different mitochondrial respiratory chain complexes function in maize mitochondria --Kolesnichenko, AV, Zykova, VV, Grabelnych, OI, Tourchaninova, VV, Voinikov, VK 23
The effect of redox conditions on transcriptional activity in isolated mitochondria --Konstantinov, YM, Subota, IY, Tarasenko, VI, Arziev, AS 23
Appearance of HSPs immunochemically related to α-crystallin at the temperature close to optimum in the absence of dehydration in crops --Korotaeva, NE, Borovskii, GB, Voinikov, VK 24
Mitochondrial low-molecular-weight heat shock proteins and tolerance of crop plant's mitochondria to hyperthermia --Korotaeva, NE, Antipina, AI, Grabelnych, OI, Varakina, NN, Borovskii, GB, Voinikov, VK 25
Localization of low-molecular-weight heat shock proteins in cell compartments of maize, wheat and rye --Korotaeva, NE, Antipina, AI, Borovskii, GB, Voinikov, VK. 26
The COR-polypeptides of maize, characteristic of cold hardy state, in comparison with those of other cereals --Stupnikova, IV, Borovskii, GB, Voinikov, VK 27
Dehydrin-like-proteins in maize mitochondria after cold adaptation, freezing, drought and ABA treatment --Borovskii, GB, Stupnikova, IV, Antipina, AI, Vladimirova, SV, Voinikov, VK 28
ABA-induction of cold hardy state and heat stable COR-proteins in maize seedlings and other cereals --Stupnikova, IV, Borovskii, GB, Voinikov, VK 29
IRKUTSK, RUSSIA AND MOSCOW, RUSSIA AND OSLO, NORWAY
Mitochondrial DNA topoisomerase I is involved in in organello RNA synthesis --Konstantinov, YM, Subota, IY, Tarasenko, VI, Grokhovsky, SL, Zhuze, AL 30
JOHNSTON, IOWA
New male-sterile mutant allele of Ms22 --Trimnell, MR, Fox, TW, Albertsen, MC 31
A set of microsatellite markers of general utility in maize --Register, JC, III, Sullivan, HR, Yun, Y, Cook, D, Vaske, DA 31
The shredded leaf mutation, shr1, maps near the centromere on chromosome 5 --Fox, TW, Trimnell, MR, Albertsen, MC 34
JUIZ DE FORA-MG, BRAZIL AND VIÇOSA-MG, BRAZIL
Relationship between chromosome breaks and knob heterochromatin in maize meristematic cells resulting from irradiated pollen --Viccini, LF, de Carvalho, CR 34
KÖLN, GERMANY
The expression pattern of Lipid Transfer Protein 2 (LTP2) gene indicates regionalisation in the proembryo and confirms the coleoptile to be in lineage with the scutellum --Bommert P, Werr W 35
LLAVALLOL, ARGENTINA
Relationships between Zea mays ssp. mays and Zea mays ssp. parviglumis by genomic in situ hybridization (GISH) --Gonzalez, G,Confalonieri, V, Comas, C, Naranjo, CA, Poggio, L.36
Postharvest mycoflora associated with kernels of flint maize native Argentinian populations --Astiz Gassó, MM, Aulicino, MB, Lori, G 36
LOMAS DE ZAMORA, ARGENTINA
Stability analysis for yield and expansion volume in popcorn hybrids --Burak, R, Broccoli, AM 37
Genetic and environmental correlations between yield components and popping expansion in popcorn hybrids --Burak, R, Broccoli, AM 38
MANHATTAN, KANSAS
A modified set of Rp differential lines --Hulbert, SH, Webb, CA, Smith, SM 40
MANHATTAN, KANSAS AND WOOSTER, OHIO
Fine structure mapping of wsm2 in maize --Webb, CA, Jones, MW, Hulbert, SH, Louie, R. 41
MUNCHEN, GERMANY
The plastid chromosome of maize (Zea mays): Update of the complete sequence and transcript editing sites --Tillich, M,Schmitz-Linneweber, C, Herrmann, RG, Maier, RM42
NEW DELHI, INDIA
Analysis of genetic diversity in selected Indian maize inbreds using microsatellite markers --Pushpavalli, SNCVL, Sudan, C, Mohammadi, SA, Nair, SK, Singh, NN, Prasanna, BM 44
Analysis of genetic polymorphism among downy mildew resistant and susceptible maize inbred lines using Simple Sequence Repeat (SSR) markers --Yen, TTO, Prasanna, BM 45
NEW DELHI, INDIA AND MANDYA, KARNATAKA, INDIA AND UDAIPUR, RAJASTHAN, INDIA
Towards molecular marker mapping of genes conferring resistance to sorghum downy mildew (Peronosclerospora sorghi) in maize --Nair, SK, Setty, TA, Rathore, RS, Kumar, R, Singh, NN, Prasanna, BM. 47
NEW DELHI, INDIA AND MANDYA, KARNATAKA, INDIA AND UDAIPUR, RAJASTHAN, INDIA AND BANGKOK, THAILAND
Inheritance of resistance to sorghum downy mildew (Peronosclerospora sorghi) and Rajasthan downy mildew (P. heteropogoni) in maize in India --Yen, TTO, Rathore, RS, Setty, TA, Kumar, R, Singh, NN, Vasal, SK, Prasanna, BM 48
NOVI SAD, YUGOSLAVIA
Effect of recurrent selection for increased oil content in maize (Zea mays L.) --Bocanski, J, Petrovic, Z 49
NOVOSIBIRSK, RUSSIA AND ST. PETERSBURG, RUSSIA
The effect of pollinator on kernel weight in pseudogamous apomictic corn-gamagrass hybrids --Khatypova, IV, Naumova, TN, Sokolov, VA 50
PASCANI, REPUBLIC OF MOLDOVA
Transposable genetic elements as factors establishing novel regulatory links: models explaining experimental data --Koterniak VV. 50
Further studies of maize lines exhibiting change of state for components of the Bg -rbg system of transposable elements --Koterniak, VV 51
PIACENZA, ITALY
Chloroplast morphology, pigment content and fluorescence parameters in virescent mutants --Marocco, A 53
SAINT PAUL, MINNESOTA
Oat-maize chromosome manipulation for the physical mapping of maize sequences --Kynast, RG, Okagaki, RJ, Odland, WE,
Stec, A, Russell, CD, Zaia, H, Livingston, SM, Rines, HW, Phillips, RL 54
SARATOV, RUSSIA
In vivo and in vitro endospermogenesis in parthenogenetical maize lines --Alatortseva, TA, Tyrnov, VS 55
Reproduction of haploid and diploid maize forms in vitro --Alatortseva, TA, Tyrnov, VS. 56
Estimation of parthenogenesis frequency on the grounds of genetical and embryological data --Tyrnov, VS, Smolkina, YV, Titovets, VV 56
Change of quantitative traits of androgenic maize plants --Zavalishina, AN, Tyrnov, VS, Nekrasov, AM. 57
SIMNIC - CRAIOVA, ROMANIA
Modifications in the amino acid content of callus obtained from immature maize embryos under stress conditions --Urechean, V , Naidin, C 58
Metabolic modifications of the reserve substances from the mature maize embryos exposed to in vitro culture conditions --Urechean, V, Naidin, C 58
SOFIA, BULGARIA
In vitro colchicine - mediated doubling of corn maternal haploids --Nedev, T, Gadeva, P, Krapchev, B, Kruleva, M 59
TAICHUNG, TAIWAN
A novel structure of the B-10 chromosome of TB-10L6 --Cheng, Y-M, Lin, B-Y60
Mutual mapping of RFLPs and $33 \mathrm{~B}-10 \mathrm{~L}$ translocations --Cheng, Y-M, Lin, B-Y 61
Cytological 10 L breakpoint of B-10L translocations --Cheng, Y-M, Lin, B-Y. 61
TAIPEI, TAIWAN, REPUBLIC OF CHINA AND BUFFALO, NEW YORK
Optical density of leaf --Lin, B-L, Cheng, P-c, Sun, C-K 61
TALLAHASSEE, FLORIDA
Tom Thumb, a useful popcorn --Bass, HW, Kang, LC, Eyzaguirre, A62
Variable distribution of meiotic homologs --Bass, HW, Bordoli, SJ 63
TIFTON, GEORGIA AND NAMPA, IDAHO
Quantitative effects of loci p1 and a1 on the concentrations of maysin, apimaysin, methoxymaysin, and chlorogenic acid in maize silk tissue --Guo, BZ, Zhang, ZJ, Butron, A, Widstrom, NW, Snook, ME, Lynch, RE, Plaisted, D 64
URBANA, ILLINOIS
Allelism testing of miscellaneous stocks in Maize COOP phenotype only collection --Jackson, JD. 66
Additional linkage tests of non-waxy (Waxy1) reciprocal translocations involving chromosome 9 at the MGCSC --Jackson, JD, Stinard, P, Zimmerman, S 67
Additional linkage tests of waxy1 marked reciprocal translocations at the MGCSC --Jackson, JD, Stinard, P, Zimmerman, S. 68
Preliminary two-point linkage data for inr1 and du1 on 10L --Stinard, P 71
A second R1 allele-specific aleurone color inhibitor, Inr2, is located on 9L --Stinard, P71
VIÇOSA, BRAZIL
Chromomere map of meiotic maize chromosome --Caixeta, ET, Carvalho, CR 72
A male transmissible deficiency induced by B chromosomes in maize --Saraiva, LS, Carvalho, CR 72
WALTHAM, MASSACHUSETTS
Pictorial language for universal communication --Galinat, WC 73
A scenario for one of the teosinte origins of maize --Galinat, WC 77
III. ADDRESS LIST.79
IV. MAIZE GENETICS COOPERATION STOCK CENTER. 108
V. MAIZE GENOME DATABASE 126
VI. SYMBOL INDEX. 128
VII. AUTHOR INDEX 130

Selected Web Sites

Please notify the editors, mn@chaco.agron.missouri.edu if you know of other sites.

MNL vol 55 (1981) - Current.	www.agron.missouri.edu/mnl.html
Arizona Plant Chromatin Project, maize and Arabidopsis; ChromDB	AG.Arizona.Edu/chromatin/chromatin.html
Berkeley Cytogenetics Project.	mcb.berkeley.edu/labs/cande/
BNL Brookhaven National Laboratory. Maps and raw data for BNL map population.	burr.bio.bnl.gov/
CIMMYT International Center for Amelioration of Maize and Wheat	www..cimmyt.mx
CSH Cold Spring Harbor Maize Genome Analysis RFLP STSs pre-submission	clio.cshl.org/maizegenome
CSH MTM Targeted Mutagenesis. Mu induced mutations and sequence insertions	mtm.cshl.org/
CUGI Clemson; BAC clones, libraries, contigs	www.genome.clemson.edu/projects/maize/fpc
Delaware Seed Quality Traits Project Oil QTL and SNP's	genetics.mgh.harvard.edu/goodman/MaizeEST/NSF_abstract.html
EU Map Maize Project	www.lars.bbsrc.ac.uk/cellbiol/devbio/mapmaiz.html
GABI German Plant Genomics - Chilling Tolerance	mips.gst.de/proj/gabi/projects/maize1.htm
Georgia Centromeres Project.	dogwood.botany.uga.edu/maize/centromeres.html
GRIN Germplasm Resources Information Network	www.ars-grin.gov/npgs
Incyte Genomics - RFLP clones formerly available from UMC	www.incyte.com/reagents/index.html
INRA Maize Genome Database	moulon.moulon.inra.frimgd
ISU Maize Genome Project.	maize.math.iastate.edu/isumaize/homepage.html
Long Ashton BBSRC Maize Projects Functional Genomics; Mu knockouts; transgene promoters.	www.cerealsDB.UK.netiindex.htm
MaizeDB integrated maize genome database	www.agron.missouri.edu
Minnesota Maize Project Oat x Maize Radiation Hybrids	www.agro.agri.umn.edu/rp/genome/
Maize Gene Discovery Project.	www-sequence.stanford.edu/group/maize/maize2.html (general description) www.zmdb.iastate.edu (database)
Maize Genetics Cooperation Stock Center	w3.aces.uiuc.edu/maize-coop
Maize Mapping Project	www.cafnr.missouri.edu/mmp
NSF funded Plant Genome Projects	plantgenome.sdsc.edu
NSF Plant Genome Program	www.nst.gov/bio/dbi/dbi_pgr.htm
The Institute for Genome Research TIGR Maize Gene Index	www.tigr.org/tdb/zmgi/
Wisconsin Evolutionary Genomics Project.	www.wisc.edu/genetics/CATG/doebley/index.html brooks.statgen.ncsu.edu/panzea (project site)

The Maize Genetics Executive Committee (MGEC)
Jeff Bennetzen
Department of Biological Sciences
Purdue University
West Lafayette, IN
With the advent of the genomics era and the unparalleled opportunities this provides, it has become apparent that maize genetics has suffered both from a lack of visibility within the life sciences community and from the absence of a community-wide vision for the future of our discipline. In March of 1999, Ed Coe assembled an informal group to discuss the future of maize research and how it might be facilitated. Over a several month period in 1999, this committee polled members of the maize genetics community (defined as subscribers to maize.net or to the Maize Genetics Cooperation Newsletter) for their opinions of the current limitations to pursuing maize genetics research. The poll was conducted informally at meetings and in other conversations. The poll results indicated that deficiencies in maize transformation technology stood out as a limitation to the pursuit of the highest quality maize genetics. A subgroup of the informal committee (Jeff Bennetzen, Vicki Chandler and Pat Schnable) traveled to Washington DC on April 13 of 2000 to meet with the senior staff at NSF that deal with proposals related to plant genetics. Comparable staff at the USDA were also invited, but were unable to attend. As an outcome of these discussions, the guidelines for both the NSF Plant Genome and USDA IFAS programs were changed to include wording that indicated a particular interest of these agencies to receive proposals that addressed improving the efficiency and broadening the germplasm amenable to maize transformation. Several such proposals were received and at least one was funded in 2001.

Earlier, Torbert Rocheford had decided to organize a meeting at Allerton Illinois that would bring together a manageably small group of maize researchers to discuss the past, present, and future of maize genetics. At this Allerton meeting (March 10-12, 1999), and at the Maize Genetics Conference held in Lake Geneva directly afterwards, informal discussions yielded the consensus that a permanent committee should be formed. The charge to this group would be to gather information about the needs and interests of the maize genetics community, and then to communicate this information to interested parties within the industrial, academic, charitable and governmental sectors worldwide. Nearly all discussants agreed that this group should center its activities on issues confronting maize geneticists in the public sector, because the private sector already has its own voice amply supported by lobbyists and other communication organs. The Maize Genetics Executive Committee (MGEC) was chosen as the name for this new permanent committee, and it was decided that it should be elected by a vote of the entire maize genetics community

In accordance with these ideas, nominations and an election were held in May of 2000 for ten positions on the MGEC. The first elected members were Jeff Bennetzen, Jim Birchler, Vicki Chandler, Ed Coe, Mike Freeling, Sarah Hake, Ron Phillips, Pat Schnable, Virginia Walbot, and Sue Wessler. Not surprisingly, because so many of the members of the community are based in the US, no overseas nominee received sufficient votes to join the Committee. Hence, the elected MGEC members asked Jane Langdale to join the Committee to provide an international perspective, and she generously accepted. The MGEC elected Jeff Bennetzen as chair for its first year. We also decided that members should have five-year terms. By random draw, this first set of MGEC members were given positions of 1 to 5 years, so that two member would rotate off of the committee each year. Jeff Bennetzen and Ron Phillips were the first two members to have their seats expire, in 2001. In June of 2001, they were both re-elected, and Jeff Bennetzen was also re-elected chair by the MGEC.

An early activity of the elected MGEC was to assist Ed Coe in his efforts to evaluate the performance of MaizeDB. This process has involved numerous communications between MaizeDB staff and members of the MGEC. In addition, the MGEC conducted a brief survey of opinions about MaizeDB at the 2001 Maize Genetics Conference.

A second activity of the MGEC has been to publicize its existence, both by electronic means and by invited presentations of MGEC members at various meetings. We hope that creating awareness of the MGEC (and its functions) will alert the broader life sciences community to the fact that the maize genetics community is becoming more organized and proactive.

A third activity of the MGEC in its first year was to compose a letter in support of increased funding for individual investigator awards at the USDA CSREES NRI program. This letter was discussed and approved in open forum at the 2001 Maize Genetics Conference, and then sent to numerous Senators and Congresspersons that sit on committees that are involved in the funding of the USDA. Although many replies were received, it is not clear whether these letters had any significant effect.

Within the MGEC, numerous email discussions were generated concerning a vision for the Maize Genetics Community and what steps should be taken to validate this vision. Using our own insights and the results of the earlier informal poll, the MGEC came up with two written statements that were meant to describe highlighted and comprehensive visions for the future of maize genetics. These documents were discussed in open forum of all attendees at the 2001 Maize Genetics Conference. The broader community suggested some revisions to these documents, and the revised documents have been sent to appropriate programs within NSF, the USDA and to the National Corn Growers Association.

Beyond the suggested revisions, a significant contribution by the attendees at the 2001 Maize Genetics Conference was their agreement that sequencing the maize genome is now the highest priority for the maize genetics community. Following this recommendation, the MGEC has undertaken several actions to bring about a Maize Genome Sequencing Project. Progress along these lines will be discussed in another contribution to this year's Maize Genetics Cooperation Newsletter.

For the future, the MGEC hopes to continue its mission to identify both the needs and the opportunities for maize genetics, and to communicate this information to the broadest possible life science community. This community includes scientists, funding sources for scientists, and the end users for the accomplishments of maize genetics, from farmers to consumers. In the next year, the MGEC plans to (1) further pursue efforts to support sequencing the maize genome, (2) conduct a second poll, this time in greater depth and breadth, of the needs of the maize community, and (3) develop a Web presence for the MGEC. This internet face of the MGEC should contain information on the goals, membership, organizational processes and contributions of the MGEC. The MGEC, through its members, is open to (and eager for) suggestions from all members of the maize genetics community about future actions. We hope to provide a dependable and adaptable resource to serve the maize genetics community.

Progress Towards Sequencing the Maize Genome

Jeff Bennetzen
Department of Biological Sciences
Purdue University
West Lafayette, IN

Starting in June of 2000, the Maize Genetics Executive Committee (MGEC) began discussing possible visions for the future of maize genetics. From these discussions, it became clear that the landscape for plant genetics research had changed tremendously in the preceding year, and that the time was now right to support an effort to sequence the maize genome. A strong majority of the MGEC proposed that this should be the highest current priority for maize genetics research.

The MGEC prepared an executive summary and a more detailed document that included a number of outined possible priorities for maize genetics over the next few years. These documents were disseminated electronically to the entire maize genetics community and were also discussed by attendees in an open forum at the 2001 Maize Genetics Meeting. From this feedback, the community voiced its opinion that sequencing the maize genome deserved the highest priority.

A subset of the MGEC, Jeff Bennetzen, Vicki Chandler and Pat Schnable, organized a one-day workshop in St. Louis (July 2, 2001) to discuss how the maize genome might best be sequenced. A grant was funded by NSF to support this meeting. To make the meeting manageable, only 28 scientists were invited. These scientists included experts in maize genome analysis, informatics, and full genome sequencing from the public, private and federal sectors, including overseas representatives. Discussion subjects included the techniques that should be pursued, the availability of sufficient sequencing capacity, how the information would be disseminated, predicted costs, and possible timeframes.

The results of this meeting were the concurrence that sequencing the maize genome is completely feasible, and that the whole project could be accomplished in one to two years at a cost of $\$ 20$ million to $\$ 100$ million. The great variation in possible costs reflects the diversity of techniques that could be pursued and the degree of sequence redundancy that would be generated. At the moment, there is enthusiasm among animal geneticists for producing "drafts" in many projects to sequence higher eukaryotic genomes. Because a draft sequence is at a relatively low redundancy (3 X to 6 X , usually), it is impossible to assemble final sequences that are very long, but most gene sequences are identified. The draft costs less and can be produced more rapidly than a complete sequence. The final costs to finish the sequence can dwarf the cost of the draft.

The most controversial subject at the workshop was the sequencing strategy that should be employed. Most participants felt that a gene-enriched sequencing approach should be pursued initially, thus providing the most important targets at an early time and a relatively low cost. The gene-enrichment technologies discussed included various shotgun approaches based on the low methylation level of maize genes, their low repetition frequency, the lack of stop codons in their coding regions, or the proximity of DNA transposons. Two participants felt that the sequencing of BACs from gene-rich regions would be most appropriate. Several of the industrial participants felt that a full genome shotgun sequence should be employed. In all of these cases, there were questions of whether all genes would be found and of how difficult it would be to assemble this sequence information. All participants agreed that, for an acceptable final result, the sequence must be unambiguously and precisely ordered on the physical and genetic maps of maize. How best to do this, and thus how best to undertake the full genome sequencing process, appeared to require additional studies that could be completed within a few months time.

Bennetzen, Chandler and Schnable produced a summary of the outcomes and proposed next steps from this meeting. This report has been disseminated to federal funding agencies, the National Corn Growers Association and the maize genetics community. Representatives of all three of these groups have voiced their interest in sequencing the maize genome. The National Corn Growers Association has placed sequencing of the maize genome at the top of its priority list for 2001-2002.

The MGEC will continue to monitor and encourage steps towards sequencing the maize genome by the most appropriate method. We hope that this project will initiate in 2002 and be completed within two years of that start date.

I. FOREWORD

In the fall of 2000, Ed Coe convened us to say that he would step down as Editor of the Maize Genetics Cooperation Newsletter. This action ends a 25 year tenure for him in this position. Much has changed in the interim in the way that scientific information is handled. Most genetic organisms now have internet sites that maintain information useful to investigators. The creation of the site for maize, MaizeDB, was also initiated by Dr. Coe. It is a tribute to his intellect and energy that these tasks were maintained with such thoroughness in addition to his scholarly contributions on gene expression, plant development, genetic mapping, organelle genetics and genomics. The maize community is indebted to Dr . Coe for this selfless service and we urge you to convey your gratitude to him at your convenience.

What has not changed is the cooperation in the maize community. The extensive sharing of ideas, stocks and information has set us apart as a group of scientific investigators. Indeed, now with a fusion of genetics and genomics, cooperation is even more important to solve increasingly complex problems. We hope that the "Newsletter" will continue to foster this cooperation.

We remind the readers that contributions to the Newsletter do not constitute formal publications. Citations to them should be accompanied by permission from the authors if at all possible. Notes can be submitted at any time and are entered into MaizeDB. The deadline for the next print copy, volume 76, is January 1, 2002.

We encourage the community to carry studies of general scientific interest to the formal literature. However, there is a great need to share technical tips, protocols, mutant descriptions, map information, ideas and other isolated information useful in the lab and field.

As in the past, Shirley Kowalewski has been responsible for assembly and correcting of the copy. She has performed this task with precision and with good humor.

Mary Polacco
James A. Birchler
Co-editors

ALBANY, CALIFORNIA
Univ. California, and the Plant Gene Expression Center

Some observations on the grassy tillers (gt1) mutant
 --Colasanti, J

The meaning of 'vegetatively totipotent': Maize plants that are homozygous for the grassy tillers mutation (gt1) exhibit a proliferation of small, grass-like shoots from the base of the culm. These tillers seem to form in lieu of normal tillers, although, occasionally, tillers of normal size form as well. I am studying the gt1 mutation because there is a tentative connection between the indeterminate 1 mutant (id1) and the gt1 mutant. Mutant id1/id1 plants flower extremely late (or not at all) and they often produce tassels and ears that revert to vegetative growth; i.e., plantlets emerge from within the spikelets of the tassels and the ears form as branches. In addition to the late flowering phenotype, descriptions of the id1 mutant invariably include the following statement: "id1 is vegetatively totipotent with gt1 and factors for perennialism to produce a form of perennialism in maize" (Mutants of Maize, pg . 252, 1997). The origins of this statement can be traced back to studies by D. Shaver (J. Heredity 58:270-273, 1967). In this report he describes a double mutant of $i d 1$ and $g t 1$, and then introduces a recessive factor for perennialism (pe1) from teosinte to create a form of perennial maize. The use of the word 'perennial' in this instance means that the plants do flower eventually, but growth continues from basal branches indefinitely, under favorable environmental conditions. The key to this perennial behavior is the ability of branches to remain in a state of vegetative growth and continue propagating a vegetative meristem that is not consumed by inflorescence formation and, therefore, will make more shoots.

These traits are notable in the id1gt1 double mutant, which exhibits a sort of synthetic perennialism. Figure 1 shows two nodes (arrows) of an id1gt1 double mutant plant (with leaves removed). The part of the plant shown here is about 10 nodes from the ground. Whereas in normal plants prop roots form on the first or second nodes closest to the ground, in id1 mutants prop root formation expands to the upper nodes of the plant, often reaching to just a few nodes below the tassel. In the double mutant shown in Figure 1, the gt1 phenotype of grassy tillers is observed in every node that forms prop roots, thus the 'tufts of grass' formation at each node. In addition, the number of small tillers increases compared to single gt1 mutants. If these 'tufts' are allowed to contact the soil, the adventitious prop roots grow out and the small tillers develop into a new, somewhat bushy, plant.

Mapping gt1: The gt1 gene is located on chromosome 1, according to current maps, but its exact location (or even chromosome arm) is unknown. Since id1 is located on the long arm of chromosome 1 , very near to bz2, the location of gt1 relative to id1 was tested. An F1 plant carrying mutant alleles of id1 and gt1 in repulsion was selfed and the resulting progeny scored for id1 and gt1 single mutants and id1gt1 double mutants (see Table). The original gt1 mutant allele was obtained from Ben Burr (Brookhaven Laboratory) and the id1 mutant allele, id1-m1, mutant was isolated by transposon tagging (Colasanti J. and Sundaresan V., MNL 65:5, 1995).

As shown in the table, the frequency of id1gt1 double mutants $(\sim 3 \%)$ is somewhat lower than expected for two genes that are

TABLE
$i d 1$ Gt1 ${ }^{+} / d 1^{+} \mathrm{gt1} \otimes \longrightarrow$

Total \# plants	Normal	id1/id1	gt1/gt1	id1/lid1 gt1/gt1
188	93	48	41	6
Expected (unlinked)	106	35	35	12
Expected (very closely linked)	94	47	47	0

not linked (6.25%). This would suggest that gt1 is on the long arm of chromosome 1, about 30 cM from id1. However, the population of plants examined here is too small to make a definite conclusion. Further, it does not tell us whether gt1 is proximal (which would put it very near the centromere) or distal to id1. Experiments are in progress to refine the map position of gt1.

Preliminary tagging experiment: An initial experiment to isolate the gt1 gene by $M u$ transposon tagging was attempted. Homozygous gt1 mutant plants were crossed as pollen parents to $M u$ active plants, and the F1 progeny were screened the next summer in Davis CA. From a total of about 35,000 F1 seeds planted, no plants with a clearly identifiable grassy tiller phenotype were found. The number screened might be too low to guarantee a tagged allele, but this initial experiment did reveal one problem with this screen. Specifically, the F1 plants had a large number of normal large tillers that made it difficult to identify the small tillers of the gt1 mutants.

To get around this problem, the gt1 allele was introgressed
into a Mo17 inbred line that shows very little tillering in the field. (The Mu lines are already in a low-tillering background). However, and perhaps not surprisingly, the more the gt1 mutation was introgressed into the Mo17 background (after 5 backcrosses), the more difficult it became to score the grassy tiller phenotype. If nothing else, this finding suggests that the grassy tillers of gt1 mutants are a variation of normal tillers and are subject to the same developmental controls. It might be possible to proceed with this tagging by using one of the less introgressed lines.

A connection between grassy tillers and silky tassels: By putting gt1 in an id1 mutant background, the developmental abnormalities caused by the loss of gt1 function were amplified and more obvious. That is, in the double mutant it is clear that the grassy tillers emerging from each node are the result of uncontrolled proliferation of meristems at the base of each shoot (Fig. 1). In the gt1 single mutation, this tiller upon tiller proliferation is present but is not as conspicuous.

One other characteristic that seems to be associated with the gt1 mutant allele is the presence of a silky tassel phenotype. I have noticed that nearly all gt1 homozygous plants are associated with silks emerging from the tassels. These silky tassels resemble the tassels of tillers, which often undergo feminization. Of course it is possible that the silky tassel trait is caused by another mutation that is simply linked to gt1. However it is interesting to note that, in the Mo17 introgressions described above, the increased difficulty of identifying the grassy tiller phenotype was accompanied by a parallel reduction of silk formation in gt1 tassels. Only one gt1 mutant allele has been available so far; therefore, characterization of other gt1 alleles could clarify the relationship between the formation of grassy tillers and silky tassels.

If both traits are in fact the result of a lesion in the same gene, it might give clues about how the gt1 gene functions. The profusion of grassy shoots and the growth of silks from the tassel could be traits associated with unrestrained proliferation, as is evident of gt1 in the id1 background. Is it possible that the gt1 mutation is a manifestation of reduced apical dominance? This could explain the excess proliferation of small tillers at the base of the culm. Further, tassel feminization might indicate that the central stalk of the plant is developing characteristics of an axillary tiller.

> AMES, IOWA
> Iowa State University

Information from Castle-Wright experiment

--Simic, D, Hallauer, AR
Plant breeders have made limited use of the Castle-Wright formula because of the underlying assumptions. Main assumptions of this method are 1) with respect to all relevant loci, one parent is fixed with the alleles increasing the trait of interest and the other parent is fixed with alleles decreasing the trait of interest; 2) additive gene effects; 3) unlinked loci; and 4) equal allelic effects at all loci. When these assumptions are violated the method substantially underestimates the true number of loci (Zeng, Houle, and Cockerham, 1990). Using selected lines and choosing properly examined traits (Hallauer and Miranda, 1988) our experiment does not violate assumptions 1 and 2. Biased estimates, however, occur largely due to linkage and unequal effects at alleles (Zeng, 1992).

We estimated the number of effective genes of an F2 population that was not in linkage equilibrium and in the F2 population (Syn 10) after 10 generations of intermating which is an approximate linkage equilibrium. Results are summarized in Table 1.

Trait	Parameter ${ }^{\dagger}$				No. of effective loci		
	N	$\hat{\mu}$	$\hat{\sigma}_{\text {w }}^{2}$	$\hat{\sigma}_{s}^{2}$	$\mathrm{n}_{\mathrm{E}} 1$	$\mathrm{n}_{\mathrm{E}}{ }^{2}$	nE^{3}
Silk date (no.) ${ }^{\ddagger}$							
F_{2} Syn. 10	1191	17.1	8.27	1.66	4.82	6.17	2.90
F_{2}	709	18.5	9.84	3.22	2.48	2.79	3.11
F_{1}	751	18.0	4.94				
B73	494	23.0	5.70				
Mol7	584	24.0	10.28				
Plant height (cm)							
F_{2} Syn. 10	1218	207.3	446.39	332.36	0.02	0.02	33.97
F_{2}	717	199.7	422.58	308.55	0.02	0.02	35.45
F_{1}	760	231.4	134.90				
B73	488	183.4	97.37				
Mo17	591	176.5	112.90				
Ear height (cm)							
F_{2} Syn. 10	1214	104.6	247.40	145.18	0.51	0.52	20.59
F_{2}	713	95.6	261.45	159.23	0.46	0.47	18.71
F_{1}	760	118.4	138.27				
B73	494	101.4	83.84				
Mol7	591	77.0	92.15				

${ }^{\dagger} \mathrm{N}$ and μ refer to the sample size and generation mean, respectively;
$\sigma_{\mathrm{w}}^{2}=\sigma^{2} ; \sigma_{\mathrm{s}}^{2}=\sigma_{\mathrm{G}}^{2} ; \mathrm{n}_{\mathrm{E}} 1=\left(\mu \mathrm{P}_{1}-\mu \mathrm{P}_{2}\right)^{2} / 8 \sigma_{\mathrm{s}}^{2} ; \mathrm{n}_{\mathrm{E}} 2=\frac{\left(\mu \mathrm{P}_{1}-\mu_{\mathrm{P}_{2}}\right)^{2}}{8\left(\sigma_{\mathrm{F} 2}^{2}-\left(\sigma_{\mathrm{P} 1}^{2}+\sigma_{\mathrm{P} 2}^{2}+\sigma_{\mathrm{F} 1}^{2}\right) / 3\right.} ;$ and
$\mathrm{nE}^{3}=\frac{\text { Maximum range }}{(\text { Genetic } \operatorname{stan} \text { ard deviation) }} \times 1 / 8$.
${ }^{\ddagger}$ Days after July 1.
Three versions of estimates of the effective number of loci are given without their standard errors. $n_{E} 1, n_{E} 2$, and $n_{E} 3$ for the silking date are similar for F2 and more different for F2 Syn. 10. While $n_{E} 1$ and $n_{E} 2$, for plant height are similar for F2 and F2 Syn. 10, $\mathrm{n}_{\mathrm{E}} 3$ (33.97 and 35.45) almost reached a recombination index of about 36 (Darlington, 1937 in Lande, 1981).

According to Zeng (1992) only at ear height were all three favorable conditions met: 1) the two parental populations are "many" (approx. 10) phenotypic standard deviations apart. In this experiment three deviations for silk date, plant height and ear height are 5.66, 4.91, and 17.21, respectively; 2) no linkage; and 3) large sample size (>200). Estimates of the number of genes for ear height, however, seem underestimated. Linkage did not affect the estimates because the number of estimated genes are similar for F2 and F2 Syn. 10 populations. Consequently, unequal effects of alleles seem to be important. There is no reliable procedure for correcting the bias from unequal effects of alleles. Zeng (1992) suggests use of parameter z, composite measure of variability of allelic effects and frequencies among loci. There are difficulties, though, in estimating the parameter z. Linkage effects, however, summarized by the mean recombination frequency is estimable, and can be corrected (Zeng, 1992). Hence, efforts of intermating are not necessary. Additionally, random intermating plants within F2 populations did not increase the genetic variability. Similar results were reported by Covarrubias-Prieto, Hallauer and Lamkey (1989) and Han and Hallauer (1989). Linkage was, probably, primarily in repulsion phase (Cavalli, 1952). On the basis of the estimates obtained for the F2 and F2 Syn. 5 populations, however, it
does not seem that repulsion phase linkages had a large affect on the estimates of σ^{2} A (Han and Hallauer, 1989). We could not obtain estimates of the dominance parameter in our experiment because no backcross data were available.

BEIJING, CHINA
Institute of Genetics, Academia Sinica
\section*{A mutant for sh2 kernel type from high Space induced} --Zeng, M, Yang, T

In our previous paper we described a significant influence of space flight of maize seeds on progeny, including the young plant, ear and kernel (MNL.74:2-3). Five types of traits have been obtained, including a mutant for the sh2 kernel type from Yi 01-$4-1$ Sp3,Yiol-4-1 Sp4 and Yi141 Sp4. The frequency of mutation for the mutant was smaller, about 0.5%. The plant, ear and kernel characters of the sh2 mutant in the Sp4-Sp6 generations were measured; the results obtained are given in Table 1. The sh2-like mutant showed many favorable components:

Table 1. Plant and ear traits for space flight induced maize mutant of the sh2 kernel type.

Plant height (cm)	165
Ear height (cm)	60
Length of the leaf of ear site (cm)	71.5
Width of the leaf of ear site (cm)	7.8
Ear length (cm)	16.2
Ear diameter (cm)	4.3
Tassel length (cm)	24.5
Tassel branch number	16
Leaf number	$20 \sim 21$
Number of kernel row	$14 \sim 16$
Kernel number per row	$47 \sim 51$
Weight of 1000 kernel (g)	153
Day from seedling to kernel maturing	114
Kernel Colour	yellow
Cob Colour	pale-yellow

early maturity - plants should produce all ears between 51-56 days after seedling; more ears per plant - plants should bear at least three ears per plant; under conditions of high density planting, the quality, size and shape of young ears is better; fewer husks for young ears - ear husk numbers show 6-7 per ear; proper ear and plant height - plant height is 165 cm , ear height is 60 cm . It all boils down to this, the sh2-like mutant may be optimized breeding material for baby corn.

```
BERGAMO, ITALY
Istituto Sperimentale per la Cerealicoltura
```


Phylogenetic analysis reveals that a maize member of the MSI/RbAp sub-family of WD-repeat proteins clusters in an evolutionary separate group

--Lanzanova, C, Locatelli, S, Hartings, H, Rossi, V
Members of the MSI/RbAp sub-family of WD-repeat proteins are widespread in eukaryotes and are part of a variety of multiprotein complexes involved in different biological pathways, including chromatin assembly, regulation of gene transcription, and cell division (reviewed in Verreault, A, Genes Dev 14: 1430-1438, 2000). Recently, we have identified and characterized a cDNA sequence from Zea mays encoding a homologue of the Retinoblastoma associated protein ($Z m R b A p 1$). This gene shows structural and functional features common to the MSI/RbAp pro-
teins, including the ability to bind acetylated histones H 3 and H 4 , and to negatively regulate the Ras/cAMP pathway in yeast. During the molecular characterization of $Z m R b A p 1$ we have identified two additional partial cDNAs (ZmRbAp2 and ZmRbAp3) that exhibit 81% and 96% nucleotide identity with ZmRbAp1, respectively. This finding, together with Southern analysis, which revealed a complex hybridization pattern, suggests that maize RbAp genes belong to a gene family. Because MSI/RbAp subfamily members have been found in different eukaryotes and because many organisms possess multiple copies of these genes, we performed a phylogenetic analysis to compare the MSI/RbAp amino acid sequences available in databank. We used BLASTP (scores > 70, p values < 0.05 Altschul, SF et al., J Mol Biol 215: 403-410, 1990) to search in the non-redundant peptide sequence database at the National Center for Biotechnology Information for proteins similar to human RbAp48, yeast MSI1 and ZmRbAp1. Eighteen amino acid sequences, among the most representative for different species, were aligned using ClustalW software (Thompson, JD et al., Nucl Acid Res 22: 4673-4680, 1994) and a tree construction was performed (neighbor joining method using MEGA software v.1.0; Kumar, S et al., Pennsylvania State University). Interestingly, two separate groups were identified (see Fig. 1). ZmRbAp1 clustered together with AtMSI4 and SIY1, suggesting a common origin for these proteins. The two additional ZmRbAp clones we have identified also belong to this group. A second major cluster contained MSI/RbAp members of Homo sapiens, Drosophila melanogaster and Saccharomyces cerevisiae; for these proteins a role in chromatin modification, histone assembly and binding to retinoblastoma protein has been reported. Particularly, it has been shown that mammalian MSI/RbAp components possess a partially distinct activity (reviewed in Verreault, A, Genes Dev 14:1430-1438, 2000).

Figure 1. Phylogenetic tree based on the alignment of 18 members of the MSI/RbAp sub-family of WD-repeat proteins. ZmRbAp1 from Z. mays was aligned with $17 \mathrm{MSI} / \mathrm{RbAp}$-like proteins from H. sapiens (HsRbAp46 and HsRbAp48), G. gallus (GgCAF-p48), X. laevis (XIRbAp48), D. melanogaster (Dmp55), C. elegans (Celin53; CeRBA1), L. esculentum (LeMSI1), A. thaliana (AtMSI1; AtMSI2; AtMSI3 and AtMSI4), S. Iatifolia (SIY1), S. pombe (SpCAF and SpWD-repeats), S. cerevisiae (ScMSI1 and ScHAT2). The lengths of the tree branches are proportional to the genetic distance. Bootstrap values based on 500 replicates supporting the branches at 75% cut-off value are indicated.

Our analysis indicates that at least three copies of functionally related MSI/RbAp genes exist in maize and that these genes have evolved differently with respect to the best characterized members of the MSI/RbAp sub-family of WD-repeat proteins. Peptide microsequencing of a recently described acetyltransferase HATB-associated RbAp protein (Lusser, A et al., Nucl Acid Res 27: 4427-4435, 1999) revealed a low degree of similarity with ZmRbAp 1 . Altogether these findings suggest the presence in the maize genome of different MSI/RbAp members performing specific tasks, while maintaining other functions common to all members of this sub-family.

Maize Rpd3-type histone deacetylase interacts with maize retinoblastoma-related protein
 --Locatelli, S, Lanzanova, C, Motto, M, Rossi, V

Several bodies of evidence indicate that the dynamic alteration of the chromatin structure due to acetylation and deacetylation of histones is strongly related to the control of gene transcription (reviewed in Cress, WD and Seto, E, J Cell Physiol 184:1-16, 2000). Regulators involved in many important biological processes can recruit multiprotein complexes containing histone acetyltransferases (HATs) and deacetylases (HDACs) to regulate transcription at specific promoter levels. Recently, it was reported that the retinoblastoma (pRb)/E2F pathway alters the chromatin structure using HDACs to control G1/S progression in the mammalian cell cycle (reviewed in Harbour, JW and Dean, DC, Genes Dev 14:2393-2409, 2000).

We have previously identified and characterized a maize Rpd3type histone deacetylase (ZmRpd3I; Rossi, V, et al., Mol Gen Genet 258:288-296, 1998). In addition, the identification of components of the $\mathrm{pRb} / \mathrm{E} 2 \mathrm{~F}$ pathway in plants suggests that the basic molecular control of cell cycle has been conserved from animals to plants (reviewed in Huntley, RP and Murray, JAH, Curr Opin Plant Biol 2:440-446, 1999). Analysis of the protein interactions between ZmRpd 31 , maize retinoblastoma-related (ZmRBR1) and retinoblastoma associated (ZmRbAp1) proteins was performed by means of in vitro GST-pull down assays. The results indicate that ZmRBR1 interacts with ZmRpd3I and that ZmRbAp1 can bind both ZmRBR1 and ZmRpd3I. Deletions and site-specific mutants were used to analyze the regions of ZmRBR1 and ZmRpd3I involved in the protein interaction. We observed that the integrity of both A/B pocket and C-terminal domains of ZmRBR1 are required for the binding to ZmRpd 31 . The same domains are also responsible for the association with $\mathrm{ZmRbAp1}$, although mutations affecting the structure of the A / B pocket did not reduce the binding. It is noteworthy that the A / B pocket of $p R b$ is highly conserved in higher eukaryotes. Particularly, it is believed that the LXCXE binding site, located within the pocket, is required in mediating the interaction with several pRb -associated proteins containing the LXCXE domain, including two of the three mammalian Rpd3-type HDACs identified so far (Harbour, JW and Dean, DC, Genes Dev 14:2393-2409, 2000). Because ZmRpd3I does not contain the LXCXE domain, we carried out GST-pull downs in which a synthetic LXCXE peptide was added to the reaction mix to detect its effect on binding. Our results suggest that the ZmRBR1 LXCXE binding site is not involved in the interaction with ZmRpd 31 and $\mathrm{ZmRbAp1}$. Hence, different domains in the A / B pocket and C-terminal region of ZmRBR1 are likely to be required to mediate these protein interactions.

Deletions in the ZmRpd3l sequence showed that the simultane-
ous removal of both C - and N - termini abolished the interaction with ZmRBR 1 and $\mathrm{ZmRbAp1}$, indicating that there are multiple contacts between these proteins. The two ZmRpd 31 regions required for association with ZmRBR1 are partially overlapping with those involved in the interaction with ZmRbAp1. This finding suggests that ZmRbAp1 may mediate, at least in part, the contacts between ZmRpd3I and ZmRBR1. Accordingly with this scenario, we observed that addition of recombinant ZmRbAp 1 protein in the reaction mix in GST-pull downs increased the amount of in vitro translated ZmRBR1 specifically retained by the GST-ZmRpd3I fusion protein. Similar results were obtained in reciprocal experiments. Conversely, addition of ZmRpd 31 recombinant protein did not alter the association between $\mathrm{ZmRbAp1}$ and ZmRBR 1 .

These results provide the first, although still preliminary, evidence of plant multiprotein complexes containing Rpd3-type HDACs and regulators that play a pivotal role in controlling cell cycle progression.

BIHAR, INDIA
Tirhut College of Agriculture

Gene action for knob number in corn

--Mandal, SS, Akhtar, SA
The combining ability analysis revealed that significant differences existed for general (gca) and specific (sca) combining ability for number of knobs. The fixed effect model (Model 1 and Method 1 of Griffing 1956a) in the present study does not provide estimates of variance components and thus it was not possible to know precisely the relative importance of additive and dominance components in the control of knob number. However, the relative importance of gca and sca in determining progeny performance can be obtained by calculating general predictability ratio (GPR), on the basis of gca and sca variance components of mean squares. The value of GPR for knob number was 0.13 (Table 1).

Table 1. Analysis of variance for combining ability

Character	gca (df=3)	sca ($\mathrm{df}=6$)	reciprocal ($\mathrm{df}=6$)	error ($\mathrm{df}=30$)	GPR
Knob number	1.48**	2.315**	1.74**	0.01	0.13

The estimates of this ratio indicated that progeny performance was based on both gca and sca for genetic variability. Moll et al. (1972) suggested additive and dominance, and dominance and dominance gene action for knob number in maize.

Knob in relation to altitude

--Mandal, SS, Akhtar, SA, Sinha, NK, Srivastava, M
Low land tropical parents, namely CML47 and CML49, exhibited comparatively higher knob number, 7.0 and 6.0 respectively. Three hybrids, namely CML47 x CML49 (6.33), CML47 x CML107 (6.00) and CML49 x CML47 (5), have comparatively higher number of knobs with significantly higher yield. It is remarkable that the Gangetic plain of Bihar (Maize Research Centre Dholi) lies in lower altitudes of 52.2 MSL. Furthermore, Ganga Safed-2, a stable variety doing well for the last 3 decades in the Gangetic plains of India, has a comparatively higher number of knobs (6.0). The present finding was in agreement with the findings of Longley (1938), Mangelsdorf and Cameron (1942), Brown (1945), Wellhausen et al. (1951), Wellhausen and Prywer (1954), McClintock (1960) and Pandey et al. (1988). However, one higher
yield cross, CML107 x CML47, possesses only 4.0 knobs. Remarkably, one parent (CML47) involved in the cross possesses a relatively higher number of knobs (7.0). Keeping in view this fact, there is a growing need to consider knob heterochromatin in a controlled, reproducible and predictable manner to derive hybrids and selection of inbreds.

Membrane permeability as a marker of low temperature resistance in maize

--Sinha, NK, Mandal, SS, Handoo, JK, Srivastava, AK
A laboratory experiment was conducted for the determination of decrease in seed permeability of maize in terms of release of exudates, by determining the electrical conductivity. The value of electrical conductivity of the exudates were higher under low temperature stress ($8 \pm 1 \mathrm{C}$) than for the seeds germinated in 25 ± 1 C. Minimum leakage determines membrane permeability of the germinating seeds of resistant maize varieties.

BROOKINGS, SOUTH DAKOTA
South Dakota State University

Allelism of chromosome 2 endosperm mutants

--Whalen, RH
Graham, Suresh and Phillips (MNL 67: 102, 1993) mapped the recessive mutation opaque8 (08) to the vicinity of umc134 on chromosome 2. Since the Maize DB map indicates this is near floury1 (fl1), we crossed the two mutants to test for allelism. Since fl1 shows a dosage effect (i.e., $f / f / f / F /$ is floury) but 08 does not, the $f / 1 / f 11$ plants were used as pollen parents on to $+/ 08$ plants. The resulting ears segregated floury, indicating allelism.

Stierwalt and Crane (MNL 47: 166, 1973) reported a mutation opaque4 (04) which, unlike fl1, is recessive and does not exhibit dosage effects. As they found it to be allelic to $f 11$, it is now designated as fl1-04. Crosses of this mutant with fl1-Ref males gave ears with only floury seeds, confirming Stierwalt and Crane's findings of allelism. Crosses of $+/ 08$ plants as males onto $+/ f 11-04$ plants gave ears that segregated for normal and floury kernels, again confirming allelism of 08 and fl1.

Since 08 is allelic to both $f 11$-Ref and $f / 1-04$, the 08 mutant should be renamed fl1-08.

BUFFALO, NEW YORK
State University of New York
Williamsville East HS
LONDON, ONTARIO, CANADA
University of Western Ontario TAIPEI, TAIWAN, REPUBLIC OF CHINA National Taiwan University

3D visualization of stem by MRI technology --Cheng, P-c, Chen, J-H, Lin, C-P, Sun, C-K, Walden, DB, Cheng, WY

Recent development in confocal and multi-photon fluorescence microscopy allows 3D imaging of plant tissue in high resolution. However, other than physical sectioning, macroscopical study of plant organs in 3D remains a difficult task. Among various avail-
able technologies for macroscopical imaging (e.g., X-ray macrotomography, optical coherent tomography and MRI), MRI is an ideal choice for its contrasting modality in volumetric imaging of soft tissues. In this study, a 3T Biospect MRI system (Brucker, Germany) equipped with a 6cm inner diameter micro-quadrature coil for RF transmission and reception of MRI signals was used. Spin echo based RARE sequence was used to obtain T2 weighted images with TR/TE $=3160.5 / 58.5 \mathrm{~ms}$ and field-of-view of 1.67 cm $\times 1.67 \mathrm{~cm}$ (256×256 pixels) at a slice thickness of 0.8 mm . This corresponds to a pixel size of $65 \times 65 \times 800 \mu \mathrm{~m}$. Data were obtained over 0.5 hour with number-of-excitations (nex) set at 16.

Figures (1)-(12) (following page) show a series of MRI crosssections through a node (the node below the main ear insertion) from field-grown maize stem (Odyssey sweet corn). The stem was fixed in 1:3 EtOH/acetic acid, and washed thoroughly in water prior to imaging. Air bubbles trapped in the leaf sheath were removed by vacuuming to avoid imaging artifact due to low magnetic susceptibility of air. Note the branching pattern of vascular bundles in the node. The image set shown in this article is suitable for computer 3D reconstruction and visualization. Tracing and reconstruction of vascular bundles in the node region is possible.

This project was supported by the National Science Council, Republic of China under grant number NSC-88-2811-B-0010023 (PCC), NSC-89-2811-E-002-0058 (PCC), NSC-89-2215-E-002-064 (CKS). The Biospec MRI facility is a national user facility funded by the National Science Council, Republic of China and operated by the Precision Instrument Center, National Taiwan University.

BUFFALO, NEW YORK Williamsville East HS State University of New York LONDON, ONTARIO, CANADA University of Western Ontario TAIPEI, TAIWAN, REPUBLIC OF CHINA MELBOURNE, AUSTRALIA Swinburne University of Technology

Stem development in na1/na1 and na2/na2
--Cheng, WY, Cheng, P-c, Gu, M, Gan, X, Chung, H-W, Walden, DB

In contrast to the parallel arranged longitudinal vascular bundles commonly found in the internodes of wild type (a, e), na1/na1 appears poorly organized (b). However, cross-sectional views reveal that the vascular arrangements of the entire na1/na1 stem (f, g and h) resemble those found in the nodal region of a normal plant (d). Therefore, one may consider the entire na1/na1 stem comprises a single node (b). Similar to the main stem, the ear branch of na1/na1 also lacks a well-defined internode structure. It is important to point out that the elongation and vascular arrangement in the internodes of na1/na1 tassel are "normal". The branching of a vertically arranged vascular bundle (v) is evident in the series of optical sections (k, i, m and n) obtained by multi-photon fluorescence microscopy.

In contrast, na2/na2 stem has a "normal" stem appearance but the internode length is significantly shorter (c). The cross-sectional views of na2/na2 stem (i and j) reveal similar nodal and in-

Cheng et al. Stem development in na1/na1 and na2/na2
ter-nodal vascular arrangement, as found in the wild type (d and e). The elongation of tassel internodes occurs in na2/na2 (c).

Figures (previous page): (a) longitudinal section of a wildtype maize stem (Ohio43 inbred). (b) na1/na1 stem; (c) na2/na2 stem; (d and e) cross-sections at node (d) and internodes (e) from wild-type plant; (f, g and h) cross-sections at various levels of na1/na1 stem; (f) and (g) are physical sections while (h) is an MRI section; (i and j) cross-section of na2/na2 stem at node (i) and internodes (j). All the plants used in this study were grown at the field station of the University of Western Ontario, London, Canada in the summer of 2000. The specimens were fixed in methanol, serial sectioned with a razor blade using a specially made jig. The image was obtained by using a modified Acer 600CU flatbed scanner (600dpi optical resolution, equipped with backlighting) in liquid. (k-n) show a set of optical sections (crosssections) from na1/na1 stem. The optical sections were obtained at various depths ($0 \mu \mathrm{~m}-75 \mu \mathrm{~m}$) by two-photon florescence microscopy using 870nm near IR illumination. An Olympus Fluorview FL300 confocal microscope equipped with a Spectra-Physics MaiTai tunable Ti-sapphire laser was used for this study.

CHESTNUT HILL, MASSACHUSETTS Boston College

Transposable element in maize anther culture-derived microspore-plants and their progenies
 --Ting, YC, Tran, L

In the last few years, selection of stable inbred maize from anther culture-derived progeny plants was made (MNL74:73). This inbred line was descended from a single self-fertilized PO (first generation of microspore-plant) plant of KH-13. Every summer, more than 100 progeny plants were grown in the field for observation. Among them, five to 10 percent were classified as dwarf-yellow-green. These potential mutants were weak, had barren stalks and had sterile male inflorescences. It was almost impossible to make any further genetic evaluation on them. However, in each summer, three to five of the normal sib plants were selected and self-pollinated. In the next year, those self-fertilized kernels were employed for further testing. More than 100 plants were grown again for study. The dwarf-yellow-green plants reappeared in the new progeny. When a X^{2}-test was made, the frequency of the appearance of these mutant plants did not fit the expected ratio of either monohybrids or dihybrids. The above experiments were repeated for more than five years. Last summer, the same procedures were followed. It was surprising to find that no dwarf-yel-low-green variants were observed. In other words, the selected progeny plants had become a stable line. Its immediate offspring were close to 100 percent fertile and uniform in morphology. It is concluded that the previous segregations of dwarf-yellow-green vs. normal plants were an indication of the presence of a transposable element in the parental plant. This element was originally silent and activated through anther culture. It is conceivable that after being through more than five generations of self-fertilization, the transposable element was thrown out by irregular meiotic division. Furthermore, it is tenable to say that anther culture of maize may lead to the production of useful inbreds. These inbreds can be employed to facilitate the improvement of food supplies.

Conditional expression of maize vegetative cloning gene

--Ting, YC, Tran, L
The effect of day length on the expression of the maize vegetative cloning gene was reported in last year's Maize Genetics Cooperation Newsletter. Since then, studies of this gene were carried out further. In the later part of last March, 21 kernels of a self-fertilized plant were employed for experiment. This plant had a simplex genotype of $\mathrm{Clg} c \lg c l g c l g$. The kernels were sown in pots in the greenhouse. At that time, the daily illumination was a little more than 12 hours in the Boston area. The kernels germinated readily. The plants were generally healthy. Three months later, or in the middle of June, transplantation of these plants into the field plot was made. All of the plants survived well. However, in August and September, it was found that none of the plants expressed the cloning gene by regenerating plantlets on the tassels, even though three quarters of them were expected to do so. Therefore, it is postulated that in order to have the cloning gene expressed, the plants need to be grown under short day, particularly in the first three months of growth. As stated above, the seeds for this study were sown in the second half of March. Throughout their whole life period, the plants grew and developed under long day conditions. More than 12 hours of daily illumination might inhibit plantlet regeneration.

CHISINAU (KISHINEV), MOLDOVA Institute of Genetics, Acad. Sci. Mold. Rep.

Maize productivity: an example of non-allelic interaction --Chernov, AA, Mihailov, ME

The question of heterosis may be reduced to a question of factors causing advantage for heterozygous organisms. The great role of allelic interaction (dominance and overdominance) has been demonstrated theoretically and experimentally, but non-allelic interactions remain less investigated, especially these, in which effects of different loci can't be summarized.

Here we show an example of such an interaction between the loci $w x 1$ and R1. Maize productivity was measured in F2 hybrids Ku123 x 2-9m and Uit757 x 2-9m (see Table).

Table. The productivity of F2 plants (gm/plant) in the combinative classes wx1-R1

Hybrid and year			
Genotype	UIT-757 $\times 2-9 \mathrm{~m}$ 1993	Ku123 $\times 2-9 \mathrm{~m}$ 1993	UIT-757 $\times 2-9 \mathrm{~m}$ 1995
wx1+/+R1+/+	$111+8(15)^{\star}$	$132+12(16)$	$159+13(6)$
R1+/-	$132+8(27)$	$134+7(31)$	$159+15(13)$
R1-/-	$147+12(11)$	$133+11(13)$	$172+19(10)$
wx1+/-R1+/+	$149+13(13)$	$161+11(20)^{* *}$	$170+15(15)^{*}$
R1+/-	$155+8(37)$	$152+6(57)$	$173+10(31)$
R1-/-	$146+11(19)$	$143+10(22)$	$130+12(16)$
Total	$142+4(122)$	$145+4(159)$	$162+6(91)$

Comment 1. The number of plants is given in brackets.
Comment 2. The asterisks relate to whole cell and show
significance of effect of the R1 locus.
It is seen in the table that details of this interaction depend on genetical environment and year conditions. Nevertheless, here is a common feature. The R1 locus regulates productivity, and the wx1 locus regulates the R1 locus. One allelic state of wx1 (+/+ for UIT-757 x 2-9m and +/- for Ku123 x 2-9m) allows R1 to be regulator, another allelic state blocks this regulative function.

The productivity of the heterozygous genotypic class wx1+/-

R1+/- in all cases is higher than the mean value. Therefore, gene interactions of such a type can provide a role in heterosis.

Male gametophyte viability of waxy maize in conditions of low temperature

--Kravchenko, OA, Kravchenko, AN
The purpose of this study was to reveal the effect of low temperature on male gametophyte viability at the pollen germination stage and pollen tube growth stage. Inbred lines 346 and 502, and their waxy counterparts as well as their MR4 progeny (obtained from irradiated immature embryos in vitro), were taken as experimental material. Freshly collected pollen from each genotype was planted on the nutrient medium (developed by Cook, F.S., Walden, D.B., Can. J. Bot. 43:779-786) and subjected to low $(+12 \mathrm{C})$ temperature treatment for 6 hours. At the same time pollen of control variants was cultivated in normal (+24 C) temperature conditions. On average, 500-700 pollen grains from each genotype were analyzed to determine pollen viability.

Generally, low temperature treatment resulted in decreasing of maize pollen viability. The reliable effect of genotype and temperature was revealed by two factor analysis of variance (Table 1). The results obtained indicated that pollen viability of MR4 progeny of inbred lines 346 and 502 was less genotype-dependent than that of their waxy counterparts. It should be noted that pollen viability of MR4 progeny of inbred line 502 was more tem-perature-dependent in comparison with MR4 progeny of other inbred lines. Thus, a significant variability of male gametophyte viability among plants of the MR4 generation was found.

Table 1. Genotype and temperature effect (\%) on male gametophyte viability

MR4 progeny of inbred lines:	Factors: genotype	temperature	their interaction
$346+/+$	$74.61^{* * *}$	$13.32^{* * *}$	$11.53^{* * *}$
$346 w x 1 w x 1$	$83.71^{* * *}$	$9.5^{* * *}$	$6.28^{* * *}$
$502+/+$	$51.49^{* * *}$	$39.72^{* * *}$	$8.21^{* * *}$
$502 w x 1 w x 1$	$75.47^{* * *}$	$19.07^{* * *}$	$5.91^{* * *}$

**- $\mathrm{P}<0.001$

Studying some features of maize genetics and developmental biology using electrophysiological techniques
 --Lysikov, VN

In the Republic of Moldova, the possibility of employing electrophysiological techniques was first studied on maize plants. The experimental evidence suggests that precisely these techniques provide new insights into extremely involved processes of maize genetics and developmental biology.

Modern breeding programs are aimed at producing heterotic maize hybrids. This involves identification in parental lines of valuable traits and features associated with their combining ability. All experimental evidence from parental lines of hybrids can be classified into two groups: static parameters recorded as dots on the plotting paper, and dynamic parameters representing temporal variation of the developmental process which are recorded as lines on the plotting paper.

Dynamic indices are known to generally provide more complete and adequate information about the occurring processes and are especially good indicators of the effect of environmental factors on an individual cell, tissue, organ, or a whole organism (plant). Electrophysiological techniques allow, without disturbing the
plant's vital activity, the dynamics of the processes occurring in the plant to be demonstrated and the results recorded as plots, curves and diagrammes.

That is why electrophysiological techniques were used in obtaining numerous unambiguous electrophysiological data for generative and vegetative organs of maize lines, mutants and hybrids. The essential feature required of the measurement procedure was that the effect of the recording instruments on the pattern of life activity be minimum, because this is the only way to ensure that the data obtained are as highly informative as possible.

Based on these specific requirements, all the electrophysiological techniques employed can be classed into two groups: (1) intracellular recording of bioelectrical potentials (biopotentials), and (2) extracellular measurement of biopotentials. In our study, the second group was represented by two independent types of experiments: (1) measurements performed in artificial conditions greenhouse, hothouse, climate chamber, laboratory, etc.; (2) extracellular biopotential measurements on plants in the field.

In addition to these two major methods of studying electrophysiological properties of maize, work has been done on recording dielectric properties of maize plants, measuring the electric resistance of stem and pistil, and the electric charge of pollen grains, as well as some other work which is touched upon in passing in the present study.

The intracellular recording of biopotentials was performed by Dr. A. I. Doukhovny. Not only did he carefully study maize pollination and fertilization processes, but he also developed a number of methods and approaches, being one of the first to carry out investigations like these.

For measuring the bioelectrical potential of an individual plant cell, conditions ensuring minimum alteration of the cell should be observed. This is only possible where the cell wall size is an order of 2 to 3 larger than the area of perforation resulting from the microelectrode introduction into the cell. To this end, glass microelectrodes were made in the form of micropipettes whose tip diameter was no more than one micron. Thin Pirex glass tubes were used to produce micropipettes.

Using a device called microforge, the tubes were fixed at both ends and split in half in the middle. The resulting two microelectrodes were filled, under vacuum, with 2.5 M solution of KCl . A filled microcapillary is a microelectrode. This was connected to a mercurous chloride or silver chloride macroelectrode.

A microelectrode produced in the above manner was introduced, using a micromanipulator under constant visual control in a binocular microscope, into the plant cell. The biopotential recording itself was carried out on DC electrometric amplifiers of the UI-2 type at whose outlet quick - response self-balancing EPP potentiometers were connected which recorded the signals on the diagram paper. In addition, connected to the same electrometric amplifiers were electron oscillographs, enabling visual observation of the rapid processes occurring in the cell.

It should be noted that maize proved to be a very convenient experimental plant for intracellular biopotential measurements. This is due to the fact that the female reproductive organ of maize, the ovary in particular, has the style with an elongated stigma often called the pistil filament.

When expanding in cross section, the maize pistil filament is very similar to an asymmetric eight figure with a slight depression at the centre. Through the centre of each half of the figure of eight run vascular bundles normally composed of 3 to 6 strands
extending from the stigma to the ovary.
The maize pollen grains and elongating pollen tubes act on pistil tissues as an effective combined mechanical stimulus. Preliminary experiments showed that it is the vascular strand cells that are capable of receiving the stimulus signals and transforming them into electrical signals, and transmitting the latter over particular distances. In vascular strand cells, the resting potential (i.e. the transmembrane difference of potentials of a nonexcited cell) is several dozen millivolts higher than that in the surrounding stigmatic cells, and is normally in excess of 80 mV . Electrophysiological specificity like this allowed reliable identification of the cells under study.

Another important finding of the preliminary experiments is the one-way conductance (transmission) of action potentials in the direction of the ovary, which is probably due to physiological and biochemical polarity of the pistil.

The initial bioelectrical response of the maize pistil prior to pollen germination is manifested in the generation of a single impulse of the action potential, with an amplitude of more than 20 mV and pulse duration of 2.5 to 34 sec in the pistil filament and 1.3 to 2.0 sec in the ovary. Generated 3 to 18 min after pollen application, the first impulse travels in a nondecreasing manner at a rate of $12 \mathrm{~mm} / \mathrm{sec}$, such that in 20 to 30 sec , depending on the pistil length, it reaches the ovary. It has been found that prior to generation of action potentials, the resting potential of the excited cells increases by 16 to 27 mV .

As a result of further pollen growth, another two impulses are generated whose characteristics are very similar to the first one. One of these arises in the pistil filament 64 to 83 min and the other 49 to 67 min following the first single impulse. These two impulses differ from the first one in that they show a higher travel speed. What we deal with here is probably the "duration" effect. This process takes about 1.5 h to complete after the start of pollen germination. It is worth noting that the essential difference of these impulses from the first one is that they produce (elicit) in the ovary only a local response of resting potential fluctuation, with an amplitude of several millivolts.

It has been shown that the incoming action potentials are transformed at the pistil base. With the start of more intensive elongation of pollen tubes and of their active penetration into the pistil tissues, the stage of higher electrical activity commences, characterized by the generation of a large number of impulses of action potentials which alternate with the local electrical response.

Impulses with an amplitude of 15 to 39 mV travel, almost nondamped, towards the ovary for nearly 1.5 h . The transformation of the incoming action potentials is most pronounced during the subsequent time interval, which starts 97 to 130 min after pollen application, and lasts for about 70 to 80 min . Generation and transmission of a large number of single impulses of action potentials occurs presumably due to higher metabolic rates. It is these impulses, travelling in a nondecreasing manner, that control rhythmic generation of potentials in the ovary.

The rhythmic electrical activity of the ovary manifested as rhythmic generation of resting potentials is a two-stage process. The duration of the first stage is about 35 min and of the second stage about 20 min , such that the second stage starts, on average, 38 to 41 min after the completion of the first one.

A distinctive feature of the first stage is a lower frequency of action potentials, longer pulse and between-pulse duration with the advance of the stage (i.e. towards its end).

Seven pulse trains have been identified and characterized, each with its particular constant or smoothly varying frequency of potential generation. In transition from one pulse train to another caused by single pulses arriving at the ovary from the pistil filament, the frequency of pulse generation varies in a saltatory manner. Furthermore, the transition between some pulse trains is due to an additional increase in the resting potential.

The second stage of rhythmic activity comes about 40 min after the first one and consists of three pulse trains differing in the potential shape and frequency. Characteristic features of the second stage are an increase in frequency action potentials and a decrease in frequency of resting potentials towards the end of the stage, respectively up and down to the values corresponding to those of a nonexcited cell.

The period of multiple pulse generation in the pistil filament, like that of rhythmic pulse generation in the ovary, appears to be the most functionally loaded one. The subsequent bioelectrical response of maize pistils is characterized by generation of widely separated single action potentials which reach the ovary without being transformed at the style base. The type (pattern) of response remains unchanged throughout the pollen tube elongation period.

By the time of pollen tube penetration into the embryo sac and subsequent fertilization, the generation of single action potentials is terminated, and the resting potentials begin to exhibit wave-like variation characterized by rhythmic fluctuations distorting the smooth shape of the wave. Two wave-like variations are the most characteristic ones: the first, in order of appearance, and the fourth or fifth. The distinctive feature of these patterns of variation is a brief (12 to 45 sec) increase in the potential with an amplitude of 2 to 9 mV .

The first characteristic wave-like variation gives rise to a wave of excitation, which is recorded in maize stems during extracellular measurement of biopotentials. This wave originates at the base of the pollinated ear and spreads up and down the stem at a rate of 40 to $61 \mathrm{~cm} / \mathrm{min}$. The amplitude is not the same at different points in the stem: a maximum amplitude of up to 18 mV was recorded at the base of the stem, and up to 17 mV at the point of ear attachment. The duration of the process in maize lines and hybrids varied between 20 and 50 min .

Thus, the results from the above experiments suggest that the bioelectrical potentials traveling through maize generative organs and detectable during intracellular measurements, and the ones traveling through maize stems and detectable during extracellular measurements, offer a tool for analyzing complex concurrent, but spatially isolated, physical and biochemical reactions in a living body.

It has been suggested that recording ten thoroughly studied pulse trains on a magnetic tape and their subsequent application (presentation), through specially implanted microelectrodes, using electronic instruments and observing the timing, the pattern, the specificity and sequence of pulses may be of interest in studying some issues such as apomixis or other involved processes associated with fertilization.

Based on the method of multichannel measurement of bioelectrical potentials with the aid of macroelectrodes, A. I. Doukhovny designed, using a DC electrometric amplifier and a self-balancing twelve-point potentiometer, a special switch enabling simultaneous measurement of potentials at different points in the plant. He demonstrated that normally stabilized, more or less invariable,
frequently straight, and parallel bioelectrical potential lines appearing on the plotting paper prior to pollination start, upon landing of pollen on the stigma, to change their direction such that, not infrequently, they "tremble", occasionally become nonparallel to one another, and even intersect.

Pollination and fertilization have been shown to result in higher electrical activity at various points in the stem. An increase in the number of "intersections" in the stem always occurs more smoothly than does the variation of bioelectrical potentials in the pistil, although in the stem they persist, at a particular level, for 2 to 3 days.

In other words, the maize plant "trembles" in terms of electrophysiological parameters, resulting in a higher number of intersections and nonparallel biopotential lines on the plotting paper.

Application of extracellular biopotential measurement techniques deserves to be considered in greater detail. The largest number of experiments employing the techniques have been carried out by S.N. Maslobrod in the laboratory and by F.G. Oloer in the field.

Based on the topography of maize leaf and plant surface biopotentials, S.N. Maslobrod established the existence of more than one type of bioelectrical polarity (right and left), and outlined the bioelectrical stereopolarity and the dynamics of polarity from the seed stage up to the mature plant stage. Subsequently he studied the spatiotemporal organization of maize surface biopotentials in terms of electrophysiological polarity, oscillation, and signal generation and transmission.

Based on the assumption of endogenous rhythmicity of plant biopotentials being genetically preprogrammed, S.N. Maslobrod suggested that the function of genes responsible for a particular trait be regarded in terms of operation of an electrophysiological oscillator with a given frequency range, and that the structural gene be represented as a "wave gene" sui generis, which is in good agreement with the "wave" function of gene activity proposed by Chirkov (Chirkov, 1994).
S. N. Maslobrod made an electrophysiological evaluation of plant genotypes differing in phenotype, including marker lines, lines with high general combining ability, thermotolerant genotypes, samples showing general (nonspecific) ecological stability, cold-hardy forms, ancestral forms, as well as specimens exhibiting high competitiveness under overcrowding. The results of his studies can be presented briefly as follows:

1. Phenotypic characters of the genotypes: It has been established that maize seedlings with marker pigmentation traits differ in the amplitude of response to light and temperature treatment.
2. Ancestral forms of maize are characterized in terms of general ecological stability of genotypes. They exhibit higher ecological stability as compared with cultivated forms. Their ranges (amplitudes) of electrical response are narrower whereas the electrical response values of the cultivated forms are 2 to 3 orders of magnitude higher.
3. General combining ability of lines: Positive correlation has been established between the level of general combining ability of maize lines (topcross) and positive biopotential values, in particular for coleoptile and leaf biopotentials.
4. Heat tolerance of maize lines: Heat-tolerant maize lines have been shown to differ from heat-sensitive ones in that they exhibit smaller amplitudes of electrical response to alternate light / darkness exposure at 40 C and to variation in temperature between 20 C and 40 C .
5. Cold tolerance of maize lines: It has been demonstrated that maize lines whose cold tolerance is due to the genotype or environmental factors exhibit smaller amplitudes of electrical response to a sharp drop in temperature (5 C and more) and retention of amplitude during repeated exposure.
6. Competitiveness of genotypes: Viewing competitiveness as tolerance of maize lines and hybrids to overcrowding, the author distinguishes competitive and less competitive lines by: 1) lower electrical resistances of root contacts of seedlings within the group, and 2) better synchronization, i.e. by the uniformity of morphological, physiological and electrical variables; normally, higher absolute values of these variables are observed in plants belonging to the group.

Based on the above theoretical points, S.N. Maslobrod devised a number of express methods of practical importance for which he obtained author's certificates. Among these, the following should be mentioned first of all:

1. Express methods for estimating stimulative doses of gamma and laser irradiation in presowing treatment of maize seeds.
2. Express methods for producing bioisomeres (right and left) in maize plants.
3. Electrophysiological express methods for evaluating economic traits in maize such as heat tolerance, cold tolerance and competitiveness.
4. Electrophysiological methods for evaluating genotypes of evolutionarily different plant forms (wild, cultivated and segregating).
5. Electrophysiological methods for estimating the effects of physical factors: rhythmic light, weak current, etc.

Studies by S.N. Maslobrod yielded numerous data characterized by a high degree of novelty. Among these, the following should be mentioned.
A. Maize plants have been found to possess two induced electrophysiological stereopolarities of the mirror type, the so-called "flat structure" and "hollow structure". They depend on the environmental factors and on the pattern of maize plant architectonics. Structural and functional elements of stereopolarity have been identified.
B. The existence of an intimate relationship between maize plant electrophysiological stereopolarity and disymmetry (left and right symmetry) has been established, and the morphological role of the former with respect to the latter demonstrated.
C. It has been shown that plants, as well as plant communities (phytocenoses), represent ensembles of electrical and physiological oscillators whose degree of adjustment to one another determines competitiveness of the components of a unified oscillatory system.
D. Using maize as an experimental object, the ability of action potentials to propagate from one plant to another through the mechanism of electromagnetic induction has been demonstrated.
E. Maize plants have been found to be capable of responding electrically to unconventional stimulants (gamma and laser irradiation) and of assuming the state of total electrical excitation via the mechanism of spatial synchronization of action potentials.
F. Action potentials of maize plants have been shown to be able to transmit information about stereoscopic structure of the object and to coordinate functions of the underground and above ground plant parts upon exposure to light.

In light of the above, the use of stationary (time-independent)potentials to test maize growing capacity and productivity,
as well as ecological stability, is justifiable.
It is also logically justifiable to employ the method of electrical control of adaptive potential of maize plants by simulation of their electrophysiological parameter adjustment and optimization.

Summarizing S. N. Maslobrod's studies, we can say that the formation and maintenance of spatiotemporal organization of maize plant surface biopotentials is ensured by electrophysiological control systems, performing in a plant body the functions of nutrient and energy transfer, and transmission of information, including that of plant body stereoscopic structure.

An extensive and interesting study of electrophysiological methods directly in the field has been carried out by F.G. Oloer. To this end, nine mutant lines derived by maize experimental mutagenesis from a single VIR-44 line, and one single-cross hybrid synthesized from lines derived from mutants, were examined. The above mutant lines differed considerably from their original line in morphological and agronomic traits.

For experiments in the field, a special experimental plot consisting of 100 test strips whose area totaled 700 sq.m, was established. Each strip was sown to 12 plants including 9 mutant lines, 1 hybrid and 2 control plants (VIR-44 line). For randomization, each strip had its own, differing from the others, order of positioning of mutants and controls.

Measurement of electrical parameters of maize mutants was performed using a specially re-equipped unit MTL-62(magnetotelluric laboratory) mounted on a bus. The additional equipment included: (a) DC electrometric amplifiers A1-2, EPP-09 potentiometers, a PSR-1 potentiometer, an S1-1 oscillograph, a set of meteo instruments, a transportable electric power station with power generating capacity of 1 kWt and a knockdown screening box $200 \times 150 \times 150 \mathrm{~cm}$ in size.

A biopotential measurement procedure suitable for field studies was developed. Thus, measurements were carried out simultaneously on 6 plants, 5 of which were mutants and 1 control. Measurements were performed using nonpolarizing silver chloride electrodes of the $5268-\mathrm{AgCl}-180$ type. A total of 36 electrodes with agar-agar adapters were used. Biopotentials were measured on the lower leaf surface of maize plants at points located $3 / 4$ of the leaf length from the stem. Reference electrodes were placed at the base of the plant.

The biopotentials measured were transmitted by wires to 6 specially designed arithmetic units, automatically calculating arithmetic means of biopotentials for each particular mutant. While still measuring biopotentials, each arithmetic unit was, one by one, connected in a certain order to the amplifier general input via a specially designed automatic switch. Connected to the amplifier output via a compatible voltage divider was a self-balancing potentiometer of the EPP-09 type, on which recorder chart averaged values of biopotentials were recorded for each mutant.

To control the magnitude and pattern of electromagnetic disturbance, connected to the A1-1 amplifier output was an S1-1 oscillograph offering visualization of the disturbances on the screen.

In order to overcome the adverse effects of electromagnetic disturbance in measuring biopotentials, a combination of measures was taken including: (a) balancing of electric parameters of input measuring circuits with respect to earth, (b) use of braided (shielded) wires, (c) employment of high-frequency filters, and (d) compensation of variable and constant disturbances. The above combination of measures allowed measurements of biopo-
tentials in the field without shielding boxes. However, in a few isolated instances, a knockdown shielding box was used.

Another peculiarity of measuring biopotentials on plants in the field is the need for simultaneous recording of environmental quantitative indices such as light intensity, soil and air temperature, soil moisture and air humidity, etc.

To examine the sensitivity of mutants to environmental factors, abrupt alternate switches from light to darkness were performed by obscuring the box or using a light-proof screen, or by employing a red or blue light filter. The results from studies of bioelectrical indices of mutant sensitivity were processed on the BSM-4 computer by solving a multiple regression equation by the least squares method.

In addition to general regularities in the topography of distribution of biopotentials on the plant vegetative organs (leaf, stem), F.G. Oloer proposed an ingenious technique for characterization of mutants by: (a) bioelectrical light sensitivity, (b) bioelectrical moisture sensitivity, and (c) bioelectrical thermosensitivity.

It was demonstrated that when the degree of exposure to one or another meteorological factor is varied, mutants tend to adjust (adapt) to new environmental conditions by changing their bioelectrical sensitivity to a particular environmental factor. Differences among mutants in bioelectrical sensitivity are readily detectable under low light intensity. Thus, mutants with dark-green leaf color (No 61 and No 67) exhibited high values of bioelectrical light sensitivity whereas low values were observed in mutants with light-green leaf color (№ 35 and No 149).

With varying air humidity, mutants change their bioelectrical moisture sensitivity. Thus, with relative air humidity ranging from 70 to 90%, bioelectrical moisture sensitivity of both mutants and the control is insignificant or even negative in sign. Outside this range, bioelectrical moisture sensitivity changes abruptly and reverses its sign.

Of particular interest here is mutant No154, whose absolute value of moisture sensitivity is relatively small over a wide range of air humidities. Morphological features of this mutant are its long and narrow leaves which do not twist or wilt even under drought conditions. The opposite is observed in the control: its leaves exhibit severe wilting and twisting under drought.

Of considerable interest is also mutant No56. It has very high bioelectrical moisture sensitivity of negative sign. During the morning dew, it folds its leaves in a peculiar way, like a closed book, thus probably retaining moisture for a longer period of time, resulting in that its leaves do not wilt or twist during drought periods.

Under temperatures ranging from 20 to 30 C, bioelectrical thermosensitivity is relatively low in both mutants and the control. With temperature decrease below 20 C , bioelectrical sensitivity rises sharply. Thus, in mutant No149, bioelectrical thermosensitivity exhibits a sharp increase in the direction of positive sign.

A peculiar feature of this mutation ($\mathrm{No149} \mathrm{)} \mathrm{is} \mathrm{that} \mathrm{on} \mathrm{expo-}$ sure to lower temperatures (15-19 C) its biopotentials decrease, such that its leaves begin to show anthocyan in coloration. In another mutant (No56), under lower temperatures (15-19 C), bioelectrical thermosensitivity continues to be high, but is of negative sign. Biopotentials in this mutant are, nevertheless, higher than in the control.

Analysis of biopotential variation during ontogenesis revealed
that maize plants (both mutants and the control) are capable, in the course of their development, of increasing their biopotentials from $5-30 \mathrm{mV}$ to $50-70 \mathrm{mV}$ at the stages of $3-4$ leaves through flowering. Following the flowering stage, biopotentials start to decrease, being reduced to zero at full maturity.

Most significant differences in the magnitude of biopotentials between the control and mutants are readily observable in the wax stage. Admittedly, some mutants (tall, polyphyllous and multiear) compare favorably with the control in that their biopotentials are higher throughout the growth season.

Interestingly, while analyzing coefficients of correlation between bioelectrical parameters and some breeding characteristics, F. G. Oloer established correlation between biopotentials of mutants during grain filling and their general combining ability ($r=0.75+0.13$) determined by the topcross method.

It proved possible to make early prediction of general combining ability of mutant lines at early stages of ontogenesis. Thus, correlation was established between bioelectrical thermosensitivity at the stage of 5-7 leaves and general combining ability ($r=0.44+0.29$).

Direct correlation was also established between biopotentials of mutants at the grain filling stage and their yielding capacity at full maturity ($r=0.51 \pm 0.26$).

Very interesting data were obtained while examining bioelectrical characteristics of maize mutants following artificial stimulation. Thus, sharp changes in light intensity, temperature or air humidity result in plant biopotential variations. Sunlight is the most powerful stimulant for maize mutants. As short as 10 min shading of maize mutants with an opaque screen against the sunlight induces biopotential oscillations which are not damped until 10 to 15 min later.

It was found that at the beginning of exposure to light (following shading), biopotentials are shifted towards positive values. Most commonly, the first positive amplitude of biopotential oscillations is reached as soon as the first minute of exposure to light. It is at minutes 2 to 7 of light exposure that the biopotential reaches a maximum negative value. It was established that at this point in time the stomata show intensive opening, the biopotential is shifted towards positive values and exhibits a few damped oscillations, equivalent to the original ("shaded") level.

It should be noted that in some mutants biopotential oscillations may last for as long as a few hours. Interestingly, in cases like this, the frequency of biopotential oscillations coincides with the frequency of stomatal pore oscillations.

It must be emphasized that the most important parameter of mutant biopotential variation in the shade-light transition is the first amplitude, which is an indicator of the magnitude and sign of electrical charges formed on leaves in the first minute of light exposure, and the slope of the curve which represents biopotential variation precisely at the initial moment of light exposure.

With increasing light intensity, the first positive amplitude increases, but its growth stops under very high light intensity, and there sets in, as it were, the saturation effect. The rate of biopotential variation is also increased, but without saturation.

It is in the above two parameters that nearly all mutants differ among themselves. They can be classed, as it were, into two groups: (1) mutants superior to the control in these two parameters and exhibiting high intensity of photosynthesis (No61 and No122), and (2) mutants inferior to the control in the above two parameters (No149, No700, and No67).

Of particular interest here is that the curves representing decreasing biopotentials under shading and those representing increasing biopotentials after removal of shading may be regarded as mutant specific.

Ingenious studies with a view to developing techniques for identifying the characteristics of maize mutant lines by kernels were carried out by M.E. Volinsky using the method of extracellular biopotential measurement. He succeeded in demonstrating the possibility of identifying maize mutant lines by sprouting kernels, such that particularly clear-cut results were obtained on exposure of the sprouted kernels to extreme factors, such as temperature (hot water). Curves representing the damping of biopotentials due to mortality of plants from exposure to superhigh doses of extreme factors also proved to be mutant specific.

Acknowledgments: The author is deeply grateful to G.K. Lakhman for translating the text into English.

Influence of selection of haploid sporophyte on reaction of diploid maize population exposed to γ-irradiation
 --Rotarenco, VA, Chalyk, ST

In our work, maternal haploid plants are used in recurrent selection for improvement of two synthetic populations of maize, SA and SP (Chalyk S. T. and Rotarenco V.A., 1999). Selection of favorable genotypes is carried out at the haploid sporophyte level.

There are no inter-allelic interactions at the haploid sporophyte level, i.e. effects of both dominant and recessive genes are displayed. Thus, an effective natural selection is provoked at the haploid level in a population, which clears up unfavorable mutations. The purification of the population from semilethal and lethal recessive genes has a positive effect on its viability and productivity, as well as significantly enhances its combining ability (Strunikov V.A. 1983; Strunikov V.A., Stepanova N.L., 1983; Seryi A.P., Golovin V.P., 1987).

Our work was aimed at the investigation of the reactions of diploid populations derived through haploid recurrent selection to γ-irradiation. To accomplish this, dry seeds of the initial SACO population and the results of two selection cycles, SAC1 and SAC2, were irradiated before planting with four doses, 150 Gr , $200 \mathrm{Gr}, 250 \mathrm{Gr}$ and 300 Gr . Control and irradiated variants were planted in the field on two-row plots $\left(10 \mathrm{~m}^{2}\right)$. Four plant traits were measured after flowering: plant height, ear height, leaf length, and leaf width. Ear traits were measured after harvesting and after drying to normal moisture: seed weight per ear (productivity), ear length, ear diameter, number of seed rows, number of seeds per row, number of seeds per ear, weight of 1,000 seeds, and percentage of seed set. Estimation of the population reaction to irradiation was presented as a ratio to the control. Differences in means between irradiated variants and the control and statistical significance of the differences are presented in the Tables.

Table 1 summarizes the results of the estimation for plant traits and shows that all control for these traits exceeded significantly the means of the irradiation variants, excluding leaf width in the 150 Gr . irradiation variant in the SAC1 population. Reaction of different cycles of haploid selection on γ-irradiation was different. A tendency of the reduction of the difference between control and irradiated variants, was observed for three plant traits: plant height, ear height and leaf length in the SAC1 and SAC2 populations in comparison with the SAC0. The SAC2

Table 1. Excess (\%) of the control over the means of the irradiated treatments for plant traits.

Traits	Populations	Irradiation doses			
		150 Gr.	200 Gr.	250 Gr.	300 Gr.
Plant Height	SAC0	$7.1^{* * *}$	$10.7^{* * *}$	$15.4^{* * *}$	$32.7^{* * *}$
	SAC1	$8.8^{* * *}$	$16^{* * *}$	$31^{* * *}$	$17.4^{* * *}$
	SAC2	$2.5^{* * *}$	$7.4^{* * *}$	$13.7^{* * *}$	$24.6^{* * *}$
Ear Height	SAC0	$16.1^{* * *}$	$41.9^{* * *}$	$117.6^{* * *}$	$131.6^{* * *}$
	SAC1	$6.5^{* * *}$	$14.8^{* * *}$	$84.8^{* * *}$	$52.7^{* * *}$
	SAC2	$3^{* *}$	$9.5^{* * *}$	$29.4^{* * *}$	$77.2^{* * *}$
Leaf Length	SAC0	$12.5^{* * *}$	$18.5^{* * *}$	$19^{* * *}$	$35.8^{* * *}$
	SAC1	$20.9^{* * *}$	$17.5^{* * *}$	$30.9^{* * *}$	$12.9^{* * *}$
Leaf Width	SAC2	$4.4^{* * *}$	$14.9^{* * *}$	$27.6^{* * *}$	$24.7^{* * *}$
	SAC0	$7.3^{* * *}$	$12.1^{* * *}$	$16.8^{* * *}$	$25.1^{* * *}$
	SAC1	$-3.2^{* * *}$	$12^{* * *}$	$31.3^{* * *}$	$12.8^{* * *}$
	SAC2	$5.3^{* * *}$	$28.6^{* * *}$	$24.8^{* * *}$	$25.3^{* * *}$

,* Different from the control at 1% and 0.1% significance level, respectively
population should be mentioned specially, as the differences among the controls for almost all the variants of these traits are significantly lower than in the initial SACO population.

Table 2 presents the assessment of the populations for ear traits. As opposed to the plant traits of the populations, the ear traits, to a larger extent, demonstrate the difference in the population reaction to irradiation. Based on productivity as a trait in which all the ear traits are expressed, it can be noted that the differences in relation to the control were significant in all three populations, but in the SAC1 population these differences were negative for three of the four irradiation treatments, i.e. the productivity of the control was lower than in the irradiated treatments. The difference of the productivity of the irradiated variants and the control in SAC2 population were significantly lower than for the SACO population. An interesting result was found for the weight of 1,000 seeds in the experimental treatments under study. The mean of this trait increased in all the populations, but in the SAC1 and SAC2 populations this increase was several

Table 2. Excess (\%) of the control over the means of the irradiated treatments for ear traits

Traits	Populations	Irradiation doses			
		150Gr.	200Gr.	250Gr.	300Gr.
Productivity	SAC0	52.7***	49.3***	250.1***	254.4***
	SAC1	-36.5***	-11.9***	24.4***	-18.9***
	SAC2	20.6***	39.9***	52.1***	88.7***
Ear length	SAC0	8.5***	9.3***	18.2***	29.1***
	SAC1	-6.6***	$-4^{* * *}$	2.2	-16.6***
	SAC2	1.3***	1.2***	0.8	9.8***
Ear diameter	SAC0	$6.5^{* * *}$	8.9***	18.8***	$27.7^{* * *}$
	SAC1	-7.2***	-1.8**	2.7**	1.2
	SAC2	4.9***	5.5***	10.4***	12.5***
Number of seed rows	SAC0	5.4***	12.8***	9.3***	14.3***
	SAC1	0.6	0.08	0.3	1.2
	SAC2	6***	8***	12.7***	14.1***
Number of seeds per row	SAC0	19.3***	23.5**	$36.1^{* * *}$	46.5***
	SAC1	-3.5**	4.3**	17.9***	-4
	SAC2	7***	11.3***	7.3***	22***
Number of seeds per ear	SAC0	39***	57.3***	198.7***	227.6***
	SAC1	5.5**	30.5***	73.4***	27.5***
	SAC2	28.5***	$63.2{ }^{* * *}$	83.6***	136.7***
Weight of 1,000 seeds	SAC0	5.7***	-9.5***	-6*	-8.1*
	SAC1	-48***	-43.4***	-49.5***	-59.8***
	SAC2	-9.9***	-19.7***	$-24.4^{* * *}$	-29.3***
Seed set	SAC0	-248.6	-311.5	-1964	-1619
	SAC1	-137.3	-208.8	-698.3	-1431
	SAC2	-319.2	-574.2	-1076	-1846

times higher than in the SACO population. We speculated that this is associated with the increase of seed set in the irradiated variants, as compared to the control, but inspection showed that seed set was at the same level for these populations.

This research allows us to conclude that a combination of artificial and natural selection at the haploid sporophyte level significantly improved a population for plant and ear traits, and enhanced the population's resistance to effects of γ-irradiation.

The influence of post-radiation treatments on genetic processes and mutation frequency
 --lkhim, YG

The series of post-radiation factors of a chemical and physical nature were used to study the variability of viability of M1 of maize. These factors were certain biological and synthetic regulators of growth, biologically active substances, electromagnetic irradiation of different frequency, etc. A significant increase was observed for the viability of mutants of the first regeneration under the influence of sublethal doses of irradiation for some variants. The frequency and spectrum of variability of genetic processes induced by γ-irradiation for the same variants was maintained.

In the field experiments for the study of the variability of genetic processes on dependence of a post-radiation factors, the following methods were used. For the revealing of recessive lethal and vital mutations the process of induction of haploid forms was made. As a female form, line 19-3-3 was used and treated with the method mentioned above. As a male form haploid inductor, MH was used. At the first step the variability of the induction was studied. By the marker system of the inductor, hybrid seeds were chosen with pigmentation of the aleurone and an embryo because haploid seeds have unpigmented embryos.

For determination of the frequency of mutations at a locus, a hybrid between the line MK-01 (female form) and the multimarker line $2-9 \mathrm{M}$ was used, marked with seven genes: ws $3(2-0), \lg 1$ ($2-$ 11), gl2 (2-30), y1 (6-17), c1 (9-26), sh1 (9-29), wx (9-59). The staining of the aleurone of F seeds was estimated and the percentage of mosaic forms was counted.

Table 1 shows the variation of the genetic processes induced by the combined action. We have counted lethal mutations in the M2 by calculating the percentage of the plants grown from the number of the seeds sown. We agree that these findings are conditional as there are many factors causing the decreased plant emergence and death under the conditions of a field experiment. However, these figures are of a certain interest. A maximal number, 9%, of viable M2 genotypes was in the treatment Radiation+Crossing, while in the irradiated control the number of organisms carrying lethal damage was 100%. The second line shows the variation of the haploid induction in the 19-3-3 line using the MHI inducer. The findings suggest that this treatment technique may significantly modify the process of haploidy induction. Thus, the treatment Radiation + Phytostim and Radiation+SHF, influencing the plant physiology, changes significantly the percent of haploid seeds. This experiment was set with the aim of determining the number of recessive mutations capable of being displayed only at the haploid level of the organism organization. An experiment using a multimarker line $2-9 \mathrm{M}$ was set with the aim of estimating the mutation frequency per locus or 100,000 gametes which may change in relation to the treatment type. The
line is marked for seven genes and particularly for the C1 locus (chromosome 9). MK-01 treated according to the techniques under study was used as a maternal form. A marker line was used as paternal form. While studying the F1 seeds, mosaicum was detected for the aleurone coloration. The high percentage of mosaics in the control suggests the presence of mobile elements in the genotype, but the exact kind of elements will be determined in the future. However, it is interesting to know to what extent this combined effect may influence the display of mosaicism. It is enough to compare the number of mosaics in the radiated control and Radiation+SHF treatment.

Table 1. Induction of variability of genetic processes by combined treatments.

	Control	Radiated control	$\gamma+$ Crossing	$\gamma+$ Phytostim	$\gamma+$ EF	$\gamma+$ SHF
Lethal mutations in M2, \%	0	100	91.19	98.45	94.90	95.73
Induction of haploidy in M2,\%	5.38	5.37	5.32	6.58	5.92	4.19
Mosaic of aleurone coloration in F1,\%	2.63	0.59	1.19	2.69	3.32	6.35

Table 2 shows the results of the investigation of the lethal recessive mutations and the mutations of the C1 locus of the MK-01 X 2-9M hybrid. The utilization of the haploid level allows the discovery of recessive mutations, particularly, lethal events. The percentage of surviving plants is expressed in relation to the number of seeds sown. The results show that the post-radiation treatments with the "Crossing" growth regulator do not reduce the number of mutations in comparison with the irradiated control, which has confirmed our cytological investigation (Ikhim, YG, MNL 74, 2000). This confirms that this growth regulator has an effect at the physiological level, without having a direct impact on genes. The post-irradiation treatment with SHF decreases significantly the level of lethal events. A similar pattern is observed in the research of the mutation number at the C 1 locus. However, the frequency level has increased by 2-3 orders in all treatments.

Table 2. Mutation percentage at the utilization of combined treatments

Variants	Lethal recessive	C1
Control	86.59	0.0000
Radiated control	96.78	0.0658
$\gamma+$ Crossing	96.97	0.0988
$\gamma+$ Phytostim	100	0.0625
$\gamma+$ EF	95.24	0.0922
$\gamma+$ SHF	85.72	0.0453

The results presented show that it is reasonable to use postirradiation treatments to modify viability of the first generation mutations and, notably, of the factors under study.

Digenic control of lemon colour of aleurone in maize grains

--Mihailov, ME, Chernov, AA
In the previous letter (MNL, 73) it was reported that the Lm1 gene causes lemon coloration of the maize aleurone.

The Lm1 line carrying genotype Lm1 +/+ y1-/- (lemon aleurone and white endosperm) was crossed with a $2-9 \mathrm{~m}$ line (genotype Lm1 -/- y1/-). The self-pollinated F3 ears were produced on 149 F2 plants. On 14 F3 ears all the grains were violet due to the genotype of the mother plant ($\mathrm{C} 1+/+\mathrm{R} 1+/+$). The
remaining 135 ears were divided into 4 classes: 1) 9 ears: all the grains are lemon; 2) 18 ears: the grains are lemon and white in a $3: 1$ proportion; 3) 50 ears: the grains are lemon and white, the proportion of lemon grains is $0.20-0.50$; 4) 58 ears: all the grains are white. These numbers of classes correspond to a 1:2:6:7 ratio, and suggest digenic inheritance. So, we propose a second gene for lemon color (named Lm2). A positive allele originates from the Lm1 line, a negative one from the 2-9m line. The genotype of the mother F2 plant would be: Lm1 +/+ Lm2 +/+ for class 1; Lm1 +/- Lm2 +/+ for class 2; $L m 1$ +/+ Lm2 +/- and Lm1 +/- Lm2 +/- for class 3; Lm1 -/- Lm2~ and Lm1~ Lm2 -/- for class 4.

In class 3 the color intensity is highly variable, and classification is essentially more difficult than in class 2 . Usually a relatively homogenous group of grains of maximal intensity (0.05-0.30 of total family volume) exists in class 3 . This suggests that the action of the Lm2 gene essentially depends on gene dose: 1 dose provides no coloration, 2 doses provide slight coloration and only 3 doses provide maximal coloration.

The Lm2 locus remains unlocated. Linkage with the loci of chromosomes 9 (sh1, wx1) and 10 (R1) was not detected.

> COLUMBIA, MISSOURI University of Missouri

Fast, simple, inexpensive, safe and reliable method to prepare maize samples for PCR
 --Carson, CB, Coe, EH, Jr. ${ }^{1}$
 1USDA-ARS

The Missouri Maize Project at the University of Missouri includes a component that seeks to map as many as possible from a large set of relatively uncharacterized mutants. The following method has been used routinely to obtain SSR marker map data, using PCR and 4.5\% SFR-agarose gel electrophoresis, from large numbers of small, individual samples. We have chosen a DNA preparation method that does not involve organic extraction or alcohol precipitations, but instead uses a crude, preserved preparation. The method is fast, simple, inexpensive and safe. Samples prepared in this manner are as effective as purified DNA samples. The original method was presented in Steiner et al. (Nucl. Acids Res. 23:2569-70, 1995).

This method provides samples for PCR using 96-well titer plates and 12-channel pipettes, but it can also be used for samples in individual tubes. Our routine method for grinding tissue for DNA extraction involves freeze-drying followed by pulverizing with glass beads. While freeze-drying is preferred, this method has been used successfully without freeze-drying, see below. Specified equipment includes a Mini-Bead-Beater-8 to agitate tubes and plates, and a tool for loading glass beads into 96 -well plates.

Tissues that are successfully and routinely processed for SSR-PCR mapping: developing endosperms and embryos; seedling leaf tissues; immature lateral branch buds and ear shoots; leaves from maturing and adult plants; punches from mature freeze-dried leaves.

Sample size: 0.1 grams fresh weight samples into 1.5 ml tubes or 1 ml deep 96 -well plates. This is generally equivalent to 10 20 mg dry weight. Mature maize leaves that were previously freeze-dried have also been used by collecting 20 mg samples with
a paper punch. When using 96 -well plates, care to prevent crosscontamination of samples is necessary at this stage.

Freeze-dry: Samples in 96-well plates or tubes are first completely frozen (liquid nitrogen or ultracold freezer), and are then freeze-dried. The dried samples are stable and easy to store before processing and provide a more concentrated (DNA) sample than fresh tissue.

Grinding: Next, three 3mm glass beads per tube/well are added. To save time and headache a tool was built on campus to add beads to all 96 -wells at one time (see below). The dried samples are pulverized by the beads. We use a Mini Bead-Beater8 that has been modified by the company to hold 1 ml deep 96 -well microtiter plates. Grinding takes only a few minutes for most tissues.

Extraction and preservation: The pulverized samples are then treated with ROSE solution at 90 C. The ROSE solution has SDS for lysis, a high concentration of EDTA to preserve the sample, and insoluble PVPP to bind and exclude inhibitory phenolic compounds. Before each use ROSE must be mixed to distribute the insoluble PVPP equally.

Rapid-One-Step-Extraction Solution (ROSE): 312.5 mM EDTA; 10 mM Tris, pH 8; 1\% SDS; 1% insoluble polyvinylpolypyrrolidone (PVPP) (w/v). Add 200uL ROSE solution to each sample and mix well to wet the powdered tissue samples. Then the samples are heated to 90 C in a water bath for 20 min utes with additional regular mixing. The samples may then be cooled rapidly at 4 C for 5 minutes to use immediately. The cooled samples can be stored cold or frozen, but we find that they are stable at laboratory temperature indefinitely.

Dilution: Dilution reduces the concentration of EDTA and SDS. Using wide bore pipette tips, we remove 3uL from the liquid portion of recently mixed samples, and dilute 200 -fold into 600uL sterile water containing 1% PVPP. The diluted samples are thoroughly mixed and the PVPP is allowed to settle. PVPP can inhibit the PCR reaction. Diluted samples are less stable than the original crude concentrated ones.

PCR, agarose gel detection of SSR alleles: The method for PCR is described in detail at the MaizeDB website: ftp://ftp.agron.missouri.edu/pub/methods/ssr_methods.html. From the diluted sample, we use $2 u \mathrm{~L}$ in a 15 uL PCR reaction. Because primer sets do not always have exactly the same optimum annealing temperatures, we typically use 10 cycles with 1 C decremental annealing temperatures, from 65 C to 55 C , followed by 30 cycles at 55 C . ROSE treated samples diluted 200 -fold have 0.2 mM EDTA, which reduces the effective Mg2+ concentration, but does not interfere. To resolve PCR products we use 4.5\% SFR-agarose (Amresco) gels made with 1X TBE and 0.27 ug ethidium bromide per 150 mL gel.

Additional Considerations: Samples are relatively insoluble. We always mix the samples thoroughly and allow a minute or longer for the bulk of tissue debris to settle. Routine mixing provides equivalent, uniform samples, especially when using 12-channel pipettes. When pipetting from crude samples in ROSE solution, we use pipette tips with a slightly larger diameter tip; or, cut the tip ends from standard ($1-200 \mathrm{ul}$) tips with scissors. Because the samples can sometimes clog the tips of standard narrow-bore pipette tips, this helps to reduce differences between samples. In addition, crude samples should not be centrifuged, because the bulk of the DNA is probably still associated with insoluble cellular debris.

Alternative method to freeze-drying: We have explored using cellulase treatment of fresh tissue as an alternative to freezedrying and have had good results. For each sample, add ($\sim 50 \mathrm{ul}$) 1% cellulase in pH 6.5 buffered solution to thoroughly wet 0.05 0.1 g tissue, incubate at 37 C for $1-2$ hours, then freeze. The ROSE solution is added directly to these samples. A higher concentration ROSE solution (391mM EDTA, 0.012 mM Tris, 1.25% SDS, and 1.25 \% PVPP) may be used. The samples can then be treated as described above, if briefly homogenized by hand with a small pestle.

Equipment sources: DynaBlock1000 96-wells, 1 ml deep with cap-mat lids: Research Products International Corp., Mt. Prospect, IL 60056-2190, www.rpicorp.com

Lyophilizers: Labconco, Kansas City, Missouri 64132-2696, www.labconco.com

Mini-BeadBeater- ${ }^{\text {TM }}$ modified for 96 -well plates ($<\$ 2000$): BioSpec Products, Inc., Bartlesville, Oklahoma 74005-0788, www.biospec.com

3 mm glass beads: Jaygo, Inc. Union, NJ 07083, www.jaygoinc.com

Bead counter to add beads to 96 -well plates (\$550): University of Missouri, Science Instrument Machine Shop, Columbia, MO 65211, www.research.missouri.edu/web_research/ internal_funding/res_facil/machines.html

Mapping the leaf burn1 mutant

--Carson, CB, Robertson, J, Bennett, J, Melia-Hancock, S, Coe, EH, J. ${ }^{1}$
1USDA-ARS
The bu1 (leaf burn1) mutant has a phenotype where leaves show burning, sometimes in horizontal bands, that is accentuated by high temperature. bu1 was first identified by Galinat et al. (Galinat, WC, Chandravadana, P, Starbuck, J, MNL 52:58-59, 1978), but had not been mapped. Using an informative set of SSR markers and a bulk segregant analysis technique to examine pools of mutants compared to pools of normal sibling samples, we found that bu1 is located on chromosome 7, bin 2. Further, one marker, phi034, shows no crossovers with the bu1 locus when individual homozygous mutants are examined (see below). The phi034 SSR is found in cyp6, a cytochrome P450 gene on chromosome 7. Given the phenotype of bu1 and no crossovers, cyp6 becomes a strong candidate for the leaf burned1 gene.

F1: A619 x bu1: no crossovers detected between phi034 and bu1, in 24 F2 bu1/bu1 individuals

F1: Mo17 x bu1: no crossovers detected between phi034 and bu1, in 16 F2 bu1/bu1 individuals

> COLUMBIA, MISSOURI
> University of Missouri
> URBANA, ILLINOIS
> University of Illinois and USDA/ARS

Genetic mapping of zebra3

--Rugen, M., Stinard, PS, Cone, KC
The recessive zebra3 (zb3) phenotype is apparent as a distinct light-green crossbanding on seedling and adult leaves of the maize plant. In an earlier study (MNL 73:23), we showed that pre-
vious reports that zb3 maps on 5L were incorrect. To determine the correct map location, zb3 was crossed by a series of TB stocks; the results indicated that $z b 3$ is on the short arm of chromosome 1. For more specific localization, we used molecular segregation analysis. We generated a segregating population by crossing zb3 (Coop stock 519G) to a W23/L317 hybrid and then selfpollinating the F1 to generate an F2. F2 seed were planted and the phenotypes scored; 27 of 100 plants had the zb3 phenotype. DNA was isolated from the zb3 plants, digested with restriction enzymes, blotted and probed with markers from chromosome 1S. The following data were obtained:

probe	\#chromosomes tested		\# crossovers	
recombination frequency (\%)				
tub1	54		0	0
asg31	54	3	5.6	
umc157	54		2	3.7
asg45	54		8	14.8

We conclude that $z b 3$ is tightly linked to tub1.

COLUMBUS, OHIO
Ohio State University

The C-terminal domain of the maize P1 gene has a putative activation domain

--Smialek, JL, Hernandez, JM, Grotewold, E
In maize, the flavonoid biosynthetic pathway has two main branches, which result in the accumulation of the phlobaphene or anthocyanin pigments. The P1 gene regulates the phlobaphene biosynthetic pathway, and $C 1 / P 1$, in conjunction with $R 1 / B 1$, regulate anthocyanin biosynthesis. P1 and C1 encode Myb-domain transcription factors, whereas R1 encodes a bHLH protein (reviewed in Mol et al., Trends Plant Sci. 3:212-217, 1998). Both Myb-domain proteins are capable of binding to the promoter of the A1 genes and activating transcription. However, unlike C1, no co-activator has yet been identified for P1.

Previous research indicated that the Myb domain is responsible for the DNA-binding activity (Grotewold et al., Cell 76: 543-553, 1994) and DNA-binding specificity (Grotewold et al., PNAS 97: 13579-13584, 2000) of P1. The P1-encoded protein contains an acidic region in the non-Myb C-terminal portion, between amino acids 207 and 242, suspected to serve as an activation domain (Grotewold et al., Proc. Natl. Acad. Sci. USA 88: 4587-4591, 1991). Chopra and co-workers (Plant Cell 8: 1149-1158, 1998) found that other alleles of $P 1$ retain this region, providing further evidence of its significance for the $P 1$-regulatory function. Although the $P 1$-wr and $P 1$-rr alleles differ in their C-terminal ends, the proteins that they encode contain identical Myb DNAbinding domains as well as identical acidic regions.

To more precisely define the regions in P1 important for its regulatory activity, truncations of the protein were generated. These truncations were cloned under a CaMV 35S promoter, and each truncation was then tested for its ability to activate a construct containing the A1 promoter driving the expression of the luciferase gene in transient expression assays as described (Grotewold et al. PNAS 97: 13579-13584, 2000). Figure 1A illustrates the position of the termination points of each construct. $P 1$ provides the full-length protein, serving as a positive control. P^{1-152} excludes the putative activation domain, P^{1-231} contains

B

Figure 1. (A) Various truncations made of the P1 gene, outside of the Myb domain in the Cterminal region. Numbers indicate amino acid termination points of each truncation. The putative activation domain spans from amino acid 207 to 242 and it is represented as a black box. (B) Levels of activation of the luciferase gene driven from the A1 promoter by P1 and the truncation constructs in transient expression experiments carried out in BMS cells.
approximately two thirds of it, and P^{1-321} and P^{1-394} contain the entire putative activation domain. As shown in Figure 1B, only those constructs which include the entire putative activation domain were able to activate transcription from the $A 1$ promoter. P^{1-231} was not able to activate in spite of the fact that it contains about two thirds of the acidic region. These results suggest that residues in the region between amino acids 231 and 321 are essential for P1 activity, and that residues C-terminal to 321 can be deleted without a significant loss in P1 activity. Interestingly, this C-terminal part of $P 1$ is the region that is different between the $P 1-r r$ and $P 1$-wr alleles, which show distinct pigmentation patterns in the pericarp and cob tissues. Currently, experiments are underway to show whether the acidic region (207-242) is responsible for the essential nature of the 231-321 region.

> CORVALLIS, OREGON Oregon State University

Evolution of new targeting specificity in duplicate genes for tetrapyrrole biosynthesis

--Williams, P, Hardeman, K, Rivin, CJ
Duplication of a gene provides an opportunity for genetic change without sacrificing essential gene function. We have examined duplicate genes in maize that encode coproporphyrinogen III oxidase (CPX), which catalyzes an essential step in the synthesis of tetrapyrroles. We looked at the sequence and expression patterns of the two genes, which we are calling Cpx1 and Cpx2, and we are characterizing the phenotypes of mutations in these loci to learn whether their products and/or biological roles have become divergent. Although the predicted amino acid sequences of the mature enzymes are almost identical, we found that the targeting information for each is unique and is likely to result in localization to different organelles. The expression patterns and the mutant phenotypes of the two genes are also distinctive. From all our
data, we hypothesize that the Cpx1 product plays the major role in the production of porphyrins in the chloroplast, while the product of C px2 has an uncharacterized role in the mitochondrion.

Coproporphyrinogen III oxidase is the eighth enzyme in the biosynthesis of tetrapyrroles in plants, catalyzing the oxidative decarboxylation of coproporphyrinogen III to protoporphyrinogen IX (Reinbothe, S. and Reinbothe, C. Plant Physiol 111:1-7, 1996). In plants, this and the earlier porphyrin biosynthetic steps are reported to take place exclusively in the plastid, where protoporphyrinogen IX can be converted to the first intermediate specific to chlorophyll biosynthesis or be processed towards the production of heme. Heme in the chloroplast serves as the precursor to the phytochrome chromophore, as well as providing for the synthesis of photosynthetic cytochromes. Protoporphyrinogen IX can also be exported from the plastid to the mitochondria where it is also converted into heme.

We cloned two genes encoding coproporphyrinogen III oxidase from maize. Using RFLP with recombinant inbreds, the genes were mapped to syntenous regions of chromosome 2 S and 10 L (Hardeman, K. et al., MNL 70:20-21. 1996). We have the entire genomic and cDNA sequence for Cpx1, which consists of 8 exons. For Cpx2, we are still missing the sequence for the last 3 exons. Sequence comparisons between the mature enzyme-encoding regions of the genes indicate a very strong preservation of identity, so that no portion of the proteins are less than 97% identical, including three highly invariant domains believed to be enzymatically critical. However, the N-terminal extension carrying the targeting information for each protein is unique and predicts targeting of the enzymes to different organelles.

The Cpx1 gene encodes an N -terminal extension to the mature enzyme sequence that has the features of a chloroplast target peptide, as expected from studies in other plants (Madsen, O. et al., Plant Mol Biol 23:35-43, 1993; Kruse, E. et al., Planta 196:796-803, 1995). In Cpx2, however, 150 base pairs of this sequence are deleted, cleanly eliminating the transit peptide. Just 5^{5} of this deletion, there is very substantial homology between the genes, but a series of small deletions/additions distinguish them. As shown in the figure, 5 ' UTR sequences of Cpx 1 are homologous to an open-reading frame, headed by a methionine codon in Cpx2. This ORF is contiguous with the first exon, forming an N -terminal extension.

To test whether the N-terminal extension of CPX2 has potential targeting information, we applied a series of algorithms designed to look for and distinguish N -terminal peptides for chloroplast, mitochondrial and exported proteins. Using the PSORT,

Figure: Alignment of 5' UTR and exon 1 DNA sequences of the $C_{p x 1}$ and $C_{p x 2}$ genes. The boxes show homologous DNA sequences and lines represent non-homologous sequences. Dashed lines indicate the alignment of homologous DNA. Putative 5' UTR (white), translation starts (ATG), code for the organellar targeting peptides (grey), code for the N end of the mature enzyme (black).

ChloroP, TargetP, and Predotar programs (Nakai, K. and Kanehisa, M. Genomics 14:897-911, 1992; Emanuelsson, O , et al., Protein Science 8:978-984, 1999; Emanuelsson, O. et al., JMB 300:1005-1016, 2000; Peeters et al., 1999, submitted), the CPX2 protein was strongly rejected as a chloroplast protein, and strongly predicted to be mitochondrial in location. To experimentally test this idea, we fused the putative Cpx 2 N -terminal extension sequence to GFP to make a reporter gene driven by the 35 S promoter, and introduced the construct into leaf epidermis biolistically. The GFP was found in small, dispersed spots, of a size and distribution that matched that seen when GFP was fused with a bona fide mitochondrial targeting peptide from CoxIV. We hypothesize, therefore, that a series of mutations has changed the targeting information and thereby the location of the coproporphyrinogen III oxidase encoded by Cpx2, but we have not yet demonstrated CPX activity in maize mitochondria.

In order to distinguish roles for Cpx1 and Cpx2, we looked at their expression patterns and we have begun to characterize the phenotypes of mutants in each gene. Using a semi-quantitative RT-PCR for detection, both Cpx mRNAs could be found in root, shoot, vegetative and reproductive tissue. The quantity of Cpx 2 message did not vary much from tissue to tissue, and was at a similar level to Cpx1 in non-green tissue. However, Cpx1 mRNA was found at a level approximately three-fold higher than Cpx2 in leaf tissue. A Mu8-induced mutant in the Cpx1 gene was initially characterized in tandem with a very closely linked dek mutation (Hardeman, K. et al., MNL 1996). The dek seeds germinated into yellow seedlings whose leaves became necrotic, leading to plant death within about 2 weeks. This yellow phenotype is consistent with the function of CPX1 in the production of chlorophyll, and the necrotic phenotype is expected when blockage of the porphyrin pathway produces phototoxic tetrapyrrole intermediates. These phenotypes have also been reported for the Necrotic-4 locus (Hoisington, DA and Neuffer, MG, MNL 57: 159-160, 1983) which maps to the same small interval of chromosome 2 . In a complementation test, one quarter of the cross progeny had a yellow, necrotic phenotype, indicating that Nec4 is probably the locus encoding coproporphyrinogen oxidase. In other plants examined, there is a single gene for coproporphyrinogen oxidase, and the enzyme activity is exclusively in the chloroplast. From the putative transit peptide, expression pattern, and mutant phenotype, we hypothesize that this is the role of the Cpx1 gene product.

Using the TUSC system in collaboration with Pioneer HiBred Inc., a line was found carrying a $M u$ insertion in the first exon of Cpx2 (cpx2-578). This mutant is viable and fertile as a homozygote, although we have not detected any normal mRNA produced from the $c p \times 2-578$ allele. The biological role associated with CPX2 is mysterious, but the strong conservation of the presumed active site sequences indicates that it encodes a working coproporphyrinogen oxidase, but of unknown function. It cannot compensate for a mutation in Cpx1. Perhaps earlier steps of tetrapyrrole biosynthesis occur in the maize mitochondrion than have been seen in other plants. Or, perhaps the Cpx2 coproporphyrinogen oxidase serves to detoxify superfluous tetrapyrroles in the mitochondrion. We are still crossing the extraneous Mu elements out of the cpx2 mutant line, so we are not yet sure whether there are milder phenotypes associated with it.

FORT COLLINS, COLORADO
 Colorado State University

Recombination frequency for maize inbred line KYS using recombination nodules
 --Anderson, LK, Stack, SM

Recombination nodules (RNs) have been demonstrated to faithfully reflect crossovers in a wide range of organisms. In order to examine the distribution of crossing over at the highest possible cytological resolution (using electron microscopy), we are preparing a map of RNs on synaptonemal complexes (SCs) from the inbred line KYS. To date, we have identified more than 1000 SCs (approximately 100 of each of the 10 SCs) that we are using to map RNs. While the mapping effort is still underway, there is sufficient data to present a summary of the results (Table 1).

[^0]| SC | Relative length | Average Number
 of RNs | Predicted map
 length - RNs | Map length
 -genetic map |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 14.9 | 2.54 | 127.0 | 258 |
| 2 | 11.9 | 2.39 | 119.5 | 224 |
| 3 | 11.0 | 2.20 | 110.0 | 216 |
| 4 | 10.7 | 2.09 | 104.5 | 172 |
| 5 | 10.9 | 2.20 | 110.0 | 185 |
| 6 | 8.9 | 1.75 | 87.5 | 144 |
| 7 | 8.6 | 1.77 | 88.5 | 128 |
| 8 | 8.6 | 1.81 | 90.5 | 177 |
| 9 | 7.7 | 1.83 | 91.5 | 178 |
| 10 | 6.7 | 1.62 | 81.0 | 174 |
| Total | 99.9 | 20.2 | 1010 | 1856 |

The average number of RNs per SC set is 20.2. This compares well with estimates of 18-27 chiasmata per cell (Beadle, G.W. 1933, Cytologia 4:269-287; Darlington, C.D. 1934, Z. Indukt. Abstammungs Vererbungsl. 67:96-114). In addition, SC length is a good predictor of average RN number ($y=0.12 x+0.78 ; r^{2}=$ 0.92), an observation that is consistent with prior observations made in a number of different organisms. In general, regardless of SC length, if there is only one RN on an SC, it is more often in the long arm than in the short arm. If there are two RNs on an SC, usually there is one RN in the long arm and one RN in the short arm. If there are three RNs on an SC, the most common pattern is for one RN to be in the short arm and two in the long arm. If there are four RNs on an SC, two RNs in each arm or three in the long arm and one in the short arm occur at about the same frequency. SCs with more than four RNs are rare. Overall, most RNs occur in the distal third of each SC arm. The predicted map length for maize KYS based on RN frequency is (\# RNs X 50 map units =) 1010 map units. In comparison, the genetic map for maize is almost twice as long at 1856 map units (Maize DB). This difference may be due to genetic versus cytological techniques and/or differences in the crossover rate in an inbred (KYS) compared to hybrids. To determine the basis of this difference, we will examine the number and distribution of RNs on SCs from B73, Mo17, and B73 X Mo17. This work was supported by NSF grant MCB-9728673.

Synaptonemal complex karyotype for maize

--Anderson, LK, Stack, SM
We are mapping the distribution of recombination nodules (RNs) on spreads of maize (KYS) synaptonemal complexes (SCs
= pachytene chromosomes) using electron microscopy. Since RNs occur at sites of crossing over, an RN map will show the frequency and distribution of crossing over on each chromosome. This will be useful for integrating molecular, genetic and cytogenetic maps for maize. As a necessary prerequisite for mapping RNs, it is necessary to identify each of the ten maize SCs. While several different characteristics can be used to identify squashed maize pachytene chromosomes (including relative length, arm ratio, chromomeres, knobs, nucleolar association), only relative lengths and arm ratios can be used to identify maize SCs because the other features are usually lost during the spreading procedure. Nevertheless, we have observed a good correspondence between the SC karyotype and the pachytene karyotype that is based on squashed chromosomes (Freeling, M. and Walbot, V., Eds., The Maize Handbook, 1994; Table 1). The most noticeable difference

Table 1. Karyotype from pachytene chromosome squashes compared to karyotype from SC spreads.

Chromosome or SC rank	Pachytene Chromosome squashes		SC spreads	
	Arm Ratio	Relative Length (\%)	Arm ratio	Relative Length (\%)
1	1.23	14.5	1.25	14.9
2	1.14	12.4	1.08	11.9
3	2.0	11.3	1.97	11.0
4	1.63	11.1	1.54	10.7
5	1.07	11.1	1.10	10.9
6	3.1	7.7	2.57	8.9
7	2.6	8.9	2.73	8.6
8	3.0	8.9	3.05	8.6
9	2.0	7.7	1.93	7.7
10	2.6	6.3	2.45	6.7

between the two karyotypes is for chromosome/SC 6. It is possible that the large nucleolus that is present in squashes (but dispersed in SC spreads) may obscure part of the short arm of chromosome 6 and result in a shorter relative length and larger arm ratio for squashes compared to spread SCs. This work was supported by grant MCB-9728673 from the National Science Foundation.

HAMBURG, GERMANY
 University of Hamburg

Identification of genes induced during early kernel development in Zea mays (L.)

-Lorbiecke, R, Kukula, J, Paul, C, Wienand, U
The identification of seed specific genes from maize endosperm is currently of growing interest to provide more efficient approaches for plant improvement. To get more insight into the regulation of endosperm and kernel development we performed a PCR-based subtractive hybridization based on the method described by Buchanan-Wollaston and Ainsworth (Plant Mol. Biol. 33:821-834, 1997). cDNAs for driver and target populations were synthesized using mRNAs from kernels 0 and 8 days after pollination. The enriched cDNA fragments were cloned and further screened for differentially regulated genes by dot blot hybridization using driver and target cDNAs as probes. Based on this screening we estimated that about $30-40 \%$ of the subtrac-tion-enriched cDNAs represent differentially regulated genes. So far, all cDNA fragments cloned are different in sequence.

Northern analysis confirmed an induced, transient expression
pattern of the genes analyzed, showing the efficiency of the subtraction and screening procedure. In addition, most of the isolated genes showed strongest expression in developing kernels and weak or no expression in other tissues analyzed, i.e. tassels, silks, leaves or young plants. Database searching led to the identification of new genes involved in lipid metabolism and pathogen response as well as genes already known to be endosperm specific, i.e. BETL2 Hueros et. al (1999).

Small transposable elements isolated from transcripts of the intensifier alleles in and In-D

--Pusch, I, Herrmann, M, Hoogvliet, O, Prause, A, Scheffler, B^{*}, Lorbiecke, R, Wienand, U
*USDA, ARS, Natural Products Utilization Research Unit
Sequence analysis of clones of the recessive intensifier allele in and the dominant allele Intensifier-Dilute (In-D) revealed the presence of small transposable elements in the genomic and cDNAs of both alleles. In allele In-D, a 122 bp transposable element called $B E B$ is present in exon 6 of this allele. $B E B$ is also found in transcripts of $I n-D$ and leads to non-functional proteins. The BEB element has also been found in a seedling cDNA isolated from a W22 color converted line (Line C). The insert is absent in an EST clone isolated from a tassel cDNA library of line Oh43. A 315 bp transposable element called ROH was found in the misspliced transcripts of the recessive allele in. The ROH element is integrated at the 3^{\prime} end of the second intron of in and was also found in truncated transcripts of in. The termination of in mRNAs in the second intron might be due to a poly-adenylation site in the ROH element. So far no other sequence homologies to the $R O H$ and $B E B$ elements have been found in the reported maize genome.

Characterisation of ZmKCS-1 and ZmKCS-2, two β -ketoacyl-CoA-synthases from maize, possibly involved in seedling wax biosynthesis

--Frenzel, K, Janke, SA¹, Brettschneider, R, da Costa e Silva, O^{2}, Wienand, U
${ }^{1}$ Eppendorf-Netheler-Hinz GmbH
${ }^{2}$ BASF Plant Science LLC (Present address)
The epicuticular wax layer on plant leaves is a heterogeneous mixture of polymers synthesized in different biosynthetic pathways. Some components are derived from the fatty acid elongation pathway (Bianchi et al., Maydica 30:179-198, 1985). Fatty acids are elongated by a complex of four enzymes which successively add two carbon units to fatty acids. The B-ketoacyl-CoAsynthase (β-KCS) is a condensing enzyme that plays a key role in the fatty acid elongation complex (Millar et al., Plant J. 12:121131, 1997).

Two different cDNAs ZmKCS-1 and ZmKCS-2 from maize, with high homology to the Cut 1 gene from A. thaliana (Millar et al., Plant Cell 11:825-838, 1999) and various other plant B-KCSs, were isolated from a cDNA-library of germinating kernels and a cDNA-library of young seedlings. The two cDNAs show a high sequence similarity in the coding region but are differently expressed in the endosperm of germinating kernels, in young seedlings and in tassels. There is no expression in adult leaves and developing kernels.

Overexpression of ZmKCS-1 in yeast did not lead to a change
in long chain fatty acid. This observation and the particularly high homology to the wax biosynthesis related B-KCS Cut 1 from A. thaliana as well as the high expression of both genes during germination indicates an involvement of ZmKCS-1 and ZmKCS-2 in the biosynthesis of seedling wax precursors.

Antisense experiments in maize were carried out within a partial clone of ZmKCS-1. Young transgenic seedlings showed small changes in leaf wax composition. The precise gene function, however, remains unclear and has to be further examined.

The Etched1 gene product of Zea mays contains a zinc ribbon-like domain and is homologous to the eucaryotic transcription elongation factor TFIIS

--da Costa e Silva, O¹, Garg, P, Wassmann, M, Lorbiecke, R,
Lauert, P, Peters, U, Scanlon, M², Hsia, A-P3, Wienand, U
${ }^{1}$ BASF Plant Science LLC (Present address)
${ }^{2}$ University Georgia
${ }^{3}$ Iowa State University
Etched1 (et1) is a pleiotropic mutation in maize affecting endosperm and seedling development. et1 kernels are fissured and cracked and et1 seedlings appear virescent until approximately two weeks after germination. The etched 1 gene was identified from a Mutator-induced mutant allele using the AIMS (amplification of insertion mutagenized sites; Frey et al., Plant J. 13:717-721, 1998) technique. Several mutant alleles as well as the wild-type allele were cloned and analyzed molecularly. The etched 1 gene is about 3 kb in size and contains 4 exons. Expression analysis revealed transcripts, approximately 800 bp in size, in wild-type endosperm and leaves. The putatively encoded protein is 163 amino acids in length. It contains a zinc ribbon-like domain and shows homology to the eucaryotic transcription elongation factor TFIIS. The mRNA has been localized by in situ experiments in the outer cell layers of the endosperm. Organelle localization experiments revealed that the ETCHED1 protein is transported into the stroma of chloroplasts. From the analyses of the etched 1 gene we conclude that the ETCHED1 protein may be part of a transcription complex involved in plastid development.

IRKUTSK, RUSSIA
Siberian Institute of Plant Physiology and Biochemistry

The study of cold shock protein CSP 310 function in maize mitochondria
 --Grabelnych, OI, Pobezhimova, TP, Kolesnichenko, AV,
 Voinikov, VK

Previously the presence of cold shock protein CSP 310 and CSP 310-like proteins in maize mitochondria was established (Kolesnichenko et al., J. Therm. Biol., 25:203-209, 2000). It was found that cytoplasmatic CSP 310 caused uncoupling of oxidation and phosphorylation (Voinikov et al., J. of Thermal Biology. 23:1-4, 1998) because of its association with mitochondria (Kolesnichenko et al., J. Plant Physiol., 156:805-807, 2000). CSP 310 was found in maize mitochondrial proteins in lower amounts than in cold-resistant winter rye and winter wheat. The aim of the present work was to study an influence of cold shock, stress protein CSP 310 and anti-CSP 310 serum on the energetic activity of maize mitochondria.

Mitochondria were extracted from winter wheat shoots by differential centrifugation as described previously (Pobezhimova et al., J. Therm. Biol. 21:283-288, 1996). The activity of mitochondria was recorded polarographically at 27 C using a platinum electrode of a closed type in a 1.4 ml volume cell. The study of an influence of cold shock ($0 \mathrm{C}, 1 \mathrm{~h}$) on the energetic activity of maize mitochondria showed that cold shock caused slight uncoupling in mitochondria. If the rate of non-phosphorylative (state 4) respiration was $27.8 \pm 1.5 \mathrm{nMol} \mathrm{O}_{2} / \mathrm{mg}$ of mitochondrial protein and respiratory control coefficient (RC) was 3.76 ± 0.12 in nonstressed mitochondria, then in mitochondria isolated from stressed shoots these values were $33.5 \pm 1.6 \mathrm{nMol} \mathrm{O} \mathrm{O}_{2} / \mathrm{mg}$ of mitochondrial protein and 3.35 ± 0.02, accordingly.

The study of an influence of CSP 310 on the energetic activity of isolated maize mitochondria showed that an addition of 0.5 mg CSP 310 per 1 mg of mitochondrial protein after 60 min incubation caused a significant increase of state 4 respiration (from 27.8 ± 1.5 to $45.1 \pm 1.1 \mathrm{nMol} \mathrm{O}_{2} / \mathrm{mg}$ of mitochondrial protein) and a decrease of RC value from 3.76 ± 0.12 to 2.32 ± 0.11. So, we can suppose that uncoupling observed during cold stress can be caused by CSP 310 association with mitochondria in vivo.

To verify this presumption we studied an influence of antiCSP 310 serum on energetic activity of maize mitochondria. The results obtained showed that if non-immune serum failed to result in any changes in mitochondrial energetic activity, anti-CSP 310 serum caused significant coupling of oxidation and phosphorylation in maize mitochondria. RC coefficient after this treatment increased up to 7.0 ± 1.5.

Based on the data obtained we can conclude that the maize defense mechanism against cold stress is associated with uncoupling in mitochondria caused by cold stress protein CSP 310.

An influence of cold stress on temperature of maize shoots

--Kolesnichenko, AV, Pobezhimova, TP, Grabelnych, OI, Tourchaninova, VV, Voinikov, VK
It was earlier considered that, because of the particularities of the organism, plants are not able to adjust their temperature. However, in the 60's it was found that during the blossoming of Aroide, strong activation of alternative cyanide-resistant respiration causes thermogenesis to occur (Wilson, Smith, Z. Pflanzenphysiol. 65:124-129, 1971). This fact allowed some researchers to suggest that cyanide-resistant alternative oxidase can also participate in processes of plant thermoregulation during low-temperature stress (Vanlerberghe, McIntosh, Plant Physiol., 100:115-119, 1992). Recently it was found that uncoupling proteins, which are homologues of mammalian mitochondrial uncoupling proteins (UCPs), exist in plants (Vercesi et al., Nature, 375:24, 1995). Researchers who found these proteins supposed that they participate in plant protection from low-temperature stress (Laloi et al., Nature, 389:135-136, 1997). Some years ago cytoplasmatic protein CSP 310 was discovered, that also uncouple oxidation and phosphorylation in winter cereals' mitochondria during low-temperature stress (Kolesnichenko et al., Russ. J. Plant Physiol., 43:771-776, 1996). The mechanism of CSP 310 uncoupling action is still unknown but there are some data that show that CSP 310 is present in maize mitochondria (Kolesnichenko et al., J. Therm. Biol., 25:203-209, 2000). Previously it was shown that under cold shock ($-4 \mathrm{C}, 1 \mathrm{~h}$), living winter wheat shoots can generate heat and their temperature was above 0 C for the initial

25-30 min (Voinikov et al., Biochem. Physiol. Pflanzen., 179:327$330,1984)$. We supposed that other cereals also could produce heat during cold stress. So, the present work was aimed at the investigation of an influence of cold stress on temperature of maize seedling shoots.

The temperature of chilled seedlings was recorded by a cop-per-constantan thermocouple with sensitivity of about 0.025 C (wire diameter 0.1 mm) connected to the input of a high-sensitive microvoltmeter. For the measurement, seedling shoots $(3 \mathrm{~g})$ were tightly packed in a small container at 20 C and then transferred to a thermostat with an experimental temperature (0 or -4 C). Temperature changes were recorded for 1 h . The shoot sample then was placed in hot water (95 C) to stop all metabolic processes, and then the temperature changes were recorded in killed samples cooled from 20 C to the experimental temperature. Thus, we obtained temperature curves following chilling with one tissue sample for living and for dead tissue and calculated the temperature difference $\left(\Delta T^{0}\right)$ between "killed" and "alive" seedling shoot tissue.

The study of an influence of cold shock on temperature of maize shoots showed that maize seedlings, like winter wheat seedlings, are able to generate heat during cold stress (Fig. 1).

Figure 1. Temperature difference between alive and killed shoots of maize at $0 C$ (1) and $-4 C$ (2).

When maize seedlings were exposed to cold shock at 0 C , the temperature difference between "alive" and "killed" seedling shoots was up to $1.25-1.5 \mathrm{C}$ during the 20 min of cold shock. Subsequent chilling of maize shoots caused the reduction of temperature difference between "alive" and "killed" seedling shoots to 0.5 C . At the same time, the results show that increasing the cold stress intensity caused an increase of heat production by maize shoots at the first moment of cold shock: if the maximum temperature difference between "alive" and "killed" shoots at 0 C was about 1-1.5 C, then at -4 C it was about 3-3.5 C (Fig. 1). At the same time, at -4 C after 35 min of cold shock temperature difference between "alive" and "killed' shoots was not detected seedlings were killed by low temperature. Therefore, based on the data obtained we can conclude that in maize a low-temperature stress defense mechanism exists that involves heat generation by seedling shoots.

The study of an influence of cold stress on lipid peroxidation

 at different mitochondrial respiratory chain complexes function in maize mitochondria--Kolesnichenko, AV, Zykova, VV, Grabelnych, OI, Tourchaninova, VV, Voinikov, VK
It is known that in plants the development of chilling injury symptoms is frequently coincident with peroxidation of fatty acids (Parkin et al., Food Biochem. 13:127-153, 1989). The source of activated oxygen during freezing stress is not established exactly, but there is experimental evidence to indicate that mitochondria are a major source of superoxide in chilling-sensitive plant tissues at low temperatures (Purvis et al., Physiol. Plant 94:743$749,1995)$. It was shown that about $1-2 \%$ of oxygen reduced in mitochondria by iron-sulfur centers in complex I and partially by reduced ubiquinone and cytochromes b in complex III is constitutively converted to superoxide, which is a powerful oxidant radical, but, these data were mainly obtained by use of mammalian mitochondria (Chakraborti et al., Cell. Signal 11:77-85, 1999). It is necessary to note that most of the studies of lipid peroxidation during cold stress are concerned with freezing temperatures. Some data on lipid peroxidation at chilling temperatures show that lipoxygenase activity and lipid peroxidation were increased in leaves of maize crops during low temperatures. This suggested that lipoxygenase-mediated peroxidation of membrane lipids contributes to the oxidative damage occurring in chill-stressed leaves (Fryer et al., Plant Physiol. 116:571-580, 1998). Therefore, the present work was aimed at the investigation of an influence of cold stress on lipid peroxidation in maize mitochondria and as a function of different respiratory chain complexes.

The rate of lipid peroxidation was determined by measuring the primary products of lipid peroxidation - conjugated diene formation. Mitochondria were incubated in a medium containing 175 mM KCl and 25 mM Tris- HCl (pH 7.4). To determine the lipid peroxidation as a function of different mitochondrial respiratory chain complexes, different substrates were used. Malate was used to study complex I, succinate to study complex II, NADH to study complex III, and ascorbate+TMPD to study complex IV.

The data obtained showed that if electron transfer occurred through complexes I, II or III in mitochondria isolated from nonstressed maize shoots, the rate of lipid peroxidation was equal and rather low (Fig. 1). At complex IV function, the rate of lipid peroxidation was about 50% higher (Fig. 1). These results can be caused by the fact, that at the first two complexes electrons are transferring through the ubiquinone complex, which in plants can function as an effective antioxidant system (Pobezhimova, Voinikov, Membr. Cell Biol., 13:1-8, 2000).

The study of an influence of low-temperature stress on the rate of lipid peroxidation at different respiratory chain complexes function in mitochondria isolated from stressed (4C, 1 h) maize shoots showed that low-temperature stress increased dienic conjugates formation associated with function of all respiratory chain complexes. The most pronounced increase (about 75\%) was detected for complex IV (Fig. 1).

Thus, based on the data obtained, one can conclude that in maize mitochondria, unlike mammals, the highest lipid peroxidation was associated with complex IV function. Cold stress caused a detectible increase of lipid peroxidation at complexes I, III and especially IV function.

Figure 1. An influence of cold stress (4C for 1 h) on lipid peroxidation in mitochondria isolated from maize shoots.

The effect of redox conditions on transcriptional activity in isolated mitochondria
 --Konstantinov, YM, Subota, IY, Tarasenko, VI, Arziev, AS

We hypothesize that expression of mitochondrial genes is under redox control and involves glutathione. We have shown that the oxidized form of glutathione (GSSG) causes the activation of translation, while the addition of the reduced form of glutathione (GSH) induces substantial repression of mitochondrial protein synthesis in organello (MNL 72:33, 1998).

The aim of the present work was to verify our hypothesis about the possible involvement of the glutathione system in the redox regulation of transcriptional activity in mitochondria.

Mitochondria were prepared from 3-day-old etiolated maize seedlings of hybrid VIR42 MV. The isolation of mitochondria and assay of RNA synthesis in organello are described in our accompanying note.

The effects of the reduced forms of glutathione and sodium dithionite on the kinetics of RNA synthesis in maize seedling mitochondria are shown in Figure 1. The mitochondrial transcriptional activity is seen to decrease in the presence of the reduced glutathione. The effects of reduced glutathione and sodium dithionite on the activity of mitochondrial RNA synthesis were similar to those observed for the protein synthesis in mitochondria in the presence of these reduced agents (MNL 72:33, 1998).

We reported previously (MNL 69:63-64, 1995; MNL 70:29$30,1996)$ that under oxidizing conditions mitochondrial transcription and translation were activated, while under reducing conditions they were strongly repressed. Experimental study of redox conditions impact on the activity of mitochondrial DNA topoisomerase I in maize showed that under oxidizing conditions in the presence of GSSG a significant decrease of topoisomerase activity was observed, whereas under reducing conditions in the presence of GSH enzyme activation was observed (MNL 73:39-

Figure 1. The effects of reducing agents (sodium dithionite and GSH) on the kinetics of in organello RNA synthesis in mitochondria. ${ }^{*} P<0.05$; ** $P<0.001$

40, 1999). This raises the question of whether there is a functional relation of the changes in the mitochondrial DNA topoisomerase I activity in oxidizing and reducing conditions with the phenomenon of changes in the transcriptional activity of the mitochondrial genome in the same conditions.

It was demonstrated previously with the use of a reconstituted system that human topoisomerase I can serve as a repressor of basal transcription (Chen and Xu, Biochem. Mol. Biol. Intern. 39:941-948, 1996). This repression can be overcome by transcriptional activators or TFIIA. It was also reported that a repressing effect of human topoisomerase I was observed only in TATA-box-containing promoters and was mediated by the TATA-binding protein (Chen and Xu, Biochem. Mol. Biol. Intern. 39:941-948, 1996). By analogy with the case described, we presume that the plant mitochondrial topoisomerase I is able to repress the transcription of all or a part of mitochondrial genes. In this case the repression of its activity by oxidizing conditions result in an enhancement of mitochondrial transcription. The likelihood of such a situation is supported by an earlier observation of enhanced transcription by isolated maize mitochondria under oxidizing conditions (MNL 69:63-64, 1995). Under reducing conditions the mitochondrial DNA topoisomerase I is activated and represses the transcriptional activity of mitochondria. We suggest that DNA topoisomerase I can be a regulator of the expression of all or a part of the genes in mitochondria and that it fulfills the function of the "redox response regulator" proposed by Allen (J. Theor. Biol. 165:609-631, 1993; Photosynth. Res. 36:95-102, 1993).

As a whole, the data obtained suggest that the oxidation state of glutathione is involved in the in vivo regulation of mitochondrial genome transcription in plants.

Financial support from the INTAS (Project Number 97-0522) is acknowledged.

Appearance of HSPs immunochemically related to α crystallin at the temperature close to optimum in the absence of dehydration in crops

--Korotaeva, NE, Borovskii, GB, Voinikov, VK
Plants are able to survive hyperthermia. Heat shock protein (HSPs) synthesis during the heat shock period is one of the grounds of this ability. The α-crystallin-related, small heat shock proteins are ubiquitous in nature, but are unusually abundant and diverse in higher plants as opposed to other eukaryotes. The LMW HSPs range in size from approximately 17 to 30 kDa and share a conserved C-terminal domain common to all eukaryotic LMW HSPs
and to the α-crystallin proteins of the vertebrate eye lens (Waters, E.R. et al., J. Exp. Bot. 47:325-338, 1996). Unlike other shock proteins only stress factors such as heat shock can lead to LMW HSP expression. Accumulation of LMW HSPs in plants correlates with thermotolerance emergence (Vierling, E., Annu. Rev. Plant Physiol. Plant. Mol. Biol. 42:579-620, 1991).

However, there are data that LMW HSPs imunochemically related to α-crystallin appear in plants at normal temperature, for example during embryogenesis (Carranco, R. et al., 272:2747027475,1997). Here the expression of LMW HSPs plays a general protective role in desiccation tolerance (Wehmeyer, N. et al., Plant Phys. 122:1099-1108, 2000). Thus LMW HSPs are the part of the underlying mechanisms of cell protection against dehydration damage. The aim of our work is testing whether the expression of LMW HSPs occurs in the absence of dehydration at normal temperature conditions. For comparison, we chose maize as a thermotolerant species, and wheat and rye as less not tolerant species.

We used three-day-old etiolated seedlings of maize, wheat, and rye, which were grown at 23 C (wheat and rye) and 27 C (maize). The cut seedlings were placed in water for 3 hours at 42 C, thus being subjected to heat shock. Total proteins were extracted from control and shocked seedlings as described elsewhere (Borovskii, G.B. et al., J. Plant Physiol. 156:797-800 2000). Proteins were subjected to SDS-PAGE (14 \% of acrylamide) using a mini-Protean II cell (Bio-Rad, USA) according to the manufacturer's instructions. Western blot and immunodetecton were carried out as was described previously (Timmons, T.M. and Dunbar, B.S., Methods Enzymol. 182:679-688, 1991). Antibodies to α-crystallin sequence, kindly provided by Dr. Craig A. Downs, were used for detection of LMW HSPs (Heckathorn, S.A. et al., Plant Physiol. 116:439-444, 1998).

Electrophoresis of total proteins did not demonstrate a distinct quantitative or qualitative difference between "control" and "shock" in LMW HSPs of all the species (data not shown). Immunoblotting showed that protein samples from all three species contained LMW HSPs as were shown immunologically (Fig. 1). Maize samples included the group of HSPs $22-18 \mathrm{kD}$, and wheat and rye included one HSP 20 kD . Percentage of the maize LMW HSPs related to α-crystallin is higher than in the wheat and rye. This may be due to higher thermotolerance of maize.

LMW HSPs are clearly apparent in the "control" samples (Fig. 1). It is best expressed in wheat, slightly less in maize, and weak in

LMW HSPs $\left.1 \begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & M r\end{array}\right)$ $\mathbf{M r}, \mathbf{k D}$

	-66
	-45
$22-18 \rightarrow$	-24
-	-18.4

Figure 1. Immunodetection of the proteins immunochemically related to α-crystallin. The proteins were extracted from three-day-old seedlings of maize $(1,2)$, wheat $(3,4)$ and rye (5 , 6), grown at 27 C (maize) or at 23 C (wheat and rye). Before the extraction of the proteins, seedlings were shocked at 42 C for 3 h . $(2,4,6)$ or left for 3 h . at the growing temperature $(1,3$, 5). Molecular weight markers are indicated on the right.
rye. This suggests that either LMW HSPs, as well as highmolecular HSPs, may be synthesized constitutively, or alternatively seedling germination temperature (23 C for wheat and rye and 27 C for maize) may lead to their expression. To check this we chose the temperature of 20 C for germination of the seeds of all the species. Immunoreaction demonstrated a practically complete absence of LMW HSPs in "controls" of maize, wheat and rye grown at 20 C , which is in agreement with our supposition (Fig. 2). Appearance of LMW HSPs in all the species at the temperature close to optimum (23 C) supports the possibility of constitutive synthesis of these proteins in the seedlings. On the other hand, appearance of the LMW HSPs within the frameworks of optimal temperature may prove a high level of thermosensitivity of the LMW HSPs synthesis reaction for all three species.

LMW HSPs

$\begin{array}{llllllllllllll}\mathrm{Mr}, \mathrm{kD} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \mathrm{Mr}, \mathrm{kD}\end{array}$

Figure 2. Immunodetection of the proteins, immunochemically related to α-crystallin. The proteins were extracted from three-day-old seedlings of maize ($1,2,7,8$), wheat ($3,4,9,10$) and rye $(5,6,11,12)$, grown at $20 C$ (lines $1-6$), at $27 C$ (lines 7,8) and at $23 C$ (lines $9-12$). Before the extraction of the proteins, seedlings were shocked at 42 C for $3 \mathrm{~h} .(2,4,6,8,10,12)$ or left for 3 h . at the growing temperature (1, 3,5,7,9,11). Molecular weight markers are indicated on the right.

This work was supported by the Russian Fund of Basic Research (project 99-04-48121).

Mitochondrial low-molecular-weight heat shock proteins

 and tolerance of crop plant's mitochondria to hyperthermia --Korotaeva, NE, Antipina, AI, Grabelnych, OI, Varakina, NN, Borovskii, GB, Voinikov, VKPlants are known to synthesize, under heat shock, a large diversity of low-molecular-weight heat shock proteins (LMW HSPs) that function as protectors on the biochemical level. The α-crystallin-related, low-molecular-weight heat shock proteins range in size from approx 17 to 30 kDa and share a conserved Cterminal domain common to all eukaryotic LMW HSPs and to the α-crystallin proteins of the vertebrate eye lens. LMW HSPs act in vivo as molecular chaperones to bind partially denatured proteins, preventing irreversible protein inactivation and aggregation (Waters, E.R. et al., J. Exp. Bot. 47:325-338 1996).

It is known that LMW HSPs play an important role in protection of the organelles from hyperthermia damage. Chaperone activity of organelle LMW HSPs contributes to the development of thermotolerance. For example, appearance of LMW HSPs in wheat mitochondria correlates with thermotolerance emergence, according to investigation of thermotolerant and nontolerant varieties of wheat (Joshi, C.P. et al., TAG 95:834-841 1997). We suppose that there may be a correlation between thermostability of the species and expression of LMW HSPs. The aim of our investigation was to determine whether a correlation exists between thermotolerance among species and mitochondria LMW HSPs (mit LMW HSPs) accumulation, including their number and polymorphism. We chose for our investigation maize as a thermotolerant species, and wheat and rye as less tolerant
species.
Three-day-old etiolated seedlings of maize, wheat, and rye were grown at 23 C (wheat and rye) and 27 C (maize). Some of the cut seedlings were placed in water for 3 hours at 42 C , thus being subjected to heat shock. Untreated seedlings were "control". Mitochondria were extracted from the control and shocked seedlings by the method of differential centrifugation with further purification by discontinuous Percoll gradient as described elsewhere (Borovskii, G.B. et al., J. Plant Physiol. 156:797-800 2000). Isolated mitochondria were used for the extraction of the proteins and the measuring of the energetic activity. Proteins were subjected to SDS-PAGE (14\% of acrylamide) using a mini-Protean II cell (Bio-Rad, USA) according to the manufacturer's instruction. Western blotting and immunodetection were carried out, as described previously (Timmons, T.M. and Dunbar, B.S., Meth. Enzymol. 182:679-688, 1990) using anti- α-crystallin primary antibodies, kindly provided by Dr. Craig A. Downs (Heckathorn, S.A. et al., Plant Physiol. 116:439-444 1998).

Western blot showed the appearance of LMW HSPs immunochemically related to α-crystallin in all three species after heat shock (Fig. 1). Five mit LMW HSPs, 28, 23, 22, 20 and 19 kD, were found in maize, and only one mit LMW HSP 20 kD was found in wheat and rye. It should be noted that LMW HSPs were detected only for "shock" samples. Perhaps the differences in number of LMW HSPs in maize on the one hand, and in wheat and rye on the other hand, are related to differences in stability of the species to heat shock.

Other authors have discovered LMW HSPs 22 and 30 kD in maize mitochondria under heat shock (42 C, 3 h.) (Lund, A.A. et al., Plant Physiol. 116:1097-1110 1998). Based on the similarity of molecular weights, the LMW HSPs 23 and 29 kD which we detected, are likely the proteins 22 and 30 kD mentioned above. However, other mit LMW HSPs were not detected by these authors, while we identified an additional three LMW HSPs 21, 20 and 19 kD (Fig. 1). According to our account, this does not contradict the results of Lund A. et. al., inasmuch as they used maize grown at 29 C , when LMW HSPs immunochemically related to α-crystallin appear in total maize protein fraction at 27 C (see the article "Appearance of HSPs immunochemically related to alpha-crystallin at the temperature close to optimum in the absence of dehydration in crops" in this MNL). In this case only

LMW HSPs $1 \begin{array}{llllllll} & 2 & 3 & 4 & 5 & 6 & M r, k D\end{array}$ $\mathbf{M r}, \mathbf{k D}$

Figure 1. Immunodetection of LMW HSPs, related to α-crystallin, among the mitochondrial proteins of maize $(1,2)$, wheat $(3,4)$ and rye $(5,6)$. Three-day-old seedlings were shocked at 42 C for 3 h . $(2,4,6)$ or left for 3 h . at the growing temperature $(1,3,5)$ before the isolation of mitochondria. Extracted mitochondrial proteins were divided by SDS-PAGE. Molecular weight standards are on the right.
part of the proteins seem newly synthesized, i.e. HSPs, when comparing "control" and "shock" samples.

In relation to wheat mit LMW HSPs our results were in accordance with the data of other authors (Joshi, C.P. et al., TAG $95: 834-841$ 1997). As far as we know, our data about rye mit LMW HSP is the first such reported.

For determining the thermotolerance of the mitochondria, the activity of the mitochondria respiration after heat shock was measured. The respiration of the mitochondria was recorded polarographically at 27 C using a platinum electrode of a close type in a 1.4 ml volume cell. 10 mM malate in the presence of 10 mM glutamate was used as an oxidation substrate. Polarograms were used to calculate the rates of the oxygen uptake in state 3 (phosphorylate respiration) and in state 4 (nonphosphorylate respiration) (Estabrook, R.W., Methods Enzymology 10:41-47, 1967).

The rate of the oxidative activity declined after heat shock ($42 \mathrm{C}, 3 \mathrm{~h}$.) to a great extent in all three species (Table 1). However, in maize the decrease of the oxidative activity of the mitochondria after stress was less than in wheat and rye. Indeed the rate of phosphorylative and nonphosphorylative respiration in maize mitochondria after heat shock decreased 38.3% and 30.4 $\%$, while in the wheat and rye mitochondria that were 63% and 59.5% (wheat), and 65% and 60.6% (rye) accordingly. Thus, although the mitochondria of all species were damaged under heat shock, the thermotolerance of maize mitochondria was superior to that of mitochondria of wheat and rye.

Table 1. The influence of heat shock (42 C. 3 h.) on the oxidative activity of the mitochondria of maize, wheat and rye. All experiments were made in three biological replications. The data obtained were analysed statistically, means and S.D. $(P \geq 0.95)$ are presented.

Variants		The rate of oxygen uptake $\left(\mathrm{nmol} \mathrm{O}_{2} / \mathrm{min} \mathrm{mg}\right.$ protein)	
		State 3	State 4
maize	control	86.6 ± 3.9	29.3 ± 1.4
	shock	53.5 ± 1.5	20.4 ± 1.2
wheat	control	81.1 ± 2.3	35.4 ± 1.8
	shock	29.9 ± 2.0	14.3 ± 0.8
rye	control	82.9 ± 1.1	37.8 ± 1.1
	shock	29.2 ± 3.2	14.9 ± 1.1

The thermotolerance of the maize mitochondria concurs with the accumulation of a number of LMW HSPs immunochemically related to α-crystallin. Our data permit us to suppose that the diversity of LMW HSPs plays an important role in the protection of respiration processes of mitochondria from heat shock damage. It is known that the majority of LMW HSPs are chaperones, i.e. they stabilize protein structure and prevent damage and resultant turnover. For example mit LMW HSP of tomato is a chaperone (Liu, J.A. et al., Plant Cell Physiol. 40:1297-1304 1999). The mit LMW HSP protects NADH:ubiquinone oxidoreductase of the electron transport chain during heat stress in mitochondria of apples (Downs, C.A. et al., FEBS Letters. 430:246-250 1998). Based on information from the literature and our research we expect that various LMW HSPs influence different proteins or recognize various transitional states of partly denatured proteins. In this case maize mitochondria have a more abundant composition of chaperones than wheat and rye, and enhanced capabilities for preventing damage to the enzymes of the electron transport chain.

The activity of maize mitochondria is more thermotolerant than that of organelles of wheat and rye. The number of LMW HSPs, immunochemically related to α-crystallin, appearing under heat
stress in mitochondria correlates with thermotolerance of the organelles, and correspondingly with thermotolerance of the species.

This work was supported by the Russian Fund of Basic Research (project 99-04-48121).

Localization of low-molecular-weight heat shock proteins in cell compartments of maize, wheat and rye

--Korotaeva, NE, Antipina, AI, Borovskii, GB, Voinikov, VK
Stress protein synthesis, as a response to adverse environment factor is known to be a protection reaction. LMW HSPs are the most numerous group of HSPs in plants.

The LMW HSPs range in size from approximately 17 to 30 kD and share a conserved C-terminal domain common to all eukaryotic LMW HSPs and to the α-crystallin proteins of the vertebrate eye lens. LMW HSPs function as chaperones preventing polypeptide damage. LMW HSPs form granular structures in cells, at the increased temperature associating with cell endoplasmic reticulum and plastid membranes, preventing their damage. In higher plants six nuclear gene families encoding LMW HSPs have been defined. Each gene family encodes proteins found in a distinct cellular compartment, including the cytosol, chloroplast, ER, and mitochondrion (Waters, E.R. et al., J. Exp. Bot. 47:325-338, 1996). Mitochondrial LMW HSPs (mit LMW HSPs) are nuclear-encoded stress-regulated HSPs, which play an important role in the protection of mitochondria and processes of oxidative phosphorylation. But the location of these LMW HSPs in mitochondria is still unclear. Methods of SDS-PAGE-electrophoresis and Western blot with antibodies to α-crystallin sequence were used to study localization of total and mitochondrial LMW HSPs in maize, wheat and rye cells. For comparison, we chose maize as a thermotolerant species, and wheat and rye as less tolerant species.

Three-day-old etiolated seedlings, grown at 27 C (maize) and at 23 C (wheat and rye) were subjected to heat shock (42C, 3 h.) and used for the mitochondria isolation as described elsewhere (Borovskii, G.B. et al., J. Plant Physiol. 156:797-800, 2000). Isolated mitochondria were treated with pronase $E(1 \mathrm{mg} / \mathrm{ml})$ for one hour. Then mitochondrial proteins were extracted as previously described (Borovskii, G.B. et al., J. Plant Physiol. 156:797800, 2000). Mitochondria without protease treatment were used for the extraction of the proteins of the "control".

Western blotting demonstrated that LMW HSPs immunochemically related to α-crystallin appear among mitochondrial proteins of all the species under heat shock (Fig. 1). Five proteins were found in maize mitochondria and one protein was found in mitochondria of wheat and rye. Pronase treatment of mitochondria showed that maize mit LMW HSPs 22, 20 and 19 kD are located outside, but maize mit LMW HSPs 24 and 28 kD are located inside of the organelles. Apparently maize mit LMW HSPs 24 and 28 kD are matrix proteins. The absence of 29 and 23 kD in cytoplasm fraction supports this manner of location of LMW HSPs in maize mitochondria (Fig. 2). The location of maize mit LMW HSPs concurs with data of other authors, who identified LMW HSPs in soybean mitochondria by radiolabelling (Chou, M. et al., Plant Phys. 89:617-621, 1989). It was shown that shift of the seedlings to 28 C after heat shock leads to the appearance of organelle-associated LMW HSPs in cytosol. While the group of LMW HSPs $15-18 \mathrm{kD}$ migrates from mitochondria, the 22 and 24

LMW HSPs

Mr, kD $\left.1 \begin{array}{lllllllll} & 1 & 2 & 3 & 4 & 5 & 6 & M r\end{array}\right) k D$

Figure 1. Mitochondrial proteins extracted from shocked seedlings (42 C, 3 h.) of maize (1, 2), wheat $(3,4)$ and rye $(5,6)$. Mitochondria were isolated from three-day-old etiolated seedlings and divided into two groups. One group of mitochondria was incubated with pronase $E(2,4,6)$, the other one was used for reference ($1,3,5$). LMW HSPs immunochemically related to α crystallin were identified. Molecular weight standards are indicated on the right. The relative molecular weights of LMW HSPs are given on the right.
kD are always present in the mitochondrial fraction, which allows to submit their location inside of the organelles.

The treatment by pronase of mitochondria of wheat and rye with further protein extraction showed that HSP 20 kD are located outside and inside of organelles. In rye mitochondria the part of the 20 kD is localized inside that was stated by the decline of the coloration depth of the according spots. Other researchers confirm our results concerning wheat mit LMW HSP 20 kD (Basha, E.M. et al., Plant Sci. 141:93-103, 1999).

To determine the location of these LMW HSPs in other cell compartments, we extracted total and cytoplasm proteins as described above. Cytoplasm proteins were extracted from supernatant remaining after isolation of mitochondria and crude cell particles. It contained soluble cell proteins and proteins of membrane structures, nuclei and cell wall. The data showed that maize LMW HSPs 28 and 24 kD were specific for mitochondria, LMW HSP 20 kD of wheat and rye turned out to be not only mitochondrial but common cell protein (Fig. 2). The group of LMW HSPs $22-18 \mathrm{kD}$ was found in the total, mitochondrial and cytoplasm protein fractions of maize.

The absence of two maize LMW HSPs 29 and 23 kD in the cytoplasm confirms the importance of these proteins for the mitochondria. Perhaps α-crystallin-related LMW HSPs attached to the mitochondria outside are able to migrate from the organelles to the cytosol after returning the cells to the normal conditions.

Figure 2. Western blotting of total (1, 4, 7), mitochondrial ($2,5,8$) and cytoplasmic $(3,6,9)$ proteins extracted from shocked seedlings (42 C, 3 h.) of maize (1, 2, 3), wheat (4, 5, 6) and rye $(7,8,9)$. Molecular weight standards are indicated on the right. The relative molecular weights of LMW HSPs are given on the right.

Cognate process was discovered in soybean mitochondria (Chou et al., Plant Physiol. 89:617-621, 1989). Perhaps external LMW HSPs 20 and $22-18 \mathrm{kD}$ are related to the class I LMW HSPs that originally localized in the cytoplasm. Material speaks well for this supposition about presence of extensive similarities between mit LMW HSPs and class VI LMW HSPs (Goping, I.S. et al., Plant Mol. Biol. 16:699-711 1991). The analysis of the primary polypeptide sequence for determination specific sectors for the VI class of LMW HSPs is required for verification of this supposition.

This work was supported by the Russian Fund of Basic Research (project 99-04-48121).

The COR-polypeptides of maize, characteristic of cold hardy state, in comparison with those of other cereals

--Stupnikova, IV, Borovskii, GB, Voinikov, VK
Maize (Zea mays L.), a plant from warm-temperature habitat, is an example of a chilling-sensitive crop injured by low, non-freezing temperatures. For several chilling- and freezing-tolerant species of temperate origin, cold acclimation, which increases freezing tolerance, has been extensively exploited in order to understand tolerance mechanisms at the cellular and molecular levels. Among the biochemical changes associated with acclimation, increasing interest during recent years has focused on the modifications of protein synthesis and genome expression. Many CORgenes have been isolated and characterized from a variety of plant species. Their products fall into a number of families based on amino acid sequence similarities. It was found that many of these COR-proteins are heat stable and have an unusually hydrophilic nature.

In this connection, it was interesting to analyze heat stable COR-proteins of maize; to demonstrate similarity of maize CORpolypeptides to those of freezing-tolerant cereals; to correlate heat stable polypeptide composition of studied cereals with their cryotolerance.

Three-day-old seedlings of maize grown at 28 C were transferred to 10 C for three days to induce acclimation. For comparison, three-day-old seedlings of wheat and rye grown at 22 C were used. They were acclimated at 4 C for three days. Unhardened seedlings were used for reference. The tolerance assessment of control and hardened cereals was conducted by electrolyte leakage techniques (Palta, Plant Physiol., 60:393-397, 1977). In order to study changes in synthesis of heat-stable proteins characteristic of cold acclimation state, thermostable proteins were extracted from seedlings and separated by SDS gel electrophoresis (Stupnikova, Russian J. Plant Physiol., 45:744-748, 1998).

The data show that the amount of leaked electrolytes from control and hardened seedlings of all crops do not differ considerably (Fig. 1).

Freezing at -6 C resulted in increased ion leakage. It reflects perturbation of membrane semipermeability by freeze-thaw stress and is indicative of cell viability. As expected, the maize plants showed higher electrolyte leakage (that is, more freezing injury) in comparison with more tolerant cereals. However, all hardened plants were more tolerant than control, and were characterized by lower amounts of leaked electrolytes (Fig. 1). Thus, chilling-sensitive maize, like chilling- and freezing-tolerant cereals, also developed cryotolerance during hardening.

In this connection it was interesting to study proteins related to cold acclimation state of maize and to compare them with other

Figure 1. Relative freezing tolerance of maize and other cereals (measured by electrolyte leakage techniques). Relative admittance (\% to admittance of killed tissue electrolyte) was assessed in control (1), hardened (2), control and freezing at -6 C (3), hardened and freezing at -6 C seedlings (4). Means and standard errors of the means are shown.
cereals. The total and heat-stable polypeptides were analyzed. It was found that total protein composition of control and hardened seedlings did not differ from each other (data are not presented). At the same time, the difference in heat stable proteins was strong (Fig. 2). The acclimated maize seedlings accumulated thermostable polypeptides with mol. weights $50,46,35,31,27$, $24,22 \mathrm{kD}$, from which those with mol. weights $50,35,27,22 \mathrm{kD}$ apparently were synthesized de novo. Conversely, the more tolerant plants accumulated high- and medium molecular proteins.

Figure 2. Heat stable proteins from control $(1,3,5)$ and hardened $(2,4,6)$ seedlings of maize $(1,2)$ and other cereals (rye $-3,4$; wheat $-5,6$). Mol. wts of maize proteins are indicated on the left. Electrophoresis was run in 13% SDS-PAGE.

Thus, the medium- and low molecular COR-proteins were characteristic of hardened state of maize and differed from those of tolerant cereals. The accumulation of medium- and low molecular polypeptides during cold treatment was revealed also in such chilling-sensitive plants as soybean (Boudet, 1993, NATO ASI Series, 116, 725-739). Possibly this trait differentiates the maize (and other chilling-sensitive plants) adaptation mechanism from that of chilling- and freezing tolerant cereals.

The research was funded by the Russian Foundation of Basic Research (project 99-04-48121).

Dehydrin-like-proteins in maize mitochondria after cold

 adaptation, freezing, drought and ABA treatment--Borovskii, GB, Stupnikova, IV, Antipina, AI, Vladimirova, SV, Voinikov, VK
Plants respond to stress temperatures via physiological, morphological, and metabolic processes. Near-freezing and freezing temperatures like drought stress can also induce cellular dehydration, by which water from within the cell migrates to outside the cell. At the cellular level, this activates different structural and biochemical changes including induction of a number of cold-induced proteins. Among them is the dehydrin family of proteins.

These proteins are induced by both cold and drought stress. Dehydrins (dlps), also referred to as Group II late embryogenesis abundant (LEA) proteins, are glycine-rich, hydrophilic, and thermostable. They have been hypothesized to function by stabilizing large-scale hydrophobic interactions such as membrane structures or hydrophobic patches of proteins (Close, Physiol Plant, 97:795803, 1996). Dehydrins accumulate in response to cold in the nucleus or cytoplasm, but it is unknown if they can accrue in mitochondria or chloroplasts. In the previous study we have found the accumulation of two dehydrin-like proteins in the plant mitochondria after low temperature treatment (Borovskii et al., J. Plant Physiol., 156:797-800, 2000).

In this connection, the objective of this study was to determine whether dlps localize to maize mitochondria in response to stimuli other than cold adaptation treatment (10 C for maize).

Three-day-old etiolated seedlings of Zea mays (L.) (maize) were grown at 27 C . Unstressed plants were maintained under growth conditions for one day. Mild cold treatment (acclimation) was carried out by subjecting seedlings to a temperature of 10 C for 7 days. Freezing stress was performed at -10 C for 20-30 min until ice crystallized on the surface of seedlings. Transfer of two-day-old seedlings onto dry filter paper for 1 day at growth conditions served as a model of drought stress. ABA treatments were made at the control temperature by spraying 1 mM ABA (Sigma) solution with 0.1% of Tween-20 (Sigma). ABA treated seedlings were harvested the day after treatment. Control and treated seedlings were compared at similar growth stages. Mitochondria were isolated according to the technique described by Borovskii et al. (2000).

Sonicated (Fig. 1) and unsonicated (Fig. 2) mitochondria were used further for extraction of total and thermostable proteins. Mitochondrial proteins of maize were fractionated by 10% SDSPAGE ($25 \mu \mathrm{~g}$ of protein per lane) using a mini-Protean PAGE cell (Bio-Rad) according to manufacturer's instruction. Western blotting and immunodetection were carried out as described by Timmons and Dunbar (1990). Antibodies against dehydrins were kindly provided by Dr. T. J. Close. All experiments were replicated three to four times.

Five dlps were found in maize mitochondria (Fig. 1). Bands corresponding to all these proteins were very weak or absent when antibodies were blocked by dehydrin peptides (data not shown). Two of these polypeptides were thermostable, but the other three proteins seem not to be thermostable. Finding proteins immunologically related to dehydrins but constitutive and unstable to high temperature is unusual, but sometimes occurred.

Figure 1. Dehydrin-like proteins (dlps) of maize mitochondria after cold adaptation. Mitochondria from control $(1,3)$ and cold-treated $(2,4)$ seedlings were disrupted by sonication. Total $(1,2)$ and thermostable (3,4) mitochondrial proteins were fractionated by 10% SDSPAGE, electroblotted onto nitrocellulose membrane, and probed with antibody against dehydrin (1:1000). Molecular masses of dlps are indicated on the left.

The dlps with mol. masses 63, 52, 28 kD were found in the previous study (Borovskii et al., J. Plant Physiol., 156:797-800, 2000) in wheat and rye and apparently are "common" mitochondria proteins. Low temperature adaptation of maize resulted in the strong accumulation of "common" thermostable polypeptides with mol. masses 63 and 52 kD (Fig. 1) that was more pronounced in the thermostable fraction. Conversely, the unthermostable proteins did not accumulate. Apart from this, unthermostable dlps were not or very slightly induced by all the treatments used (Fig. 2). Based on this observation we concluded that these proteins were not involved in the stress reaction and adaptation.

The freezing and drought stresses had no effect on the accumulation of dlp 63 kD in mitochondria of maize (Fig. 2, In. 2). The dlp52 was not observed under any treatment (Fig. 2). The differences in control samples of sonicated (Fig. 1) and unsonicated

Figure 2. Mitochondrial dehydrin-like proteins from the control (1), freezing (2) and drought stressed (3) and ABA treated (4) maize seedlings. Protein from unsonicated mitochondria was subjected to separation and Western blotting (the same as in Fig. 1). Molecular masses of dlps are indicated.
mitochondria (Fig. 2) illustrated to our minds that some groups of dlps had a strong association with large, slightly disruptive fragments of mitochondria. Such groups of proteins were discarded with undisrupted mitochondria. Because of that, dlp63 was stronger in Fig. 2 and weaker in Fig. 1 in the control samples.

Both proteins (dlp52 and dlp63) were not induced by ABA treatment in the maize mitochondria (Fig. 2, In. 4). Moreover, ABA treatment resulted in decrease of dlp63. Apparently, augmentation of dlps concentration during cold adaptation is not associated with ABA accumulation, but dependent on low unfreezing temperature, as they slowly accrue during cold adaptation.

Thus, mitochondria of maize, a plant from a warm-temperature habitat, apparently slowly adapt to cold conditions and are unable to react quickly in severe stress conditions. It is likely to partially account for the chilling-sensitive nature of maize.

The research was funded by the Russian Foundation of Basic Research (project 99-04-48121). We sincerely thank Dr. T. J. Close for the gift of the dehydrin antibody and dehydrin-specific peptide.

ABA-induction of cold hardy state and heat stable CORproteins in maize seedlings and other cereals

--Stupnikova, IV, Borovskii, GB, Voinikov, VK
There are many studies dealing with acquisition of maize cryotolerance during cold acclimation. At the same time, there has been considerable interest in the role of abscisic acid (ABA) in mediating the tolerance. Exogenous application of ABA has been shown to confer cold hardiness to plant and cell-suspension cultures of different species including maize. It accounts for the fact that this hormone participates in ABA-dependent signaling process and activates cold-responsive genes (COR-genes) related to cold hardening (Shinozaki, Yamaguchi-Shinozaki, Plant Physiol., 115:327-334, 1997). In this connection, it was interesting to analyze the pattern of heat stable protein synthesis of maize and other cereals, to compare it with COR-polypeptides and collated results obtained with cryotolerance of the species studied.

With this objective, seedlings of maize were germinated at 27 C , seedlings of wheat and rye at 22 C for 3d in darkness. To determine whether exogenous application ABA affected cryotolerance, seedlings were exposed to $1000 \mu \mathrm{M}$ ABA with the addition of Tween-20 (0.1% solution) for one day. The tolerance assessment of control and ABA treated cereals was conducted by electrolyte leakage technique (Palta, Plant Physiol., 60:393-397, 1977). In order to study changes in heat-stable protein synthesis during $A B A$ exposure, proteins were labeled in vivo with ${ }^{14} \mathrm{C}$ leucine separated by SDS gel electrophoresis and the derived fluorograms were studied.

The study of response to freezing by electrolyte leakage techniques revealed that freezing at -6 C resulted in an increase of ion leakage from tissues of all cereals (Fig. 1). This points to perturbation of membrane integrity that usually results in decreased survival. Exogenous application of ABA enhanced plant cryotolerance based on the ion leakage levels. As expected the maize plants showed higher electrolyte leakage during freezing (that is more freezing injury) in comparison with more coldtolerant cereals. It should be noted that the amount of leaked electrolytes from unexposed control and ABA treatment seedlings of all crops are essentially identical (Fig. 1).

Figure 1. Relative freezing tolerance of maize and other cereals (measured by electrolyte leakage techniques). Relative admittance (\% admittance of killed tissue electrolyte) was assessed in control, ABA treatment, control and freezing at -6 C (control, freezing), ABA treatment and freezing at -6 C seedlings (ABA, freezing). Means and standard errors of the means are shown.

The ABA augmentation of maize cryotolerance (as is the case with tolerant cereals) was accompanied by alteration of heat stable protein synthesis (Fig. 2). It is interesting that ABA treatment produced more proteins than low temperature acclimation (Stupnikova et al., in the same issue). ABA treated seedlings of maize synthesized a number of new polypeptides with mol. weights 219, 214, 178, 66, 37, 30, 28 and 26 kD ; and accumulated proteins with mol. weights $54,46,42,41$ and 32 kD . The concentration of all polypeptides detected was greatly increased during hormone application (Fig. 2). Thus, whereas ABA treated seedlings accumulated 13 ABA-inducible proteins, cold adapted plants accumulated only seven. This also applies to more tolerant cereals (for wheat and rye). Moreover, hormone exposed seedlings of maize, unlike cold acclimated ones, synthesized high molecular weight polypeptides, different from those of wheat and rye.

Figure 2. Heat stable ABA-inducible proteins from control (K) and ABA-treatment (ABA) seedlings of maize and other cereals (rye and wheat). Mol. wts of maize proteins are indicated on the right. Electrophoresis was run using 13% SDS-PAGE.

It appears that increase of maize cryotolerance through exogenous ABA (as is the case with wheat and rye) is associated with both increasing the amount of protein (not only coldregulated polypeptides) and accumulation of high molecular weight protein.

The research was funded by the Russian Foundation of Basic Research (project 99-04-48121).

IRKUTSK, RUSSIA
Institute of Plant Physiology and Biochemistry MOSCOW, RUSSIA
V.A. Engelhardt Institute of Molecular Biology OSLO, NORWAY
University of Oslo

Mitochondrial DNA topoisomerase I is involved in in organello RNA synthesis

--Konstantinov, YM, Subota, IY, Tarasenko, VI, Grokhovsky, SL, Zhuze, AL
We have previously described (MNL 71:39-40,1997; MNL 73:39-41, 1999; MNL 74:33, 2000) some properties of nuclear and mitochondrial DNA topoisomerases I, including their sensitivity to different type inhibitors and redox conditions. We showed that mitochondrial DNA topoisomerase I was distinguished from a nuclear topoisomerase by a number of characteristics. The aim of the present work was to investigate the role of mitochondrial DNA topoisomerase I in RNA synthesis in maize mitochondria using an in organello system. For that purpose we studied the kinetics of RNA synthesis in isolated mitochondria in the presence of specific inhibitors of DNA topoisomerase I: camptothecin and bisbenzimidazoles Hoechst 33258 and Hoechst 33342 (Figure 1).

Figure 1. Chemical structure of Hoechst $\mathbf{3 3 2 5 8}$ and Hoechst $\mathbf{3 3 3 4 2}$ used in this study

Mitochondria were prepared from 3-day-old etiolated seedlings of maize (Zea mays L. hybrid VIR 46 MV) by the standard method of differential centrifugation. RNA synthesis was measured in mitochondria according to the method of Wilson et al. (Eur. J. Biochem. 242, 81-85, 1996) with the use of $\left[{ }^{3} \mathrm{H}\right]$-UTP (specific radioactivity was $1332 \mathrm{TBq} \mathrm{mol}^{-1}$). Reactions were started by the addition of mitochondria and performed at 30 C . Protein was determined by the Lowry method. All kinetic data were obtained from at least 3 independent experiments. Statistical analysis was performed using Students paired t-test.

Figure 2 shows that the specific inhibitor of DNA topoisomerases I, camptothecin, caused substantial repression of RNA synthesis in isolated mitochondria in a dose-dependent manner. Bisbenzimidazoles Hoechst 33258 and Hoechst 33342 belong to the minor groove-binding compounds which are known to bind to the minor groove of DNA with $A+T$ specificity and to cause widening of the minor grooves (Neidle et al., 1987, Biochem. J. 243:1-13). Hoechst 33342 has enhanced membrane permeability in comparison with Hoechst 33258 (Chen et al., 1993, Proc. Natl. Acad. Sci. USA 90:8131-8135). Figure 3 shows the influence of

Figure 2. The effect of camptothecin on the kinetics of RNA synthesis in maize mitochondria. * $\mathrm{P}<0.05$; * $\mathrm{P}<0.01$

Concentration of Hoechst, $\boldsymbol{\mu} \mathrm{M}$

Figure 3. The effects of Hoechst 33258 and Hoechst 33342 on the RNA synthesis in maize mitochondria. The time of exposition of mitochondria with [$\left.{ }^{2} \mathrm{H}\right]$-UTP was 40 min .
the bisbenzimidazoles at various concentrations on the transcriptional activity of mitochondria. It can be seen that both inhibitors of topoisomerase I repressed the activity of mitochondrial RNA synthesis in a dose-dependent manner, while Hoechst 33342 under, concentrations of 1 and $10 \mu \mathrm{M}$ was more efficient as repressor of mitochondrial transcriptional activity in comparison with Hoechst 33258.

It is well known that DNA topoisomerases are important, often essential, cellular enzymes involved in nearly all aspects of DNA structure and metabolism (Berger, 1998, Biochim. Biophys. Acta 1400:3-18). The data obtained show clearly that DNA topoisomerase I is involved in transcription of mitochondrial genome under in vitro conditions. We suggest that an in organello RNA synthesis system of isolated maize mitochondria may serve as an additional model system for probing and studying anti-DNA topoisomerase I activities.

Financial support from the INTAS (Project Number 97-0522) is acknowledged.

JOHNSTON, IOWA

Pioneer Hi-Bred Int., Inc.

New male-sterile mutant allele of Ms22

--Trimnell, MR, Fox, TW, Albertsen, MC
A new male-sterile allele of Ms22 has been identified. The new allele was among male-sterile mutants received from the late Dr . Earl Patterson. Earl had designated it as $m s^{*}$-6036 (see MNL

69:126-128).
We planted an F2 segregating line of $m s^{*}$-6036 in our 1998 Hawaii nursery to determine the chromosome arm map location of the mutant as part of our standard procedure in working with previously unlocated male steriles. We first determine the chromosome arm location, then we conduct the appropriate allelism crosses. Leaf punches were taken from 24 male-sterile plants and from 24 male-fertile plants for DNA isolation. SSR markers were used to genotype these samples. Out of 72 randomly dispersed SSR markers, only one, phi034, showed linkage to the male sterility trait. This marker maps to bin 7.02 on chromosome 7, and segregates with $m s^{*}-6036$ as follows:

	Homozygous (A)	Heterozygous (AC)	Homozygous (C)	Failed Rxn's
Fertile	9	10	2	3
Sterile	0	6	16	2

Although only one marker showed linkage, we proceeded to test-cross $m s^{*}-6036$ with the recessive male-sterile mutants that are located on chromosome 7 ($\mathrm{ms} 7, \mathrm{~ms} 22$, ms34), as well as with an unmapped recessive male-sterile mutant (ms27). The resultant progeny were grown in our 2000 Johnston, lowa, nursery. At least 40 plants were observed for each of the testcrosses. The reciprocal test-crosses with $m s 27, m s 7$ and $m s 34$ produced all fertile progeny, indicating $m s^{*}-6036$ was not allelic to them. The reciprocal test-crosses of $m s^{*}-6036$ with $m s 22$ gave the following results, indicating allelism:

Female	Male	Progeny		X2
ms*-6036 Heterozygote	ms22 Het	34 Fertiles	8 Steriles	0.79 (3:1)
ms22 Homozygote	$m s^{*}$-6036 Het	26 Fertiles	22 Steriles	0.33 (1:1)

Our new designation for this Ms22 male-sterile allele is ms226036.

A set of microsatellite markers of general utility in maize

--Register, JC, III*, Sullivan, HR, Yun, Y, Cook, D, Vaske, DA

* To whom correspondence should be addressed.

Over the past several years microsatellites (often referred to as simple sequence repeats [SSRs] or short tandem repeats [STRs]) have become the most commonly used class of molecular marker for high-throughput genotyping of many higher eukaryotes including maize. During this time we (and others at Pioneer HiBred Int'l Inc.) have, in collaboration with public researchers, made well over 100 SSR markers available for public use (Chin ECL, Senior ML, Shu H, Smith JSC [1996] Genome 39, 866-873; Senior ML, Chin ECL, Lee M, Smith JSC, Stuber CW [1996] Crop Sci 36, 1676-1683; Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S, Ziegle J [1997] Theor Appl Genet 95, 163-173; also see Maize Genome Database http://www.agron.missouri.edu). As is always the case for this kind of resource, broad application of these markers has demonstrated that, for various reasons, some are more useful (i.e. robust, informative, easily scorable, etc.) than are others. We report here on the subset of those markers that we have found to be most useful for our applications.

All PCR primers were designed to work under a single set of conditions in 10μ l reactions. Genomic DNA (10 ng) was amplified in $1.5 \mathrm{mM} \mathrm{MgCl}_{2}, 50 \mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM}$ Tris-Cl (pH 8.3) using 0.3 U AmpliTaq Gold DNA polymerase (PE Corporation), oligonucleotide primer pairs at $0.17 \mu \mathrm{M}$ and 0.2 mM dNTPs. This mixture

MARKER	CHROM	DISTANCE	BIN	REPEAT	PRIMER SEQUENCE (F/R)	MIN/MAX ALLELE*	PIC	NEARBY LOCl**
phi109275	1	0	1.00	AGCT	6FAMCGGTTCATGCTAGCTCTGC	122 / 140	0.77	umc274, umc275
					GTTGTGGCTGTGGTGGTG			
phi056	1	9	1.01	CCG	NEDACTTGCTTGCCTGCCGTTAC	239 / 259	0.67	rgpc654, bnlg149
					CGCACACCACTTCCCAGAA			
phi427913	1	26.71	1.01	ACG	NEDCAAAAGCTAGTCGGGGTCA	123/131	0.23	bnlg1112, bnlg1458
					ATTGTTCGATGACACACTACGC			
phi339017	1	72	1.01	AGG	HEXACTGCTGTTGGGGTAGGG	147 / 157	0.34	csu745d, bnlg2180
					GCAGCTTGAGCAGGAAGC			
phio02	1	173.9	1.08	AACG	HEXCATGCAATCAATAACGATGGCGAGT	71/80	0.51	csu580a, bnl17.06
					TTAGCGTAACCCTTCTCCAGTCAGC			
phi423298	1	174	1.08	CCG	NEDGGGCTGCTACTTTGACAAGGAC	128 / 135	0.43	bnl17.06, umc83a
					CCTCCATCATCCGCTGGTA			
phi323065	1	179	1.08	AGC	HEXGATCGATCGACGACCAGC	327 / 334	0.53	csu531, cdo680a
					CTTCTGCGTGGGCAAAGA			
phi335539	1	181.37	1.08	CCG	HEXGAGTCCGCTGAAATTTTGGT	90/93	0.17	csu1174, csu745e
					TAGAAGCCGCCGTGCCTAT			
phi011	1	209	1.09	AGC	HEXTGTTGCTCGGTCACCATACC	212/232	0.44	npi282b, uat4a
					GCACACACACAGGACGACAGT			
phi308707	1	220	1.09	AGC	HEXGCAACAAGATCCAGCCGAT	118/125	0.39	umc161a, csu63a
					GTCGCCCTCATATGACCTTC			
phi265454	1	224.63	1.10	AGG	6FAMCAAGCACCTCAACCTCTTCG	220 / 238	0.61	npi238, csu868
					TCCACGCTGCTCACCTTC			
phi064	1	231	1.11	ATCC	6FAMCCGAATTGAAATAGCTGCGAGAACCT	73/110	0.83	csu33b, csu755
					ACAATGAACGGTGGTTATCAACACGC			
phi227562	1	266	1.11	ACC	6FAMTGATAAAGCTCAGCCACAAGG	309 / 325	0.78	csu1114, csu1193
					ATCTCGGCTACGGCCAGA			
phi109642	2	0	2.00	ACGG	6FAMCTCTCTTTCCTTCCGACTTTCC	133/145	0.58	Csu1192, dup1383
					GAGCGAGCGAGAGAGATCG			
phi402893	2	0	2.00	AGC	HEXGCCAAGCTCAGGGTCAAG	209 / 237	0.73	csu1192, dup1383
					CACGAGCGTTATTCGCTGT			
phi96100	2	6.04	2.00	ACCT	6FAMAGGAGGACCCCAACTCCTG	268 / 297	0.76	rz569b, csu29b
					TTGCACGAGCCATCGTAT			
phi083	2	86	2.04	AGCT	NEDCAAACATCAGCCAGAGACAAGGAC	125 / 139	0.76	bnlg1831, umc184b
					ATTCATCGACGCGTCACAGTCTACT			
phi328189	2	145	2.08	CCG	HEXACGCTCGAAGCAAATCCT	118/125	0.64	csu1103, uaz241b
					TCGCGCTTGGTAGACGTA			
phi251315	2	147.34	2.08	CCG	6FAMCCAGTCCAATGGAGAGGG	126 / 132	0.47	$\begin{aligned} & \text { umc88(P450), } \\ & \text { umc36b } \end{aligned}$
					GAGATTCCCCTGCAGGACT			
phit27	2	149.79	2.08	AGAC	NEDATATGCATTGCCTGGAACTGGAAGGA	110/129	0.7	umc4a, bcd808c
					AATTCAAACACGCCTCCCGAGTGT			
phi435417	2	161	2.08	ACC	NEDCTGACGCCACTGTTGCTTG	215/220	0.6	uaz239b, bnl8.44b
					AAAAGTAGCCAATCTGCCACG			
phio90	2	174	2.09	ATATC	6FAMCTACCTATCCAAGCGATGGGGA	139 / 150	0.44	bnlg1520, csu304a
					CGTGCAAATAATTCCCCGTGGGA			
phi427434	2	186.05	2.08	ACC	NEDCAACTGACGCTGATGGATG	123 / 139	0.7	csu200a, csu109a
					TTGCGGTGTTAAGCAATTCTCC			
phi101049	2	194	2.08	AGAT	6FAMCCGGGAACTTGTTCATCG	229 / 249	0.8	csu665a, csu810a
					CCACGTCCATGATCACACC			
phi453121	3	0	3.00	ACC	NEDACCTTGCCTGTCCTTCTTTCT	213/225	0.74	bnl(tas4l), umc32a
					CAAGCAAGACTTTTGATCAGCC			
phi104127	3	6.88	3.00	ACCG	6FAMCTTTGCTGCTGCTTCCTACG	156 / 166	0.58	php20905, csu628
					AACCAGTGACGTACACAAAGCA			
phi243966	3	46.8	3.02	AGC	6FAMCGACCGAAACGAATCAAAA	210 / 228	0.63	bnlg1647, umc154
					TACTAGGCTGACACGCACG			
phi374118	3	52	3.02	ACC	HEXTACCCGGACATGGTTGAGC	216 / 230	0.72	umc92a, bnlg2136
					TGAAGGGTGTCCTTCCGAT			
phi193225	3	55	3.02	AAC	6FAMGCTCTTGGCGTGCTTCTT	133/141	0.72	umc92a, bnlg2136
					GCGGGGAGGTGAAGAGCTA			
phi053	3	67.9	3.05	ATAC	6FAMCTGCCTCTCAGATTCAGAGATTGAC	168 / 195	0.71	cdo459, cdo419a
					AACCCAACGTACTCCGGCAG			
phio29	3	91	3.04	AG/AGCG***	NEDTTGTCTTTCTTCCTCCACAAGCAGCGAA	142 / 161	0.71	bnlg1796, npi201a
					ATTTCCAGTTGCCACCGACGAAGAACTT			
phi102228	3	97.05	3.04	AAGC	6FAMATTCCGACGCAATCAACA	122 / 131	0.67	npi328b, bnlg1022
					TTCATCTCCTCCAGGAGCCTT			
phi073	3	120	3.05	AGC	6FAMGTGCGAGAGGCTTGACCAA	176 / 195	0.65	bnlg1108, umc226a
					AAGGGTTGAGGGCGAGGAA			
phi072	4	12	4.00	AAAC	HEXACCGTGCATGATTAATTTCTCCAGCCTT	141/164	0.63	bnlg1241, uaz60
					GACAGCGCGCAAATGGATTGAACT			

phi295450	4	17.3	4.01	AGG/AAG***	6FAMCCTTTTCATGTTGCTTTCCC	187 / 199	0.77	cyp5, zp11a
					GCCCAATCCTTCCTTCCT			
phi213984	4	24.1	4.01	ACC	6FAMGTGACCTAAACTTGGCAGACCC	286 / 304	0.52	umc277, uaz67
					CAAGAGGTACCTGCATGGC			
phi308090	4	53.03	4.04	AGC	6FAMCAGTCTGCCACGAAGCAA	210/223	0.49	csu855, bnlg292b
					CTGTCGGTTTCGGTCTTCTT			
phi096	4		4.04	AGGTG	NEDTCCACCATTTGACACTTAGGCA	232 / 241	0.48	$f 12$
					GCGTAGGACGACCGTTGAA			
phi079	4	64	4.05	AGATG	6FAMTGGTGCTCGTTGCCAAATCTACGA	179 / 196	0.73	uaz69b, bnlg1621a
					GCAGTGGTGGTTTCGAACAGACAA			
phi438301	4	102	4.05	ACC	NEDCCTTCATTGTTCGGCTGG	210 / 215	0.68	umc66a, rz446a
					ACGAAGCTGATGATCTAACGCT			
phi093	4	141	4.08	AGCT	HEXAGTGCGTCAGCTTCATCGCCTACAAG	$283 / 295$	0.62	npi449b, rz476a
					AGGCCATGCATGCTTGCAACAATGGATACA			
phio76	4	178	4.11	AGCGGG	HEXTTCTTCCGCGGCTTCAATTTGACC	160 / 174	0.65	csu315b
					GCATCAGGACCCGCAGAGTC			
phi109188	5	0	5.00	AAAG	6FAMAAGCTCAGAAGCCGGAGC	162 / 170	0.61	cdo484, csh13
					GGTCATCAAGCTCTCTGATCG			
phi396160	5	73	5.02	AGGCG	NEDGGAGCCTCCTCAACCCTT	300 / 304	0.6	ucr1b, umc1
					GCTCGAGGTCCATGAGCA			
phi331888	5	88	5.02	AAG	HEXTTGCGCAAGTTTGTAGCTG	129 / 136	0.67	php06012, bnlg653
					ACTGAACCGCATGCCAAC			
phi330507	5	91.32	5.02	CCG	HEXGTAAAGTACGATGCGCCTCCC	134/143	0.21	tum3, bnlg386
					CGGGGTAGAGGAGAGTTGTG			
phi333597	5	93.55	5.02	AAG	HEXAGCTCGAGTACCTGCCGAG	213/259	0.71	cent5, rz476b
					TGCATCTCTGAGACCATCACC			
phio85	5	130	5.07	AACGC	HEXAGCAGAACGGCAAGGGCTACT	$236 / 266$	0.79	bnlg1885, csu1164
					TTTGGCACACCACGACGA			
phi423796	6	31	6.01	AGATG	NEDCACTACTCGATCTGAACCACCA	131/139	0.45	Csu1196, uaz23a
					CGCTCTGTGAATTTGCTAGCTC			
phi389203	6	81.33	6.03	AGC	NEDGACGAAAAGGTGGCTCGT	301 / 310	0.23	tug6, tda51
					TGCAGTCCTAGATCAGTTCCAA			
phi452693	6	95	6.04	AGCC	NEDCAAGTGCTCCGAGATCTTCCA	124 / 142	0.61	bcd221a, npi330
					CGCGAACATATTCAGAAGTTTG			
phi445613	6	106.7	6.05	ACG	NEDTGACCACACACGAGCGAG	99 / 103	0.6	npi608, php10016
					GCTCACAATATGTGGCAGAGG			
phio70	6	114	6.07	AGCTG	NEDGCTGAGCGATCAGTTCATCCAG	76/90	0.76	cdo89, bnl8.08c
					CCATGGCAGGGTCTCTCAAG			
phi364545	6	125.4	6.07	AGC	HEXTAAGCAAAGCAAGGCAACC	127 / 138	0.64	php20904, npi280
					TCGCCTCACTCTCACACTCC			
phi299852	6	129	6.07	AGC	6FAMGATGTGGGTGCTACGAGCC	99 / 132	0.76	uaz251d, umc266c
					AGATCTCGGAGCTCGGCTA			
phio34	7	33	7.02	CCT	6FAMTAGCGACAGGATGGCCTCTTCT	118/145	0.57	bnlg2160, uaz20b
					GGGGAGCACGCCTTCGTTCT			
phi328175	7	102.12	7.04	AGG	HEXGGGAAGTGCTCCTTGCAG	101 / 130	0.71	bnlg1161, bnl8.39
					CGGTAGGTGAACGCGGTA			
phi069	7	120.3	7.05	GAC	NEDAGACACCGCCGTGGTCGTC	187 / 207	0.66	bnl16.06, csu920b
					AGTCCGGCTCCACCTCCTTC			
phi260485	7	134	7.05	AGC	6FAMTCATTCGACAGAGGCAAAAG	$288 / 321$	0.75	csu814a, phi051
					CATGGGAACTAACACTGGATGC			
phil16	7	145.82	7.06	ACTG/ACG***	6FAMGCATACGGCCATGGATGGGA	151/174	0.68	php20728, umc35a
					TCCCTGCCGGGACTCCTG			
phi420701	8	18	8.00	CCG	NEDGATGTTTCAAAACCACCCAGA	291 / 300	0.73	rnp2, bnlg2235
					ATGGCACGAATAGCAACAGG			
phi233376	8	56.32	8.03	CCG	6FAMCCGGCAGTCGATTACTCC	138/155	0.69	cdo1160a, php20727
					CGAGACCAAGAGAACCCTCA			
phil21	8	77.13	8.04	CCG	HEXAGGAAAATGGAGCCGGTGAACCA	96 / 102	0.59	cdo1395e, csu254d
					TTGGTCTGGACCAAGCACATACAC			
phi115	8	84.71	8.03	AT/ATAC***	HEXGCTCCGTGTTTCGCCTGAA	291 / 312	0.56	rz206c, umc12a
					ACCATCACCTGAATCCATCACA			
phi100175	8	116.8	8.04	AAGC	6FAMTATCTGACGAATCCCATTCCC	132 / 142	0.81	bcd134c, umc117
					GTACGTAACGGACGGACGG			
phi015	8	159	8.08	AAAC	6FAMGCAACGTACCGTACCTTTCCGA	80 / 106	0.7	Csu223a, rz444a
					ACGCTGCATTCAATTACCGGGAAG			
phi033	9	41	9.01	AAG	NEDATCGAAATGCAGGCGATGGTTCTC	$236 / 264$	0.24	bz1, csu665b
					ATCGAGATGTTCTACGCCCTGAAGT			
phi032	9	90	9.04	AAAG	NEDCTCCAGCAAGTGATGCGTGAC	223 / 243	0.52	uaz119c, cdo938b
					GACACCCGGATCAATGATGGAAC			
phi448880	9	108.73	9.04	AAG	NEDCGATCCGGAGGAGTTCCTTA	178/188	0.72	npi425d, bnlg1270
					CCATGAACATGCCAATGC			
phi236654	9	124	9.05	CCG	6FAMGCTTGTTTCCCTTGGTCG	120 / 127	0.59	std2a, csu870
					GGACTCGCGAATAAGGTCTGG			

phi108411	9	126.15	9.05	AGCT	6FAMCGTCCCTTGGATTTCGAC	116/123	0.66	bnlg1191, bnlg1156
					CGTACGGGACCTGTCAACAA			
phi041	10	7	10.00	AGCC	NEDTTGGCTCCCAGCGCCGCAAA	$196 / 218$	0.67	php20626, bnl3.04
					GATCCAGAGCGATTTGACGGCA			
phi059	10	52	10.02	ACC	6FAMAAGCTAATTAAGGCCGGTCATCCC	146 / 146	0.39	csu625, npi417b
					TCCGTGTACTCGGCGGACTC			
phi96342	10	53.16	10.02	ATCC	6FAMGTAATCCCACGTCCTATCAGCC	240 / 250	0.59	csu625, npi417b
					TCCAACTTGAACGAACTCCTC			
phi050	10	63	10.03	AAGC	NEDTAACATGCCAGACACATACGGACAG	$76 / 87$	0.57	umc155, bnlg1526
					ATGGCTCTAGCGAAGCGTAGAG			
phi301654	10	85.8	10.04	CCG	6FAMGAATGCATGCTTTTCAAGGAC	132 / 138	0.31	npi563, npi269b
					CGCACAGAGAGCAGAACG			
phi062	10	96	10.04	ACG	NEDCCAACCCGCTAGGCTACTTCAA	159 / 165	0.63	bcd386b, umc44a
					ATGCCATGCGTTCGCTCTGTATC			
phi323152	10	119.2	10.07	CCG	HEXTCAGGGAGCTCACCTACTACGG	$137 / 147$	0.68	bnlg1450, npi254b
					CACGACTGCACCGATTAGC			
* Min and max allele values were obtained by rounding the former down and the latter up to the next integer								
${ }^{* *}$ Nearby public loci/markers in Maizedb; not obtained di rectly from mapping data. NM = not mapped with sufficient resolution								
${ }^{* * *}$ Compound repeat motifs								

was incubated at 95 C for 10 min (hot start), then amplified by 45 cycles of: denaturation, 95 C for 50 sec ; annealing, 60 C for 50 sec ; extension, 72 C for 85 sec , followed by a final 10 min 72 C incubation. A water bath thermocycler manufactured at Pioneer Hi-Bred Int'l Inc. was used. PCR products were prepared for analysis using ABI377 Automated DNA Sequencers (PE Corporation) by diluting 3μ of each product to a total of $27 \mu \mathrm{l}$ using a combination of other PCR products (multiplexing) and/or $\mathrm{dH}_{2} \mathrm{O}$. $1.5 \mu \mathrm{l}$ of this mixture was then diluted to $5 \mu \mathrm{l}$ with gel loading dye and analyzed using ABI hardware and software according to manufacturer's specifications.

The Table on the preceding pages lists approximately 80 markers and relevant associated information. For some markers, PCR primers have been redesigned since their initial publication for optimal performance under the conditions described above. The Table also notes the fluorescent dyes with which each marker is labeled. Minimum and maximum allele sizes were obtained by rounding down or up to the nearest basepair respectively. These sizes and PIC values (Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S, Ziegle J [1997] Theor Appl Genet 95, 163-173) were obtained from an analysis of over 500 Pioneer Hi-Bred Int'I Inc. proprietary maize genotypes. Even though the PIC and allele range values were obtained working with proprietary Pioneer Hi-Bred Int'I Inc. germplasm, we do know that the values presented here are largely representative of North American dent germplasm in general.

The shredded leaf mutation, shr1, maps near the centromere on chromosome 5

--Fox, TW, Trimnell, MR, Albertsen, MC
An F2 line segregating for the shredded leaf phenotype (shr1) was grown for the purpose of mapping the mutation (Trimnell, MR et al. 2000. MNL 74:36). DNA was extracted from 20 wild-type and 24 mutant plants. These samples were subjected to SSR analysis using approximately 96 markers dispersed throughout the genome (Register, JC et al. 2001. MNL 75). From this initial screen, three markers on chromosome 5 showed some linkage with the mutation. Other SSR markers on chromosome 5 were selected for additional mapping. An estimate of linkage was based on a percent recombination value, calculated by dividing the number of wild-type class alleles by the total number of alleles
represented in the mutant plant samples. Failed PCR reactions were not included in the total allele calculation. As shown in the table below, five markers on chromosome 5 showed linkage with the

	Allele segregations in F2 mapping population				
Probe	C5 bin		Wild-type plants		Mutant plants

mutation., with the two markers in bin 5.04 (phi330507 and phi386223) mapping nearest to the trait. Markers distal to bin 5.04 were not as tightly linked to shr1. No linkage was found for markers on the short arm of chromosome 5, suggesting that shr1 maps near the centromere on the long arm of chromosome 5, most likely in bin 5.04.

JUIZ DE FORA-MG, BRAZIL Universidade Federal de Juiz de Fora VIÇOSA-MG, BRAZIL Universidade Federal de Viçosa

Relationship between chromosome breaks and knob heterochromatin in maize meristematic cells resulting from irradiated pollen

--Viccini, LF, de Carvalho, CR
Relationships between chromosome breaks and heterochromatin regions have been discussed in the literature. While some authors have reported the occurrence of random breaks, others suggest that chromosome breaks occur, mainly, in heterochromatic regions. With the objective of verifying the relationship between chromosomic breaks induced by gamma irradiation and heterochromatic regions, maize line L-869 (of the Federal University of Viçosa) pollen grains were exposed to 36 and 72 Gy of gamma radiation and soon after used for pollination. Seeds that originated from irradiated pollen were germinated in Petri dishes with a film of distilled water in the dark at 29 C . Root tips ranging from 0.5 to 1.0 cm in length were fixed in fresh cold methanolacetic acid (3:1). Slides were prepared by the air drying technique with enzymatic maceration. The slides were submitted to Cbanding technique to identify the heterochromatic regions. After
drying on a hot plate, the slides were stained with Giemsa solution. The percentage of abnormal anaphase cells carrying chromosomal bridges was evaluated. It was observed that the occurrence of bridges was not directly related to the presence of heterochromatic regions (Figure 1). In the case of lower radiation dosages, about 66% of the anaphases showed evidence of heterochromatin on the bridges, while for the higher dosage, only 42% of them presented heterochromatin (Figure 2). Fifty-two percent of the

Figure 1. Mitotic anaphases of a maize line L-869, which was derived from irradiated pollen, lacking evidence of heterochromatin on the bridge. Note the regions deeply stained (heterochromatin) on the chromosomes already separated (bar = $10 \mu \mathrm{~m}$)

Figure 2. Mitotic anaphases of a maize line L-869, which was derived from irradiated pollen, with evidence of heterochromatin on the bridge ($\mathrm{bar}=10 \mu \mathrm{~m}$)
analysed anaphases presented bridges with strongly stained regions, indicating heterochromatic regions. Considering that maize C-banding technique identifies heterochromatic regions present in the knobs, it is possible that, for the anaphases without strongly stained regions on the bridges, the involved chromosomes do not have knobs. This fact hinders the establishment of a straight relationship between the occurrence of bridges and the presence of heterochromatin. These observations suggest that other mechanisms could be involved in the origin of chromosomal structural re-
arrangements and that the presence of the heterochromatin should not be considered as necessary for the occurrence of bridges.

KÖLN, GERMANY
Universität Köln

The expression pattern of Lipid Transfer Protein 2 (LTP2) gene indicates regionalisation in the proembryo and confirms the coleoptile to be in lineage with the scutellum --Bommert P, Werr W

In a pattern formation process during early plant embryogenesis at least two patterns are superimposed. Firstly, an apicalbasal axis is established, and, secondly a radial pattern defining the inside and the outside of the embryo is superimposed. In maize as in most angiosperms, the apical and basal poles of the embryo are fixed by the first asymmetric division of the zygote oriented perpendicular to the chalazal/micropylar axis of the embryo sac. The upper, chalazal daughter cell gives rise to the embryo proper while the lower, micropylar cell develops to the suspensor. In contrast to Arabidopsis or other dicots, successive divisions of the zygote do not follow a predictable pattern in maize, but result in an undifferentiated club-shaped cell mass, the proembryo. The first evidence of morphological differentiation becomes visible in the early-transition stage with the appearance of a distinct outer cell layer, the embryonic protoderm (Randolph, J. Agric. Res. 53:881-916, 1936). Slightly later in the midtransition stage the anlage of the shoot apical meristem (SAM) is histologically detectable as a group of small, densely packed cells at the adaxial surface of the embryo. The SAM itself has a tunica/corpus organization composed of at least two clonally distinct cell layers the outer L1 Layer and subtending L2 and L3 Layers, but it is still unclear whether maize organizes a distinct L2 layer. Here we report on the expression pattern of the LTP2 gene (Sossountzov et al., Plant Cell $3: 923-933$, 1991) during the early stages of embryogenesis.

LTP2 transcripts can be detected in the proembryo-stage in all cells of the outer cell layer of the embryo proper, but are absent in the subtending suspensor (Fig. A). Both hemispheres of the proembryo therefore specify different peripheral cells, and the LTP2 molecular marker allows us to distinguish between the suspensor and the embryo proper early in maize embryogenesis. The difference between the suspensor and the embryo proper observed in outer cell layers presumably reflects functional differ-

ences, which may reside in nutrient uptake by the suspensor versus separation of the embryo proper from surrounding endosperm development.

A series of longitudinal sections through late proembryo/early transition-stage embryos showed that distribution of the LTP2 transcript in the protoderm is not completely radial symmetrical. At the adaxial side of the embryo proper, the LTP2 transcript is absent in a few protodermal cells above the suspensor (Fig. B). This position coincides with the prospective SAM anlage, which at this developmental stage is neither detectable histologically nor by analyzing Knotted1 (Kn1) expression pattern. The absence of LTP2 transcripts in the embryonic protodermal region, which is specified to form the L1 layer of the prospective SAM, indicates that the embryo proper is regionalized before the meristem marker Kn1 is activated.

During further stages of development LTP2 expression remains confined to the outer cell layer of embryonic organs like the scutellum and the coleoptile (Fig. C). In the epidermis of true leaves, as in the L1 layer of the SAM, LTP2 expression is generally absent (Fig. D) This observation provides molecular evidence that the coleoptile is in lineage with the scutellum but is not a derivative of the SAM. Absence of the LTP2 transcript in the L1 layer of the SAM and leaves also shows that epidermal cell fate is different from the identity of cells comprising the outer cell layer in the maize proembryo. In the late proembryo/early transition stage lack of LTP2 expression above the prospective SAM anlage indicates that epidermal cell fate may be realized prior to activation of the Kn1 meristem marker. The LTP2 radial asymmetry in the proembryo can be taken as first evidence that despite the irregular cell division pattern, positional information is imposed very early in maize embryogenesis.

LLAVALLOL, ARGENTINA
Instituto Fitotécnico de Santa Catalina (FCAF, UNLP) and Centro de Investigaciones Genéticas (UNLP-CONICET-CIC)

Relationships between Zea mays ssp. mays and Zea mays

 ssp. parviglumis by genomic in situ hybridization (GISH)--Gonzalez, G*, Confalonieri, V*, Comas, C*, Naranjo, CA, Poggio, L**
*also affiliated with Dpto. de Ciencias Biológicas, FCEN, UBA.
Fluorescent in situ hybridization (FISH) is a tool which, when combined with genomic in situ hybridization (GISH), reveals homologies in DNA, mainly in regard to repetitive sequences. These techniques are also very useful in detecting amplifications and divergences of DNA sequences. Moreover, they can be used to discriminate genomes having sequences of allopolyploid origin as well as to detect chromosomes or chromosomal segments derived from introgression. This technique allows us to understand the cryptic polyploid nature of the genus Zea, and the genomic constitution of meiotic configurations in those hybrids where chromosomes from different parents have been distinguished using as a probe total genomic DNA or a repetitive sequence present in one of them (Poggio et al., Cytogenet. Cell Genet. 81:134, 1998; Poggio et al., Genome 42:993-1000, 1999; Poggio et al., Bol. Soc. Argent. Bot. 35:297-304, 2000; and Poggio et al., in press).

Maize and related wild species are of polyploid origin, but
which species should be considered the ancestral ones is still unresolved. GISH studies conducted by our group and other research workers using DNA of co-generic species and even related genera as probes, failed to reveal genomic differences. In the present work, we have applied GISH with washing at very high stringency after the hybridization reaction and using unlabeled total genomic DNA as blocking agent in order to reveal cryptic genomic differences.

The species analysed here were Zea mays ssp. parviglumis (Balsas, cult. 6836, IFSC) and Zea mays ssp. mays (knobless line cultivated in IFSC). Chromosome preparations and GISH were carried out according to Poggio et al. (1999). The blocking procedure (Anamthawat-Jonsson et al., Theor. Appl. Genet. 79:721728,1990) was applied by adding unlabeled DNA from Zea mays ssp mays and labeled DNA from Zea mays ssp. parviglumis in a 10:1 proportion respectively, on chromosome preparations of Zea mays ssp. parviglumis. This procedure allowed us to discriminate three regions of differential hybridisation: unlabeled, labeled and highly labeled. The first region contains shared DNA sequences of high homology between both taxa and is located in all the telomeric regions of Zea mays ssp. parviglumis; the second region contains free unblocked DNA sequences that could hybridize with DNA from the same species. This region probably corresponds to repetitive DNA inherent to Zea mays ssp. parviglumis. The last chromosome region, with strong hybridization signals, corresponds to the heterochromatic knobs of Zea mays ssp. parviglumis which were not blocked by heterologous DNA from maize because the line used for blocking does not have "knob sequences". These "knob" hybridized regions were taken into account as positive controls of the whole blocking experiment. The experiment reported here demonstrates that there are divergent chromosome regions between these two taxa that are considered subspecies of Zea mays by Doebley and Iltis (Amer. J. Bot. 67:982-993, 1980) and Iltis and Doebley (Amer. J. Bot. 67:994-1004, 1980).

The meiotic analysis of the hybrid Zea mays ssp. mays \times Zea mays ssp. parviglumis $(2 n=20)$ reveals that 10 bivalents (II) are observed in 80% of the analysed cells in Metaphase I, the remaining 20% showed 9 II + 1 I or 8 II +2 I. Besides, the mean of closed bivalents was 7.2 with terminal chiasmata. These data suggest that Zea mays ssp. mays and Zea mays ssp. parviglumis have genomes homologous enough for normal pairing to occur.

It is interesting to point out that in situ hybridization used under conditions of high stringency and with blocking agents, can provide valuable information about the type and localization of repetitive sequences in Zea mays and related species, being an adequate complement to the data obtained by classical cytogenetic analysis.

Postharvest mycoflora associated with kernels of flint maize native Argentinian populations
 --Astiz Gassó, MM, Aulicino, MB, Lori, G

The flint maize grains have been shown to be more resistant than the dent ones to either pre- or postharvest attack by fungi and insects. However, there might be flint genotypes with differential resistance to fungal colonization. The objectives of our study were: a- identify postharvest mycoflora associated with kernels of some flint grain native population; b - relate the fungal
occurrence on kernels with maize population passport and characterization data.

From 1998 to 1999, 15 early maturity and flint populations (belonging to INTA germplasm bank, Argentina) were planted in a completely random block design with four replications at the IFSC (Instituto Fitotécnico de Santa Catalina, Llavallol in Buenos Aires) experimental farm. Each plot consisted of 15 plants in a single row ($3,5 \mathrm{~m}$ long), with 25 cm between plants and 80 cm between rows. Five corn ears randomly sampled from each row were harvested and their kernels were shelled and pooled. A subsample of 100 kernels per plot was taken to determine fungal contamination. Twenty-five kernels per Petri dish (9 cm diameter) were placed on filter paper watered with sterile distilled water. The Petri dishes were incubated at $24 \mathrm{C} \pm 2 \mathrm{C}$ for 7 days under 12/12 h photoperiod and cold white and black fluorescent lamps (1). One hundred seeds per replication were evaluated by the blotter test, according to ISTA rules.

The fungi developed in those kernels were subcultured in PDA and then identified. The percentage of contaminated seeds by each genera of fungus in the different replicates was recorded. Data (arcsin transformed) were analyzed by ANOVA, through a mixed model of two factors in which genotypes were used as the fixed factor. Means were compared by LSD test at 0.05 probability level. Simple correlation between \% of each fungus vs. passport data (origin, latitude, longitude, altitude) and characterization data (racial form, endosperm colour, heat units from planting to silking) were calculated. The coefficient of product-moment correlation, formulated by Pearson, was used. Furthermore, a " t " test for significance of this coefficient with n 2 degree of freedom was done (Sokal and Rohlf, 1995).

The external mycoflora identified included: 3 species of Fusarium (F) Genera of the Section Liseola: F. moniliforme, F. proliferatum and F. subglutinans; two species of Aspergillus Genera: A. flavus (Af), A. niger (An) and Penicilium spp. (P).

The maize populations didn't show dissimilar behaviours for the presence of Af, An and P contaminants. However, genotypes (populations) had a differential response to Fusarium. This could indicate some sort of coadaptation between host-pathogen related with the collection sites of accessions (longitudinal position) and with some characters (highly heritable) such as heat units from planting to silking and endosperm colour. Earlier maturity populations with white or yellow endosperm showed a higher level of Fusarium. Genotype-environment interaction was the most important source of variation for A. flavus, A. niger and Penicilium spp. This possibly prevented the differences among genotypes from showing. It would also indicate that the populations of fungi would change their behaviour according to the environment. Possibly, environmental factors related to grain storage were responsible for some changes, but they were not controlled during this experiment.

LOMAS DE ZAMORA, ARGENTINA
 Universidad Nacional de Lomas de Zamora

Stability analysis for yield and expansion volume in popcorn hybrids
 --Burak, R, Broccoli, AM

Popcorn culture is actually in expansion in Argentina, and native open-pollinated varieties have been replaced by simple hybrids in-
troduced from the USA. Our work is focused on the study of adaptability for grain yield and popping expansion of these hybrids in a non-traditional region in the milk belt of Buenos Aires (Cuenca del Salado) at $34^{0} 38^{\prime} \mathrm{LS}$ and $58^{\circ} 48^{\prime}$ Long. 14 popcorn hybrids of current commercialization ($\mathrm{H} 1-\mathrm{H} 14$) were evaluated conducting 10 trials in 5 locations during 1998 and 1999, using standard experimental units. The variables analyzed were yield, grain yield per experimental unit (kg) and popping expansion or expansion volume (exvol), expanded volume of a 100 popcorn grain randomized sample within each experimental unit. Analysis of variance was made in a randomized complete block design, with a simple factorial including 14 treatments $\times 3$ replications x 10 environments under the model:

$$
y_{i j k}=\mu+b(E)_{j k}+G_{i}+E_{j}+\left(G^{*} E\right)_{i j}+\varepsilon_{i j k}
$$

Here $y_{i j k}$ is the observation of the k th replication of the th genotype of the th environment, m is the population overall mean, G_{i} is the fixed effect of th treatment, E_{j} is the randomized effect of jth environment, $\left(\mathrm{g}^{*} \mathrm{a}\right)_{\mathrm{ij}}$ is the genotype x environment interaction effect, $b(E)_{j k}$ is the replications nested in environments effect and $\varepsilon_{i j k}$ is the experimental error randomized variable.

Stability analysis was made using bilinear regression models (Verma et al., 1978, Silva et al., 1985, Cruz et al, 1989). Each genotype is described by three parameters: two regression coefficients (b_{1} and b_{2}) and the variance of regression deviation S^{2} di. Coefficient b_{1} indicates genotype response in unfavorable environments and $b_{1+} b_{2}$ measures response in the favorable ones. Environmental indexes are the independent variables of this multiple regression method and the zero value is the intercept of each one. The advantage of using this method is the ability to evaluate genotypes also under unfavorable environmental conditions. The model is:
$E\left(Y_{i j}\right)=B_{0}+B_{1} l j+B_{2} J_{j}$
Expected observation of the th genotype in the jth environment, B_{0} is the mean for each genotype, B_{1} is the unfavorable environments regression coefficient, $B_{1}+B_{2}$ is the favorable environments regression coefficient for each genotype, $I_{j}=$ the environmental index (Eberhart and Russell, 1966), $\mathrm{J}_{\mathrm{j}}=\mathrm{I}_{\mathrm{j}(+)}-\hat{\jmath}_{\mathrm{j}(+)}$ the environment index of favorable ones minus their average.

The following matricial equation represents $Y_{i j}$ values:
$X \beta+E=Y$
The X matrix has three columns, the unity, the environmental effects, and thirdly, the favorable environmental effects minus its average. Unfavorable effects have zero value. β is the vector of the unknown regression coefficients and E is the vector of the experimental error for each genotype. Y is the vector of the observations. Applying the minimum square method we obtain the following system:
$X^{\prime} X \beta=X^{\prime} Y$
(X^{\prime} is the trans X matrix and β the regression coefficients estimations vector)

Table 1 shows genetic x environment significant effect results; effects for genotypes and environments also were significant.

Table 1. Analysis of variance for (YIELD) and (EXVOL) . (**p<0.01, $\left.{ }^{*} p<0.05\right)$.

SV/GL Variables	Environments 9	$\begin{aligned} & \text { Rep(Env.) } \\ & 20 \end{aligned}$	Treatments 13	$\begin{aligned} & \text { Treat } x \text { Env } \\ & 117 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Error } \\ & 260 \\ & \hline \end{aligned}$	VC(\%)
(YIELD)	93.43**	0.631	0.822**	$0.188^{* *}$	0.097	12.34
(EXVOL)	22052**	1923.4	5707.4**	1461.6**	1154.2	9.09

Tables $2 a$ and $2 b$ show the environment average for each
hybrid in two conditions: unfavorable $\left(\mathrm{E}_{(-)}\right)$and favorable ($\mathrm{E}_{(+)}$). B_{0} is the overall mean including both environment conditions. The slopes (B) feature responses for genotypes on each environment $\left(B_{1}\right.$ y $\left.B_{1}+B_{2}\right)$. R^{2} is the determination coefficient, which measures fitness for the model and S_{di} is the regression device mean squares, measuring stability response of the hybrids. For each genotype, yield shows high R^{2} values; expansion volume (exvol) shows high R^{2} values except for $\mathrm{H} 3, \mathrm{H} 9, \mathrm{H} 11$ genotypes.

For yield, all genotype slopes are 1 despite the environment (Table 2a) However, for $\mathrm{H} 1, \mathrm{H6}, \mathrm{H} 9, \mathrm{H} 10, \mathrm{H} 14, \mathrm{~S}_{\text {di }}$ was significant. The hybrids differ not in their responses but in their stability. For the mentioned hybrids, behavior is not predictable on the environment range of this experiment.

Table 2a. Stability parameters for (YIELD).
Test t student for $B_{1}=1$ y $B_{1}+B_{2}=1$. ($\left.{ }^{*} p<0.05\right)$. Test $F .\left({ }^{*} p<0.05\right)$.

HYBB	$\mathrm{E}_{(-)}$	$\mathrm{E}_{(+)}$	B_{0}	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}+\mathrm{B}_{2}$	R^{2}	$\mathrm{~S}_{\mathrm{di}}$
1	0.993	3.796	2.675	1.056	0.213	1.269	96.37	0.383^{*}
2	1.006	3.757	2.657	1.035	-0.06	0.972	98.61	0.126
3	1.094	3.752	2.689	1.000	0.177	1.177	99.45	0.049
4	0.877	3.488	2.442	0.981	0.034	1.015	98.25	0.148
5	0.748	3.260	2.255	0.935	-0.275	0.660	97.67	0.166
6	0.981	3.491	2.487	0.947	0.021	0.968	94.51	0.450^{*}
7	0.999	3.898	2.739	1.089	-0.664	1.023	99.16	0.084
8	0.732	3.583	2.442	1.066	-0.192	0.874	98.86	0.107
9	0.861	3.715	2.574	1.063	-0.117	0.945	97.58	0.233^{*}
10	1.254	3.792	2.777	0.949	0.214	1.163	97.51	0.211^{*}
11	0.901	3.506	2.464	0.979	0.175	1.154	98.74	0.11
12	0.850	3.200	2.260	0.885	0.078	0.963	98.95	0.073
13	0.893	3.659	2.553	1.040	-0.151	0.890	99.33	0.059
14	0.849	3.435	2.407	0.972	-0.048	0.924	97.34	0.218

Table 2b. Stability parameters for the variable (EXVOL).
Test t student for $B_{1}=1$ y $B_{1}+B_{2}=1 .\left({ }^{*} p<0.05\right)$. Test $F .\left({ }^{*} p<0.05\right)$.

HYB	$\mathrm{E}_{(-)}$	$\mathrm{E}_{(+)}$	B_{0}	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}+\mathrm{B}_{2}$	R^{2}	$\mathrm{~S}_{\mathrm{di}}$
$\mathbf{1}$	351.87	389.14	366.78	1.034	-0.482	0.552	68.02	917.4
2	379.76	427.11	398.70	1.162	-0.448	0.713	53.18	2198^{*}
3	351.39	370.47	359.02	0.455^{*}	-0.812	-0.357^{*}	28.11	1013
4	325.11	386.80	349.79	1.397	-1.365	0.032	69.18	1517
5	362.61	405.17	379.63	1.021	0.042	1.062	58.18	1533
6	340.24	394.30	361.87	1.306	-0.018	1.288	57.27	2566^{*}
7	347.59	394.94	366.53	1.261	-0.608	0.653	72.06	1122
8	352.17	395.50	369.50	1.036	0.051	1.087	72.63	830
9	388.16	397.56	391.92	0.221^{*}	0.929	1.151	27.21	1229
10	372.86	425.49	393.91	1.354	1.101	2.455^{*}	96.24	191
11	371.93	385.39	377.31	0.435^{*}	0.263	0.697	24.94	1404
12	347.76	411.81	373.38	1.730^{*}	0.710	2.440^{*}	82.37	1476
13	361.87	390.29	373.24	0.651	0.201	0.852	45.98	1109
14	356.25	390.79	370.07	$0.935-$	0.435	1.370	66.25	1046

H 10 and H 7 had yield upper values in both environments, but H 10 was unstable while H 7 was stable and predictable in this evaluation (Fig 1). For exvol, genotype responses differ under unfavorable environments. For $\mathrm{H} 3, \mathrm{H} 9$ and $\mathrm{H} 11 \mathrm{~B} 1<1$ and for $\mathrm{H} 2 \mathrm{~B} 1>1$. In favorable environments, for $\mathrm{H} 3, \mathrm{~B}_{1}+\mathrm{B}_{2}<1$ while for H 10 and $\mathrm{H} 12>1$. Sdi was significant only for H 2 and H 6 . Even when H 2 showed the best popping expansion, H 9 retained its capability in both environment situations, becoming better for this character (Fig. 2).

Table 3 shows means and the environment index for both variables. For yield, environments $1,4,5,6,3$ and 2 were profitable, for exvol environments 7, 8, 1, 3 were. Instead of profitability of environment 1 for both characters, we found that a favorable environment for one is unfavorable for the other. This agrees with other classical studies describing a negative correlation between
[YIELD]
6

Figure 1. Genotype H7

Figure 2. Genotype H9
Table 3. Means and environments. (+) favorable. (-) unfavorable.

Env	(YIELD)							(EXVOL)					
	Mean	I_{j}	$\mathrm{I}_{\mathrm{j}(+)}$	Mean	I_{j}	$\mathrm{I}_{\mathrm{j}(+)}$							
1	$4.41 \quad(+)$	1.88	0.81	$390.4(+)$	16.71	-7.08							
2	$3.56(+)$	1.03	-0.032	$364.5(-)$	-9.19	-							
3	$2.66(+)$	0.13	-0.94	$380.2(+)$	6.50	-17.29							
4	$4.26(+)$	1.73	0.67	$362.7(-)$	-10.99	-							
5	$3.97(+)$	1.44	0.37	$360.5(-)$	-13.21	-							
6	$2.71(+)$	0.18	-0.89	$362.8(-)$	-10.88	-							
7	$1.13(-)$	-1.41	-	$412.0(+)$	38.31	14.51							
8	$0.79(-)$	-1.73	-	$407.3(+)$	33.65	9.85							
9	$0.81 \quad(-)$	-1.72	-	$346.1(-)$	-27.56	-							
10	$0.98(-)$	-1.54	-	$350.4(-)$	-23.34	-							

yield and expansion volume. These results contribute to aiding farmers in selecting better genotypes with yield stability, quality properties and adaptation for this no traditional zone.

Genetic and environmental correlations between yield

 components and popping expansion in popcorn hybrids--Burak, R, Broccoli, AM
Six field trials under a three replication complete randomized block design were conducted; 14 simple popcorn hybrids were evaluated for: sowing date (early and late) and three plant densities ($62.500,74.000$ and 85.000 plants per hectare), with stan-
dard experimental units. Triple factorial design was used for estimating sowing date, genotype and plant density effects, according with the following model:
$y_{i j q k}=m+B_{k(i q)}+G_{i}+D_{j}+F_{q}+\left(G^{*} D\right)_{i j}+\left(G^{*} F\right)_{i q}+\left(D^{*} F\right)_{j q}+$ $\left(\mathrm{G}^{*} \mathrm{D}^{*} \mathrm{~A}\right)_{\mathrm{ijq}}+\varepsilon_{\mathrm{ijqk}}$
where:
$y_{i j g k}=1$ th treatment of g th plant density of the qth sowing date of the k th replication; $\mu=$ overall mean; $G_{j}=$ randomized effect of genotype i th; $P D_{j}=$ fixed effect of plant density jth; $S D_{q}=$ fixed effect of sowing date q th ; $\left(\mathrm{G}^{\star} \mathrm{F}\right)_{\mathrm{ij}}=. \mathrm{G} \times$ SD interaction effect; $\left(G^{*} D\right)_{\mathrm{ij}}=. \mathrm{G} \times \mathrm{PD}$ interaction effect; (PD*SD) $\mathrm{ij}_{\mathrm{ij}}=. \mathrm{PD} \times \mathrm{SD}$ interaction effect; $\left(\mathrm{G}^{*} P D^{*} S D\right)_{\mathrm{ijq}}=$ triple interaction; $\mathrm{Rk}_{(\mathrm{jq})}=$ replications nested in PD and SD effect; $\varepsilon_{\mathrm{ij} \text { gk }}=$ experimental error randomized variable.

Genetic and environmental variances for each variable were estimated from expected mean square (Table 1) and covariances were calculated following the Kempthorne procedure.

$$
M P_{x y}=1 / 2\left(M S_{x+y}-M S_{x}-M S_{y}\right)
$$

where:
$\mathrm{MP}_{\mathrm{xy}}=\mathrm{Xe} \mathrm{Y}$ variables mean product; MS_{x} y $\mathrm{MS}_{\mathrm{y}}=$ mean squares of X and Y variables; $M S_{x+y}=$ mean squares of the sum between X and Y variables.

Table 1. Expected means squares for factorial design, considering simple hybrids a randomized sample of the commercially available ones.

S. V.	D. F.	M.S	Expected M.S
(R/PD)/SD	$(\mathrm{r}-1) \mathrm{fd}$	MS 1	$\sigma^{2} E+g \sigma_{r}^{2}$
G	(g-1)	MS 2	$\sigma^{2} E+r d f \sigma^{2} G$
SD	(f-1)	MS_{3}	$\sigma^{2} E+g \sigma^{2} r+(f / f-1) r d \sigma^{2} G F+r d g \phi F$
PD	(d-1)	MS_{4}	$\sigma^{2} E+g \sigma^{2} r+(d / d-1) r f \sigma^{2} G D+r f g \phi D$
G*SD	$(\mathrm{g}-1)(\mathrm{f}-1)$	MS_{5}	$\sigma^{2} E+(f / f-1) r d \sigma^{2}$ GF
G*PD	(g-1) (d-1)	MS 6	$\sigma^{2} E+(d / d-1) r f \sigma^{2} G D$
SD*PD	(f-1) (d-1)	MS_{7}	$\sigma^{2} E+g \sigma^{2} r+(f / f-1)(\mathrm{d} / \mathrm{d}-1) \mathrm{r} \sigma^{2} \mathrm{GDF}+\mathrm{rg}$ 中FD
G*SD*PD	(g-1)(f-1)(d-1)	MS_{8}	$\sigma^{2} E+(f / f-1)(d / d-1) r \sigma^{2}$ GDF
Error	(b-1)(g-1) df	MS9	$\sigma^{2} E$

Variables analyzed were: Grain yield (kg/ experimental unit) (YIELD); Expansion volume (cc/gr) (EXVOL); Grain roundness index (GRI); Harvest index (HI); \% of cob (COB); Kernel density not expanded (gr/cc) (KNED); Kernel density expanded (gr/cc) (KED).

Higher expansion volumes usually obtained from samples with medium to small kernels, rounder than the average was reported in classic papers, and indicates the roundness index RI (relation between thickness, width and length of the seed) is an adequate parameter to measure this phenotypic correlation.
$(\mathrm{RI})=\mathrm{KTH} /(\mathrm{KW}+\mathrm{KL})$
Harvest index was calculated as no. of ears/no. of plants by experimental unit. \% of cob (COB), by the rate weight of the kernels/weight of the ears

Table 2 shows significant interaction for (G*PD*SD) and (G^{*} SD) for the variables (YIELD) and (KED), therefore it is necessary to make the analysis within sowing date, for both variables. For the other variables, interactions were not significant and therefore the mean analysis was done for the factors genotype, sowing date and plant density. (EXVOL), (RI) and (COB) were affected by the three factors and (HI) by sowing date and genotype, while (KNE) was only affected by sowing date. Based upon this results, for this no traditional region under study the correct management of these three factors is priority for ensure the pop-

Table 2. Mean squares from the combining ANOVA for all the variables (**p<0.01, *p<0.05).

S. V.	D. F.	YIELD	EXVOL	R I	HI	COB	KNED	KED
(r/PD)/SD	12	0.975	4.43	7.4×10^{-4}	0.096	3.52	8×10^{-4}	1.6×10^{-5}
G	13	0.782	16.02	1.7×10^{-3}	0.064	39.87	1.3×10^{-3}	5.8×10^{-5}
SD	1	0.699	49.16	6.1×10^{-3}	0.93	67.20	8.3×10^{-3}	2.1×10^{-4}
PD	2	59.18	19.12	9.5×10^{-3}	0.112	22.55	2.2×10^{-3}	5.7×10^{-5}
G*SD	13	0.295	8.18	4.4×10^{-4}	0.013	4.02	6×10^{-4}	3.3×10^{-5}
G*PD	26	0.158	5.96	2.4×10^{-4}	0.017	4.87	9×10^{-4}	1.9×10^{-5}
SD*PD	2	1.665	5.35	7.6×10^{-4}	0.22	12.83	1.1×10^{-3}	1.9×10^{-5}
G*SD*PD	26	0.277	6.97	5.5×10^{-4}	0.024	3.45	7×10^{-4}	2.5×10^{-5}
Error	156	0.128	4.57	3.2×10^{-4}	0.012	6.00	9×10^{-4}	1.5×10^{-5}
V.C. (\%)		9.98	9.09	6.13	9.79	12.48	3.89	8.99

corn quality measure as expansion volume. For yield stability of the genotypes is a very important factor.

Table 3 shows the values of genetic and enviromental correlations between the seven variables under study. These will be useful for selection and development of specific genotypes within this region. Similar negative genetic and environmental correlations $\left(r_{G}=-0.1876^{* *} ; r_{E}=-0.1641^{* *}\right)$, with (YIELD) and (EXVOL) agree with many papers reporting this negative association. (YIELD) has positive correlations with (HI), $r_{G}=0.307^{* *} ; r_{E}=$ $0.241^{* *}$, in agreement with classic maize bibliography, and is relevant to indirect selection. Positive genetic correlation also was registered with (KNED), $\mathrm{r}_{\mathrm{G}}=0.415^{* *}$. Negative correlations between (YIELD) and (COB) are obvious ($r_{G}=-0.452^{* *}$; $r_{E}=$ $-0.164^{\star *}$) Genetic correlation (which influences kernel length) is higher than environmental, affected by deficient grain filling Strong association exists between (COB) and (RI), $\mathrm{r}_{\mathrm{G}}=0.928^{* *}$ and $r_{E}=0.169^{* *}$, being the genetic component more important than the environmental because the filling of grain influences kernel shape. (EXVOL), a measure of popcorn quality, has strong genetic correlation also with kernel shape (RI), $\mathrm{r}_{\mathrm{G}}=0.613^{* *}$ and with (KNED), $r_{G}=0.691^{* *}$, without environmental influence. Opposite relationships were verified between (EXVOL) y (KNED), $r_{G}=$

Table 3. Genetic and environmental correlations (${ }^{* *} \mathrm{p}<0.01,{ }^{*} \mathrm{p}<0.05$).

Genetic correlations							
-	YIELD	EXVOL	RI	HI	COB	KNED	KED
YIELD	-	-0.1876	-0.359	0.307	-0.452	0.415	-0.128
EXVOL	$-0,1641$	-	0.613	0.048	0.095	0.691	-0.981
RI	-0.0102	0.045	-	-0.246	$\begin{gathered} * * \\ 0.928 \end{gathered}$	-0.519	-0.592
H	0.241	-0.104	0.064	-	-0.411	-0.118	-0.082
COB	-0.164	-0.055	0.169	0.078	-	-0.226	-0.111
KNED	0.104	-0.111	0.105	0.007	-0.028	-	-0.712
KED	0.152	-0.921	-0.051	0.102	0.054	0.187	-
Environmental correlations							

$-0.981^{* *} ; r_{E}=-0.921^{* *}$, because both variables (DECA Y DCEX) were inverse. The same criteria is applicable for the correlations between (KNED) and (RI) with (KED) $\mathrm{r}_{\mathrm{G}}=-0.712^{* *}$ and $\mathrm{r}_{\mathrm{G}}=$ $-0.592^{* *}$, where even the environmental correlation between (KNED) and (KED) is positive $\mathrm{r}_{\mathrm{E}}=0.187^{* *}$.

Prolificacy influences kernel shape, based on the negative correlation between (HI) and $(\mathrm{RI})), \mathrm{r}_{\mathrm{G}}=-0.246^{\star *}$. COB proportion influences (KNED) with a negative genetic correlation $\mathrm{r}_{\mathrm{G}}=$ $-0.226^{* *}$. Kernel shape is modified by (COB) and affects the kernel density measurement procedure, where smaller grains have more density than the bigger ones; there is a high negative genetic correlation between (KNED) and (RI) $r_{G}=-0.519^{* *}$.

These results indicate that kernel shape is an important trait associated with quality. Genetic correlations are higher than environmental, therefore this would be a relevant trait for a popcorn expansion volume breeding program. Breeding strategy for simultaneous quality (popping) and yield improvement could be grounded in selection for the component (HI), strongly associated with yield but without negatively influencing popping expansion.

MANHATTAN, KANSAS
 Kansas State University

A modified set of Rp differential lines

--Hulbert, SH, Webb, CA, Smith, SM
Rp genes confer resistance to Puccinia sorghi, the causal agent of maize common rust. Individual Rp genes can be differentiated by their map position and the combinations of rust biotypes that they confer resistance to. Different Rp genes are more or less effective in controlling common rust in a given area or growing season, depending on the rust biotypes that are prevalent. The effectiveness of $R p$ genes is monitored by growing lines carrying the different Rp genes (Rp differentials) in various locations every season (e.g. Pataky and Tracy, Plant Dis. 83:1177, 1999).

Most of the known Rp genes map to the Rp1 complex (Hulbert, Ann. Rev. Phytopathol. 35:293-310, 1997) near the end of the short arm of chromosome 10. Different maize lines carry different numbers of $r p 1$ genes in their rp1 haplotypes (generally between 4 and 20) but most do not confer resistance to any known rust biotypes. For example, the Rp1-D haplotype carries the Rp1-D gene and eight others with no detectable phenotypes (Collins et al., Plant Cell 11:1365-1376, 1999). Genetic recombination experiments have generated recombinant haplotypes with two or more Rp1 genes with characterized resistances. Some of these recombinant haplotypes confer resistance to a very broad spectrum of rust biotypes and have been incorporated into breeding programs (e.g. Hulbert and Drake, Hortsci. 35:145-146, 2000). The Rp5 and RpG loci map approximately two map units distal to the Rp1 locus. Recombinants with Rp5 and/or RpG combined with one or more Rp1 genes have also been constructed and allow multiple Rp genes to be manipulated as a single locus in breeding programs.

Resistance conferred by most $R p$ genes is dominant or incompletely dominant. Rp8 is unique in that only Rp8-A/Rp8-B heterozygotes confer resistance (Delaney et al., MPMI 11:242-245, 1998). Most maize lines carry the Rp8-B allele and some carry Rp8-C, which confers no known resistance in homozygotes or heterozygotes. To determine if Rp8 provides effective resistance
against a specific rust population, an F1 hybrid between H 95 and the Rp8-A line can be examined.

An extensive Rp differential series in the R168 genetic background was developed by Art Hooker and coworkers in the 1960s. A number of problems exist with this series in its current state (Hulbert et al., Plant Dis. 75:1130-1133, 1991). Due to their propagation for many years without routine testing with a set of characterized rust biotypes, different investigators stocks are missing the resistance genes they are thought to carry, or carry the wrong gene. The series is also redundant in the genes they carry. The Rp1-C, Rp1-L and Rp1-N lines all carry the same Rp1 haplotype as determined by gel blot analysis with an rp1 probe and by phenotype. The same is true for the Rp1-E, Rp1-I and Rp1-K lines, and the Rp1-A and Rp1-Flines. The Rp1-H and Rp1-J lines do not carry identical rp1 haplotypes but probably carry a functionally identical gene, since they confer resistance to the same rust biotypes. Six lines carrying Rp3 genes (designated Rp3-A to Rp3-F), originally identified from different sources (Wilkinson and Hooker, Phytopathology 58:605-608, 1968) also appear identical when tested with many rust isolates indicating they also carry a functionally identical gene. Some stocks of the Rp3-C line are resistant to a broader spectrum of rust isolates than the other Rp3 lines but we have found these stocks to be contaminated with an Rp1 gene. Another problem with the current series is that the R168 background makes the lines difficult to propagate in many environments.

We have recently constructed a new differential series in the H95 genetic background (Table 1). The H95 inbred line is susceptible to all known rust biotypes. The H95 Rp series was constructed by crossing lines carrying the resistance genes (often the R168 Rp lines) to the H 95 line, and backcrossing progeny carrying the Rp genes to H95. Most lines have four or more backcrosses to H95 in their pedigrees, but some lines do not; therefore

Table 1. Rp differential lines in the H 95 background.

RpLine	Rpgenes present	Chromosome
Rp1-A	Rp1-A	10
Rp1-B	Rp1-B	10
Rp1-C	Rp1-C	10
Rp1-D	Rp1-D	10
Rp1-J	Rpl-J	10
Rp1-K	Rp1-K	10
Rp1-M	Rp1-M	10
Rp1-Kr1	Rp1-Kr1	10
Rp1-Kr3	Rp1-Kr3	10
Rp1-Kr4	Rp1-Kr4	10
Rp1-Kr1J92	Rp1-Kr1J92	10
Rp1-Kr1J6	Rp1-Kr1J6	10
RpG	RpG	10
Rp5	Rp5	10
Rp1-DJ4	Rp1-D, Rp1-J	10
Rp1-JC13a	Rp1-J, Rp1-C	10
Rp1-FJ69	Rp1-F, Rp1-J	10
Rp1-FJC1	Rp1-F, Rp1-J, Rp1-C	10
Rp-GI5c	Rpg, Rp1-I	10
Rp-GFJ	RpG, Rp1-F, Rp1-J	10
Rp-GDJ1	RpG, Rp1-D, Rp1-J	10
Rp-5D	Rp5, Rp1-D	10
Rp-G5	RpG, Rp5	10
Rp-G5JCa	RpG, Rp5, Rp1-J, Rp1-C	10
Rp3-A	Rp3	3
Rp4-A	Rp4-A	4
Rp4-B	Rp4-B	4
Rp7	Rp7	?
Rp8-A	Rp8-A	6
H95	rp1, rp3, rp4, rp5, rp7, Rp8-B	

they should not be considered to be nearly-isogenic. After back crossing, lines carrying the $R p$ genes were self-fertilized and homozygous lines were selected by progeny testing with appropriate rust biotypes. The H95 series does not include each of the 14 original Rp1 genes (Rp1-A to Rp1-M), but includes a representative line for each different resistance specificity. For example, it does not include Rp1-F because this has the same rp1 haplotype and confers resistance to the same rust biotypes as the Rp1-A line. Similarly, the series includes only one of the six Rp3 genes because these are indistinguishable with our collection of rust biotypes. The series includes novel Rp1 genes and haplotypes that have been generated by recombination or spontaneous mutation and confer resistance to novel combinations of rust biotypes. Some of these carry different combinations of Rp1-area genes while others are thought to represent recombinant genes (Richter et al., Genetics 141:373-381, 1995). In cases where several recombinant $r p 1$ genes or haplotypes were isolated that appeared phenotypically identical after challenging with multiple rust isolates, only one was included in the H95 series. The lines were designated for the specific haplotype they carry. For example, several different recombinant Rp1 haplotypes have been identified that carry both Rp1-J and Rp1-F, but we prefer to distribute only the Rp1-JF69 haplotype to prevent future confusion if phenotypic differences between these haplotypes are revealed by challenge with rust biotypes.

The new differential series does not include a line with the Rp6 gene. This is because we have not found a rust isolate that can be used to detect this gene. Those isolates used by Wikinson and Hooker (Phytopathology $58: 605-608,1968$) to identify the gene are no longer viable. It is possible the Rp6-R168 line may no longer carry the $R p 6$ gene, although we have tested seed samples from several different sources and all appear susceptible to our current collection of rust isolates. It is also possible that rust isolates carrying the avirulence gene corresponding to $R p 6$ have become very rare in North America.

A well-characterized differential series will be useful for determining the effectiveness of the Rp genes or gene combinations in different areas and for monitoring changes in P. sorghi populations. It will also be useful in characterizing specific rust biotypes that can then be used to estimate which Rp genes are carried in various maize lines and breeding material. The lines may be obtained from the Maize Genetics Cooperation Stock Center or by contacting the authors.

MANHATTAN, KANSAS
Kansas State University
WOOSTER, OHIO
USDA-Agricultural Research Service, OSU-OARDC

Fine structure mapping of wsm2 in maize

--Webb, CA, Jones, MW, Hulbert, SH, Louie, R
Wheat streak mosaic virus (WSMV) is a major pathogen of wheat. Unfortunately, commercial wheat cultivars with high levels of resistance are lacking. Attempts to incorporate high levels of WSMV resistance from Agropyron spp. sources via traditional breeding methods have proved frustrating and resulting lines are seldom free of undesirable agronomic or bread-making-quality de-
fects (Seifers, DL et al., Plant Dis. 79:1104-1106, 1995). Maize can also play host to this serious ryemovirus. Infection commences when WSMV is transmitted from maturing wheat to adjacent lateplanted corn by the wheat curl mite, Eriophyes tulipae. Systemic symptoms begin as small chlorotic rings, spots, or streaks on leaves. As the leaf matures, longitudinal streaks, delimited by large veins in the leaf, coalesce to form mosaics and mottled patterns that are quite diagnostic (Louie, R. Pages 49-55 in: Compendium of corn diseases. Third edition, APS Press, 1999).

Unlike wheat, many maize inbred lines show significant levels of resistance to WSMV. There are three known genes in maize for resistance to WSMV located on three different chromosomes (McMullen, MD et al., Mol. Plant-Microbe Interact. 7:708-712, 1994). The wsm1 gene was found to map to chromosome 6 S between the maize restriction fragment length polymorphism (RFLP) loci umc85 and npi235, near the nuclear organizer region (NOR). Another viral resistance gene, mdm1, conferring resistance to maize dwarf mosaic virus (MDMV) was closely linked on chromosome 6 . The long arm of maize chromosome 10 harbored the wsm3 locus. Mapping experiments placed wsm3 between markers umc163 and umc44. Wsm2 was positioned on the maize genetic map near the centromere of chromosome 3 between umc 102 and umc18. This map position is near the rp3 locus, a dominant gene for resistance to Puccinia sorghi, the causal agent of maize common rust. Genes conferring resistance to maize mosaic virus (MMV) and sugarcane mosaic virus (SCMV) and QTLs for resistance to other pests also map to this general area (McMullen and Simcox, Mol. Plant-Microbe Interact. 8:811-815, 1995; Ming et al., Theor. Appl. Genet. 95:271-275, 1997; Xu et al., Mol. Gen. Genet. 261:574-581,1999)

A recent attempt to identify candidate sequences for resistance genes identified the PIC13 probe which hybridizes to a family of resistance gene-like sequences at the Rp3 locus (Collins et al., Mol. Plant-Microbe Interact. 11:968-978, 1998). Recently we examined the relative position of the rp3 and wsm2 loci to determine if the PIC13 gene family might also include the Wsm2 gene. A line carrying the Rp3-A allele in an H95 genetic background (Rp3-A/Rp3-A, Wsm2/Wsm2), resistant to the rust (Puccinia sorghi) biotype IN1 and the Wooster WSMV strain was developed. This line was crossed to the rust and WSMV susceptible inbred OH28 (rp3/rp3, wms2/wsm2). The F1 was backcrossed to the susceptible OH 28 parent and BC 1 progenies self-fertilized. Individual seedlings of the resulting BC1F1 families were scored in the greenhouse after inoculation with talc-diluted rust spores and rub inoculation with the Wooster WSMV strain (Louie, R, Phytopathology 76:769-773, 1986). Plants with resistance to WSMV are symptomless. However, a 'virus resistant' recombinant class would be the most likely class in which escapes could occur and would be the most difficult to score. To reduce the number of escapes, a minimum of three independent virus inoculations were made, each spaced 2-3 days apart, on the two/three leaf-stage seedlings. Furthermore, efforts were made to maintain a high virus titer in our inoculum and to introduce an equal amount of inoculum load to each seedling.

Resistance or susceptibility to rust infection was very definitive and was observed as either hypersensitive flecking or sporulation, respectively. We observed no latent symptoms. One application of fresh rust urediniospores was made to the seedling
leaves, typically after the second virus inoculation. The scoring of rust and WSMV symptoms commenced seven days post-inoculation. Recombinants were identified as being either rust resistant/virus susceptible (RRVS) or rust susceptible/virus resistant (RSVR). Table 1 summarizes these scoring data. The recombinant heterozygous seedlings were transplanted from flats to five-gallon pots and then self-fertilized. Self-fertilized families from most of the putative recombinants were progeny tested. Progeny testing indicated that all but three individuals assigned to the RRVS class had been scored correctly. However, individuals in the RSVR class were more often mis-scored. Even after progeny testing, a disproportional number of what appeared to be RSVR-recombinant types resulted. Relatively equal proportions of the two recombinant classes are expected from such an experiment. There are two explanations that could account for these observations. First, there remains the possibility that poorly challenged plants or latent viral symptoms led to mis-classification of virus resistant plants even during progeny testing. Alternatively, it is possible that there is a second, unidentified gene segregating in this population. The presence of a second gene may make a wsm2/wsm2 plant appear to be resistant to WSMV, and lead to the inflated numbers we observed in the virus resistant class.

Table 1. wsm2 mapping population: greenhouse data

Non-recombinant phenotypes	Originally identified
RSVS	403
RRVR	1,348
Recombinant phenotypes	29
RRVS	69
RSVR	$\mathbf{1 , 8 4 9}$
Population total	

Because we were much more confident in accurately scoring them with few escapes or mis-scores, we chose to use the frequency of the RRVS-class seedlings to calculate map distance. This gave an estimate of roughly 3 cM between the $r \mathrm{p} 3$ and wsm2 loci.

The recombinant individuals were also used to order DNA markers in the $r p 3$-wsm2 interval. DNAs were analyzed from 29 progeny-tested, homozygous individuals and 20 other recombinants that were not homozygous. The PIC13 probe detected a single polymorphic Hpall restriction fragment and two polymorphic EcoR1 restriction fragments. All three polymorphisms cosegregated perfectly with each other and with $\mathrm{rp3}$. This indicates that at least most of the PIC13 family members cluster tightly to the $r p 3$ locus and that it is unlikely that any members of this family account for the Wsm2 gene. A second resistance gene analog clone, designated RGH, was obtained from M. Chen and J. Bennetzen. RGH was placed between PIC13 and wsm2 on this population, more tightly linked to PIC13 than to wsm2. The core markers umc10 and umc 102 were also mapped with this population and their positions are in agreement with the UMC 1988 molecular marker map of maize chromosome 3 (Davis, G et al., MNL 72:118-128, 1998). Figure 1 shows the position of molecular markers for this chromosomal region in relation to $r p 3$ and wsm2. The Mv1 gene for resistance to MMV was placed 4 cM below umc102 (Ming et al., Theor. Appl. Genet. 95:271-275, 1997) and may be close to the Wsm2 locus. The Scm2 gene, conferring resistance to SCMV, was mapped approximately 4 cM above

Figure 1: Chromosome 3 makers relative to ph3 and wsm 2

umc102 (Xu et al., Mol. Gen. Genet. 261:574-581,1999), and may be close to Rp3. The PIC13 and RGH probes should be mapped with respect to Scm2 to scrutinize these resistance gene-like sequences as candidates for this gene.

MÜNCHEN, GERMANY
Ludwig-Maximillians-University

The plastid chromosome of maize (Zea mays): Update of the complete sequence and transcript editing sites

--Tillich, M, Schmitz-Linneweber, C, Herrmann, RG, Maier, RM
The nucleotide sequence of the plastid chromosome from maize as well as the number and positions of transcript editing sites (Maier et al., J. Mol. Biol. 251:614-628, 1995) has been updated.

An insertion of three adenosine residues at position 116 of the psaA coding region (position 43,488 of the complete plastid chromosome sequence) which has been found not to be conserved in homologous sequences of other plant species turned out to be incorrect. The revised maize plastid chromosome sequence now consists of 140,384 base-pairs. It contains a pair of inverted repeat regions (IRA and IRB) with 22,748 base pairs each, which are separated by a small and a large single copy region (SSC and LSC) of 12,536 and 82,352 base-pairs respectively (Figure 1). With the recent identification of conserved reading frames as functional genes, the gene content of the maize plastid genome in total is 108 , with 74 polypeptide-encoding genes, 30 tRNA genes and four rRNA genes (Table 1).

In addition to the 25 editing positions identified in 13 different plastid-encoded transcripts (Maier et al., see above) three new editing sites have been determined. In contrast to the C-to-U editing of ycf14 (matK)-mRNA (position 1957 of the maize plastid chromosome) which restores a highly conserved amino acid residue already found at the gene level in the liverwort Marchantia

Figure 1. Gene organization of the Zea mays plastid chromosome. The inverted repeat regions IRA and IRB, respectively, divide the rest of the circular chromosome into large (LSC) and small (SSC) single copy regions. Genes drawn outside the circle are transcribed clockwise. Intron-containing genes are marked by asterisks. The numbers around the circle indicate the numbers of editing sites observed in the respective genes.

Table 1. Classification of the encoded genes within the plastid DNA of Zea mays

```
RNA genes
    Ribosomal RNA genes
        rrn23#,rrn16#, rrn5#, rrn4.5#
    Transfer RNA genes
        trnA(UGC)*#, trnC(GCA), trnD(GUC), trnE(UUC), trnF(GAA), trnG(GCC),
        trnG(UCC)*, trnH(GUG), trnl(CAU)*,
        trnL(UAA)*,},trnL(UAG),,trnfM(CAU),,trnM(CAU),,trnN(GUU)#, trnP(UGG)
        trnQ(UUG),}\operatorname{trnR(ACG)}\mp@subsup{}{}{#},\operatorname{trnR(UCU),}\operatorname{trnS(GCU),}trnS(GGA), trnS(UGA)
```

 \(\operatorname{trn} \mathrm{T}(\mathrm{GGU}), \operatorname{trnT}(\mathrm{UGU}), \operatorname{trn} \mathrm{V}(\mathrm{GAC})^{\#}, \operatorname{trn} \mathrm{~V}(\mathrm{UAC}), \operatorname{trnW}(\mathrm{CCA}), \operatorname{trn} \mathrm{Y}(\mathrm{GUA})\)
 Polypeptide genes
Ribosomal protein genes
rps2, rps3, rps4, rps7 ${ }^{\#}, r p s 8, r p s 111, r p s 12^{8 \dagger}, r p s 14, r p s 15, r p s 16^{*}, r p s 18, r p s 19$
$r p 2^{\#}, r p / 14, r p / 16^{*}, r p / 20, r p / 22, r p / 32, r p / 33, r p / 36$
Transcription/ translation apparatus genes
rpoA, rpoB, rpoC1, rpoC2, infA
Photosynthetic apparatus genes
rbcL
psaA, psaB, psaC, psal, psaJ
psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbl, psbJ, psbK, psbL, psbM, psbN,
psbT
pet A, pet B^{*}, pet D^{*}, petG, petL, petN ($y c f 6$)
$\operatorname{atpA}, \operatorname{atpB}, \operatorname{atpE}, \operatorname{atp} \mathrm{F}^{*}, \operatorname{atpH} \mathrm{H}, \operatorname{atpl}$
ycf3 ${ }^{\S}$, ycf4, cemA (ycfi0), ycf9
NADH dehydrogenase genes
$n d h A^{*}, n d h \mathrm{~B}^{* \#}$, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhl, ndhJ, ndhK
Other protein genes
clpP, ccsA (ycf5)
Conserved reading frames
ycf14 (matk; partially homologous to intron maturases)
Notes:

* Intron-containing gene
§ Gene containing two introns
${ }^{\dagger}$ Divided gene
\# Two gene copies due to the inverted repeat
polymorpha, editing of ndhG-mRNA (position 113,177 of the maize plastid chromosome) alters coding from proline to leucine, whereas in this case a phenylalanine residue is encoded at the corresponding position in the liverwort gene. A further editing site has been detected in the non-coding 5 -untranslated region of maize ndhG transcripts (position 113,533 of the plastid chromosome).

The updated maize plastid chromosome sequence has been deposited in the EMBL data base (accession no. X86563).

NEW DELHI, INDIA
Indian Agricultural Research Institute (IARI)

Analysis of genetic diversity in selected Indian maize inbreds using microsatellite markers

--Pushpavalli, SNCVL, Sudan, C, Mohammadi, SA, Nair, SK, Singh, NN, Prasanna, BM
A preliminary analysis of genetic relationships among thirtytwo public domain Indian maize inbred lines, most of which are currently being utilized as parental lines in hybrid breeding programs across the country, was carried out using a set of microsatellite or Simple Sequence Repeat (SSR) markers. The inbred lines included 18 CM lines (from the All India Coordinated Maize Improvement Project), two LM lines (from Punjab Agricultural University, Ludhiana), four NAI lines (from Nagenahalli, Karnataka) and eight inbreds used as parental lines for some promising single-cross hybrids (designated as BIO lines). The inbred lines selected also included CM111 and CM202, often used as heterotic testers in the Indian maize breeding programs.

SSR polymorphism among the inbred lines was analyzed using Super Fine Resolution agarose gel electrophoresis, following the
procedure suggested by Senior and Heun (1996). Data obtained from 22 polymorphic loci, distributed over all 10 chromosomes, was used for analysis of genetic diversity. Except for chromosome 4, where only one polymorphic SSR marker could be identified in the present study, the rest of the chromosomes were represented by at least 2-3 SSR loci distributed at different map locations. A total of 58 alleles were detected for the 22 polymorphic SSR markers, giving an average of 2.64 alleles per locus. Although a large number of SSR loci used in the present study revealed only 2-3 alleles using the agarose system, a few loci such as bnlg105, bnlg125, bnlg389 and phi116 showed 4-5 alleles per locus in various inbred lines.

Polymorphism Information Content (PIC), a measure of allelic diversity at a locus, was estimated for various SSR loci used during the study. The values ranged from 0.06 (phi042) to 0.72 (bnlg105). The mean PIC value estimated across all SSR loci was 0.43. The PIC values of 10 primers were greater than this mean value. A comparison of the PIC values for SSR loci with different repeats shows that the mean PIC value for 10 SSR loci with direpeats was 0.47 , two loci with tri-repeats was 0.62 , five loci with tetra-repeats was 0.32 , one locus with penta-repeat was 0.6 , two loci with hexa-repeat was 0.32 , and one locus with a complex repeat was 0.56 . These values do not show any clear association of PIC values with the nature of repeat.

The SSR marker data could facilitate discrimination of various inbred lines on the basis of occurrence of 'rare alleles' (with frequencies less than 0.25) for different SSR loci. The allelic frequencies indicated for various inbreds in Table 1 reveal the occurrence of many alleles with frequencies less than 0.10 ; this means that these alleles occur in no more than 2 out of the 22 inbreds. Such alleles could be effectively employed as possible diagnostic alleles for discrimination of specific inbred lines either alone or in combination. Rare alleles could not be detected in seven (BIO-1, BIO-4, BIO-5, BIO-6, CM202, CM137 and CM138) of the 22 inbreds analyzed. The present analysis also indicated instances where the SSR profiles for some inbreds showed deviations from the expected patterns. Inbreds are assumed to be highly homozygous, revealing one band per SSR locus. However, double bands could be consistently detected in some of the inbreds for specific SSR loci. An analysis of the frequency of heterozygous SSR loci revealed that eleven inbreds, including CM119, CM123, CM135, CM136, CM137, CM138, CM140, CM111, CM202 and BIO-1 have considerably high frequencies ($>10 \%$) of double bands.

The SSR data matrix was utilized to estimate the genetic relationships among the various selected inbreds. The genetic simi-

Table 1. PIC of SSR loci across various inbreds analyzed

SSR locus	Bin location	No. of alleles	PIC	SSR locus	Bin location	No. of alleles	PIC
bnlg439	1.03	2	0.43	phi112	7.01	2	0.16
phi002	1.08	3	0.26	phi034	7.02	3	0.60
phi098	2.02	2	0.49	bnig572	7.03	3	0.68
bnlg125	2.02	4	0.43	phi116	7.06	4	0.56
phi099	3.02	2	0.43	phi119	8.02	2	0.14
phi029	3.04	2	0.22	phi125	8.03	$1^{* *}$	0.12
phi093	4.08	2	$-^{*}$	phi033	9.01	4	0.63
bnlg105	5.02	5	0.72	phi042	9.04	$1^{* *}$	0.06
bnlg389	5.09	4	0.70	phi041	10.00	2	0.63
phi077	6.01	3	0.57	phi050	10.03	2	0.23
phi070	6.07	3	0.60				

*PIC value for phi093 was not estimated due to high frequency of occurrence of double bands
**Consistent occurrence of a 'null allele' in 2 inbreds (phi125) and one inbred (phi042)
larity matrix between various inbreds was computed in a pair-wise comparison using Jaccard's coefficient and the resulting similarity matrix was subjected to the UPGMA clustering algorithm; computations were carried out using NTSYS-pc 2.02. The cophenetic correlation coefficient (r) was 0.664 , showing a moderate fit of the dendrogram with the similarity matrix generated using SSR data. This indicates the need for further analysis using a greater number of markers to ascertain the genetic relationships among various Indian maize inbreds. The dendrogram obtained in this study (Fig. 1) provides preliminary information about the genetic similarities among the inbreds. On the basis of canonical discriminant analysis, the inbreds could be grouped into five distinct clusters (Fig. 2). It could be observed that CM111 and CM202

Figure 1. Dendrogram depicting genetic relationships among the Indian maize germplasm based on SSR analysis.

Group 1 - BIO-1, BIO-8, CM116, CM123, CM115, NAl116, CM111, CM136, CM138, CM137, CM119, CM139 and CM133
Group 2 - BIO-2, CM202, CM117, CM140, BIO-3, BIO-6, CM135, CM127, BIO-4, BIO-7, LM6, BIO-5 and LM5
Group 3 - CM212, CM141 and CM126
Group 4 - NAI- 123 and NAl127
Group 5 - NAl144
Figure 2. Canonical discriminant analysis for determining acceptable number of clusters
(heterotic testers for Indian maize germplasm), CM139 and CM140 (parents of a single-cross hybrid 'Parkash'), BIO-7 and BIO-8 (parental lines of a promising experimental hybrid BH1183) fall into distinct groups. Interestingly, both CM212 and CM141 (parents of single cross hybrid 'Vivek-4') were found to be genetically similar as also LM5 and LM6 (parental lines of the hybrid 'Paras'), for the SSR markers used for analysis. Close genetic relationships could be observed between some of the BIO lines (from Hyderabad) and the LM lines (from Ludhiana). The study also clearly distinguished the NAI lines, NAI123, NAl127 and NAl144, from the other inbreds. This could be because these inbreds were essentially derived from foliar disease resistant maize materials obtained from Thailand and the Philippines (although the exact pedigree is not known), while most other inbreds used in this study were developed either from indigenous maize populations or from materials obtained from the USA or to some extent, CIMMYT, Mexico. Further analysis using a greater number of polymorphic SSR markers with adequate coverage of the entire genome, and methodologies with better resolving power (such as PAGE), will lead to a more comprehensive understanding of the genetic diversity in the Indian maize germplasm.

Analysis of genetic polymorphism among downy mildew resistant and susceptible maize inbred lines using Simple Sequence Repeat (SSR) markers

--Yen, TTO, Prasanna, BM
Thirteen inbred lines with distinct responses to maize downy mildew in India were selected for analysis of genetic polymorphism using a set of SSR markers. The genotypes included four inbreds provided by CIMMYT-Asian Regional Maize Program [AMB109 (AMATLCOHS115-1-2-3-3-1-2-B-B), AMB115 (AMATLCOHS 245-1-1-1-2-1-1-BB), AMB112 (P345C3S3B-46) and AMB119 (IPB9204-1-3-1-2-4-B) from CIMMYT-ARMP], which were highly resistant to both sorghum downy mildew (SDM) and Rajasthan downy mildew (RDM) in India. Four inbred lines from Mandya (Karnataka, India), designated as MAI lines, were included for this study: MAl101, MAl105 and MAl110 were susceptible to SDM at Mandya and resistant to RDM infection at Udaipur, while MAl114 was moderately susceptible to SDM and resistant to RDM. Three elite Indian maize inbreds, CM105, CM119 and CM139, with high susceptibility to both SDM and RDM infection, and CML51 and CML292 (CIMMYT inbred lines) which were also highly susceptible to SDM infection in India, were included in this study.

Out of 52 SSR markers analyzed, including 18 'bnlg', 29 'phi', one 'nc', two 'dupssr', and two 'umc' primers, polymorphic profiles could be observed for 45 SSR loci in the selected inbreds. Except for chromosome 10, where only two polymorphic SSR markers were identified each chromosome was represented by at least three polymorphic SSR loci. A total of 137 alleles could be detected for 45 polymorphic SSR loci, giving an average of 3.04 alleles per locus. The number of alleles detected per locus was relatively higher in the case of 14 'bnlg' primers in comparison with the 26 'phi' primers. SSR loci with considerably high polymorphism include bnlg105 and bnlg490, with six alleles each within the thirteen inbred lines analyzed, and bnlg1828 with five alleles.

Polymorphism Information Content (PIC), a measure of the allelic diversity at a locus, was estimated for each of the polymorphic SSR loci detected in the present study (Table 1). The PIC values ranged from 0.02 (phi002) to 0.73 (bnlg490). Loci

Table 1. Polymorphic SSR loci and mean PIC values identified among the DM resistant and susceptible maize inbreds

SSR locus	bin location	No. of alleles detected	PIC
bnlg149	1.00	3	0.39
bnlg147	1.02	2	0.31
phio02	1.08	3	0.02
phi037	1.08	2	0.50
bnlg1347	1.10	2	0.16
bnlg504	1.11	4	0.42
phi098	2.02	3	0.64
phio83	2.04	3	0.48
dupssr21	2.05	3	0.45
phit27	2.07	4	0.30
bnlg198	2.08	3	0.57
phio90	2.08	2	0.16
phi099	3.02	3	0.47
phio29	3.04	3	0.47
phi073	3.05	3	0.43
phio88	3.07	1	0.31
phi046	3.08	3	0.66
phi072	4.00	2	0.32
nc004	4.03	3	0.14
bnig490	4.05	6	0.73
dupssr34	4.07	3	0.45
phi093	4.08	2	0.26
phio24	5.00	3	0.46
bnig105	5.03	6	0.69
bnlg1346	5.07	3	0.66
umc1225	5.08	4	0.65
bnlg389	5.09	4	0.59
phi075	6.00	3	0.45
phi077	6.01	3	0.54
phi102	6.05	2	0.15
phi070	6.07	3	0.64
phio89	6.08	3	0.57
umc1066	7.01	3	0.44
phi114	7.02	3	0.64
phi051	7.06	3	0.36
bnlg162	8.05	3	0.44
bnlg1828	8.07	5	0.63
phi080	8.08	3	0.49
bnlg1272	9.00	3	0.43
phi033	9.01	2	0.43
phi032	9.04	2	0.47
bnlg619	9.07	4	0.58
phi063	10.02	4	0.49
bnlg2336	10.04	3	0.46

bnlg490 and bnlg105 showed the best PIC values (0.73 and 0.69 , respectively). The mean PIC value estimated across all the polymorphic SSR loci was 0.45 . A comparison of the PIC values did not show any clear association of higher PIC values with the nature of repeat: PIC value of 0.48 for 21 SSR loci with di-repeats; 0.41 for 6 loci with tri-repeats; 0.42 for 10 loci with tetra-repeats; 0.43 for 3 loci with penta-repeats; 0.46 for 2 loci with hexa-repeats; and 0.56 for 2 loci with complex repeats. However, among the nine SSR loci showing more than 0.60 PIC value, five loci (phi098, bnlg105, bnlg1346, umc1225 and bnlg1828) have direpeats, two loci (phi046 and phi114) have tetra-repeats, one locus (phi070) has a penta-repeat and one locus (bnlg490) has a complex repeat, indicating that SSR loci with di-repeats may provide higher PIC values than loci with other kinds of repeats.

The SSR allelic profiles of SDM resistant inbreds, AMB109, AMB112 and AMB119, were compared with the allelic profiles of SDM susceptible inbreds, CM139, CM105, CM119, CML51 and CML292, for each of the 45 SSR loci. Four SSR markers, phi083, phi029, phi070, and phi114 showed a common allelic pattern in the DM resistant lines with distinct polymorphism in the DM
susceptible inbreds. These primers could be promising in molecular marker mapping for SDM resistance and consequently, markerassisted selection.

The data matrix obtained using SSR data was utilized in estimating genetic similarities among various inbreds under study. Similarity coefficients between various inbreds, in a pair-wise comparison, were computed using Jaccard's coefficient and the resulting similarity matrix was further analyzed using UPGMA clustering algorithm; the computations were carried out using NTSYS-pc 2.02. Canonical discriminant analysis was carried out to aid in determining optimal number of clusters from the dendrogram (Figures 1 and 2). The grouping provided an indication about the close genetic similarities among the DM resistant inbreds (AMB109, AMB112 and AMB119), and their genetic divergence from CM139 (DM susceptible elite Indian maize inbred; female parent of 'Parkash', a single-cross hybrid released recently in India) and the two CML lines. The information generated in this study will aid molecular marker mapping for downy mildew resistance in maize.

Figure 1. Dendrogram depicting genetic relationships among selected downy mildew resistant and susceptible inbreds based on SSR analysis

Canonica Discriminant Andysis

to find optima number of dusters

Function 1

Group 1 - AMB109; AMB112; MAl110 and AMB119
Group 2 - AMB115; MAl105; CM119; CM105 and MAl101
Group 3 - MAl114
Group 4 - CM139; CML51 and CML292
Figure 2. Optimal number of clusters of genotypes identified based on canonical discriminant analysis

NEW DELHI, INDIA
Indian Agricultural Research Institute (IARI) MANDYA, KARNATAKA, INDIA
Univ. Agric. Sci. Regional Research Station
UDAIPUR, RAJASTHAN, INDIA
Rajasthan College of Agriculture

Towards molecular marker mapping of genes conferring resistance to sorghum downy mildew (Peronosclerospora sorghi) in maize
 --Nair, SK, Setty, TA, Rathore, RS, Kumar, R, Singh, NN, Prasanna, BM

One of the major factors limiting the productivity of maize in the tropical Asian region is the increased incidence of insect pests and diseases. Among the various maize diseases in south and southeast Asia, downy mildews (DM) are considered to be major diseases. Sorghum downy mildew (SDM) in maize, caused by Peronosclerospora sorghi, is one of the most important among the DM diseases prevalent in India. Another severe form of DM disease found in the state of Rajasthan in India is Rajasthan downy mildew (RDM), caused by Peronosclerospora heteropogoni, which does not infect sorghum, but is capable of infecting maize and a wild grass, Heteropogon contortus. There is no published information so far about resistance/susceptibility of Indian maize inbreds in the public domain to these two important DM diseases. A research program was initiated under the Asian Maize Biotechnology Network (AMBIONET) with the following objectives: (i) to analyze the responses of all the important maize inbred lines released under the All India Coordinated Maize Improvement Project (AICMIP) to SDM and RDM infection; (ii) to study the genetic basis of resistance to SDM and RDM diseases; and (iii) to map the genes conferring resistance to sorghum downy mildew in maize using microsatellite or Simple Sequence Repeat (SSR) markers, and carry out marker-assisted selection for SDM resistance. The present investigation is a component in this effort.

Responses of Indian maize inbred lines to SDM and RDM infection: A set of 47 Indian maize inbred lines were evaluated in a Randomized Block Design with two replications under artificial infection at the two DM 'hot spots' in India, Mandya in Karnataka for sorghum downy mildew and Udaipur in Rajasthan for Rajasthan downy mildew, during the monsoon (Kharif) seasons of 1999 and 2000. The 47 Indian maize genotypes included 37 elite inbreds and 10 inbred lines developed at the Agricultural Research Station (of the University of Agricultural Sciences, Bangalore), Nagenahalli, Karnataka, designated as 'NAI' lines. The NAI lines were derived from the DM resistant maize germplasm obtained from Thailand and the Philippines in the 1970s. Disease scoring was carried out on the basis of percent DM incidence in each genotype: 0 to 10% - Resistant; >10 to 30% - Moderately resistant; >30 to 50% - Moderately susceptible; and $>50 \%$ - Susceptible. The following are the salient findings from the experiments carried out in Mandya and Udaipur during 1999 and 2000:

- Only one inbred line, NAl116, showed a strong resistance response to both sorghum downy mildew and Rajasthan downy mildew among the Indian maize lines. Almost all the elite Indian maize inbreds, including those used in hybrid seed production in the public sector, are highly vulnerable to SDM infection.
- Genotypes found to be resistant to RDM infection at Udaipur
showed a differential response to SDM infection at Mandya. Therefore, there appear to be distinct differences in hostpathogen interaction at Mandya and Udaipur; the DM pathogen at Udaipur probably has lower virulence in comparison with the one in Mandya. This conclusion is also reinforced by the observation that all the inbreds found to be highly susceptible to SDM at Mandya showed varying responses to RDM infection at Udaipur.

This study emphasizes the urgent need to transfer DM resistance to the elite maize lines which are parents of important single cross, double cross and three way cross hybrids in India. A systematic analysis to understand the nature of inheritance of resistance to the disease is highly important for this effort. As a step towards this direction, various crosses were carried out in 6×6 diallel and 9×5 line \times tester mating designs involving resistant, moderately resistant, moderately susceptible, and susceptible inbred lines identified through the present study. These cross combinations were evaluated in randomized complete block design during Monsoon season of 2000 under artificial inoculation at both Mandya and Udaipur. Statistical analysis of the results obtained from both locations is currently in progress and is expected to provide better understanding of the modes of inheritance of resistance to SDM and RDM infection in India.

Analysis of SSR polymorphism among SDM resistant and susceptible lines: A set of seven elite, SDM susceptible inbred lines (CM115, CM116, CM117, CM119, CM123, CM133 and CM139) along with the resistant line, NAl116, were screened using 108 SSR markers at the AMBIONET-India Lab at the Maize Genetics Unit, Indian Agricultural Research Institute, New Delhi. Super Fine Resolution agarose gel electrophoresis was used to detect SSR polymorphism, following the protocol suggested by Senior and Heun (1998). Two genotypes, CM139 and CM117 showed higher polymorphism with NA1116 than other inbred lines. Since CM117 revealed a high frequency of 'double bands', CM139, an elite inbred line which is also being used in the Indian hybrid maize programme as the female parent of a popular single-cross hybrid 'Parkash', has been selected as one of the parents for generating the mapping population. A total of 44 polymorphic SSR markers have been identified so far between NAI116 and CM139 (Table 1). Fifty-two SSR markers, found to be monomorphic during this study shall be reconfirmed using PAGE + silver staining protocol standardized under the AMBIONET programme. The team is presently analyzing an additional set of 150 SSR markers for detection of additional polymorphic SSR loci. A backcross mapping population has been generated using CM139 as the female parent and NAl116 as male parent. Genotyping of the mapping population using polymorphic SSR markers and phenotyping under SDM artificial infection at Mandya (during monsoon season, 2001)

Table 1. Preliminary information on SSR loci found to be polymorphic between SDM resistant (NAl116) and susceptible (CM139) Indian maize inbreds.

Chromosome	Polymorphic SSR loci
1	phi097, bnlg615, bnlg400, bnlg504, umc1331
2	dupssr21, magE.05, bnlg371, bnlg198
3	phi099, 1452, phi073, phi053, bnlg420, bnig1182
4	bnlg1729, phi079, bnig490, dupssr34
5	phi113, bnlg105, bnlg653, bnlg278
6	phi078, phi102, phi070
7	phi057, bnlg339, bnlg572, bnig469, phi116
8	phi115, phi014, bnlg1065, bnlg240, bnlg1056, phi015
9	bnlg1272, phi033, phi022, bnlg127, bnlg619
10	phi050, bnlg210

shall be carried out for molecular marker mapping and consequently, marker-assisted selection for SDM resistance in maize.

NEW DELHI, INDIA
Indian Agricultural Research Institute (IARI) MANDYA, KARNATAKA, INDIA
Univ. Agric. Sci. Regional Research Station
UDAIPUR, RAJASTHAN, INDIA
Rajasthan College of Agriculture
BANGKOK, THAILAND
CIMMYT-ARMP

Inheritance of resistance to sorghum downy mildew (Peronosclerospora sorghi) and Rajasthan downy mildew (P. heteropogoni) in maize in India

--Yen, TTO, Rathore, RS, Setty, TA, Kumar, R, Singh, NN, Vasal, SK, Prasanna, BM
Among various diseases affecting production and productivity of maize in tropical Asia, Downy Mildew (Peronosclerospora sp.) is considered as one of the most destructive diseases. In India, important species causing downy mildew (DM) disease in maize are sorghum DM [Peronosclerospora sorghi (Weston \& Uppal) Shaw], Philippine DM [P. philippinensis (Weston) Shaw] and Brown Stripe DM (Sclerophthora rayssiae var. zeae Payak \& Renfro). Sorghum DM (SDM) causes considerable yield losses in several maize growing states, particularly Karnataka, Tamil Nadu and Rajasthan. A survey conducted in Karnataka revealed that the incidence of disease ranged from 10 to 90% and yield loss from 30-40\% (Krishnappa et al., 1995).

In Rajasthan, the disease cycle of P. sorghi remained unknown until 1973 when Heteropogon contortus (speargrass), a wild grass growing in the vicinity of maize fields, was found to be a collateral host of this pathogen. Although the fungus resides on this perennial grass in the form of oospores, the conidial stage is the sole cause of primary infection of maize in that region. While some workers considered that the DM caused primarily through Heteropogon contortus should be redesignated as P. heteropogoni, others considered this a different isolate of P. sorghi, in view of the striking similarities in disease symptoms and very minor differences in pathogen morphology (Payak, 1975; Frederiksen and Renfro, 1977). The DM disease, caused by P. heteropogoni, has been recently designated as Rajasthan downy mildew (RDM) (White, 1999).

A detailed study was carried out to analyze the genetic variability and inheritance of resistance to two important DM diseases of maize in India - sorghum downy mildew (SDM) caused by P. sorghi and Rajasthan downy mildew (RDM) caused by P. heteropogoni. Experiments carried out under artificial infection during Kharif (Monsoon) season in 1999 and 2000 at two different DM 'hot spot' locations in India - Mandya in Karnataka and Udaipur in Rajasthan - aided in characterization of the responses of a set of public sector maize inbreds to the SDM and RDM pathogens, respectively.

Responses of maize inbred lines to SDM and RDM infection in India: A total of 41 inbred lines were evaluated after artificial infection by SDM and RDM at Mandya and Udaipur, respectively. Since a specific set of maize inbred lines was evaluated by both SDM and RDM infection at two different locations, the
study provides an insight into the possible differences in the interaction of the genotypes with SDM and RDM. Analysis of the results obtained in two seasons (1999 and 2000) revealed five inbreds - AMB103 (Nei9008), AMB109 (AMATLCOHS115-1-2-3-3-1-2-B-B), AMB110 (AMATLCOHS233-1-1-1-1-2-2-BBB), AMB112 (P345C3S3B-46) and AMB119 (IPB9204-1-3-1-2-4B) that are highly resistant to both SDM and RDM infection. The 'AMB' lines were those provided by the CIMMYT-Asian Regional Maize Program, Thailand. Among these lines, AMB103 and AMB112 were resistant to SDM (P. sorghi) in Thailand and Philippine DM (P. philippinensis) in the Philippines, and are currently being utilized for molecular marker mapping and markerassisted selection under the Asian Maize Biotechnology Network (AMBIONET) program in these countries (Des Hautea, personal communication; Apichart Vanvichit, personal communication). Such inbred lines with broad-spectrum resistance to DM infection in tropical Asian countries would be highly useful for a variety of basic and applied research on downy mildew resistance breeding.

Significantly, among the 41 inbreds analyzed in the present investigation, no inbred could be found that was resistant to SDM disease at Mandya, and susceptible to RDM infection at Udaipur. A large number of inbreds resistant to RDM infection showed differential responses to SDM infection. Elite Indian maize inbreds such as CM119 and CM133 were highly susceptible to both SDM and RDM, highlighting the necessity of utilizing DM resistant germplasm for deriving elite Indian inbred lines, particularly for hybrid maize breeding. The CIMMYT inbred lines (CML20 and CML281) also showed severe susceptibility to both the SDM and RDM pathogens.

Inheritance of resistance/susceptibility to downy mildew infection in maize: Two sets of data were used to analyze the inheritance of resistance/susceptibility to SDM at Mandya and RDM at Udaipur: (a) responses of various experimental crosses generated among the materials under study; and (b) F2 and $B C$ progenies of selected experimental crosses. Several cross combinations were generated using resistant (R), moderately resistant (MR), moderately susceptible (MS) and susceptible (S) inbreds identified in this study. F1 plants from three cross combinations - NAl116 x CM105; MAl110 x NAl139; and MAl113 x MAl110 - were selfed to generate the F2 population. Also, NAl116 x CM105 (a cross between resistant and susceptible lines) was backcrossed to both parents to generate backcross (BC) progenies. F1, F2 and BC progenies were evaluated for their responses to DM infection at both Mandya and Udaipur during Kharif 2000.

Inheritance of SDM resistance in maize: A total of 38 experimental crosses were evaluated for SDM resistance/susceptibility. Progeny of the R \times R crosses showed only a resistant response, while the $R \times S$ crosses revealed only a moderately resistant response. The S x R crosses, in contrast, showed susceptibility in general (62.91%), with one cross combination recording moderate resistance and another recording moderate susceptibility. Both S x MR and MR x S crosses showed moderate susceptibility. Analysis of various categories of crosses indicated the complex and polygenic nature of inheritance of SDM resistance in maize. Orthogonal contrast also revealed distinct results depending on whether the resistant line was the male or female parent; DM incidence was greater in the second group than the first, highlighting the significance of the cytoplasmic constitution of the female parent in determining the inheritance of SDM resistance.

F2 progenies from the cross NAl116 x CM105 ($\mathrm{R} \times \mathrm{S}$) showed
a large number of resistant plants (190 out of 291 plants), while F2 progeny from the $S \times S$ crosses behaved differently. In the F2 progeny of MAl110 x NAl139 (S x S), only 16 plants were resistant among a total of 194 plants. In contrast, the F2 progeny of MAl113 x MAl110 recorded a significantly higher frequency of resistant plants (120 out of 245 plants). Recovery of resistant plants in F2 of S x S crosses suggests the possibility that resistance/susceptibility might be under the control of both dominant and recessive genes and susceptible lines might also contribute alleles contributing to resistance of the F1. While the F1 progeny of the cross NAl116 x CM105 had a moderately resistant phenotype, the BC 1 progenies, designated as $\mathrm{BC}(\mathrm{P} 1)$ and $\mathrm{BC}(\mathrm{P} 2)$, revealed distinctly different responses. The $\mathrm{BC}(\mathrm{P} 1)$ progeny (backcross with highly resistant parent) showed a very high frequency of resistant plants, with only 8 SDM infected plants out of a total of 142. In contrast, the $\mathrm{BC}(\mathrm{P} 2)$ progeny (backcross with highly susceptible parent) revealed a very high frequency of DM susceptible plants. These observations not only suggest that resistance to SDM disease is under polygenic control, but also a 'threshold effect': accumulation of alleles governing resistance to SDM in $\mathrm{BC}(\mathrm{P} 1)$ led to distinctly different response in comparison with F1, while accumulation of alleles responsible for susceptibility in $\mathrm{BC}(\mathrm{P} 2)$ tilted the response towards high susceptibility. Also, susceptibility for SDM appears to be partially dominant over resistance, and both dominant and recessive alleles might be contributing to the susceptible/resistant responses.

Inheritance of RDM resistance in maize: A total of 32 experimental crosses, generated using various inbreds characterized for their RDM resistance/susceptibility during Kharif (Monsoon) 1999, were evaluated at Udaipur under artificial infection during Kharif 2000. Almost all of the $\mathrm{R} \times \mathrm{R}$ progeny showed a highly resistant response, except CM124 x MAl105 which showed moderate resistance. Both $R \times M R$ as well as MR x MR progeny revealed only resistant responses. The $R \times S$ progeny displayed resistance in all cases, except for MAl101 x CM119, which had moderate resistance. In contrast, the progeny of $S \times R$ crosses showed a different pattern, with two crosses resulting in resistance, two in moderate resistance, and two in moderate susceptibility. All three $S \times M R$ crosses resulted in a moderately susceptible phenotype. Similarly, progeny of the $S \times S$ crosses were always susceptible. It is interesting again to note that both $R \times S$ and $S \times R$ crosses of the inbred lines did not show either completely resistant or susceptible phenotypes in F1, suggesting a polygenic nature of inheritance of RDM resistance. Orthogonal contrast also revealed that the effect of the second group where the resistant line was used as the male parent is greater than the first where the resistant line was used as the female parent, indicating that DM incidence was greater in the second group than the first. This observation highlights the possible role of the cytoplasmic constitution, in combination with the nuclear genes, in determining the magnitude of RDM resistance. F2 progenies of $R \times S$ crosses clearly revealed the distinct differences in the number of infected plants. While the F2 progeny from the NAl116 x CM105 cross showed an extremely low incidence of susceptible plants, MAI110 x NAI139 included a relatively higher frequency of susceptible plants. The F2 progeny from the MR x R cross was largely resistant, similar to those for R x S crosses. The backcross of NAl116 x CM105 to the highly resistant parent (NAI116) had no susceptible plants in the progeny. A comparison of this response with that of the parent NAl116 x CM105 indicated an increase in the resistance capacity
of the BC progeny ($0 \% \mathrm{DM}$ incidence in BC progeny vs. 3% in F).
This study highlights the distinct modes of inherited resistance to SDM and RDM diseases in India. While susceptibility to SDM infection was found to be partially dominant over resistance, resistance to RDM infection appeared to be partially dominant over susceptibility. Analysis of F1, F2, BC(P1) and $\mathrm{BC}(\mathrm{P} 2)$ progenies clearly revealed the differences in modes of inheritance of SDM and RDM resistance. The data also suggested that both dominant and recessive alleles contribute to the response to SDM and RDM infection. Inheritance of resistance to RDM infection was found to be less complex than that of SDM resistance. Further studies are being carried out to clearly discern the significance of additive, dominance, epistatic effects and their interactions in the inheritance of resistance to SDM infection in India.

NOVI SAD, YUGOSLAVIA
Faculty of Agriculture and Institute of Field and Vegetable Crops

Effect of recurrent selection for increased oil content in maize (Zea mays L.)

--Bocanski, J, Petrovic, Z
Apart from continuous, long-range work on increasing maize yield, improving disease resistance, lodging and many other desirable traits, maize breeding has also been employed to change the usual chemical kernel content, i.e., to enhance total oil content in the kernel.

Owing to its favorable chemical content, the maize kernel has multiple applications and it is used as feed, food and raw material in the food processing industry. Besides developing high yielding hybrids of standard kernel quality, there are also hybrids developed with increased content of oil, protein and starch.

Oil hybrids have not only increased oil content, but also enhanced content of essential amino acids, which increases the biological value of the kernel. Therefore, oil hybrids are used for the needs of the oil industry for production of edible oil of high quality, and owing to their increased biological value in relation to ordinary maize, they are used for feeding of domestic animals, especially poultry.

In order to produce lines for increased oil content, recurrent selection for phenotype has been used. The work on production of lines by the means of recurrent selection started in 1967 by establishing the original population. The original population was made of simple hybrids produced by cross breeding eight domestic and four foreign lines originating from the USA. Domestic lines, produced in Institute for Field and Vegetable Crops, were: NSL 637, 1006, 1083, 763, 816, 789, 897 and 796. Foreign lines were: R 30, 38-11, C 103 and HOI11.

The original population of the first selection cycle had 5.72% oil. Oil content in analyzed S1 ears ranged from 5.17-6.91\%, and their average was 6.19% oil. Average oil content in kernel of selected S1 ears amounted to 6.41%. The population of the second cycle produced from the hybrid combinations of the first cycle had 6.50% oil. Oil content in the population of the third cycle was 7.79%, and the population of the fourth cycle had an average oil content of 8.71%. From the 4th population 19 ears with the highest oil content were selected. In order to expand genetic variability, oil synthetic Syn. D.O., with an oil content of 9.59% was in-
cluded for further selection. Oil content in the population from the 5th cycle was 9.44% oil. Average oil content in the population from the 6th cycle was 9.50%. The population of the 7 th cycle had an average oil content of 10.25%. Oil content in an average population sample of the 8th cycle was 10.48%. The population of the 9th cycle had an average oil content of 11.13%. Oil content in an average population sample of the 10th cycle was 10.71%. The 11th cycle population had an average oil content of 9.86%. Oil content in an average population sample of the 12th cycle was 11.43%. The 13th cycle population had an average oil content of 12.74%. The 14th cycle population had an average oil content of 13.56%.

NOVOSIBIRSK, RUSSIA
Russian Academy of Sciences
ST. PETERSBURG, RUSSIA
Russian Academy of Sciences

The effect of pollinator on kernel weight in pseudogamous apomictic corn-gamagrass hybrids
 --Khatypova, IV, Naumova, TN, Sokolov, VA

We have previously reported the suppression of imprinting effect in hybrids of corn with gamagrass (Sokolov, VA et al., MNL 73:74-75, 1999; Sokolov, VA, ANL 11:16-20, 1999) and development of kernels with an abnormally high ratio of maternal and paternal maize genomes in the endosperm. In the present report we attempted to analyze the influence of pollen parent genotype and ploidy on kernel size in two apomictic hybrids differing in number of corn genomes and set of gamagrass chromosomes.

The line with 18 chromosomes of gamagrass was a trisomic for chromosome 4 or 5 of corn; its genome was $2 n=21 \mathrm{Zm}+18 \mathrm{Td}$. The line with 49 chromosomes had the genotype $2 n=40 Z m+9 T d$, where a set of 9 small chromosomes of gamagrass was added to 40 chromosomes of corn - minimally necessary to maintain apomictic development.

As pollinators, diploid forms were used: 1) Montana White; 2) commercial F1 hybrid Wilson (Seeds Inc.); 3) line with a T6-9 translocation (wx 18A); and 4) tetraploid N 102 A (Maize Genetic Cooperation Stock Center).

The results obtained by us are presented in Tables 1 and 2.
Table 1. Effects of gamagrass chromosome number and pollinators on hybrids $2 n=21 \mathrm{Zm}$ +18Td kernel weight.

Male	n	x	$\pm \mathrm{m}$	δ	$\mathrm{V}, \%$	\min	\max	$\%$ Montana White
Montana White	19	0.038 a	0.0062	0.0270	71.4	0.010	0.128	100
T6-9	67	0.021 b	0.0020	0.0167	78.8	0.002	0.077	55
Wilson	39	0.083 c	0.0071	0.0446	53.9	0.010	0.154	218
Tetraploid N 102 A	90	$0.069 \mathrm{c}^{*}$	0.0028	0.0269	38.7	0.007	0.131	182

Table 2. Effects of gamagrass chromosome number and pollinators on hybrids $2 n=40 \mathrm{Zm}+$ 9Td kernel weight.

Male	n	x	$\pm \mathrm{m}$	δ	$\mathrm{V}, \%$	\min	max	\% Montana White
Wison	91	0.106 d	0.0027	0.0258	24.4	0.010	0.153	279
Tetraploid N 102 A	305	0.105 d	0.0016	0.0283	27.0	0.024	0.160	276

The results marked by the letters $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ reliably differ with $\mathrm{P}=0.05$. The values c and c^{*} differ with $\mathrm{P}=0.1$. For comparison, the mean kernel weight of T . dactyloides $=0.03 \pm 0.001 \mathrm{~g}$ and of the maternal tetraploid corn $=0.215 \pm 0.003 \mathrm{~g}$

As is seen from Table 1, the diploid pollinators differ largely in the quantitative effect of imprinting. It is notable that the F1 hybrid (Wilson) is superior to even the tetraploid in this parameter though in the latter's offspring the ratio of genomes in endosperm will be $2: 1$, compared with $4: 1$ in the former.

The results adduced in Table 2 suggest that the hybrid is not inferior to the tetraploid in the "efficiency" of imprinting, though the difference in the ratio of maternal and paternal genomes is still more radical ($8: 1$ in the former and $8: 2$ in the latter). It is remarkable that the mean kernel weight from pollination by the F1 hybrid of the 49 -chromosome form increased by 84%, the maximum weight remained as it was (Table 2) whereas both the mean and maximum weight increased from pollination by the tetraploid.

In this connection it may be supposed that one of the elements of the combining ability of lines producing heterosis is epigenetic modification specific to them, leading to an increase in kernel weight in the F1.

The analogous results from dependence of endosperm formation on pollen source and its ploidy are obtained on aposporous Paspalum notatum (Quarin, CL, Sex. Plant Reprod. 11:331-335, 1999). The suppression of imprinting is likely to be characteristic of all pseudogamous apomicts irrespective of their type as well as the value of endosperm development depends on pollinator.

Completing this section of our report we can conclude:

1) the size of kernels in the hybrids of corn with gamagrass shows dependence on both their ratio of corn male and female genomes and the type of pollinator;
2) the kernel weight trait in the corn - gamagrass hybrids has high genetic variability and can be increased by genetic and "selection" methods.

The authors express appreciation to Dr. E. Coe for fruitful discussions. The research was supported by the Netherlands Organization for Scientific Research Grant No. 047.007.019 and Russian Foundation of Basic Research Grant No. 00-04-49542.

PASCANI, REPUBLIC OF MOLDOVA
 Maize and Sorghum Research Institute

Transposable genetic elements as factors establishing novel regulatory links: models explaining experimental data
 --Koterniak VV

We have reported about closely related lines derived from disruptive selection for frequency of reversion of a mutable allele at the opaque2 (02) locus, that is controlled by the Bg-rbg system of transposable elements. Sharp differences exist among these lines with respect to properties of the components of the $B g-r b g$ system of transposable elements and the expression of quantitative traits (Maydica 44:195-203, 1999; MNL 73:76-79; 74:5758 ; this issue), suggesting a connection between the action of transposable elements and the expressivity of quantitative traits. Possible mechanisms explaining such a connection are discussed below.

Model 1. Taking into account that 02 is an important regulatory gene in zein accumulation, we propose that 02 regulates the quantitative traits under consideration (especially the ones related to kernel weight and volume). For these traits, changes in 02 activity (conditioned for example by changes in state of a mutable allele) would modify their expressivity (Fig. 1).

Figure 1. Interaction between (1) the regulatory gene 02, carrying insertion of a rbg element (designated as rbg-s1 (state 1), represented by a horizontally hatched box on the figure) and (2) a quantitative trait gene, designated as $g e n X$, which determines trait X. Expression of gen X is regulated by 02. A change in state in the rbg-s1 element (e.g. due to internal deletion in this element) leads to the appearance of the rbg-s2 element (represented by vertically hatched box). This change alters activity of 02 , which in turn leads to modified expression of trait X (the modified trait is designated as $\mathrm{X}^{\mathrm{mod}}$).

Model 2. Changes (e. g. internal deletions) in the receptor elements contained in the mutable 02 alleles can affect expression of other genes through transposition of the receptor elements into these genes (Fig. 2). Taking into account differences between the receptor elements contained in the $02-\mathrm{lf}$ and $02-h f$ alleles of lines studied (Maydica 44:195-203, 1999; MNL, this issue), we can expect that transpositions of the receptor elements in the same genes will lead to different levels of expression of these genes.

Figure 2. Receptor element rbg-s2 (derived from an internal deletion in rbg-s1 on 02) can transpose to a certain gene, gen Y, which is not regulated by 02 . gen Y participates in determination of trait Y. Transposition of the rbg-s2 element changes activity of the gen Y gene and modifies trait Y (designated as $\mathrm{Y}^{\mathrm{mod}}$).

Other Models. Other schemes for regulatory action of transposable elements invoke gene products of transposable elements. In Cuypers et al. (EMBO J. 7:2953-2960, 1988) it was reported that a defective En-1102 element reduced the excision frequency of both the autonomous En-1 element and the inhibitor element Spm-15719A. The authors suggested that the changed product of a defective En-1102 element acted as a competitive inhibitor and was responsible for reduced excisions.

Because differences in quantitative traits between lines studied did not depend on the activity of the regulatory (autonomous) element (MNL, 74:57-58; this issue), we can assume that the interactions between receptor elements play a predominant role. If the receptor element inserted into o2 encodes the a competitive inhibitor of the products encoded by the rbg element inserted into quantitative trait genes, can expect changes in expressivity of quantitative traits (Fig. 3). In this model insertion of the receptor element into 02 would show pleiotropic action regarding quantitative trait loci (which could be observed as pleiotropic action of the 02 gene). In addition, in this model we could observe the ap-

Figure 3. The interaction with rbg products. The rbg-s2 (vertically hatched square) and the rbg-s1 product are competitive inhibitors (horizontally hatched circle). The rbg-s2 arose by internal deletion, from rbg-s1 contained in the o2gene. genZ expression is conditioned by interactions between the rbg-s1 insert and the rbg-s2 product. Though o2 does not normally regulate, the expression of genZ is now affected by the product of the rbg-s2 element contained within 02 . Thus changes in state of 02 can lead to changes of expression not only of the 02 gene, but also the genZ.
pearance of new regulatory links between previously independent genes.

Furthermore, it is possible that regulatory activities of o2 may be subject to a "feedback" type of regulation, based on the competitive interaction of different products of rbg (Fig. 4).

Figure 4. The "feedback" type of interaction based on rbg products. The product of the rbg-s2 (vertically hatched square) acts as competitive inhibitor of the rbg-s1 product (horizontally hatched circle). The rbg-s2 insert arose by an internal deletion of the rbg-s1 present in gen X. Activity of 02 is conditioned by the interaction between the rbg-s1 insert present in this gene and the product of the rbg-s2 element. Expression of the gen X gene remains regulated by 02 , but now the product of the rbg-s2 insert into gen X modifies the activity of 02 .

Earlier we reported the possibility of rapid, inheritable changes in traits under transposable element control (Maydica 44:195-203, 1999; MNL 73:76-79). Study of the expressivity of quantitative traits in the lines with differing states of Bg -rbg components suggests that transposable elements can be responsible for significant modification and determination of the new regulatory links between genes, invoking the involvement of transposable elements in evolution.

Further studies of maize lines exhibiting change of state for

 components of the Bg -rbg system of transposable elements--Koterniak, VV
Under genetic instability at the opaque2 (o2) locus, conditioned by the Bg-rbg system of transposable elements, the receptor element $r b g$ (contained in mutable responsive allele $02-m(r)$ in
the presence of the regulatory element Bg can excise, causing reversion of the mutable allele to normal. Earlier we showed that by means of disruptive selection for whole endosperm revertants (WER, phenotypically normal kernels, formed as a result of reversion at the early stages of gametophyte or endosperm development), the frequency of rbg excision can be significantly and rapidly changed (MNL 73:76-79; Maydica 44:195-203, 1999).

Low and high WER content in the lines obtained under such selection (designated as LFWER and HFWER lines with 02-lf; Bg-lf and 02-hf; Bg-hf genotypes, respectively) was determined by change in state in the mutable responsive allele 02-m(r):3449 and the regulatory element $\mathrm{Bg}-3449$. Newly arisen alleles 02-lf and 02hf were characterized by low and high rate of rbg excision respectively. The regulatory element Bg -hf contained in HFWER lines differed sharply from the Bg-If in its ability to cause rbg excision at different doses (MNL 73:76-79; Maydica 44:195-203, 1999).

The efficiency of reverse selection for WER content. In 1997 (on the material obtained in 1995) we started the reverse selection for WER content (i. e. selection for WER increase in LFWER and WER decrease in HFWER lines). Results obtained after two years of selection indicated its effectiveness for WER decrease in HFWER lines and ineffectiveness for WER increase in LFWER lines (Maydica 44:195-203). Further selection confirmed these conclusions (Fig. 1). The higher stability of the 02-lf allele in relation to frequency of rbg excision indicates the lower level of organization of this allele in comparison to 02-m(r):3449 and 02hf alleles. Higher stability of 02 -If could be connected with the loss of some of its genetic properties, resembling in this respect the higher stability of the 02 locus after the reversion of the mutable allele at this locus (Salamini, Cold Spring Harbor Symp. Quant. Bio. 45:467-476, 1981). Since the 02-If retains its ability for reversion to normal we can assume that this loss did not affect the 02 locus, but was caused by deletion in the rbg element contained in the 02-If allele. In this connection it is necessary to mention that internal deletions in the nonautonomous (receptor) $d S p m$ element of the Spm/En system can delay frequency and timing of excision of this element (see for example Schiefelbein et

Figure 1. Gametic frequency (gf, \%) of WER in a HFWER subline (pedigree of the 00-4518-10 ear) and in LFWER subline (pedigree of the 00-45143 ear) obtained under reverse selection for WER. Arrows indicate the ears from the progeny of which the reverse selection was started.
al., Proc. Natl. Acad. Sci. USA 82:4783-4787, 1985; SchwarzSommer et al., EMBO J. 4:2439-2443, 1985).

Low frequency of whole endosperm revertants can be conditioned by different genetic mechanisms. During reverse selection for WER frequency, it was observed that the limits of variation of WER frequency in the progeny of the HFWER ears with low revertant content equal to that of the LFWER lines were much higher in comparison with the variation of the same trait in LFWER families. Thus, after 3 cycles of reverse selection, variation of WER frequency in 2 HFWER reverse selection families was in the range of $0.56-12.31 \%$ (gametic frequency of WER in the ears from which they were originated was 2.27 and 2.28%). Variation of the same trait in reverse selection progenies of LFWER sublines was equal to $0-3.43 \%$ (these families originated from the ears with gametic WER frequency of 1.75 and 2.05%) (Fig. 2). Differences in variability of WER content could reflect different mechanisms of the control of low frequency of the rbg excision from the mutable alleles of the LFWER lines and the HFWER reverse selection sublines.

Expressivity of quantitative traits in lines differing with states of the Bg-rbg system components. We reported that lines obtained under disruptive selection for WER differed also in some quantitative traits: lines obtained under selection for high revertant content had higher kernel weight and volume, number of leaves, longer period from emergence to flowering (MNL 73:7679; Maydica 44:195-203) and were more sensitive to herbicide application (MNL 74:57-58) in comparison to the lines obtained under selection for low revertant frequency.

We also observed that sensitivity to herbicide "Buctril D" in the lines obtained did not depend from the presence of the active regulatory element in these lines (MNL 74: 57-58).

Fig. 2. Limits of WER gametic frequency in reverse selection families of LFWER and HFWER lines after 3 cycles of reverse selection for this trait (1999 year data). WER frequencies on progenitor ears are given in parentheses.

The mentioned differences of kernel weight and volume were observed on variegated kernels of the forms containing active regulatory elements. On the material obtained in 1999, we analyzed kernel weight and volume in LFWER and HFWER lines and their derivatives that lacked regulatory elements ($02-1 f ;+\mathrm{Bg}$ and $02-h f ;+B g$ derivatives, respectively). (The methods of the analysis were described earlier (MNL 73:76-79)). Data obtained showed that superiority in kernel weight and volume of the lines obtained under selection for high revertant frequency was observed both on variegated and non-variegated kernels the latter formed on sublines lacking regulatory elements (Table 1).

Table 1. Values of some characteristics of variegated and non-variegated kernels of the lines with low and high WER frequency (with 02-If; Bg-lf and 02-hf; Bg-hf genotypes, respectively) and their derivatives lacking regulatory elements ($02-\mathrm{lf} ;{ }^{+B g}$ and $02-h f^{+B g}$ genotypes, respectively).

Genotypes	Ears analyzed	50 kernel weight, g	50 kernel volume, cm^{3}	Kernel density, $\mathrm{g} / \mathrm{cm}^{3}$
variegated kernels				
02-lf; Bg-lf	7	5.83a*	4.40a	1.326a
02-hf; Bg-hf	8	7.05b	5.21b	1.354a
02-hf; Bg-hf as \% of 02-lf; Bg-lf		120.9	118.4	102.1
non-variegated kernels				
02-lf; + + ${ }^{\text {d }}$	14	5.89a	4.69c	1.257b
02-hf; ${ }^{+B g}$	16	6.69b	5.50b	1.216c
02-hf; ${ }^{+B g}$ as \% of 02-lf; ${ }^{+B g}$		113.6	117.3	96.7

* For each trait a common letter at the means indicates insignificance of the differences between them ($\mathrm{P} \leq 0.05$).

Higher values of kernel density observed with the $02-1 f ;+\mathrm{Bg}$ derivatives most likely resulted from the action of polygenic modifiers which conditioned higher endosperm vitreousity. These modifiers apparently also lessened the differences in kernel weight between the LFWER and HFWER derivatives lacking regulatory elements. The results obtained indicate that the differences of the studied quantitative traits do not depend directly on WER content and on the presence of active regulatory elements in the lines studied.

PIACENZA, ITALY
 Università Cattolica del Sacro Cuore

Chloroplast morphology, pigment content and fluorescence parameters in virescent mutants
 --Marocco, A

Chlorophyll-deficient tissue is a frequent symptom in plants when they experience low temperature. These symptoms also arise in mutated populations of plants. The virescent character is a common genetic variant in pigmentation of higher plants for which a large number is known in maize. It is generally accepted that expression of this character is influenced by temperature sensitivity (reviewed by King, 1991 The Genetic Basis of Plant Physiological Processes, Oxford Univ. Press, 151-224). Since the cloning of genes affecting chloroplast development at low temperature may help application oriented activities in the field of temperature tolerance in maize, we developed gene tagging experiments for the Virescent genes of maize using the Activator-Dissociation transposable elements (Cerioli et al., 1995 Genet. Res. 66: 203-212). I have now examined the phenotypic expression of virescent mutations by analysing the chloroplast morphology, the pigment content and the fluorescence parameters in nine mutants grown at low temperature.

The v1, v2, v3, v4, v13, v16, v18, v19 and v26 mutants employed in this study are derived from progenitor stocks obtained from the Maize Genetics Cooperation Stock Center, University of Illinois, Urbana. All mutants are in the Oh43 background. Seeds were grown in a controlled environment chamber at 15 C under continuous light ($80 \mathrm{Wm}^{-2}$).

Electron microscope inspection of the virescent leaf phenotype at the cellular level showed that cells in the leaf tissue contain few chloroplasts (Table 1), and these did not appear to be fully developed. Plastids contain poorly organised and aberrant thylakoids; the organelles generally are two-thirds the size of fully developed chloroplasts. The ungreened virescent leaves contained a variety of aberrant chloroplasts. The plastid types ranged from those with little internal structure on loosely constructed prolamellar bodies to those with nearly normal morphology. The distinctly abnormal plastids predominated in $v 2, v 4$ and $v 16$.

The level of photosynthetic pigments is severely reduced (Table 1). The virescent mutants were extremely deficient in chlorophyll, which was to near-normal level with Oh43 genotype. The v1, v2, v3, v19 and v26 leaves were relatively less deficient in chlorophyll b than in chlorophyll a, resulting in lower chlorophyll a / b ratios than for normal leaves. Leaves of $v 4$ and $v 13$ exhibited a substantial increase in chlorophyll a relative to the chlorophyll b content. Changes in the proportion of luteins and xanthophylls per unit weight in normal and virescent leaves were measured. Leaves of $v 1, v 19$ and $v 13$ exhibited a decrease by $44 \%, 40 \%$ and 16%, respectively, in the lutein content compared to wild type. The lutein contents of $v 2$, v3, v4, v16, v18 and v26 were 31% below the wild type. The levels of xanthophylls were higher in leaves of $v 1, v 13$ and $v 19$ as compared to wild type. The mutations led to an increase in the relative levels from 53% to 70%. A strong reduction in the xanthophyll contents by more than 64% was observed in v2, v3, v4, v16, v18 and v26 mutants compared to normal leaves.

Fluorescence measurements were performed with a PAM 101 fluorimeter (Heinz Walz, Effeltrich, Germany). From an analysis of the fluorescence quenching parameters in the green tips of leaves, it is shown that all mutants possess a functioning, fully reversible, non-photochemical quenching mechanism (Table 1). This is most developed in the v13, v18 and v19 mutants. These three mutants also have a relatively high primary photochemical yield for photosystem II and a functioning photosystem I, as indicated by the high photochemical quenching capacity. Together the chlorotic phenotype and the molecular identification will provide a foundation to investigate the pathway for this mechanism of cold susceptibility.

The various virescent mutations are characterised by different stages of chloroplast development. I hypothesize a model where V2, V4 and V16 loci are located upstream, followed by V1, V3 and V26. Mutations in V13, V18 and V19 loci may control the downstream pathway. The leaves of ungreened virescents contain a reduced amount of total chorophyll. The relatively greater deficiency in chlorophyll a reduces the chlorophyll a/b ratio below normal in most of the mutations. This difference can not be regarded as a distinctive characteristic of all virescent mutants as reported for the v18 mutant (Chollet and Paolillo, 1972 Z. Pflanzenphysiol. 68: 30-44). In fact, the ratio is considerably higher in $v 4$ and $v 13$ leaves. The total content of carotenoids was affected to a much lesser extent, if at all, by the mutations. It

Table 1. Plastid measurements, chlorophyll content and in vivo chlorophyll fluorescence in normal and virescent leaves grown at 15 C . Data are means of 5-7 replicates, each representing a different plant \pm SE.

Genotype	Plastid number ${ }^{\mathrm{a}}$	Plastid size $(\mu \mathrm{m})$	Chlorophyll $\mathrm{a}+\mathrm{b}$	Fv/Fm
$v 1$	5.0 ± 1.0	$3.3 \pm 0.2 \times 2.4 \pm 0.3$	44.0 ± 1.0	0.32
$v 2$	4.0 ± 0.6	$5.50 .8 \pm \times 2.5 \pm 0.4$	10.0 ± 0.1	0.12
$v 3$	4.7 ± 0.8	$4.0 \pm 0.7 \times 2.0 \pm 0.0$	37.7 ± 0.7	n.d.
$v 4$	3.5 ± 0.5	$4.0 \pm 0.7 \times 2.0 \pm 0.0$	17.7 ± 0.4	n.d.
$v 13$	5.7 ± 1.0	$6.8 \pm 0.8 \times 4.3 \pm 0.3$	102.0 ± 1.7	0.67
$v 16$	3.9 ± 0.5	$4.0 \pm 0.5 \times 2.5 \pm 0.2$	traces	0.09
$v 18$	3.0 ± 0.0	$6.0 \pm 1.0 \times 2.5 \pm 0.3$	7.8 ± 0.1	0.52
$v 19$	4.4 ± 0.5	$6.0 \pm 0.6 \times 3.0 \pm 0.4$	67.0 ± 0.8	0.62
V26	3.9 ± 0.5	$6.0 \pm 0.5 \times 3.0 \pm 0.1$	13.3 ± 0.1	0.35
Oh43	6.1 ± 0.7	$4.5 \pm 0.4 \times 3.0 \pm 0.2$	$3,000 \pm 9.4$	0.81
a Each entry represents the average of measurements obtained by analysing 20 cells.				

seems, therefore, that mutant leaves attempt to protect themselves against damage from excessive light by increasing the carotenoids/chlorophyll a+b ratio (Haldimann et al., 1995 Physiol. Plant. 95:409-414). In this context it is interesting that all mutants possess a significant, reversible, non-photochemical quenching capacity. From the point of view of the photosynthetic characteristics determined by PAM fluorescence measurements, the most interesting mutants are v13, v18 and v19. These mutants not only have a relatively high PSII quantum efficiency for primary energy conversion when grown under cold stress conditions, but evidently also have an actively functioning PSI, as indicated by the high values for photochemical quenching. In addition, these three mutants also possess the most effective non-photochemical quenching mechanism(s), which is thought to provide protection against excess photon absorption by PSII. Even more important is the finding that the mutations induced important changes in the photosynthetic quantum conversion. Photosystem II appears to be correctly assembled in the $v 13, v 18$ and $v 19$ mutants because the $F_{\mathrm{V}} / F_{\mathrm{m}}, \phi_{\mathrm{p}}, \phi_{\mathrm{n}}$ and $\phi_{\text {tot }}$ were higher than wild type. In these mutants the protections against low temperature and excessive light is ensured by the ϕ_{p} and ϕ_{n} processes.

SAINT PAUL, MINNESOTA
 University of Minnesota and USDA-ARS

Oat-maize chromosome manipulation for the physical mapping of maize sequences

--Kynast, RG, Okagaki, RJ, Odland, WE, Stec, A, Russell, CD, Zaia, H, Livingston, SM, Rines, HW, Phillips, RL

We have developed a complete set of oat-maize chromosome additions to map maize sequences and study expression of maize genes in the genetic background of oats. A total of 37 monosomic and disomic addition lines that involve five oat (chromosome recipient) and three maize (chromosome donor) lines were generated, as described in detail by Riera-Lizarazu et al. (TAG 93:123-135, 1996), and recovered and identified as described in detail by Kynast et al. (Plant Physiol, in press, 2001). Because each recovered addition line represents its own distinct retention event, we developed a nomenclature for identification of the addition lines. OMAxy. \mathbf{z} is an abbreviation for \underline{O} at-Maize $\underline{\text { Addition extended by }}$ three alpha numericals. The x position indicates the maize chromosome constitution, which will be d for disomic or m for monosomic. The y position is the number of the maize chromosome that is added, namely 1 to 10 . The \mathbf{z} position is a number that identifies a
particular version of the maize chromosome that traces back to the original recovery event. Table 1 summarizes the identity and status of addition lines that are currently available to the scientific community. Fertile lines include a total of 30 single disomic additions $(2 n=6 x+2=44)$ for maize chromosomes $1,2,3,4,6,7$, 8 , and 9 , one single monosomic addition $(2 n=6 x+1=43)$ for maize chromosome 8, and two double disomic additions ($2 n=6 x+2+2=$ 46) for maize chromosomes $1+9$ and $4+6$. Four original haploid additions are maintained as tiller-clones because in those recovered haploid monosomic additions ($n=3 x+1=22$), the added maize chromosome did not transmit to the F2 offspring. The clones include one addition plant with maize chromosome 1, two addition plants each with maize chromosome 5, and one addition plant with maize chromosome 10.

Table 1: Available oat-maize chromosome addition lines with their female and male parents

Added maize chromsome	Oat line (Female Parent)	Maize line (Male Parent)	Number of F1 plants (Tiller-clones)	Number of different fertile lines
1	Preakness	Seneca 60	1	
	Starter	Seneca 60		1
2	Starter	Seneca 60		6
	Starter	bz1 mum-9		1
3	Preakness	Seneca 60		1
	Sun II	Seneca 60		1
4	Starter	Seneca 60		5
	Starter	A188		2
5	Starter	Seneca 60	1	
	F1 hybrid	Seneca 60	1	
6	Starter	Seneca 60		2
7	Starter	Seneca 60		3
	GAF Park	Seneca 60		1
8	Starter	bz1 mum-9		1
	GAF Park	Seneca 60		1
9	Starter	Seneca 60		5
	GAF Park	Seneca 60		1
10	GAF Park	Seneca 60	1	
1+9	Starter	Seneca 60		1
4+6	Starter	Seneca 60		1

We evaluated the practicability of OMAs for physical mapping with 50 molecular markers that had been previously placed on linkage maps by Southern hybridization. Primer pairs were designed for the 50 markers and used for PCR analysis against the genomic DNAs of a complete set of OMAs. Forty-eight markers mapped to their expected chromosome. The two remaining markers were cloned and sequenced. They appeared to identify duplicates of previously genetically mapped loci. Four duplicate loci were identified that had not been previously mapped.

For evaluating the mapping of new maize sequences, primers have been designed and tested for EST sequences from ZmDB (http:www.zmdb.iastate.edu/) and for STS sequences derived from unmethylated regions of the maize genome described by Rabinowicz et al. (Nature Genet 23:305-308, 1999). To date, 300 EST and 50 STS markers have been mapped to chromosome. These markers include 72 on chromosome 1, 47 on chromosome 2, 45 on chromosome 3, 42 on chromosome 4, 56 on chromosome 5, 46 on chromosome 6, 43 on chromosome 7, 52 on chromosome 8, 42 on chromosome 9, and 20 on chromosome 10. Of these markers, 75% mapped to one chromosome, 20% mapped to two chromosomes, and 5\% mapped to three to nine chromosomes.

Mapping at high resolution is possible with oat-maize radiation hybrids (RHs) through the use of panels of lines created by radi-ation-induced breakage. These lines contain chromosome rearrangements and sub-chromosomal segments of maize DNA. The first RH panel was made from an OMA maize chromosome 9 line and has been described by Riera-Lizarazu et al. (Genetics 156:327-339, 2000).

Two types of panels are being assembled for future mapping with RHs for maize chromosome 9. The first is a high-resolution panel with more than 40 lines that can give a mapping resolution of

We have five RH lines for chromosome 9 that may prove useful for making low resolution maps. Several lines appear to retain one contiguous stretch of maize DNA. For example, the chromosome 9 radiation hybrid line RH355 retained the distal tip from the short arm of chromosome 9 translocated onto an oat chromosome. Any maize sequence present in this line must be located in the distal end of chromosome 9. This strategy may allow us to rapidly place hundreds or thousands of sequences to discrete regions of the chromosome.

UMC98 Chromosome 9 Map

The black bars show the regions of chromosome 9 retained by these RH lines. The light gray bars indicate the regions of uncertainty, e.g. csu28a is the last marker present, and ibp1 is the first marker missing in RH872.
The charcoal gray bars show the regions defined by the five radiation hybrid lines. The light gray bars again indicate the regions of uncertainty.
A few sequences were mapped to demonstrate how this approach would work.

Figure 1: Low resolution radiation hybrid maps

approximately 5 Mbp . The second panel is a low-resolution panel of five lines that have overlapping segments and can allocate sequences to discrete locations on the chromosome. Figure 1 is a graphic representation of how this latter panel is designed. The strategy of the low-resolution panel is to map hundreds or thousands of sequences to chromosomal regions.

Initial RH panels are being evaluated for maize chromosomes 2 and 4. Both of these panels have more than 30 candidate lines that have been identified as containing maize segments and are currently being characterized with markers to evaluate their usefulness. Monosomic OMA seed have been produced, irradiated, and are being grown for characterization of RHs for maize chromosomes 3,6 , and 7 .

New technologies are being employed and evaluated to create higher throughput efficiency for identifying sequences in OMA and RH lines. These technologies include using robotics to process samples, Invader Assay (Third Wave Technologies, Inc.), and microarrays. The use of OMA and RH lines in conjunction with these technologies can provide an efficient and reliable means to map thousands of maize sequences to chromosome and discrete segments within a chromosome.

This material is based upon work supported by the National Science Foundation under Grant No. 9872650.

SARATOV, RUSSIA
 Saratov State University

In vivo and in vitro endospermogenesis in parthenogenetical maize lines

--Alatortseva, TA, Tyrnov, VS
Morphogenesis in vitro is known to depend significantly on genotypical, epigenetical, karyotypical and other peculiarities of explant. The specificity of the female gametophyte structure,
consisting of cells with different functions and ploidy, has to be taken into account for in vitro culture of ovaries, both fertilized and unfertilized. The ploidy of embryo sac elements can change significantly. For example, two haploid polar nuclei form a central nucleus with ploidy $2 n$ after fusion; after its fertilisation the initial endosperm nucleus has $3 n$ ploidy.

Endosperm development is of interest for: a) its trophic, morphogenetical and regulatory functions in relation to the embryo; b) its role in parthenogenesis; c) the possibility of production from apomictic endosperm haploid cells and tissues or homozygous diploid ones; d) its positive or negative influence on embryogenesis and regeneration in vitro.

We investigated parthenogenetical line AT-1, described earlier (Tyrnov, MNL 71:73-74, 1997). Unfertilized ovaries, 1 to 17 days after appearance of silks, were used as explants.

MS medium modified by sucrose, vitamins and 2,4-D was added. Culture was in the dark at a temperature of about 25 C . A portion of ovaries was used for cytoembryological analysis before plating onto medium and during the culture period (after 3, $7,14,21$ days). This allowed us to follow the course of embryological and morphogenetical processes. In vivo as well as in vitro, we regularly observed the following events: 1) Egg's division and development of embryo from bicellular to globular. A number of multicellular embryos appear with increasing ovary age. Different ovaries of the same age can include proembryos of different developmental stages. Embryo development to the globular stage can proceed without endosperm formation. 2) Division only of the central cell. 3) Division of both the central cell and egg.

In the last two cases the first division of the central cell is preceded by fusion of polar nuclei. This situation was observed in 7-8 days ovaries. The in vivo and in vitro ovary ages are determined as days after silk appearance.

17-18 days after silk appearance, endosperm is multinuclear.

Usually karyokinesis is not followed by cytokinesis (cellularization), and the endosperm appears cenocyte. In some cases, fragments of nuclear or cellular endosperm were observed. If endospermogenesis and embryogenesis proceed together in embryo sac, the last one begins earlier and passes ahead of embryo development. At the moment of fusion of polar nuclei, the embryo can contain from 2 to 100 cells.

The analysis of stages of ovaries, cultured in vitro, demonstrated that the presence of both processes (endospermogenesis and embryogenesis) leads to their mutual inhibition. Embryos stop development at the globular stage. In addition, at the same stage, many embryo-like structures begin to form on the surface. They do not reach the stage of mature embryoid and are not able to form plantlets when plated on regeneration medium.

The development of embryos continues in the absence of endospermal tissue. They can form plantlets or produce by gemmagenesis a great number of embryoids, able to produce plantlets.

Thus, it can be suggested, that in unfertilized ovaries in vitro there is a special type of interrelationship between haploid embryo and endosperm.

A negative influence of endosperm on embryo can be conditioned by some circumstances. We suggest the following possibilities: 1) Endosperm, by enveloping the embryo, is either a barrier, or competitor for nutrient substances. 2) Anomalous characters of endosperm, by its ploidy and variable developmental timing lead to anomalies of embryogenesis. 3) If the endosperm realizes a regulatory role by means of physiologically active substances, its interrelation with endogenic factors from its surroundings can give undesirable effects for embryogenesis.

Reproduction of haploid and diploid maize forms in vitro
 --Alatortseva, TA, Tyrnov, VS

In many cases, for biotechnological manipulations, strains with stable regeneration potential are needed. Technologies are important for producing regenerants from either haploid or diploid maize independently of both genotype and ploidy. Sometimes only one form can be used, if its regeneration potential is high enough and stable. It can be used as a recipient of certain genes. The use of haploid plants as donors of explants is advisable, because in that case the effects of both dominant and recessive genes are manifested.

Taking into account the statements above, we have carried out an investigation on maize.

Diploid embryos: The mature embryos of four maize lines (AT1, UV-98, HPL-1 and HPL-52) were cultured on modified medium MS, containing different concentrations of 2,4-D and sucrose.

We ascertained that the spectrum of new formations, appearing in the process of culturing explants of different lines is not always identical. Practically all germinating embryos are able to form globular structures on the surface of the coleoptile, and sometimes on leaves. The development of globes can be realized in two directions: by way of formation of rhizogenic callus, or by differentiation of globes in embryo-like structures. The last ones form the new generation by gemmagenesis. As a result embryogenic complexes (EGC) are formed. EGCs, when extracted from test-tubes, disintegrate easily into pieces, including a great number of embryoids of the different origin. Some embryoids in EGC complement give rise to plantlets still on initial medium, or they germinate after passage on medium without 2,4-D, but with IAA and kinetin ($1.0 \mathrm{mg} / \mathrm{l}$). On fresh medium with $2.0 \mathrm{mg} / \mathrm{l} 2,4-\mathrm{D}$ ac-
tively growing regenerable strains can be produced. It should be noticed that in the given conditions of culturing only embryos of AT-1 line are able to form EGC and give plantlets. The best results for this line were obtained on medium containing $1.0 \mathrm{mg} / \mathrm{l}$ $2,4-\mathrm{D}$ and 4% sucrose and $3.0 \mathrm{mg} / \mathrm{l} 2,4-\mathrm{D}$ and 6% sucrose. Diploid embryos of the lines UV-98, HPL-1 and HPL-52 produce exclusively globes, giving rhizogenic callus.

Haploid embryos: From kernels of the line UV-98, produced with use of haploinducers, haploid embryos were isolated and cultured on medium containing $2.0 \mathrm{mg} / \mathrm{l} 2,4-\mathrm{D}$ and 2.0% sucrose. In contrast to diploid embryos, haploid ones gave rise to EGC embryoids which developed in plantlets.

Unpollinated ovaries: Ovaries of 15 lines and hybrids, including sexual forms and forms with elements of apomixis were cultured on nutrient medium, containing also a different correlation of 2,4-D and sucrose.

Regenerants were produced only in line AT-1, having a predisposition to reduced parthenogenesis. The ovaries of other lines on all tested mediums degenerated after approximately 7 days from the beginning of culturing.

In ovaries, line AT-1 and its hybrids autonomously formed parthenogenetical proembryos with a great number of globular structures on their surface, which later transform into embryoids. As a result of this EGC appeared, like that for zygotic embryos of line AT-1.

Embryogenesis and regeneration can proceed on initial medium. The concentrations 2,4-D-2.0 mg/l and 5-9\% sucrose were most optimal for induction of the above-mentioned processes.

Consequently, maximal regeneration potential is characteristic of line AT-1. Differentiated embryos isolated from dry kernels and haploid parthenogenetical proembryos developing inside unpollinated ovaries, are able to produce practically countless numbers of plantlets of embryoid origin. The visible differences in regeneration ability of haploid and diploid embryos have not been established. In addition we were able to demonstrate an example of haploid embryos from line UV-98 and the possibility of producing in vitro regenerants from embryos originating from pollination of donor ears by haplo-inducing pollen.

Thus, two different technologies of producing haploid strains and regenerants can be presented. The first combines culturing of unpollinated ovaries with a genetically conditioned predisposition to reduced parthenogenesis. The second combines culturing with producing kernels with haploid embryos, obtained after pollination by a specially created pollinator - haplo-inducer.

Estimation of parthenogenesis frequency on the grounds of genetical and embryological data
 --Tyrnov, VS, Smolkina, YV, Titovets, VV

We have investigated the line AT-3, described before (Tyrnov, MNL 71:73-74, 1997), characterized by pseudogamous reduced parthenogenesis. The frequency of this phenomenon depend on delays in pollination and can reach 50-100\%.

In these experiments, we pollinated a week after appearance of silks. We used the pollen of a purple tester; matroclinic haploids and diploids were diagnosed by colour and plant morphology.

For embryological analysis the ears were fixed in acetoalcohol 7-8 days after appearance of silks. Enzymatic maceration of ovaries was used for isolation of embryo sacs. The usual frequency of haploid plants reached 12.1%, with 6.7% of haploids in monoembryonic seedlings, and 5.4% in twins and triplets. The frequency
of diploid matroclinic plants was small, about 0.2%.
Among twins the following cytological types were revealed: n $n, n-n-n, n-2 n, n-2 n-n, n-n-2 n, 2 n-2 n$. Diploid twins were mainly of hybrid origin. Only one was matroclinic.

Approximately 100 embryo sacs from each ear were examined cytoembryologically. In all, 535 embryo sacs were examined. Nontypical, for maize, events included: 1) autonomous embryo - 16.3\%; 2) autonomous endosperm - 4.7%; 3) some eggs - 11.2%; 4) egglike synergids -7.1%; 5) additional embryo sacs -3.2%.

The above embryological peculiarities were manifested independently or in combination as follows: a) separate or simultaneous embryo- and endospermogenesis; b) globular embryo + one or some eggs; c) one or some globular embryos; d) some eggs + two synergids; e) egg + egg-like synergids; f) two embryos + two eggs + two synergids.

Apparent additional embryo sacs were observed in the region of antipodal disposition. They were in different stages of formation (from unicellular to 5 -6-cellular) and reached one half the size of a normal embryo sac. They may be of aposporic origin. However this question needs additional investigation.

Observation showed formation of mono- and polyembryonic haploids, even triplets of $n-n-n$ type. The potential opportunities for egg-like synergids remain unclear: are these cells able to produce embryos or not? The high frequency (more than 7%) of egglike synergids in parthenogenetical lines indicates an obvious connection of this phenomenon with parthenogenesis. It could be used as an indicator of embryo capability for parthenogenesis.

As a whole, the frequency of phenomena connected with parthenogenesis on an embryological level is significantly higher (about 40%) than the frequency of their manifestation in plants (about $12-13 \%$). This can be explained by an earlier discovery that endospermogenesis in lines of the AT series does complete (Enaleeva, Tyrnov, MNL 71:74-75, 1997), so that a portion of autonomous embryos perish. In addition, embryogenesis also probably can not always complete, since a rather great number of seeds without embryos (approximately from 1 to 20%) was observed.

This work was supported by a grant from the Russian Foundation for basic Research.

Change of quantitative traits of androgenic maize plants
 --Zavalishina, AN, Tyrnov, VS, Nekrasov, AM

It has been shown that androgenic haploids, obtained by the method of androgenesis in vivo after pollination by a nucleus donor and then diploidized, reveal changes in the pigmentation of plants. The nucleus donor has brown colour pigment controlled by genes a1 B1 P11 R1. While displacing the genome of the nucleus donor in other cytoplasms there appear plants of light brown, tan and green colours. This testifies to expression changes of nuclear genes B1, Pl1 (MNL 69:120-121, 1995; MNL 72:74-75, 1998). These changes have a strongly pronounced phenotypical manifestation, and their inheritance is subject to certain regularities analogous to paramutation of $B 1$ and $P / 1$ genes. Further investigation of the diploid generation of androgenic haploids has shown that besides pigmentation other quantitative traits can be changed. The results of the changes of such traits as plant height and length of first ear are presented in this article.

Generations of androgenic plants having a nucleus from a BMS line with nuclear genes a1 B1 P/1 R1 and cytoplasms of two different stocks: N -type from line HPL1 - N(HPL1) and T-type from
line AT - $\mathrm{T}(\mathrm{AT})$ were used in the experiment. From BMS in cytoplasm $T(A T)$, besides the generation of brown coloured plants, the generations of light brown and two green plants were used. The generations of two plants were used from BMS in cytoplasm N (HPL1). All the generations were obtained after pollination by a nucleus donor. The nucleus donor BMS-line was used as control. This line was aligned according to the quantitative traits and plant colour. We have been observing this line for 20 years.

Figure 1. Plant height confidence intervals.

Figure 2. Ear length confidence intervals.

In Figure 1 confidence intervals of plant height, and in Figure 2 confidence intervals of length of the first ear are presented. Both BMS plant generations in cytoplasm N (HPL1) differ greatly by $20-25 \%$ according to the height of the plant of the nucleus donor. In the BMS generation in cytoplasm T(AT) we can observe variations in plant height. The generation of light brown plants exceeds by 10% in height the generation of both green plants, which seem to be 5% shorter than plants of the nucleus donor. If we take the length of the ear, the picture is different. BMS in cytoplasm T(AT) differs slightly from the nucleus donor, but BMS in cytoplasm T(AT) in all variants exceeds by 20-50\% the nucleus donor. In particular, in the generation of light brown colour plants the ears are 1.5 times greater than the ears of the donor. From this it follows that traits can be altered: they can be reduced and enhanced by the choice of the proper source of cytoplasm.

The results testify to the important role of cytoplasm in the change of most important quantitative traits. They can be useful for revealing the reasons and mechanisms of genome instability, trait variability, and loss of sort quality. Productivity improvement due to cytoplasm is of great interest. It is necessary to discover and study new sources of cytoplasm which can lead to trait change in the necessary direction.

SIMNIC - CRAIOVA, ROMANIA
Agricultural Research Station

Modifications in the amino acid content of callus obtained from immature maize embryos under stress conditions
 --Urechean, V, Naidin, C

Amino acid composition for callus initiated from immature maize embryos in stress conditions was determined by the Moore and Steine method for an inbred line (W 153R) and a hybrid Lc 15 x L 649 (Table 1).

For the control medium variant (MT), the calli were cultivated for one month on solid medium NBMCo (N_{6} - macroelements, Chu, 1978; B5 - microelements, Gamborg, 1968; MS - vitamins, Murashige-Skoog, 1962) added with: $30 \mathrm{~g} / \mathrm{l}$ saccharose; $7.0 \mathrm{~g} / \mathrm{l}$ agar; without hormones; $\mathrm{pH}=5.8$.

For S_{1} the calli were treated with salt solution ($5 \mathrm{~g} / / \mathrm{NaCl}$) for one hour, then cultivated on the same medium NBMCo for one month.
A_{1} - the calli were taken over the solid medium variant $A_{1}(1$ $\mu M A B A)$ where they were cultivated for one month.
M_{2} - the calli were taken over the solid medium variant M_{2} (530 mM mannitol) where they were cultivated for one month.

The composition of the culture medium influences both the callus mass (m) and the quantity of amino acids. For the callus belonging to the genotype W 153R, the salt solution S_{1} causes both the diminution of the callus mass and a lower percentage content of amino acids. Levels of individual amino acids varied independently. The content of aspartic acid and tyrosine increased obviously and the content of threonine, glycine, and alanine diminished significantly. Other amino acids had little variation. On mannitol medium, although the callus mass is greater, the total content of amino acids is lower (4.39\%), and the amino acids' relation with the control variant is very different. The proline was diminished, and glutamic acid, lysine and aspartic acid increased.

Table 1. Modifications in the amino acid content of the callus obtained from immature maize embryos for an inbred line and a hybrid under stress conditions ($\mathrm{S}_{1} ; \mathrm{A}_{1} ; \mathrm{M}_{2}$) ($\mathrm{mg} / 100 \mathrm{~g}$ dry matter)

AMINO ACID	W 153R						
	MT $\mathrm{m}=65.6$ mg	S_{1} $\mathrm{~m}=51.9$ mg	A_{1} $\mathrm{~m}=35.4$ mg	M_{2} $\mathrm{~m}=92.9$ mg	M_{t} $\mathrm{m}=56.7$ mg	S_{1} $\mathrm{~m}=26.6$ mg	A_{1} $\mathrm{~m}=29.7$ mg
ASPARTIC ACID	417.0	579.0	326.0	718.0	454.0	655.0	385.0
THREONINE	219.0	164.0	207.0	165.0	107.0	136.0	151.0
SERINE	183.0	171.0	198.0	152.0	108.0	145.0	230.0
GLUTAMIC ACID	1026.0	1048.0	690.0	808.0	801.0	892.0	824.0
PROLINE	168.0	159.0	272.0	117.0	167.0	416.0	520.0
GLYCINE	529.0	381.0	257.0	204.0	324.0	371.0	301.0
ALANINE	676.0	309.0	320.0	196.0	249.0	350.0	413.0
METHIONINE	119.0	131.0	142.0	76.0	121.0	131.0	85.0
VALINE	212.0	198.0	200.0	176.0	195.0	345.0	232.0
ISOLEUCINE	141.0	154.0	167.0	145.0	142.0	404.0	191.0
LEUCINE	204.0	188.0	223.0	215.0	200.0	388.0	262.0
PHENYLALANINE	670.0	710.0	287.0	408.0	502.0	552.0	384.0
TYROSINE	321.0	449.0	381.0	373.0	369.0	724.0	450.0
HISTIDINE	190.0	174.0	263.0	153.0	126.0	472.0	291.0
LYSINE	210.0	197.0	219.0	173.0	199.0	438.0	449.0
ARGININE	320.0	351.0	561.0	246.0	324.0	728.0	740.0
CYSTEINE	109.0	125.0	144.0	68.0	113.0	-	59.0
TOTAL AMINO	5.71	5.49	4.86	4.39	4.50	7.15	5.97
ACIDS \%							
PRO/TAA \%	2.94	2.90	5.60	2.66	3.71	5.82	8.71
GLU/TAA \%	17.97	19.09	14.20	18.40	17.80	12.48	13.80
LYS/TAA \%	3.68	3.59	4.51	3.94	4.42	6.13	7.88
ASP/TAA	7.31	10.55	6.71	16.34	10.08	9.16	6.0

PRO - proline; GLU - glutamic acid; LYS - lysine; ASP - aspartic acid; TAA - total amino acids; S_{1} salt solution treatment (1 h) $-5 \mathrm{~g} / \mathrm{NaCl}$;
$A_{1}-1 \mu \mathrm{M}$ ABA solid medium; $\mathrm{M}_{2}-100 \mathrm{mM}$ mannitol solid medium
ABA leads to a severe diminution of glutamic acid and to a slight increase of proline and arginine.

In the case of the hybrid genotype Lc $15 \times \mathrm{L} 649$ the results show a different behaviour. The treatment with salt solution leads to a severe diminution of the callus mass, but the total content of amino acids is strikingly higher, and for each amino acid. At the same time, a modification of the relation between the amino acids can be observed, namely glutamic and aspartic acids diminish in comparison with the other amino acids, and lysine and proline levels increase. On the ABA medium there was a significant increase of proline and a diminution of aspartic acid in comparison with the other amino acids.

These results show that the metabolic response of the callus exposed to the stress factors (NaCl , abscisic acid and mannitol) is specific to the genotype.

Metabolic modifications of the reserve substances from the mature maize embryos exposed to in vitro culture conditions
 --Urechean, V, Naidin, C

The first reference to the use of the complete mature zygotic embryos as a type of explant to obtain embryogenic callus belongs to Green and collaborators (Crop Science 14:54-58, 1974), who showed the role of meristematic cells placed in the embryo and the culture medium.

In order to induce somatic embryogenesis, we often resort to the supplementation of the culture medium with the organic nitrogen supplied by L-proline (6-9-12-25 mM/I), glutamine ($8-25 \mathrm{mM} / \mathrm{I}$), glycine ($0,1 \mathrm{mM} / \mathrm{l}$) or L - asparagine ($0,03 \mathrm{mM} / \mathrm{l}$), depending on the relation between the reducer and the reduced nitrogen.

In order to observe the metabolic high tide of the reserve substances from the explant cultured in vitro and also the accumulation of the amino acids from the callus, we determined the amino acid content of the explanted mature embryos and the various em-
bryogenic callus through the Moore and Steine method (Table 1).
Initiation of the callus was achieved on NBMCd solid medium (N_{6} - macroelements, Chu, 1978; B_{5} - microelements, Gamborg, 1968; MS - vitamins, Murashige-Skoog, 1962), added with 3.0 $\mathrm{mg} / \mathrm{l} 2,4 \mathrm{D} ; 30 \mathrm{~g} / \mathrm{saccharose} ; 7.0 \mathrm{~g} / / \mathrm{agar} ; \mathrm{pH}=5.8$.

To induce somatic embryogenesis, calli were transferred onto NBMC $_{3}$ solid medium (N_{6} - macroelements, Chu, 1978; B_{5} - microelements, Gamborg, 1968; MS - vitamins, Murashige-Skoog, 1962), with: $1.0 \mathrm{mg} / /$ kinetin; $30 \mathrm{~g} / \mathrm{saccharose;} 7.0 \mathrm{~g} / \mathrm{agar}$; $\mathrm{pH}=$ 5.8 for 3 weeks.

Dry weight (m) was used to assess the size and development of the callus. We observed significant modifications in the content of each amino acid.

Larger embryo mass is, correlates with a higher percentage content of amino acids:
Lc $15(\mathrm{~m}=20.3 \mathrm{mg})-11.61 \mathrm{~g}$ protein amino acids/ 100 g dry weight;
Lc 464 ($\mathrm{m}=17.8 \mathrm{mg}$) - 10.93 g protein amino acids/ 100 g dry weight.

The amino acid content clearly diminishes at the same time as the callus size as follows:
Lc 3 ($\mathrm{m}=21.3 \mathrm{mg}$) - 10.85 g protein amino acids/ 100 g dry weight;
W $153 \mathrm{R}(\mathrm{m}=25.7 \mathrm{mg})-7.31 \mathrm{~g}$ protein amino acids/ 100 g dry weight;
Lc 15 ($\mathrm{m}=44.1 \mathrm{mg}$) - 6.25 g protein amino acids/ 100 g dry weight;
Lc $3 \times$ A $188(\mathrm{~m}=72.2 \mathrm{mg})-4.24 \mathrm{~g}$ protein amino acids/ 100 g dry weight.

These findings show that, for growth and differentiation of the callus, an important part of amino acids initially contained in the embryo is consumed. On the other hand, we find that all the analysed calli have lower content of proline, valine, glycine, histidine, lysine and arginine, suggesting that the transformation

AMINO ACID	MATURE EMBRYOS		EMBRYO-GENIC CALLUS			
	LC 15	LC 464	LC 3	LC 15	W 153 R	$\begin{array}{\|l\|} \hline \text { LC } 3 \mathrm{X} \\ \text { A188 } \end{array}$
	$\begin{array}{\|l} \hline \mathrm{m}=20.3 \\ \mathrm{mg} \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{m}=17.8 \\ & \mathrm{mg} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m}=21.3 \\ & \mathrm{mg} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{m}=44.1 \\ \mathrm{mg} \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{m}=25.7 \\ & \mathrm{mg} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{m}= \\ & 72.2 \mathrm{mg} \\ & \hline \end{aligned}$
ASPARTIC ACID	674.8	205.0	814.7	958.8	508.8	605.7
THREONINE	271.9	361.0	340.1	198.8	156.3	52.3
SERINE	395.1	473.0	470.2	270.9	270.7	234.5
GLUTAMIC ACID	1239.8	1834.0	1399.2	684.8	1507.0	518.4
PROLINE	1877.5	1336.0	606.6	487.6	336.5	218.0
GLYCINE	496.3	649.0	473.0	330.1	301.0	291.5
ALANINE	448.1	501.0	748.7	316.9	958.6	296.0
METHIONINE	164.1	152.0	205.5	152.9	246.9	140.9
VALINE	650.4	518.0	403.8	206.6	175.1	146.6
ISOLEUCINE	441.7	420.0	698.9	184.6	201.1	115.5
LEUCINE	633.9	564.0	694.8	356.9	391.3	268.0
PHENYLALANINE	724.9	610.0	1309.2	498.5	662.4	350.7
TYROSINE	652.5	651.0	694.3	400.1	502.0	248.2
HISTIDINE	790.5	729.0	482.6	282.1	319.4	180.6
LYSINE	762.4	688.0	576.8	350.8	272.9	227.2
ARGININE	1290.9	1129.0	698.9	443.4	425.7	272.0
CYSTEINE	94.5	107.0	228.8	128.1	72.5	73.5
TOTAL AMINO ACIDS \%	11.61	10.93	10.85	6.25	7.31	4.24
PRO/TAA \%	16.17	12.22	5.59	7.80	4.60	5.14
GLU/TAA \%	10.68	16.78	12.90	10.94	20.62	12.23
LYS/TAA \%	6.57	6.29	5.31	5.61	3.73	5.36

PRO - proline; GLU - glutamic acid; LYS - lysine; TAA - total amino acids;
of these into other amino acids or compounds of a different nature (alkaloids, anthocyanins, hormones, etc). The higher the amino acid content in the explant, the better the chances of a vigorous embryogenic callus capable of supporting the regeneration ability.

On this basis we suggest that the changes in callus amino acids are a sign of metabolic processing and can be used to select callus genotypes with a higher performance in culture. It is evident that a callus obtained from the hybrid (LC $3 \times$ A 188) explant exhibits heterosis characteristic of the F1 generation even under conditions of in vitro culture.

SOFIA, BULGARIA
Institute of Genetics, Bulgarian Academy of Sciences

In vitro colchicine - mediated doubling of corn maternal haploids

--Nedev, T, Gadeva, P, Krapchev, B, Kruleva, M
Experiments have been made with colchicine, dimethyl sulfoxide (DMSO), and Tween $80 ®$ (Fluka AG, Buchs SG) to optimize dose treatment combination for double halpoidization (DH) plants. Maternal haploids were derived from dry seeds. Corn genotype, $\lg 1$ IRL-93-18/8-6 x A 654, was used in this investigation. Seeds were surface sterilized with 70% ethanol, followed by sodium hypochloride solution, washed a few times with autoclaved tap water and transferred onto three variants of artificial medium: colchicine; colchicine plus DMSO; colchicine plus DMSO plus Tween $80 ®$. Different concentrations and different durations for components of variants were examined. Regarding procedures for colchicine preparation, concentration, and treatment duration, please see our publication in Maize Genetics Cooperation Newsletter No 73. After treatment, seeds were rinsed with sterile water and transferred onto medium free of colchicine to promote germination. The ploidy status of the plants obtained was determined by chromosome counting of germinated root tip cells. Experiments performed have shown that variations of chromosome number, including aneuploidy, diploidy and polyploidy were observed. Depending on combination used, different percentages of DH plants were obtained. Considering the total number of cells counted, the colchicine (for the best concentration and treatment duration, please see our publication in Maize Genetics Cooperation Newsletter No 73), DMSO and Tween $80 ®$ medium was very effective. The greater frequency of DH plants on the colchicine plus DMSO plus Tween $80 ®$ medium is probably due to slow penetration of these substances, which maybe favors and allows more doubling. From our point of view, these results clearly demonstrate the high potential of such treatment in acting as a chromosome doubling agent.

In summary, the results of this study suggest that the combination of colchicine plus DMSO plus Tween $80 \circledR$ optimized chromosome doubling of corn dry seeds of genotype Ig1IRL - 93 -18/8-6 x A 654.

This work was supported by grant B-602 from the National Fund of Scientific Investigations of the Bulgarian Ministry of Education and Science.

TAICHUNG, TAIWAN National Chung Hsing University

A novel structure of the B-10 chromosome of TB-10L6 --Cheng, Y-M, Lin, B-Y

The B chromosome consists of two unequal arms. The long arm comprises, proximal to distal, a centric knob, a proximal euchromatic region, four distal heterochromatic regions (1, 2, 3, and 4) and a distal euchromatic tip (Lin, Genetics 92:931-945, 1979). The B breakpoint of TB-10L6 is located in the proximal euchromatic region (Lin, Genetics 90: 613-627, 1978). Accordingly, the 10-B chromosome contains the distal portion of the proximal euchromatic region, all four heterochromatic regions and the distal euchromatic tip; the B-10 chromosome carries the centric knob and the proximal portion of the proximal euchromatic region. The predicted pachytene structure of heterozygous TB-10L6 is a trivalent with a complete pairing in two arms and no pairing in the third, because the B part of $10-B$ and $B-10$ are not homologous.

Such pachytene structure was not observed in this study. Instead, of the 18 cells with a clear standard structure of $10-\mathrm{B}$ and $\mathrm{B}-10$ mentioned above, a T-configuration with two arms completely paired and the third arm partly paired was detected (Figure 1). The distal portions of the proximal euchromatic region of $\mathrm{B}-10$ and heterochromatic region 3 of 10-B pair together (I, Figure 1). This pairing brings the portion of 10L adjacent to the breakpoint and heterochromatic region 2 in close association (II, Figure 1), leaving the unpaired portion of 10 L to form a singlestrand loop (III, Figure 1). The pairing between two different B parts were documented previously by Longley (Longley, Am. J. Bot. 43:18-22, 1956). He observed in heterozygous TB-9La a pairing between the proximal euchromatic region and the distal euchromatic tip of the B long arm in a reversed fashion, which he termed "dyscentric pairing". An exchange in the paired region resulted in the formation of a small chromosome carrying the centromeric knob and two tiny euchromatic arms. No such "dyscentric pairing" was observed in this study.

Seven other cells possessed an unexpected heterozygous structure. In those cells, the B-containing arm of the T-configuration had a standard 10-B and an anomalous $\mathrm{B}-10$ which had a complete pairing at the end (I, Figures 2 and 3). The paired portions, identical in both chromosomes, included heterochromatic regions 3, 4, and the distal euchromatic tip, leaving heterochromatic regions 1 and 2 unpaired (II, Figure 3). In other words, the B-10 of these cells did not carry the expected B-structure; i.e., the centric knob and the proximal euchromatic region. Instead, its Bportion covers only heterochromatic regions 3 and 4 but not the centric knob and the proximal euchromatic region.. Such a B-10 structure is reminiscent of an early finding by Lin (Lin, MNL 60:54, 1986). He observed an acentric B-10 chromosome in the hyperploid of TB-10L19 and suggested a premeiotic origin. The current observation seems to be consistent with his supposition. In a premeiotic division, the proximal euchromatic region and heterochromatic region 3 may pair (I, Figure 1), and an exchange in this region would result in an acentric B-10 that carried heterochromatic regions 3 and 4 (I, Figure 3) but not regions 1 and 2 (II, Figure 3). Further work is needed to substantiate this supposition.

Figure 1. Chromosome pairing of a heterozygous TB-10L6 with an excepted B-10 structure. Arrow, centromere 10; *, the centric knob; I, pairing between heterochromatic region 3 and the proximal euchromatic region; II, association of heterochromatic region 2 with part of 10L; III, unpaired portion of 10 L .

Figure 2. Chromosome pairing of a heterozygous TB-10L6 with an unexpected B-10 structure. Only the distal portion of the B -containing arm is focused. The distal portions of $10-\mathrm{B}$ and B 10 have an identical structure, comprising heterochromatic regions 3,4 , and the distal euchromatic tip. Arrow, centromere 10; I, complete pairing of the heterochromatic regions 3 and 4 plus the distal euchromatic tip of $10-\mathrm{B}$ and $\mathrm{B}-10$.

Figure 3. Chromosome pairing of a heterozygous TB-10L6 with an unexpected $\mathrm{B}-10$ structure. All three arms are focused. The distal portions of $10-\mathrm{B}$ and $\mathrm{B}-10$ have an identical structure, consisting of heterochromatic regions 3,4 , and the distal euchromatic tip. Arrow, centromere $10 ; \mathrm{I}$, complete pairing of heterochromatic regions 3 and 4 plus the distal euchromatic tip of 10 B and $B-10$; II, unpaired heterochromatic regions 1 and 2 of 10-B.

Mutual mapping of RFLPs and $33 \mathrm{~B}-10 \mathrm{~L}$ translocations
 --Cheng, Y-M, Lin, B-Y

Hypoploids and hyperploids, produced by crossing B73 with pollen of B-10L translocations present in the W22 background (Lin, MNL 48: 182-184, 1972), were used to map RFLPs. Because the hypoploid, but not hyperploid, is deficient of the distal portion of 10 L , the absence of the paternal signal indicates an RFLP position distal to the breakpoint. By the same rationale, the presence of the paternal signal implies a proximal position. Altogether, 7 RFLPs were analyzed against this set of translocations, and they divide the set into six groups. The most proximal group includes four translocations (TB-10L19, TB10L26, TB-10L22, and TB-10L7), and the most distal one has a single translocation (TB-10L32) (Figure 1).

Figure 1. Map position of $33 \mathrm{~B}-10 \mathrm{~L}$ translocations. ${ }^{a, b}$ indicate that no polymorphic parental signals for umc64 $\left(^{a}\right)$ and csu745a $\left(^{b}\right)$ were detected in hyperploids of the translocations in parentheses.

Cytological 10L breakpoint of B-10L translocations

--Cheng, Y-M, Lin, B-Y
Pachytene structure of ten heterozygous B-10L translocations was determined. Three chromosomes ($10,10-\mathrm{B}$, and $\mathrm{B}-10$) are expected to pair in a T -configuration, and the point where three arms meet is the location of the breakpoint (for details see the separate article of this issue). The break-position is represented by the ratio of the length between the centromere and the breakpoint to that of 10 L . Each value is the average of at least

Table 1. Cytological breakpoint of ten B-10L translocations

Translocations	Breakpoint on 10 L	Average	Lin's data $^{\text {a }}$
TB-10L19	$0.07,0.04,0.07,0.06$	0.06	1.30
TB-10L20	$0.08,0.08,0.10$	0.09	0.98
TB-10L22	$0.12,0.12,0.09,0.06,0.11$	0.10	0.98
TB-10L1	$0.23,0.24,0.20$	0.22	0.80
TB-10L16	$0.25,0.34,0.28$	0.29	0.40
TB-10L11	$0.29,0.27,0.29,0.37$	0.31	0.33
TB-10L12	$0.60,0.40,0.47$	0.49	0.41
TB-10L9	$0.55,0.45,0.56$	0.52	0.61
TB-10L6	$0.53,0.60,0.58,0.59$	0.58	0.32
TB-10L21	$0.72,0.77,0.68,0.69,0.73$	0.72	0.30
${ }^{\text {a }}$ recombination ratio of breakpoint- $R / g-R$ (from Lin, 1974)			

three cells. The result conforms to the previously published data on linkage of this region (Lin, MNL 48: 182-184, 1974) with the exception of TB-10L9 and TB-10L12. The linkage data place the two translocations proximal to TB-10L16, but the cytological data place them distal to TB-10L11. Also, the order of the two breakpoints is reversed in the two maps. This discrepancy may be due partly to small sample sizes of the linkage analysis.

TAIPEI, TAIWAN, REPUBLIC OF CHINA Academia Sinica
TAIPEI, TAIWAN, REPUBLIC OF CHINA
National Taiwan University
BUFFALO, NEW YORK
State University of New York

Optical density of leaf

--Lin, B-L, Cheng, P-c, Sun, C-K
Recent development in laser technologies offers a number of wavelength choices in multi-photon fluorescence and harmonic generation microscopy. In order to assist in the selection of excitation wavelengths and suitable fluorescent probes, we measured the light attenuation of leaf in the spectral range of $250-2250 \mathrm{~nm}$. The spectrum covers UV, visible and extended IR range to include the emission wavelengths of Ti-sapphire (800 nm), Nd-glass (1064 nm), Cr-forsterite (1270 nm), Cr-YAG (1500 nm), Erglass (1550 nm) and other ultra-fast IR lasers, as well as the emission wavelengths of harmonic generations (second and third harmonic) and fluorescence probes. A Hitachi spectrometer equipped with a scattered light integrator was used in this study to measure the attenuation of maize leaf (field grown mature leaf). Therefore, the attenuation spectrum is mainly the result of

absorption properties of leaf with minimum scattering contribution. In order to minimize the scattering contribution due to air spaces in the mesophyll, water logged leaf was used in the measurement.

The Figure shows the attenuation spectrum (Cheng et al., SPIE Proceedings, vol. 4262) of maize leaf. Note the high attenuation in UV as the result of proteins and other organic compounds. The attenuation in the blue and red spectral region is the result of chlorophylls and other photosynthetic pigments. The attenuation in the IR range ($>1400 \mathrm{~nm}$) is mainly due to the presence of water in the leaf tissue. The translucent window of maize leaf suitable for light microscopy is within the spectral range of $350-1400 \mathrm{~nm}$.

Supported by the National Science Council, Republic of China under grant number: NSC-89-2311-B-001-032 (BLL), NSC-88-2811-B-001-0023 (PCC), NSC-89-2811-E-002-0058 (PCC), NSC-89-2215-E-002-064 (CKS).

TALLAHASSEE, FLORIDA
 Florida State University

Tom Thumb, a useful popcorn
--Bass, HW, Kang, LC, Eyzaguirre, A
We have been working with an extra-early yellow popcorn for several years and report here on some of the desirable attributes of this variety called Tom Thumb. Tom Thumb can be propagated by self or open pollination and appears to be a stable inbred. We have adopted Tom Thumb as one of our regular "'lab rats" because of its 1) extremely rapid life cycle, 2) tolerance to greenhouse growth throughout the year in Tallahassee, 3) uniformity of growth habit, and 4) good seed set as shown in Figure 1. The seed are available from the Maize Stock Center, but we routinely work with seed purchased from Johnny's Selected Seeds (johnnyseeds.com, Albion ME). As stated in their 2001 home garden catalog entry on Tom Thumb, "85 days, extra-early, yellow popcorn. Refined from a genuine New Hampshire heirloom by the late Prof. E. M. Meader, University of New Hampshire and Johnny's Selected Seeds. Matures even in the Far North. The plants are dwarf, only $31 / 2^{\prime}$ tall, and bear 1 or 2 ears $3-4$ " long." We counted the leaf bearing nodes for plants ($n=43$) from the Fall 2000 greenhouse. Node number ranged from 8 to 11 with a mean of 10 .

The plants are almost too quick and small for summer fields. They can be grown indoors in small pots at high density with relatively little supplemental lighting. The plants usually produce tillers that can be cut back to assist shoot capping on the main stalk. Tom Thumb offers a number of advantages as an experimental or educational line of maize. For instance, a seed mutagenesis experiment can produce dominant mutations (plant or seed) during a single academic quarter or semester. Also, Tom Thumb might be good for production of transgenic maize using genotypeindependent protocols.

We are currently breeding meiotic mutations into the Tom Thumb background for use in our work on meiotic telomere functions. We have examined the pollen mother cells and found them to be suitable for FISH and immunocytochemical analysis of meiotic prophase. Figure 2 shows that telomeres and several knobs can be detected by 3D FISH carried out as previously described (Bass et al., J. Cell Biol., 137:5-18).

Figure 1.

MTLF / FITC
(telomeres)

NUBI-R / Rhod.
(knobs)

B.

Immunocytochemistry meiotic prophase cell DAPI (DNA)

NUBI-R / Rhod
(knoos)

Close-up
overlay

Figure 2.
We are collecting size-staged anthers of green-house grown Tom Thumb plants. The size classes are " A " < 0.5 mm ; " B " 0.5-1.5 mm ; "C" 1.5-2.5 mm; and "D" 2.5-3.5 mm. Figure 3 shows DAPI images of representative meiotic nuclei from A, B, and C size classes which contain anthers from premeiotic interphase plus early leptotene, leptotene plus zygotene, and zygotene plus

pachytene, respectively. These anthers will provide mRNA preparations for microarray analysis of meiotic gene expression. Anthers from the larger floret are dissected in the greenhouse, measured on a ruler under a dissecting microscope, and frozen. Anthers are collected for four months at a time, then a new set of collections is started. Those shown in Figure 3 are from the first trimester of 2000 (Jan-April).

Variable distribution of meiotic homologs; on-line spinning projections of 3D data from chromosome painting and telomere FISH analysis of OMAd9.2
--Bass, HW, Bordoli, SJ
We have developed a 3D FISH system to study meiotic telomere behavior and homologous chromosome interactions during meiotic prophase (Bass et al., 1997, J. Cell Biol., 137:5-18). In a recent chromosome painting study, the 3D intranuclear distribution of homologs was characterized in pollen mother cells before and during meiotic prophase (Bass et al., 2000 J . Cell Sci. 113:10331042). Examination of deconvolution image data revealed a surprising diversity of homolog arrangements and dispositions, relative to each other, and relative to the position of the telomere cluster-defined bouquet. In particular, many bouquet-stage nuclei (mostly at zygotene) contained spatially separated homologs. This observation, along with the published measurements of interhomolog distances in well-preserved nuclei indicate that premeiotic pairing does not contribute much, if anything, to the zygotene synapsis that is required for proper homolog disjunction. Thus, the homology search appears to function during meiotic prophase, after chromosomes have reorganized into condensed and extended fibers, and largely coincident with the bouquet stage when the telomeres are clustered on the nuclear envelope.

Computer-assisted inspection of the 3D data conveys a great deal of information. In order to make the visual data more accessible, we have prepared an on-line supplemental data page for some of the meiotic nuclei analyzed by Bass et al., (2000). The web page, http://bio.fsu.edu/~bass/mv/bq2/, contains a table with links to Quicktime movies that can be downloaded or viewed with web browsers. For each movie, projections of the FISH signals are shown for the telomeres (purple) and the maize-9 homologs (green). The DAPI image, which marks the entire nucleus (42 oat plus 2 maize chromosomes), was omitted. Each movie is made from a cropped down cube of data in which a single spherical nucleus is centered.

This form of data display may be useful to researchers and educators who are interested in the native structure of meiotic chromosomes and the function of the telomere bouquet. The movies convey some of the spatial and topological aspects of meiotic chromosome pairing and synapsis. The original data are archived as DeltaVision image data (A.P.I. Seattle, WA) and the optical sections can be distributed as grey scale TIFF files upon request from HWB (bass@bio.fsu.edu).

TIFTON, GEORGIA
USDA-ARS
University of Georgia
NAMPA, IDAHO
Novartis Seeds

Quantitative effects of loci p1 and a1 on the concentrations of maysin, apimaysin, methoxymaysin, and chlorogenic acid in maize silk tissue

--Guo, BZ, Zhang, ZJ, Butron, A, Widstrom, NW, Snook, ME, Lynch, RE, Plaisted, D
Among the natural products synthesized through the phenylpropanoid/flavonoid pathway in maize silk are C-glycosyl flavones, including maysin, apimaysin and methoxymaysin, and the phenylpropanoid chlorogenic acid which are antibiotic to corn earworm (Waiss et al., J. Econ. Entomol. 72:256-258, 1979; Elliger et al., Phytochemistry 19:293-297, 1980). Maysin concentration in maize silks is genetically controlled by quantitative trait loci (QTLs) including some of the well characterized flavonoid pathway genes such as p1 and a1, and some relatively poorly understood loci as revealed by DNA markers (e.g. Styles \& Ceska, Can. J. Cytol. 19:289-302, 1977; Styles \& Ceska, Maydica 34:227-237, 1989; Byrne et al., PNAS 93:8820-8825, 1996; McMullen et al., PNAS 95:1996-2000, 1998; Grotewold et al., Plant Cell 10:721740, 1998; Guo et al., J. Econ. Entomol., in press, 2001). The functional allele at the $p 1$ locus encodes a Myb-homologous protein that can bind to and activate transcription of the a1 gene, as well as regulate the transcription of some other flavonoid pathway genes (Grotewold et al., Plant Cell 10:721-740, 1998; Bruce et al., Plant Cell 12:65-79, 2000). Homozygous recessive a1 plus a dominant p1 factor can enhance the accumulation of C-glycosyl flavones in silk tissue (Styles \& Ceska, Can. J. Cytol. 19:289-302, 1977; Styles \& Ceska, Maydica 34:227-237, 1989; Guo et al., J. Econ. Entomol., in press, 2001). Apimaysin is highly related to maysin structurally, differing only by a 3'-hydroxyl group (apimaysin $3^{\prime}-\mathrm{H}$, maysin $3^{\prime}-\mathrm{OH}$). It had been assumed that apimaysin and maysin share the same structural enzymes, except flavonoid 3'-hydroxylase, and require the same pools of metabolic precursors. However, Lee et al. (Genetics 149:1997-2006, 1998) suggested that the synthesis of apimaysin and maysin occurs independently. An apimaysin QTL did not affect maysin synthesis and a maysin QTL did not affect apimaysin synthesis in a F2 population (Lee et al., Genetics 149:1997-2006, 1998). Genetic mechanisms underlying the concentration of chlorogenic acid in maize silk are unknown. In cultured maize cells, Grotewold et al. (Plant Cell 10:721-740, 1998) observed a compound that was indistinguishable from chlorogenic acid in UV absorption spectrum. This compound accumulated when p1 was expressed, suggesting that p1 expression can affect the level of chlorogenic acid.

In the study presented here, we report further details about the quantitative genetic control over maysin, apimaysin and methoxymaysin, and chlorogenic acid. In particular, our results support the suggestion (Grotewold et al., 1998) that p1 regulates the gene(s) required for the synthesis of chlorogenic acid. We present the evidence that the patterns of effects of p1 and a1 on apimaysin and methoxymaysin were very similar or identical to those on maysin in the (GE37 x 565) F2 population. We also detected two chromosome regions near RFLP markers npi409 on the short arm of chromosome 5 and umc132a on the long arm of chro-
mosome 6, respectively, which showed contrasting association with maysin and apimaysin and methoxymaysin, indicating that the syntheses of these flavonoids occur independently (Lee et al., Genetics 149:1997-2006, 1998).

The F2 population was derived from the cross between the inbred lines GE37 and 565. Inbred GE37 is a dent corn with a high concentration of C-glycosyl flavones (maysin, apimaysin and methoxymaysin) and chlorogenic acid in silk tissues. Inbred 565 is a sh2-sweet corn with essentially no C-glycosyl flavones and a low concentration of chlorogenic acid in silk tissues (Guo et al., J. Econ. Entomol. 92:746-753, 1999). The allelic constitution at the p1 locus is P1-wrb (white pericarp, red cob, browning silk) for GE37 and p1-www (white pericarp, white cob, non- browning silk) for 565. Our testcrosses with an a1 tester stock indicated that GE37 has functional A1 allele and 565 has a non-functional a1 allele at the a1 locus. The 304 F2 plants used in this study were derived from two self-pollinated F1 plants, 142 plants from one F1 and 162 plants from the other. Leaf tissue was collected from F2 individuals, and from GE37, 565 and F1 at the mid-whorl stage for DNA preparation. The collected silks were prepared for extraction of maysin, apimaysin and methoxymaysin, and chlorogenic acid. The concentrations of these chemicals was determined by reversephase HPLC, and expressed as percent fresh silk weight. Apimaysin and methoxymaysin were not separately measured, instead they were measured together in mixture. Hereafter, we abbreviate the apimaysin and methoxymaysin as am-maysin. One hundred and two DNA probes were screened against the DNA samples of GE37, 565 and (GE37 x 565) F1 digested with the 13 enzymes of Apal, BamHI, Bglll, Csp45l, Dral, EcoRl, EcoRV, Hindlll, Pstl, Sall, Sspl, Xbal and Xhol. Probes which were polymorphic were used for genotyping F2 individuals.

Distribution of F2 individuals over concentration of flavones (maysin or am-maysin) showed that a large number of individuals had an extremely low concentration of the flavones (white bars in Figures 1 and 2). To further analyze the distribution patterns, we examined only F2 individuals that were heterozygous at the p1 locus. The distribution of the p1-heterozygous individuals showed the absence of a large number of individuals with extremely low flavone concentration (black bars in Figures 1 and 2). All of the individuals with extremely low flavone (but not chlorogenic acid) concentration (white bars in Figures 1 and 2) were homozygous for the p1 allele from parent 565, and the number of these individuals was about $1 / 4$ of the whole population (86/304 for maysin and $83 / 304$ for am-maysin). Few F2 individuals had an extremely low concentration of chlorogenic acid (Figure 3). In all cases, a significant number of individuals were observed with higher chemical concentration than that of GE37, indicating a transgressive segregation occurred. The chromosome positions of p1, a1, npi409 and umc132a were confirmed on the short arm of chromosome 1, the long arm of chromosome 3, the short arm of chromosome 5 and the long arm of chromosome 6, respectively, by using MAPMAKER/EXP 3.0. In expressing the association between loci and chemical concentrations, multi-locus models were constructed in a stepwise way to best explain variation for chemical concentrations. The significant locus (p 1) that had the highest R^{2} was included in the modelling. Then each of the remaining loci or markers was added, resulting in two-locus models from which the one was selected that had the highest R^{2} and in which both loci (p 1 and a1)

Figure 1. Frequency distribution of silk maysin concentrations in F2 population of (GE37 x 565). Black bars represent the F2 individuals that were heterozygous at the p1 locus. White bars represent the total 304 F2 individuals that were homozygous or heterozygous at the p1 locus.

Figure 2. Frequency distribution of silk apimaysin and methoxy maysin maysin concentrations in F2 population of (GE37 x565). Black bars represent the F2 individuals that were heterozygous at the $p 1$ locus. White bars represent the total 304 F 2 individuals that were homozygous or heterozygous at the p1 locus.

Figure 3. Frequency distribution of silk chlorogenic acid concentrations in F2 population of (GE37 x 565). Black bars represent the F2 individuals that were heterozygous at the p1 locus. White bars represent the total 304 F individuals that were homozygous or heterozygous at the p1 locus.
were significant. The interaction between the two loci (p1 and a1) was added to the model and it was observed that all three terms ($p 1$, a1 and $p 1 \times$ a1) in the model were significant ($\mathrm{P}<0.01$). Each of the remaining loci or markers was added to the model, resulting
in three-locus models from which one was selected that had the highest R^{2} and in which all terms (p1, a1, p1xa1 and npi409) were significant. Interaction between npi409 and p1 or a1 was not found to be significant. Due to the limited population size (304 individuals), three-way interaction was not tested, and no other locus or marker could be added to the model at 0.01 level. Therefore, for maysin the best multi-locus model included p1, a1, npi409 and p1x a1, accounting for $61.0 \%, 6.4 \%, 1.3 \%$ and 1.7%, respectively, and 70.4% in total of maysin variation (Table 1). Using the same procedure, the best multi-locus models were constructed for am-maysin and chlorogenic acid (Table 1). For ammaysin, the best multi-locus model included p1, a1, umc132a and p1xa1, accounting for $64.5 \%, 8.4 \%, 1.0 \%$ and 2.1%, respectively, and 76.0% in total of am-maysin variation. For chlorogenic acid, the best multi-locus model included $p 1$ and a1, accounting for 12.5% and 4.7%, respectively, and 17.2% in total of chlorogenic acid variation.

We noticed that npi409 was included in the best multi-locus model for maysin, whereas umc132a was included in the best multi-locus model for am-maysin. To further show the associations of npi409 and umc132a with maysin and am-maysin levels, fourlocus models including p1, a1, npi409 and umc132a were constructed for both maysin and am-maysin (Table 2). In the four-locus model for maysin, npi409 had significant association ($P=$ 0.0059) with maysin, while umc132a had nearly no association (P $=0.7389$) with maysin. However, in the four-locus model for ammaysin npi409 had nearly no association ($P=0.4829$) with ammaysin, while umc132a had significant association ($P=0.0062$) with am-maysin. Interactions involving npi409 or umc132a were not significant (data not shown) in these four-locus models.

Table 1. Multi-locus models of flavonoid pathway loci or associated RFLP markers that best explained the variation for maysin, apimaysin and methoxymaysin, and chlorogenic acid concentration in the F2 population of (GE37 $\times 565$).

Locus/RFLP marker or interaction	Chromosome $^{\text {location }^{\mathrm{a}}}$	Significance	$\mathrm{R}^{2 \mathrm{D}}$	Parent contributing higher value allele
Maysin	1S	$P<0.0001$	61.0	GE37
p1	3L	$P<0.0001$	6.4	565
a1	5S	$P=0.0027$	1.3	565
npi409		$P=0.0043$	1.7	
p1 xa1		70.4		
Total				
Apimaysin and		$P<0.0001$	64.5	GE37
methoxymaysin	1S	$P=0.0062$	1.0	GE37
p1	3L	$P=0.0002$	2.1	
a1	6L	$P<0.0001$	12.5	GE37
umc132a		$P=0.0005$	4.7	GE37
p1xa1				
Total	1S	3L		
Chlorogenic acid				
p1				
a1				

${ }^{1}$ The $1,3,5$ and 6 are chromosome number. S and L represent short arm and long arm of the chromosome, respectively.
${ }^{2}$ Percent chemical variation explained.
Table 2. Contrasting associations of npi409 and umc132a with maysin or apimaysin and methoxymaysin in (GE37 x 565) F2 population.

Locus/RFLP marker or interaction	Maysin	Apimaysin and methoxy- maysin
npi409	$P=0.0059$	$P=0.4829$
ucm132a	$P=0.7389$	$P=0.0062$
p1	$P<0.0001$	$P<0.0001$
a1	$P<0.0001$	$P<0.0001$
p1 x a1	$P=0.0042$	$P=0.0002$

At the p1 locus, mean maysin concentrations were 1.018\%, 0.554% and 0.003% fresh silk weight for homozygous GE37, heterozygous GE37/565, and homozygous 565, respectively (Table 3), indicating that the effect of $p 1$ on maysin was additive. At the a1 locus, the mean of the 565 homozygous class was higher than those of GE37/565 heterozygous and GE37 homozygous classes for both maysin and am-maysin concentrations, while there was no significant difference between the means of GE37/565 heterozygous and GE37 homozygous classes, indicating that a1 acts in recessive mode for high maysin and am-maysin. On chlorogenic acid a1 showed an additive effect. The genotype class means of $p 1 \times$ a1 interaction showed that a1 increases maysin or am-maysin concentrations only when the a1 allele from 565 is homozygous and at least one p1 allele from GE37 is presented. The npi409 marker represents a locus that acts in recessive mode for high maysin, i.e. the mean of 565 homozygous class (0.620) was significantly higher than those of GE37 homozygous (0.471) or GE37/565 heterozygous (0.484) classes. The umc132a marker represents a locus that acts in an additive mode for am-maysin.

The F2 population of (GE37 (565) showed polymorphism at both the p1 and a1 loci, in contrast to the F2 population of (GT114 (GT119) reported by Byrne et al. (PNAS93:8820-8825, 1996) that did not show polymorphism at the a1 locus. Using an F2 population derived from SC102 (high maysin dent corn) and B31857 (low maysin sh2 sweet corn) parents, Guo et al. (J. Econ. Entomol. in press, 2001) reported that p1 was not polymorphic in this population. A flanking marker npi286 to p1 corresponded with 25.6% of the silk maysin variance and a1 (accounted for 15.7% of the silk maysin variance) in this population (Guo et al., 2001). In

Table 3. Levels of maysin, apimaysin and methoxymaysin, and chlorogenic acid in the F2 population of (GE37 x 565).

Locus/RFLP marker or interaction	Genotype	Maysin (\% silk fresh weight)	Apimaysin and methoxymaysin (\% silk fresh weight)	Chlorogenic acid (\% silk fresh weight)
p1	A	$1.018 a^{2}$	0.111 a	0.066 a
	H	0.554 b	0.079 b	0.055 b
	B	0.003 c	0.007 c	0.037 c
a1	A	0.460 a	0.057 a	0.065 a
	H	0.423 a	0.055 a	0.052 b
	B	0.692 b	0.085 b	0.041 c
npi409	A	0.471 a		
	H	0.484 a		
	B	0.620 b		
umc132a	A			
	H		0.076 a	
	B		0.066 b	
p1			0.055 c	
	A A	0.808 a	0.105 a	
	A	H	0.847 a	0.087 a
	A B	1.299 b	0.141 b	
	H A	0.465 a	0.069 a	
	H H	0.428 a	0.063 a	
	H B	0.769 b	0.106 b	
	B A	0.007 a	0.006 a	
	B H	0.006 a	0.005 a	
	B B	0.008 a	0.009 a	

*A, B and H represent homozygotes for the GE37 allele, homozygotes for the 565 allele, and heterozygotes, respectively.
** Significant level is $P<0.01$. Within each group of comparisons, means followed by the same letter are not significantly different.
the study reported here, we found further details about the roles of p1, a1, and the interaction between p1 and a1 in quantitatively genetic control over maysin, am-maysin, and chlorogenic acid, as well as confirmed that p1 and a1 are major QTLs controlling maysin concentration. Our results confirm the report by Grotewold et al. (1998) that $p 1$ regulates the gene(s) required for the synthesis of chlorogenic acid. We present evidence that maysin and ammaysin synthesis share genes, including p1 and a1 in the (GE37 (565) population, in contrast to results with the population of (GT114 (NC7A) reported by Lee et al. (1998) in which the syntheses of apimaysin and maysin occurred independently. In addition, we detected two chromosome regions near RFLP markers npi409 on the short arm of chromosome 5 and umc132a on the long arm of chromosome 6 , respectively, which showed contrasting associations with maysin and am-maysin, indicating that the syntheses of these flavonoids are independent.

URBANA, ILLINOIS
Maize Genetics Cooperation • Stock Center

Allelism testing of miscellaneous stocks in Maize COOP phenotype only collection
 --Jackson, JD

This report summarizes allele testing of miscellaneous stocks characterized by phenotype only, in the Maize Genetics COOP Stock Center collection. Some of these mutants have been found in other COOP stocks and some have been sent in by cooperators over the years. In most cases crosses were made between known heterozygotes and homozygous plants. Plants were scored at the seedling stage and again at maturity. Proposed new designations have been assigned to these alleles. The stocks with positive tests have been increased and placed on the 2001 stocklist. It is expected that with further sorting and allelism testing of mutations characterized by phenotype only, additional alleles of characterized mutants will be discovered and placed in the main collection.

previous designation	allelism test with ws3	allelism test with 91	allelism test with $g 2$	new designation
$v^{*}-N 2260$	negative: $\left(+/ v^{*}\right) \times$ ws3; $v^{*} \times$ ws3	negative	negative	\cdots

previous designation	$\begin{aligned} & \text { allelism test } \\ & \text { with zn2 } \end{aligned}$	$\begin{aligned} & \text { allelism test } \\ & \text { with } z b 1 \end{aligned}$	$\begin{aligned} & \text { allelism test } \\ & \text { with } z b 4 \end{aligned}$	new designation
$z n^{*}-4-6(4461)$	$\begin{aligned} & \text { positive: } z n 2 x \\ & z b^{*} \end{aligned}$	----	----	$\begin{aligned} & \hline z n 2-4- \\ & 6(4461) \end{aligned}$
zb*-94-234	positive: $\begin{aligned} & \left(+/ z b^{*}\right) \times z n 2 \\ & z n 2 \times z b^{*} \end{aligned}$	negative	negative	$\begin{aligned} & \text { zn2-94-234: } \\ & \text { MGCSC } \\ & \text { stock number: } \\ & \text { U1401 } \end{aligned}$

previous designation	allelism test with ra1	allelism test with ra2	new designation	MGCSC: stock number
ra*-Pl184279	positive: ($+/$ ra*) x ra1	negative	$\begin{aligned} & \hline \text { ra1- } \\ & \text { Pl184279 } \end{aligned}$	708AB
ra*-Pl239103	positive: ($+/ \mathrm{ra*}$) x ra1	negative	$\begin{aligned} & \text { ra1- } \\ & \text { Pl239103 } \end{aligned}$	708AC
ra*-PI267181**	positive: $\left(+/ r a^{*}\right) \times r a 1$	negative	$\begin{aligned} & \hline \text { ra1- } \\ & \text { Pl267181 } \end{aligned}$	708AD
ra*-Pl267184	positive: $\left(+/ r a^{*}\right) \times r a 1$	negative	$\begin{aligned} & \hline \text { ra1- } \\ & \text { PI267184 } \end{aligned}$	708AE
ra*-63-3359	positive: (+/ra*) x ra1	negative	ra1-63-3359	708AF

$r a^{*}-D$	negative: $\left(+/ r a^{*}\right) \times$ ra1	positive: $\left(+/ r a^{*}\right) \times$ ra2	ra2-D	308 G
$r a^{*}-412$	negative: $\left(+/ r a^{*}\right) \times$ ra1	negative: $\left(+/ r a^{*}\right) \times$ ra2	--	--

note: tassels of all new ra1 alleles have good ramosa phenotype. Ears of ra1-PI alleles have extreme ramosa phenotype
**: gs1-Pl267181 may segregate in this stock.

previous designation	allelism test with gs1	new designation	MGCSC: stock number
gs*-Pl267181	positive: $($ gs1 x gs*)	gs1-Pl2671811**	109 C

note: ra1-Pl267181 may segregate in this stock.

previous designation	allelism test with ij1	new designation	MGCSC: stock number
str**-60-2454-20	positive: (+/ij1) x str*	ij1-60-2454-20	711C

Additional linkage tests of non-waxy (Waxy1) reciprocal translocations involving chromosome 9 at the MGCSC

 --Jackson, JD, Stinard, P, Zimmerman, SApproximately one acre each year is devoted to the propagation of the large collection of A-A translocation stocks. In this collection is a series of Waxy1-linked translocations that are used for mapping unplaced mutants. Each translocation is maintained in separate M14 and W23 inbred backgrounds which are crossed together to produce vigorous F1's to fill seed requests. Over the years, pedigree and classification problems arose during the propagation of these stocks. We have been able to sort through the problem ones, and can now supply good sources proven by linkage tests to include the correct translocated chromosomes.

Previously we reported the linkage results for some of these stocks (MNL72:79-81; MNL73:86-88; MNL74:67). Below is a summary of additional translocation stocks we have completed testing.

Table 1. Wx1 T4-9b (4L.90; 9L.29)

A) The F1 source showed linkage of $w x 1$ with $c 2$.

2 point linkage data for $\mathrm{c} 2-\mathrm{W} \times 1 \mathrm{~T} 4-9 \mathrm{~b}$
Testcross: [C2 W×1 T4-9b x c2 wx1 N] x c2 wx1 N
source: $87-998 \times 996 \wedge$ F1

Region	Phenotype	No.	Totals
0	+ Wx	829	
	$\mathrm{cl} w x$	1039	1868
1	cl Wx	100	
	+wx	287	387

$\%$ recombination $c 2-w x 1=17.2 \pm 0.8$

Table 2. Wx1 T6-9(4505) (6L.13; 9ctr.)

A) The F1 source showed linkage of $w x 1$ with $y 1$:			
2 point linkage data for Y1-Wx1 T6-9(4505)			
Testcross: [Y1 Wx1 T6-9(4505) x y1 wx1 N] x y1 wx1 N			
source: 87-1027 x 1025 ^F1			
Region	Phenotype	No.	Totals
0	+ Wx	1391	
	y wx	1468	2859
1	y Wx	204	
	+ wx	187	391

[^1]Table 3. Wx1 T7-9a (7L.63; 9S.07)
A) The F1 source showed linkage of $w \times 1$ with glt:

2 point linkage data for gl1-Wx1 T7-9a
Testcross: [G/1 Wx1 T7-9a x gl1 wx1 N] x gl1 wx1 N
source: 87-1038 x 1036^F1

Region	Phenotype	No.	Totals
0	$+W x$	955	
	$g \mid w x$	846	1801
1	$g \mid W x$	186	
	$+w x$	173	359

\% recombination gl1-wx1=16.6 ± 0.8

Table 4. Wx1 T8-9d (8L.09; 9L.16)
A) The M14 source showed linkage of $w x 1$ with $v 16$:

2 point linkage data for $\mathrm{v} 16-\mathrm{W} \times 1$ T8-9d
Testcross: [V16 Wx1 T8-9d x v16 wx1 N] x v16 wx1 N
source: 888-999-1001 x same bulk \#1^M14

Region	Phenotype	No.	Totals
0	$+W x$	263	
	VWx	221	484
1	vWx	141	
	$+W x$	133	274

\% recombination $v 16-\mathrm{wx} 1=36.1 \pm 1.7$
B) The W23 source showed linkage of $w \times 1$ with $v 16$:

2 point linkage data for v16-Wx1 T8-9d
Testcross: [V16 W×1 T8-9d x v16 w $\times 1 \mathrm{~N}$] $\times v 16 \mathrm{w} \times 1 \mathrm{~N}$
source: 82-157-2@^W23

Region	Phenotype	No.	Totals
0	+ Wx	575	
	VWx	521	1096
1	vWx	239	
	+wx	189	428

\% recombination $v 16-w x 1=28.1 \pm 1.2$

Table 5. Wx1 T8-9(6673) (8L.35; 9S.31)
A) The M14 source showed linkage of $w x 1$ with $v 16$:

2 point linkage data for v16-Wx1 T8-9(6673)
Testcross: [V16 Wx1 T8-9(6673) x v16 wx1 N] x v16 wx1N
source: $87-1715-1 \times$ sib$^{\wedge} \mathrm{M} 14$

Region	Phenotype	No.	Totals
0	$+W x$	554	
	Vwx	428	982
1	VWx	139	
	$+w x$	182	321

B) The W23 source showed linkage of $w \times 1$ with $v 16$:

2 point linkage data for $v 16-W \times 1$ T8-9(6673)
Testcross: [V16 Wx1 T8-9(6673) x v16 wx1 N] x v16 wx1 N
source: 87-1716-1 x sib^W23

Region	Phenotype	No.	Totals
0	+ Wx	445	
	VWx	375	820
1	VWx	208	
	+Wx	186	394

\% recombination $v 16-w x 1=32.5 \pm 1.3$

Additional linkage tests of waxy1 marked reciprocal translocations at the MGCSC

--Jackson, JD, Stinard, P, Zimmerman, S
In the collection of $A-A$ translocation stocks maintained at MGCSC is a series of waxy 1 -linked translocations that are used for mapping unplaced mutants. Also new wx1-linked translocations are being introduced into this series and are in a conversion program to transfer each translocation to the inbred backgrounds M14 and W23. These inbreds are then crossed together to produce vigorous F1's to fill seed requests. Over the years, pedigree and classification problems arose during the propagation of these stocks. We have been able to sort through the problem ones, and can now supply good sources proven by linkage tests to include the correct translocated chromosomes. Additional pedigree information on bad sources is available should anyone want to check on samples supplied to them previously by the Stock Center.

Previously we reported the linkage results for some of these stocks (MNL72:81-82; MNL73:88-89; MNL74:67-69). Below is a summary of additional translocation stocks for which we have completed testing. Additional translocation stocks will be tested as time allows.

Table 1. wx1 T3-9c (3L.09; 9L.12)
A) The M14 source showed linkage of $w \times 1$ with $v p 1$:

3 point linkage data for vp1-wx1 T3-9c
Modified backcross: [Vp1 wx1 $\mathrm{N} \times$ [vp1 Wx1 $\mathrm{N} \times$ Vp1wx1 T3-9c]]@
source: 93-481-1 ^M14

Region	Phenotype	No.	Totals
0	vp N Wx	129	
	+ T wx	108	237
1	+ N Wx	18	
	vp T wx	9	27
2	+ TWx	4	
	vp N wx	1	5
$1+2$	vp T Wx	2	
	+ N wx	0	2

\% recombination vp1-wx1 $=13.3 \pm 2.1$
\% recombination vp1-T=10.7 ± 1.9
\% recombination $\mathrm{T}-w \times 1=2.6 \pm 1$.
B) The W23 source showed linkage of $w x 1$ with $v p 1$:

3 point linkage data for vp1-wx1 T3-9c
Modified backcross: [Vp1 wx1 N x [vp1 Wx1 N x Vp1 wx1 T3-9c]]@
source: 94-1893-1 ^W23

Region	Phenotype	No.	Totals
0	vp N Wx	153	
	+ T wx	170	323
1	+ NWx	17	
	vp Twx	10	27
2	+ TWx	1	
	$\operatorname{vp~Nwx}$	1	2
$1+2$	vp TWx	2	
	+ Nwx	2	4

\% recombination vp1-wx1 $=10.4 \pm 1.6$
$\%$ recombination vp1-T=8.7 ± 1.5
\% recombination $T-w x 1=1.7+0.7$
C) Combined data for M14 \& W23 sources.

3 point linkage data for vp1-wx1 T3-9c
Modified backcross: [Vp1 wx1 N x [vp1 Wx1 N x Vp1 wx1 T3-9c]]@
combined M14 \& W23 data

Region	Phenotype	No.	Totals
0	vp N Wx	278	
	+ T wx	282	560
1	+ NWx	35	
	vp Twx	19	54
2	+ TWx	5	
	vp N wx	2	7
$1+2$	vp TWx	4	
	+ N wx	2	6

\% recombination vp1-wx1 $=11.6+1.3$
\% recombination vp1-T=9.6+1.1
\% recombination T-wx1=2.1+0.4
The following linkage relationship was established: vp1-9.6-T-2.1-wx1. These data are consistent with the $\%$ recombination $v p 1-w x 1=11.06+0.62$ in Robertson, D.S. 1955. Genetics 40:745-760. These could also be consistent with the breakpoints determined by Dr. C. R. Burnham and students, University of Minnesota.

Table 2. wx1 T4-9g (4S.27; 9L.27)
A) The F1 source showed linkage of $w \times 1$ with su1.

2 point linkage data for su1-wx1 T4-9g
Testcross: [Su1 wx1 T4-9g x su1 Wx1 N] x su1 wx1 N
source: 93-444-2 x 445 F 1 of ${ }^{\wedge} \mathrm{M} 14 \times{ }^{\wedge} \mathrm{W} 23$

Region	Phenotype	No.	Totals
0	+ Wx	749	
	su Wx	741	1490
1	+ Wx	241	
	su Wx	23	264

\% recombination su1-wx1=15.1+. 09
B) The M14 source showed linkage of $w \times 1$ with su1:

2 point linkage data for su1-wx1 T4-9g
Testcross: [Su1 wx1 T4-9g x su1 Wx1 N] x su1 wx1 N
source: $93-482-1 \times$ SIB^M14 $^{\wedge}$

Region	Phenotype	No.	Totals
0	+ wx	810	
	su Wx	818	1625
1	+ Wx	247	
	su $w x$	18	265

C) The W23 source showed linkage of $w \times 1$ with su1:

2 point linkage data for su1-wx1 T4-9g
Testcross: [Su1 wx1 T4-9g x su1 Wx1 N] x su1 wx1 N
source: 92-405-1 x SIB^W23

Region	Phenotype	No.	Totals
0	$+w x$	1007	
	su Wx	998	2005
1	+ Wx	284	
	su wx	31	315

\% recombination su1-wx1=13.6 ± 0.7

Table 3. wx1 T4-9e (4S.53; 9L.26)
A) The F1 source showed linkage of $w \times 1$ with su1.

2 point linkage data for su1-wx 1 T4-9e
Testcross: [Su1 wx1 T4-9e x su1 Wx1 N] x su1 wx1 N
source: 93 W -1389-1 x 1390-9 F1 of ${ }^{\wedge} \mathrm{M} 14 \times{ }^{\wedge} \mathrm{W} 23$

Region	Phenotype	No.	Totals
0	+ wx	478	
	su Wx	604	1082
1	+ Wx	70	
	su wx	19	89

[^2]B) The M14 source showed linkage of $w x 1$ with su1:

2 point linkage data for su1-wx1 T4-9e
Testcross: [Su1 wx1 T4-9e x su1 Wx1 N] x su1 wx1 N
source: $92 \mathrm{H}-470-1 \times$ SIB^M14 $^{\wedge}$

Region	Phenotype	No.	Totals
0	+ wx	934	
	su Wx	1052	1986
1	+ Wx	39	
	su wx	10	49

recombination su1-wx1 $=2.4 \pm 0.3$
C) The W23 source showed linkage of wx1 with su1:

2 point linkage data for su1-wx1 T4-9e
Testcross: [Su1 wx1 T4-9e x su1 Wx1 N] x su1 wx1 N
source: 93W-1390-9@^W23

Region	Phenotype	No.	Totals
0	+wx	1018	
	su Wx	1033	2051
1	+ Wx	72	
	Su Wx	37	109

\% recombination su1-wx1 $=5.0 \pm 0.5$

Table 4. wx1 T4-9(5657) ((4L.33; 9S.25)
A) The F1 source showed linkage of $w x 1$ with $g 14$:

2 point linkage data for gl4-wx1 T4-9(5657)
Testcross: [G/4 wx1 T4-9(5657) x gl4 Wx1 N] x gl4 wx1 N
source: $87-870 \times 872^{\wedge} F 1$

Region	Phenotype	No.	Totals
0	glWx	240	
	+Wx	225	465
1	$+W \mathrm{~W}$	12	
	glwx	5	17

\% recombination gl4-wx $1=3.5 \pm 0.8$
B) The W23 source showed linkage of $w \times 1$ with gl4:

2 point linkage data for gl4-wx1 T4-9(5657)
Testcross: [G/4 wx1 T4-g(5657) x gl4 W×1 N] x g/4wx1N
source: $92 \mathrm{H}-471-7^{\wedge}$ W23

Region	Phenotype	No.	Totals
0	gl Wx	92	
	+ Wx	83	175
1	+ Wx	10	
	glwx	3	13

\% recombination g|4-wx1=6.9 ± 1.9
C) The M14 source was not tested.

Table 5. wx1 T5-9(4817) (5L.06; 9S.07)
A) The F1 source showed linkage of $w x 1$ with $a 2$:

2 point linkage data for a2-wx1 T5-9(4817)
Testcross: [A2 wx1 T5-9(4817) x a2 W×1 N] x a2 wx1N
source: $933-450-1 \times 451^{\wedge} \mathrm{F} 1$

Region	Phenotype	No.	Totals
0	a Wx	494	
	+wx	421	915
1	+Wx	63	
	$\mathrm{a} w x$	27	90

\% recombination a2-wx1 $=9.0 \pm 0.9$

B) The M14 source showed linkage of $w \times 1$ with a2:

2 point linkage data for a2-wx1 T5-9(4817)
Testcross: [A2 w×1 T5-9(4817) x a2 W×1 N] x a2 wx1 N

Source: $87-884 \times$ SIB \wedge M14
Region Phenotype No. Totals 0 $\mathrm{a} W x$ 1006 +wx 959 1965 1 + Wx 133 $\mathrm{a} w x$ 49 182

C) The W23 source showed linkage of wx1 with a2.

2 point linkage data for a2-wx 1 T5-9(4817)
Testcross: [A2 wx1 T5-9(4817) x a2 W×1 N] x a2 wx1N
source: 92-412-1 x SIB ^W23

Region	Phenotype	No.	Totals
0	a Wx	802	
	+wx	781	1583
1	+Wx	104	
	$\mathrm{a} w x$	47	151

\% recombination a2-wx1=8.7 ± 0.7

Table 6. wx1 T5-9d (5L.14; 9L. 10)
A) The F1 source showed linkage of $w x 1$ with $g 18$:

2 point linkage data for $g \mid 8$-wx 1 T5-9d Testcross: [Gl8wx1 T5-9dx gl8 W×1 N] x gl8wx1 N

B) The M14 source showed linkage of wx1 with gl8:

2 point linkage data for gl8-wx1 T5-9d
Testcross: [G/8wx1 T5-9d x g/8 W×1 N] x g/8wx1N
source: 93-483-1 x SIB ^M14

Region	Phenotype	No.	Totals
0	gl Wx	864	
	$+w x$	819	1683
1	+ Wx	220	
	glwx	147	367

C) The W23 source showed linkage of wx1 with gl8.

2 point linkage data for $g / 8-w \times 1$ T5-9d
Testcross: [G/8wx1 T5-9d x g/8 W×1 N] x g/8wx1N
source: 93W-1414-3@^W23

Region	Phenotype	No.	Totals
0	gl Wx	430	
	+ Wx	419	849
1	$+W x$	159	
	glwx	91	250

\% recombination $g l 8-w x 1=22.7 \pm 1.3$

Table 7. wx1 T8-9d (8L.09; 9L.16)
A) The F1 source showed linkage of $w x 1$ with $v 16$:

2 point linkage data for v16-wx1 T8-9d
Testcross: [V16 wx1 T8-9d x v16 W×1 N] x v16 wx1 N

Region	Phenotype	No.	Totals
0	$v W x$	356	
	$+w x$	336	692
1	$+W x$	200	
	$v W x$	109	309

\% recombination $v 16-w x 1=30.9 \pm 1.5$
B) The M14 source showed linkage of $w x 1$ with $v 16$:

2 point linkage data for $v 16-w \times 1$ T8-9d
Testcross: [V16 wx1 T8-9d x v16 W×1 N] x v16 wx1 N
source: 93-490-1@^M14

Region	Phenotype	No.	Totals
0	vWx	600	
	$+W X$	492	1092
1	$+W x$	158	
	WWX	81	239

\% recombination $v 16-w x 1=18.0 \pm 1.1$
C) The W23 source showed linkage of $w \times 1$ with $v 16$:

2 point linkage data for $v 16-w \times 1$ T8-9d
Testcross: [V16 wx1 T8-9dx v16 Wx1 N] x v16 wx1 N
source: $92 \mathrm{H}-483-1 \times$ SIB $^{\wedge} \mathrm{W} 23$

Region	Phenotype	No.	Totals
0	vWx	451	
	+wx	410	861
1	+Wx	146	
	vwx	95	241

\% recombination $v 16-w x 1=21.9 \pm 1.2$

Table 8. wx1 T8-9(6673) (8L.35; 9S.31)

A) The F1 source showed linkage of $w x 1$ with $v 16$:

2 point linkage data for v16-wx1 T8-9(6673)
Testcross: [V16 wx1 T8-9(6673) x v16 W×1 N] x v16 wx1 N
source: 93-472-1 x 473^F1

Region	Phenotype	No.	Totals
0	vWx	643	
	+Wx	542	1185
1	+ Wx	141	
	v Wx	111	252

\% recombination $v 16-w x 1=17.5 \pm 1.0$
B) The M14 source showed linkage of $w \times 1$ with $v 16$:

2 point linkage data for v16-wx1 T8-9(6673)
Testcross: [V16 wx1 T8-9(6673) x v16 W×1 N] x v16 wx1 N
source: 93-433-1 x SIB^M14

Region	Phenotype	No.	Totals
0	vWx	403	
	+Wx	376	779
1	+Wx	71	
	VWx	64	135

\% recombination $v 16-w x 1=14.8 \pm 1.2$
C) The W23 source showed linkage of $w x 1$ with $v 16$:

2 point linkage data for v16-wx1 T8-9(6673)
Testcross: [V16 wx1 T8-9(6673) x v16 W×1 N] x v16 wx1 N
source: 93-491-1 x SIB^W23

Region	Phenotype	No.	Totals
0	vWx	616	
	+wx	592	1208
1	+Wx	172	
	vwx	123	295

\% recombination $v 16-w x 1=19.6 \pm 1.0$

Table 9. wx1 T9-10(8630) (9S.28; 10L.37)
All wx1 marked sources of T9-10(8630) showed no linkage with either r1 or g1. New crossovers were obtained for both the M14 \& W23 conversions.
A) The new M14 crossover sources showed linkage of wx1 with r1.

2 point linkage data for r1-wx1 T9-10(8630)
Testcross: [r1 wx1 T9-10(8630) x R1 Wx1 N] x r1 wx1 N
Source: 99-1463-3; from: 98-1139-2c/0^M14

Region	Phenotype	No.	Totals
0	+ Wx	766	
	$r w x$	648	1414
1	r Wx	115	
	$+w x$	195	310

\% recombination $r 1-w \times 1=18.0 \pm 0.9$
source: 99-1463-5; from: 98-1139-2c/0^M14

Region	Phenotype	No.	Totals
0	$+W x$	779	
	$r w x$	571	1350
1	$r W x$	90	
	$+W x$	159	249

\% recombination $r 1-w X 1=15.6 \pm 0.9$
B) The new M14 crossover sources showed linkage of $w \times 1$ with $g 1$.

2 point linkage data for g1-wx1 T9-10(8630)
Testcross: [G1 wx1 T9-10(8630) x g1 Wx1 N] x g1 wx1 N
source: 99-1463-2 from: $98-1139-2 \mathrm{c} / \mathrm{o}^{\wedge} \mathrm{M} 14$

Region	Phenotype	No.	Totals
0	g Wx	1458	
	+wx	1254	2712
1	+Wx	76	
	gwx	70	146

\% recombination $g 1-w x 1=5.1 \pm 0.4$
source: 99-1463-5 from: 98-1139-2c/0^M14

Region	Phenotype	No.	Totals
0	g Wx	487	
	$+w x$	463	950
1	+ Wx	17	
	$g w x$	11	28

\% recombination $g 1-w x 1=2.9 \pm 0.5$
source: 99-1463-7 from: 98-1139-2c/o^M14

Region	Phenotype	No.	Totals
0	g Wx	195	
	+Wx	207	402
1	+Wx	5	
	g wx	5	10

Source: 99-1464-3 from: 98-1139-2c/0^M14

Region	Phenotype	No.	Totals
0	g Wx	613	
	$+W x$	586	1199
1	$+W x$	26	
	$g w x$	22	48

\% recombination $g 1-w x 1=3.8 \pm 0.5$
source: 99-1464-6 from: 98-1139-2c/o^M14

Region	Phenotype	No.	Totals
0	g Wx	215	
	+Wx	221	436
1	+Wx	8	
	g wx	7	15

source: 99-1464-8 from: 98-1139-2c/o^M14

Region	Phenotype	No.	Totals
0	g Wx	696	
	+Wx	649	1345
1	+Wx	22	
	g Wx	13	35

\% recombination $g 1-w x 1=2.5 \pm 0.4$
C) The new W23 crossover sources showed linkage of $w \times 1$ with $g 1$.

2 point linkage data for g1-wx1 T9-10(8630)
Testcross: [G1 wx1 T9-10(8630) x g1 Wx1 N] x g1 wx1 N
source: 99-1465-11 from: 98-1159-11c/0^W23

Region	Phenotype	No.	Totals
0	g Wx	513	
	+Wx	526	1040
1	+Wx	8	
	g wx	11	19

source: 99-1466-1 from: 98-1159-11c/o^W23

Region	Phenotype	No.	Totals
0	gWx	494	
	+wx	457	951
1	$+W x$	10	
	g wx	17	27

source: 99-1468-2 from: 98-1159-11c/o^W23

Region	Phenotype	No.	Totals
0	g Wx	527	
	$+W x$	463	990
1	$+W x$	11	
	$g w x$	22	33

\% recombination $g 1-w x 1=3.2 \pm 0.6$
source: 99-1468-8 from: 98-1159-11c/0^W23
Source: 99-1468-8 from:

Region	Phenotype	No.	Totals
0	g Wx	246	
	$+w x$	247	493
1	$+W x$	8	
	$g w x$	6	14

\% recombination $g 1-w x 1=2.8 \pm 0.7$
source: 99-1468-11 from: 98-1159-11c/0^W23

Region	Phenotype	No.	Totals
0	$g \mathrm{Wx}$	335	
	+Wx	661	645
1	+Wx	8	
	$g \mathrm{Wx}$	8	16

Preliminary two-point linkage data for inr1 and du1 on 10L

--Stinard, P
Inr1 is a dominant R1 allele-specific aleurone color inhibitor that can be scored as pale or colorless aleurone in the presence of certain susceptible $R 1$ ($R 1-S$) alleles. The recessive inr1 allele provides full purple aleurone color in the presence of $R 1-S$. Previous data (Stinard, P. 1999. MNL 73:89-90) had shown that inr1 is located on the long arm of chromosome 10, distal to the TB10 L 19 breakpoint (10 L .00), but proximal to g 1 . In order to further refine the map location of inr1, a three-point linkage test involving the 10 L markers inr1, du1, and $g 1$ was set up as indicated in Table 1. All stocks used in the crosses were homozygous for wx1 in order to enhance the expression of du1. Kernels from these crosses will be planted at a later date and the resulting plants scored for $g 1$ in order to provide three-point linkage data. Preliminary two-point data involving only inr1 and du1 are presented in Table 1. These data indicate that inr1 and du1 are very

Table 1. Two-point linkage data for inr1 and du1.
Testcross: (Du1 Inr1 G1 R1-S wx1 X du1 inr1 g1 R1-S wx1) X du1 inr1 g1 R1-S wx1.

Reg.	Phenotype	No.	Totals
0	Inr1 Du1	4354	
	inr1 du1	4410	8764
1	Inr1 du1	7	
	inr1 Du1	8	15

[^3]tightly linked, with only an approximately 0.2 centimorgan distance between them. These data cannot be used to determine the global order of inr1 and du1 on chromosome 10. That determination will have to be made after the g1 data are collected.

A second R1 allele-specific aleurone color inhibitor, Inr2, is located on 9L

--Stinard, P
As reported in last year's MNL (MNL 74:70-71), two R1 allele-specific aleurone color inhibitors were isolated from the novelty maize variety "John Deere." One inhibitor, Inr1, had been previously mapped to the long arm of chromosome 10 (MNL 73:8990) and an allele of $I n r 1$ is also found in the Maize Genetic Stock Center's da1 stock. Here we report the mapping of the second inhibitor, Inr2, to the long arm of chromosome 9.

Because Inr2 exhibits dominant inhibition of aleurone color, easily scored on the ear in the presence of appropriate R1 alleles (herein referred to as R1-S, or susceptible alleles), we chose to map inr2 using a set of wx1 marked A-A translocations. Plants homozygous for Inr2 and R1-S were crossed to a series of wx1marked translocations in a colorless aleurone (r1) background. F1 plants were backcrossed by a homozygous inr2 wx1 R1-S line, and the resulting ears were scored for colorless (Inr) vs. colored (inr) and waxy (wx) vs. starchy (Wx) kernels (Table 1). In crosses involving wx1 y1 T6-9e, some of the backcrosses were made by plants homozygous for inr2, wx1, $y 1$, and R1-S, so three-point linkage data for wx1, y1, and inr2 were obtained (Table 2). All crosses demonstrated linkage of inr2 with wx1, indicating that

Table 1. Two point linkage data for wx1 inr2 in crosses involving various A-A translocations. Testcross: [wx1 T inr2 r1 / Wx1 N Inr2 R1-S] X wx1 N inr2 R1-S.

	Region 0		Region 1		
Translocation	Wx Inr	wx inr	$w x$ Inr	Wx inr	\% recombination wx1--inr2
T1-9(5622)	246	182	60	82	$24.9+/-1.8$
T1-9(8389)	292	289	47	49	$14.1+/-1.3$
T2-9c	215	385	120	69	$24.0+/-1.5$
T2-9b	177	131	48	86	$30.3++-2.2$
T2-9d	205	200	34	83	$22.4+/-1.8$
T3-9(8447)	204	245	13	24	$7.6+/-1.2$
T3-9(8562)	75	74	16	8	$13.9+/-2.6$
T4-9(5657)	296	212	63	48	$17.9+/-1.5$
T5-9(022-11)	254	250	22	46	$11.9+/-1.4$
T5-9a	214	184	59	47	$21.0+1-1.8$
T7-9a	250	248	41	78	$19.3+/-1.6$
T8-9d	213	194	47	66	$21.7+/-1.8$

Table 2. Three point linkage data for wx1 y1 inr2 in crosses involving T6-9e.
Testcross: (wx1 y1 T6-9e inr2 r1 / Wx1 Y1 N Inr2 R1-S) X wx1 y1 N inr2 R1-S.

Region	Phenotype	No.	Totals
0	wx y inr	459	
	Wx Y Inr	497	956
1	wx y Inr	125	224
	Wx Y inr	99	
2	wx Y Inr	29	53
	Wx y inr	24	
$1+2$			
	wx Y inr	9	19

\% recombination $w x 1--y 1=5.8+/-0.7$
$\%$ recombination $y 1--i n r 2=19.4+/-1.1$
\% recombination $w x 1-$-inr2 $=25.2+/-1.2$
inr2 is located on chromosome 9. The distance between wx1 and inr2 showed variability (from 7.6 centimorgans to 30.3 centimorgans) depending upon which A-A translocation was used in the linkage cross. This kind of linkage variability is not unusual in crosses involving translocation stocks (E. B. Patterson, 1952. Ph.D. Thesis, California Institute of Technology). Furthermore, the production of viable duplicate-deficient eggs by adjacent disjunction when plants heterozygous for certain translocations are used as females in linkage crosses can also distort linkage data somewhat.

The linkage data obtained from the crosses with T6-9e (breakpoints 6L. 18 9L.24) provide sufficient information to fix the location of inr2 on chromosome 9 with respect to wx1. Because $y 1$ is located on the 9-6 chromosome very close to the breakpoint in T6-9e, and the gene order determined from the linkage data is clearly wx1 y1 inr2, inr2 has to be located on 9L distal to the T69e 9L breakpoint (9L.24). If we take the T6-9e linkage data for the wx1--inr2 distance (25.2 centimorgans) as a minimum value for the distance between wx1 and inr2, inr2 is located near or distal to bk2 on 9L. Additional tests using B-A translocations and 9 L linkage markers will be conducted to confirm and refine the location of inr2 on 9L.

VIÇOSA, BRAZIL
Universidade Federal de Viçosa

Chromomere map of meiotic maize chromosome

--Caixeta, ET, Carvalho, CR
Computational and cytogenetic methods were used with the objective of mapping with high resolution, the longitudinal differentiation of maize chromosomes. Tassels of the line L-869 were collected and fixed in a methanol:acetic acid solution (3:1). Pollen mother cells were macerated with an enzymatic solution, prepared cytogenetically by the air-drying technique and later stained with a Giemsa solution. Meiotic figures were photomicrographed and digitized by means of a scanner or captured directly by a CCD video camera from microscope to a computer. The technique used allowed a visualization of well defined chromosomes that were spread out in the same focus level on the slide. The morphologic preservation of the bivalents and the almost absence of back-

Figure 1. Maize pachytene chromosome number 7 and diagram showing chromomeres map. C = centromere, K=Knob.
ground or artifact resulted in high quality cytogenetic preparations. Digitized image analysis made the graphic plot of relative density of the chromosomes in 256 tones of gray scale possible. The profile of the gray value standards analyzed from these graphs revealed absolute and relative measures of the chromosomes. The longitudinal differentiations recognized by the centromere, knob, chromomeric and interchromomeric regions were precisely mapped throughout the meiotic chromosomes.

A male transmissible deficiency induced by B chromosomes in maize

--Saraiva, LS, Carvalho, CR
Rhoades and Dempsey accumulated extensive data about the unusual phenomenon of interaction between B chromosomes and heterochromatic knobs on A chromosomes causing breaks and loss of markers on these chromosomes. This high-loss phenomenon occurs at the second microspore division and produces deficient chromosome. A survey was made for plants with deficient chromosomes transmissible through the gametes resulting from high loss. Because the Yg 2 locus is close to the terminal knob, selection of exceptional plants which have lost this locus identifies deficiencies of various lengths of 9 S as well as for more complex rearrangements.

The high-loss strain used had several B chromosomes and chromosome 9 carried a large knob terminating the short arm. Marker genes on this arm included the dominant Yg 2 and C alleles with Yg 2 close to the knob. Pollen from the high-loss strain was applied to the silks of $y g 2 c$ tester plants and the C seeds produced were planted to search for deficient chromosomes due to non-correspondence between embryo and endosperm after the breaks occur at the second microspore division. The yellow green seedlings represented deficiencies of chromosome 9.

The cytological analysis of yellow green exception number 3642 showed that it had one chromosome 9 with a small terminal knob and a knobless homologue. Because the high-loss strain used as the paternal parent was homozygous for a large knob in chromosome 9 and the yg2 tester stock was homozygous for a small knob, the chromosome 9 constitution of plant 364-2 obviously arose by loss of the knob from the high-loss strain although cytologically there was no apparent or easily detectable deletion of the euchromatic tip. Pollen from this plant was completely fertile and uniform in size. Following pollination by a c male parent, an ear with 148 C and 145 c kernels was produced, showing a normal female transmission of the supposedly deficient chromosome, with the dominant C allele. Normal transmission was also obtained when plant 364-2 was used as the male in a test cross (55 C: 49 c).

To determine if the knobless chromosome 9 was in fact deficient, individuals of the presumably Df9 (deficient Yg 2) $\mathrm{C} / \mathrm{N} 9$ $y g 2$ c constitution were crossed as male and female parents with a stock homozygous for McClintock's wd chromosome and containing the Wd ring with the dominant $Y g 2$ and $W d$ alleles which cover the deficiency in the wd chromosome. Because the ring chromosome is somatically unstable and frequently lost, wd plants possessing the ring are green-white striped. The progenies of the above crosses were planted in the sandbench and seedlings were scored (Table 1).

Four phenotypic classes were observed. Chromosome 9 constitutions of these classes are as follow: white (Df9/wd), yellow

Table 1. Seedling classification of progenies from reciprocal crosses of Df9 C/N9 yg2 c plants with individuals homozygous for wd and containing the Wd ring (*). The Df9 was derived from plant 364-2.

	Number of seedlings	
Phenotype	Df CN9 yg2 c as male	Df C/N9 yg2 c as female
White	91	111
Green-white striped	20	25
Green-yellow green striped	24	29
Yellow green		
*Combined data from two ears for each kind of cross.		

green ($\mathrm{N} 9 / \mathrm{wd}$), green-yellow green striped ($\mathrm{N} 9 / w d$ plus ring) and green-white striped (Df9/wd plus ring).

The occurrence of white and green-white striped seedlings means that plant 364-2 had a chromosome 9 deficient for the Yg2 and Wd loci. The $1: 1$ ratios of white plus green-white striped versus yellow green plus green-yellow striped seedlings demonstrate the normal transmission of the deficient chromosome by both female and male gametes.

WALTHAM, MASSACHUSETTS
 University of Massachusetts

Pictorial language for universal communication

--Galinat, WC
A visual art form such as a drawing, painting, photograph, sculpture or etching can be the summit at a mountaintop of information, the Rosetta Stone ${ }^{1}$ dictionary for deciphering complex problems in all languages here on earth and throughout the Universe. Long before the invention of the written word to preserve and convey information, people painted and carved pictures (petroglyphs) on walls of caves and cliffs for all to understand, both then and many thousands of years later. The act of inscribing information by any means and the storage of it in libraries for retrieval made it possible to have a cultural evolution by which humans learned how to over-power and manipulate all other forms of life, including other humans. Visual art can convey more than just words. Like music, it can convey emotions from the heart.

People of different languages have told me that on viewing my popular drawing of a corn plant, they were deeply moved by a powerful feeling of beauty, awe and understanding. This drawing has been recognized worldwide in numerous publications and now, best of all, it will be immortalized in a marble etching magnified to seven feet tall, five feet wide, as delineated by the world renowned architect and artist, Larry Kirkland. The etching will be located on a marble wall in the lobby of the new National Academy of Science-National Research Counsel (NAS-NRC) building in Washington D.C. (Fig. 1).

Some history of this drawing needs to be recorded. It illustrates the structure of the Northern Flint race of maize. It was adapted from my earlier (1957) drawing for a Christmas card that included a Pilgrim and a bushel basket of eight-rowed ears (Fig. 2). I sent a copy to Henry A. Wallace (1958), who responded "Your drawing of the Pilgrim in action in the cornfield in October of 1621 is probably the most accurate that has thus far been made." On the second page of the card, I gave the following expla-

[^4]nation of the illustration.
Corn and the Pilgrims
"After finding a large cache of seed corn at Corn Hill, Cape Cod, the Pilgrims recorded that it was "God's good providence that we found this Corne, for else we know not how we should have done." Later prosperity came to Plymouth Colony when they learned the Indian methods for the culture and use of corn. Investigation of this plant has now become scientific, thereby helping to extend "God's good providence to all of mankind."

Later, Wallace came to Harvard's Botanical Museum because he had a special message for me. He said "Your drawings of maize are more important than the words we use to describe them. Their pictorial language cuts across all other languages in a profound and beautiful manner without need of translation."

One result of my Northern Flint-Pilgrim Christmas card to Henry Wallace was an exchange of at least seven letters, from 1958 to 1963, between him at his Farvue Farm in South Salem, New York, and me at Harvard's Botanical Museum. To those younger than myself, some explanation of who Henry Wallace was is necessary.

Henry A. Wallace (1888-1965) was probably the greatest American since Thomas Jefferson. He was able to effectively combine being a scientist, politician, author, editor, and founder of the first company to develop, produce and sell hybrid corn seeds. As a politician, he was secretary of Agriculture from 1933 to 1940, Vice President from 1941 to 1945 and Secretary of Commerce in 1945 and 1946. He was a leader of those creating the first green revolution by putting the more productive hybrid corn on American farms. He was a special friend not only to maize farmers and maize breeders, but to all of humanity.

I have found that not everyone understands things as pictures but just in words and so I have added captions. The first wide distribution of my drawing of the morphology of maize with captions was in a chapter that I wrote on the "Botany and Origin of Maize" in the CIBA-GEIGY Maize Monograph 1979, Editor Ernst Hafliger, pg. 9. Basel, Switzerland. It has been used in other books such as Fussel, Betty, 1992. The Story of Corn. Pub. Alfred A. Knopf, Inc. NY. (pg. 61); In the CIMMYT book: Maize Seed Industries in Developing Countries 1998, Editor Michael Morris, Chap. 4, by Pandey, S. (pg. 60); In Neuffer, Coe, Wessler, Mutants of Maize 1997. (pg. 16), Pub. Cold Spring Harbor Lab. Press, Plainview, NY; On covers to books: Kiesselbach, T.A. 1999-50th Anniversary of: The Structure and Reproduction of Corn. Pub. Cold Spring Harbor Lab. Press. On covers or within: Proceedings (including the 1985 NE Corn Conference held in Waltham) Workshops, Newsletters: - all too numerous to mention. It has been embossed on "T" shirts (Scott Poethig, Univ. Penn, Philadelphia) and I would like to see my corn plant transferred to stained glass windows (Fig. 3).

If there is a special power of communication in my corn artwork, especially in the marble etched reproduction ($7^{\prime} \times 5^{\prime}$) on a wall in the lobby to the new NAS-NRC building in Washington D.C. where the world's best scientists come to discuss the past and future, I am honored. Even so, I always feel sad that my illustration work falls so far short of truly expressing the gorgeous beauty and harmony that I see expressed in the phenotypes assembled under natural evolution over the millenniums, both for survival in nature and under domestication over a relatively short time for human survival. The origin, evolution and diversification of maize is especially rapid and miraculous because it is a diverse diploid that

is usually outcrossed and undergoes rapid genetic recombination.
I can only optimistically hope that when scientists and politicians view my corn artwork in the new NAS-NRC building in Washington D.C., they may experience such deep emotion from its beauty and accuracy that a profound understanding will overpower their thinking with a strong dedication and determination to generate better support for both maize farmers and maize researchers.

Acknowledgment is given to the Federation of Massachusetts Farmers' Markets for the essential computer typing by Amy Todd.

A scenario for one of the teosinte origins of maize --Galinat, WC²

When the mutant building-block genes for maize were still scattered around at random in wild populations of teosinte about 7000 or more years ago, the following scenario could account for one or more ancient origins of maize under a domestication of teosinte. For the purpose of this discussion, I shall give full credit to my vision of just one wise, observant, elderly Indian lady who happened to be a farmer-breeder. She observed that the seeds of both teosinte and Tripsacum were borne single because they had to fit tightly within a fruitcase designed for protection against hungry birds, insects and people (Galinat, 1970. U. Mass. A. E. S, Bul. 585). She also observed that the male spikelets borne higher up on the same axis were paired, free of fruitcases and free to dangle their anthers to scatter their load of pollen. She felt sorry for the solitary female spikelets locked in their fruitcase jails. If the male spikelets could be paired and free, so could domestic female spikelets. She thought this was a clear case of sex discrimination! She offered a gift or reward to any of the hundreds of gatherers of wild teosinte seed who would bring her ears of four-rowed teosinte - four-rowed due to paired female spikelets - just as free as the male spikelets. The four-rowed teosinte gatherers (men, women, children) came from miles away in all directions to give the wise lady their four-rowed ears of teosinte which she examined and, if good, paid the reward. Then one day some child handed her a four-rowed ear that had four rows of decussate single female spikelets. The wise lady glanced at the upper male region. The male spikelets remained paired but in four-ranks like the female region and the total now was eight male rows. She screamed "You dear child from the land of God's maize called teosinte have brought me a great treasure - the fantastic key to humanity's maize. A new cereal can now be bred that will result in an ever higher civilization of better fed, more thoughtful people who will cooperate with each other and live in peaceful harmony."

In her great wisdom, she carefully planted the two kinds of four-rowed teosinte in a special isolated garden. The one with four ranks of single spikelets was in a central area that she detasseled. All around it was her large collection of teosinte with paired female spikelets that would be the pollinators for the detasseled plants. Later she harvested the crossed seed from these female plants and the next growing season had the F1 hybrid in an isolated block. Then in the second year, the year of the F2 segregation, she found that $6.25 \%(1 / 16)$ of the plants carried the double reces-

[^5]sive recombinant form a merger of the two different double rowing female pathways. These few pioneer plants were more than just the Adam and Eve of the first eight-rowed maize. They were destined to be progenitors to thousands of years of maize diversification and the best "Staff of Life" for humankind on planet Earth and throughout the Universe.

If my fictional story of the wise Indian lady as the mother of maize has not spoken clearly to you about my beautiful vision of corn's origin, then perhaps the languages of my poetry and artwork working together will communicate (Figs 1a \& 1b).

Here you see,
How two kinds of four-rowed teosinte, Became the key to maize's pedigree When one morn, the first corn was born, An amazing creation of recombination.

Figure 1a: Longitudinal views of teosinte, two different mutant kinds of four-rowed teosinte and a recombinant F2 double recessive eight-rowed maize. Notice the rowing of the male spikelets that are in the upper region above the female region and that the ear with four-ranks of single female spikelets has eight rows of male spikelets in the upper region as well as a pair of leaves just below the spike. The eight rowed ear of maize has eight rows of male spikelets.
Figure 1b: Cross-sectional views of just the female spikelets showing all four types of F 2 segregants. The F2 frequency distribution ratios of $9: 3: 3: 1$ and 1:3:3:9 along the right hand edge represent a reversal of dominance with the teosinte background being the 9:3:3:1 and the maize background the 1:3:3:9. The architecture differences in ear structure of the two backgrounds reflect corresponding differences in energy sink capacity and this in turn controls the dominance of the genes involved.

When the architecture of both the maize plant and its ears became designed to capture and then store a maximum of the photosynthetic energy, then the maize architecture became dominant over the primitive teosinte architecture. As a result, maize became important to the future of both humankind and our home planet.

Abbaraju, Hari Kishan Rao; Garst Seed Co.; 2369 330th St.; Slater IA 50244; 515-685-5916; ahkrao@garstseedco.com
Abedon, Bruce; Marlboro College; Marlboro VT 05344; 802-464-0801; bruceabedon@yahoo.com
Aboh, Ntiege Emile; Inst Agric Res Devel; PO Box 25 Ekona; Buea; REPUBLIC OF CAMEROON; 00237-35-42-19; mbellajoe@yahoo.com
Adams, Karen R.; 2837 E. Beverly Dr.; Tucson AZ 85716-5716; 520-326-8994
Adams, Thomas; DeKalb Genetics Corp; 62 Maritime Dr.; Mystic CT 06355-1958; 860-572-5232; 860-572-5233 (fax); tadams@dekalb.com
Adamu, A. Kasim; Department of Biological Sciences; Ahmadu Bello University; Zaria; NIGERIA; 069-50581 ext. $108 ; 2346950891$ (fax); adamuak@abu.edu.ng
Agrama, Hesham A; Gulf Coast REC; University of Florida; 5007 60th Street East; Bradenton FL 34203-9324; Bradenton FL 34203-9324; 941-751-7636; 941-751-7639 (fax); haagrama@mail.ifas.ufl.edu
Aguiar-Perecin, Margarida; Dept Genetica - ESALQ; Universidade de S. Paulo; 13400-970 Piracicaba, SP; BRAZIL; 55 (0) $194294125 ; 55$ (0) 194336706 (fax); mlrapere@carpa.ciagri.usp.br
Ajmone-Marsan, P.; Ist Sper Cereal; Via Stezzano 24; Milano; ITALY
Akula, Anisha; Univ Wisconsin; 1575 Linden Dr; Madison WI 53706; 608-262-0600; 608-262-5217 (fax); aakula@facstaff.wisc.edu
Akula, Chakradhar; Univ Wisconsin; 1575 Linden Dr; Madison WI 53706; 608-262-0600; 608-262-5217 (fax); cakula@facstaff.wisc.edu
Akulova-Barlow, Zoya; Univ California; 111 Koshland Hall; Berkeley CA 94720; 510-642-9782; zakulova@uclink.berkeley.edu
Albertsen, Marc C.; Pioneer Hi-Bred International; 7300 N.W. 62nd Ave.; PO Box 1004; Johnston IA 50131-1004; 515-270-3648; 515-253-2149 (fax); ALBERTSNM@PHIBRED.COM
Alexander, Danny; Novartis Corp; 3054 Cornwallis Rd.; Research Triangle Park NC 27709-2257; 919-541-8687; 919-597-3036 (fax)
Alexander, Debbie; Univ Oxford; Dept Plant Sci; South Parks Rd; Oxford OX1 3RB; UNITED KINGDOM; debbie.alexander@plants.ox.ac.uk
Alfenito, Mark; 61 Avondale Ave; Redwood City CA 94062; 650-368-1206
Aljanabi, Salah M.; Mauritius Sugar Industry Research Inst; Reduit; MAURITIUS; 230-454-1061 ext 3125; 230-454-1971 (fax); pathology@msiri.intnet.mu
Allard, Sharon; Agric \& Agri-Food Canada; Bldg 21 CE Farm; 960 Carling Ave; Ottawa, ONT K1A OC6; CANADA; 613-759-1551; 613-759-6566 (fax); allards@em.agr.ca
Alleman, Mary; 253 Mellon Hall; Duquesne University; Dept. Biol. Sci.; Pittsburgh PA 15282; 412-396-1660; 412-396-5907 (fax); ALLEMAN@DUQ.EDU
Allen, Edward; PO Box 309; 117 Shepard St; Gilbert IA 50105; 515-294-3277; 515-294-6669 (fax); edallen@iastate.edu
Allen, Jim; Department of Biological Sciences; Florida Internatl Univ; Miami FL 33199; 305-348-6632; 305-348-1986 (fax); allenjo@fiu.edu
Altendorf, Paul; Syngenta Seeds; 317 330th St; Stanton MN 55018-4308; 507-663-7630; 507-645-7519 (fax); paul.altendorf@syngenta.com
Alvarez-Venegas, Raul; Purdue Univ; Biology Dept; West Lafayette IN 47907; 765-496-2506; 765-496-1496 (fax); Ralvarez@purdue.edu
Alvey, David; 237 Myrtle Drive; W. Lafayette IN 47906; 765-567-2115; 765-567-4046 (fax)
Amano, Etsuo; Biol Resources Res \& Dev Centre; Fukui Prefectural Univ; 88-1, Futaomote, Awara-cho, Sakai-gun; Fukui-ken, 910-41; JAPAN; 81-776-771443; 81-776-77-1448 (fax); amano@fpu.ac.jp
Ambrose, Barbara; UCSD-Bio 0116; 9500 Gilman Dr; La Jolla CA 92093; 619-534-2514; 619-534-7108 (fax); bambrose@jeeves.ucsd.edu
Ananiev, Evgueni; Pioneer Hi-Bred Int'I Inc; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131-1004; 515-253-2477/5740; 515-270-3367 (fax); ananievev@phibred.com
Andersen, Tim; 7300 NW 62nd Ave; Box 129; Johnston IA 50131-0129; 515-276-6541; 515-270-4312 (fax); andersent@phibred.com
Anderson, John; Colorado State Univ; Biology Dept; Ft. Collins CO 80523-1878; 970-491-3348; 970-491-0649 (fax); janderso@lamar.colostate.edu
Anderson, Lorinda; Colorado State Univ; Dept Biol; Fort Collins CO 80523-1878; 970-491-6802; 970-491-6249 (fax); lorrie@lamar.colostate.edu
Arbuckle, John; Syngenta; 317 330th St; Stanton MN 55018; 507-663-7690; 507-645-7519 (fax); john.arbuckle@syngenta.com
Armstrong, Charles L.; Monsanto, GG4C; 700 Chesterfield Parkway North; St. Louis MO 63198; 314-737-7229; 314-737-6567 (fax); charles.l.armstrong@monsanto.com
Arpat, Hacimurat; Ohio State University; OARDC, Dept of Agronomy; 1680 Madison Avenue; Wooster OH 44691-4096; 330-263-2882; 330-263-3658 (fax)
Arruda, Paulo; Univ. Estadual de Campinas; Cidade Univ. Zeferino Vaz; Distrito de Barao Geraldo; Campinas - SP; BRAZIL; (192)398351; (192)394717 (fax)
Arthur, Lane; Life Cycle Information Management; Pioneer Hi-Bred Internat Inc; 7300 NW 62nd Ave, PO Box 1004; Johnston IA 50131-1004; arthurwl@phibred.com
Artim-Moore, Lori; Ciba-Ag Biotechn; PO Box 12257; Research Triangle Park NC 27709
Arumuganathan, Kathiravetpilla; Univ of Nebraska; Ctr for Biotech, N308; Lincoln NE 68588-0665; 402-472-4197; 402-472-3139 (fax); karu2@unl.edu
Atanassov, A.; Institute of Genetic Engineering; 2232 Kostinbrod 2; BULGARIA; 359.0721.2552; 359.721.4985 (fax)
Auger, Donald L.; Biol Sci; 117 Tucker Hall; Univ Missouri; Columbia MO 65211; 573-882-4871; 573-882-0123 (fax); augerd@missouri.edu
Avila, Emily; New Mexico State Univ; Box 3AF, Biology; Las Cruces NM 88003; 505-646-7963; 505-646-5565 (fax)
Avramova, Zoya; Purdue Univ; Lilly Hall; West Lafayette IN 47907; 317-434-9837; 317-496-1496 (fax); zavramov@bilbo.bio.purdue.edu
Ayala-Osuna, Juan; Rua Dos Trabalhadores 906; 14870.000 Jaboticabal-SP; BRAZIL; 016-3220260; 016-3224275 (fax)
Aycock, Harold S; Cornnuts Genetic Research; P.O. Box 215; Greenfield CA 93927; 831-674-3131; 831-674-5139 (fax); aycockh@nabisco.com
Ayers, John E; Dept Plant Pathology; 308 Buckhout Lab; Pennsylvania State Univ; University Park PA 16802; 814-865-7776; 814-863-7217 (fax); jea@psu.edu
Azanza, Fermin; Novartis Seeds; Field Crops Europe Biotech Dept; 12 Chemin de I'Hobit; B.P. 27 - 31790 Saint-Sauveur; FRANCE; (33)5.62.79.98.09; (33)5.62.79.99.96 (fax); fermin.azanza@seeds.novartis.com

Bachman, Michael; Syngenta; 317 330th St; Stanton MN 55018-4308; 507-645-7684; 507-645-7519 (fax); mike.bachman@syngenta.com
Bai, Yongyan; Inst. of Plant Physiol.; 300 Fengling Road; Shanghai 200032; CHINA
Bailey, J. Clinton; Biol Sci; 324 Tucker Hall; Univ Missouri; Columbia MO 65211; 573-882-8033; 573-882-0123 (fax); cbailey@mail.biosci.missouri.edu
Bailey-Serres, Julia; Botany \& Plant Sciences; Batchelor Hall; Univ. Calif. Riverside; Riverside CA 92521; 909-787-3738; 909-787-4437 (fax); SERRES@UCRAC1.UCR.EDU
Bairoch, Amos; Centre Medicale Universitaire; 1211 Geneva 4; Geneva; SWITZERLAND; 41-22-784-40-82; BAIROCH@cmu.unige.ch
Baker, Barbara; USDA; Plant Gene Expression Center; 800 Buchanan Street; Albany CA 94710; 510-559-5912; 510-559-5678 (fax); bbaker@garnet.berkeley.edu
Baker, Robert; UC Berkeley; Dept Plant Biol; 111 Koshland Hall; Berkeley CA 94720; 510-642-7948; 510-642-4995 (fax); rbaker@nature.berkeley.edu
Baldwin, Don; Pioneer Hi-Bred Internatl; 7300 NW 62nd Avenue; PO Box 1004; Johnston IA 50131-1004; 515-254-2721; 575-253-2149 (fax); baldwinda@phibred.com
Ball, James; Dekalb Genetics; 62 Maritime Dr; Mystic CT 06355; 860-572-5274; 860-572-5282 (fax); jball@dekalb.com
Ball, Pamela; Dekalb Genetics; 62 Maritime Dr; Mystic CT 06355; 860-572-5265; 860-572-5282 (fax); pball@dekalb.com

Bar-Zur, Avri; Moshava; P.O. Box 32; Yokneam 20600; ISRAEL; 972-4-989-4026; 972-4-985-3291 (fax)
Barbazuk, Brad; Monsanto; Bioinformatics Lead Identification.; 800 North Lindbergh Blvd.; Mail Zone N1EC; St Louis MO 63167; (314) 694-5051; (314) 694-1006 (fax); brad.w.barbazuk@monsanto.com
Barbour, Eric; Pioneer Hi-Bred Internat., Inc.; 7300 NW 62nd Ave.; PO Box 1004; Johnston IA 50131-1004
Barkan, Alice; Institute of Molecular Biology; University of Oregon; Eugene OR 97403; 541-346-5145; 541-346-5891 (fax); abarkan@molbio.uoregon.edu
Barker, Tom; Pioneer Hi-Bred Intl; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131; 515-270-4312; 515-270-4312 (fax); BarkerTC@phibred.com
Barre, Philippe; Univ California; 111 Koshland Hall; Berkeley CA 94720; 510-642-7948; pbarre@uclink.berkeley.edu
Barrett, Brent; Washington State Univ; 201 Johnson Hall; Crop \& Soil Sci; Pullman WA 99164; 509-335-4838; 509-335-8674 (fax); brent@mail.wsu.edu
Barros, MEC; PO Box 395; Pretoria, 0001; SOUTH AFRICA; 27-12-841-3221
Barry, Gerard; Monsanto; 800 N Lindbergh Blvd; St. Louis MO 63167; 314-694-5566; 314-694-1671 (fax); gerard.f.barry@monsanto.com
Baskin, Tobias; 109 Tucker Hall; Div. Biol. Sci.; University of Missouri; Columbia MO 65211; 573-882-0173; baskin@biosci.mbp.missouri.edu
Bass, Hank W.; Dept Biol Sci; Biology Unit 1, Chieftan Way; Florida State Univ; Tallahassee FL 32306-4370; 850-644-9711; 850-644-0481 (fax); bass@bio.fsu.edu
Basso, Barbara; Centro Studi Biol Cell Molec Piante; CNR / Dipartimento di Biologia; Univ di Milano, Via Celoria, 26; Milano 20133; ITALY; 39-02-26604393; 39-02-26604399 (fax); barbara.basso@unimi.it
Baszczynski, C. L.; Pioneer Hi-Bred International, Inc.; 7250 N.W. 62nd Avenue; P.O. Box 552; Johnston IA 50131-0552; (515)270-3693; (515)334-4729 (fax); BASZCZYNSKI@PHIBRED.COM
Bate, Nic; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131; 515-270-5991
Bates, Lynn S.; Alteca Ltd.; 731 McCall Road; Manhattan KS 66502; 913-537-9773; 913-537-1800 (fax)
Bates, Nic; Pioneer Hi-Bred Internatl; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131; 515-270-5991; 515-334-4778 (fax)
Batley, Jacqueline; IACR - Long Ashton; Research Station; Long Ashton; Bristol BS41 9AF; UNITED KINGDOM; $441179287592 ; 441179257374$ (fax)
Bauer, Matthew; Univ Missouri; 105 Tucker Hall; Columbia MO 65211; 573-882-9228; mjbc4b@mizzou.edu
Bauer, Petra; Dept Plant Biology; 111 Koshland; Univ California; Berkeley CA 94720; 510-642-7948; 510-642-4995 (fax)
Baumgarten, Andrew; Univ Minnesota; 220 Biosciences Ctr; 1445 Gortner Ave; St. Paul MN 55108; 612-624-8786; baum0217@maroon.tc.umn.edu
Bayliss, Mike; Syngenta; Jealott's Hill Res Stn; Bracknell; RG42 6ET Berkshire; UNITED KINGDOM; 441344 414076; mike.bayliss@syngenta.com
Bayram, Mustafa; Washington State Univ; 201 Johnson Hall; Crop \& Soil Sci; Pullman WA 99164; 509-335-4838
Baysdorfer, Chris; Biological Sciences; California State U; Hayward CA 94542; 510-885-3459; 510-888-4747 (fax)
Beach, Larry; Pioneer Hi-Bred Internatl; PO Box 1004; Johnston IA 50131-9410; 515-270-3798; 515-270-3367 (fax); beachl@phibred.com
Beavis, Bill; Nat Center for Genome Resources; 1800-A Old Pecos Trail; Santa Fe NM 87505; 800-450-4854x4412; 505-995-4432 (fax); wdb@ncgr.org
Becker, Anthony; Univ Illinois; 1102 S Goodwin; S-12 Turner Hall; Champaign IL 61820; 217-333-9743; aebecker@uiuc.edu
Beckert, M.; INRA Station D'Amelioration des Plantes; 63039 Clermont Ferrand; FRANCE; (33)73 624319; (33)73 624453 (fax); beckert@clermont.inra.fr
Beckett, Jack; 607 Longfellow Lane; Columbia MO 65203-1630; 573-445-3472; 573-884-7850 (fax)
Becraft, Philip; Zoology \& Genetics/Agronomy Depts; 2116 Molecular Biology Bldg; lowa State University; Ames IA 50011; 515-294-2903; 515-294-6755 (fax); becraft@iastate.edu
Bedinger, Patricia; Biology Dept; Colorado State Univ.; Fort Collins CO 80523-1878; 970-491-2879; 970-491-0649 (fax); bedinger@lamar.colostate.edu
Belanger, Faith; Dept of Crop Science; Cook College, Lipman Hall; Rutgers University; New Brunswick NJ 08816; 908-932-8165; belanger@aesop.rutgers.edu
Belele, Christiane; Univ Arizona; 303 Forbes Bldg; Tucson AZ 85719; 520-621-8964; 520-621-7186 (fax); christi@ag.arizona.edu
Bell, Duane; 304 Pearl St.; Blissfield MI 49228; (517)486-3520; (517)486-2631 (fax)
Benfey, Philip; New York Univ; 1009 Main Bldg, 100 Wash Sq E; Dept Biol; New York NY 10003; 212-998-3961; 212-995-4204 (fax); philip.benfey@nyu.edu
Benito, Maria-Ines; The Institute for Genomic Research; 9712 Medical Center Dr; Rockville MD 20850; 301-610-5963; 301-838-0208 (fax)
Benner, Michael; Science and Technology Center; Rider University; 2083 Lawrenceville Rd; Lawrenceville NJ 08648-3099; 609-896-5097; 609-895-5782 (fax); benner@rider.edu
Bennett, Michael; Jodrell Laboratory; Royal Botanic Gardens; Kew, Richmond; Surrey, TW9 3AB; UNITED KINGDOM; 44-1181-332-5000; 44-1181-332-5310 (fax); M.Bennett@rbgkew.org.uk
Bennetzen, Jeff; Dept of Biological Sciences; Purdue University; W. Lafayette IN 47907-1392; 765-494-4763; 765-496-1496 (fax); Maize@bilbo.bio.purdue.edu
Bensen, Robert; Pioneer Hi-Bred Int'I Inc.; 7300 NW 62nd Ave., P.O. Box 1004; Johnston IA 50131; 515-270-3645; 515-253-2149 (fax)
Benzion, Gary; 303 W. Lanvale St.; Baltimore MD 21217; 703-308-1119; benzion@USPTO.GOV
Bercury, Scott; Univ Massachusetts; Dept Biol; Amherst MA 01003; 413-545-9622; 413-545-3243 (fax); bercury@bio.umass.edu
Berger, Dave; ARS-Roodeplaat; Veg \& Ornamental Plant Inst; Private Bag X293; Pretoria 0001; SOUTH AFRICA
Bergquist, Richard R.; 401 East Sixth Street; El Paso IL 61738; 309-527-6000
Bergstrom, Dean E.; Biological Sciences; 101 Tucker Hall; University of Missouri; Columbia MO 65211-7020; 573-882-1168; bergstrom@biosci.mbp.missouri.edu
Bergstrom, Gary C.; Dept. Plant Pathology; 316 Plant Science Bldg.; Cornell University; Ithaca NY 14853-5908; 607-255-7849; 607-255-4471 (fax); gcb3@cornell.edu
Bergvinson, David; CIMMYT; Apdo. Postal \#370; P.O. Box 60326; Houston TX 77205; 525-804-2004; 525-804-7558 (fax); d.bergvinson@cgiar.org
Berke, Terry; Asian Veg Res Devel Center; Box 42; Shanhua; Tainan, Taiwan 741; REPUBLIC OF CHINA; $88665837801 ; 88665830009$ (fax); terryberke@netscape.net
Berlyn, Mary; Dept. of Biology; Yale University; New Haven CT 06520; 203-432-9997; 203-432-3854 (fax); mary@fetalpig.biology.yale.edu
Bernardo, Rex; Dept Agron Plant Genetics; University of Minnesota; 411 Borlaug Hall; 1991 Buford Circle; St Paul MN 55108-6026; 612-625-1268; berna022@umn.edu
Bernardo, Rex; Dept Agron Plant Genetics; University of Minnesota; 411 Borlaug Hall; 1991 Buford Circle; St Paul MN 55108-6026; 612-625-6282; berna022@umn.edu
Bernot, John; Dept. of Biological Sciences; Duquesne University; Pittsburg PA 15282
Bernstein, Brad; 4606 Plant Sciences; Univ Georgia; Athens GA 30602; 706-542-1954; bdb@arches.uga.edu
Berthaud, Julien; UR 31 Centre ORSTOM; 911, Avenue Agropolis; BP 5045; 34032 Montpellier cedex; FRANCE; $33(0) 467416165 ; 33(0) 467547800$ (fax); julien.berthaud@mpl.orstom.fr
Bertrand, Ralph L.; 14 E Cache La Poudre; Dept. of Biology; Colorado College; Colorado Springs CO 80903; (719)389-6402; (719)389-6940 (fax); rbertrand@cc.colorado.edu
Berville, A.; INRA; Station d'Amelior des Plantes; 2 Place Viala; 34060 Montpellier Cedex; FRANCE
Betran, FJ; Dept Soil \& Crop Sci; Texas A\&M Univ; College Station TX 77843-2474; 979-845-3469; 979-862-1931 (fax); javier-betran@tamu.edu
Betzner, Andreas; Groupe Limagrain Pacific P/L; GPO Box 475; Canberra ACT 2601; AUSTRALIA; 6126125 4011; 61261258593 (fax)
Bhattramakki, Dinakar; Pioneer Hi-Bred International, Inc.; 7300 N.W. 62nd Avenue; Reid 33C, PO Box 1004; Johnston IA 50131-1004; 515-270-3606; 515-

270-3367 (fax); BHATTRDINA@phibred.com
Bianchi, Angelo; Ist Sper Cerealicoltura; Via Cassia 176; 00191 Rome; ITALY; 06-3295705; 06-3630-6022 (fax)
Bicar, Earl; lowa State Univ; Dept Agronomy; 1401 Agronomy Hall; Ames IA 50011; 515-294-0837; ehb@iastate.edu
Biradar, Madhuri; 320 ERML, Crop Sci; Univ. of Illinois; 1201 W. Gregory; Urbana IL 61801
Birchler, James; Biological Sciences; Tucker Hall; University of Missouri; Columbia MO 65211; 573-882-4905; 573-882-0123 (fax); birchlerj@missouri.edu
Bird, Robert; 1211 Dogwood Lane; Raleigh NC 27607; 919-787-8452; rmckbird@earthlink.net
Bjarnason, Magni; IM Aufeld 5; D-77815 Buehl; GERMANY; 49-7227-5691; 49-7227-5691 (fax); bjarnason@t-online.de
Blakey, Cynthia Ann; Cooper Science Bldg; Dept. of Biology; Ball State University; Muncie IN 47306; 765-285-8820; 765-285-2351 (fax); ablakey@gw.bsu.edu
Blauth, Susan; Penn State; 302 Wartik Lab; University Park PA 16802; 814-863-7958; 814-863-1357 (fax)
Bocanski, Jan; Faculty of Agriculture; Univ of Novi Said; 21000 Novi Sad; YUGOSLAVIA; bocanski@polj.ns.ac.yu
Bodeau, John; PE Applied Biosystems; 384 Foster City Blvd; Foster City CA 94404; 650-638-6972; jbodeau@genscope.com
Bogorad, Lawrence; Biol Labs; Harvard Univ; 16 Divinity Ave; Cambridge MA 02138; 617-495-4292; 617-495-4292 (fax); bogorad@biosun.harvard.edu
Bohnert, Hans; Depts. Biochemistry, Plant Sciences, Molecular \& Cellular Biology; The University of Arizona; 1041 E. Lowell St., Tucson, AZ 85721-0088;
Tucson AZ 85721-0088; 520-621-7691; 520-621-1697 (fax); Bohnerth@u.arizona.edu
Bokde, S.; 599 Laurel Ave. \#3; St. Paul MN 55102-2047
Bollman, Krista; Dept. of Biology; Plant Science Institute; University of Pennsylvania; Philadelphia PA 19104-6018
Bomblies, Kirsten; Genetics Dept, Doebley Lab; 445 Henry Mall; Univ Wisconsin; Madison WI 53706; 608-265-5804; kbomblies@students.wisc.edu
Bommert, Peter; Universitaet Koeln; 50922 Koeln; GERMANY; 49-221-470-2488; 49-221-470-5164 (fax); peter.bommert@uni-koeln.de
Bommineni, Venkat R; Exelixis Plant Sciences, Inc; 16160 SW Upper Boones Ferry Rd; Building C; Portland OR 97224-7744; 503-670-7702; 503-670-7703 (fax); venkat@agritope.com
Bongard-Pierce, Deverie K.; Dept Molec Biology; Wellman 11; Massachusetts General Hosp; Boston MA 02114; 617-726-5938; 617-726-6893 (fax); BONGARD@MOLBIO.MGH.HARVARD.EDU
Borovskii, Genadii; Siberian Inst Plant Physiol Biochem; P.O. Box 1243; Irkutsk-33, 664033; RUSSIA; root@sifibr.irkutsk.su
Bosch, Lluis; Escola Superior d'Agricultura; Comte d'Urgell, 187; 08036 Barcelona; SPAIN; 3-4304207; 3-4192601 (fax)
Boston, Rebecca S.; Box 7612; Dept Botany; North Carolina State Univ; Raleigh NC 27695-7612; (919)515-3390; (919)515-3436 (fax); boston@unity.ncsu.edu
Bouchard, Robert A.; College of Wooster; Chemistry Dept.; Wooster OH 44691; 330-263-2433; 330-263-2378 (fax); rbouchard@acs.wooster.edu
Bowen, Ben; Lynx Therapeutics, Inc; 25861 Industrial Boulevard; Hayward CA 94545; 510-670-9441; 510-670-9302 (fax); ben@lynxgen.com
Boyer, Charles D.; Dept. of Horticulture; Oregon State University; Ag \& Life Sciences 4017; Corvallis OR 97331-7304; 503-737-5474
Boyer, John; College of Marine Studies, Univ of Delaware, 700 Pilottown Rd.; Lewes DE 19958; boyer@udel.edu
Brading, Penelope; Syngenta Wheat Improve Ctr; Norwich Research Park; Norwich; NR4 7UH Norfolk; UNITED KINGDOM; 4401603 252600; 4401603 252699 (fax); penny.brading@syngenta.com
Brar, Gurdip; Monsanto Co.; 8520 University Green; Middleton WI 53562; 608-821-3483; 608-836-9710 (fax); gsbrar@monsanto.com
Braun, David; Dept Plant Biology; 111Koshland; Univ California; Berkeley CA 94720; 510-642-8058; 510-642-4995 (fax); dbraun@nature.berkeley.edu
Braun, Edward; Dept Plant Biol \& Plant Biotech Ctr; The Ohio State University; 206 Righmire Hall, 1060 Carmack Rd; Columbus OH 43210; 614-688-4954; 614-292-5379 (fax); braun.83@osu.edu
Bray, Jeff; ProdiGene; 101 Gateway Blvd Ste 100; College Station TX 77845; 979-690-8537; 979-690-9527 (fax); jbray@prodigene.com
Brendel, Volker; lowa State Univ; Dept Zoology and Genetics; 2112 Molecular Biology Bldg; Ames IA 50011-3260; 515-294-9884; 515-294-6755 (fax); vbrendel@iastate.edu
Breto, Paz; Pioneer Hi-Bred Int. Inc.; 7300 NW 62nd Ave.; PO Box 1004; Johnston IA 50131-1004
Brettell, Richard; CSIRO; Tropical Ecosystems Research Centre; Private Bag 44; Winnellie NT 0822; AUSTRALIA; 61-8-8944-8486; dick@pican.pi.csiro.au
Bretting, Peter K.; USDA/ARS, NPS; 5601 Sunnyside Ave.; Bldg. 4, Room 2212; Beltsville MD 20705-5139; 301-504-5541; 301-504-6191 (fax); pkb@ars.usda.gov
Brettschneider, Reinhold; Univ Hamburg-Allgemeine Bot; Ohnhorststr 18; 22609 Hamburg; GERMANY; 49-40-42876-384; 49-40-42876-503 (fax); brettsch@botanik.uni-hamburg.de
Brewbaker, James; Horticulture; Univ of Hawaii; 3190 Maile Way; Honolulu HI 96822; 808-956-7985; 808-956-3894 (fax); brewbake@Hawaii.Edu
Brewer, Nathan; 1021 Ashland Rd, No 501; Columbia MO 65201; 573-449-7881; nrb1d5@mizzou.edu
Briggs, Kristen; Pioneer Hi-Bred Internat Inc; Trait and Technol Development; 7300 NW 62nd Ave PO Box 1004; Johnston IA 50131-1004; 515-254-2623; 515-254-2619 (fax)
Briggs, Robert W.; 112 Hunt St.; Towanda IL 61776; 309-728-2187; 309-728-2187 (fax); bbriggs@frontiernet.net
Briggs, Steven; Novartis Agrib Disc Inst Inc; 3050 Science Park Rd Suite 102; San Diego CA 92121-1102; 616-784-8670; steven.briggs@nadii.novartis.com
Britt, Anne Bagg; Section of Plant Biology; U of CA; Davis CA 95616; 916-752-0699; 916-752-5410 (fax); abbrit@@ucdavis.edu
Brockman, Laura L.; Cargill Hybrid Seeds; 2600 W. Galena Blvd; Aurora IL 60506; 630-801-2352
Brooke, Glenn; Pioneer Hi-Bred International; 7300 NW 62nd Ave; P.O. Box 129; Johnston IA 50131-0129; (515)270-4030; (515)270-4312 (fax); brookerg@phibred.com
Brouwer, Cory; Pioneer Hi-Bred Intl; 7300 NW 62d Ave; PO Box 1004; Johnston IA 50131-1004; 515-254-2633; 515-270-4312 (fax); brouwercr@phibred.com
Brown, Douglas; Dept of Biology; Bishops University; Lennoxville J1M $1 Z 7$ Quebec; CANADA; 819-822-9632; 819-822-9661 (fax)
Brown, Robert L; USDA/ARS/SRRC; 1100 Robert E. Lee Blvd; New Orleans LA 70125; 504-286-4359; 504-286-4419 (fax); rbrown@nola.srrc.usda.gov
Browne, Chris; Curtis Hall; University of Missouri; Columbia MO 65211-7020; 573-882-7616; cbrowne@socketis.net
Bruce, Wes; Pioneer Hi-Bred International, Inc.; 7300 NW 62nd Ave.; P.O. Box 1004; Johnston IA 50131-1004; (515)270-3647; (515)270-3367 (fax); Brucewb@phibred.com
Bruggemann, E; Pioneer Hi Bred Intl; 7250 NW 62nd Ave; PO Box 1000; Johnston IA 50131-1000; 515-270-4143; 515-334-4788 (fax); bruggeep@phibred.com
Brutnell, Thomas P.; Boyce Thompson Inst; Tower Rd; Ithaca NY 14853; 607-254-8656; 607-254-1242 (fax); tpb8@cornell.edu
Bubeck, David; Northrup King Co.; 317 330th St.; Stanton MN 55018-4308; (507)663-7666
Buckler, Carlyn S. Keith; Dept Statistics; North Carolina State Univ; Box 8203; Raleigh NC 27695-8203
Buckler, Edward; Dept Statistics; North Carolina State Univ; Box 7614; Raleigh NC 27695-7614; 919-513-1475; 919-515-3355 (fax); buckler@statgen.ncsu.edu
Buckner, Brent; Div. Science, Science Hall; Truman State Univ; 100 East Normal; Kirksville MO 63501-4221; 816-785-4083; 816-785-4045 (fax); bbuckner@truman.edu
Buell, Robin; Inst Genomic Research; 9712 Medical Center Dr; Rockville MD 20850; 301-838-3558; 301-838-0208 (fax); rbuel@@tigr.org
Bueter, Bernd; Swiss Federal Inst. Sci. (ETH) Zurich; Inst. Plant Sci.; ETH - Eschikon 33; CH - 8315 Lindau; SWITZERLAND; 41-52-33-92-83; 41-52-33-27-06
(fax)
Buhinicek, Ivica; Univ Minnesota; 1991 Upper Buford Circle; St. Paul MN 55108; 612-625-6223; 612-625-1268 (fax); buhin001@umn.edu
Bullock, W. Paul; Garst Seeds Company; 2369 330th St; P.O. Box 500; Slater IA 50244; 515-685-5116; 515-685-5080 (fax); paul.bullock@garstseedco.com
Bunner, Anne; Dept Zool \& Genet; Friley 3525 Lowe; lowa State Univ; Ames IA 50012; 515-572-5242; 515-294-0345 (fax); bunner@iastate.edu
Bureau, Thomas; Dept. of Genetics; University of Georgia; Athens GA 30602
Burr, Benjamin; Biology Dept; Brookhaven National Lab; Bldg 463; Upton NY 11973; 631-282-3396; 631-282-3407 (fax); burr@bnl.gov
Burr, Frances; Brookhaven National Lab; Biol Dept; Bldg 463; Upton NY 11973; 631-344-3396; 631-344-3407 (fax); burr@bnl.gov
Bushman, B. Shaun; 302 Curtis Hall; Univ Missouri; Columbia MO 65211; 573-882-2033; bsb4be@mizzou.edu
Butler, Edward; The Shores at Marina Bay; 105 Lakeshore Ct.; Richmond CA 94804; aldeah@aol.com
Butler, Lou; The Shores at Marina Bay; 105 Lakeshore Ct.; Richmond CA 94804; aldeah@aol.com
Butnaru, Gallia; Univ Stiinte Agricole A Banatului; Disciplina de Genetica; C. Post 136, O.P. 1; Timisoara 1900; ROMANIA; 40.56.141424; 40.56 .200296 (fax)
Butron, A.; USDA/ARS; IBPMRL; PO Box 748; Tifton GA 31793;
Butron,; USDA/ARS; IBPMRL; PO Box 748; Tifton GA 31793; 912-387-2377; 9130387-2321 (fax)
Byrne, Mary; Cold Spring Harbor Laboratory; PO Box 100; 1 Bungtown Rd; Cold Spring Harbor NY 11724; 516-367-8836; 516-367-8369 (fax); byrne@cshl.org
Byrne, Patrick; Dept Soil and Crop Sci; Colorado State Univ; Ft Collins CO 80523; 970-491-6985; 970-491-0564 (fax); pbyrne@lamar.colostate.edu
Byrum, Joe; 4140 114th Street; Des Moines IA 50322; 515-331-7134
Cabulea lancu, lancu; Library; Agric Res Station; Str. Agriculturii 27; Turda R03350; ROMANIA; 040-064-311680; 040-064-311792 (fax)
Cacharron, Jorge; Max Planck Inst Zuechtungsf; Carl-von-Linne Weg, 10; Koeln 50829; GERMANY; 49-221-5062123; 49-221-5062113 (fax); cacharro@mpiz-koeln.mpg.de
Cai, Hong-Wei; Japan Grass-Farm Forage Seed Assoc; 388-5 Higashiakata; Nishinasuno; Tochigi 329-2742; JAPAN
Caldwell, Elizabeth E. Oberthur; 4505 Regal Ave NE; Cedar Rapids IA 52402-2143; 319-378-8636; wcceec@ia.net
Callis, Judy; Section of Molecular and Cellular Biol.; Univ of CA; Davis CA 95616; (916)752-1015; (916)752-3085 (fax); JCallis@ucdavis.edu
Camara-Hernandez, J.; Altolaguirre 1295; Buenos Aires 1427; ARGENTINA; 54-1-521-6464; 54-1-522-1687 (fax)
Camargo, Luiz; Depto. Fitopatologia -ESALQ/USP; C.P. 09; 13418-900 Piracicaba-SP; BRAZIL; 55-194-294124; 55-194-344839 (fax); leacamar@carpa.ciagri.usp.br
Campbell, Wilbur H.; Dept. of Biological Sciences; Michigan Technological Univ.; 1400 Townsend Drive; Houghton MI 49931-1295; 906-487-2214; 906-4873355 (fax); WCAMPBEL@MTU.EDU
Camussi, Alessandro; Genetic Unit - Fac of Agriculture; Via S. Bonaventura 13; I-50129 Firenze; ITALY
Cande, Zac; Dept of Molec \& Cell Biology; Box 341 LSA; Univ of California; Berkeley CA 94720-3200; 510-642-1669; 510-643-6791 (fax); zcande@uclink4.berkeley.edu
Cao, Heping; lowa State Univ; 2154 MBB; Ames IA 50011; 515-294-8202; 515-294-0453 (fax)
Cao, Jun; B420 Agronomy Hall; lowa State Univ; Ames IA 50011; 515-294-1659; 515-294-2299 (fax); juncao@iastate.edu
Caren, Joel; Univ of Florida; Box 110690 Horticultural Sci; Gainesville FL 32611; 352-392-1928×314; JCAREN@nersp.nerdc.ufl.edu
Carey, Charles; Dept Biol; 303 Forbes Hall; Univ Arizona; Tucson AZ 85721; 520-621-8964; 520-621-7186 (fax); ccarey@ag.arizona.edu
Carlson, Lawrence A.; 7 North Winthrop Street; St. Paul MN 55119-4674; 612-738-8812; carls245@tc.umn.edu
Carlson, Susan; Univ of Florida; Plant Pathology Dept; Gainesville FL 32611; 352-392-1792; 352-392-6532 (fax); sujcar!@nervm.nerdc.ufl.edu
Carlson, Wayne; Dept. of Biol. Sci.; University of Iowa; Iowa City IA 52242; (319)335-1316; (319)335-3620 (fax); wayne-carlson@uiowa.edu
Carton, Peter; UC Berkeley; 345 LSA; Berkeley CA 94720; 510-643-8277; 510-643-6791 (fax); pcarlton@uclink4.berkeley.edu
Carson, Chris; Curtis Hall; University of Missouri; Columbia MO 65211-7020; 573-882-0832; 573-884-7850 (fax); carsoncb@missouri.edu
Carson, Martin L.; Dept. Plant Pathology; Box 7616; NCSU; Raleigh NC 27695-7616; (919)515-3516; (919)515-7716 (fax)
Cartinhour, Sam; USDA-ARS \& Dept Plant Breeding; 252 Emerson Hall; Cornell Univ; Ithaca NY 14853; 607-255-8091; 607-255-6683 (fax); scartinh@greengenes.cit.cornell.edu
Cartwright, Heather; Univ California; 9500 Gilman Dr; Rm 3125 M2B, Biology 0116; La Jolla CA 92093; 858-822-2558; 858-534-7108 (fax); heatherc@biomail.ucsd.edu
Casa, Alexandra; Cornell Univ; 147 Biotechnology Bldg; Ithaca NY 14853; 607-254-4849; 607-255-6249 (fax); sem30@cornell.edu
Cassab, G. I.; PO Box 510-3; National Univ Mexico; Cernavaca; Morelos 62250; MEXICO; 52-73-29-16-60; 52-73-13-99-88 (fax); gladys@ibt.unam.mx
Cervantes-Cervantes, Miguel; Lehman College, CUNY; Dept Biol Sci; Davis Hall 131, 250 Bedford Park Blvd W; Bronx NY 10468; 718-960-4994; 718-9608236 (fax); mcclc@cunyvm.cuny.edu
Chalyk, Sergey; M. Spataru 1, Box 134; Kishinev 2075; MOLDOVA; 37-32-78-83-67; 37-32-55-61-80 (fax); schalyk@hotmail.com
Chan, Annette; Dept. of Plant Biology; 345 LSA; University of California; Berkeley CA 94720-3102; 510-643-8277; 510-643-6791 (fax); ACHAN@UCLINK3.BERKELEY.EDU
Chandler, Vicki; Dept Plant Sciences; 303 Forbes Hall; University of Arizona; Tucson AZ 85721; 520-626-8725; 520-621-7186 (fax); chandler@ag.arizona.edu
Chandrakanth, E.; Crop Biotechnology Center; Texas A\&M Univ; College Station TX 77843; 979-260-4563; emani@tamu.edu
Chang, Chun-Hsiang; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131; 515-253-2233; 515-253-2619 (fax); changch@phibred.com
Chang, Ming-Tang; ExSeeds Genetics L.L.C.; 2901 South Loop Dr.; ISU Res. Park Bldg 3 Suite 3316; Ames IA 50010; (515)296-5345; mchang@exseed.com; mtcchang@hotmail.com
Chang, S. C.; 13, LN36, Chung Shan Rd.; Chiayi, ROC; TAIWAN; 05-278-4603
Chao, Shiaoman; USDA-ARS-Western Regional Research Ctr; 800 Buchanan St; Albany CA 94710-1105 USA; schao@pw.usda.gov
Char, Bharat; Plant Gene Expression Center; 800 Buchanan; Albany CA 94710
Charcosset,; INRA; Station de Genetique Vegetale; Ferme du Moulon; Gif sur Yvette 91190; FRANCE; 33-1-69-33-23-35; 33-1-69-33-23-40 (fax); charcos@moulon.inra.fr
Charles, Brian; \#127423; ASPC Florence, PO Box 8200; Central Unit CB3-l-13
Central Unit CB1-C-9 POB8200; Florence AZ 85232-8200
Charles, Fred; 1316 Hillshire Meadow Dr; Matthews NC 28105
Charlton, Wayne; Rodney Porter Building; Dept. of Plant Sciences; University of Oxford, South Parks Road; Oxford, OX1 3RB; UNITED KINGDOM; 44-1865275814; 44-1865-275805 (fax)
Chase, Christine D.; Horticultural Sciences Dept.; 1143 Fifield Hall; Univ of Florida; Gainesville FL 32611-0690; 352-392-1928×316; 352-392-6479 (fax); ctdc@gnv.ifas.ufl.edu
Chase, Sherret S.; Chase Road; P.O. Box 193; Shokan NY 12481; 914-657-2392
Chaudhuri, Sumita; Monsanto; 1920 5th St; Davis CA 95616; 530-792-2318; 530-972-2453 (fax)
Chen, Fure-Chyi; Dept. Plant Industry; Natl. Pingtung Univ. Sci. \& Tech.; Neipu, Pingtung 91201; TAIWAN; 886-8-774-0267; 886-8-774-0371 (fax);
furechen@mail.npust.edu.tw
Chen, Jialiang; Lima Grain Genetics; 4640 E State Rd 32; Lebanon IN 46052; 765-482-9833; 765-482-9448 (fax); jialiang.chen@limagraingenetics.com
Chen, Jychian; Institute of Molec Biol; Academia Sinica; Taipei 11529; TAIWAN; 011-8862-2789-9208; 011-8862-2782-6085 (fax); mbjchen@ccvax.sinica.edu.tw
Chen, Shouyi; Academia Sinica; Institute of Genetics; Datun Road, Andingmen Wai; Beijing,100101; CHINA
Chen, Weicheng; Dept. of Agronomy; Henan Agric. University; ZhengZhou 450002; CHINA
Chen, Zhiyuan; Louisiana State Univ; Dept Plant Path \& Crop Physiol; 1100 Robert E Lee Blvd, PO Box 19687; New Orleans LA 70179; 504-286-4345; 504-286-4419 (fax); zchen@nola.srrc.usda.gov
Cheng, Kan-Sheng; Yunnan Academy of Agricultural Sciences; Kunming; Yunnan 650205; CHINA
Cheng, Ping-chin; Advanced Microscopy and Imaging Lab; Dept Elect Comp Eng, 201 Bell Hall; State University of New York at Buffalo; Buffalo NY 14260; (716)645-3868; (716)645-3868 (fax)

Cheng, Ruiyang; Nankai University; Biology Division; Plant Molecular Biology Dept.; Tianjin 300071; CHINA
Chernov, Alex; Institute of Genetics; Acad Sci Mold Repub; Kishinev; MOLDOVA
Chikwamba, Rachel; lowa State Univ; G503 Agronomy Hall; Ames IA 50010; 515-294-8832; 515-294-3163 (fax); rchikwam@iastate.edu
Chilton, Scott; Dept of Botany; Box 7612; N. C. State University; Raleigh NC 27695-7612; (919)515-3792; (919)515-3436 (fax); schilton@unity.ncsu.edu
Chimont, Patricia; Inst Allge Bot; Angew Molek; Pflanzen, AMP I, Ohnhorststrasse 18; D-22609 Hamburg; GERMANY; 49-40-822-82-389; 49-40-882-82503 (fax); fb7a051@botanik.botanik.uni-hamburg.de
Chin, Emily; Garst Seeds Co; Hwy 210; PO Box 500; Slater IA 50244; 800-831-6630x5229; 515-685-5080 (fax); Emily.Chin@GarstSeedCo.com
Choe, Bong-Ho; Agronomy Dept; College of Agriculture; Chungnam National University; Dae-Jon 305-764; KOREA; KOREA-042-821-5723; 82-42-823-8050 (fax)
Choffnes, Dan; Univ Berkeley; 111 Koshland Hall; Berkeley CA 94720; choffnes@nature.berkeley.edu
Choi, Jaehyuk; Univ of Florida; 2204 Fifield Hall; Gainesville FL 32611; 352-392-1928 x314; 352-392-6479 (fax); JHCH@GNV.IFAS.UFL.EDU
Choi, Keun-Jin; Dept. of Corn Breeding; Upland Crop Div.; Crop Experiment Station; Suwon; KOREA; (0331)292-3823; (0331)292-4560 (fax)
Chojecki, Jan; Plant Bioscience Limited; Norwich Research Park; Colney Lane; Norwich NR4 7UH; UNITED KINGDOM; 44-(0)1603-456500; 44-(0)1603456552 (fax); ajsc@plantbioscience.com
Chomet, Paul; DeKalb Plant Genetics/Monsanto; 62 Maritime Drive; Mystic CT 06355-1958; 860-572-5224; 860-572-5282 (fax); PCHOMET@DEKALB.COM
Chongkid, Boonhong; Dept. of Agricultural Technology; Fac. of Science \& Technology; Thammasat Univ., Rangsit Campus; Pathum Thani 12121; THAILAND; 5160020-39 ext. 1712, 1713; 5160963 (fax)
Chopra, Surinder; Department of Agronomy; 216 ASI Building; Penn State University; University Park PA 16802; 814-865-1159; 814-863-7043 (fax); sic3@psu.edu
Choubey, RN; Indian Grassl \& Fodder Res Inst; Pahuj Dam; Jhansi-Gwalior Road; Jhansi-284003 (U.P.); INDIA; 0517-440908
Chourey, Prem; USDA-ARS; Plant Pathology Department; University of Florida; Gainesville FL 32611-0680; 352-392-2806; 352-392-6532 (fax); PSCH@GNV.IFAS.UFL.EDU
Choy, Ming; Dept Plant Microbial Biol; PO Box 13625; Univ California; Berkeley CA 94712; 510-642-7918; choymy@nature.berkeley.edu
Christensen, Dean W.; Syngenta; 317 330th St; Northfield MN 55018; 507-663-7619; 507-645-7519 (fax); dean.christensen@syngenta.com
Christensen, Todd; Botany \& Plant Path Dept; 2082 Cordley Hall; Oregon State Univ; Corvallis OR 97331-2902; 541-737-5295; 541-737-3573 (fax)
Chuck, George; 4174 3rd Ave \#18; Univ California; San Diego CA 92103; 858-534-2514; 858-534-7108 (fax); gchuck@biomail.ucsd.edu
Chughtai, Sajjad R.; Maize Program; NARC, P.O. NIH; Islamabad; PAKISTAN; (051)241534; 51-812968 (fax)
Cicek, Muzaffer; Dept Biology; Virginia Tech; Blacksburg VA 24061; 540-231-8951; 540-231-9307 (fax); mcicek@vt.edu
Ciceri, Pietro; Biology Dept 0116; UCSD, 9500 Gilman Dr; La Jolla CA 92093-0116; 619-534-2514; 619-536-7108 (fax); pciceri@biomail.ucsd.edu
Cigan, A. Mark; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave, Box 1004; Johnston IA 50131-1004; 515-270-3904; 515-270-3367 (fax); ciganam@phibred.com
Clancy, Maureen; Univ of Florida; Fifield Hall, PO Box 110690; Gainesville FL 32611; 352-392-1928 x314; 352-392-5653 (fax); clancy@gnv.ifas.ufl.edu
Clark, Janice K.; Dept. of Biology; University of North Dakota; Grand Forks ND 58202-9019; (701)777-2621; (701)777-2623 (fax)
Clark, Richard; 5210 Genetics; 445 Henry Mall; Madison WI 53706; 608-262-5804; 608-262-2976 (fax)
Clayton, Kathryn; Dow Agrosciences; 9330 Zionsville Rd; Bldg 306-C2-833; Indianapolis IN 46268; 317-337-3842; 317-337-5989 (fax); kaclayton@dowagro.com
Close, Pam; 300 Maplewood Dr; Columbia MO 65203; 573-442-8031
Close, Timothy J.; Dept. Bot. \& Plant Sci.; Univ. of California Riverside; Riverside CA 92521; 909-787-3318; 909-787-4437 (fax); TIMCLOSE@UCRAC1.UCR.EDU
Clutter, Mary; BIO/BIO; National Science Foundation Room 605N; 4201 Wilson Blvd.; Arlington VA 22230; 703-292-1400; mclutter@note.nsf.gov Cobb, Greg; Texas A\&M Univ; Dept Horticulture; College Station TX 77843; 979-845-5615; 979-845-0627 (fax); gregcobb@tamu.edu
Cocciolone, Suzy; 2288 Molecular Biology Building; lowa State University; Ames IA 50011; 515-294-5054; 515-294-0345 (fax); scocciol@iastate.edu
Coe, Ed; Curtis Hall; University of Missouri; Columbia MO 65211-7020; 573-882-2768; 573-884-7850 (fax); CoeE@missouri.edu
Coelho, CM; 211 Forbes Bldg, Rm 303; Univ Arizona; Tucson AZ 85721; 520-621-9254; coelho@ag.arizona.edu
Colasanti, Joseph J.; Univ California-Berkeley; PGEC; 800 Buchanan Street; Albany CA 94710; 510-559-5908; 510-559-5678 (fax); colasant@uclink4.berkeley.edu
Colbert, Terry; Pioneer Hi-Bred Int., Inc; RR1 P.O. Box 90-I; Princeton IN 47670; colberttr@phibred.com
Coleman, Craig; Dept Botany \& Range Sci; Brigham Young Univ; Provo UT 84602; 801-378-3784; 801-378-7499 (fax); cec3@email.byu.edu
Colleoni, Christophe; Iowa State Univ; 2154 Molec Biol Bldg; Ames IA 50011; 515-294-8202; 515-294-0453 (fax); colleoni@iastate.edu
Cone, Karen C.; Biological Sciences; University of Missouri; Columbia MO 65211; 573-882-2118; 573-882-0123 (fax); Cone@biosci.mbp.missouri.edu
Conner, Jennifer; Dept Biol Environ Sci; Univ Tenn Chattanooga; 615 McCallie Ave; Chattanooga TN 37403-2598; 423-755-4341; 423-785-2285 (fax)
Consonni, Gabriella; Dipart Fisioll e Chim Agraria; Univ di Milano; Via Celoria 2; 20133 Milan; ITALY; 39.02.26607212; 39.02.2663057 (fax); gabriella.consonni@unimi.it
Cook, Bill; Biology Department; Midwestern State University; 3410 Taft Blvd.; Wichita Falls TX 76308; 940-397-4192; 940-397-4442 (fax); fcookb@nexus.mwsu.edu
Cooper, Jennifer; Univ of Missouri; 105 Tucker Hall; Columbia MO 65211; 573-882-4871; 573-882-0123 (fax); ;ilcea1@missouri.edu
Cooper, Pamela S.; Univ. of Missouri; Div. of Biological Science; Columbia MO 65211; 573-882-1168; 573-882-0123 (fax); cooper@biosci.mbp.missouri.edu
Coors, James G.; Department of Agronomy; University of Wisconsin; 1575 Linden Drive; Madison WI 53706; 608-262-7959; jgcoors@facstaff.wisc.edu
Corcuera, Raul Victor; Inst Fitotec de Santa Catalina; Garibaldi 3400; Llavallol; Buenos Aires; ARGENTINA; 5411 42820233; 541142820233 (fax); Yuxkan@hotmail.com
Corke, Harold; 45 Highwest; 142 Pokfulam Road; Hong Kong; HONG KONG; 0118522859 2820; 01185228583477 (fax); harold@hkuxa.hku.hk
Corley, Susie; Univ Oxford; Dept Plant Sci; South Parks Rd; OX1 3RB Oxford; UNITED KINGDOM; 4401865 275030; susan.corley@plants.ox.ac.uk
Cormack, Jean; DeKalb Genetics Corp.; 3100 Sycamore Rd; DeKalb IL 60115; 815-758-9682; 815-758-4106 (fax); jcormack@dekalb.com

Cornu, A.; Sta d'Amelior des Plantes; B V 1540; 21034 Dijon; FRANCE; 80-63-3159; 80-63-3263 (fax)
Cortes-Cruz, Moises; Univ Missouri; 205 Curtis Hall; Columbia MO 65211; 573-882-2033; 573-884-7850 (fax); cortes@chaco.agron.missouri.edu
Costa, Liliana Maria; Univ Oxford; Dept Plant Sci; South Parks Rd; OX1 3RB Oxford; UNITED KINGDOM; 00441865 275819; liliana.costa@plants.ox.ac.uk
Cota, Carla; Lehman College, CUNY; Dept Biological Sci; Bronx NY 10468; 718-960-4994; 718-960-8236 (fax); g34lc@cunyvm.cuny.edu
Courtney, Ebony; 101 Tucker Hall; Univ Missouri; Columbia MO 6211; 573-882-1168
Cowan, Carrie R.; Univ California-Berkeley; 345 LSA; Berkeley CA 94720; 510-643-8277; 510-643-6791 (fax); carriec@candelab.berkeley.edu
Cowen, Neil; DowElanco Discovery Research; 9410 Zionsville Rd., CI/\#245; Indianapolis IN 46268-1053; 317-337-3684; 317-337-3228 (fax)
Cowperthwaite, Matthew; Rutgers Univ; Waksman Inst; Piscataway NJ 08855; 732-445-6247; 732-445-5735 (fax); mattc@waksman.rutgers.edu
Crane, Virginia; Trait and Technology Development; Pioneer Hi-Bred International, Inc.; 7300 N. W. 62nd Ave, Box 1004; Johnston IA 50131-1004; (515)270-3645; (515)253-2149 (fax); CRANEVC@PHIBRED.COM

Crawford, Margaret; Monsanto; 3302 SE Convenience Blvd; Ankeny IA 50021; 515-963-4215; 515-963-4242 (fax)
Creech, Roy G.; Plant \& Soil Sciences; Box 9555; Mississippi State University; Mississippi State MS 39762; 601-325-2699; 601-325-8742 (fax); rgcreech@ra.msstate.edu
Cross, Joanna; 1143 Fifield Hall; Univ Florida; Gainesville FL 32611; 352-392-1928; 352-392-6479 (fax); jmfc@gnv.ifas.ufl.edu
Cui, Cory; Dow Agrosciences; 9330 Zionsville Rd; Indianapolis IN 46268; 317-337-3599; 317-337-5989 (fax)
Cui, Xiangqin; Iowa State Univ; B420 Agronomy; Ames IA 50010; 515-294-1659; 515-294-2299 (fax); xcui@iastate.edu
Cullis, Chris; Plant Genome Research Program; National Science Foundation; 4201 Wilson Boulevard; Arlington VA 22230; ccullis@nsf.gov
Cummings, D. P.; Dekalb Genetics Corporation; P.O. Box 367; 908 North Independence; Windfall IN 46076-0367; 317-945-7125; 317-945-7152 (fax)
Currie, Randall; SWREC; 4500 E. Mary; Garden City KS 67842; 316-276-8286; 316-276-6028 (fax); RCURRIE@OZNET.KSU.EDU
D'Arcangelis, Gwen; 345 LSA; Univ California; Berkeley CA 94720; 510-643-8277; darcange@candelab.berkeley.edu
D'Halluin, Kathleen; Plant Genetic Systems N.V.; Jozef Plateaustraat 22-B 9000; Gent; BELGIUM; (32) (9)2358486; (32) (9)2240694 (fax); pgs@pgsgent.be
Daido, Hisaaki; Nat Inst Livestock Grassl Sci; Senbonmatsu, Nishinasuno; Tochigi; JAPAN 329-2793; 81-287-37/7551; 81-287-36-6629 (fax); hdaido@affrc.go.jp
Damerval, Catherine; Station de Genetique Vegetale; Ferme du Moulon; 91190 Gif Sur Yvette; FRANCE; (1)0169 3323 66; 33(1)01 69332340 (fax)
Damon, Steve; W221 Turner Hall; 1102 S Goodwin Ave; Univ Illinois; Urbana IL 61801; 217-244-3388; 217-333-9817 (fax); damon@students.uiuc.edu
Dan, Yinghui; Monsanto700 Chesterfield Pkwy; N GG4B; Chesterfield MO 60305; 636-737-5309; 636-737-6567 (fax); yinghui.dan@monsanto.com
Danilevskaya, Olga; Pioneer Hi-Bred Internatl; 7250 NW 62nd Avenue; PO Box 552; Johnston IA 50131-0552; 515-270-4128; 515-334-4788 (fax); danileon@phibred.com
Dankov, Toma; 93-Tzaz Iwan Assen II Str.; Sofia 1124; BULGARIA; 43-82-73; nedeva@biofac.uni-sofia.bg
Dannenhoffer, Joanne; Central Michigan Univ; Dept of Biology; 217 Brooks Hall; Mt. Pleasant MI 48859; 517-774-2509
Daohong, Xie; Maize Research Institute; Jilin Acad.; 5 W. Xing Hua Street; Gongzhuling, Jilin, P.R. 136100; CHINA; (86)-04441-215179; (86)-04441214884 (fax)
Darrah, Larry; 110A Curtis Hall; University of Missouri; Columbia MO 65211-7020; 573-882-2349; 573-884-7850 (fax); DarrahL@missouri.edu
Davis, Doug; 101 Tucker Hall; Univ Missori; Columbia MO 65211; 573-882-1168; 573-884-0123 (fax); DavisDo@missouri.edu
Davis, Georgia; 1-87 Agric Bldg; Univ of Missouri; Columbia MO 65211; 573-882-9228; 573-882-1469 (fax); DavisGe@missouri.edu
Dawe, R. Kelly; Department of Botany; University of Georgia; Athens GA 30602; 706-542-1658; 706-542-1805 (fax); kelly@dogwood.botany.uga.edu
Day, Peter R.; Center for Ag Molec Biology; Cook College, Rutgers Univ; Foran Hall, Dudley Road; New Brunswick NJ 08903-0231; 908-932-8165; 908-9326535 (fax); day@aesop.rutgers.edu
de Carvalho, Carlos Roberto; Universidade Federal de Vicosa; Depto Biologia Geral; 36571.000 Vicosa - MG; BRAZIL; 31-899-2568; 31-899-2203 (fax); ccarvalh@mail.ufv.br
De Leon, Carlos; Maize Program; c/o CIAT; Apdo. Aereo 67-13; Cali; COLOMBIA
de Oliveira, Antonio Costa; Centro de Biotecnologia, Predio 19; Campus UFPel, P.O. Box 354; 96001-970, Pelotas, RS; BRAZIL; 055532757158; 055532759031 (fax); acosta@ufpel.tche.br
de Wolff, F; Advanta Seeds B.V.; PO Box 1; 4410 AA Rilland; NEDERLAND; 31-1135-2151; 31-1135-2237 (fax)
Dean, Caroline; BBSRC; John Innes Centre; Colney Lane; Norwich NR4 7UH; UNITED KINGDOM; 011-44-1603-452571; 011-44-1603-505725 (fax); caroline.dean@bbsrc.ac.uk
Dean, Ralph; Dept Plant Path; North Carolina State Univ; 1200 Partners Bldg II; Raleigh NC 27695; 919-513-0020; 919-513-0024 (fax); ralph_dean@ncsu.edu
Debaene, Janet; Univ Illinois; 1102 S Goodwin Ave, AW-101; Urbana IL 61801; 217-244-3388; 217-333-9817 (fax)
DeBroux, Steve; 700 E. Butler Ave.; Delaware Valley College; Doylestown PA 18901; 215-345-1500; 215-345-5277 (fax)
Delannay, Xavier; Monsanto - N3SB; 800 N. Lindbergh Blvd.; St. Louis MO 63167; 314-537-6611; 314-694-3644 (fax); xavier.delannay@monsanto.com
Della Vedova, Chris; 403 Tucker Hall; Univ Missouri; Columbia MO 65211; 573-449-0851; cbd4c8@mizzou.edu
Dellaporta, Steve; Yale University; Molec Cell Devel Biol; New Haven CT 06520-8104; 203-432-3895; 203-432-3854 (fax); stephen.dellaporta@yale.edu
Delzer, Brent; Syngenta; 4133 E County Road "O"; Janesville WI 53546; 608-757-1102; 608-757-0080 (fax); brent.delzer@syngenta.com
DeMason, Darleen; Botany \& Plant Sciences; Univ of California; Riverside CA 92521; 909-787-3580; 909-787-4437 (fax); demason@ucrac1.ucr.edu
Dempsey, Ellen; 7 Prospect St; Cornwall-on-Hudson NY 12520; 914-534-5285
Dennis, Elizabeth; CSIRO; Division of Plant Industry; P.O. Box 1600; Canberra, ACT 2601; AUSTRALIA; 61-6-246-5061; 61-6-246-5000 (fax); liz@pican.pi.csiro.au
Dermastia, Marina; Univ Florida; Plant Pathology Dept; 1453 Fifield Hall; Gainesville FL 32611; 352-392-3631; 352-392-6532 (fax)
Deshpande, Aparna; Biology Dept; Purdue Univ; West Lafayette IN 47907; 752-494-4919; 756-496-1496 (fax); adeshpan@bilbo.bio.purdue.edu
Deutsch, James A.; Garst Seed Company; RR 2 Box 16; Marshall MO 65340; 660-886-6363; 660-886-9877 (fax); jim.deutsch@garstseedco.com
Devereaux, Alissa; BASF Plant Sci; 26 Davis Dr; Research Triangle Park NC 27709; 919-547-2905; 919-547-2423 (fax); deverea@basf-corp.com
Dewald, Chester L.; ARS-USDA; 2000 18th St.; Woodward OK 73801; 580-256-7449; 580-256-1322 (fax); cdewald@spa.ars.usda.gov
Dey, Nrisingha; lowa State Univ; 2156 MBB; Ames IA 50011; 515-294-4445; 515-294-6755 (fax); ndey00@hotmail.com
Dhillon, B. S.; Director, NBPGR; Pusa Campus; New Delhi-110012; INDIA; 091-5772107 (R); 585-1495, 5785619 (fax); bsdhillon@nbpgr.delhi.nic.in
Dias, Anusha; Ohio State Univ; 218A Rightmire Hall; 1060 Carmack Rd; Columbus OH 43210; 614-688-4954; 614-292-5379 (fax); dias.9@osu.edu
Dias, Dilip; Garst Seed; 2369 300th St; Slater IA 50244; 515-685-5117; 515-685-5080 (fax); dilip.dias@garstseedco.com
Dick, Don; Northwest Tech, LLC; 513 N Main; Fairview OK 73737; 580-227-2345; 580-227-3851 (fax); bramco@pldi.net
Diehn, Scott; Pioneer Hi-Bred Intl; 7250 NW 62nd Ave; Johnston IA 50131; 515-254-2866; 515-334-4722 (fax); diehnsh@phibred.com
Dietrich, Chuck; B420 Agronomy Hall; Iowa State University; Ames IA 50011; 515-294-1659; 515-294-2299 (fax); bones@iastate.edu
Dijkhuizen, Arian; W-203 Turner Hall; 1102 South Goodwin Ave.; Urbana IL 61801; 217-244-3388; 217-333-9817 (fax)
Dilkes, Brian; Dept Plant Sci; Forbes Bldg, Rm 36; Univ Arizona; Tucson AZ 85721; 520-621-9154; 520-521-3692 (fax); pdilkes@ag.arizona.edu
Dille, John E.; Winthrop College Biology Dept; Rock Hill SC 29733; 803-323-2111; 803-323-3448 (fax); dillej@winthrop.edu

Dilworth, Machi; Plant Sci Initiatives; National Science Foundation; 4201 Wilson Blvd.; Arlington VA 22230; 703-292-8470; mdilwort@nsf.gov
Dinges, Jason; 2182 Molec Biol Bldg; Iowa State Univ; Ames IA 50011; 515-294-8202; 515-294-0453 (fax); jdinges@iastate.edu
Dodd, J. L.; Professional Seed Research, Inc; 7 South 437 Dugan Road; Sugar Grove IL 60554; 630-466-1060; 630-466-1068 (fax)
Doebley, John F.; Genetics Department; University of Wisconsin; Madison WI 53706; 608-265-5803/5804; 608-262-2976 (fax); jdoebley@facstaff.wisc.edu
Dogra, Anjali; Biology Dept; University of Toledo; 2801 West Bancroft St; Toledo OH 43606; 419-530-2135; 419-530-7737 (fax); adogra@uoft02.utoledo.edu
Dolfini, Silvana Faccio; Dipartimento di Genetica; University of Milano; Via Celoria 26; 20133 Milano; ITALY; 392 266051; 3922664551 (fax)
Dolgykh, Yulia; Inst of Plant Physiology; ul. Botanicheskaya, 35; Moscow 127276; RUSSIA; 7-095-9039392; 7-095-9778018 (fax)
Dombrink-Kurtzman, Mary Ann; Natl. Ctr. for Agric. Utilization Research; USDA, ARS; 1815 N. University St.; Peoria IL 61604-3902; (309)681-6254; (309)681-6686 (fax); dombrink@mail.ncaur.usda.gov

Dong, Jinzhuo; Monsanto; 800 N Lindbergh Blvd T3A; St. Louis MO 63167; 314-694-7640; 314-694-8275 (fax); jinzhuo.dong@monsanto.com
Donnison, lain; Cell Biol Dept; Inst Grassl \& Env Research; Aberystwyth SY23 3EB; UK; 4401970 823092; 4401970828357 (fax); iain.donnison@bbsrc.ac.uk
Doohan, Fiona; John Innes Centre; Norwich Research Park; Colney NR4 7UH; UNITED KINGDOM; 011-44-1603-452571; 011-44-1603-456844 (fax); doohan@bbsrc.ac.uk
Dooner, Hugo K.; The Waksman Institute; Rutgers University; P.O. Box 0759; Piscataway NJ 08855; 732-445-4684; 732-445-5735 (fax); dooner@waksman.rutgers.edu
Dorweiler, Jane; Dept Plant Sciences; 303 Forbes Hall; University of Arizona; Tucson AZ 85721; 520-621-8964; 520-621-7186 (fax); jdorweil@ag.arizona.edu
Doss, Brian; Univ Georgia; Dept of Genetics/Botany; Athens GA 30605; 706-354-8986
Doust, Andrew; University of Missouri - St Louis; Department of Biology; 8001 Natural Bridge Road; St Louis MO 63121; $3145166225 ; 3145166233$ (fax); adoust@umsl.edu
Dowd, Pat; USDA-ARS; 1815 N. University St.; Peoria IL 61604; 309-681-6242; 309-681-6686 (fax); dowdp@@mail.ncaur.usda.gov
Doyle, Greg; Curtis Hall; University of Missouri; Columbia MO 65211-7020; 573-882-2674
Dress, Virginia; Pioneer Hi-Bret Intl, Inc; 7300 NW 62nd Ave, Box 1004; Johnston IA 50131-1004; 515-270-4078; 515-254-2619 (fax); dressvm@phibred.com
Dresselhaus, Thomas; Univ Hamburg, AMP II; Ohnhorststr 18; Hamburg D-22609; GERMANY; 494082282 360; 494082282229 (fax); dresselh@botanik.uni-hamburg.de
Drinic Mladenovic, Snezana; Maize Research Inst; S Bajica 1; MOS1 Zemun-Belgrade; YUGOSLAVIA; 11-2356-704; 11-2356-707 (fax); msnezana@mrizp.co.yu
Drummond, Bruce; Pioneer Hi-Bred Internat., Inc.; 7300 NW 62nd Ave.; PO Box 1004; Johnston IA 50131-1004
Dudley, John W.; Crop Sciences, S112 Turner Hall; University of Illinois; 1102 S Goodwin Ave; Urbana IL 61801; 217-333-9640; 217-333-9817 (fax); jdudley@uiuc.edu
Dufour, Philippe; Biocem 24, Av des Landai; Campus Universitaire des Cejeauz; 63170 Aubiere; FRANCE; 33-4-73-42-79-80; 33-4-73-27-57-36 (fax)
Duncan, David; Monsanto Agricultural Group GG4H; 700 Chesterfield Parkway N.; Chesterfield MO 63198; 314-537-6923; 314-537-6567 (fax); david.r.duncan@monsanto.com
Duru, Ngozi; 403 Tucker Hall; Univ Missouri; Columbia MO 65211; 573-884-3715; 573-882-0123 (fax); durun@missouri.edu
Duvick, Donald N.; P.O. Box 446; 6837 N.W. Beaver Drive; Johnston IA 50131; 515-278-0861; 515-253-2125 (fax); dnd307@AOL.com
Duvick, Jonathan P.; Pioneer Hi-Bred Internatl; Dept of Biotechnology Res; 7300 N.W. 62nd Ave; Johnston IA 50131-1004; 515-270-3176; 515-253-2147 (fax); duvickj@phibred.com
Duvick, Susan; 1501 Agronomy; Iowa State University; Ames IA 50011; 515-294-5545
Earle, Elizabeth D.; Dept Plant Breed \& Biom; Cornell University; 252 Emerson Hall; Ithaca NY 14853-1902; 607-255-3102; 607-255-6683 (fax); ede3@cornell.edu
Eathington, Samuel R.; 910 Gaskill; Ames IA 50014; 515-956-3073; 515-232-7170 (fax)
Edgerton, Mike; Cereon Genomics, LLC; 45 Sidney St; Cambridge MA 02139; 617-551-8292; 617-551-1960 (fax)
Edmeades, Greg; Pioneer Hi-Bred Internatl.; Waimea Research Center; P.O. Box 609; Waimea HI 96796; 808-338-8300; 808-338-8325 (fax); edmeadgreg@phibred.com
Edwards, Jode; Monsanto Company; 101 Tomaras Ave; Savoy IL 61874; 217-356-6879; 217-356-7863 (fax); jode.w.edwards@monsanto.com
Edwards, Keith; Crop Genetics; IACR-Long Ashton Res Stn; Univ Bristol, Long Ashton; Bristol BS18 9AF; UNITED KINGDOM; 441275 549431; 441275 394281 (fax); KEITH.EDWARDS@BBSRC.AC.UK
Edwards, Marlin; Northrup King Co.; 317 330th Street; Stanton MN 55018-4308; 507-663-7623; 507-645-7519 (fax)
Efremov, Alexander; Max-Planck-Institute; Carl-von-Linne-Weg 10; D-50829 Koln (Vogelsang); GERMANY
Egesel, Cern; Dept Crop Sci; Univ Illinois; Urbana IL 61801; 217-384-1368; egesel@uiuc.edu
Eggleston, William; Department of Biology; Virginia Commonwealth University; 816 Park Ave; Richmond VA 23284; 804-828-1562; 804-828-0503 (fax); Weggles@saturn.vcu.edu
Egli, Margaret A.; Dept Agron \& Plant Genetics; Univ of Minnesota, 411 Borlaug Hall; 1991 Buford Circle; St. Paul MN 55108; (612)625-5215/5793; (612)625-1268 (fax); peggy@biosci.cbs.umn.edu

Eichholtz, David A.; Monsanto, BB4D; 700 Chesterfield Village Pkwy; St. Louis MO 63198; 314-537-6227; 314-537-6047 (fax); DAEICH@CCMAIL.MONSANTO.COM
Ellis, Leland; Geo Wash Carver Ctr Bldg; 5601 Sunnyside Avenue; Rm 4-2192, MAIL STOP 5138; Beltsville MD 20705; 301-504-4788/7050; 301-504-4725 (fax); Ice@ars.usda.gov
Elsing, Evan; Pioneer Hi-Bred Intl Inc.; 1-385 Kaumualii Hwy; PO Box 609; Waimea Kauai HI 96796; 808-338-8300 ext 105; 808-338-8325 (fax); elsing@phibred.com
Emmanuel, Saah; Inst Agric Res Devel; PO Box 25 Ekona; Southwest Province; Buea; REPUBLIC OF CAMEROON; $00237354371 ; 00237319925$ (fax); evasama@yahoo.com
Erickson, Brian; Univ Wisconsin; 900 Wood Rd; PO Box 2000; Kenosha WI 53141; canuck fan@hotmail.com
Ernst, Cynthia; 9330 Zionsville Road; Indianapolis IN 46268 USA; 317-337-5123; 317-337-5989 (fax); caernst@dowagro.com
Esen, Asim; Dept Biology; Va Polytech Inst \& State Univ; Blacksburg VA 24061; 540-231-5894; 540-231-9307 (fax); esen@vt.edu
Espinosa, Elsa; CIMMYT; Apdo 6-641; Lisboa; Mexico City 06 600; MEXICO
Eubanks, Mary W.; Dept Botany; 139 Biological Sci Bldg; Duke Univ; Durham NC 27708-0338; 919-660-7301; 919-660-7293 (fax); eubanks@duke.edu
Evans, Matthew; Laboratory of Genetics; 445 Henry Mall; University of Wisconsin; Madison WI 53706; 608-262-3286; 608-262-2976 (fax); mmevans@facstaff.wisc.edu
Evans, Mike; Dept Plant Biology; Ohio State Univ; Columbus OH 43210; 614-292-9162; 614-292-6345 (fax); evans.20@osu.edu

Eversole, Kellye; Eversole Associates; 3208 Park View Road; Chevy Chase MD 20815; 301-951-3345; 301-951-1846 (fax); kellye@erols.com
Evola, S. V.; Novartis Biotechnology; 3054 Cornwallis Rd; Durham NC 27709; 910-547-1038; 910-547-1030 (fax); steve.evola@nabri.novartis.com
Fabbri, Brad; Monsanto; 800 N Lindbergh N2SA; St. Louis MO 63167; 314-694-5607; 314-694-1080 (fax); bradon.j.fabbri@monsanto.com
Falbel, Tanya; Department of Horticulture; University of Wisconsin; 1575 Linden Dr.; Madison WI 53705; 608-262-1622; 608-262-4743 (fax); falbel@macc.wisc.edu
Falque, Matthieu; INRA; Station de Genet Veg; du Moulon; Gif-sur-Yvette 91190; FRANCE; 33 169332364; 33169332340 (fax); falque@moulon.inra.fr
Fang, Zhiwei; Engineering West; EBW 347; University of Missouri; Columbia MO 65211; 573-882-6887; fangz@missouri.edu
Farish, Guy; Biology Dept; Adams State College; Alamosa CO 81102; 719-587-7969; 719-587-7242 (fax); gefarish@adams.edu
Fauron, Christiane; University of Utah; 2100 Eccles Genetics Bldg; Salt Lake City UT 84112; 435-581-4435; 435-585-7177 (fax); christiane.fauron@genetics.utah.edu
Feazel, Rhonda; Monsanto Global Seed Group; 3100 Sycamore Rd.; DeKalb IL 60115; 815-758-9564; 815-758-4106 (fax); rfeazel@dekalb.com
Fedoroff, Nina; Biology; 0519 Wartik Laboratory; University Park PA 16802; 814-863-5717; 814-863-1357 (fax); nvf1@psu.edu
Feix, Gunter; Institut Fur Biologie III; Universitat Freiburg; 79104 Freiburg; GERMANY; 497-6120-32724; 497-6120-32745 (fax); feix01@aol.com
Feng, Jia Shi; Maize Research Institute Shandong; Academy of Agricultural Sciences; 11 Sang Yuan Road; Jinan, Shandong 250100, P.R.; CHINA; (0531)860329

Fergason, Virgil; Custom Farm Seed; 100 East Shafer, P.O. Box 380; Forsyth IL 62535; 217-875-2826; 217-875-9437 (fax)
Ferl, Robert; Horticultural Sciences; Univ Florida; Gainesville FL 32611; 352-392-4711 x313; 352-392-4072 (fax); Robferl@NERVM.NERDC.UFL.EDU
Fernandes, Agnaldo; Av Azarias Jorge; n 1504 Centro Pontalina; Goias 75620/000; BRAZIL; 62-471-1237
Feschotte, Cedric; Univ Georgia; Botany Dept; Miller Plant Sci; Athens GA 30602; 706-542-1857; cedric@dogwood.botany.uga.edu
Fincher, Robert R.; Pioneer Hi-Bred Intl; 7300 NW 62nd Avenue; P.O. Box 1004; Johnston IA 50131-9410; 515-270-3797; 515-253-2288 (fax)
Fisher, Dane; Mail Zone AA3E; Monsanto Co.; 700 Chesterfield Pkwy North; St. Louis MO 63198; 314-737-7434; dane.k.fisher@monsanto.com
Fisher, Dave; Seminis Vegetable Seeds; 7202 Portage Road; DeForest WI 53532; 608-846-7889; 608-846-7892 (fax)
Flament, Pascal; Biocem; Campus Universitaire des Cezeaux; 24 Avenue des Landais; 63170 Aubiere; FRANCE; (33)73 427970 ; (33)73 275736 (fax)
Flint-Garcia, Sherry; Univ Missouri; 110 Curtis Hall; Columbia MO 65211; 573-882-2349; 573-884-7850 (fax); saf555@mizzou.edu
Fluminhan, Antonio; RIKEN-Inst Phys Chem Res; Div Biosciences, Hirosawa 2-1; Wako-shi,; Saitama-ken 351-0198; JAPAN; 81-48-467-9518; 81-48-4624676 (fax)
Foley, Terry; Holden's Foundation Seeds L.L.C.; P.O. Box 839; Williamsburg IA 52361; 319-668-1100; 319-668-2453 (fax); terry.foley@holdens.com
Fomanka, Epah Sebastian; Inst Agric Res Devel; PO Box 25 Ekona; Southwest Province; Buea; REPUBLIC OF CAMEROON; $00237354371 ; 00237319925$ (fax); tumbuf@yahoo.com
Foster, Toshi; Plant Gene Expression Center; USDA; 800 Buchanan St.; Albany CA 94710
Fowler, John; Botany and Plant Path Dept; 2082 Cordley Hall; Oregon State Univ; Corvallis OR 97331-2902; 541-737-5295; 541-737-3573 (fax); fowlerj@bcc.orst.edu
Fox, Tim; Pioneer Hi-Bred Internat., Inc.; 7300 NW 62nd Ave. NW; P.O. Box 1004; Johnston IA 50131
Frame, Bronqyn; Iowa State Univ; Plant Transformation Facility; G503 Agronomy; Ames IA 50011-1010; 515-294-8832; 515-294-2299 (fax); bframe@iastate.edu
Francis, T. R.; Novartis Seeds Canada Inc; R. R. 1; Arva, Ont NOM 1CO; CANADA; 519-461-0072; 519-461-0275 (fax)
Frank, Carren; Dow Agrosciences; 9330 Zionsville Rd; Bldg 306; Indianapolis IN 46268-1054; 317-337-5965; 317-337-5989 (fax)
Frank, Mary; Dept. of Biology; MC0116; Univ. of California - San Diego; La Jolla CA 92093-7108
Frank, Todd; Mycogen Seeds; 1985 E 500 N; Windfall IN 46076; 765-945-8145; 765-945-8150 (fax)
Franklin, Amie; Pangene Corporation; 5500 Stewart Ave; Fremont CA 94538; 510-360-9100x2716; AFranklin@Pangene.com
Freeling, Michael; Dept of Plant Biology; 111 Genetics \& Plant Biology Bldg; Univ of California; Berkeley CA 94720; 510-642-8058; 510-642-4995 (fax); freeling@nature.berkeley.edu
Frei, Mark; LG Seeds; Eggenkamp 1; Greven 48268; GERMANY; 49-2571-55939; 49-2571-53808 (fax); Iggrev@aol.com
Frenzel, Karsten; Univ Hamburg; Allgemeine Bot; Ohnhorststrasse 18; 22609 Hamburg; GERMANY; 00494-042816-389; 00494-042816-503 (fax)
Frey, Monika; Lehrstuhl fur Gentechnik Hoherer Pflanzen; Tech Univ Munchen; Lichtenbergstrabe 4; 85747 Garching; GERMANY; 49-89-2891-3532; 49-89-2891-2892 (fax)
Freymark, Peter J.; 16 Cameron Road; P.O. Borrowdale; Harare; ZIMBABWE; 011-263-4-726061; 011-263-4-726061 (fax)
Fridlender, Marcelo; Pioneer Hi-Bred Internatl; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131; 515-334-4619; 515-334-4755 (fax); fridlemarc@phibred.com
Friedberg, Jeremy; 24 Silvergrove Rd; North York, Ont M2L 2N6; CANADA; 416-449-2098; jfriedb@plant.uoguelph.ca
Friedman, Robert B.; Cerestar USA; 1100 Indianapolis Blvd; Hammond IN 46320-1094; 219-659-2000 ext 390; 219-473-6607 (fax)
Friedrich, James W.; Maize Genetic Resources, Inc; 10570 Hwy. 50 North; Angier NC 27501; 919-894-5594; 919-894-5660 (fax)
Frolich, Walter; Oberriexingerstr. 32; D-74343 Sachsenheim; GERMANY
Frost, Jenelle; Univ Missouri; 105 Tucker; Columbia MO 65211; 573-882-9228
Frova, Carla; Dept of Genetics \& Microbiology; University of Milano; Via Celoria 26; 20133 Milano; ITALY; 392 26605244; 3922664551 (fax); carla.frova@unimi.it
Fu, Huihua; Waksman Inst; Rutgers Univ; Piscataway NJ 08854; 732-445-2307; 732-445-5735 (fax); huihua@waksman.rutgers.edu
Fu, Suneng; 2502 Miller Plant Sci Bldg; Botany Dept; Univ Georgia; Athens GA 30602; 706-542-1010; 706-542-1805 (fax); fsneng@dogwood.botany.uga.edu
Fu, Xi-Qin; Hunan Academy of Agricultural Sciences; Hybrid Rice Research Center; Mapoling, Dong Jiao, Changsha; Hunan 410125; CHINA; 86-731-4691443; 86-731-469-1877 (fax)
Fu, Yan; lowa State Univ; B420 Agronomy; Ames IA 50010; 515-294-1659; yanfu@iastate.edu
Fuerstenberg, Susan; USDA/UC Plant Gene Expression Center; 800 Buchanan St.; Albany CA 94710; 510-559-5922; sifuerst@uclink4.berkeley.edu
Furtek, D. B.; Inst. Molecular Biology Labs; Pennsylvania State Univ.; 214 Borland Lab; University Park PA 16802-2505; 814-863-7785; 814-863-6123 (fax)
Gabay-Laughnan, Susan; Plant Biology/265 Morrill Hall; University of Illinois; 505 S. Goodwin Avenue; Urbana IL 61801; 217-333-2919; 217-244-7246 (fax); gabaylau@life.uiuc.edu
Gai, Xiaowu; Iowa State Univ; 2104 Molecular Biology Bldg; Ames IA 50011; 515-294-0022; xgai@iastate.edu
Gaillard, Antoine; Maisadour Semences; Unite Biotechnologie; BP 27; 40001 Mont-de-Marsan; FRANCE; $58058454 ; 58058487$ (fax); gaillard@maisadour.com
Gale, Michael; John Innes Centre; Norwich Research Park; Colney; Norwich NR4 7UH; UNITED KINGDOM; 441603450 599; 441603450024 (fax); mike.gale@bbsrc.ac.uk
Galinat, Walton C.; Eastern Agric. Center, U. Mass.; 240 Beaver Street; Waltham MA 02154-8096; 617-891-0650; 617-899-6054 (fax)
Gallagher, Cynthia; Lehman College - CUNY; 250 Bedford Park Blvd W; Bronx NY 10468; 718-960-4994; 718-960-8236 (fax); cegallagher_68@yahoo.com
Gallagher, Larbi; Univ Florida; Hortic Sci Dept; PO Box 110690; Gainesville FL 32611; 352-392-1928 ext 316; 352-392-6479 (fax); larbi@ufl.edu

Gallie, Daniel; Dept. of Biochemistry; University of California; Riverside CA 92521; (909)787-7298; (909)787-3590 (fax); DRGALLIE@UCRAC1.UCR.EDU
Gallo-Meagher, Maraia; Univ Florida; 2183 McCarty Hall; P.O. Box 110300; Gainesville FL 32611-0300; 352-392-1823; 352-392-7248 (fax)
Gao, Min-Wei; Zhejiang Agricultural University; Institute of Nuclear-Agric. Science; Hangzhou; Zhejiang 310029; CHINA
Garcia-Olmedo, F.; Lab Biochemistry and Molecular Biology; Dept. Biotechnology; E T S Ingenieros Agronomos; 28040-Madrid; SPAIN; 34-1-3365707; 34-13365757 (fax)
Gardiner, Jack; 214 Curtis Hall; University of Missouri; Columbia MO 65211-7202; 573-884-3134; 573-884-7850 (fax); GardinerJ@Missouri.edu
Gardiner, Michele; Rogers NK Seed Co; 6338 Highway 20-26; Nampa ID 83687; (208)466-0319; (208)467-4559 (fax); michele.gardiner@seeds.novartis.com Gardner, Candice; USDA-ARS Research Leader; NCR Plant Introduction Station; G214 Agronomy Hall; lowa State University; Ames IA 50011-1170; 515 -294-7967; 515-294-4880 (fax); gardnerc@iastate.edu
Garg, Preeti; Inst Allgemeine Botanik; Univ Hamburg; Ohnhorststr 18; Hamburg; GERMANY; 049-40-42876390; 049-40-42876503 (fax); fb8a026@botanik.uni-hamburg.de
Garnaat, Carl W.; Pioneer Hi-Bred Int'; Department of Biotechnology Research; 7300 N. W. 62nd Ave-P.O. Box 1004; Johnston IA 50131-1004; (515)2532251; (515)270-3367 (fax); GARNAATC@PHIBRED.COM
Garton, James; 220 Biosciences Ctr; 1445 Gortner Ave; Univ Minnesota; St. Paul MN 55108; 651-489-5535; jgarton@biosci.cbs.umn.edu
Garwood, D. L.; Garwood Seed Company; 1929 N. 2050 East Rd.; Stonington IL 62567-5306; 217-325-3715; 217-325-3578 (fax)
Garwood, Todd; Univ Idaho; Biological Sciences; Moscow ID 83844-3051; 208-885-2550; 208-885-7905 (fax)
Gaut, Brandon; 321 Steinhaus Hall; Dept Eco \& Evol; UC Irvine; Irvine CA 92697-2525; 949-824-2564; 949-824-2181 (fax); bgaut@uci.edu
Gavazzi, Giuseppe; Universita de Milano; Dip Fisiol Pianta Coltivate Chim Agrar; Via Celoria 2; 20133 Milano; ITALY; 02-26607221; 02-2663057 (fax); giuseppe.gavazzi@unimi.it
Geadelmann, Jon L.; Holden's Foundation Seeds, Inc; 2440 Highway 19 Blvd; Stanton MN 55018-7220; 507-263-3476; 507-263-4839 (fax); jon@holdens.com
Gebauer, Juan E.; Corn Breeding; Casilla 190; Buin; CHILE; 011(56-2)821-1552; 011(56-2)821-3564 (fax)
Geiger, Hartwig H.; Univ Hohenheim; 350 Inst Pflanzenzucht; Seed Sci and Pop Genetics; D-70593 Stuttgart; GERMANY; 49-711-459-2644; 49-711-4592343 (fax); geigerhh@uni-hohenheim.de
Gengenbach, Burle G.; Agron \& Plant Genetics; Univ of Minnesota; 1991 Upper Buford Cir.; St Paul MN 55108; 612-625-6282; 612-625-1268 (fax); burle@biosci.cbs.umn.edu
Genschel, Ulrich; Tech Univ Munchen; Lehrstuhl fur Genetik; Lictenbergstrasse 4; D-85747 Garching; GERMANY; 49892891 3532; genschel@bio.tum.de
George, Maria; CIMMYT; MCPO Box 3127; 1271 Makati; PHILIPPINES; 63-2 845-2563 ext 6828; 63-2 761-2406 (fax); m.george@cgiar.org
Gerentes, Denise; Univ Des Cezeaux - Biogemma; 24 Avenue des Landais; Aubiere 63170; FRANCE; $33473427970 ; 33673427981$ (fax); denise.gerentes@biogemma.com
Gerke, Justin; Univ Missouri; 302 Curtis Hall; Columbia MO 65211; 573-882-2033; JPG4ba@mizzou.edu
Giedt, Chris; Univ Idaho; Dept Biol Sci; 229 Gibb Hall; Moscow ID 83844-3051; 208-885-2550; 208-885-7905 (fax)
Gierl, Alfons; Lehrstuhl fur Genetik; Technische Universitat Munchen; Lichtenbergstrasse 4; 85747 Garching; GERMANY; 49-89-289-12890; 49-89-28912892 (fax); gierl@bio.tum.de
Gilliam, Jacob; Pioneer Hi-Bred Internat Inc; Crop Protection; 7300 NW 62nd Ave., PO Box 1004; Johnston IA 50131-1004
Gillies, Christopher; Macleay Bldg A12; Univ of Sydney; Sydney NSW 2006; AUSTRALIA; 61-2-351-2688; 61-2-351-4771 (fax)
Gilna, Paul; MS J586 B-S2; B Division Resource Unit; Los Alamos National Labs; Los Alamos NM 87545; 505-667-1514; 505-667-9611 (fax); pgil@lanl.gov
Giorio, Giovanni; c/0 Metapontum Agrobios; SS. Ionica Km 448.2; I-75010 Metaponto (MT); ITALY; 39-835-740276; 39-835-745306 (fax)
Girard, Lisa; Plant Biology Dept; 111 Koshland Hall; UC Berkeley; Berkeley CA 94720-3102
Giulini, Anna; Cold Spring Harbor Lab; 1 Bungtown Rd; PO Box 100; Cold Spring Harbor NY 11724; 516-367-8827; 516-367-8369 (fax); giulini@cshl.org
Glover, David V.; Dept of Agronomy; Purdue University; W. Lafayette IN 47907; 765-494-8067; 765-494-6508 (fax); DGLOVER@dept.agry.purdue.edu
Gobel, Elke; KWS Kleinwanzlebener Saatzucht AG; Grimschlstrasse 31; Einbeck; GERMANY; 49-5561-311636; 49-5561-311337(fax)
Goday, Adela; CSIC Dept Genet Molec; Jordi Girona 18; 08034 Barcelona; SPAIN; 34-93-4006100; 36-93-2045904 (fax); adggmm@cid.csic.es
Goettel, Wolfgang; Waksman Inst - Univ New Jersey; 190 Frelinghuysen Rd; Piscataway NJ 08854-8020; 908-445-3801; 908-445-5735 (fax); goettel@waksman.rutgers.edu
Goff, Steve; CIBA-GEIGY Biotechnology; 3054 Cornwallis Road; Research Triangle Park NC 27709
Goldman, Irwin; Department of Horticulture; Univ. of Wisconsin; 1575 Linden Drive; Madison WI 53706; (608)262-7781; (608)262-4743 (fax)
Goldman, Stephen; Dept of Biology; University of Toledo; Toledo OH 43606; 419-530-1540; 419-530-7737 (fax); stephen.goldman@utoledo.edu
Golubovskaya, Inna; Cande Lab; Dept of Molec \& Cell Biology; Box 341 LSA; Univ of California; Berkeley CA 94720; 510-643-8277; innagol@uclink4.berkeley.edu
Gomez, Elisa; Departmento de Biol Cel Genet; Univ de Alcala; Crta Madrid-Barcelona Km 33.600; E-28871 Alcala de Henares; SPAIN; 91-8854758; 91 8854799 (fax); elisa.gomez@uah.es
Goncalves-Butruille, Marymar; Univ Wisconsin; 445 Henry Mall; Room 118, Genetics Dept; Madison WI 53706; 608-262-3286; 608-262-2976 (fax); MGONCALV@STUDENTS.WISC.EDU
Gong, Zuxun; Academia Sinica; Shanghai Inst. of Biochem.; 320 Yue-Yang Road; Shanghai 200031; CHINA
Gonzalez de Leon, Diego; Paseo del Atardecer 360; Villas de Irapuato; Irapuato 36650 Guanajuato; MEXICO; 52-462-31137 (phone/fax)
Goodman, Major; Department of Crop Sciences; North Carolina State Univ; P.O. Box 7620; Raleigh NC 27695; 919-515-7039; 919-515-7959 (fax)
Gordon, P. N.; CT Forest \& Park Assoc.; 16 Meriden Rd.; Rockfall CT 06481-2961; (203)346-2372; 203-347-7463 (fax)
Gordon, Stuart; Ohio State Univ; 1680 Madison Ave; Wooster OH 44691; 330-236-3878; 330-236-3887 (fax); gordon.25@osu.edu
Gordon-Kamm, William; Pioneer Hi-Bred Internat Inc; 7300 NW 62nd Ave., PO Box 1004; Johnston IA 50131-1004
Gorenstein, Nina; Purdue Univ; Dept Biological Sciences; 1392 Lilly Hall; West Lafayette IN 47907; 765-496-2506; ninagor@bilbo.bio.purdue.edu
Gouesnard, B; INRA Centre de Montpellier; Sta Genet Amel Plantes; domaine de Melgueil; 34130 Mauguio; FRANCE; 67293990 (fax); gouesnar@montpellier.inra.fr
Gould, Jean; Texas A\&M; Forest Science Dept; College Station TX 77843-2135; 979-845-5078; 979-845-6049 (fax); gould@tamu.edu
Gracen, Vernon; Cargill Worldwide Seed; Box 5645; Minneapolis MN 55440; 612-742-7244; 612-742-7235 (fax)
Grant, David; G304 Agronomy Hall; Iowa State Univ; Ames IA 50011-1010; 515-294-1205; 515-294-2299 (fax); dgrant@iastate.edu
Gray, John; Dept of Biology; Univ of Toledo; 2801 West Bancroft St; Toledo OH 43606; 419-530-1537; 419-530-7737 (fax); jgray5@uoft02.utoledo.edu
Greene, Thomas W.; Dow AgroSciences; 9330 Zionsville Rd; Indianapolis IN 46268; 317-337-5956; 317-337-3228 (fax); twgreene@dowagro.com
Greenland, Andy; Zeneca Plant Science; Jealott's Hill; Bracknell; Berkshire RG2 6ET; UNITED KINGDOM; 44-1344-414820; 44-1344-414996 (fax); Andy.Greenland@aguk.zeneca.com
Grier, Stephen L.; Novartis Seeds; 317 330th St.; Stanton MN 55018-4308; 507-663-7662; 507-645-7519 (fax); steve.grier@seeds.novartis.com
Griffin, Daniel; Univ Minnesota; 220 Biosciences Ctr; 1445 Gortner Ave; St. Paul MN 55108; 612-625-5241; 612-625-1738 (fax); dgriffin@biosci.cbs.umn.edu
Griffor, Matthew; DeKalb Genetics; 62 Maritime Road; Mystic CT 06355; 860-572-5229; 860-572-5240 (fax)

Grimanelli, Daniel; ORSTOM - CIMMYT; Apdo Postal 6-641; 06600 Mexico D.F.; MEXICO; (52) $5726-9091$; (52) $5726-7558$ (fax); dgrimanell@cgiar.org Grobman, Alexander; Semillas Penta del Peru S.A.; Apartado 270227; Lima 27; PERU; (5114)426375; (5114)425465 (fax)
Grossniklaus, Ueli; Cold Spring Harbor Laboratory; PO Box 100; Cold Spring Harbor NY 11724; 516-367-8825; 516-367-8369 (fax); grossnik@cshl.org
Grotewold, Erich; Ohio State Univ Biotech Ctr; 232 Rightmire Hall; 1060 Carmack Rd; Columbus OH 43210; 614-292-2483; 614-292-5379 (fax); grotewold.1@osu.edu
Grun, Sebastian; Lehrstuhl Gentechnik Hoherer Pflanzen; TUM; Lichtenbergstrabe 4; 85747 Garching; GERMANY; 0049-89-289-13746; 0049-89-289-12892 (fax); gruen@snoopy.org.chemie.tu-muenchen.de
Gu, Ming-Hong; Jiangsu Agricultural College; Dept. of Agronomy; Yangzhou; Jiangsu 225001; CHINA
Gu, Mingguang; Institute of Genetics; Chinese Academy of Sciences; Beijing; CHINA
Guiltinan, Mark; Penn State Biotechnology Institute; 306 Wartik Lab; Dept of Horticulture; Univ. Park PA 16802-5807; 814-863-7958; 814-863-6139 (fax); mjg9@psu.edu
Guo, Baozhu; USDA/ARS/CPMRU; PO Box 748; Tifton GA 31793-0748; 912-387-2326; 912-387-2321 (fax); bguo@tifton.cpes.peachnet.edu
Guo, Jun-Yuan; Academia Sinica; South China Institute of Botany; Guangzhou 510650; CHINA
Guo, Mei; Pioneer Hi-Bred Intl, Inc; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131-552; 515-253-2146; 515-334-4788 (fax); guom@phibred.com
Gupta, Manju; Dow AgroSciences USA; 9330 Zionsville Rd; Building 306/C-1; Indianapolis IN 46268-1054; 317-337-5980; 317-337-5989 (fax); mgupta@dowagro.com
Gutierrez-Marcos, Jose; Plant Science; Oxford Univ; South Parks Rd; Oxford OX1 3RB; UNITED KINGDOM; 01865-275815; 01865-275074 (fax); jose.gutierrez@plants.ox.ac.uk
Gwyn, Jefferson; DeKalb Genetics Corp; 2139 CR 2500 N.; Thomasboro IL 61878; 217-694-4141; 217-694-4549 (fax)
Haag, Wayne L.; Sasakawa Global 2000; C. P. 4247; Maputo; MOZAMBIQUE; 258-1-490004; 258-1-491417 (fax)
Hajek, Kathryn; Dept Biol Env Sci; Univ Tennessee-Chattanooga; 615 McCallie Ave; Chattanooga TN 37403-2598; 423-755-4397; 423-785-2285 (fax)
Hake, Sarah; USDA-ARS-PGEC; 800 Buchanan Street; Albany CA 94710; 510-559-5907; 510-559-5678 (fax); maizesh@nature.berkeley.edu
Hall, Ira; Watson School Biol Sci; 1 Bungtown Rd; PO Box 100; Cold Spring Harbor NY 11724; 516-367-5156; hall@cshl.org
Hall, Lisa Naomi; Oxford Univ; Dept Plant Sci; South Parks Road; Oxford OX1 3RB; UNITED KINGDOM; 865-275030; 865-275147 (fax)
Hallauer, Arnel R.; Agronomy Building; 1505 Agronomy Hall; lowa State University; Ames IA 50011-1010; 515-294-3052; 515-294-3163 (fax); mlents@iastate.edu
Hamilton, RI; 3199 Klondike Road; North Gower; Ontario KOA2T0; CANADA; 613-489-3166; 613-489-3166 (fax); rih@cyberus.ca
Han, Changdeok; Gyeongsang National University; Gazwa Dong; Chinju 660-701; KOREA; 082-591-751-6029; 82-591-759-9363 (fax); cdhan@nongae.gsnu.ac.kr
Hancock, Denis C.; 213 Curtis Hall; University of Missouri; Columbia MO 65211; 573-882-1722; 573-884-7850 (fax); HancockDC@missouri.edu
Hannah, Curtis; Veg Crops Dept; Univ of Florida, IFAS; 1143 Fifield Hall, P.O. Box 110690; Gainesville FL 32611-0690; 352-392-1928x315; 352-392-5653 (fax); Hannah@GNV.IFAS.UFL.EDU
Hannappel, Ulrich; Long Ashton Research Station; Univ Bristol; Bristol BS18 9AF; UNITED KINGDOM; 441275 549412; 441275394281 (fax)
Hansel, W. C.; Hansel Cons \& Mgmt; Box 283; Carrollton MO 64633; 816-542-1616
Hansen, Joel; 2254 Molecular Biology Bldg.; lowa State University; Ames IA 50011; 515-294-0347; 515-294-0453 (fax); jdhansen@iastate.edu
Hansen, Leon A.; Novartis Seeds, Inc.; 6338 Highway 20-26; Nampa ID 83687; 208-465-8554; 208-467-4559 (fax)
Hansen, Susanne; Univ Hamburg; Ohnhoststrasse 18; D-22609 Hamburg; GERMANY; hansen@botanik.uni-hamburg.de
Hanson, Maureen R.; Dept Mol Biol \& Genetics; Cornell Univ.; Biotech Bldg; Ithaca NY 14853; 607-254-4833/4832 lab; 607-255-2428 (fax); mrh5@cornell.edu
Hantke, Sabine; Pioneer Hi-Bred Intl, Inc; 7300 NW 62nd Ave; P.O. Box 1004; Johnston IA 50131; 515-253-2493; 515-270-3367 (fax)
Harberd, Nicholas; John Innes Centre,; Norwich Research Park,; Colney Lane,; Norwich NR4 7UJ UK; +44-1603 452 571; x2525; nicholas.harberd@bbsrc.ac.uk
Hardeman, Kristine; Dekalb Plant Genetics/Monsanto; 62 Maritime Dr; Mystic CT 06355; 860-572-5279; 860-572-5282 (fax); Kristine.hardeman@monsanto.com
Harper, Lisa; Dept Molec \& Cell Biol; 345 LSA; University of CA; Berkeley CA 94720; 510-643-8277; 510-643-6791 (fax); ligule@nature.berkeley.edu
Harper, Stacy; Novartis Seeds; Biotech Research Unit; PO Box 12257; Research Triangle Park NC 27709; 919-541-8514; 919-541-8585 (fax); stacy.harper@nabri.novartis.com
Harris, John W.; Dept of Biology; Tennessee Tech Univ; Cookeville TN 38505; 615-372-3143; 615-528-4097 (fax)
Harris, Linda J.; Eastern Cereal \& Oilseed Res Centre; Agriculture \& Agri-food Canada; Bldg. \#21, Central Exp. Farm; Ottawa, Ontario K1A 0C6; CANADA; (613)759-1314; (613)759-6566 (fax); harrislj@em.agr.ca

Harry, David; DataGenetics; 810 E Hammond Ln; Phoenix AZ 85034-6515
Hartl, Thomas; Dow AgroSciences; 9330 Zionsville Rd; Bldg 306/C2-875; Indianapolis IN 46268; 317-337-5958; 317-337-5989 (fax); tahart @dowagro.com
Hartman, Carl; 155 South St. Rd. 2; Valparaiso IN 46383; 219-462-1927
Hausler, Mark; Monsanto; PO Box 3010; Ankeny IA 50021; 515-963-4213; 515-963-4242 (fax); mark.c.hausler@monsanto.com
Havecker, Ericka; lowa State Univ; B420 Agronomy Hall; Ames IA 50011; 515-294-1659; 515-294-2299 (fax); havecker@iastate.edu
Havukkala, Ilkka; Genesis R \& D Corp. Ltd.; P.O. Box 50; Auckland; NEW ZEALAND; 64-9-373-5600; 64-9-373-5601 (fax); i.havukkala@genesis.co.nz
Hawk, James A.; Dept Plant \& Soil Sciences; University of Delaware; Newark DE 19717-1303; 302-831-1379; 302-831-3651 (fax); jhawk@strauss.udel.edu
Hay, Angela; Univ California-Berkeley; 800 Buchanan Street; Albany CA 94710; 510-559-5922; 510-559-5678 (fax); ASHAY@nature.berkeley.edu
Hazen, Samuel; Wheat Breeding and Genetics; 366 Plant \& Soil Science Building; Michigan State University; East Lansing MI 48824; 517-353-8854; 517-353-3955 (fax); hazensam@pilot.msu.edu
He, Zuhua; Zhejiang Agricultural University; Biotechnology Institute; Hangzhou; Zhejiang 310029; CHINA
Headley, Joel; Dept Plant Biol; 111 Koshland Hall; Univ California; Berkeley CA 94720; 510-642-8058; joel7@uclink.berkeley.edu
Hebert-Soule, Dominique; Novartis Seeds S.A.; 12 Chemin de L-Hobit; B.P. 27; 31790 Saint Sauveur; FRANCE; 33.5.62.79.99.12; 33.5.62.79.99.96 (fax); dominique.hebertsoule@seeds.novartis.com
Heck, Donald; lowa State Univ; Dept Biochemistry; 4178 MBB; Ames IA 50010; 515-294-4042; 515-294-0453 (fax); daheck@iastate.edu
Helentjaris, Tim; Pioneer Hi-Bred Int., Inc.; Agronomic Traits/TTD; 7300 N.W. 62nd Ave. P.O. Box 1004; Johnston IA 50131-1004; 515-270-3691; 515-2542619 (fax); helentjartg@phibred.com
Helmer, Georgia; North Carolina State Univ; Dept of Botany; Box 7612; Raleigh NC 27695; 919-515-7166; 919-515-3436 (fax); georgia_helmer@ncsu.edu
Henderson, David; Univ Georgia; 2502 Plant Sci Bldg; Dept Botany; Athens GA 30602; davidh@dogwood.botany.uga.edu
Heredia-Diaz, Oscar; Monsanto; 700 Chesterfield Pkway North GG6A; St. Louis MO 63198; 314-537-6902; 314-537-6950 (fax); oohere@monsanto.com
Hermon, Pedro; Pioneer Hi-Bred Intl; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131
Hernandez, Julia Marcela; The Ohio State Univ; 206 Rightmire Hall; 1060 Carmack Rd; Columbus OH 43210; 614-688-4954; 614-292-5379 (fax); hernandez.16@osu.edu
Hetz, Winfried; Institue of Biology; University of Freiburg; Schlanzlestr, 1; 79104 Freiburg; GERMANY

Heun, Manfred; Population Genetics; Dept Chem \& Biotechnol; PO Box 5040, Agric Univ Norway; N-1432 AAs - NLH; NORWAY; 47-64947679; 47-64947691 (fax); manfred.heun@ikb.nlh.no
Hiatt, Evelyn N.; Dept of Genetics; Life Sciences Bldg; Univ Georgia; Athens GA 30602; 706-542-1010; 706-542-3910 (fax); hiatt@dogwood.botany.uga.edu
Higgs, David C.; Univ Wisconsin; 900 Wood Rd; PO Box 2000; Kenosha WI 53141; 262-595-2786; 262-595-2056 (fax); higgs@uwp.edu
Hile, Glenn C.; Syngenta; 7113 Alt 49 East; P.O. Box 249; Arcanum OH 45304; 513-692-5164; 513-692-8256 (fax); glenn.hile@syngenta.com
Hill, Martha; Novartis Biotechnology; PO Box 12257; 3054 Cornwallis Rd; Research Triangle Park NC 27709-2257; 919-541-8580; 919-541-8585 (fax); martha.hill@nabri.novartis.com
Ho, David; Department of Biology; Washington University; St. Louis MO 63130; 314-935-4632; 314-935-4432 (fax); HO@WUSTLB.wustl.edu
Hochholdinger, Frank; Iowa State University; B420 Agronomy Hall; Ames IA 50011; 515-294-1659; 515-294-2299 (fax); hochhold@iastate.edu
Hodges, Tom; Botany \& Plant Pathology; Agricultural research Building; Purdue University; W. Lafayette IN 47907; 765-494-4657; 765-494-5896 (fax); hodges@btny.purdue.edu
Hoegemeyer, Thomas C.; Hoegemeyer Hybrids Inc; 1755 Hoegemeyer Rd; Hooper NE 68031; 402-654-3399; 402-654-3342 (fax)
Hoekenga, Owen; Boyce Thompson Inst Plant Res; Tower Rd; Ithaca NY 14853-1801; 607-254-1310; 607-254-1242 (fax); oah1@cornell.edu
Hoelscher, Angel; Monsanto Life Sciences; 700 Chesterfield Pkwy North; MZ BB3G; St. Louis MO 63198; 314-737-7577; 341-737-5223 (fax); angel.d.hoelscher@monsanto.com
Hoisington, David; CIMMYT; Lisboa 27, Aptdo. Postal 6-641; 06600 Mexico, D. F.; MEXICO; 525-726-7575; 525-726-7558 (fax); D.Hoisington@cgiar.org
Holdsworth, MJ; IACR-Long Ashton Res Stn; Univ Bristol; Long Ashton; Bristol BS18 9AF; UNITED KINGDOM; mike.holdsworth@bbsrc.ac.uk
Hole, David; Plant Soils \& Biometeorology Dept.; Utah State Univ.; Logan UT 84322-4820; 435-750-2235; 435-750-3376 (fax); dhole@mendel.usu.edu
Holley, Randall; Novartis Seeds; 340 Southside Dr.; Henderson KY 42420; 270-827-5787; 270-827-5703 (fax); randy.holley@seeds.novartis.com
Hollick, Jay; 555 LSA 3200; Univ California; Berkeley CA 947203-200; 510-643-1734; 510-642-0355 (fax); hollick@nature.berkeley.edu
Holligan, Dawn; 2502 Plant Sci Bldg; Dept Botany; Univ Georgia; Athens GA 30602; 706-542-1857; 706-542-1805 (fax); dawn@dogwood.botany.uga.edu
Holton, Hans; Univ California-Berkeley; 800 Buchanan Street; Albany CA 94710; 510-559-5922; 510-559-5678 (fax); hehe@nature.berkeley.edu
Holtsford, Timothy; Biol Sci; Tucker Hall; Univ of Missouri; Columbia MO 65211; 573-882-3016; holtsford@biosci.mbp.missouri.edu
Hong, Guo-Fan; National Center for Gene Research; Chinese Academy of Science; 500 Cao Bao Road; Shanghai 200233; CHINA; 86-21-482-2885; 86-21-482-5775 (fax)
Hong, Meng-Min; Chinese Academy of Sciences; Shanghai Inst Plant Physiol; 300 Fenglin Road; Shanghai 200032; CHINA; 86-21-64042090-4429; 86-2164042385 (fax); hongmm@iris.sipp.ac.cn
Hoogstraten, Rebecca; Monsanto; 1920 Fifth St; Davis CA 95616; 530-792-2230; 530-753-1510 (fax); rebecca.a.hoogstraten@monsanto.com
Hornstra, Luc; Keygene NV; 677 A E Wageningen; NETHERLANDS; 31-317-424939
Hornstra, Luc; Keygene NV; 677 A E Wageningen; NETHERLANDS; 31-317-466866
Houchins, Kate; 302 Curtis Hall; University of Missouri; Columbia MO 65211; 573-882-2033; 573-884-7850 (fax); houchinske@missouri.edu
Houghteling, Billy; Dept Biology; Ball State Univ; Muncie IN 47306; 765-285-8854; 765-285-8804 (fax)
Houmard, Nancy; Dekalb; 62 Maritime Dr; Mystic CT 06355; 860-572-5219; 860-572-5240 (fax); nhoumard@dekalb.com
Hsia, An-Ping; B420 Agronomy Hall; Iowa State University; Ames IA 50011; 515-294-1659; 515-294-2299 (fax); hsia@iastate.edu
Hu, Gongshe; Dept Plant \& Microbial Biol; Plant Gene Expression Ctr; 800 Buchanan St; Albany CA 94710; 510-559-5919; 510-559-5678 (fax); gongshe@yahoo.com
Hu, Jianping; Dept of Botany; University of Georgia; Athens GA 30602; 706-542-1857; 706-542-1805 (fax)
Hu, Yun; Univ Georgia; Botany Dept; Miller Plant Sci; Athens GA 30602; 706-542-1857; 706-542-1805 (fax); cloud@dogwood.botany.uga.edu
Huang, Anthony; Dept. Bot. \& Plant Sci.; Univ. of California; Riverside CA 92521-0124; 909-787-4783; 909-787-4437 (fax); ahuang@ucrac1.ucr.edu
Huang, Bing-Quan; Biology Dept; Univ of North Dakota; Grand Forks ND 58202; 701-777-4479; 701-772-5041 (fax)
Huang, Danian; China National Rice Research Institute; Hangzhou; Zhejiang 310006; CHINA
Huang, Wei-Da; Fudan University; Dept. of Biochem.; Handan Road 220; Shanghai 200433; CHINA
Huang, Yih-Ching; Department of Agronomy; National Taiwan University; Taipei; TAIWAN; (02)2 363-0231 ext. 2727; (02)2 362-0879 (fax); ych@ccms.ntu.edu.tw
Hubbard, Lauren; USDA-ARS-PGEC; 800 Buchanan St.; Albany CA 94710; 510-559-5922; 510-559-5648 (fax); LHUBBARD@Nature.Berkeley.EDU
Hueros, Gregorio; Departmento de Biol Cel Genet; Univ Alcala; Crta Madrid-Barcelona Km 33.600; E-28871 Alcala de Henares; SPAIN; 91-8854758; 918854799 (fax); gregorio.hueros@uah.es
Huestis, Gordon; John Innes Centre; Colney Lane; Norwich NR4 7UH; UNITED KINGDOM
Huetl, Regine; Tech Univ Munchen; Lehrstuhl fur Genetik; Lichtenbergstrasse 4; D-85747 Garching; GERMANY; maize@c2h5oh.org.chemie.tumuenchen.de
Huffman, Gary A.; Pioneer Hi-Bred International; 7300 NW 62nd Ave.; P.O. Box 1004; Johnston IA 50131-1004; 515-270-3502; 515-270-3367 (fax); HUFFMANG@PHIBRED.COM
Hulbert, Scot; Kansas State University; Dept. of Plant Pathology; Throckmorton Hall; Manhattan KS 66506-5502; 913-532-1392; 913-532-5692 (fax); shulbrt@plantpath.ksu.edu
Hunsperger, John P.; P.O. Box 2217; Gilroy CA 95021-2217; (408)848-1161; jhunsp@ix.netcom.com
Hunter, Brenda; Dept Plant Sci; Forbes Hall, Room 303; Univ of Arizona; Tucson AZ 85721; bhunter@Ag.Arizona.Edu
Hunter, Clifford; Monsanto; 5912 N. Meridian; Wichita KS 67204-1699; 316-250-8400; 316-755-0795 (fax); clifford.p.hunter@monsanto.com
Hurkman, Meg; 3403 Marino Ct, Apt. 5; Middleton WI 53562
Hussey, Patrick J.; University of London; Royal Holloway New College; Dept. Biochem., Egham Hill; Egham, Surrey TW20 OEX; UNITED KINGDOM
lida, Shigeru; Div Gene Expr \& Regulation I; Nat Inst for Basic Biology; Okazaki 444; JAPAN; 0564-55-7680; 0564-55-7685 (fax); shigiida@nibb.ac.jp
Im, Kyung Hoan; Dept Plant Path; Univ of Florida; Gainesville FL 32611
Inada, Noriko; Univ California; Dept Plant Microbiol; Berkeley CA 94720; inada@biol.s.u-tokyo.ac.jp
Ingham, Erika; 105 Tucker Hall; Univ of Missouri; Columbia MO 65211; 573-882-3481; 573-882-0123 (fax)
Ingram, Gwyneth; INRA; RDP, Ecole Normale Superieure de Lyon; 46 Allee d'Halie; 69364 Lyon Cedex 07; FRANCE; $0033472728607 ; 0033472728600$ (fax)
Innes, R. L.; DeKalb Canada Inc.; R.R. 2; Glanworth, Ont. NOL 1LO; CANADA
Inoue, Yasuaki; National Grassland Res Inst; 768 Nishinasuno; Tochigi 329-27; JAPAN; 0287-36-0111
Irish, Erin; Department of Biological Sciences; 312 Chemistry Bldg; University of lowa; Iowa City IA 52242; 319-335-2582; 319-335-3620 (fax); erinirish@uiowa.edu
Isaac, Peter; Agrogene S.A.; 620, rue Blaise Pascal; Z.I.-Immeuble Alligator; 77555 Moissy Cramayel; FRANCE; 33-1-64 13 31 80; 33-1-64 13 3181 (fax); pete.i@agrogene.com
Ishige, Teruo; Biol Resources Div; JIRCAS; 1-2 Ohwashi; Tsukuba 305-8686; JAPAN; 81-298-38-6305; 81-298-38-6650 (fax)
Ishikawa, Ryuji; Faculty of Agriculture; Hirosaki Univ; Hirosaki Aomori 036; JAPAN; 011-81-172-39-3778; 011-81-172-39-3750 (fax); ishikawa@cc.hirosaki-
u.ac.jp

Islam-Faridi, M. Nurul; Dept Soil and Crop Sci; Texas A\&M Univ; College Station TX 77843-2474
Ito, Momoyo; BioScience Ctr; Nagoya Univ; Chikusa; Nagoya 464-8601; JAPAN; 81-52-789-5225; 81-52-789-5226 (fax)
Itoh, Jun-Ichi; Univ California; 111 Koshland Hall; Plant Biol; Berkeley CA 94720; 510-642-8058; ajunito@mail.ecc.u-tokyo.ac.jp
Jackson, Dave; IACR-Long Ashton; Bristol BS18 9AF; UNITED KINGDOM; 44-1275--549428; 44-1275-394281 (fax); Dave.Edwards@BBSRC.AC.UK
Jackson, David; Cold Spring Harbor Lab; 1 Bungtown Rd; P.O. Box 100; Cold Spring Harbor NY 11724-2212; 516-367-8467; 516-367-8369 (fax); jacksond@cshl.org
Jackson, Janet Day; Maize Coop Stock Center/AW-101 Turner; University of Illinois; 1102 S. Goodwin Ave; Urbana IL 61801; 217-333-6331; 217-333-6064 (fax); j-day@uiuc.edu
Jacqueth, Jennifer; Pioneer Hi-Bred Intl; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131; 515-270-4369; jaquethjs@phibred.com
Jahn, Molly; Cornell Univ; 312 Bradfield Hall; Ithaca NY 14853; 607-255-8147; 607-255-6683 (fax)
James, Martha G.; Dept. of Bioch Bioph Mol Biol; Molecular Biology Building, Room 2152; lowa State University; Ames IA 50011; 515-294-3818; 515-2940453 (fax); mgjames@iastate.edu
Jamoom, Eric; Univ Florida; Hortic Dept; Gainesville FL 32611-0690; 352-846-8888; Jamoom@ufl.edu
Jampatong, Chaba; Natl Corn \& Sorghum Res Ctr; Kasetsart Univ; Klangdong, Pakchong; Nakhonratchasima, 30320; THAILAND; 66-44-361771-4; 66-44361108 (fax); raisuwan@korat.loxinfo.co.th
Jampatong, Sansern; Natl Corn \& Sorghum Res Ctr; Kasetsart Univ; Klangdong, Pakchong; Nakhonratchasima,30320; THAILAND; 66-44-361771-4; 66-44361108 (fax); raisuwan@korat.loxinfo.co.th
Janick-Buckner, Diane; Truman State Univ; Div Sciences; Kirksville MO 63501; 816-785-4305; 816-785-4045 (fax); djb@truman.edu
Jankovsky, Julia; Biology Dept c/o Tim Nelson; PO Box 208104; Yale University; New Haven CT 06520-8104; 203-432-3862
Jarboe, Sue G.; Purdue University; Department of Agronomy; 1150 Lilly Hall of Life Sciences; West Lafayette IN 47907-1150; 765-494-4772; 765-496-1368 (fax)
Jeffries-Griffor, Joanne; DeKalb Genetics; 62 Maritime Rd; Mystic CT 06355
Jegla, Dorothy; Dept Biol Sci; 316 CB; University of Iowa; lowa City IA 52242
Jenkins, Bethany; Institute of Molecular Biology; University of Oregon; Eugene OR 97403
Jesaitis, Lynne; Plant Biology Dept; 111 Koshland Hall; UC Berkeley; Berkeley CA 94720; 510-642-8058; 510-642-4995 (fax); ljesaiti@nature.berkeley.edu
Jewell, David C.; CIMMYT Maize Research Station; P.O. Box MP 163; Mount Pleasant; Harare; ZIMBABWE; (263)(4)301807; (263)(4)301327 (fax); D.Jewell@CGNET.com

Ji, Jiabing; Univ Georgia; 4606 Plant Sci; Athens GA 30602; 706-542-1954; 706-542-1805 (fax); Jiabing@dogwood.botany.uga.edu
Jia, Hongwu; Iowa State Univ; G418 Agronomy Hall; Ames IA 50010; 515-294-0837; hwjia@iastate.edu
Jiang, Cizhong; lowa State Univ; 2288 Molec Biol Bldg; Ames IA 50011; 515-294-3277; CzJiang@iastate.edu
Jiang, Ning; Univ of Georgia; Plant Sci Building; Athens GA 30602; 706-542-1857; 706-542-1805 (fax); jiang@dogwood.botany.uga.edu
Jiao, Shunxing; 324 Tucker Hall; Univ Missouri; Columbia MO 65211; 573-882-8033; JiaoS@missouri.edu
Jin, Ping; Iowa State Univ; 2188 MBB; Ames IA 50011; 515-294-0337; 515-294-6755 (fax)
Jobling, Steve; Unilever Research; Colworth House; Sharnbrook; Bedford MK44 1LQ; UNITED KINGDOM; 44 1234 222575; 441234222552 (fax); Steve.Jobling@unilever.com
Jockovic, Djordje; Inst Field and Veg Crops; 30 Maksima Gorkog; Novi Sad 21000; YUGOSLAVIA; jockovic@eunet.yu
Joets, Johann; INRA; Station Genet Veg; du Moulon; Gif-sur-Yvette 91190; FRANCE; 113316933 23; 11331693323 (fax); joets@moulon.inra.fr
Johal, Guri; Pioneer Hi-Bred Internatl; Dept Biotechnol Res; PO Box 552; Johnston IA 50131-0552; 515-253-2154; 515-253-2147 (fax); johalgu@phibred.com
Johns, Mitrick A.; Dept Biological Sciences; Northern Illinois University; DeKalb IL 60115; 815-753-7836; 815-753-0461 (fax); majohns@niu.edu
Johnson, Elizabeth; CIBA-GEIGY Corporation; P.O. Box 1830; Kaunakakai HI 96748; 808-567-6146; 808-567-6753 (fax)
Johnson, Elmer C.; 1525 Vine St.; Belmont CA 94002; 650-593-1525
Johnson, Melvin; 920 North Hwy 13; Henrietta MO 64036; 816-494-5561; mjohnson@jcrob.com
Johnson, MW; Dept of Agronomy; Pennsylvania State Univ; University Park PA 16802; 814-865-0324; 825-863-7043 (fax)
Johnson, Richard; Monsanto Co; 101 West Tomaras Ave; Savoy IL 61874; 217-356-6879; 217-356-7863 (fax); djohnson@dekalb.com
Johnson, Scott; Mycogen Plant Sciences; 301 Campus Dr; P.O. Box 280; Huxley IA 50124; 515-597-3284; 515-597-2875 (fax)
Johri, M. M.; Molecular Biology Unit; Tata Inst Fundamental Res; Homi Bhabha Road; Mumbai 400 005; INDIA; 215-2971; 091-22-215-2110 (fax); MMJOHRI@tifrvax.tifr.res.in
Jondle, Doug; Cargill Hybrid Seeds; 1502 N Gault; St. Peter MN 56082; 507-931-2940; 507-931-9691 (fax)
Jones, John Edward; 8429 Meadow Green Way; Gaithersburg MD 20877
Jones, Jonathan; Sainsbury Laboratory; John Innes Centre; Colney Lane; Norwich NR4 7UH; UNITED KINGDOM; 44-1603-452571; 250024 (fax); JONESJ@bbsrc.AC.UK
Jones, Mark; 031 Selby Hall; 1680 Madison Ave; Wooster OH 44691; 330-263-3838x2837; 330-263-3841 (fax); jones.390@osu.edu
Jorgensen, Richard; Dept Plant Sci; Univ Arizona; 303 Forbes Bldg; Tucson AZ 85721-0036; 520-626-9216; 520-621-7186 (fax); raj@ag.arizona.edu
Juarez, Michelle; Cold Spring Harbor Lab; 1 Bungtown Rd; PO Box 100; Cold Spring Harbor NY 11724; 516-367-6818; 516-367-8369 (fax); juarez@cshl.org
Julstrom, Paul; c/o CIMMYT; Lisboa 27, Apdo. Postal 6-641; 06600 Mexico, D.F.; MEXICO; 525726 9091; 5257267558 (fax)
Jun, Wei; Box 8118; Beijing 100081; CHINA
Jung, Rudolf; Pioneer Hi-Bred Internat Inc; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131-1004; 515-270-5934; 515-270-2619 (fax); jungr@phibred.com
Juvik, J. A.; Dept. Nat. Res. Environ. Sci.; University of Illinois; 307 ERML; Urbana IL 61801; 217-333-1966; 217-333-4777 (fax); j-juvik@uiuc.edu
Kaeppler, Heidi F.; Moore Hall 461; Dept of Agronomy, Univ of Wisconsin; 1575 Linden Dr; Madison WI 53706-1597; 608-262-0246; 608-262-5217 (fax); hfkaeppl@facstaff.wisc.edu
Kaeppler, Shawn; Dept of Agronomy; University of Wisconsin; 1575 Linden Drive; Madison WI 53706; 608-262-9571; 608-262-5217 (fax); smkaeppl@facstaff.wisc.edu
Kahler, Alex; Biogenetic Services, Inc; 801 32nd Ave; Brookings SD 57006-4716; 605-697-8500; 605-697-8507 (fax); biogene@brookings.net
Kaleikau, Ed; NRI Plant Genome Program; Stop 2241; 1400 Independence Avenue SW; Washington DC 20250-2241; 202-401-1931; 202-401-6488 (fax); EKALEIKAU@REEUSDA.GOV
Kalia, V.; Regional Research Station; Dhaulakuan-173001; Distt Sirmur (H. P.); INDIA
Kallis, Russ; Univ Illinois; 259 ERML; 1201 S Gregory Dr; Urbana IL 61801; 217-244-5760; r-kallis@uiuc.edu
Kampani, Archana; Univ Illinois; 1201 W Gregory Dr; Urbana IL 61801; 217-244-6146; 217-333-4582 (fax); kampani@uiuc.edu
Kamps, Terry L.; So Plains Res Sta; 2000 18th St; Woodward OK 73801; 580-256-7449; 580-256-1322 (fax); tkamps@spa.ars.usda.gov
Kang, Chun-Lin; Hunan Agricultural College; Dong Jiao; Changsa; Hunan 410128; CHINA
Kang, Manjit; Department of Agronomy; Louisiana State University; Baton Rouge LA 70803-2110; 504-388-2110; 504-388-1403 (fax);
mkang@agctr.Isu.edu
Kantety, Ramesh; Dept of Agronomy; 1150 Lilly Hall; Purdue University; West Lafayette IN 47907-1150; 765-496-2729; 765-494-6508 (fax)
Kaplinsky, Nick; Univ California-Berkeley; 111 Koshland Hall; Berkeley CA 94720; 510-642-7085; 510-642-4995 (fax); nkaplins@nature.berkeley.edu
Karpoff, Arnold; Dept of Biology; Univ of Louisville; Louisville KY 40292; 502-852-5934; 502-852-0725 (fax); AJKARP01@homer.Louisville.edu
Karpova, Olga; Univ Missouri; 105 Tucker Hall; Columbia MO 65211; 573-882-8033; 573-882-0123 (fax)
Kasha, Ken; Dept of Crop Science; Univ of Guelph; Guelph, Ontario N1G 2W1; CANADA; 519-824-4120 EXT 2507; 519-763-8933 (fax)
Kass, Lee; L. H. Bailey Hortorium; 462 Mann Library; Cornell Univ; Ithaca NY 14853; 607-255-2131; 607-255-7979 (fax); LBKBHWON@aol.com
Kaszas, Etienne; Syngenta; 3054 Cornwallis Rd; Research Triangle Park NC 27709; 919-597-3015; 919-541-8585 (fax); etienne.kaszas@syngenta.com
Katayose, Yuichi; Rice Genome Res Program, STAFF Inst; 446-1, Ippaizuka, Kamiyokoba; Ippaizuka, Tsukuba-shi; Ibaraki-ken 305; JAPAN; 81-298-382199; 81-298-38-2302 (fax); katayose@abr.affrc.go.jp
Kato, Akio; Univ Missouri; 117 Tucker Hall; Columbia MO 65211; 573-882-4871; 573-882-0123 (fax); kato@mail.biosci.missouri.edu
Kato Y., T. Angel; Colegio de Postgraduados; Inst Rec Genet Productividad; Km 35.5 Carr Mexico-Texcoco; 56230 Montecillo, Texcoco; MEXICO; 595102 30; 59510230 (fax)
Kaufman, Benjamin; Centre Analytical Labs; 3048 Research Drive; State College PA 16801; 814-231-8032; 814-231-1580 (fax); BeniK@centrelab.com
Kavakli, Ibrahim; 379 Clark Hall; Washington State Univ; Pullman WA 99164; 509-335-1047; 509-335-7643 (fax); hali@wsu.edu
Keeling, Peter; ExSeeds Genetics L.L.C.; 1573 Food Sci Bldg; lowa State Univ; Ames IA 50011-1061; 515-294-3259; 515-294-2644 (fax); pkeeling@iastate.edu
Kellogg, Elizabeth A.; Dept of Biology; Univ of Missouri - St Louis; 8001 Natural Bridge Rd; St. Louis MO 63121; 314-516-6217; 314-516-6233 (fax); tkellogg@umsl.edu
Kemble, Roger; Pioneer Hi-Bred Intl, Inc; 7300 NW 62nd Ave; Johnston IA 50131; 515-270-3754; 515-270-3367 (fax); Kemblerj@phibred.com
Kendall, Tim; Pioneer Hi-Bred Internat., Inc.; 7300 NW 62nd Ave., PO Box 1004; Johnston IA 50131-1004; 515-270-5952; 515-270-3367 (fax); KENDALLTL@PHIBRED.COM
Kendra, David F.; Novartis Seeds Inc.; 317 330th Street; Stanton MN 55018; 507/663-7636; 507/645-7519 (fax); dave.kendra@seeds.novartis.com
Kennard, Wayne; Monsanto; 3302 Convenience Blvd; Ankeny IA 50021; 515-963-4209; 515-963-4242 (fax); wayne.kennard@monsanto.com
Kermicle, Jerry; 218 Genetics Dept; 445 Henry Mall; University of Wisconsin; Madison WI 53706; 608-262-1253; 608-262-2976 (fax); kermicle@facstaff.wisc.edu
Kerns, Michael R.; Monsanto Global Seed Group; 101 Tomaras Avenue; Savoy IL 61874; 217-356-6879; 217-356-7663 (fax); mkerns@dekalb.com
Kerns, Sarah; Univ Wisconsin; 1575 Linden Dr; Madison WI 53706; 608-262-6521; 608-262-5217 (fax)
Kerstetter, Randall; Plant Gene Expression Center, USDA; 800 Buchanan Street; Albany CA 94710; (510)559-5922; (510)559-5648 (fax); RAND@NATURE.BERKELEY.EDU
Kessler, Sharon; Section of Plant Biology; Division of Biological Sciences; Univ California; Davis CA 95616; 916-754-8692; 916-752-5410 (fax); sakessler@ucdavis.edu
Khairallah, Mireille; CIMMYT; Apdo. Postal 6-641; Mexico, D.F. 06600; MEXICO; 415-833-6655; 415-833-6656 (fax)
Khavkin, Emil E.; Inst Agric Biotech; 42 Timiryazevskaya ul.; Moscow, 127550; RUSSIA; (7-095)976-6544; (7-095)977-0947 (fax); emil@iab.ac.ru; emil@agrobio.msk.su
Kidwell, Kimberlee; Crop \& Soil Sci; 201 Johnson Hall; Washington State Univ; Pullman WA 99164; 509-335-7247; 509-335-8674 (fax); kidwell@mail.wsu.edu
Kiefer, Mike; Northrup King Co.; 317 330th St.; Stanton MN 55018-4308
Kim, Byung Dong; Dept of Horticulture; Seoul National Univ; 103 Seodoon-dong; Suwon 441-744; KOREA; 82-331-296-2768 (fax); kimbd@plaza.snu.ac.kr
Kim, Cheol-soo; Univ Arizona; 303 Forbes Hall; Tucson AZ 85721; 520-621-9154; 520-621-3692 (fax); chkim@ag.arizona.edu
Kim, Insoon; Plant Biology Dept; 111 Koshland Hall; UC Berkeley; Berkeley CA 94720-3102
Kim, Kyung-Nam; Penn State; 302 Wartik Lab; University Park PA 16802; 814-863-7958; 814-863-7958 (fax)
Kim, Seungtaek; Iowa State Univ; 2182 Molec Biol Bldg; Ames IA 50011; 515-294-8202; 515-294-0453 (fax); kimst@iastate.edu
Kim, Soon Kwon; Internat Agric Research Inst; College of Agriculture; Kyungpook National Univ; Taegu 702-701; SOUTH KOREA; kimsk@bh.kyungpook.ac.kr
Kim, Woo-Yang; 2801 W Bancroft St; Univ Toledo; Toledo OH 43606; 419-530-1538; 419-530-7737 (fax)
Kindiger, Bryan; USDA-ARS; Grazinglands Research Laboratory; 7207 West Cheyenne St; El Reno OK 73036; 405-262-5291; BKindige@GRL.ARS.USDA.GOV
Kinsey, Marcia; DeKalb Genetics Corp; 3100 Sycamore Rd; DeKalb IL 60115; 815-758-9361; 815-758-4106 (fax)
Kirsch, Helene; Inst Allgemeine Bot; Univ Hamburg; Ohnhorstrasse 18; Hamburg; GERMANY; 049-40-428-15-382; 049-40-428-16-503 (fax)
Kiss, Charles; 18 Avenue Gallieni; 49130 Les Ponts de Ce; FRANCE; 33-2-41-44-97-97; 33-2-41-44-98-69 (fax)
Kleese, Roger; 6700 80th Ave. N.; Brooklyn Park MN 55445; 612-566-3561; 515-254-2744 (fax)
Klein, Anita S.; Department of Biochemistry; Spaulding Life Science Bldg; University of New Hampshire; Durham NH 03824; 603-862-2455; 603-862-4013 (fax); anita.klein@unh.edu
Kleinhofs, Andy; Crop \& Soil Sci; 201 Johnson Hall; Washington State Univ; Pullman WA 99164-6420; 509-335-4389; 509-335-8674 (fax); andyk@wsu.edu
Kloeckener-Gruissem, Barbara; Neurology; Univ Calif San Francisco; San Francisco CA 94143; (510) 985-3100; (510) 985-3101 (fax); bkg@gallo.ucsf.edu
Knapp, Steve; Department of Crop \& Soil Science; Oregon State University; Corvalis OR 97331-2902
Koch, Karen E.; 2147 Fifield Hall; Horticulture Dept, Plant Molec Cell Biol; University of Florida; Gainesville FL 32611; 352-392-4711 ext 309; 352-392-6479 (fax); kek@gnv.ifas.ufl.edu
Kohashi, Josue; Dept of Botany; Colegio de Postgrad; Chapingo, Edo de Mex; MEXICO; (595)4-22-00 ext.5294; (595)428-73 (fax)
Koinuma, Keiichi; Hokkaido Natl Agric Exp Stn; Hitsujigaoka, Toyohira-ku; Sapporo; Hokkaido 0628555; JAPAN; koinuma@cryo.affrc.go.jp
Kolacz, Kathryn; Monsanto; 700 Chesterfield Pkwy; St. Louis MO 63198; 314-537-6406; 314-537-7015 (fax)
Kolomiets, Michael; Pioneer Hi-Bred Internatl; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131; 507-457-1554; 507-457-1633 (fax); kolomimike@phibred.com
Kongsamai, Buppa; Iowa State Univ; Dept Agron; 1401 Agronomy Hall; Ames IA 50011; 515-294-0896; buppa@iastate.edu
Konstantinov, Kosana; Maize Research Institute; 11185 Zemun-Belgrade; YUGOSLAVIA; (381)11-3756-704; (381)11-3857-707 (fax); kkosana@mrizp.co.yu
Konstantinov, Yuri; Siberian Inst Plant Phys Bioch; P.O. Box 1243; Irkutsk 664033; RUSSIA; 39-52-46-09-03; 39-52-51-07-54 (fax); yukon@sifibr.irk.ru; plantgene@sifibr.irk.ru
Koterniak, Vladimir; Maize \& Sorghum Res Inst; Pascani; reg. Criuleni 4834; MOLDOVA; koterniak@hotmail.com
Kowalewski, Shirley; Curtis Hall; University of Missouri; Columbia MO 65211; 573-882-2674; 573-884-7850 (fax); kowalewskis@missouri.edu
Kowles, Richard V.; Biology Department - Box 10; 700 Terrace Heights; St. Mary's University of Minnesota; Winona MN 55987; 507-457-1554; 507-457-1633 (fax); dkowles@smumn.edu
Krakowsky, Matthew; lowa State Univ; 1541 Agronomy Hall; 100 Osborn Dr; Ames IA 50010; 515-294-5755; MDK@iastate.edu

Kramzar, Lynn; Univ Wisconsin; 900 Wood Rd; PO Box 2000; Kenosha WI 53141; 262-595-2786; kramz001@uwp.edu
Kravchenko, O. A.; Sprincenoaia Str. 1; Institute of Genetics; Chisinau, MD 2028; MOLDOVA; (3732)73-81-25; kravchenko@mail.md
Krebbers, Enno; DuPont de Nemours \& Co.; Agricultural Biotechnology; Experimental Station 402/2253; Wilmington DE 19880-0402; (302)695-8577; (302)695-7361 (fax); enno.krebbers@usa.dupont.com

Kreisman, Lori S; Dept Biol Sci; Gibb Hall; Univ of Idaho; Moscow ID 83844
Krivov, Nikolai V.; Institute of Genetics; 20 Padurii St.; Kishinau 2002; MOLDOVA; 0422-52-20-68; 3732556180 (fax); n.krivov@usa.net
Kriz, Al; Renessen LLC/Monsanto; 62 Maritime Dr.; Mystic CT 06355-1958; 860-572-5217; 860-572-5280 (fax); al.kriz@renessen.com
Krone, Todd; Asgrow Seed Co; 634 E. Lincoln Way; Ames IA 50010-6598; 515-232-6955; 515-232-6905 (fax)
Kross, Heike; Univ Missouri; 209 Curtis Hall; Columbia MO 65211-7020; 573-884-2343; 573-884-7850 (fax); KrossH@missouri.edu
Krueger, Roger W.; Monsanto; 800 N. Lindbergh Blvd. C2NA; St. Louis MO 63167; 314-694-3677; 314-694-5926 (fax); RWKRUE@ccmail.monsanto.com
Kuhn, William E; U.S. Corn Research Director; Pioneer Hi-Bred Internatl., Inc.; 7300 NW 62d Ave., PO Box 1004; Johnston IA 50131-1004; 515-270-3362; 515-253-2288 (fax); kuhnw@phibred.com
Kumar, M.; Department of Genetics; Rajendra Agric. Univ., Bihar; Pusa (Samastipur)-848125; INDIA
Kumar, Sanjeet; Project Directorate Veg Res; Post Box \# 5002; Varanasi-221005; INDIA; sanjeetk1@mailcity.com
Kunze, Reinhard; Institut fuer Botanik II; Universitaet zu Koeln; Gyrhofstr. 15; 50931 Koeln; GERMANY; Tel. +49-221-470-6596; Fax +49-221-470-5039; Reinhard.Kunze@uni-koeln.de
Kuo, Chih-Horng; Iowa State Univ; B420 Agronomy Hall; Ames IA 50011; 513-294-1659; chkuo@iastate.edu
Kutka, Frank; Natural Resources Res Inst; 5013 Miller Trunk Hwy; Duluth MN 55811
Kuzmin, Eugene; Dept Biol Sci; Univ of Missouri; Columbia MO 65211; 573-882-8033; 573-882-0123 (fax); ekuzmin@biosci.mbp.missouri.edu
Kynast, Ralf; Univ Minnesota; Dept Agron Plant Genet; 411 Borlaug Hall, 1991 Buford Circle; St. Paul MN 55108-6026; 612-625-6223; 612-625-1268 (fax); kynas001@tc.umn.edu
Labkowitz, Mark; Dept Plant Biology; 111 Koshland; Univ California; Berkeley CA 94720; 510-642-8058; 510-642-4995 (fax)
Laccetti, Lucille B.; DeKalb Plant Genetics; 62 Maritime Park; Mystic CT 06355; 860-572-5247; 860-572-5240 (fax)
LaCognata, Ursula; Hermannswerder 14; 14473 Potsdam; GERMANY; 49-331-27-567-28; 49-331-27-567-77 (fax); lacognata@PlantTec.de
Lai, Fang-Ming; BASF Plant Sci; 26 Davis Dr; Research Triangle Park NC 27709; 919-547-2368; 919-547-2423 (fax); laif@basf.com
Lai, Jinsheng; Waksman Institute; State Univ of NJ; 190 Frelinghuysen Rd; Piscataway NJ 08854-8020; 732-445-3801; 732-445-5735 (fax); jlai@mbcl.rutgers.edu
Lal, Shailesh; lowa State Univ; 2192 Molec Biol Bldg; Ames IA 50011; 515-294-3136; 515-294-0345 (fax); shailesh@iastate.edu
Lambert, Antoine; Verneuil Recherche; 11 rue du 11 Novembre; 49124 Sain Barthelemy D'Anjou; FRANCE; 41-66-17-00; 41-45-02-61 (fax); antoine.lambert@limagrain.com
Lambert, Carol Ann; Univ Stellenbosch; Dept Genet; Private Bag XI; Stellenbosch 7602; SOUTH AFRICA; 2721 8085839; 27218085237 (fax); vanstadenc@nu.ac.za
Lambert, Robert J.; Crop Science, Turner Hall; Univ of Illinois; 1102 S. Goodwin Ave.; Urbana IL 61801-4798; rjlamber@uiuc.edu
Lamkey, Kendall; Agronomy Building; Iowa State University; Ames IA 50011; 515-294-7826; 515-294-9359 (fax); KRLAMKEY@IASTATE.EDU
Lampoh, E.; Crops Res Inst; PO Box 3785 Kumasi; Ashanti Region; GHANA; 6221
Lanahan, Michael; Novartis Seeds; 3054 Cornwallis Rd; Research Triangle Park NC 27709-2257; 919-541-8513; 919-541-8585 (fax)
Lane, Barbara; College of Natural Resources; Dean's Office; University of California; Berkeley CA 94720-3100; 510-643-2203; 510-642-4612 (fax); babs@nature.berkeley.edu
Langdale, Jane; Department of Plant Sciences; University of Oxford; South Parks Road; Oxford OX1 3RB; UNITED KINGDOM; (44)1865275099; (44)1865275147 (fax); jane.langdale@plants.ox.ac.uk

Langham, Richard; Univ California; 111 Koshland Hall; Berkeley CA 94720; 510-642-7948; 510-642-4995 (fax); rlangham@nature.berkeley.edu
Langton, Steven; Pioneer Hi-Bred Intl; PO Box 668; Janesville WI 53547; 608-756-4030; 608-756-4038 (fax); langtonsj@phibred.com
Lanza, Luciana; Augusto Bench/Ester Eliana Lasry Bench; UNICAMP/CBMEG; Cldade Univ 'Zeferino Vaz'; Campinas SP 13083-970; BRAZIL; 55-19-7881090; 55-19-788-1089 (fax); llasry@obelix.unicamp.br
Laparra, Helene; Yale Univ; MCD Biol Dept; 165 Prospect St, PO Box 208104; New Haven CT 06520-8104; 203-432-3894; 203-432-3854 (fax)
Larkins, Brian; Dept Plant Sciences; University of Arizona; Building \#36; Tucson AZ 85721; (520)621-9958; (520)621-3692 (fax); LARKINS@ag.arizona.edu
Larsen, Jinjer; Univ California; 345 Life Sci Addition; Berkeley CA 94720; 510-643-8277; 510-643-6791 (fax); jinjer@nature.berkeley.edu
Lassagne, Herve; Biogemma; 24 Avenue des Landais; Aubiere; FRANCE; 33-4-73-42-79-70; 33-4-73-42-79-81 (fax); herve.lassagne@biogemma.com
Lassagne, Herve; Biogemma; 24 Avenue des Landais; Aubiere; FRANCE; herve.lassagne@biogemma.com
Latshaw, Sue; Univ Florida; Horticulture Sci; Gainesville FL 32611; 352-392-1928; 352-392-6479 (fax); latshaw@ufl.edu
Laudencia-Chingcuanco, Debbie; Plant Gene Expression Center; USDA-ARS; 800 Buchanan St.; Albany CA 94710; 510-559-5968; 510-559-5678 (fax); dchingcu@nature.berkeley.edu
Laurie, Cathy; Cereon Genomics; 45 Sidney St; Cambridge MA 02139; 617-551-8134; 617-551-1920 (fax); cathy.c.laurie@cereon.com
Laurie, David; JI Centre for Plant Science Res.; Colney Lane; Norwich NR4 7UH; UNITED KINGDOM; 44-01603-452571 x2610; 44-1603-502241 (fax); LAURIED@BBSRC.AC.UK
Lauter, Nick; Univ Minnesota; 1445 Gortner Ave; Rm 220 BSC; St. Paul MN 55108; 612-625-0271; laute002@tc.umn.edu
Lawrence, Carolyn; Univ Georgia; Botany; 2502 Miller Plant Sci Bldg; Athens GA 30602-7271; 706-542-3732; 706-542-1805 (fax); carolyn@dogwood.botany.uga.edu
Leaver, Chris; Dept Plant Sciences; University of Oxford; South Parks Road; Oxford OX1 3RB; UNITED KINGDOM; 01865 275143; 01865275144 (fax); chris.leaver@plants.ox.ac.uk
LeBlanc, Olivier; ORSTOM-CIMMYT; Apdo Postal 6-641; 06600 Mexico DF; MEXICO; (52) 5726 9091; (52) 57267567 (fax); oleblanc@cgiar.org
LeDeaux, John; USDA-ARS; NCSU, PO Box 7614; Raleigh NC 27695-7614; 919-515-4087; 919-515-3355 (fax)
Ledger, Elizabeth; NMSU; Biology Dept; Box3AF Dept 30001; Las Cruces NM 88003; 505-646-7963; 505-646-5665 (fax)
Lee, Danny; Section of Plant Biology; Robbins Hall c/o Neelima Sinha; UC Davis; Davis CA 95616
Lee, Elizabeth A.; OAC Plant Agric Dept; Crop Science Div; Rm 223 Crop Sci Bldg; Guelph, Ont N1G 2W1; CANADA; 519-824-4120x3360; 519-763-8933 (fax); elee@plant.uoguelph.ca
Lee, Hee Bong; Dept Agronomy, Coll Agriculture; Chungnam Natl Univ; 220 Gung-Dong, Yusung-Gu; Taejon 305-764; KOREA; 82-042-821-5721; 82-042-8238050 (fax)
Lee, Hsueh-Sheng; Zoology Dept; University of Texas; Austin TX 78712-1064
Lee, In-sup; Department of Biology; College of Science; Kyungsung University; Pusan, 608-736; SOUTH KOREA; 051-620-4647; 051-627-4115 (fax)
Lee, Michael; Department of Agronomy; lowa State University; Ames IA 50011-1010; 515-294-7951; 515-294-3163 (fax); mlee@iastate.edu
Lee, Warren; Dow Agrosciences; 9330 Zionsville Rd; Indianapolis IN 46268; 317-337-5920; wslee@dowagro.com
Lee, Yew; Pioneer Hi-Bred Internatl; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131; 515-334-4620; 515-334-4755 (fax)

Leffler, Nancy; DeKalb Genetics Corp; 3100 Sycamore Rd; DeKalb IL 60115; 815-758-9361; 815-758-4106 (fax); nleffler@dekalb.com
Lehmensiek, Anke; Univ Stellenbosch; Dept Genet; Private Bag XI; Stellenbosch; SOUTH AFRICA; 2721 8085837; 27218085833 (fax); aleh@maties.sun.ac.za
Leland, Tim; Monsanto BB3K; 700 Chesterfield Parkway; Chesterfield MO 63198; 314-737-7208; 314-737-5223 (fax); timothy.j.leland@stl.monsanto.com
Lemaux, Peggy; Dept Plant and Microbial Biology; 111 Koshland Hall; University of California, Berkeley; Berkeley CA 94720; 510-642-1589; 510-642-7356 (fax); lemauxpg@nature.berkeley.edu
Lemieux, Bertrand; Dept Plant \& Soil Sci; Univ of Delaware; Newark DE 19717-1303; 302-831-1390/0593; 302-831-0721 (fax); blemieux@udel.edu
Leroy, Philippe; INRA; Domaine De Crouelle; 63039 Clermont-Ferrand; Cedex 2; FRANCE; 3373 624337; 3373624453 (fax); leroy@valmont.clermont.inra.fr
Lesnick, Marc; Institute of Molecular Biology; University of Oregon; Eugene OR 97403; lesnick@molbio.uoregon.edu
Levings, C. S.; Department of Genetics; North Carolina State Univ; Box 7614; Raleigh NC 27695-7614; 919-515-7115; 919-515-3355 (fax)
Levites, E. V.; Inst Cytol Genetics; Novosibirsk; RUSSIA
Levy, Avraham; Plant Genetics Department; Weizmann Institute of Science; Rehovot, 76100; ISRAEL; 972-8-342421; 972-8-466966 (fax); LPLEVY@WEIZMANN.WEIZMANN.AC.IL
Lewis, Lydia; Monsanto; 62 Maritime Dr; Mystic CT 06355; 860-572-5226; 860-572-5240 (fax); llewis@dekalb.com
Li, Bailin; DuPont Agic Biotechnol; DTP Suite 200, 1 Innovation Way; PO Box 6104; Newark DE 19714-6104; 302-631-2631; 302-631-2607 (fax); bailin.li@usa.dupont.com
Li, Baochun; Iowa State Univ; Agronomy Dept; Plant Transform Fac; Ames IA 50011; 515-294-6341; 515-294-2299 (fax)
Li, De-Bao; Zhejiang Agricultural University; Biotechnology Institute; Hangzhou; Zhejiang 310029; CHINA
Li, Huifen; Institute of Genetics; Chinese Acad Sci; Beijing 100101; CHINA; (86-10)64873490; (86-10)64873428 (fax); pgmIzz@mimi.cnc.ac.cn
Li, Jiansheng; Maize Improvement Center of China; Crop Science College; China Agricultural University; Haidan, Beijing 100094; CHINA; lijs@163bj.com
Li, Jin; lowa State Univ; B420 Agronomy; Ames IA 50010; 515-294-1659; 515-294-2299 (fax); jinli@iastate.edu
Li, Kejian; Iowa State Univ; 5100 MBB; Ames IA 50011; 515-294-0337; 515-294-6755 (fax); kjil@iastate.edu
Li, Meijuar; Novartis Seeds; 317 330th St; Stanton MN 55018-4308; 507-663-7622; 507-645-5621 (fax)
Li, Ping; Sichuan Agricultural University; Rice Research Institute; Yaan; Sichuan 625014; CHINA
Li, Qing; China Natl. Cente Biotech. Development; P.O. Box 8118; Beijing 10008; CHINA
Li, Yuxing; 2312 Food Sciences; lowa State Univ; Ames IA 50011
Li, Zhaohui; Lehman College, CUNY; Biology Dept; 250 Bedford Park Blvd. West; Bronx NY 10468; 718-960-8643; 718-960-8236 (fax); ZHLLC@CUNYVM.CUNY.EDU
Li, Zhuying; Iowa State Univ; 2288 Molec Biol Bldg; Ames IA 50011; 515-294-3277; zli@iastate.edu
Lid, Stein; Dept Chem \& Biotechnol; PO Box 5051; Univ Norway; As N-1432; NORWAY; 47-64949493; 47-64941465 fax); stein.lid@ikb.nlh.no
Lightfoot, David; Southern Illinois Univ; P.O. \#23086-0006Z; Agriculture 174; Carbondale IL 62901-4415; 618-453-1797; 618-453-7457 (fax); GA4082@siu.edu
Lilijegren, Sarah; Dept of Biology 0116; UC San ëiego; La Jolla CA 92093-7108
Lim, Jun; New York Univ; Biology Dept Room 1009; Washington Square East; New York NY 10003; 212-998-3962; 212-995-4204 (fax)
Lin, Bor-yaw; Institute of Molecular Biology; National Chung Hsing University; Taichung 402; TAIWAN; (886-4)285-1885; (886-4)287-4879 (fax); bylin@dragon.nchu.edu.tw
Lin, Liang-Shiou; USDA/CSREES/NRICGP; STOP 2241; 1400 Independence Ave. SW; Washington DC 20250-2241; 202-401-5042; 202-401-6488 (fax); Ilin@reeusda.gov
Lin, Vicki; Univ Missouri; 1-87 Agric Bldg; Columbia MO 65211; 5173-882-9224; 573-882-1469 (fax); v1879@mizzou.edu
Lin, Yan; Univ Arizona; 303 Forbes Bldg; Tucson AZ 85719; 520-621-8964; ylin@ag.arizona.edu
Lippman, Zachary; Cold Spring Harbor Lab; 1 Bungtown Rd; PO Box 100; Cold Spring Harbor NY 11724; 516-367-5154; 516-367-8369 (fax); lippman@cshl.org
Lisch, Damon; Dept Plant Biol; 111 Koshland Hall; Univ California; Berkeley CA 94720; 510-642-7948; 510-642-4995 (fax); dlisch@uclink4.berkeley.edu
Lison, Wyatt; Duquesne Univ; Dept Biol Sci; Pittsburgh PA 15282; 412-396-4356; 412-396-5907 (fax)
Liu, Aimin; Jiangsu Academy of Agric. Science; Institute of Agrobiol. Genet. \& Physiol.; Nanjing 210014; CHINA
Liu, Feng; lowa State Univ; B420 Agronomy Hall; Ames IA 50011; 515-294-1659; 515-294-2299 (fax); fgliu@iastate.edu
Liu, Liang-Shi; Zhongshan University; Biotechnology Research Center; Guangzhou 510275; CHINA
Liu, QinQin; Dept of Biology; Univ of Minnesota; Duluth MN 55812-2496; 218-726-7271; 218-726-8142 (fax)
Liu, Xiangdong; South China Agricultural University; Agronomy Dept.; Wushan, Tianhe, Guangzhou; Guangdong 510642; CHINA
Liu, Xiaochuan; China National Rice Research Institute; Genetics \& Breeding Dept.; Hangzhou 310006; CHINA
Liu, Yanhong; Botany Dept.; Univ. Georgia; Athens GA 30602; (706)542-1857; (706)542-1805 (fax)
Liu, Zhixian; 11 Sangyuan Road; Maize Research Inst; Shandong Academy of Agri. Science; Jinan, 250100; CHINA; (0531)8963721-2313; (0531)8962303 (fax)
Llaca, Victor; Univ of New Jersey; 190 Frelinghuysen Rd; Piscataway NJ 08854-8020; 732-445-3801; 732-445-5735 (fax); llaca@waksman.rutgers.edu
Loeffel, Frank; Agri Pro Res. Center; Rural Route \#2 Box 411; Brookston IN 47923; 317-563-3111; 317-563-6848 (fax)
Lonsdale, David M.; Cambridge Laboratory; IPSR - John Innes Centre; Colney Lane; Norwich NR4 7UH; UNITED KINGDOM; 44 1603 452571; 441603 456844 (fax); LONSDALE@bbsrc.AC.UK
Lopes, Mauricio A.; Natl. Maize \& Sorghum Res. Ctr.; CNPMS/EMBRAPA; Caixa Postal 151, CEP 35 701-970; Sete Lagoas MG; BRAZIL; 011-55-31-7732866; 011-55-31-773-9252 (fax); mauricio@cnpms.embrapa.br
Lopez, Cesar; 125 NW 35th St; Oregon State Univ; Corvallis OR 97330; 591-752-2993; 591-737-0909 (fax); lopezc@css.orst.edu
Lopez, Jose A.; Univ Arizona; 303 Forbes Hall; Tucson AZ 85721; 520-621-9154; 520-621-3692 (fax); jalopez@ag.arizona.edu
Lorbiecke, Rene; Univ Hamburg; Allgemeine Botanik; Ohnhorstrasse 18; Hamburg; GERMANY; 494042816 381; 494042816503 (fax); lorbiecke@botanik.uni-hamburg.de
Lorentzen, Jennifer A.; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131
Lorentzen, Jennifer A.; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131; 515-270-4020; 515-270-3367 (fax)
Lorentzen, Michael; Pioneer Hi-Bred Intl; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131
Lorenzen Dahl, Lisa; Pioneer Hi-Bred Internat., Inc.; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131-1004
Lorenzoni, C.; Istituto di Genetica Vegetale; Universita Cattolica; Sede di Piacenza; 29100 Piacenza; ITALY; (523)599210; (523)599283 (fax)
Lorz, Horst; Institut Allgemeine Botanik; Universitat Hamburg; Ohnhorststrasse 18; 22609 Hamburg; GERMANY; 49-40-82282-420; 49-40-82282-229 (fax)
Love, Robert; ProdiGene; 101 Gateway Blvd; Suite 100; College Station TX 77845; 979-690-8537; 979-690-9527 (fax); rlove@prodigene.com
Lowe, Brenda; DeKalb Genetics/Monsanto; 62 Maritime Dr; Mystic CT 06355-1958; 860-572-5216; 860-572-5280 (fax); blowe@dekalb.com
Lu, Dihui; Waksman Inst; 190 Frelinghuysen Rd; Piscataway NJ 08854; 732-445-2307; 732-445-5735 (fax); dihuilu@eden.rutgers.edu
Lu, Guihua; Pioneer Hi-Bred Internat., Inc.; 7300 NW 62nd Ave.; PO Box 1004; Johnston IA 50131-1004

Lu, Mei-Kuang; 305 Manter Hall; Univ. Nebraska; Lincoln NE 68503; (402)472-6084
Lu, Yong-Gen; South China Agricultural University; Guangzhou 510642; CHINA
Lubkowitz, Mark; Univ California; Dept PlantBiol; 111 Koshland Hall; Berkeley CA 94720; 510-642-8058; 510-642-4995 (fax); lub@uclink4.berkeley.edu
Ludwig, Steven; Sterne, Kessler, Goldstein \& Fox; 1100 New York Ave NW; Suite 600; Washington DC 20006; 202-371-2600; 202-371-2540 (fax); sludwig@skgf.com
Luebberstedt, Thomas; Inst fur Pflanzenzuchtung; Universitat Hohenheim; 70593 Stuttgart; GERMANY; ++711-4593483; Ge-711-4592343 (fax); LUEBBIT@UNI-HOHENHEIM.DE
Luethy, Michael; DeKalb Genetics; 62 Maritime Dr; Mystic CT 06355-1958; 860-752-5212; 860-572-5240 (fax); mluethy@dekalb.com
Lunde, China; PGEC; 800 Buchanan St; Albany CA 94710; 510-559-5922; 510-559-5678 (fax); lundec@uclink.berkeley.edu
Luo, Ming; Sichuan Agricultural University; Rice Research Institute; Yaan; Sichuan 62500; CHINA
Luthe, Dawn S; Dept Biochemistry; Miss State Univ; Mississippi State MS 39762; 601-325-7733; 601-325-8664 (fax); dsluthe@ra.msstate.edu
Lutz, Joseph; Pillsbury/Green Giant; 1201 N 45th St; LeSueur MN 56058; 507-665-4457; 507-665-2682 (fax); jlutz@pillsbury.com
Lutz, Sheila; Dept Agron Plant Genetics; 411 Borlaug Hall, 1991 Buford Circle; Univ of Minnesota; St. Paul MN 55108; 612-625-1728; smlutz@puccini.crl.umn.edu
Lyerly, Carla; Univ of Florida; PO Box 110690; Gainesville FL 32611; 352-392-1996 x313; clyerly@nervm.nerdc.ufl.edu
Lynch, Margaret; 1883 21st Ave; San Francisco CA 94122
Lysikov, Valery; Inst. of Genet. of AS RM.; st. Paudurie 20; Kishinev-277002; MOLDOVA; (0422)622068; 3732-556180 (fax)
Ma, Hong; Dept Biol, Life Sci Consortium; 519 Wartik Laboratory; Penn State Univ; University Park PA 16802; 814-863-6144/8082; 814-863-1357 (fax); hxm16@psu.edu
Ma, Jianxin; Purdue Univ; Biology Hanson; Rm 339; West Lafayette IN 47907; 765-494-0373; 765-496-1496 (fax); jma@bilbo.bio.purdue.edu
Ma, Zhengrong; Waksman Institute; 190 Frelinghuysen Rd; Piscataway NJ 08854-0820; 732-445-2307; 732-445-5735 (fax); zhenma@mbcl.rutgers.edu
MacDonald, M. V.; Plant Breeding International; Maris Lane; Trumpington; Cambridge CB2 2LQ; UNITED KINGDOM; 01223-840411; 01223-844425 (fax)
Maddock, Sheila E; Pioneer Hi-Bred Int Inc.; 7300 NW 62nd Ave.; PO Box 1004; Johnston IA 50131-1004; 515-270-4047; 515-270-3444 (fax); maddocks@phibred.com
Magbanua, Zenaida V.; Univ Georgia; Dept Botany; Athens GA 30602; 706-542-1857; 706-542-1805 (fax); magbanua@arches.uga.edu
Magill, Clint; Texas A \& M University; Dept. of Plant Pathology; College Station TX 77843; 979-845-8250; 979-845-6483 (fax); c-magill@tamu.edu
Maguire, Marjorie; Zoology Department; University of Texas; Austin TX 78712-1064; 512-471-7451; 512-471-9651 (fax); marjm@mail.utexas.edu
Maheshwari, J. K.; National Botanical Res Inst; H.I.G.-130, Sector 'E'; Aliganj Extension, Aliganj; 226 020, U.P. - Lucknow; INDIA; 72655; 244330 (fax)
Maitz, Monika; KWS SAAT AG; Grimsehstr 31; 37555 Einbeck; GERMANY; 495561311 636; 495561311337 (fax); m.maitz@kws.de
Malmberg, Sharon; Monsanto Global Seed Group; 3100 Sycamore Rd; DeKalb IL 60115; 815-758-9516; 815-758-4106 (fax); smalmber@dekalb.com
Maluf, Mirian; Crop Science; Turner Hall, 1102 S. Goodwin Ave.; University of Illinois; Urbana IL 61801
Mangano, MaryLou; DeKalb Genetics Corp.; 62 Maritime Dr.; Mystic CT 06355
Manjunath, Sivalinganna; Agracetus/Monsanto; 8520 University Green; Middleton WI 53562; 608-821-3510; 608-836-9710 (fax); s.manjunath@monsanto.com

Manley, Marilyn; Lima Grain Genetics; 4640 E State Rd 32; Lebanon IN 46052; 765-482-9833; 765-482-9448 (fax); marilyn.manley@limagraingenetics.com
Manolii, Victor; Dept Plant Sci; Forbes Bldg Rm 36; Univ Arizona; Tucson AZ 85721; 520-621-9154; 520-621-3692 (fax)
Manzocchi, Lucia; Consiglio Nazionale delle Ricerche; Istituto Biosintesi Vegetali; Via Bassini 15; 20133 Milano; ITALY; (39) 02.23699.408; (39) 02.23699 .411 (fax); luman@icm.mi.cnr.it

Marchand, Jean-Leu; TA 70/16; 73 Rue Jean-Francois Breton; F34398 Montpellier Cedex 5; FRANCE
Marocco, Adriano; Universita Cattolica S. Cuore; Istituto Di Genetica Vegetale; Via E. Parmense 84; 29100 Piacenza; ITALY; 39-523-599207; 39-523599283 (fax); amarocco@pc.unicatt.it
Marshall, Josh; Dept Botany; 4610 Plant Sci Bldg; Univ Georgia; Athens CA 30602; 706-542-1010; 706-542-1805 (fax); josh@dogwood.botany.uga.edu
Marshall, Lori; Holden's Foundation Seeds, L.L.C.; P.O. Box 839; 503 S. Maplewood Ave; Williamsburg IA 52361; 319-668-1100; 319-668-2453 (fax); lori.marshall@holdens.com
Martens, Marvin; Northwest Tech, LLC; 513 N Main; Fairview OK 73737; 580-227-2345; 580-227-3851 (fax); bramco@pldi.net
Martens, Marvin; Northwest Tech, LLC; 513 N Main; Fairview OK 73737; bramco@pldi.net
Martienssen, Rob; Cold Spring Harbor Labs; P.O. Box 100; 1 Bungtown Rd; Cold Spring Harbor NY 11724-2212; 516-367-8322; 516-367-8369 (fax); MARTIENS@CSHL.ORG
Martin, Michael J.; 10454 NW 114th St; Granger IA 50109; 515-999-2548; 515-685-5204 (fax)
Martin, Ruth; 4017 Ag \& Life Sci; Oregon State Univ; Corvallis OR 97331-7304; 541-737-5455; 541-737-3479 (fax); martinr@bcc.orst.edu
Martin Sanchez, J. A.; UdL-IRTA Centro R S D; Alcalde Rovira Roure 177; 25006 Lerida; SPAIN; 34-73-702569; 34-73-238301 (fax)
Mascarenhas, Joseph P.; Department of Biol Sci; State University of New York; Albany NY 12222; 518/442-4388; 518/442-4354 (fax); jm558@cnsunix.albany.edu
Mascia, Peter N.; Ceres, Inc.; 3007 Malibu Canyon Road; Malibu CA 90265; 310-317-8911; 310-317-9978 (fax); pmascia@ceres-inc.com
Matha, Evy; Univ Illinois; 466 LAR; 1005 S Lincoln Ave; Urbana IL 61801; 217-332-3048
Mather, Diane E.; Plant Sci Dept - Macdonald Col; McGill Univ - 21111 Lakeshore; Ste-Anne-de-Bellevue; Quebec H9X 3V9; CANADA; (514) 398-7854; (514)398-7897 (fax); mather@agradm.lan.mcgill.ca

Mathur, D. S.; Div. of Genetics; Indian Agr Res Inst; New Delhi-110012; INDIA; 581481
Matsuoka, Yoshihiro; 425 Henry Mall; Univ Wisconsin; Madison WI 53706; 608-265-5804; 608-265-2976 (fax); ymatsuoka@facstaff.wisc.edu
Matthews, Paul; Univ Minnesota; 1991 Upper Buford Circle; St. Paul MN 55108; 612-625-9258; moosmoss@hotmail.com
Matvienko, Marta; Celera AgGen; 756 Picasso Ave; Davis CA 95616; 530-297-3058; 530-297-3027 (fax); marta.matvienko@celera.com
Matz, Eileen C.; Dept of Biology; Building 463; Brookhaven National Laboratory; Upton NY 11973; 516-344-3396; 516-344-3407 (fax); matz@bnl.gov
Maurer, Alberto; 401 N Ann St \#7; Columbia MO 65201; 573-875-4362; am70b@mizzou.edu
Mawgood, Ahmed L. Abdel; Univ Wisconsin; Plant Pathology Dept; Madison WI 53706; amawgood@plantpath.wisc.edu
May, Bruce; Cold Spring Harbor Lab; PO Box 100; 1 Bungtown Rd; Cold Spring Harbor NY 11724; 516-637-8836; 516-367-8369 (fax); may@cshl.org
May, Georgiana; 220 Biosciences Bldg; Dept Plant Biol; 1445 Gortner Av; St Paul MN 55108; gmay@maroon.tc.umn.edu
Mazoti, Luis B.; Carlos Croce 145; 1832 Lomas de Zamora; ARGENTINA
Mazur, Barbara J.; DuPont Agr Products; Biotechnol Res \& Devel; Experimental Sta E402/3226; Wilmington DE 19880-0402; 302-695-3700; 302-695-7361 (fax); Barbara.J.Mazur@usa.dupont.com
McCarthy, Susan A.; National Agricultural Library; 10301 Baltimore Blvd; Beltsville MD 20705; 301-504-5510; 301-504-5022 (fax); smccarth@nal.usda.gov
McCarthy Hall, Ira; 1710 Milvia St; Univ California; Berkeley CA 94709; 510-845-9508
McCarty, Donald R.; Vegetable Crops Department; 1255 Fifield Hall; University of Florida; Gainesville FL 32611; 352-392-1928 ext 322; 352-392-6479 (fax); drm@ufl.edu
McConnell, R. L.; Research \& Product Development; Pioneer Hi-Bred International; Box 1004; Johnston IA 50131-1004; (515)270-3363; (515)253-2478
(fax); McConnelR@phibred.com
McCormick, Sheila; USDA-ARS-PGEC; 800 Buchanan Street; Albany CA 94710; 510-559-5906; 510-559-5678 (fax); sheilamc@nature.berkeley.edu
McCouch, Susan; Cornell Univ; Dept Plant Breeding \& Biometry; 252 Emerson Hall; Ithaca NY 14853; 607-255-0420; 607-255-6683 (fax); srm4@cornell.edu
McCullough, Andrew; Dept. of Biochemistry; Baylor College of Medicine; Houston TX 77030; 713-798-4622
McCurdy, Leroy; P.O. Box 77; McCurdy Seed Co; Fremont IA 52561; 515-933-4291
McFerson, John; Asgrow Seed Co.; 634 E. Lincoln Way; Ames IA 50010; (515)232-7170; (515)232-6905 (fax)
McLaren, James S.; Inverizon Int Inc; 2214 Stoneridge Terrace Court; St. Louis MO 63017-7120; 636-530-6943; 636-530-6945 (fax); mclaren@inverizon.com
McLaughlin, John; Univ Minnesota; St. Paul MN 55108; 612-641-1308
McMullen, Michael; USDA ARS MWA; Curtis Hall; University of Missouri; Columbia MO 65211; 573-882-7606; 573-884-7850 (fax); McMullenM@missouri.edu
McSteen, Paula; PGEC; 800 Buchanan St; Albany CA 94710; 510-559-5976; 510-559-5678 (fax); pmcsteen@nature.berkeley.edu
McWhirter, Ken; 127 Victoria Road; West Pennant Hills; NSW 2125; AUSTRALIA; 029484 7417; 0294847417 (fax); kmcwhirt@ozemail.com.au
Mead, Doug; Northrup King Co.; 317 330th St.; Stanton MN 55018-4308; (507)663-7623; (507)645-7519 (fax)
Meeley, Robert; Trait and Technology Dev.; Pioneer Hi-Bred Int'); 7300 NW 62nd Ave. - Box 1004; Johnston IA 50131-1004; 515-270-3770; 515-253-2149 (fax); MeeleyRB@phibred.Com
Meghij, Moez; Syngenta Seeds Inc.; Bloomington IL 61704; 309-823-8578; 309-823-8568 (fax); moez.meghji@syngenta.com
Mei, Mantong; South China Agricultural University; Genetic Engineering Laboratory; Guangzhou 510642; CHINA
Meijer, Anne Marie; Clusios Lab; PO Box 9505; Leiden Univ; 2300 RA Leiden; NETHERLANDS; 5274891; 5275039 (fax); meijer@rulbim.leidenuniv.nl
Meiklejohn, Colin; Harvard Univ; Dept Invertebrate Zoology; MCZ 138, 26 Oxford St; Cambridge MA 02138; 617-495-2447
Melanson, Denise; NCSU/Novartis; 108 E. Whitaker Mill Rd; Raleigh NC 57608; 919-541-8619; 919-541-8585 (fax)
Melchinger, Albrecht E.; Universitat Hohenheim; Institut fur Pflanzenzuchtung; Postfach 700562 (350/1); D-70593 Stuttgart; GERMANY; 0711-4592334; 0711-459-2343 (fax); melchinger@uni-hohenheim.de
Melia-Hancock, Susan; Curtis Hall - Agronomy; University of Missouri; Columbia MO 65211; 573-882-6566; 573-884-7850 (fax); MeliaHancockS@missouri.edu
Mello-Sampayo, Tristao; R. Padre Francisco 16, 5.F.; 1300 Lisboa; PORTUGAL
Messing, Joachim; Rutgers, The State Univ; Waksman Institute; 190 Frelinghuysen Rd; Piscataway NJ 08854-8020; 732-445-4256; 732-445-0072 (fax); messing@waksman.rutgers.edu
Mettler, I. J.; Northrup King Co.; 317 330th Street; Stanton MN 55018-4300; 507-663-7643; 507-645-7519 (fax)
Meyer, Terry; Pioneer Hi-Bred International; 7300 N.W. 62nd Avenue; P. O. Box 1004; Johnston IA 50131-1004; 515-270-3962; 515-270-3367 (fax); MEYERTE@PHIBRED.COM
Meyerowitz, Elliot; Biology Dept 156-29; California Inst Tech; Pasadena CA 91125; 818-395-6889; 818-449-0756 (fax)
Miao, Guo-Hua; Pioneer Hi-Bred Intl; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131; 515-334-4768; 515-334-4778 (fax); MiaoGuo@phibred.com
Michelini, Luiz Antonio; R. Ayrton Playsant, 21; Ponta Grossa; Parana 84100-550; BRAZIL; 55-42-223-2774; 55-42-223-2774 (fax)
Michiels, Frank; Plant Genetic Systems; Jozef Plateaustraat 22; Gent B-9000; BELGIUM; 32-9-2358475; 32-9-2240694 (fax); FRAL@PGSGENT.BE
Mickelson-Young, Leigh; Dow AgroSciences; 9330 Zionsville Rd; Indianapolis IN 46268; 317-337-3805; 317-337-5989 (fax)
Micu, Vasile; Scientific Res Inst Maize \& Sorghum; Pashcani; Criuleni; 278336 Moldova; MOLDOVA; (3732)-22-24-78; (3732)-22-73-02 (fax)
Middle, Christina; Iowa State Univ; Dept of Agronomy; 1401 Agronomy Hall; Ames IA 50011; 515-294-9233
Miernyk, Jan; ARS-USDA; Curtis Hall; University of Missouri; Columbia MO 65211-7020; 573/882-8167; 573/884-7850 (fax); miernykj@missouri.edu
Mies, David; Syngenta seeds; PO Box 629; 1002 Old SR15; Milford IN 46524; 217-658-3081; 217-658-3083 (fax); dave.mies@syngenta.com
Mihm, John A.; French Agricultural Research; RR2, Box 294; Lamberton MN 56152; 507-752-7274; 507-752-6132 (fax)
Mikkilineni, Venugopal; Univ Delaware; 531 S College Ave; Newark DE 19717; 302-831-1044; 302-837-1969 (fax); vmikkilineni@yahoo.com
Mikula, Bernard C.; Defiance College; 901 College Drive; Defiance OH 43512; 419-784-4010 EXT 426; 419-784-0426 (fax)
Milach, Sandra; 1991 Buford Circle; Room 411 Borlang Hall; St. Paul MN 55108; (612)625-6223; (612)625-1268 (fax)
Miles, Donald; Tucker Hall; Div. Biological Sciences; University of Missouri; Columbia MO 65211; 573-882-7933; miles@biosci.mbp.missouri.edu
Millard, Mark; 117 Plant Intro; Ames IA 50011-1170; 515-294-3715; 515-294-1903 (fax); mjmillar@iastate.edu
Miller, Michael; Pioneer Hi-Bred Intl; 7300 NW 62nd Ave; Johnston IA 50131; 515-254-2622; 515-270-3444 (fax); millermd@phibred.com
Min, Hwang Kee; Hongcheon Maize Exper Sta; 814 Jangnam; Doochon; Hongcheongun; KOREA; 82-366-435-3757; 82-366-435-6876 (fax)
Min, Qian; Fudan Univ; 552 Tong Ji Xin Cun Siping Rd; Shanghai; CHINA; 021-65643715; 021-65021261 (fax); minqian@fudan.edu.cn
Min, Shao-Kai; China National Rice Research Institute; Genetics and Breeding; 171 Ti Yu Chang Road, Hangzhou; Zhejiang 310006; CHINA
Ming, Ray Reiguang; Hawaii Agric Research Center; 99-193 Aiea Heights Dr; Aiea HI 96701-3911; 808-486-5374; 808-486-5020 (fax); rming@harchspa.com
Mitkovski, Miso; Univ Idaho; Biological Sciences; Moscow ID 83844-3051; 208-885-8581; 208-885-7805 (fax); mitk1562@uidaho.edu
Miura, Y; Maize Breeding Station; Hokkaido Natl. Agr. Exp. Stn.; Hitsujigaoka; Sapporo 062; JAPAN
Miyoshi, K.; Sakata Seed Corp.; Kakegawa Breed. STN; Yoshioka 1743-2; Kakegawa City, Shizuoka City 436-01; JAPAN
Mizukami, Yukiko; Dept Plant Biol; 111 Koshland Hall; Univ California; Berkeley CA 94720; 510-642-6405; 510-642-9017 (fax); mizukami@nature.berkeley.edu
Modena, Stephen; Dept. of Crop Science; North Carolina State Univ.; Box 7620; Raleigh NC 27695-7620; 919-515-2246; 919-515-7959 (fax); ab4el@MindSpring.com
Modi, Mahendra; 1560 NE Merman Dr; Washington State Univ; Pullman WA 99163; 509-332-6031; 509-335-7643 (fax); mkmodi@wsu.edu
Moeller, Evelyn; Univ. Hohenheim (350 b); Fruwirthstr. 21; D-70599 STUTTGART; GERMANY; tel ++49 711 459 2336; fax \quad ++49 7114592343 ; moellere@uni-hohenheim.de
Mogensen, Lloyd; Northern Arizona Univ; Dept of Biology, Box 5640; Flagstaff AZ 86011; 520-523-7328; 520-523-7500 (fax); Hans.Mogensen@nau.edu
Molina, M. C.; Del Valle Iberlucea 3711; 1826 Remedios de Escalada; Buenos Aires; ARGENTINA
Molina-Ochoa, Jaime; Univ Colima; Fac Ciencias Biol \& Agropecuarias; Apartado Postal 36; Tecoman 28100, Colima; MEXICO; 332442 37; jmolina@tecoman.ucol.mx
Monde, Rita Ann; Inst Molec Biol; 1370 Franklin Ave; Univ Oregon; Eugene OR 97403; 541-346-2546; 541-346-5891 (fax); RM16@molbio.uoregon.edu
Montagu, Jonathan; Cold Spring Harbor Lab; PO Box 100; Cold Spring Harbor NY 11724
Moon, Jennifer; 2500 Speedway Molec Biol Bldg; Univ Texas; Austin TX 78712; 512-232-5560; 512-471-2149 (fax); jmoon@icmb.utexas.edu
Mooney, Mark; UC Berkeley; Plant Biology Dept; 111 Koshland Hall; Berkeley CA 94720-3102
Moore, Graham; John Innes Ctr; Cereal Res Dept; Norwich Res Pk; Norwich NR4 7UJ; UNITED KINGDOM; 01603-452571; 01603-502241 (fax)
Moore, Paul H.; USDA ARS PWA; Experiment Station HSPA; P.O. Box 1057; Aiea HI 96701; 808-487-5561; 808-486-5020 (fax)
Moose, Stephen P.; Dept of Crop Sciences; Univ of Illinois; 389 ERML-MC051; 1201 W. Gregory Drive; Urbana IL 61801; 217-244-6308; 217-333-4582 (fax);
smoose@uiuc.edu
Moreira-Filho, Carlos A.; Dept. de Imunologia do ICP-USP; Av. Prof. Lineu Prestes, 2415; 05508-900 Sao Paulo S. P.; BRAZIL
Morgante, Michele; DuPont Ag Biotech; Delaware Technol Park; Suite 200 PO Box 6104; Newark DE 19714-6104; 302-631-2638; 302-631-2607 (fax); michele.morgante@usa.dupont.com
Moro, Gloverson Lamego; Novartis Seeds; Caixa Postal 585; 38406-270 Uberlandia MG; BRAZIL; 034-216-6005
Morrow, Sasha; Cargill Hybrid Seeds; 2600 W. Galena Blvd; Aurora IL 60506; 630-801-2326; 630-801-2345 (fax)
Motorga, Virgil; S. C. A. SIMNIC; Str. BALCESTI no. 14; 1100-CRAIOVA; ROMANIA
Motta, Annalisa; Univ Milan; via Celoria 26; 20133 Milano; ITALY; 39-02-26604392; 39-02-26604399 (fax)
Mottinger, John; Dept Bioch Microb Mol Gen; University of Rhode Island; Kingston RI 02881; 401-874-2625; 401-874-2202 (fax); john.mottinger@uri.edu
Motto, Mario; Ist Sper Cereal - Sez Bergamo; Via Stezzano 24; 24100 Bergamo; ITALY; 39-035-313132; 39-035-316054 (fax); motto@tin.it
Mou, Beiquan; Iowa State Univ; 2154 Mol Biol Bldg; Dept Biochem, Biophys \& Mol Biol; Ames IA 50011; 515-294-8202; 515-294-0453 (fax); bmou@iastate.edu
Mourad, George; Department of Biology; Indiana-Purdue University; Fort Wayne IN 46805-1499; 219-481-5704; 210-481-6880 (fax); mourad@smtplink.ipfw.indiana.edu
Moutiq, Rkia; Iowa State Univ; Dept Agronomy; 1401 Agronomy Hall; Ames IA 50011; 515-294-5755/8690; 515-294-3163 (fax); Rmoutiq@iastate.edu
Mozoub, Daniel; Lehman College, CUNY; Biology Dept, c/o Elli Wurtzel; 250 Bedford Park Blvd West; Bronx NY 10468
Mroczek, Rebecca; Botany Dept; Univ Georgia; Miller Plant Sci Bldg, rm 4508; Athens GA 30602; 706-542-1010; mroczek@dogwood.botany.uga.edu
Mudalige, Rasika; Lehman College/CUNY; 250 W Bedford Park Blvd; Bronx NY 10468; 718-960-4994; 718-960-8236 (fax)
Mueller, Suzanne; Univ of Wisconsin; 1575 Linden Drive; 430 Moore Hall; Madison WI 53706-1597; 608-262-3660; 608-262-5217 (fax); smmuell1@students.wisc.edu
Mueller, Toby; Univ Wisconsin; 900 Wood Rd; PO Box 2000; Kenosha WI 53141
Muenchrath, Deborah A.; Agronomy; lowa State Univ; Ames IA 50011-1010; 515/294-1360; 515/294-8146 (fax); mnchrath@iastate.edu
Mulcahy, David; Botany Department; Univ of Massachusetts; Amherst MA 01003; 413-545-2238; 413-545-3243 (fax); dmulcahy@bio.umass.edu
Mulligan, Timothy P.; P. O. Box 523; Cold Spring Harbor NY 11724; 516-367-8829; 516-367-4031 (fax); MULLIGAN@CSHL.ORG
Multani, Dilbag; Pioneer Hi-Bred Intl Inc; 7250 NW 62nd Ave, PO Box 552; Reid E (39L); Johnston IA 50131-0552; multandilb@phibred.com
Mungoma, Catherine; Mt. Makulu Research Station; P. B. 7; P.O. Box 30563; Chilanga; ZAMBIA; 260-1-278008; 260-1-249127 (fax)
Murigneux, Alain; BIOCEM-Groupe Limagrain; Lab Biol Cell Molec, Campus Univ Cezeaux; 24 av des Landais; 63170 Aubiere; FRANCE; 33-4-73-42-79-70; 33-4-73-27-57-36 (fax); alain.murigneux@limagrain.com
Murphy, Marjorie; Pioneer Hi-Bred Intl; 7250 NW 62nd Ave; Johnston IA 50131; 515-270-5991
Murray, Michael G.; Dow AgroSciences; 9330 Zionsville Rd; Indianpolis IN 46268; 317-337-3982; 317-337-4266 (fax); mmurray@dowagro.com
Musket, Theresa; 1-87 Agriculture Building; University of Missouri; Columbia MO 65211; 573-882-9228; 573-882-1469 (fax); muskett@missouri.edu
Mustell, Robert A.; One Skyline Drive; Louisiana MO 63353; 573-754-6998; 509-356-5044 (fax); 573-754-6554 (fax); robertmustell@hotmail.com; robertmustell@sprynet.com
Muszynski, Michael G.; Pioneer Hi-Bred Intl.; Agronomic Traits/TTD; 7250 NW 62nd Ave, POB 1004; Johnston IA 50131-1004; 515-254-2637; 515-334-4778 (fax); muszynskimg@phibred.com
Muthukumar, Balasubramaniam; Purdue Univ; Biology Hanson Rm 339; West Lafayette IN 47907; 765-494-4419; 765-494-1672 (fax); muth84@hotmail.com
Myers, Alan M; Dept Biochem \& Biophys; 2110 Molecular Biology Bldg; Iowa State University; Ames IA 50011; 515-294-9548; 515-294-0453 (fax); ammyers@iastate.edu
Nagamura, Yoshiaki; Rice Genome Res Program, STAFF Inst; 446-1, Ippaizuka, Kamiyokoba; Ippaizuka, Tsukuba-shi; Ibaraki-ken 305; JAPAN; 81-298-382199; 81-298-38-2302 (fax)
Nagel, Alexander; Univ Georgia; Miller Plant Life Sci Bldg, rm 2502; Dept Botany; Athens GA 30602-7271; 706-542-1857; 706-542-3910 (fax); anagel@dogwood.botany.uga.edu
Nagel, Bruce; Mycogen Seeds; 29 North Hwy 51; PO Box 49; Arlington WI 53911-0049; 608-635-4045; 608-635-2206 (fax)
Naidin, Cornel; S. C. A. SIMINIC Str.; BALCESTI no. 14; 1100-CRAIOVA; ROMANIA
Nakagawa, Yoichi; Takii \& Company LTD; P.O. Box 7; Kyoto C. P. O.; JAPAN; (075)365-0123; (075)365-0110 (fax)
Naranjo, Carlos; Inst Fitotecn Santa Catalina (UNLP); C.C. 4 (1836) Llavallol; Buenos Aires; ARGENTINA; canaranjo@ciudad.com.ar
Nasser, Delill; Eukaryotic Genetics; National Science Foundation; 4201 Wilson Blvd; Arlington VA 22230; (703)292-8439
National Taiwan Univ Library;; Attn: Yi-Ching Huang; Gift \& Exchange/Acquisitions; 1, Section 4, Roosevelt Road; Taipei 10617; TAIWAN; 02-23630231x2268; 02-2362-7383 (fax)
Nedev, Trendafil; Dept Tissue \& Cell Cult; Inst of Genetics; Bulgarian Acad Sci; Sofia; BULGARIA; (+359 2) 754041×233; (+359 2) 757087 (fax); nedevi@omega.bg
Negrotto, David; Novartis; 3054 Cornwallis Rd; Research Triangle Park NC 27709-2257; 919-541-8686; 919-541-8557 (fax); david.negrotto@nabri.novartis.com
NeI, P. M.; Dept of Genetics; Univ of The Witwatersrand; P.O. WITS; Transvaal 2050; SOUTH AFRICA; 011-716-2154; 011-716-8030 (fax)
Nelsen, Terry C; USDA-ARS; 1815 N. University; Peoria IL 61604
Nelson, Jennifer; UC Berkeley; Plant Biology Dept; 111 Koshland Hall; Berkeley CA 94720-3102; 510-642-7085; 510-642-4995 (fax); jnelson@nature.berkeley.edu
Nelson, Kellie; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave, Box 1004; Johnston IA 50131-1004; 515-270-4370; 515-270-2608 (fax); nelsonks@phibred.com
Nelson, Oliver E.; Department of Genetics; 445 Henry Hall; University of Wisconsin; Madison WI 53706; 608-265-4636; 608-262-2976 (fax); oenelson@facstaff.wisc.edu
Nelson, Timothy; Department of Biology; PO Box 208104; Yale University; New Haven CT 06520-8104; 203-432-3860; 203-432-5632 (fax); TIMOTHY.NELSON@YALE.edu
Nemeth, Janos; Cereal Research Non-Profit Co.; Also Kikoto sor 9; Szeged; HUNGARY; 62-54-555; 62-54-588 (fax)
Neuffer, Gerald; 109 Curtis Hall; University of Missouri; Columbia MO 65211; 573-449-0672; 573-884-7850 (fax); Gneuffer@aol.com
Newman, T. S.; Wyffels Hybrids, Inc; P.O. Box 246; Atkinson IL 61235; 309-936-7833; 309-936-7930 (fax)
Newman, Thomas C; MSU-DOE Plant Res Lab; Plant Biology Bldg; East Lansing MI 48824-1312; 517-353-0854; 517-353-9168 (fax); newmant@pilot.msu.edu
Newton, Kathleen; Dept Biol Sci; University of Missouri; Columbia MO 65211; 573-882-4049; NewtonK@missouri.edu
Nguyen, Henry T.; Dept of Plant \& Soil Science; Plant Molecular Genetics Lab; Texas Tech University; Lubbock TX 79409-2122; 806-742-1622; 806-7422888 (fax); henry.nguyen@ttu.edu
Nguyen, Thanh-Tuyen; North Carolina State Univ; Dept Botany; Box 7612; Raleigh NC 27695; 919-515-7166; 919-515-3436 (fax); tuyen_nguyen@ncsu.edu Nielsen, Kirsten; Box 7612; Dept Botany; North Carolina State Univ; Raleigh NC 27695-7612; 919-515-3570; 919-515-3436 (fax); knielse@unity.ncsu.edu

Nieto-Sotelo, Jorge; Univ Nacl Autonoma Mexico; Inst Biotechnol, Dept Plant Mol Biol; Apdo Postal 510-3; Cuernavaca 62250, Morelos; MEXICO; jorge@ibt.unam.mx
Nikolau, Basil; Dept. Biochem. \& Biophys.; Iowa State Univ.; Ames IA 50010; 515-294-9423; dimmas@iastate.edu
Nirunsuksiri, Wilas; DowAgro Sciences; 9330 Zionsville Rd; Indianapolis IN 46268; 317-337-5977; 317-337-5989 (fax)
Nishimura, Asuka; BioScience Ctr; Nagoya Univ; Chikusa; Nagoya 464-8601; JAPAN; 81-52-789-5225; 81-52-789-5226 (fax)
Nkwetta, Amingwo Michael; Inst Agric Res Devel; PO Box 25 Ekona; Southwest Province; Buea; REPUBLIC OF CAMEROON; $00237354371 ; 002373199$ 25 (fax); bazorf2@yahoo.com
Noble Jr., Stephen W.; Dept of Corn Breeding; Pioneer Hi-Bred Int'I Inc; P.O. Box 385; Johnston IA 50131-0385; 515-270-3318; 515-270-4314 (fax); NOBLES@PHIBRED.COM
Norton, Robert A.; USDA, ARS, NCAUR Mycotoxin R.U.; 1815 N. University; Peoria IL 61604; 309-681-6251; 309-671-7814 (fax)
Nowell, David C; Pannar (Pty) Ltd; PO Box 19; Greytown 3500; SOUTH AFRICA; 27-334-31131; 27-334-71208 (fax)
Nunberg, Andrew; Monsanto; 800 N Lindbergh Blvd; St. Louis MO 63167; 314-694-5421; 314-694-3914 (fax); andrew.n.nunberg@monsanto.com
Nutter, Robert; Pioneer Hi-Bred; 7300 NW 62nd Street; Johnston IA 50131-1004; (515)270-3349; (515)270-3367 (fax)
O'Kennedy, MM; CSIR; Food Sci \& Technol; POB 395; ZA 0001 Pretoria; SOUTH AFRICA; 27-12-841-2911; 27-12-841-2185 (fax)
O'Sullivan, Donal; IACR-Long Ashton Res Stn; Univ Bristol, Long Ashton; Bristol BS18 9AF; UNITED KINGDOM; 44-1275-549329; 44-1275-394281 (fax); donal.osullivan@bbsrc.ac.uk
Ober, Eric; 1-87 Agriculture Bldg.; University of Missouri; Columbia MO 65211; 573-882-6832; 573-882-1469 (fax)
Odland, Wade; 411 Borlaug Hall; 1991 Buford Circle; Univ Minnesota; St. Paul MN 55108; 612-625-6223; 612-625-1268 (fax); odla0014@tc.umn.edu
Ogbeide, Okafor Diamond; N01B Jalan Wawasan; 4/1 Bandar Baru; Ampang; Kuala Lumpur 68000; MALAYSIA; 601-628-49078; 603-427-05090 (fax); DOgbeide@yahoo.com
Ogle, Charles W.; P.O. Box 484; Sugar Grove IL 60554; 312-466-4742
Ohta, Y.; Kasuga 2-5-1-301; Tsukuba 305; JAPAN
Okagaki, Ronald; Univ Minnesota; Dept Agron Plant Genet; 411 Borlaug Hall, 1991 Buford Circle; St. Paul MN 55108; 612-625-8756; 612-625-1268 (fax); okaga002@tc.umn.edu
Okuno, Kazutoshi; National Inst of Agrobiol Resources; 2-1-2 Kannondai; Tsukuba; Ibaraki 305; JAPAN; 81-298-38-7458; 81-298-38-7408 (fax)
Oldroyd, Giles; UC Berkeley; Plant Biology Dept; 111 Koshland Hall; Berkeley CA 94720-3102
Olhoft, Paula; Dept Agron \& Plant Genetics; 1991 Buford Circle; 411 Borlaug Hall, Univ of Minnesota; St. Paul MN 55113; 612-625-9258; 612-625-1268 (fax)
Olsen, Karin; Univ Norway; As N-1432; NORWAY; 47 64949489; odd-arne.olsen@ikb.nlh.no
Olsen, Mike; Wilson Genetics, LLC; 14088 Hwy 44; PO Box 44; Harlan IA 51537; 712-755-3841; 712-755-5261 (fax); mike.olsen@syngenta.com
Olsen, Odd-Arne; Univ Norway; As N-1432; NORWAY; 47 64949489; odd-arne.olsen@ikb.nlh.no
Ono, Akemi; Stanford Univ; Biol Sci; Stanford CA 94305-5020; 650-723-2609; 650-725-8221 (fax); ake@leland.stanford.edu
Openshaw, Steve; Syngenta; 317 330th St; Stanton MN 55018-4308; 507-663-7696; 507-645-7519 (fax); steve.openshaw@syngenta.com
Oro, Rosalinda; Univ Guelph; Crop Sci Bldg Rm316; Guelph; Ontario N1G 2W1; CANADA; 519-824-4120 ext 3396; 519-763-8933 (fax); roro@uoguelph.ca
Orr, Alan R.; Department of Biology; University of Northern lowa; Cedar Falls IA 50614; 319/277-4381; 319/273-2893 (fax); ORR@UNI.EDU
Osmont, Karen; Univ California, Berkeley; Dept Plant Microbial Biol; 111 Koshland Hall; Berkeley CA 94720; 510-642-7085; 510-642-4995 (fax); ksosmont@nature.berkeley.edu
Osterlund, Mark; Univ Georgia; 156 Riverbend Res Bldg; Athens GA 30602; 706-583-0168; 706-583-0160 (fax)
Osterman, John C.; School of Life Sciences; University of Nebraska-Lincoln; Lincoln NE 68588; 402-472-5129; 402-472-2083 (fax); josterman@unl.edu
Ostrander, Brad; National Starch and Chemical; Plant Genetics Group; 5648 W. 73rd Street; Indianapolis IN 46278; 317-295-4124; 317-295-4121 (fax); brad.ostrander@nstarch.com
Ouzunova, Milena; KWS Saat AG; Grimsehlstr 31; Einbeck; GERMANY; 49-5561-311-352; 49-5561-311-337 (fax); M.Ouzunova@KWS.de
Owusu, E. Owusuwaa; 2082 Cordley Hall; Oregon State Univ; Corvallis OR 97331-2902; 541-737-3308; 541-737-3573 (fax)
Padilla, Chris; UC San Diego; Dept of Biology, 0116; La Jolla CA 92093-7108
Padmanahban, Veera; Pioneer Hi-Bred Intl; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131
Paez, Alix V.; Genetic Enterprises Int'l; 6165 Crabapple Lane; Johnston IA 50131; 515-278-1170; 515-276-9360 (fax); paezgei@worldnet.att.net
Page, Brent; Univ of Missouri; 117 Tucker Hall; Columbia MO 65211; 573-882-4871; 573-882-0123 (fax)
Pages, Montserrat; CSIC Dept Genet Mol; Jordi Girona Salgado 18-26; 08034 Barcelona; SPAIN; 34-93-4006131; 34-3-2045904 (fax); mptgmm@cid.csic.es
Paiva, E; EMBRAPA/CNPMS; Caixa Postal 151; 35701-970 Sete Lagoas-MG; BRAZIL; 31-779-1179; 31-779-1088 (fax); edilson@cnpms.embrapa.br
Palaisa, Kelly; Univ Delaware; Dept Plant Soil Sci; Newark DE 19717; 302-831-2531; 302-831-0605 (fax)
Palmer, K. E.; Dept. of Microbiology; University of Cape Town; Private Bag; Rondebosch 7700; SOUTH AFRICA; 21-650-3269; 21-650-4320 (fax)
Palmer, Reid; USDA-ARS-CICGR; Iowa State University; Agronomy Department, Room G301; Ames IA 50011; 515-294-7378; 515-294-2299 (fax); rpalmer@iastate.edu
Panavas, Tadas; Univ Massachusetts; Dept Biology; Amherst MA 01003; 413-545-9622; 413-545-3243 (fax); panavas@bio.umass.edu
Pantuso, Francisco; Universidad nacional de Luján; Mejoramiento Vegetal; Departamento de Tecnología; Rutas 5 y 7 (6700) Lujan; Buenos Aires; ARGENTINA; pantuso@mail.unlu.edu.ar
Pareddy, Dayakar R.; DowElanco; R\&D Building, 306/B-1; 9330 Zionsville Road; Indianapolis IN 46268; (317)337-3646; 317-337-3228 (fax)
Park, Wonkeun; Waksman Inst; Rutgers, The State Univ NJ; Hoes Ln; Piscataway NJ 08855; 732-445-2307; 732-445-5735 (fax); wpark@waksman.rutgers.edu
Park, Woong June; Lehrstuhl fuer Genetik; Technische Universitaet Muenchen; Lichtenberger-Str. 4; D-85747 Garching; GERMANY; 49-89-2891-3742; 49-89-2891-2892 (fax); park.woong@ch.tum.de
Park, Yong-Jin; Purdue Univ; Biology Hanson Rm 339; West Lafayette IN 47907; 765-496-1768; ypark@bilbo.bio.purdue.edu
Parlov, Dragomir; Inst Breeding \& Prod Field Crops; Marulicev trg 5; 41000 Zagreb; YUGOSLAVIA; 041-750-311; 41-750-523 (fax)
Parrott, Wayne; 3111 Plant Sci; Univ Georgia; Athens GA 30602; 706-542-0928; 706-542-0914 (fax); wparrott@uga.edu
Partas, E. C.; Maize and Sorghum Res. Inst.; Pashcani; Criuleni; 278336 Moldova; MOLDOVA
Parveez, Ahmad; Genetic Transformation Lab; Palm Oil Res Inst Malaysia; P.O. Box 10620; 50720 Kuala Lumpur; MALAYSIA; 603-8259155x2834/3531; 603-8259446 (fax); parveez@porim.gov.my
Paszkowski, Uta; Botanical Institute; Univ of Basel, Hebelstr. 1; Basel CH-4056; SWITZERLAND; 41-61-267-2332; 41-61-267-2330 (fax)
Pataky, Jerald K.; Crop Science, Turner Hall; 1102 S. Goodwin Ave; University of Illinois; Urbana IL 61801; 217-333-6606; 217-244-1230 (fax); jpataky@uiuc.edu
Paterson, Andrew H.; University of Georgia; Rm 162, Riverbend Research Center; 110 Riverbend Road; Athens GA 30602; 706-583-0162/0161; 706-5830160 (fax); paterson@uga.edu
Patil, M. S.; Agric. Research Station; Gulburua 585101; INDIA; 21120; 091-08472-21120 (fax)
Paul, Anna-Lisa; Dept Horticultural Sciences; 1255 Fifield Hall; Univ Florida; Gainesville FL 32611; 352-392-4711x313; 352-392-6479 (fax);

Pawar, S. E.; Nuclear Agriculture Division; Bhabha Atomic Research Center; Trombay Bombay 400085; INDIA; 5563060 ext 2638; 9122-556-0750 (fax)
Pawlowski, Wojtek; Cande Lab; 345 LSA; Univ California; Berkeley CA 94720-3200; 510-643-8277; 510-643-6791 (fax); wpawlows@nature.berkeley.edu
Peacock, Jim; Division of Plant Industry; CSIRO; Canberra ACT 2601; AUSTRALIA; 062-465250
Pecoraro, Catherine M.; Univ Illinois; 284 ERML MC-051; Urbana IL 61801; 217-333-9465; c-pecor@staff.uiuc.edu
Pei, Deqing; lowa State Univ; Dept Plant Pathol; Ames IA 50011-1020; 515-296-9326; 515-294-9420 (fax); dpei@iastate.edu
Pen, Sietse; Glenn Maize France SARL; 'Les Clarines'; Rte Chapelle de Rousse; 64290 Gan; FRANCE; 003355921 57 57; 0033559215751 (fax)
Peng, Jinzhi; State Science \& Tech. Commission; China Natl. Ctr. Biotech. Development; 54 Sanlihe Road; Beiijng; CHINA
Peng, Jiqing; Univ Delaware; 530 S College Rd; Newark DE 19717; 302-831-0854; 302-831-0605 (fax); jpeng@udel.edu
Penning, Bryan; Univ Missouri; 205 Curtis Hall; Columbia MO 65211-7020; 573-882-7818; 573-884-7850 (fax); bwp8ct@mizzou.edu
Penzes, Eva A.; Dept Molec Cell Biol; 345 LSA; UC Berkeley; Berkeley CA 94720-0001; 510-643-8277; 510-643-6791 (fax)
Pereira de Souza, Anete; CBMEG/UNICAMP; Caixa Postal 6109; CEP 13083-970; Campinas SP; BRAZIL; 55-19-239-8351; 55-19-239-7030 (fax)
Perez, Pascual; Univ Des Cezeaux - Biogemma; 24 Avenue des Landais; 63130 Aubiere; FRANCE; (33) 67342 7970; (33) 673427981 (fax); pascual.perez@biogemma.com
Perotti, Enrico; Lisboa 27; Apdo. Postal 6-641; CIMMYT; 06600 Mexico; MEXICO; 525-804-2004; 525-726-7567 (fax); eperotti@cimmyt.mx
Peschke, Virginia M.; Plant Sciences, GG6A, Monsanto Co.; 700 Chesterfield Village Parkway N; St. Louis MO 63198; (636)737-6939; (636)737-6189 (fax); virginia.m.peschke@monsanto.com
Petersen, William; Monsanto-Agracetus; 8520 University Green; Middleton WI 53562; william.I.petersen@monsanto.com
Peterson, Peter A.; Dept of Agronomy; Iowa State University; Ames IA 50011; 515-294-9652; 515-294-2299 (fax); pap@iastate.edu
Peterson, Thomas A.; Dept. of Zoology \& Genetics; 2206 Molecular Biology; lowa State Univ.; Ames IA 50011; 515-294-6345; 515-294-0345 (fax); thomasp@iastate.edu
Pham, Hiep; Cargill Seed Research; P.O. Box 774; Grinnell IA 50112; (515)236-4911; (515)236-3607 (fax)
Phelps-Durr, Tara; Tucker Hall; University of Missouri; Columbia MO 65211; 573-449-4871; 573-882-0123 (fax); tlp1d2@mizzou.edu
Phillips, Ronald; Agronomy \& PI Genetics; 411 Borlaug Hall; University of Minnesota; St. Paul MN 55108; 612-625-1213; 612-625-1268 (fax); Phill005@maroon.tc.umn.edu
Phinney, Bernard O.; Dept. of Biology; 405 Hilgard Avenue; UCLA; Los Angeles CA 90024-1606; (310)825-3177; (310)825-3177 (fax); bop@ucla.edu
Pieris, Shayani; Iowa State Univ; 1212 Agronomy; Ames IA 50011; 515-294-0837; 515-294-3163 (fax); shayani@iastate.edu
Pilu, Roberto; Univ di Milano; Via Celoria 2; 20133 Milan; ITALY
Pixley, Kevin V; PO Box MP 163; Mount Pleasant; Harare; ZIMBABWE; 263-4-301807; 263-4-301327 (fax); k.pixley@cgnet.com
Plehn, Steve J.; Cargill Hybrid Seeds; P.O. Box 762; Mt. Vernon IN 47620; (812)838-5218; (812)838-8864 (fax)
Plesset, Judith; Plant and Microbial Development; National Science Foundation; 4201 Wilson Boulevard; Arlington VA 22230; (703) 306-1417; jplesset@nsf.gov
Podolskaya, Anna P.; N. I. Vavilov All Union Inst Plant Industry; 44 Herzen Street; 190000, St. Petersburg; RUSSIA; 311-99-45; 311-8762 (fax)
Poethig, R. Scott; Biology Department; Leidy Labs, Univ Penn; Philadelphia PA 19104-6018; 215-898-8915; 215-898-8780 (fax); SPOETHIG@SAS.UPENN.EDU
Poggio, Lidia; Inst Fitotecnico de Santa Catalina (UNLP); C.C. 4 (1836) Llavallol; Buenos Aires; ARGENTINA
Polacco, Mary; 203 Curtis Hall; University of Missouri; Columbia MO 65211; 573-884-7873; 573-884-7850 (fax); polaccom@missouri.edu
Pollacsek, M.; Station Amelior PI-INRA; 63039 Clermont Ferrand; FRANCE; 73-62-43-01; 73-62-44-53 (fax)
Pollak, Linda; USDA-ARS; Dept. Agronomy; Iowa State Univ.; Ames IA 50011; 515-294-7831; 515-294-9359 (fax); Impollak@iastate.edu
Pollmer, W. G.; Universitat Hohenheim; Egilolfstr. 25; D-70599 Stuttgart; GERMANY; 49-711-4586315; 49-711-4569008 (fax)
Poneleit, Charles G.; Agronomy; University of Kentucky; Lexington KY 40546-0091; 606-257-4934; 606-258-1952 (fax); AGR021@UKCC.UKY.EDU
Ponelies, Norbert; Institut fur Pflanzenzuchtung; Universitat Hohenheim; Fruwirthshr 21; D70599 Stuttgart; GERMANY; 49 (711) 459 2341; 49 (711) 459 2342 (fax)
Pooma, Wilailak; Ohio State Univ; 218A Rightmire Hall; 1060 Carmack Rd; Columbus OH 43210; 614-688-4954; 614-292-5379 (fax); pooma.1@osu.edu
Prasanna, B.M.; Division of Genetics; Indian Agricultural Research Institue; New Delhi-110 012; INDIA; bmp@bic-iari.ren.nic.in
Pratt, Richard C.; Dept. Hort. \& Crop Science; OSU/OARDC; 1680 Madison Avenue; Wooster OH 44691; 330-263-3972; 330-263-3887 (fax); pratt.3@osu.edu
Prest, Thomas J.; Syngenta Seeds; 1001 Montana St; Glidden IA 51443; 712-659-3691; 712-659-3693 (fax); Tom.Prest@syngenta.com
Presting, Ortrun; DuPont; 10700 Justin Drive; Urbandale IA 50322; 515-251-3029; 515-251-3040 (fax)
Price, Carl; Waksman Inst; Rutgers University; Piscataway NJ 08855-0759; 732-445-2920; 732-445-5735 (fax); Price@mbcl.rutgers.edu
Prigge, Michael; Institute Molec Biol; Univ of Oregon; Eugene OR 97403
Pring, Daryl R.; Dept of Plant Pathology; 1453 Fifield Hall; University of Florida; Gainesville FL 32611; 352-392-3638; 352-392-6532 (fax); drpg@gnv.ifas.ufl.edu
Prioli, Laudenir M.; Depto. Genetica; IB/CBMEG, Univ Estad Campinas; CP 6109; Campinas 13083-970; BRAZIL; 55-192-397030; 55-192-394717 (fax)
Prioul, Jean-Louis; IBP Bat 630; Universite de Paris-Sud; 91405 Orsay Cedex; FRANCE; 33169336373 ; 33169336424 (fax); prioul@ibp.u-psud.fr
Prosen, Dennis; Harris Moran Seed Co.; 100 Breen Rd.; San Jun Bautista CA 94045; (408)623-4323; (408)623-2260 (fax)
Pruitt, Jennifer; Monsanto; 800 N Lindbergh Blvd B2SF; St. Louis MO 63167; 314-694-3481; 314-694-1080 (fax); jennifer.I.pruitt@monsanto.com
Pryor, Tony; Plant Industry CSIRO; PO Box 1600; Canberra ACT 2601; AUSTRALIA; 61-02-6246 5494; 61-02-6246 5000 (fax); tony.pryor@pi.csiro.au
Puigdomenech, Pedro; Centro de Investigacion y Desarrollo; c/ Girona Salgado, 18-26; 08034 Barcelona; SPAIN; 34-3-400-61-29; 34-3-204-59-04 (fax); pprgmp@cid.csic.es
Purugganan, Michael; Dept of Genetics; Box 7614; NC State University; Raleigh NC 27695-7614; michaelp@unity.ncsu.edu
Qin, Lu; Institute of Genetics and Crop Breeding; Fuzhou 0591; CHINA
Qin, Minmin; USDA-ARS-PGEC; 800 Buchanan Street; Albany CA 94710
Qiu, Fang; lowa State Univ; B420 Agronomy Hall; Ames IA 50011; 515-294-1659; 515-294-2299 (fax); fqiu@iastate.edu
Qiu, Lijuan; G403 Agronomy Hall; lowa State Univ; Ames IA 50011
Qu, F; Institute of Genetics; Lab No. 801; Beijing 100101; CHINA
Qualset, Calvin O.; Genetic Resources Cons Program; Univ of California; 1 Shields Ave; Davis CA 95616-8602; 530-754-8502; 530-754-8505 (fax); coqualset@ucdavis.edu
Quarrie, Steve; John Innes Centre; Norwich Research Park; Colney; Norwich NR4 7UH; UNITED KINGDOM; 44-1603-452571; 44-1603-502241 (fax); QUARRIE@BBSRC.AC.UK
Quayle, Tom; The American University; 113 Sharia Kasr El-Aini; 11511 Cairo; EGYPT; quayle@aucegypt.edu
Quebedeaux, Bruno; Dept Nat Res Sci \& Landsc Arch; Plant Sci Bldg 2130; University of Maryland; College Park MD 20742; 301-405-4336; 301-314-9308 (fax); BQ1@umail.umd.edu
Queijo, Marcelo; 499-A Plant \& Soil Sci Bldg; Michigan State Univ; East Lansing MI 48824; 517-355-6883; 517-353-5174 (fax)

Qun Hui, Lin; Fujian Agricultural College; Dept. of Agronomy; Jingshian, Fuzhou; Fujian 350002; CHINA
Rabinowicz, Pablo; Cold Spring Harbor Lab; 1 Bungtown Rd; Cold Spring Harbor NY 11724; 516-367-8836; 516-367-8369 (fax); rabinowi@cshl.org
Raboy, Victor; USDA-ARS-NSGGRF; PO Box 307; Aberdeen ID 83210; 208-397-4162; 208-397-4165 (fax); vraboy@uidaho.edu
Rabson, Robert; Div. of Energy Bioscience; Office of Basic Energy Sci; U.S. Dept of Energy, ER-17 GTN; Washington DC 20545; 301-903-2873; 301-903-1003 (fax)
Racchi, Milvia L.; Genetics Unit; Univ of Florence; Via San Bonaventura 13; 50145 Firenze; ITALY; 55-573201; $55-580341$ (fax); gene_agr@cesit1.uniff.it
Radwanski, Elaine; Carthage College; Biology Dept; 2001 Alferd Park Drive; Kenosha WI 53140; 414-551-5865; 414-551-6208 (fax); elaine1@carthage.edu
Rafalski, Antoni; DuPont Agric Biotechnol; Delaware Technol Park, Suite 200; 1 Innovation Way, PO Box 6104; Newark DE 19714-6104; 302-631-2612; 302-631-2607 (fax); J-Antoni.Rafalski@usa.dupont.com
Ragot, Michel; Novartis Seeds; 12, Chemin de I'Hobit; F-31790 Saint-Sauveur; FRANCE; 33(0)562799902; 33(0)562799996 (fax); michel.ragot@seeds.novartis.com
Raikhel, Natasha; NV Raikhel; Michigan State Univ; DOE Plant Res Lab; East Lansing MI 48824; NRaikhel@pilot.msu.edu
Raizada, Manish; Dept. of Plant Agriculture; University of Guelph; Crop Science Building Room 316; Guelph, Ontario; CANADA N1G 2W1; 519 824 4120x3396; 519 763-8933 (fax); raizada@uoguelph.ca
Ramakrishna, Wusirika; Purdue Univ; Dept Biology; H339 Hansen; West Lafayette IN 47907; 765-494-4919; 765-496-1496 (fax); wusirika@purdue.edu
Rao, P. N.; Dept of Botany; Andhra University; Visakhapatnam 530003; INDIA; 54871 ext 390
Rapp, William; Department of Biology; Univ. of Missouri-St. Louis; 8001 Natural Bridge Rd.; St. Louis MO 63121-4499; 314-553-6225; 314-553-6233 (fax); swdrapp@umsIvma.umsl.edu
Ratnakaya, Swarnamala; 250 W Bedford Park Blvd; Lehman College; Bronx NY 10468; 718-960-4994; 718-960-8236 (fax); swarnama@hotmail.com
Rauh, Bradley; North Carolina State Univ; 2523 Gardner Hall; Raleigh NC 27695; 919-513-2821; 919-515-3355 (fax); blrauh@unity.ncsu.edu
Rausch, Thomas; Univ Heidelberg; Botanisches Institut, INF 360; D-69120 Heidelberg; GERMANY; trausch@mail.bot.uni-heidelberg.de
Ravanello, Monica; Monsanto; 1920 Fifth St; Davis CA 95616; 530-792-2249; 530-792-2453 (fax); monica.p.ravanello@monsanto.com
Rayburn, A. Lane; Crop Sci, 320 ERML; 1201 W. Gregory; Univ of Illinois; Urbana IL 61801; (217)333-4777; (217)333-9817 (fax); arayburn@uiuc.edu
Reardon, Ellen; Waksman Institute; Piscataway NJ 08855-0759; 732-445-3512; 732-445-5735 (fax); reardon@mbcl.rutgers.edu
Reddy, Arjula; School of Life Sci; Univ of Hyderabad; Hyderabad-500 046; INDIA; 0091-40-3010265,3033123; 0091-40-3010120 (fax); arjuls!@uohyd.ernet.in
Reddy, Gurjal; Department of Genetics; Osmania University; Hyderabad-500007; INDIA; 868951 Ext. 375; 91-0842-868087 (fax)
Reddy, Vaka; Univ Georgia; Dept Genetics/Botany; Athens GA 30602; 706-542-1857; 706-542-3910 (fax)
Redinbaugh, Margaret; USDA-ARS; OARDC; Dept Plant Pathology; Wooster OH 44691; 330-263-3965; 330-263-3841 (fax); redinbaugh.2@osu.edu
Register, James; Pioneer HI Bred Int Inc; Trait \& Technol Dev, Johnston, IA 50131 USA; Johnston IA 50131; REGISTERJC@phibred.com
Reid, L. M.; Eastern Cereal \& Oilseed Res Centre; Agriculture and Agri-Food Canada; Bldg 121 Central Experimental Farm; Ottawa, Ontario K1A 0C6; CANADA; 613-759-1619; 613-952-9295 (fax); reidl@em.agr.ca
Reinders, Jon; Syngenta; 317 330th St; Northfield MN 55018; 507-663-7672; 507-645-7519 (fax); jon.reinders@syngenta.com
Reiser, Leonore; Dept Plant Biol; 260 Panama; Stanford CA 94305; 650-325-1521; Ireiser@acoma.stanford.edu
Reiter, Karen; Monsanto; 4179 114th St; Urbandale IA 50322; 515-331-6206; 515-331-6240 (fax)
Reiter, Robert; Monsanto; 3302 SE Convenience Blvd; Ankeny IA 50021; 515-963-4211; 515-963-4242 (fax); Robert.S.Reiter@monsanto.com
Remington, David; Genetics Box 7614; North Carolina State Univ; Raleigh NC 27695-7614; 919-513-2821; 919-515-3355 (fax)
Ren, Nan; Gilmer Hall; Biology Department; University of Virginia; Charlottesville VA 22903; nr4g@faraday.clas.virginia.edu
Ren, Ruihua; Dow AgroSciences LLC; 9330 Zionsville Rd; Indianapolis IN 46268; 317-337-5994; 317-337-5989 (fax)
Renk, Bryan; Wisconsin Alumni Research Foundation; PO Box 7365; Madison WI 53707-7365; 608-263-2828; 608-263-1064 (fax); bryarenk@facstaff.wisc.edu
Retief, Dries; Dept of Genetics. J. S. Marais Bldg; Univ of Stellenbosch; Stellenbosch 7600; SOUTH AFRICA; 027-21-9380262; 027-21-9380460 (fax); aretief@mrc.ac.za
Rhee, Seung; Carnegie Institution of Washington; 290 Panama St.; Stanford CA 94305
Rhee, Yong; Univ Wisconsin-Madison; Dept Agronomy; 1575 Linden Drive; Madison WI 53706; 608-262-3660; 608-262-5217 (fax); yrhee@students.wisc.edu
Rhodes, Carol; 219 Bay Tree Rd.; San Carlos CA 94070-3816; 650-598-9469; 650-598-9469 (fax); carolrhodes@hotmail.com
Ribaut, Jean-Marcel; CIMMYT; Apdo. Postal 6-641; 06600 Mexico D.F.; MEXICO; $59521900 ; 59521987$ (fax); j.ribaut@CGIAR.org
Rice, Doug; Pioneer Hi-Bred Internat Inc; 7300 NW 62nd Ave; PO Box 22; Johnston IA 50131-1004
Richards, Eric; Biology Dept.; Washington University; St. Louis MO 63130; 314-935-7196; richards@biodec.wustl.edu
Richter, Todd E.; Plant Path. Dept.; Throckmorton Hall; Manhattan KS 66506; (913)532-6176; (913)532-5692 (fax)
Riera-Lizarazu, Oscar; Dept Crop \& Soil Sci; Oregon State Univ; Corvallis OR 97331-3002; 541-737-5879; 541-737-1589 (fax); 0scar.riera@orst.edu
Rinehart, Chuck; Univ of Idaho; Dept Biol Sci, 229 Gibb Hall; Moscow ID 83844-3051
Rinehart, Tim; Univ Idaho; Biological Sciences; Moscow ID 83844-3051; 208-885-2550; 208-885-7905 (fax); rine9558@uidaho.edu
Rines, Howard; Agronomy \& Plant Genetics; 411 Borlaug Hall, 1991 Buford Circle; Univ Minnesota; St. Paul MN 55108; 612-625-5220; 612-625-5058 (fax); rines001@tc.umn.edu
Ripoll, Pierre-Jean; Rhone-Poulenc/IACR Long Ashton; Dept Agric Sci; Univ Bristol, Long Ashton; Bristol BS41 9AF; UNITED KINGDOM; 00-44-11275392181; 00-44-1275-394281 (fax)
Ritter, Matt; Univ California-San Diego; Dept Biology 0116; 9500 Gilman Dr; San Diego CA 92093-0116; 619-534-2514; mritter@biomail.ucsd.edu
Riviere, Jean-Michel; Limagrain Genetics Grand Cult SA; P.O. Box 2; ZA Les Pains; Les Alleuds 49320; FRANCE; 33241530429 (fax)
Rivin, Carol; Dept. of Botany; Cordley 2082; Oregon State University; Corvallis OR 97331-2902; 503-737-5281; rivinc@cgrb.orst.edu
Robbins Jr., W. A.; P.O. Box 158; Ag. Alumni Seed Imp. Assn.; Romney IN 47981; 317-538-3145; 317-538-3600 (fax)
Roberts, Jean L.; Dow Agrosciences Discovery Research; 9330 Zionsville Road; Indianapolis IN 46268; 317-337-3126; 317-337-3228 (fax); jlroberts@dowagro.com
Roberts, Justin; Dept Biochemistry; University of California; Riverside CA 92521; jkmr@ucrac1.ucr.edu
Robertson, Donald S.; 1707 Woodhaven Circle; Ames IA 50010-4198; 515-232-2892; DONRRR@aol.com
Robison, Glenn; DeKalb Plant Genetics; 3100 Sycamore Road; DeKalb IL 60115; 815-758-9531; 815-758-4106 (fax)
Rocheford, Torbert R.; Crop Sci, W221 Turner Hall; University of Illinois; 1102 S. Goodwin Av.; Urbana IL 61801; 217-244-3388; 217-333-9817 (fax); trochefo@uiuc.edu
Rocky, Sally; USDA, NRICGP; 901 D. Street, SW, Room 323; Washington DC 20250
Rogers, Suzanne; Salem-Teikyo University; Salem WV 26426-0520
Rogowsky, Peter; RCAP; ENS-Lyon; 46 Allee d'ltalie; F-69364 Lyon cedex 07; FRANCE; 33-472-72-86-07; 33-4-72-72-86-00 (fax); progowsk@ens-lyon.fr
Romero-Severson, Jeanne; Purdue University; Dept For \& Nat Res, \& Dept Agron; Room 206C WSLR; 1159 Forestry Bldg.; West Lafayette IN 47907-1159; 765-496-6801; 765-496-2422 (fax); romeros@fnr.purdue.edu

Ronelus, Wedoaud; Lehman College, CUNY; Dept Biol Sci; Bronx NY 10468; 718-960-8643; 718-960-8236 (fax); G83LC@CUNYVM.CUNY.EDU
Rood, Tracy; Pioneer Hi-Bred Internat Inc; 7300 NW 62nd Ave.; PO Box 1004; Johnston IA 50131-1004
Rooney, Lloyd W.; Soil \& Crop Sciences Dept; 429B Heep Center; Texas A\&M Univ; College Station TX 77843-2474; 979-845-2910; 979-845-0456 (fax); Irooney@tamu.edu
Rosario, Julio; S123 Turner Hall; 1102 S Goodwin Ave; Urbana IL 61801-4798; 217-333-6631; 217-333-6064 (fax)
Rosato, S. Caprice; 1220 Oak Villa Road; Dallas OR 97338; 541-750-8750 (fax); rosatoc@ucs.orst.edu
Rosichan, Jeffrey; Novartis Seeds, Inc.; Research Center; 317 330th St.; Stanton MN 55018-4308; 507-663-7642; 507-645-7519 (fax); jeff.rosichan@syngenta.com
Rosielle, A.; Monsanto-International Assignment; Mail Stop 5045; 800 N Lindbergh; St. Louis MO 63167
Ross, Andrew; Iowa State Univ; 1203 Agronomy Hall; Ames IA 50011; 515-294-6868; AJRoss@corn2.agron.iastate.edu
Rossini, Laura; Univ of Oxford; Dept Plant Sci, South Parks Rd; Oxford OX1 3RB; UNITED KINGDOM; 44-1865-275030; 44-1865-275147 (fax); laura.rossini@plant-sciences.oxford.ac.uk
Roth, Brad; Pioneer Hi-Bred Internat, Inc.; 7300 NW 62nd Ave.; Box 1004; Johnston IA 50131-1004; (515)270-3789; (515)253-2478 (fax)
Rothstein, Steven; 7250 NW 62 nd Ave; PO Box 552; Johnston IA 50131-0552; 515-334-4487; 515-334-4778 (fax)
Rouan, Dominique; Plant Genetic Systems; Plateaustraat 22; Ghent 9000; BELGIUM; 32-92358402; 32-92240694 (fax); domni@pgsgent.be
Rout, Jyoti; Monsanto Company; Agracetus Campus; 8520 University Green; Middleton WI 53562; 608-821-3465; 608-836-9710 (fax)
Roux, Christophe; Univ Toulouse; Pole de Biotech Veg; UMR 5546 BP18 Castanet; Tolosan 31326; FRANCE; 33562 193 504; 33562193502 (fax); roux@smcv.ups-tlse.fr
Roy, Laura; Biology Dept 0116; Univ California; La Jolla CA 92093-0116; 858-822-2558; 858-534-7108 (fax); Iroy@biomail.ucsd.edu
Royo, Joaquin; Univ de Alcala; Biologia Celular y Genetica; Campus Universitario; ES-28871 Madrid; SPAIN; 3491 8854758; 31918854799 (fax); joaquin.royo@uah.es
Rubenstein, Irwin; 1838 Parliament Rd; Leucadia CA 92024-1030
Rudenko, George; Stanford Univ; Bio Sci; Stanford CA 94305-5020; 650-723-2609; 650-725-8221 (fax); rudenko@leland.stanford.edu
Ruesch, Kim; 3800 SW 34th St. Apt J82; Gainesville FL 32608; 352-336-2803; klr@gnv.ifas.ufl.edu
Ruff, Thomas G.; Monsanto-Ceregen; 800 N Lindbergh Blvd; N2SA; St. Louis MO 63198; 314-694-8865; 314-694-1671 (fax); thomas.g.ruff@monsanto.com
Running, Mark; USDA/PGEC; 800 Buchanan St; Albany CA 94710; 510-559-5922; 510-559-5648 (fax); mrunning@uclink.berkeley.edu
Rupe, Mary; Pioneer Hi-Bred Internatl; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131; 515-270-5991; 515-334-4778 (fax)
Russell, Doug; Monsanto-Agracetus; 8520 University Green; Middleton WI 53562; 608-821-3443; 608-836-9710 (fax); douglas.a.russell@monsanto.com
Russell, Kelly; Institute of Molec Biol; University of Oregon; Eugene OR 97403
Russell, Ken; Univ of Nebraska; Dept of Agronomy; PO Box 830915; Lincoln NE 68583; 402-472-1562; 402-472-7904 (fax); KRUSSELL3@unl.edu
Saab, Imad; Crop Sci, Turner Hall; 1102 S. Goodwin Ave.; Univ of Illinois; Urbana IL 61801; 217-333-7585; 217-333-6064 (fax)
Sabelli, Paolo; University of Arizona; Dept. of Plant Sciences; 303 Forbes Building; P.O. Box 210036; Tucson AZ 85721-0036; (520) 621-9154; (520) 621 3692 (fax); psabelli@ag.arizona.edu
Sachan, JKS; Division of Genetics; I.A.R.I.; New Delhi-110012; INDIA; 91-011-5783077; 91-011-5752006 (fax)
Sachs, Marty; USDA/ARS; S108 Turner Hall; 1102 S. Goodwin Ave; Urbana IL 61801; (217)244-0864/333-9743lab; (217)333-6064 (fax); msachs@uiuc.edu
Sadder, Monther; 350/2 Inst Plant Breed; Univ Hohenheim; D-70593 Stuttgart; GERMANY; 4594429; 4593005 (fax); sadderm@uni-hohenheim.de
Saedler, Heinz; Max-Planck Inst Zuchtungsf; Carl-von Linne-Weg 10; D 50829 Koln; GERMANY; 221-5062-100; 221-5062-113 (fax)
Saghai Maroof, MA; CSES Department; VPI \& SU; Blacksburg VA 24061; 540-231-9791; 540-231-3431 (fax); SMAROOF@VT.EDU
Sakulsingharoj, Chotipa; 1650 NE Valley Rd \#A4; Washington State Univ; Pullman WA 99163; 509-332-5187; chotipas@wsunix.wsu.edu
Salamini, Francesco; Max Planck Inst Zuchtungsf; Abt Pflanzenz Ertragsphysiol; D-50829 Koln; GERMANY; 49-221-5062400; 0049-221-5062413 (fax)
Salamone, Peter; 369 Clark Hall; Washington State Univ; Pullman WA 99164; 509-335-1047; 509-335-7643 (fax); petes@mail.wsu.edu
Salerno, Juan C.; PJE. San Sebastian 439; 1405 Buenos Aires; ARGENTINA; 54-1-15-949-3685; 54-1-450-0805/1876 (fax); jsalerno@inta.gov.ar
Salimath, S. S.; Plant Biology Div; PO Box 2180; The S.R. Noble Foundation; Ardmore OK 73402; 405-221-7349; 405-221-7380 (fax); sssalimath@noble.org
Salvador, Ricardo J.; Iowa State University; Dept. of Agronomy; 1126 Agronomy Hall; Ames IA 50011-1010; 515-294-9595; 515-294-8146 (fax); RJSALVAD@IASTATE.EDU
San Miguel, Phillip; HANS 339; Dept. of Biological Sciences; Purdue University; West Lafayette IN 47907; 765-494-4919; 765-496-1496 (fax); pmiguel@bilbo.bio.purdue.edu
Sanchez de Jimenez, Estela; UNAM, Facultad de Quimica; Edificio B; Ciudad Universitaria; Mexico City 04510, DF; MEXICO; estelas@servidor.dgsca.unam.mx
Sanchez-Villeda, Hector; Curtis Hall; Univ of Missouri; Columbia MO 65211-7020; 573-884-3439; 573-884-7850 (fax); sanchezvilledah@missouri.edu
Sangtong, Varaporn; lowa State Univ; Agronomy Hall, Rm 1401; Ames IA 50011-1010; 515-294-0837; varaporn@iastate.edu
Santos, MA; Dept Genetica Molecular; Centro Invest Desarrollo; Gorge Girona 18-24; 08034 Barcelona; SPAIN; 34-3-4006100; 34-3-2045904 (fax)
Saparno, Audrey; Bldg 21 CE Farm; 960 Carling Ave; Agriculture \& Agri-Food Canada; Ottawa, ONT K1A OC6; CANADA; 613-759-1551; 613-759-6566 (fax); saparnoa@em.agr.ca
Sari-Gorla, Mirella; Univ Milan; Dept Genet \& Microbiol; Via Celoria 26; I-20133 Milan; ITALY; mirella.sarigorla@unimi.it
Sarkar, Kumud R.; 77B, Ekta Apartments; Block A-2/B; Paschim Vihar; New Delhi 110 063; INDIA; kurasar@del3.vsnl.net.in
Sasaki, Takuji; Rice Genome Research Program; STAFF Institute, 446-1, Ippaizuka; Kamiyokoba, Tsukuba; Ibaraki 305-0854; JAPAN; 81-248-38-7441; 81-248-38-7468 (fax); tsasaki@nias.affrc.go.jp
Sasinowski, Maciek; 110 Liberty Dr; Suite 104; Clemson SC 29631; 864-654-8850; maciek@incogen.com
Satarova, Tatjana N; Dzerzhinskaya st., 14; Institute of Grain Farm; Dniepropetrovsk 49027; UKRAINE; biochem@dsma.dp.ua
Sato, Yutaka; PGEC; 800 Buchanan St; Albany CA 94710; 510-559-5922; 510-559-5678 (fax); yutakas@uclink4.berkeley.edu
Sauer, Matt; Plant Sci Inst; Univ Pennsylvania; Philadelphia PA 19104; 215-898-8916; 215-898-8780 (fax); gmsauer2@sas.upenn.edu
Savidan, Yves H.; International Relations Officer; Agropolis; Ave Agropolis; 34394 Montpellier Cedex 5; FRANCE; 33 (0) 467047569; 33 (0) 467047599 (fax); savidan@agropolis.fr
Sawers, Ruairidh; Univ Oxford; Dept Plant Sci; South Parks Rd; Oxford OX1 3RB; UNITED KINGDOM
Scandalios, John; Dept. of Genetics; North Carolina State Univ.; Box 7614; Raleigh NC 27695-7614; (919)515-7079; (919)515-3355 (fax); jgs@unity.ncsu.edu
Scanlon, Mike; Botany Dept; Univ Georgia; 3609 Plant Sciences; Athens GA 30602; 706-542-7516; 706-542-1805 (fax); mjscanlo@dogwood.botany.uga.edu
Scarpella, Enrico; Inst Molec Biol; Clusius Lab; PO Box 9505; 2300 RA Leiden; NETHERLANDS; 31-71-5274837; 31-71-5274999 (fax); scarpella@rulbim.leidenuniv.nl
Schafer, Christine; Lehrstuhl fur Genetik; Technische Univ Munchen; Lichtenbergstrasse 4; Garching 85747; GERMANY; 28912930; 28912932 (fax)
Scheffler, Brian E.; USDA-ARS-NPURU; Natl Ctr Devel Nat Prod; PO Box 8048; University MS 38677; 662-915-1548; 662-915-1035 (fax);
brians@olemiss.edu
Schichnes, Denise E.; Dept of Plant Biology; 111 Koshland Hall; Univ California Berkeley; Berkeley CA 94720; (510)642-8058; (415)642-4995 (fax); Schichne@nature.berkeley.edu
Schiefelbein, John W.; 4085 Natural Science Bldg.; University of Michigan; Ann Arbor MI 48109; 313-764-3579; 313-747-0884 (fax); schiefel@umich.edu
Schmidt, Robert J.; Univ of California-San Diego; Dept of Biology 0116; 9500 Gilman Dr; San Diego CA 92093-0116; 619-534-1636; 619-534-7108 (fax); rschmidt@ucsd.edu
Schmitt, Laura; Univ Wisconsin; 1575 Linden Dr; Madison WI 53706; 608-263-5809; 608-262-5217 (fax); Ischmitt@facstaff.wisc.edu
Schnable, Patrick; Dept of Agronomy; G405 Agronomy Hall; lowa State Univ; Ames IA 50011; 515-294-0975; 515-292-2299 (fax); Schnable@iastate.edu
Schneeberger, Richard G.; CERES, INC; 3007 Malibu Canyon Road; Malibu CA 90265; 310-317-8924; 310-317-8998 (fax); rschnee@ceres-inc.com
Schneerman, Martha C.; Illinois State University; 4120 Biological Sciences; Normal IL 61790-4120; 309-438-3088; 309-438-3722 (fax); MCSCHNEE@ilstu.edu
Schnicker, Bruce; Cornnuts; 1000 S. Edgewood Ave.; P.O. Box 830; Urbana OH 43078; 513-652-1321; 513-653-3675 (fax)
Scholl, Randy; Arabidopsis Biol Resource Center; Ohio State; 1735 Neil Ave.; Columbus OH 43210; 614-292-0603; 614-292-0603 (fax); scholl.1@osu.edu
Schramke, Mary; Bio-Rad Laboratories, Life Sciences Group; 2000 Alfred Nobel Drive; Hercules CA 94547; 510-741-6717; 510-741-1051 (fax)
Schreiber, Daniela; Univ Hamburg; Ohnhorstrasse 18; D-22609 Hamburg; GERMANY; dschreiber@botanik.uni-hamburg.de
Schroeck, Geoff; Univ Wisconsin-Madison; 1575 Linden Dr; Madison WI 53706
Schroeder, Steve; Univ Missouri; 209 Curtis Hall; Columbia MO 65211; 573-882-8214; 573-884-7850 (fax); schroedersg@missouri.edu
Schultes, Neil; Dept Biochem \& Genetics; Conn Agric Exper Sta; 123 Huntington St; New Haven CT 06511; 203-789-6912; 203-789-7232 (fax)
Schultz, Jennifer; Univ Illinois; 311 ERML; 1201 W Gregory; Urbana IL 60181; 217-333-1967; 217-333-4777 (fax); jaschult@uiuc.edu
Schultz, Linda; Curtis Hall; Univ Missouri; Columbia MO 65211; schultz1@missouri.edu
Schultz, Pam; Univ Minnesota; 220 Biological Sci; 1445 Gortner Ave; St. Paul MN 55110; 612-625-5241; 612-625-1738 (fax); schul073@gold.tc.umn.edu
Schwall, Michael; Suedwestdeutsche Saatzucht; Im Rheinfeld 1-13; 76437 Rastatt; GERMANY; 49-7222-7707-0; 49-7222-770777 (fax); schwall@ruf.unifreiburg.de
Schwartz, Drew; Biology Dept; Indiana University; Bloomington IN 47405; 812-855-6060; 812-855-6705 (fax); Schwartz@bio.indiana.edu
Scott, Cheryl; Univ Minnesota; 220 Biol Sci; 1445 Gortner Ave; St. Paul MN 55108; 612-625-5241; 612-625-1738 (fax); scot0136@tc.umn.edu
Scott, Lu Ann; Dept Biol Sci; University of Idaho; Moscow ID 83844-3051; Iscot@@uidaho.edu
Scott, Paul; 1407 Agronomy; USDA-ARS; Iowa State University; Ames IA 50011; 515-294-7825; 515-294-9359 (fax); pscott@iastate.edu
Seay, Nick; Quarles \& Brady; PO Box 2113; 1 S Pinckney St; Madison WI 53701; 608-283-2484; 608-251-9166 (fax); nj@quarles.com
Segal, Gregorio; Waksman Institute; State Univ of NJ; 190 Frelinguysen Rd; Piscataway NJ 08854-8020; 732-445-3801; 732-445-5735 (fax); segal@waksman.rutgers.edu
Selinger, David; Univ Arizona; 303 Forbes Hall; Dept Plant Sciences; Tucson AZ 85721; 520-621-8964; 520-621-7186 (fax); daves@ag.arizona.edu
Selzer, Gerald; Research Resources; National Science Foundation Room 615; 4201 Wilson Blvd.; Arlington VA 22230; (703)306-1469; gselzer@nsf.gov
Senior, Lynn; Syngenta; 3054 Cornwallis Rd; Research Triangle Park NC 27709; 919-597-3041; 919-541-8585 (fax); lynn.senior@syngenta.com
Seo, Beom-Seok; 2154 Molec Biol Bldg; lowa State Univ; Dept Biochem, Biophys \& Mol Biol; Ames IA 50011; 515-294-8202; 515-294-0453 (fax)
Setter, Tim L.; Department of Soil Crop and Atm. Sci.; 519 Bradfield Hall; Cornell University; Ithaca NY 14853; 607-255-1701; 607-255-2644 (fax); tls1@Cornell.edu
Settles, Mark; Univ Florida; 2235 Fifield Hall, PO Box 110690; Horticultural Sci; Gainesville FL 32611; 352-392-1928 ext 308; 352-392-6479 (fax); settles@gnv.ifas.ufl.edu
Sevilla P., Ricardo; Programa de Maiz; Univ Nacional Agraria; Aptdo 456, La Molina; Lima; PERU; 51-14 495647; 51-14 495670 (fax)
Shadley, Jeff and Gwen Krill-; 7018 Chestnut St.; Milwaukee WI 53213-2742
Shamina, Zlata; Academy of Sciences; K. A. Timiryazev Inst. Plant Phys.; Botanicheskaya 35; 127276 Moscow; RUSSIA
Shands, Henry L.; USDA-ARS; 1111 S. Mason Street; Fort Collins CO 80521-4500; 970-495-3200; 970-221-1427 (fax); hshands@ars.usda.gov
Shang, Jin; Lynx Therapeutics; 25861 Industrial Blvd; Hayward CA 64545; 510-670-9436; 510-670-9302 (fax); jshang@lynxgen.com
Shao, Qi-Quan; Academia Sinica; Genetics Institute 917 Bldg.; Datun Road, Andingmen Wai; Beijing 100101; CHINA
Sharopova, Natalya; 403 Tucker Hall; Biological Sciences; University of Missouri; Columbia MO $65211 ; 573884$ 3715; sharopovaN@missouri.edu
Sharp, Peter; Plant Breeding Institute; University of Sydney; Cobbitty Road; Cobbitty NSW 2570; AUSTRALIA; 61-46-512-600; 61-46-512-578 (fax); pbic00@angis.su.oz.au
Sharp, RE; 1-87 Agriculture; University of Missouri; Dept of Agronomy; Columbia MO 65211; 573-882-1841; sharpr@missouri.edu
Shaver, Donald L; Western Corn Genetics Co.; 20250 Palou Dr.; Salinas CA 93908; 831-455-1492; 831-455-0467 (fax)
Shaw, Janine; Univ of Florida; P.O. Box 110690; Gainesville FL 32611; 352-392-1928 x314; 352-392-6479 (fax); jshaw@gnv.ifas.ufl.edu
Shcherbak, Victor; Krasnodar Res Inst Agric; c/o Zeneca Moscow; Bolshoi Strochenovski Pereulok; Moscow 113054; RUSSIA; 7-503-2306111; 7-503. 2306119 (fax); kniish@online.ru
Sheen, Jen; Dept. of Molecular Biology; Wellman 11, MGH; Boston MA 02114; 617-726-5916; 617-726-6893 (fax); sheen@frodo.mgh.harvard.edu
Shen, Binzhang; Waksman Institute; Rutgers Univ; 190 Frelinghuysen Rd; Piscataway NJ 08854; 732-445-2307; 732-445-5735 (fax); bzshen@eden.rutgers.edu
Shen, Daleng; Fudan University; Inst. of Genetics; Shanghai 200433; CHINA
Shen, Jennie; P.O. Box 80402, E402/4255; DuPont Co.; Wilmington DE 19880-0402; (302)695-1246; (302)695-4296 (fax); jennie.b.shen@usa.dupont.com
Shen, Yu-Wei; Zhejiang Agricultural University; Institute of Nuclear-Agric. Science; Hangzhou; Zhejiang 310029; CHINA
Shen, Zong-Tan; Zhejiang Agricultural University; Dept. of Agronomy; Hangzhou; Zejiang 310029; CHINA
Sheridan, William; Biology Department; Univ of North Dakota; PO Box 9019 Univ Station; Grand Forks ND 58202-9109; 701-777-4479 or -4705; 701-7772623 (fax)
Shi, Liang; Novartis Agric Discovery Inst; 3115 Merryfield Row, Ste 100; San Diego CA 92121; 858-812-1025; 858-812-1097 (fax); liang.shi@nadii.novartis.com
Shiga, Toshio; Sakata Seed Corp; Plant Bio Center, SAKATA SEED Corp; 358 Uchikoshi Sodegaura; Chiba 299-02; JAPAN; 438-75-2369
Shigemori, I; Chusin Agr. Exp. Stn.; Sooga Shiojiri; Nagano 399-64; JAPAN; shige@chushin-exp.pref.nagano.jp
Shiobara, Fumio; One Bungtown Rd; PO Box 100; Cold Spring Harbor Lab; Cold Spring Harbor NY 11724; 516-367-8827; 516-367-8369 (fax)
Shirmohamadali, Asgar; Harris Moran Seed Co; 9241 Mace Blvd; Davis CA 95616; 530-756-1382; 530-756-1016 (fax); asgars@netscape.net
Short, Kent E.; Carnia Seed (Pty) Ltd.; P.O. Box 7424; Petit 1512; SOUTH AFRICA; (011)965-1905; (011)965-1906 (fax)
Shotwell, Mark A; Dept of Biology; 123 Vincent Science Hall; Slippery Rock Univ; Slippery Rock PA 16057-1326; 724-738-2476; 724-738-2188 (fax); mark.shotwell@sru.edu
Shu, Guoping; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave; Johnston IA 50131-1004; 515-253-5733; shugg@phibred.com
Shunk, Rene; National Corn Growers Assoc.; 1000 Executive Parkway, \#105; St. Louis MO 63141-6397; 314-275-9915x106; 314-275-7061 (fax); shunk@ncga.com
Sickau, Diane; B426 Agronomy Hall; Iowa State University; Ames IA 50011; dmsickau@iastate.edu

Siddiqui, Khushnood A.; Int Assoc for Promotion of New; Genetical Approaches to Crop Imp; 387 Talpur Colony; Tandojam Sind; PAKISTAN; 92 22335759; 92 2233-5728 (fax)
Sidorenko, Lyudmila; 303 Forbes Hall; Department of Plant Sciences; University of Arizona; Tucson AZ 85721; 520-621-8964; lyudmila@ag.arizona.edu
Silverthorne, Jane; Plant Genome Research Program; Room 615; National Science Foundation; 4201 Wilson Boulevard; Arlington VA 22230; 703-292-8470; 703-292-9062 (fax); jsilvert@nsf.gov
Simcox, Kevin; Pioneer Hi-Bred Intl Inc.; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131-1004; 515-270-4178; 515-270-3444 (fax); Kevin.Simcox@pioneer.com
Simmons, Kay; USDA/ARS, Nat Program Staff (Grain Crops); Room 4-2230; George Washington Carver Bldg; 5601 Sunnyside Ave; Beltsville MD 207055139; 301-504-5560 (phone); 301-504-6191 (fax); kws@ars.usda.gov
Sims, Lynne E.; Trait \& Technology Development; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave/P.O. Box 1004; Johnston IA 50131-1732; 515-270-3652; 515-270-3367 (fax); SIMSL@PHIBRED.com
Singletary, George; Pioneer Hi-Bred Internatl; 7300 NW 62nd Avenue; PO Box 1004; Johnston IA 50131-1004; 515-270-5994; 515-254-2619 (fax); singletarygw@phibred.com
Sinha, Neelima; Section of Plant Biology; Division of Biological Sciences; University of California; Davis CA 95616; 530-754-8441; 530-752-5410 (fax); NRSINHA@UCDAVIS.EDU
Sinibaldi, Ralph; 1780 Acacio Ct.; Fremont CA 94536; 510-794-6410
Sisco, Paul; The American Chestnut Foundation; 14005 Glenbrook Ave.; Meadowview VA 24361; 540-944-4631; paul@acf.org
Skendzic, Elizabeth; Uinv Wisconsin, Parkside; Biol Sci; 900 Wood Rd, PO Box 2000; Kenosha WI 53141-2000; 414-595-2459; 414-595-2056 (fax); skendzic@uwp.edu
Skibbe, David; lowa State Univ; B420 Agronomy; Ames IA 50010; 515-294-1659; 515-294-2299 (fax); skibbe@iastate.edu
Sleper, David A.; Agronomy Dept; 210 Waters Hall; University of Missouri; Columbia MO 65211; 573-882-7320; 573-882-1467 (fax); sleperd@missouri.edu
Slotkin, Richard Keith; Univ California; Plant Microbial Biol; 111 Koshland Hall MC-310; Berkeley CA 94720; 510-642-8058; 510-642-4995 (fax); slotkin@UClink.berkeley.edu
Smith, Alan; Univ Wisconsin; 1575 Linden Dr; Madison WI 53706; 608-262-6521; 608-262-5217 (fax); alansmith@students.wisc.edu
Smith, Alan G.; Dept Horticultural Science; 356 Alderman Hall, Univ. of MN; 1970 Folwell Av.; St Paul MN 55108; 612-624-9290; alan@molbio.cbs.umn.edu
Smith, Angela; Lehman College, CUNY; Biological Sci; Bronx NY 10468
Smith, Helen; Univ California; 351 Koshland Hall; Berkeley CA 94720; 510-64-8058; hellcat@mills.edu
Smith, Howie; Pioneer Hi-Bred International; 7300 NW 62nd Ave.; P.O. Box 1004; Johnston IA 50131-1004; 515-270-3539; 515-270-4312 (fax); SMITHO@Phibred.com
Smith, James D.; PO Box 2132; Department Soil \& Crop Sci; Texas A \& M University; College Station TX 77843; 979-845-8276
Smith, Jaya; 209 Johnson Hall; PO Box 646420; Washington State Univ; Pullman WA 99164-6420; 509-335-7570; 509-335-8674 (fax); jdsmith@mail.wsu.edu
Smith, Laurie G.; Biology Dept 0116; U. C. San Diego; 9500 Gilman Drive; La Jolla CA 92093-0116; 858-822-2531/2558; 858-534-7108 (fax); Ismith@biomail.ucsd.edu
Smith, Margaret E.; Cornell Univ; 252 Emerson Hall; Dept of Plant Breeding; Ithaca NY 14853; 607-255-1654; 607-255-6683 (fax); mes25@cornell.edu
Smith, Stan; HCR 67; PO Box 20; Soutland MO 65567; 573-765-5149
Smith, Steve; Pioneer Hi-Bred Internatl; P.O. Box 1004; Johnston IA 50131-9410; 515-270-3353; 515-270-4312 (fax); SMITHS@PHIBRED.COM
Snape, John W.; JI Centre; Norwich Research Park; Colney Lane; Norwich NR4 7UH; UNITED KINGDOM; 44-1603-450000; 44-1603-4502241 (fax); john.snape@bbsrc.ac.uk
Sobral, Bruno; Bioinformatics Institute; Virginia Tech; Fralin Biotechnology Center; West Campus Drive; Blacksburg VA 24061-0106; 540-231-9808; 540-231-9882 (fax); sobral@vt.edu
Soderlund, Carol; E420 EDWARDS HALL; Clemson University; Clemson SC 29634; 864-656-4529; 864-656-4293 (fax); cari@cs.clemson.edu
Sokolov, Victor A.; Institute of Cytology and Genetics; Russian Academy of Sciences; Lavrentjev str., 10; Novosibirsk 630090; RUSSIA; 383-2-33-34-71; 383-2-33-12-78 (fax); sokolov@ghost.bionet.nsc.ru
Somers, David A.; Dept Agron \& Plant Genet; University of Minnesota; 1991 Upper Buford Cir.; St. Paul MN 55108; 612-625-5769; 612-625-1268 (fax); somers@biosci.cbs.umn.edu
Somerville, Chris; Plant Biology Dept; Carnegie Institution; 290 Panama St; Stanford CA 94305; 650-325-1521x203; 650-325-6857 (fax); crs@andrew.stanford.edu
Song, Rentao; Rutgers, The State Univ; Waksman Institute; 190 Frelinghuysen Rd; Piscataway NJ 08854-8020; 732-445-3801; 732-445-5735 (fax); song@mbcl.rutgers.edu
Song, Xiangfu; China National Rice Research Institute; 171 Tiyuchang Road; Hangzhou 310006; CHINA
Song, Yunchun; Life Science College; Wuhan University; Wuhan 430072 P.R.O.; CHINA; (027)7822712-4505; 7813833 (fax)
Sowinski, Steve; 1 Innovation Way; Delaware Technology Park Suite \#200; Newark DE 19711; (302)631-2661; Stephen.G.Sowinski@usa.dupont.com
Spangler, Russ; Harvard Univ Herbaria; 22 Divinity Ave; Cambridge MA 02138; 617-496-1566; 617-495-9484 (fax); spangler@oeb.harvard.edu
Springer, Natasha; Syngenta; 3054 Cornwallis Rd; Research Triangle Park NC 27709; 919-541-8585 (fax); natasha.springer@syngenta.com
Springer, Nathan; Univ Wisconsin; Moore Hall; 1575 Linden Dr, Rm 373; Madison WI 53706; 608-262-6621; spri0049@tc.umn.edu
Springer, Patricia; Univ of California; Dept Bot and Plant Sci; Riverside CA 92521; 909-787-5785/4549; 909-787-4437 (fax); patricia.springer@ucr.edu
Srinivasan, Ganesan; CIMMYT Maize Program; Lisboa 27, Aptdo Postal 6-641; 06600 Mexico, D. F.; MEXICO; 52-5-726-9091 Ext. 1116; 52-5-726-7558/59 (fax); GSRINIVASAN@CIMMYT.MX
St. Clair, Grace; Pioneer Hi-Bred Internat Inc; Trait \& Technology Dept; 7300 NW 62nd Ave, PO Box 1004; Johnston IA 50131-1004
Stack, Stephen; Department of Biology; Colorado State University; Fort Collins CO 80523-1878; 970-491-6802; 970-491-0649 (fax); sstack@lamar.colostate.edu
Staebell, Mark S; Pioneer Hi-Bred Internat Inc; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131-1004; 515-253-2148; 515-254-2619 (fax)
Stahl, Karolin; Lehrstuhl fur Genetik; Technische Univ Munchen; Lichtenbergstrasse 4; Garching 95747; GERMANY; 28912930; 28912932 (fax); karolin.stahl@bio.tum.de
Staiger, Chris; Dept. of Biological Sciences; Purdue University; 321A Hansen Bldg.; West Lafayette IN 47907; 765-496-1769; 765-496-1496 (fax); CSTAIGER@BILBO.BIO.PURDUE.EDU
Stam, Maike; Dept Plant Sciences; Univ of Arizona; 303 Forbes Bldg; Tucson AZ 85721; 520-621-8964; 520-621-7186 (fax); mstam@ag.arizona.edu
Stapleton, Ann E.; Dept Biol Envir Sci; Univ Tenn Chattanooga; 615 McCallie Ave; Chattanooga TN 37403-2598; 423-755-4397; 423-785-2285 (fax); AnnStapleton@utc.edu
Start, Mary Ann; Syngenta; 317 330th St; Stanton MN 55018; 507-663-7656; 507-645-7519 (fax); maryann.start@syngenta.com
Start, William; DeKalb Genetics; 62 Maritime Drive; Mystic CT 06355; 860-572-5223; 860-572-5240 (fax)
Steffensen, D. M.; 506 Morrill Hall, Cell Biol; 505 S. Goodwin Ave; University of Illinois; Urbana IL 61801; 217-333-3087; 217-244-1648 (fax)
Stein, Nils; Inst Plant Biology; Univ of Zurich; Zollikerstr 107; Zurich 8008; SWITZERLAND; 41-1-634-8223; 41-1-634-8257 (fax); nstein@botinst.unizh.ch

Stenehjem, Shannon; Pioneer Hi-Bred Internatl; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131
Stern, David B.; Boyce Thompson Inst. Plant Res. Inc.; Tower Road; Ithaca NY 14853-1801; (607)254-1306; (607)254-1242 (fax); ds28@cornell.edu
Stiles, J. I.; Dept. of PI \& Molec Physiology; Univ. Hawaii at Manoa; Honolulu HI 96822; 808-956-7354; 808-956-3542 (fax); stiles@hawaii.edu
Stinard, Philip; USDA/ARS; S123 Turner Hall; 1102 S. Goodwin Ave.; Urbana IL 61801-4798; (217)333-6631; (217)333-6064 (fax); pstinard@uiuc.edu
Stone, Bethany; Univ Missouri; Agronomy; 1-87 Agriculture; Columbia MO 65203; 573-882-6320; 573-882-1469 (fax); budell@mail.orion.org
Stowe-Evans, Emily; Biology; Tucker Hall; University of Missouri; Columbia MO 65211; elsb29@mizzou.edu
Stuber, Charles W.; Dept of Genetics; North Carolina State Univ Box 7614; 3513 Gardner Hall; Raleigh NC 27695-7614; 919-515-5834; 919-515-3355 (fax); cstuber@ncsu.edu
Styles, E. D.; Biology; Univ of Victoria, PO Box 3020; Victoria BC V8W 3N5; CANADA; 250-477-4337; styles@uvic.ca
Subbaiah, Chalivendra; University of Illinois; Crop Sci, S-27 Turner Hall; 1102 S. Goodwin Ave.; Urbana IL 61801-4730; 217-333-9743; 217-333-6064 (fax); subbaiah@uiuc.edu
Sullivan, Hillary; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave, Box 1004; Johnston IA 50131-1004; 512-270-4369; 515-253-3367 (fax); sullivanhr@phibred.com
Sullivan, Sue; Garst Seed Co.; PO Box 8; Kunia HI 96759; 808-688-1477; 808-688-1479 (fax)
Sullivan, Tom; Laboratory of Genetics; 445 Henry Mall; University of Wisconsin; Madison WI 53706; 608-262-4934; 608-262-2976 (fax); tdsulliv@facstaff.wisc.edu
Sun, Chongrong; Fudan University; Dept. of Biochem.; Handan Road 220; Shanghai 200433; CHINA
Sun, Qing; Kansas State Univ; Dept Plant Pathol; Throckmorton Hall; Manhattan KS 66506-5502; 913-532-2328; 913-532-5692 (fax); sun@plantpath.ksu.edu
Sundaresan, V.; Institute of Molecular Agrobiology; 1 Research Link; The National Univ of Singapore; Singapore 117604; SINGAPORE; 8727000; 8727007 (fax); director@ima.org.sg
Sundberg, Marshall D.; Div Biol Sciences; Emporia State Univ; 1200 Commercial St; Emporia KS 66801; 316-341-5605; 316-341-6055 (fax); sundberm@esumail.emporia.edu
Sung, Tong Ming; Dept of Agronomy; Beijing Agric Univ; 912 Research Building; Beijing 100094; CHINA; 86-010-62891851; 010-62891055 (fax); gyymz@public.cau.edu.cn
Suprasanna, P.; Plant Biotechnology Division; Bhabha Atomic Research Centre; Trombay, Bombay 400 085; INDIA; 91-22-556-3060x2571/3276; 91-22-556-0750 (fax)
Suresh, Jayanti; Dept. of Agronomy; 513 Borlaug Hall; 1991 Buford Cr.; St. Paul MN 55108; (612)625-1208
Surridge, Christopher; MacMillan Publishers; Porters South; 4-6 Crinan St; N19XW London; UNITED KINGDOM; 44-020-7843-4566; 44-020-7843-4596 (fax); c.surridge@nature.com
Suttie, Janet; CIBA; PO Box 12257; 3054 Cornwallis Rd; Research Triangle Park NC 27709-2257
Suzuki, Masaharu; 2234 Fifield Hall; Hort Sci Dept; Univ Florida; Gainesville FL 32611; 352-392-1928; 352-392-6479 (fax); masaharu@gnv.ifas.ufl.edu
Swiecicki, W.K.; Polish Academy of Sciences; Institute of Plant Genetics; ul. Strzeszynska 34; 60-479 Poznan; POLAND; 48-61-8233-511; 48-61-8233-671 (fax); wswi@igr.poznan.pl
Sylvester, Anne W.; Botany Dept; PO Box 3165; Univ of Wyoming; Laramie WY 82071-3165; 307-766-6378; 307-766-2851 (fax); annesyl@uwyo.edu
Szalma, Stephen; 302 Curtis Hall; Univ Missouri; Columbia MO 65211; 573-882-2033; sis220@mizzou.edu
Szick, Kathy; Bot Plant Sci; UC Riverside; Riverside CA 92521
Tadmor, Yaakov; Dept of Horticulture; 1201 Gregory; University of Illinois; Urbana IL 61801-4798; 217-244-3388; 217-333-9817 (fax)
Taguchi-Shiobara, Fumio; Dept of Biotechnology; National Inst Agrobiol Resources; 2-1-2 Kannondai; Tsukuba, Ibaraki 305; JAPAN; 81-298-38-8388; 81 -298-38-8397 (fax); fstagu@abr.affrc.go.jp
Taillardat, Alain; SES Seeds, Mulsans, 41500; Loire-et-cher 41; FRANCE; Alain.Taillardat@advantaseeds.com
Tan, C. C. (Jia Zheng); Fudan University; Inst. of Genet.; Shanghai 20043; CHINA
Tan, Yifang; Botany Dept; The University of HongKong; Pokfulam Road; HongKong; CHINA; ytan@hkusua.hku.hk
Tanurdzic, Milos; Purdue Univ; HANS311; West Lafayette IN 47907; 765-496-1496; 765-496-1496 (fax); milos@purdue.edu
Tao, Quanzhou; 320 Yue-Yang Road; Shanghai 200031; CHINA; 86-21-4374430; 86-21-4378357 (fax)
Taramino, Graziana; Depart Genet Biol Microrg; Univ of Milan; Via Celoria 26; I-20133 Milano; ITALY
Tatout, Christopher; Biogemma; 24 Avenue des Landais; Aubiere 63170; FRANCE; 33-4-73-42-79-73; 33-4-73-42-79-81 (fax); christophe.tatout@biogemma.com
Tausta, Susan; Dept of MB\&B; 205 Hall-Atwater Labs/Lawn Ave; Wesleyan Univ; Middletown CT 06459; 860-685-3373
Taylor, Brian H.; Dept of Biology; Texas A\&M Univ; College Station TX 77843-3258; 979-845-7754; 979-845-2891 (fax)
Taylor, Loverine P.; Genetics \& Cell Biology; 301 Science Hall; Washington State University; Pullman WA 99164-4234; 509-335-3612; 509-335-8690 (fax); Itaylor@wsu.edu
Taylor, W. C.; CSIRO; Division of Plant Industry; G.P.O. Box 1600; Canberra ACT 2601; AUSTRALIA; (61-6)246-5223; (61-6)246-5000 (fax); bt@pican.pi.csiro.au
Techen, Natascha; Univ Hamburg; Inst Allgemeine Botanik; Ohnhorststrasse 18; D-22609 Hamburg; GERMANY; 4940822 82382; 494082282503 (fax)
Tenbarge, FL; Cerestar USA; 1100 Indianapolis Blvd; Hammond IN 46320; 219-473-2267; 219-473-6607 (fax)
Tenborg, Robin; Pioneer Hi-Bred Intl, Inc; 733 NW 62nd Ave; Johnston IA 50131-1004; 515-270-5951; 515-253-2149 (fax)
Theodoris, George; Plant Biol Dept; 111 Koshland Hall; Univ California; Berkeley CA 94720-3102; 510-642-7085; 510-642-4995 (fax); gtheo@nature.berkeley.edu
Thomas, Bruce; MCB 1 Shields Ave; Univ California; Davis CA 95616; 530-752-0269; 530-752-1185 (fax); brthomas@ucdavis.edu
Thomas, Howard; IGER Cell Biology Dept; Plas Gogerddan; Aberystwyth; Dyfed SY23 3EB WALES; sid.thomas@bbsrc.ac.uk
Thomas, Steve; Natl Renewable Energy Lab; 1617 Cole Blvd; Golden CO 80401; 303-384-7775; 303-384-7752 (fax); steven_thomas@nrel.gov
Thompson, Richard; Max Planck Inst Zuchtungsf; Carl-von-Linne Weg 10; D-50829 Koeln; GERMANY; 49-221-5062-440/441; 49-221-5062-413 (fax); thompson@mpiz-koeln.mpg.de
Thompson, Teresa; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave; Dock B Building 33; Johnston IA 50131-1004; 515-270-4305; 515-270-3444 (fax); thompsonta@phibred.com
Thompson, William F.; North Carolina State Univ; PO Box 7612; Raleigh NC 27695; 919-515-7164; 919-515-3436 (fax); WFTB@ncsu.edu
Thornsberry, Jeffry; Dept Genetics; Rm 2523 Gardner Hall; North Carolina State Univ; Raleigh NC 27695; 919-513-2831; 801-729-2170 (fax); jthornsb@unity.ncsu.edu
Thornton, Kay; Pioneer Hi-Bred Intl; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131; 515-270-5953; 515-270-3367 (fax); thorntkayd@phibred.com
Tierney, Mary L.; Marsh Life Sciences Bldg.; University of Vermont; Burlington VT 05405-0086; 802-656-0434; mtierney@moose.uvm.edu
Tiffany, Doug; Corn Research; Pioneer Hi-Bred, Int.; Rt. 8, Box 113A; Mankato MN 56001; (507)625-3252; (507)625-6446 (fax); TIFFANYD@PHIBRED.COM
Tikhonov, Alexander; CuraGen Corporation; 555 Long Wharf Drive, 13th Fl.; New Haven CT 06511; 203-974-6330; 203-401-3351 (fax); atik1@yahoo.com.

Till, Bradley; Inst Molec Biol; Univ of Oregon; Eugene OR 97403; 541-346-2546; 541-346-5891 (fax); btill@morel.uoregon.edu
Till, Sarah; Pioneer Hi-Bred Intl; 7300 NW 62nd Ave; PO Box 552; Johnston IA 50131; 515-270-5951; 515-270-3367 (fax); tillsara@phibred.com
Timmermans, Marja; Cold Spring Harbor Lab; 1 Bungtown Rd; Cold Spring Harbor NY 11724; 516-367-8835/6818; 516-367-8369 (fax); timmerma@cshl.org
Ting, Yu-Chen; Biology, Boston College; Chestnut Hill 67; Boston MA 02167; 617-552-2736; 617-552-2011 (fax); tingy@bc.edu
Tingey, Scott V.; Du Pont Company; DTP Suite 200, PO Box 6104; 1 Innovation Way; Newark DE 19714-6104; 302-631-2602; Scott.V.Tingey@usa.dupont.com
Tochtrop, Cindy; Magruder Hall; Truman State Univ; Kirksville MO 63501; 660-785-4083; 660-785-4045 (fax)
Tomas, Adriana; Pioneer Hi-Bred International; 7300 NW 62d Ave; PO Box 1004; Johnston IA 50131-1004; 515-253-2116; 515-253-2149 (fax); tomasa@phibred.com
Tomes, Dwight T.; Pioneer Hi-Bred Intl; 7300 NW 62nd Ave; P.O. Box 1004; Johnston IA 50131-1004; 515-270-3646; 515-270-3444 (fax); tomesd@phibred.com
Tomkins, Jeff; Clemson Univ Genom Inst; Room 100 Jordan Hall; Clemson SC 29634-5708; 864-656-6419/6422; 864-656-3443 (fax); jtmkns@clemson.edu
Tonelli, Chiara; University of Milan; Dept. of Genetics \& Microbiology; Via Celoria 26; Milano 20133; ITALY; 39-02-26605210; 39-02-2664551 (fax); chiara.tonelli@unimi.it
Torrecillas, Marcelo; Dept Prod Animal Fac Cienc Agr; Ruta 4, Km2 (1836); Llavallol; ARGENTINA; 54114282 6263; agrarias@unlz.edu.ar
Tracy, William; Department of Agronomy; 1575 Linden Drive; University of Wisconsin; Madison WI 53706; 608-262-2587; 608-262-5217 (fax); wftracy@facstaff.wisc.edu
Tremaine, Mary; Monsanto/Agracetus; Agracetus Campus; 8520 University Green; Middleton WI 53562; 608-821-3446; 608-836-9710 (fax); mary.t.tremaine@monsanto.com
Trimnell, Mary; 7301 NW 62nd Ave; Pioneer Hi-Bred International; PO Box 85; Johnston IA 50131-0085; 515-270-3297; 515-270-3667 (fax); trimnellm@phibred.com
Troxell, Cynthia; Dept. MCD Biology; Campus Box 347; University of Colorado; Boulder CO 80309-0347; 303-492-8534; 303-492-7744 (fax); troxell@beagle.colorado.edu
Troyer, A. Forrest; Corn Breeder; 611 Joanne Ln; DeKalb IL 60115-1862; 815-758-4375; 630-801-2345 (fax); atroyer@uiuc.edu
Tsai, Charles; Dept Bot; Natl Taiwan Univ; Taipei 10764; TAIWAN
Tsiantis, Miltos; Univ Oxford; Dept Plant Sci; South Parks Rd; Oxford OX1 3RB; UNITED KINGDOM; 44-1865-275074 (fax); miltos.tsiantis@plantsciences.ox.ac.uk
Tu, Zeng-Ping; Guangdong Acad. of Agric. Sciences; Rice Research Institute; Wushan, Guangzhou; Guangdong 510640; CHINA
Tuberosa, Roberto; Universita di Bologna; Dipartimento di Agronomia; Via Filippo Re, 6-8; Bologna I-40126; ITALY
Tuerck, Jutta; Advanced Technol (cambridge) Ltd; 210 Science Park; Cambridge CB4 OWA; UNITED KINGDOM; 44-1223-420 284; 44-1223-423 448 (fax); atc.biotech@dial.pipex.com
Tuttle, Ann Marie; CIBA-Geigy Corp; PO Box 12257; Research Triangle Park NC 27709-2257
Tyers, Randall; Plant Biol Dept; 111 Koshland Hall; UC Berkeley; Berkeley CA 94720-3102; 510-642-7948; 510-642-4995 (fax); tyersome@nature.berkeley.edu
Tyrnov, Valery; Genetics Dept; 83 Astrakhanskaya Str; Saratov State University; Saratov 410026; RUSSIA; (845-2)240446 (fax)
Uhr, David V.; Northrup King Co.; 340 Southside Drive; Henderson KY 42420; (502)827-5787; (502)827-5703 (fax)
Ujiie, Katsuhiro; HOKUREN Naganuma Res. Stn.; Minami-2, Higashi-9; Naganuma-Cho, Yuubari-Gun; Hokkaido 069-1316; JAPAN; 01238-8-3330; 01238-83200 (fax)
Ulrich, James; Cargill; 2600 W. Galena Blvd; Aurora IL 60506; 630-801-2324; 630-801-2345 (fax)
Ulrich, Valentin; P.O. Box 451; Morgantown WV 26506; 304-292-5262
Unger-Wallace, Erica; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave, Box 1004; Johnston IA 50131-1004; 515-270-3437; 515-270-3367 (fax); ungerer@phibred.com
Valdez, Gregorio; Lehman College CUNY; Biology Dept c/o Elli Wurtzel; 250 Bedford Park Blvd West; Bronx NY 10468
Vales, M. Isabel; 107 Crop Sci Bldg; Univ Oregon; Corvallis OR 97331; 541-737-3539; 541-737-1589 (fax); isabel.vales@orst.edu
Vallejos, Eduardo; Univ Florida; 1143 Fifield Hall; Gainesville FL 32611; 352-392-1928; 352-392-6479 (fax)
Vallejos, Ruben H.; CEFOBI; Univ Nac de Rosario; Suipacha 531; 2000 Rosario; ARGENTINA; 54-41-371955; 54-41-370044 (fax)
van Haaren, Mark; Keygene NV; Argo Business Park; Wageningen 6700 AE; NETHERLANDS; 31.317.424121; 31.317.424939 (fax); Mark.VanHaaren@KEYGENE.com
Van Montagu, M.; Lab Genetics; K L Ledeganckstr 35; B-9000 Gent; BELGIUM; 32-9-264.51.70; 32-9-264.53.49 (fax); mamon@gengenp.rug.ac.be
van Nocker, Steve; Dept Horticulture; 390 Plant Soil Sci Bldg; Michigan State Univ; E Lansing MI 48824; 517-432-7133/7134; 517-432-3490 (fax); vannocke@pilot.msu.edu
Van Schaik, N.; Dept Genetics/U Witwatersrand; PO Wits 2050; SOUTH AFRICA; (011) 716-2125; 27-11-403-1733 (fax)
Van Staden, Derick; PANNAR; PO Box 3250; Greytown; 3250 Natal; SOUTH AfRICA; $270334131131 ; 270334171208$ (fax); research@pannar.co.za
van Wijk, Rik; KEYGENE N.V; P.O. Box 216; 6700 AE Wageningen; NETHERLANDS; Tel. (+31) 3174668 66; Fax. (+31) 3174249 39; rik.vanwijk@keygene.com
Vanderslice, Olin L.; Vanderslice Enterprises; Lake Viking, 106 Mooney Drive; Gallatin MO 64640-6340; 660-663-2946
Vantoai, Tara T.; USDA-ARS-MWA; 590 Woody Hayes Dr; Columbus OH 43210; 614-292-9806; 614-292-9448 (fax); vantoai.1@osu.edu
Varagona, Rita; Monsanto Co.; O2B; 800 N. Lindbergh Blvd.; St. Louis MO 63167; 314-694-2007; 314-694-7729 (fax); RITA.J.VARAGONA@Monsanto.com
Vasal, SK; CIMMYT; PO Box 9-188; Bangkok 10900; THAILAND; 5794858,5790577,9405789; 662-5614057 (fax); BANGKOK@CIMMYT.MX
Vasil, Indra K.; Laboratory of Plant Cell \& Molecular Biol; 1143 Fifield Hall; University of Florida; Gainesville FL 32611; 352-392-1193; 352-392-9366 (fax); ikv@gnv.ifas.ufl.edu
Vaske, David; Pioneer Hi-Bred Intl; 7300 NW 62nd Ave; Johnston IA 50131; 515-334-4640; 515-270-3367 (fax)
Vazquez-Ramos, JM; UNAM; Facultad de Quimica Edificio B; Ciudad Universitaria; Mexico City 04510, DF; MEXICO; jorman@servidor.dgsca.unam.mx
Vega, Juan; 117 Tucker Hall; Univ Missouri; Columbai MO 65211; 573-882-4871; vega」@missouri.edu
Veillet, Stanislas; Cargill, Lab Biotech Veg; PO Box 17; Centre de Boissay; Etavipes; FRANCE; 332-3790 4126
Veit, Bruce; Dept Biol and Biotech; Massey Univ; Private Bag 11222; Palmerston North; NEW ZEALAND; B.Veit@massey.ac.nz
Veldboom, Lance; PO Box 839; Holden's Foundation Seeds, L.L.C.; Williamsburg IA 52361; 319-668-1100; 319-668-2453 (fax); lance@holdens.com
Verde, Luis Abel; Iowa State Univ; 1010 Agronomy Hall; Ames IA 50011; 515-294-5755; 515-294-3163 (fax); ryaverde@iastate.edu
Vergne, Phillippe; RCAP; ENS-Lyon; 46 Allee d'Italie; 69364 Lyon cedex 07; FRANCE; 33/72-72-86-08; $33 / 72728600$ (fax); Philippe.Vergne@ens-lyon.fr Vermerris, Wilfred; Dept Bot Plant Path; Purdue University; West Lafayette IN 47907; 765-494-4645; 765-494-0363 (fax); vermerris@purdue.edu
Viccini, Lyderson; Dept Biol; Univ Fed Juiz de Fora; Campus Universitario; 36036-330 Juiz de Fora-MG; BRAZIL; 032-231-1998 (fax)
Vidakovic, Mirceta; Maize Research Institute; Slobodana Bajica 1; 11080 Zemun; Belgrade; YUGOSLAVIA; 381-11-617434; 381-11-197890 (fax); djelovac@eunet.yu
Vincent, Leszek; Curtis Hall; University of Missouri; Columbia MO 65211-7020; 573-882-2674; 573-884-7850 (fax); leszek@missouri.edu

Violic, Alejandro D.; Vital Apoquindo 180; Santiago (Las Condes); CHILE; (562)229-0685; (562)735-5892 (fax)
Viotti, Angelo; Ist Biosintesi Vegetali; Via Bassini 15; 20133 Milano; ITALY; $392706.001 .70 / 309.85 ; 3922362946$ (fax); aviotti@icm.mi.cnr.it
Vivek, Bindiganavile; CIMMYT; Lisboa 27, Apdo. Postal 6-641; Mexico 06600 D.F.; MEXICO; 5259555158
Vliegenthart, Alblert; Keygene NV; PO Box 216; 6700 AE Wageningen; NETHERLANDS; 3131746 6866; 31317424939 (fax)
Vodkin, Lila Ott; 384 ERML, Dept Crop Sci; Univ Illinois; 1201 W. Gregory; Urbana IL 61801; 217-244-6147; 217-333-9817 (fax); I-vodkin@uiuc.edu
Voelker, Rodger; Inst Molec Biol; Univ of Oregon; Eugene OR 97403
Vogel, Julie; Dupont Co.; PO Box 80402; Wilmington DE 19880-0402; 302-695-6947; 302-695-7361 (fax); julie.m.vogel@usa.dupont.com
Vollbrecht, Erik; Cold Spring Harbor Lab; 1 Bungtown Rd; PO Box 100; Cold Spring Harbor NY 11724; 516-367-8836; 516-367-8369 (fax); vollbrec@cshl.org
Von Wettstein, D.; Dept Crop Soil Sci, Genet Cell Biol; Washington State Univ; Pullman WA 99164-6420; 509-335-3635; 509-335-8674 (fax); diter@wsu.edu
Voyles, Dale; DeKalb Genetics; 62 Maritime Dr; Mystic CT 19355; 860-572-5229; 860-572-5240 (fax); dvoyles@dekalb.com
Voytas, D.; Dept. of Botany; lowa State University; Ames IA 50011; voytas@iastate.edu
Vuylsteke, Marnik; Aventis CropScience N.V.; Breeding \& Product Devel Sta; Nazarethsesteenweg 77; B-9800 Astene (Dienze); BELGIUM; 32 (0) 9381 84 59; 32 (0) 93801662 (fax)
Waines, J. Giles; Dept of Botany/Plant Sciences; University of California; Riverside CA 92521; 909-787-3706; 909-787-4437 (fax)
Walbot, Virginia; Dept Biol Sci; 385 Serra Mall; Stanford Univ; Stanford CA 94305-5020; 650-723-2227; 650-725-8221 (fax); walbot@stanford.edu
Walden, David; Dept of Plant Sciences; Univ of Western Ontario; London N6A 5B7; CANADA; 519-661-3103; 519-661-3935 (fax); dwalden@julian.uwo.ca
Walker, Elsbeth L.; Biology Dept; Morrill Science Center; Univ of Mass, Amherst; Amherst MA 01003; 413-545-0861; 413-545-3243 (fax); ewalker@bio.umass.edu
Walker, John; Biol Sci; 308 Tucker Hall; Univ of Missouri; Columbia MO 65211; 573-882-3583; 573-882-0123 (fax); jcw@biosci.mbp.missouri.edu
Walker, Nigel; Plant Biol Dept; 111 Koshland Hall; UC Berkeley; Berkeley CA 94720-3102; 510-642-8058; 510-642-4995 (fax); nigel@nature.berkeley.edu
Walsh, Justine; Plant Biology Dept; 111 Koshland Hall; UC Berkeley; Berkeley CA 94720-3102; 510-642-8058; 510-642-4995 (fax); justice@nature.berkeley.edu
Walton, Jonathan; DOE Plant Research Lab; Michigan State University; East Lansing MI 48824; 517-353-4885; 517-353-9168 (fax); walton@msu.edu
Walton, Mark; LInkage Genetics; 2411 South 1070 West; Suite B; Salt Lake City UT 84119; 435-975-1188; 435-975-1244 (fax)
Wan, Yuechun; Monsanto Agricultural Group; 700 N Chesterfield Pkwy - GG4H; St. Louis MO 63198; 314-537-6734; yuechun.wan@monsanto.com
Wang, Andrew S.; Novartis Seeds Inc; 317 330th Street; Stanton MN 55018-4308; 507-663-7658; 507-645-7519 (fax); andy.wang@seeds.novartis.com
Wang, Bin; Academia Sinica; Institute of Genetics; Beijing 100101; CHINA; 8610-64870491; 8610-64873428 (fax); bwang@ss10.igtp.ac.cn
Wang, Bing-Bing; Iowa State Univ; 2128 Molec Biol Bldg; Ames IA 50011; 515-294-3136; 515-294-0345 (fax); icewater@iastate.edu
Wang, Fu-De; Dalian Inst Biotechnology; Liaoning Acad Agricultural Sci; Lingshui Road, Dalian; Liaoning 116023; CHINA
Wang, Guo-Ying; B420 Agronomy Hall; lowa State Univ; Ames IA 50011; 515-294-1659
Wang, Hongyu; Pioneer Hi-Bred Intl; 7300 NW 62nd Ave; Johnston IA 50131
Wang, Lizhen; Dow AgroSciences; 9330 Zionsville Rd; Indianapolis IN 46268; 317-337-5915; 317-337-5989 (fax); llwang@dowagro.com
Wang, Qinnan; National Natural Science Foundation; Dept. of Life Science; Beijing 100083; CHINA
Wang, Ronglin; Syngenta Agric Discovery Inst; 3115 Merryfield Row; San Diego CA 92121; 858-812-1021; 858-812-1097 (fax); ronglin.wang@syngenta.com
Wang, Wen Chang; Novartis; 3054 Cornwallis Rd; Research Triangle Park NC 27709; 919-541-8580; 919-541-8585 (fax); wen.wang@nabri.novartis.com
Wang, Xuelu; 303 Forbes Hall; Univ Arizona; Tucson AZ 85712; 520-621-9154; 520-621-3692 (fax)
Wang, Xun; RNA Dynamics; Novartis Agr Discovery Inst; 3115 Merryfield Row, Suite 100; San Diego CA 92121-1125; Phone: (858) 812-1053; Fax: (858) 812-1097; xun.wang@nadii.novartis.com
Wang, Ya-hui; Academia Sinica; Inst. of Cell Biol.; 320 Yo-Yang Road; Shanghai 200031; CHINA
Wang, Yibin; 2288 Molecular Biology Bldg; lowa State Univ; Ames IA 50011; 515-294-2922; 515-294-0345 (fax); ybwang@iastate.edu
Wang, Yuwen; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave; Johnston IA 50131; 515-248-9482; 515-270-3367 (fax); Wangyuwe@phibred.com
Wanous, Michael; Dept of Biology; Augustana College; 2001 S. Summit Ave; Sioux Falls SD 57197; 605-336-4712; 605-336-4718 (fax); wanous@inst.augie.edu
Wardzala, Ellen; 2801 W Bancroft St; Univ Toledo; Toledo OH 43606; 419-530-1538; 419-530-7737 (fax); wardzala@wcnet.org
Warner, Todd; Novartis Seeds Inc; 317 330th St; Stanton MN 55018-4308
Warren, Jana; Pioneer Hi-Bred Internat Inc; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131-1004; 515-270-4390; 515-270-4312 (fax); warrenj@phibred.com
Wasserman, Bruce; Food Science Dept; Rutgers Univ; New Brunswick NJ 08903-0231; 908-932-9611 x220 phone; 908-932-6776 (fax)
Weaver, Sam; Quaker Oats Company; 617 West Main St.; Barrington IL 60010-4113; 847-304-2050; 708-304-2166 (fax); 847-304-2062 (fax); 847-3042149 (fax); Chris_Visconti@quakeroats.com
Webb, Craig; Dept Plant Pathol; 4024 Throckmorton Plant Sci Ctr; Kansas State Univ; Manhattan KS 66506-5502; 913-532-2328; 913-532-5692 (fax); webbcr@plantpath.pp.ksu.edu
Weber, David; Illinois State Univ; 4120 Biological Sciences; Normal IL 61790-4120; 309-438-2685; 309-438-3722 (fax); dfweber@ilstu.edu
Weber, Gerd; Institut fur Pflanzenzuchtung; Universitat Hohenheim; Fruwirthshr. 21; D 70599 Stuttgart; GERMANY; 49 (711)459 2341; 49 (711)459 2343 (fax); weberg@uni-hohenheim.de
Weck, Edward A.; 901 College; Northfield MN 55057; 507-663-1244
Weil, Cliff; Dept. of Biological Sciences; University of Idaho, 229 Gibb; Moscow ID 83844-3051; (208)885-6370; (208)885-7905 (fax); cweil@uidaho.edu
Wen, Lan-Ying; Univ Florida; P.O. Box 110690; Gainesville FL 32611; 352-392-1928 ext 318; 352-392-6479 (fax); lanying@grove.ufl.edu
Wen, Tsui-Jung; B422 Agronomy Hall; lowa State University; Ames IA 50011; 515-294-3541; 515-294-2299 (fax); TJWEN@IASTATE.EDU
Wendel, Jonathan F.; Department of Botany; Bessey Hall; Iowa State University; Ames IA 50011; 515-294-7172; 515-294-1337 (fax); jfw@iastate.edu
Wenxiong, Lin; Fujian Agricultural College; Dept. of Agronomy; Jingshan, Fuzhou; Fujian 350002; CHINA
Werr, Wolfgang; Institut Fur Entwicklungsbiologie; Universitat zu Koln; Gyrhofstr 17; 50931 Koln 41; GERMANY; 49221470 2619; 492214705164 (fax); wwerr@biolan.uni-koeln.de
Wessler, Sue; University of Georgia; Dept of Genetics; Life Sciences Bldg; Athens GA 30602; 706-542-1870; 706-542-3910 (fax); sue@dogwood.botany.uga.edu
West, Darla; 253 Mellon Hall; Duquesne Univ; Dept Biol Sci; Pittsburgh PA 15282; 412-396-4356; 412-396-5907 (fax)
West, Dennis R.; Dept Plant and Soil Sci; Univ of Tennessee; Knoxville TN 37901-1071; 423-974-8826; 423-974-7997 (fax); DWEST3@UTK.EDU
Westhoff, Peter; Ins. Ent. Mol. Bio. Pflanzen; Heinrich-Heine-Univ Dusseldorf; D-40225 Dusseldorf; GERMANY; 49-211-81-12338; 49-211-81-14871 (fax); West@Uni-Duesseldorf.de
Wetzel, Carolyn; Dept of Botany; Bessey Hall; Ames IA 50011; 515-294-7724; 515-294-1337 (fax); cmwetzel@iastate.edu
Whalen, Richard; Dept of Biology; South Dakota State Univ; Brookings SD 57007; 605-688-4553; 605-688-6677 (fax); Richard_Whalen@sdstate.edu
Whitt, Sherry; North Carolina State Univ; 2523 Gardner Hall; Raleigh NC 27695; 919-513-2821; 919-515-3355 (fax); srwhitt@unity.ncsu.edu

Whitwood, W.; Seneca hybrids/SVS; 5271 Flat Street; Hall NY 14463; 716-526-5879; 716-526-5350 (fax)
Widholm, Jack M.; Crop Sciences; Univ of Illinois; ERML, 1201 W. Gregory; Urbana IL 61801; 217-333-9462; 217-333-4777 (fax); Widholm@UIUC.EDU
Widstrom, Neil W.; Coastal Plain Exp Sta; PO Box 748; Tifton GA 31793; 912-387-2341; 912-387-2321 (fax); nwidstro@tifton.cpes.peachnet.edu
Wiedemeier, Allison; Biol Sci; Tucker Hall; Univ of Missouri; Columbia MO 65211; 573-884-6755; WiedemeierA@missouri.edu
Wienand, Udo; Inst. Allge. Bot.; Univ Hamburg; Pflanzen, AMP I, Ohnhorststrasse 18; D-22609 Hamburg; GERMANY; (49)40 82282501 ; (49)40 88282503 (fax); wienand@nw01.uni-hamburg.de
Wierzba, Michael; Univ Arizona; 303 Forbes Hall; Tucson AZ 85721; 520-621-9154; wierzba@u.arizona.edu
Wilkes, H. Garrison; Biology De[t; Univ of Mass/Boston; 100 Morrissey Blvd; Boston MA 02125-3393; 617-287-6600; 617-287-6650 (fax)
Willcox, Martha; CIMMYT; Apartado Postal 6-641; Mexico, D.F. 06600; MEXICO; 52(5)726-9091 ext.1128; 52(5)726-7559 (fax)
Williams, Alan; Univ California-Riverside; Botany \& Plant Sciences Dept; Riverside CA 92521; 909-787-6376; 909-787-4437 (fax)
Williams, Mark; DuPont de Nemours \& Co Agric Biotech; Stine-Haskell Res Cent 210N/253; 1090 Elkton Rd; Newark DE 19714-0030; 302-366-5102; 302-451-4832 (fax); mark.e.williams@usa.dupont.com
Williams, Pascale; Inst Molec Biol; 1370 Franklin Ave; Univ Oregon; Eugene OR 97403; 541-346-2546; 541-346-5891 (fax); pascale@molbio.uoregon.edu
Williams, Robert E.; PO Box 294; Pittsfield IL 62363; 217-285-2530
Williams, Rosalind; Plant Biology Dept; 111 Koshland Hall; UC Berkeley; Berkeley CA 94720
Williams, W. Paul; USDA-ARS-CHPRRU; Box 9555; Miss. State MS 39762; 601-325-2735; 601-325-8441 (fax); pwilliams@dorman.msstate.edu
Willman, Mark R.; ConAgra Grocery Products Companies; 463 U.S. Hwy. 30 East; Valparaiso IN 46383; 219-464-9602x233; 219-462-6293 (fax); mwillman@cagpc.com
Willmot, David; USDA-ARS; 301 Curtis Hall; University of Missouri; Columbia MO 65211-7020; 573-884-9165; 573-884-7850 (fax); WillmotD@missouri.edu
Wilson, Larissa; Dept Genetics; Rm2523 Gardner Hall; North Carolina State Univ; Raleigh NC 27695; 919-513-2821; 919-515-3355 (fax)
Wilson, William; Pioneer Hi-Bred International; Windfall Research Center; Windfall IN 46076; Phone:765-945-8217; WILSONWA@phibred.com
Wineland, Robin; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave; Johnston IA 50131; 515-270-5951; 515-253-2149 (fax); winelandra@phibred.com
Wing, Rod; Clemson Univ. Genomics Inst.; 100 Jordan Hall; Clemson University; Clemson SC 29634-5727; 864-656-7288/7650; 864-656-4293 (fax); rwing@clemson.edu
Wingen, Luzie; Max-Planck-Inst Zuechtungsf; Abteilung Molek Pflanzengenetik; AG Theissen, Carl-von-Linne-Weg 10; Koeln D-50829; GERMANY; 49-221-5062-121; wingen@mpiz-koeln.mpg.de
Winter-Vann, Ann Marie; CIBA Ag Biotech; PO Box 12257; Research Triangle Park NC 27709-2257
Wise, Roger; USDA-ARS, 351 Bessey Hall; Dept. Plant Pathology; lowa State Univ.; Ames IA 50011-1020; 515-294-9756; 515-294-9420 (fax); rpwise@iastate.edu
Wittich, Peter; Keygene NV; PO Box 216; 6700 AE Wageningen; NETHERLANDS; 3131746 6866; 31317424939 (fax)
Wolfe, Kenneth; Dept. of Genetics; University of Dublin; Trinity College; Dublin 2; IRELAND; 353-1-702-1253; 353-1-679-8558 (fax); KHWOLFE@VAX1.TCD.IE
Wong, Jeffrey; Univ Illinois; 1102 S Goodwin Ave, W-221; Urbana IL 61801; 217-244-3388; 217-333-9817 (fax); jcwong@students.uiuc.edu
Woo, Claudine; 2667 Parker St; Berkeley CA 94704
Woodman, Wendy; Dept. of Agronomy; lowa State Univ.; Ames IA 50011; 515-294-3635; 515-294-3163 (fax); wlwoodma@iastate.edu
Woodruff, Dorde; 6366 Cobblerock Lane; Salt Lake City UT 84121-2304; 435-277-5526
Woody, Laura; 271 Quail Run; Roswell GA 30076
Wrobel, Russell; Dept Veg Crops; University of California-Davis; Davis CA 95616; rlwrobel@ucdavis.edu
Wu, Fan; Pioneer Hi-Bred Intl; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131; 515-270-4369; 515-270-3367 (fax); wufan@phibred.com
Wu, Minsheng; Rutgers Univ; 190 Frelinghuysen Rd; Piscataway NJ 08854; 732-445-2307; 732-445-5735 (fax); huihua@mbcl.rutgers.edu
Wu, Yujia; Inst Biol Chem; Washington State Univ; Pullman WA 99164; 509-335-1047; 509-335-7643 (fax); yujia@wsunix.wsu.edu
Wu, Yunshun; Pioneer Hi-Bred Internatl; 7250 NW 62nd Ave; Johnston IA 50131; 515-270-5991; 515-334-4778 (fax)
Wurtzel, Eleanore; Dept Biol Sci; Davis Hall, Lehman College; City Univ New York; Bronx NY 10468; 718-960-4994, -8643; 718-960-8236 (fax); etwlc@cunyvm.cuny.edu
Xia, Yiji; B420 Agronomy Hall; Iowa State Univ; Ames IA 50011
Xia, Zhen-Ao; Academia Sinica; Shanghai Inst. of Plant Physiol.; 300 Fonglin Road; Shanghai 200433; CHINA
Xiao, Yongli; 2288 Molecular Biology Bldg; Iowa State University; Ames IA 50011; 515-294-3277; 515-294-0345 (fax); yxiao@iastate.edu
Xie, Chongqing; Pioneer Hi-Bred Intl; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131; 515-270-3618; 515-253-2478 (fax); XieChon@phibred.com
Xie, You-Ju; College of Biology; China Agricultural University; Beijing 100094; CHINA; 86 (10) 62631895; 0086-1-2582332 (fax); daimin@public3.bta.net.cn
Xiong, Chenmin; China National Rice Research Institute; Ti Yu Chang Road 171; Hangzhou; Zhejiang 310006; CHINA
Xu, Wenwei; Texas A\&M Univ; Agric Res and Ext Center; Route 3, Box 219; Lubbock TX 79401; 806-746-6101; 806-746-6528 (fax); we-xu@tamu.edu
Xu, Xiaojie; B420 Agronomy Hall; Iowa State Univ; Ames IA 50011
Xu, Yue; Univ Massachusetts; Biol Dept; Amherst MA 01003
Xu, Yun-Bi; Zhejiang Agricultural University; Dept. of Agronomy; Hangzhou; Zhejiang 310029; CHINA
Xu, Zeng-Fu; Zhongsan Univ.; Biotechnology Res. Center; 135 West Xingang Road, Guangzhou; Guangdong 510275; CHINA
Xu, Zhennan; Rutgers Univ; Waksman Inst; 190 Frelinghuysen Rd; Piscataway NJ 08854; 732-445-2307; 732-445-5735 (fax); zhennan@waksman.rutgers.edu
Xu, Zhi-Hong; Shanghai Inst. of Plant Physiol.; 300 Fenglin road; Shanghai 200032; CHINA
Yaklin, Paul; Pioneer Hi-Bred Internat Inc; Trait \& Technol Devel; 7300 NW 62nd Ave, PO Box 1004; Johnston IA 50131-1004
Yamada,; Tokyo Inst Technol; Fac Biosci \& Biotechnol; Dept Biol Sci, Midori Ku; Yokohama, Kanagawa 226; JAPAN; tyamada@bio.titech.ac.jp
Yamada, Minoru; N.I. Vavilov Res Inst Plant Ind; Bolshaya Morskaya St 42; 190000 St. Petersburg; RUSSIA; 7-812-314-4848; 7-812-311-8762 (fax); viv@glasnet.ru
Yamaguchi, Judy; Plant Gene Expression Center; USDA-ARS; 800 Buchanan St; Albany CA 94710
Yamamoto, Kimiko; Rice Genome Res Program, STAFF Inst; 446-1, Ippaizuka, Kamiyokoba; Ippaizuka, Tsukuba-shi; Ibaraki-ken 305; JAPAN; yamamoto@staff.or.jp
Yamasaki, Masamori; Plant Breeding Lab; Agriculture Fac, Kyushu Univ; 6-10-1 Hakozaki; Higoshku, Fukuoka; JAPAN; 81-92-642-2822; yamasakm@agr.kyushu-u.ac.jp
Yan, Xianghe; Waksman Institute; Rutgers Univ; Piscataway NJ 08854; 732-445-2307; 732-445-5735 (fax); yan@aesop.rutgers.edu
Yandeau, Marna; Iowa State Univ; 2102 Molecular Biol Bldg; Ames IA 50011; 515-294-6797; 515-294-0453 (fax); myandeau@iastate.edu
Yang, Hong; Chinese Academy of Agric. Sciences; Biotech. Research Centre; Beijing 100081; CHINA
Yang, Jin Shui; Fudan University; Institute of Genetics; Shanghai 200433; CHINA
Yang, Louis Xiaokun; Monsanto Seeds; 1203A Airport Road; Ames IA 50010; 515-956-3071; 515-232-0255 (fax); LOUIS.X.YANG@stl.monsanto.com
Yang, Manli; Univ Toledo; 2801 W Bancroft St; Biol Sci; Toledo OH 43606; 419-530-1538; 419-530-7737 (fax); yangmanli@yahoo.com.cn

Yang, Ren-Cui; Fujian Agricultural College; Heterosis Utilization Lab.; Chinmen, Fuzhou; Fujian 350002; CHINA
Yang, Yingzhen; Lehman College, CUNY; Biological Sci; Bronx NY 10468
Yang, Yuesheng; South China Agricultural University; Experimental Center; Guangzhou; Guangdong 510642; CHINA
Yano, Masahiro; Rice Genome Research Program; Nat. Inst. Agrobiol. Resources; 2-1-2, Kannondai; Tsukuba, Ibaraki 305; JAPAN; 81-298-38-7441,2199; 81-298-38-7468,2302 (fax); myano@abr.affrc.go.jp
Yao, Hong; Iowa State Univ; B420 Agronomy; Ames IA 50011; 515-294-1659; 515-294-2299 (fax); hyao@iastate.edu
Yasui, Hideshi; Plant Breeding Lab; Agriculture Faculty, Kyushu Univ; Higoshi-ku, Fukuoka; JAPAN; 81-92-642-2821; 81-92-642-2822/2804 (fax); hyasui@agr.kyushu-u.ac.jp
Yasumura, Yuki; Univ Oxford; Dept Plant Sci; South Parks Rd; OX1 3RB Oxford; UNITED KINGDOM; 441865 275030; yuki.yasumura@queens.ox.ac.uk
Yatou, Osamu; Lab Rice Genet Resources; Dept Rice Research; Hokuriku Agric Exp Stn; 1-2-1 Inada, Joetsu-shi, Niigata-ken 943-01; JAPAN; 81-255-263304; 81-255-24-8578 (fax); yatou@inada.affrc.go.jp
Ye, Ke-Nan; Zhongsan University; Biotechnology Research Centre; Guangzhou 510642; CHINA
Ye, Sheng-Yu; Shanghai Inst. of Biochem.; 320 Yue Yang Road; Shanghai 200031; CHINA
Yim, Young-Sun; Univ Missouri; 1-87 Agric Bldg; Columbia MO 65211; 573-882-9228; 573-882-1469 (fax); yimy@missouri.edu
Yingling, Richard; DeKalb Genetics; 62 Maritime Dr; Mystic CT 06355; 860-572-5209; 860-572-5240 (fax)
Yoder, John; Dept of Vegetable Crops; Univ of California, Davis; Davis CA 95616; 916-752-1741; 916-752-9659 (fax); JIYODER@UCDAVIS.EDU
Yoganathan, Arulmolee; Department of Biology; Lehman College/CUNY; Bedford Park Blvd. West; Bronx NY 10468; 212-960-8235; 212-960-8227 (fax); ARYLC@CUNYVM.CUNY.EDU
Yong, Gao; Liaoning Academy of Agric. Sciences; Rice Research Institute; Sujiatun; Shenyang 110101; CHINA
You, Chong-biao; Chinese Academy of Agric. Sciences; IAAE, Dept. of Biotechnology; P.O. Box 5109; Beijing 100094; CHINA
Young, Todd; Biochemistry Dept; UC Riverside; Riverside CA 92521-0129; 909-787-3580; 909-787-4437 (fax); teyoung@citrus.ucr.edu
Yu, Di-qiu; Zhongsan(Sun Yat-Sen)University; Biotechnology Research Center; Guangzhou; Guangdong 510275; CHINA
Yu, Hongguo; Univ Georgia; Botany Dept; 4610 Miller Plant Sci Bldg; Athens GA 30602-7071; 706-542-1010; 706-542-1805 (fax); hgyu@arches.uga.edu
Yu, Jia; Dept. Biological Science; Lehman College; 250 Bedford Park Blvd. West; Bronx NY 10468; 212-960-4994; 212-960-8236 (fax)
Yu, JianHua; Univ Idaho; Dept Biol Sci; Moscow ID 83844-3051; 208-885-2550; 208-85-7905 (fax)
Yu, Li; China National Rice Research Institute; Library; Tiyuchang Road No. 171, Hangzhou; Zhejiang 310006; CHINA
Yuan, Yinan; Purdue Univ; Biology Hanson Rm 339; West Lafayette IN 47907; 765-494-0373; 765-496-1496 (fax); yyuan@bilbo.bio.purdue.edu
Yue, Yong Gang; Eli Lilly \& Co.; Bioinformatics, MC625; Lilly Corporate Center; Indianapolis IN 46285-0444; 317-276-5766; ygyue@mail.com
Zavalishina, Alexandra; Genetics Dept; Saratov State University; 83, Astrakhanskaya St.; 410026, Saratov; RUSSIA; 845-2-240446 (fax); ZavalishinaAN@info.sgu.ru
Zehr, Brent; Maharashtra Hyb Seeds Co; Rehsam Bhavan, 4th Floor; 78, Veer Nariman Road; Mumbai 400020; INDIA; bzehr@lsrc.mahyco.com
Zeng, Mengqian; Institute of Genetics; Academia Sinica; 3 Datun Rd.; 100101 Beijing; CHINA; 64857495; 64854896 (fax); mengzeng@8848.net
Zhang, Chaoying; Purdue Univ; 335 Hanson; Biology; West Lafayette IN 47907; 765-496-2506; 765-496-1496 (fax); czhang@bilbo.bio.purdue.edu
Zhang, Deyu; Jiangsu Academy of Agricultural Sci.; Inst. of Genet. and Physiol.; Nanjing 210014; CHINA
Zhang, Fan; Monsanto U4C; 800 North Lindbergh; St. Louis MO 63167; 314-694-8415; 314-694-8275 (fax); fan.zhang@monsanto.com
Zhang, Feng; lowa State Univ; 2288 Molec Biol Bldg; Ames IA 50011; 515-294-3277; ZhangF@iastate.edu
Zhang, Gui-Quang; South China Agricultural University; Dept. of Agronomy; Guangzhou 510642; CHINA
Zhang, Hong; Celera AgGen; 1756 Picasso Ave; Davis CA 95616; 530-297-3061; 530-297-3027 (fax); hong.zhang@davis.celera.com
Zhang, Jianbo; 2288 Molecular Biology Building; lowa State University; Ames IA 50011; (515)294-2922; (515)294-0345 (fax); jzhang@iastate.edu
Zhang, Qiang; Dekalb Genetics/Monsanto; 62 Maritime Dr; Mystic CT 06255; 860-572-5275; 860-572-5282 (fax); qzhang@dekalb.com
Zhang, Qifa; Huazhong Agricultural University; Nat Key Lab Crop Genet Imp; Wuhan 430070; CHINA; 86-27-87393392; 86-27-87393392 (fax); qifazh@public.wh.hb.cn
Zhang, Xiaoyu; Univ Georgia; Dept Botany; Athens GA 30602; 706-542-1857; 706-542-3910 (fax); xiaoyu@dogwood.botany.uga.edu
Zhang, Yuan; 2182 Molec Biol Bldg; lowa State Univ; Ames IA 50011; 515-294-0337; yyzhang@iastate.edu
Zhao, Qiquan; Zhejiang Agricultural University; Dept. of Tea Science; Hangzhou; Zhejiang 32100; CHINA
Zhao, Suling; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave, Box 1004; Johnston IA 50131-1004; 515-253-2146; 515-254-2608 (fax)
Zhao, Zuo-Yu; Biotechnology Research; Pioneer Hi-Bred Int'l; 7300 NW 62nd Ave. P.O. Box 1004; Johnston IA 50131-1004; 515-270-3644; 515-270-3444 (fax); zhaoz@phibred.com
Zhen, Zhu; Academia Sinica; Institute of Genetics; Beijing 100101; CHINA
Zheng, Kangle; China National Rice Research Institute; 171 Ti Yu Chang Road; Hangzhou 310006; CHINA
Zheng, Yin-Zhou; Div Biol Sci; 117 Tucker Hall; University of Missouri; Columbia MO 65211; 573-882-4871; 573-882-0123 (fax); yzheng@biosci.mbp.missouri.edu
Zhong, Cathy; Botany Dept; 2502 Miller Plant Sci Bldg; Univ Georgia; Athens GA 30602; 706-542-1010; 706-542-1805 (fax); zhong@dogwood.botany.uga.edu
Zhong, Zhen-Ping; Fujian Agricultural College; Dept. of Agronomy; Fuzhou; Fujian 350002; CHINA
Zhou, Hongsheng; Xiang Fan Chia Ta; Agric Devel Co Ltd; No.1, Airport Rd; Zhangwan Town, Xiangyang; Hubei 441104; CHINA; (86)-710-2819000; (86) -710-2819001 (fax); hszhou@yahoo.com
Zhou, Kaida; Sichuan Agricultural University; Rice Research Institute; Yaan; Sichuan 625014; CHINA
Zhou, Zhaolan; Chinese Academy of Sciences; Institute of Genetics; Group 601; Beijing 100101; CHINA
Zhu, Li-Hong; Nanjing Agric University; Dept Agronomy; Nanjing; Jiangsu 210095; CHINA
Zhu, Li-huang; Academia Sinica; Institute of Genetics; Datun Road, Andingmen Wai; Beijing 100101; CHINA; 86-10-62033491; 86-10-64913428 (fax); Ihzhu@genetics.ac.cn
Zhu, Xiaoyang; Inst Crop Germplasm Resources; Chinese Academy of Agric Sci; 30 Bai Shi Qiao Road; Beijing, 100081; CHINA; 86-10-62186647; 86-1062174142 (fax)
Zhu, Ying-Guo; Wuhan University; Genetics Dept; Wuchang; Hubei 430072; CHINA; 27-7822712-4560; 27-7812661 (fax)
Zhu, Z. P.; Shanghai Inst. of Plant Physiol.; 300 Fengling Road; Shanghai 200032; CHINA
Ziegle, Janet; Applied Business Systems; 850 Lincoln Center Dr; Foster City CA 94404
Zimmer, Elizabeth; Lab of Molecular Systematics MRC 534; Support Ctr. Nat'I Museum Nat. History; Smithsonian Inst; Washington DC 20560; 301-2383444x106; 301-238-3059 (fax); zimmer@onyx.si.edu
Zimmerman, Shane; Univ Illinois; S-123 Turner Hall; 1102 S Goodwin Ave; Urbana IL 61801-4798; 217-333-6631; 217-333-6064 (fax); sazimmer@uiuc.edu

IV. MAIZE GENETICS COOPERATION STOCK CENTER

Maize Genetics Cooperation - Stock Center

USDA/ARS/MWA - Soybean/Maize Germplasm, Pathology \& Genetics Research Unit \&
University of Illinois at Urbana/Champaign - Department of Crop Sciences

S-123 Turner Hall
1102 South Goodwin Avenue
Urbana, IL 61801-4798

(217) 333-6631 [phone]
(217) 333-6064 [fax]
maize@uiuc.edu [internet]
http://www.uiuc.edu/ph/www/maize [URL]
1,674 seed samples have been supplied in response to 252 requests, for 2000 . Of these, a total of 85 requests were received from 20 foreign countries. Approximately 90% of our requests were received by electronic mail or through our order form on the World Wide Web.

We have added more stocks to our 'Phenotype Only' category of stocks. These are stocks that have been donated to the COOP over the years, and have been classified according to their mutant phenotype only. For the most part, these stocks have not as yet been allele tested, nor has their gene been located to a chromosome arm. While we expect that most of these will represent new alleles of known loci, some will represent unique, as yet undescribed loci. Over the past few years, some mutants in this class have been mapped and/or allele tested and where appropriate, the now characterized mutant stock was added to our main catalog. We are now listing all of these mutants to give cooperators that are interested in specific traits, easier access to these mutants. These now include many mutants from Gerry Neuffer's collection.

Approximately 6.2 acres of nursery were grown this summer at the Crop Sciences Research \& Education Center located at the University of Illinois. Warm soil temperatures allowed for excellent emergence followed by optimal summer growing conditions. With additional water supplied by irrigation, we obtained good increases of most stocks grown this year

Special plantings were made of several categories of stocks:

1. We continue to grow a series of stocks donated to the COOP by Dr. Gerry Neuffer upon his retirement. Of the approximately 3000 stocks originally reported we have now been able to increase 256 characterized mutant stocks and add them to our main catalog listing. Approximately 640 others have been added to the phenotype only category including about 20 new mutants that were found during our summer growouts.
2. Plantings were also made from donated stocks from the collections of Don Auger (translocated Ac lines), Ed Coe (various genetic stocks), James Brewbaker (aphid resistant lines), Greg Doyle (inversions), Ina Golubovskaya (dsy2 and Mei1), Al Kriz (globulin variants), Mario Motto (opaque and glossy alleles), Oliver Nelson (bronze1 alleles and other mutants in his collection), Virginia Walbot (transposon-induced aleurone color mutant alleles), David Weber (Trisomic 8), and others. We expect to receive additional accessions of stocks from maize geneticists within the upcoming year and again request Cooperators to send us their stocks to insure their existence for future researchers.
3. We conducted allelism tests of several categories of mutants with similar phenotype or chromosome location. We found additional alleles of sugary3, sugary4, yellow endosperm8, ramosa1, ramosa2, iojap1, green stripe1 and zebra necrotic2. In this manner, we hope to move stocks from our vast collection of unplaced uncharacterized mutants and integrate them into the main collection.
4. We conducted linkage tests of several mutants that had been placed to chromosome arm using B-A translocations or waxy-marked A-A translocations. More precise locations were determined for inhibitor of r1 and inhibitor of r2.
5. Two acres were devoted to the propagation of the large collection of cytological variants, including A-A translocation stocks and inversions. In this collection is a series of waxy1-marked translocations that are used for mapping unplaced mutants. Over the years, pedigree and classification problems arose during the propagation of these stocks. We were able to sort through the problem ones, and we can now supply good sources proven by linkage tests to include the correct translocated chromosomes. Many additional translocation stocks were tested this last year. Results of these tests are reported in this issue of the Maize Genetics Cooperation Newsletter.
6. Stocks produced from the NSF project "Maize Gene Discovery, Sequencing and Phenotypic Analysis" (see: http://zmdb.iastate.edu/) were grown this summer. Approximately 60% of these represented plants that originally had to be outcrossed, and needed to be selfed to analyze for mutant segregation. The remaining 40% were seed increases that were planted from those families that originally yielded poorly. These increases help to maintain adequate seed stock to fill future requests.
We continue to grow a winter nursery of 0.5 acres at the Illinois Crop Improvement Association's facilities in Juana Díaz, Puerto Rico. We had an excellent winter crop last year, and all indications are that the crop will perform well this year as well. We plan to continue growing our winter nurseries at this location.

Philip continued his work on characterizing modifiers and inhibitors of certain R1 alleles, and the inheritance and expression of the duplicate factor pairs brn1 brn2 and su3 su4.

Janet continues with linkage testing and propagation of translocation stocks. She has finished sorting stocks into the 'Phenotype Only' category of stocks. Over the past year some mutants in this class have been allele tested and where appropriate, the now characterized mutant stock was added to our main catalog. Along with Shane she has sorted through the Neuffer collection and assigned each stock a drawer\# and propagation status. All have been entered in a new database Shane set up to make retrieval of stocks easier.

The NSF project "Maize Gene Discovery, Sequencing and Phenotypic Analysis" generated 9419 stocks that were sent to the Stock Center. All of these stocks were then screened for ear and kernel mutants, samples from each family were sent to UC Berkeley for plant seedling screening and remaining seed was placed into cold storage until requested. Results from these screenings can be found at the ZmDB: Phenotype Database (http://zmfmdb.zool.iastate.edu/). Shane will work on the material generated this past summer, that is now arriving here. He will also be increasing stocks as necessary to maintain seed supply for requests and planting many of these stocks for the observation of adult plant traits. Our plan is to make this observation field available for maize genetics cooperators to visit and search for mutants that they are interested in. Details will be announced later.

Marty Sachs	Philip Stinard	Janet Day Jackson	Shane Zimmerman
Director	Curator	Senior Research Specialist	Research Specialist

CHROMOSOME 1 MARKER
101A sr1 zb4 p1-ww
101B sr1 P1-wr
101C sr1 p1-ww
101D sr1 P1-rr
101F sr1 ts2 P1-rr
102A Ws4-N1589
102D Blh1-N1593
102F ms28
102G zb3
102H hcf6-N228B
1021 hcf7-N1029D
103D vp5
103DA vp5-DR3076
103DB vp5-86GN4
103DC vp5-86GN3
103DD vp5-86GN6
103DE vp5-86GN11
103DF vp5-Mumm-1
103DG vp5-N81
103E zb4 ms17 p1-ww
104A Ts3
104F ms*-6034
104G ms*-6044
105A zb4 p1-ww
105B zb4 P1-wr
105C zb4 p1-ww br1
105E ms11 P1-wr
105F ms17 p1-ww
106B ts2 P1-rr
106C Glb1-0
106D Glb1-0; Glb2-0
107A P1-cr
107B P1-rr
107C P1-rw
107D P1-cw
107E P1-mm
107F P1-vv::Ac
107G P1-or
107H p1-ww
109A gs1-PI228173
109B gs1-PI262495
109C gs1-PI267181
109D P1-rr ad1 bm2
109E P1-wr br1 f1
110A P1-wr an1 Kn1 bm2
110D P1-wr an1 bm2
110E P1-wr ad1 bm2
110F P1-wr br1 Vg1
110H P1-wr br1 f1 bm2
110K P1-wr br1
111B hcf3-N846B
111C hcf3-N1242B
111D hct44-N1278B
111F Les20-N2457
111G rs2
111H Les5-N1449
112B p1-ww br1 f1 bm2
113BA rd rd1-Wasnok
113C br1 f1
112H p1-ww br1
112l p1-ww br1 gs1 bm2
113E br1 f1 Kn1
113K hm1; hm2
113L Hm1; hm2
114C br1 bm2
114D Vg1
114E Vg1; su1
13B

114F br2 hm1; Hm2
114G br2 hm1; hm2
115C v22-8983
115CA v22-055-4
115E bz2-mVW2::Mu1
115F bz2-mVW4::MuDR
115J bz2-m::Ds; A1 A2 C1 C2 Pr1 R1
116A bz2-m::Ds; A1 A2 Ac C1 C2 Pr1 R1
116C an1 bm2
116D def(an1..bz2)-6923; A1 A2 Bz1 C1 C2 Pr1 R1
116G an1
116GA an1-93W1189
116 l bz2 gs1 bm2 Ts6; A1 A2 Bz1 C1 C2 R1
117A br2
117D tb1
117DA tb1-8963
117E Kn1
118B Kn1 bm2
118C lw1
118CA Iw1-3108
118CB lw1-6474
118J Adh1-3F1124r53
118K Adh1-1S5657; Adh2-33
118L Adh1-3F1124::Mu3
118M Adh1-3F1124r17
118N Adh1-IL14H; su1
1180 Adh1-Cm
118P Adh1-FCm
118Q Adh1-Ct
119A Adh1-1S; Adh2-1P
119B vp8
119C gs1
119D gs1 bm2
119E Ts6
119F bm2
119H Adh1-FkF(gamma)25; Adh2N
119J Adh1-Fm335::Ds1
119K Adh1-Fm335RV1
119L Adh1-2F11::Ds2
119M Adh1-1F725
120A id1
120B nec2-8147
120C ms9
120CA ms9-6032
120CB ms9-6037
120CC ms9-6042
120D ms12
120E v22-055-4 bm2
120F Mpl1-Sisco
120G Mpl1-Freeling
121A ms14
121AA ms14-6005
121B br2-mi8043
121C D8
121D Ils1
121DA IIs1-N501B
121E ty*-8446
121G ct2
121GA ct2-rd3
124A v*-5688
124B j*-5828
124C w*-8345
124CA w*-013-3
124CB w*-8245
124D $\mathrm{v}^{*}-5588$
124E $\mathrm{w}^{*}-018-3$

124F w*-4791
124G w*-6577
124H w*-8054
$124 \mathrm{l} \mathrm{v}^{*}-032-3$
124J v*-8943
125A Les2-N845A
125B Mpl1-Jenkins
125C hcf13-N1097B
125D hct41-N1275C
125E hcf50-N1481
125F hcf2-N506C
125G hct31-N1268B
126A bz2 gs1 bm2; A1 A2 Bz1 C1 C2 R1
126B id1-N2286A
126C dek1-N928A
126D dek1-N971
126E dek32-N1322A
126F 013
126H P1-vv::Ac bz2-m::Ds
126I P1-vv::Ac
126J P1-ww-1112
126K P1-ovov-1114
126L P1-rr-4B2
126M P1-vv-5145
126N dek1-N1348
1260 dek1-N1394
126P dek1-N1401
127A bz2 zb7-N101 bm2
127B dek1-N792
127C dek2-N1315A
127D dek22-N1113A
127E f1
127F Msc1-N791A
127G TIr1-N1590
127 l gt1
128A ij2-N8
128B |16-N515
128C 117-N544
128D pg15-N340B
128E pg16-N219
128G py2-N521A
128H spc2-N262A
129A w18-N495A
129AA w18-571C
129B wlu5-N266A
129C zb7-N101
129D emp1-R
129E ptd1-MS1568
129F dek*-MS2115
129G dek*-MS6214
130A 010-N1356
130B ср3-N888A
130BA cp3-N888A; mn4-N888C
130C id1-NA972
130D dek1-PB388
130E dek1-DR1129
130F ht4
6502A P1-ww-4C063
6502C P1-ovov-CFS-29
6502D P1-rr(11)-CFS-33
6502E P1-rr(10)-CFS-36
6502F P1-rr(4-5)-CFS-47
6502G P1-rr(9)-CFS-53
6502 P P1-rr(8-9)-CFS-75
6502K P1-vv-CFS-96
6502L P1-vv-CFS-110
6502M P1-vv-CFS-116
6502N P1-ovov-CFS-124
65020 P1-vv-CFS-138
6502P P1-rr(7)-CFS-140

6502Q P1-vv-CFS-155
6502R P1-o-grained-red-CFS-167
6502 S P1-r pale(8)-CFS-181
6502 T P1-rr(9)-CFS-186
6502V P1-vv-CFS-245
6502W P1-vv-CFS-246
6502X P1-vv-CFS-249
6502Y P1-vv-CFS-252
$6502 Z$ P1-vv-CFS-255
6502ZA P1-vv-CFS-256
6502ZB P1-vv-CFS-259
6503A P1-rr(11)-CFS-272
6503B P1-vv-CFS-273
6503C P1-vv-CFS-278
6503D P1-vv-CFS-279
6503E P1-vv-CFS-281
6503F P1-vv-CFS-282
6503G P1-vv-CFS-283
6503H P1-vv-CFS-284
65031 P1-r pale(5)-CFS-285
6503J P1-vv-CFS-286 (Brazil)
6503K P1-mm-CFS-286
6503L P1-mm-CFS-287
6503M P1-mm-CFS-289
6503N P1-mm-CFS-290
65030 P1-mm-CFS-291
6503P P1-mm-CFS-292
6503R P1-mm-CFS-294
6503 S P1-mm-CFS-297
6503T P1-mm-CFS-301
6503U P1-rw(9)-CFS-302
6503V P1-rr(11)-CFS-303
6503W P1-rr(10)-CFS-305
6503X P1-rr(10)-CFS-315
6503ZA P1-rr(2)-CFS-319
6503ZB P1-rr(8)-CFS-320
6503ZC P1-rr(7)-CFS-321
6504A P1-rw(8)-CFS-324
6504B P1-rw(6-7)-CFS-325
6504C P1-rr(9)-CFS-327
6504D P1-rw(7)-CFS-330
6504E P1-rw(9)-CFS-332
6504F P1-rw(8)-CFS-334
6504G P1-o-grained-red-CFS-335
6504H P1-rw(5-6)-CFS-336
6504I P1-rw(7-9)-CFS-342
6504J P1-rr(5)-CFS-345
6504K P1-rw(7)-CFS-350
6504L P1-rr-CFS-360
6504M P1-rw(5)-CFS-369
6504 N P1-ww(1)-CFS-376
65040 P1-vv-CFS-497
$6504 Q$ P1-rr(11)-CFS-548

CHROMOSOME 2 MARKER

201A mrl1-IHO
201B hcf106-Mum1::Mu1; hcf106c
201C hcf106-Mum2::Mu1; hcf106c
201D hcf106-Mum3::Mu1; hcf106c
201F ws3 lg1 gl2 b1
201G sm2-Brawn180
201H sm2-Brawn189
2011 sm2-Brawn190
201J sm2-Brawn191
201K sm2-Brawn188
202A |g1-Pl200299
202B |g1-PI262493
202C Ig1-32TaiTaiTaSarga
202D Ig1-ZCXGRB
202E $\lg 1-64-4$

202F fl1-08
202G $\lg 1-56-3037-5$
203B al1
203BA al1-Brawn
203BB al1-y3
203D al1 lg1
203G al1-y3 gl2
204A al1-lty3
204B hcf1-N490B
205A al1 lg1 gl2
205B $\lg 1$
205C lg1 gl2
205G al1 gl2 B1
206A lg1 gl2 B1
206C D10-N2428
206D Wrp1-NA1163
206E oro2
207A y11
208B lg1 gl2 B1 sk1
208C lg1 gl2 B1 sk1 v4
208D lg1 g|2 B1 v4
208E lg1 gl2 b1
208H gl2-Salamini
209A gl11-N352A
209E lg 1 g 12 b1 sk 1 2091 gl2-Parker's Flint
210E gl2-3050-3
210F gl2-PI200291
210G gl2-PI239114
210H gl2-Pl251009
210 l gl2-Pl251885
210J gl2-Pl251930
210K gl2-Pl262474
210L gl2-Pl262493
210M gl2-PI267186
210N gl2-N718
$2100 \mathrm{gl2}-\mathrm{N} 239$
211A $\lg 1 \mathrm{gl2} \mathrm{~b} 1 \mathrm{fl} 1$
211H gl2 wt1
212B lg1 gl2 b1 f11 v4
212D lg1 gl2 b1 v4
213B lg1 gl2 wt1
$213 \mathrm{~F} \lg 1 \mathrm{~B} 1-\mathrm{v}: \mathrm{Bg} \mathrm{Ch} 1$
$213 \mathrm{H} \lg 1 \mathrm{gl} 2 \mathrm{~B} 1-\mathrm{v}: \mathrm{Bg}$
214A wt1-Pl251939
214B lg1 b1 gs2
214C d5
214D gl11 B1
214E B1 ts 1
214J sk1
214L $\lg 1 \mathrm{~g} \mid 2 \mathrm{mn} 1$
215A gl14
215B gl11
215C wt1
215CA wt1-N472A
215CB wt1-N666B
215CC wt1-N178C
215CD wt1-N136A
215D mn 1
215E fl1
215EA f11-04
215G fl1 v4
215 H wt1 gl14
216A fl1 v4 Ch1
216D fl1 w3
216E fl1 v4 w3
216G fl1 v4 w3 Ch1
217 A ts 1
217B v4
217G v4 Ch1
217H ba2 v4
2171 Les10-NA607
217J Les11-N1438
217K Les15-N2007

217L Les18-N2441
217M Les19-N2450
217N cpc1-N2284B
218A w3
218C w3 Ch1
218D Ht1-GE440
218DA Ht1-Ladyfinger
218DB Ht1
218 E ba2
218G B1-Peru; A1 A2 C1 C2 r1-r
218GA B1-Peru; A1 A2 C1 C2 R1-r
218 H w3-8686
2181 w3-86GN12
218J w3-Kermicle-1
219A B1-Peru; A1 A2 C1 C2 r1-g
219B b1; A1 A2 C1 C2 r1-g
219C Ch1
219D Ht1 Ch1
219F B1-Peru; A1 A2 C1 C2 bz2 r1-
219G B1-Bolivia-706B; A1 A2 C1 C2 r1-g
219H B1-Bolivia; A1 A2 C1 C2 PI1. Rhoades Pr1 r1-g
2191 B1-l; A1 A2 C1 C2 PI1Rhoades r1-r
219J B1-I; A1 A2 C1 C2 PI1Rhoades r1-g
219K B1-S; R1-g pl1-McClintock
219L B1-S; R1-r pl1-McClintock
220A Les1-N843
220B ws3 lg1 gl2; Alien Addition T2-Tripsacum
220D hcf15-N1253A
220F os 1
221A gs2
221AA gs2-0229
221C wlv1-N1860 Ch1
221G wlv1-N1860
224B v^{*}-5537
224H whp1; A1 A2 C1 R1 c2 gl1 in1
2241 ws3-7752
224J ijmos**-7335
224K glnec*-8495
224L ws3-8949
224M ws3-8991
224N ws3-8945
226A ws3-N2357
226B b1-m1::Ds1; A1 A2 C1 C2 r1-
$\stackrel{g}{\text { 26C b1-md2::Ds1; A1 A2 C1 C2 }}$ r1-g
226 D b1-Pm5; A1 A2 C1 C2 r1-g
226E b1-Perum216; A1 A2 C1 C2 r1-g
227A dek3-N1289
227B dek4-N1024A
227C dek16-N1414
227D dek23-N1428
227E Les4-N1375
2271 nec4-N516B
227K et2-2352
227L et2-91g6290-26
228A 18-N1940
228B spt1-N464
228C ws3-N453A
228CA ws3-N605A
228 E 1 -Bh
228F ms33-6019
228G ms33-6024
228H ms33-6029
$2281 \mathrm{~ms} 33-6038$
228J ms33-6041
229A rf3 Ch1

229B v24-N424
229BA v24-N576A
229BB v24-N588A
229BC v24-N350
229C w3 rf3 Ch1
229E emp2-MS1047
229F dek*-MS1365
229G dek*-MS4160
229H dek**-MS2159 2
229J dek*-PIE
CHROMOSOME 3 MARKER
301A cr1
301B bif2-N2354
301C spc3-N553C
301D Wi2-N1540
301E rd4
302A d1-6016
302AA d1-N446
302 AB d1-N339
302 B d 1 rt 1
302E d1-tall
$303 \mathrm{~A} 11 \mathrm{rt1} \mathrm{Lg} 3-0$
303F g2
303FA g2-pg14::1
303FB g2-v19
303FD g2-56-3040-14
303FE g2-59-2097
303FF g2-94-1478
303G g2 d1
304A d1 ys3
304F d1 Lg3-O ys3
304G Lg3-O Rg1
3041 d1 h1
305A d1 Lg3-0
305D d1 Rg1
305 K d1 cl1; CIm1-4
306F ref1-MS1185
307A Sdw2-N1991
307C pm1
308B d1 ts4
308 Era 2
308F ra2 Rg1
308G ra2-D
309A a1-m3::Ds Sh2
309B a1-m1-5718::dSpm
309 C a1-m1-5719A1::dSpm
309D a1-m1-5719A1::dSpm; Mod Pr1
309E a1 Sh2; Spm-w
309F a1-m2-8417::dSpm
309G a1-m2(os)-01
309H a1-m2-7991A-02
3091 a1-m2-7995::dSpm
309J a1-m2-7977B:: dSpm
309K a1-m2-8012A-p1
309L a1 Sh2; Spm-s
309M a1-m1-5719A1::dSpm sh2
309N a1-m2-7995B
3090 a1-m1-5996-4::dSpm
309P a1-m1-5719A1::dSpm; Spm-i
309Q a1-m5::Spm-w; Spm-s
309S a1-m2-8411A::Spm-w Sh2
309T a1-m2-7981B6::Spm-w
309 U a1-m2-8409::Spm-i
309 V a1-m5::Spm-w Sh2
309W a1-m2-8011::Spm-w Sh2
309X a1 Sh2; Spm-w-8745
309Y a1 Sh2; Spm-i
$309 Z$ a1-m1-5720-02
310 C ra2 lg2
310 D C 1
311A cl1

311AA cl1-N2
311B cl1; Clm1-2
311BA cl1-7716; Clm1-2
311 C cl1; Clm1-3
311D cl1-p; Clm1-4
311 Et 1
311 Fys 3
311G Lg3-O ys3
312A Les14-N2004
312B Les17-N2345
312 D Lg3-0
312 G brn1-R
312 H g2 brn1-R
$312 \mathrm{brn1-R} \mathrm{cr} 1$
312J brn1-R ra2 lg2
312 K brn1-Nelson
312L brn1-3071
312 Mms 23
313A gl6
313AA gl6-g17
$313 A B$ gl6-N672B
313D ms3
313DA ms3-6008
313DB ms3-6009
313DC ms3-6043
313DD ms3-6020
314 A gl6 lg2 A1; A2 C1 C2 R1
314 C gl6 $\lg 2$ a1-m et1; A2 C1 C2 Dt1 R1
$314 \mathrm{FRg} 1 \mathrm{~g} \mid 6 \mathrm{lg} 2$
314 G g16 lg2
315B Rg1 gl6
315C Rg1
315D A1-b(P415); A2 C1 C2 R1
3151 A1-m2(os)-p1
315 J A1-m2(os)-r2
315K a1-m2-7991A-01
315L a1-m2-7991A-p2
315M a1-m2-7991A-p3
315 N a1-m2-7991A-p4
3150 a1-m2-7991A-p4b
315P a1-m2-7991A-p5
315Q a1-m2-8010A-02
315R A1-m3-r1a sh2-m1::Ds
315 S a1-m5-01
315T a1-m5-02
315 U A1-m5-r1
315 V A1-m5-r4
315 W A1-m5-r5
316A ts 4
316B a1-N796
316C dek5-N1339A
316D a1-mt2
316E a1-mt3
316F a1-mt4
316G a1-mt5
316 H a1-mt6
3161 a1-mt7
316 J a1-mt8
316 K a1-mt11
316L a1-mt13
316 M a1-mt15
316 N a1-mt16
3160 a1-mt18
316P a1-mt19
317 Fg g ts 4 lg2
3171 a1-m1-5996-4m::dSpm; Spm
317 J a1-m2::Spm-s; Spm-w
317K a1-m2-7991A::Spm-s
317L a1-m2-8004::dSpm
317M a1-m2-8010A::Spm-s
317N a1-m2-8011::Spm-w
3170 a1-m2-8012A
317P a1-m2-8147

317Q a1-m2-8167::dSpm
317R a1-m2-8414C
317 S a1-m2-8549C
317 T a1-m5::Spm-w Sh2
317U a1-m5::Spm-w sh2-1
317W a1-m1-5720::Spm
317X a1-m1-6078::dSpm
317Y a1-m2-8409-2
317 Z A1 def- 1260
318A ig1
318B ba1
318 C y10-7748
318D hcf19-N1257A
318 E sh2-N391B
318EA sh2-N2307
318F sh2-N2340
318G na1
318 H vp1-Mc
3181 y $10-8624$
319A lg2 A1-b(P415) et1; A2 C1 C2 Dt1 R1
319C lg2 a1-m et1; A2 C1 C2 R1 dt 1
319D lg2 a1-m et1; A2 C1 C2 Dt1 R1
319F Ig2 a1-st et1; A2 C1 C2 Dt1 R1
$319 \mathrm{G} \lg 2$ a1-st et1; dt1
320A lg2
320B lg2-PI184281
$320 \mathrm{C} \lg 2$ na1
320D lg2-podcorn
320 Et 1
320F A1 sh2; A2 C1 C2 R1 b1 pl1
320K sh2-94-1001-11
320L sh2-94-1001-58
320M sh2-94-1001-1003
320N a3-Styles; B1-b PI1-Rhoades r1-g
3200 a3-Styles; B1-b PI1-Rhoades R1-nj
321A A1-d31; A2 C1 C2 R1
$321 \mathrm{Blg} 2 \mathrm{a} 1 ; \mathrm{A} 2 \mathrm{C} 1 \mathrm{C} 2 \mathrm{R} 1 \mathrm{dt} 1$
321C lg2 A1-b(P415) et1; A2 C1 C2 R1 dt1
321D a1-m4::Ds; A2 C1 C2 R1
321E a1-rUq; A2 C1 C2 R1
321F a1-Mum1; A2 C1 C2 R1
321H a1-Mum3; A2 C1 C2 R1
321 a1-Mum4; A2 C1 C2 R1
321J a1-Mum5; A2 C1 C2 R1
321 K a1-rUq; Uq1
321L a1-rUq(flow); Uq1
322A A1-d31 sh2; A2 C1 C2 R1 dt1
322B A1-d31 sh2; A2 C1 C2 Dt1 R1
322C A1-Mum3-Rev; A2 C1 C2 R1
322F a1-m; A2 C1 R1 b1 dt1 pl1
3221 et1-24
322J et1-27
322K et1-34
322L et1-2162
322M et1-2320
322N et1-2424
3220 et1-2457
322 P et1-3191
322 Q et1-3328
322R et1-5079
322 S et1-84-6013
322T et1-88g-9733
322U et1-43
323A a1-m; A2 C1 C2 Dt1 R1 323D a1-m sh2; A2 C1 C2 Dt1 R1
323E a1-m et1; A2 C1 C2 Dt1 R1
323G a1-m1::rDt (Neuffer); A2 C1

C2 Dt1 R1
323 H a1-st; A2 C1 C2 Mrh R1 dt1
3231 a1-m1::rDt (Neuffer); A2 C1 C2 R1 dt1
324A a1-st; A2 C1 C2 Dt1 R1
324B a1-st sh2; A2 C1 C2 Dt1 R1
324E a1-st et1; A2 C1 C2 Dt1 R1
324 G a1-st; A2 C1 C2 R1 dt1
324 H a1 et1; A2 C1 C2 R1 dt1
3241 a1-st et1; A2 C1 C2 R1 dt1
324J A2; C1 C2 R1 a1-sh2-del-
Robertson
324K a1-Mus1; A2 C1 C2 R1
324L a1-Mus2; A2 C1 C2 R1
324M a1-Mus3
324N a1-Mus4
325A a1-p et1; A2 C1 C2 R1 dt1
325B a1-p et1; A2 B1 C1 C2 Dt1 P11 R1
325C a1-x1; A2 C1 C2 R1
325D a1-x3; A2 C1 C2 R1
325E A1 ga7; A2 C1 C2 R1
325G a3
3251 a1-p; A2 C1 C2 Dt1 R1
325J a1-p; A2 C1 C2 Pr1 R1 dt1
325K a1-m3::Ds sh2-m1::Ds; A2 Ac C1 C2 R1
326A sh2-Elmore
326AA sh2-Garwood
326AB sh2-60-156
326B vp1
326BA vp1-Mum3
326BC vp1-86N6
326BD vp1-86GN14
326BE vp1-86GN18
326BF vp1-86GN19
326BG vp1-Mum2
326BH vp1-Mum1::Mu
326C Rp3
326D te1-1
326DA te1-Forester
326DB te1-Grogan
329A $\mathrm{v}^{*}-9003$
329B v^{*}-8623
329C w^{*}-022-15
329D yd2
329E w $\mathrm{w}^{\star}-8336$
$329 \mathrm{~F} \mathrm{yg}^{*}$-W23
329G w*-062-3
$329 \mathrm{H} \mathrm{v}^{*}-8609$
329HA $\mathrm{v}^{*}-8959$
3291 pg2
329K yel ${ }^{*}-8630$
329L yel*-5787
330 A h1
330G a1-mrh; A2 C1 C2 Mrh R1
330H A1-b(P415) Ring 3; A2 C1 C2 R1
3301 a1-Mum2; A2 C1 C2 MuDR R1
330J a1-Mum2; A2 C1 C2 R1
330 K a1 sh2; A2 C1 C2 R1 dt1
330 L a1-mrh; A2 C1 C2 R1
332B dek5-N874A
332C dek24-N1283
332D Wrk1-N1020
332F gl19-N169
332G dek6-N627D
332H dek17-N330D
332 Lxm1-N1600
332M Spc1-N1376
332N wlut-N28
332S Mv1
333A dek5-25
333AA dek5-MS33

333B te1-Galinat
333C dek5-Briggs-1998-1

CHROMOSOME 4 MARKER

401A Rp4-a
401C Ga1 su1
401D Ga1-S
401E Ga1-S; y1
4011 ga1 su 1
401J Ga1-M
401K Ga1-S su1
402A st1
402D Ts5
402E ms30-6028
402F hct23-N1261A
403A Ts5 fl2
403B Ts5 su1
403C su1-F37
403D su1-Pl228183
404A su3-5081; su4-5081
404B su3-89-1303-18; su4-89-130318
404C su3-94-4079-6; su4-94-4079-6
404D su3-85-3113-11; su4-85-311311
405B la1-PI239110
405BB la1-Funk:2232
405BC la1-N2020
405BD la1-N2276B
405BE la1-PI184284
405D la1-R su1 gl3
405G la1-R su1 gl4
406C fl2
406CA fl2-DR9234
406D fl2 su1
407D su1
407DA su1-N86
407DB su1-N2316
407DC su1-BKG489-13
407DD su1-PI
407DE su1-R2412
407DF su1-N896A
407DG su1-N1161A
407DH su1-N2313
407DI su1-N2314
407DJ su1-N959
407DK su1-N1968
407DL su1-N1994
407E su1-am
407F su1-am; du1
408B bm3-Burnham su1
408C su1 zb6
408E bm3-91598-3
408J su1 ra3
408K su1; se1
408L su1 zb6 Tu1
409A su1-st
409B su1-66
409 C su1-P
409D su1-5051
409F su1-28510
409G su1-28511
409H su1-28512
409 su1-28513
409J su1-28515
409K su1-28516
409L su1-28517
409M su1-28518
409N su1-28519
4090 su1-28520
409P su1-30394
409Q su1-30397
409R su1-30398

409S su1-30399
409T su1-30400
409 U su1-30401
409 V su1-Bn2
410D su1 zb6 gl3
410E su1-A3
410F su1-4582::Mu1
410G su1-8064
410 H sul-2401
4101 su1-3837
410J su1-7110
410K su1-2857
410L sul-2859
410M su1-90-1101.1
410N su1-83-3383-4
4100 sul-87-2046-27
410 P su1-85-3217-10
410Q su1-84-5167-6
410R sul-84-5267-18
410 S su1-85-3436-29
411A su1-8908
411B su1 gl4 01
411 F g17 su1 v17
412 C su1 gl3
412G su1 gl4 Tu1
413A su1 01
413B su1 gl4
413D su1 C2-Idf1(Active-1); A1
A2 C1 R1
413F su1 de*-414E
413G v23 Su1 gl3; bm*-COOP
414A bt2
414AA bt2-Williams
414AB bt2-60-158
414AC bt2-9626
414AD bt2-5288
414B gl4
414BA gl4-Stadler
414BB gl4-g116
414BD gl4-N525A
414 C gl4 01
414E de*-414E
415A j2
415B 01-N1243
415C 01-N1478A
415D bt2-8132
416A Tu1-A158
416B Tu1-l(1st)
416C Tu1-1(2nd)
416D Tu1-d
416E Tu1-md
416F Tu1 gl3
417B v8
417 C gl3
417D $01 \mathrm{gl3}$
418A gl3 dp1
418B c2; A1 A2 C1 R1
418D C2-ldf1(Active-1); A1 A2 C1 R1
418E dp1
418 F 01
418G v17
419A v23-8914
419E gl7
419F Dt6 gl3 C2; A2 C1 R1 a1-m
419G Dt6 C2; A2 C1 R1 a1-m
419H c2-m1::Spm; A1 A2 C1 R1
4191 c2-m2::dSpm c2-m3::Mpi1
419J c2-Mum1
419K c2-m2::dSpm; Spm-s
419L c2-m881058Y::IRMA; En
Mod wx1-m8::Spm-18
419M c2-m3::Mpi1
420A su1 Dt4 C2; A2 C1 R1 a1-m

420 C nec*-rd
420CA nec*-016-15
420D yel*-8957
$420 \mathrm{Fd} \mathrm{dp}^{*}-4301-43$
420G $\mathrm{w}^{*}-9005$
420H Dt4 C2; A2 C1 R1 a1-m
424C g|3-64-4
424D gl3-56-3120-2
424E gl3-56-3129-27
424F gl3-60-2555
424G gl3-PI183683
424H gl3-Pl251928
$424 \mathrm{~g} \mid 3-\mathrm{Pl} 251938$
424J gl3-Pl254858
424K gl3-Pl267180
424L gl3-Pl267219
424M gl3-PI-311517
424 N gl3-15
426A G15 Su1; gl20
426B gl3-PI251941
426D Cp2-N1324A
427A cp2-012
427AA Cp2-N211C
427AB cp2-N1875A
427AC cp2-MS2608
427AD cp2-N912
427B dek25-N1167A
427C Ysk1-N844
427D orp1-N1186A; orp2-N1186B
427E dek8-N1156
427F dek10-N1176A
427G Ms41-N1995
427H dek31-N1130
4271 Sos1-ref
428A gl5 Su1; gl20
428C nec5-N642
428D spt2-N1269A
428E wt2-N10
428F Iw4; Lw3
428 G bx1
$428 \mathrm{Hgl5}$ su1; gl20
428L dsc1-MS2058

CHROMOSOME 5 MARKER

501A am1 a2; A1 C1 C2 R1
501B lu1
501D ms 13
501E gl17
501F gl17-N260B
501G gl17 a2; A1 C1 C2 R1
5011 am1
502B A2 ps1-Sprague pr1; A1 C1 C2 R1
502C D9-N2319
502D A2 bm1 pr1; A1 C1 C2 R1
502E Ms42-N2082
502F N12-N1445
502G A2 Bt1 ga10
502H hcf21-N1259A
503A A2 bm1 pr1 ys1; A1 C1 C2 R1
503B hcf43-N1277B
503C a2-mu1::Mu1
503D a2-mu2
503E a2-mu3::Mu3
504A A2 bt1 pr1; A1 C1 C2 R1
504C A2 bm1 pr1 zb1; A1 C1 C2 R1
504E A2 bt1; A1 C1 C2 R1
505B A2 pr1 ys1; A1 C1 C2 R1
505C A2 bt1 pr1 ga*-Rhoades; A1 C1 C2 R1
505D pr1-N1515A
505E pr1-N1527A
506A A2 v3 pr1; A1 C1 C2 R1

506B A2 pr1; A1 C1 C2 R1
506 C A2 pr1 v2; A1 C1 C2 R1
506D na2 A2 pr1; A1 C1 C2 R1
506F A2 pr1 v12; A1 C1 C2 R1
506 L A2 br3 pr1; A1 C1 C2 R1
507A a2; A1 C1 C2 R1
507AA a2-Mus2; A1 C1 C2 R1
507AB a2-Mus3; A1 C1 C2 R1
507AC a2-Mus1; A1 C1 C2 R1
507F a2 bm1 bt1 ga*-Rhoades; A1 C1 C2 R1
507 G a2 bm1 bt1; A1 C1 C2 R1
507H A2 bv1 pr1; A1 C1 C2 R1
5071 a2-m4::Ds; wx1-m7::Ac7
508A a2 bm1 bt1 pr1; A1 C1 C2 R1
508C a2 bm1 bt1 bv1 pr1; A1 C1 C2 R1

508 F a2 bm1 pr1 ys1; A1 C1 C2 R1
508H a2-Mum1
5081 a2-Mum2
508J a2-Mum3
508 K a2-Mum4
508L bv1 pr1
509G a2-m1::dSpm Bt1
509 H a2-m1(II):: dSpm (class II)
5091 pr1-m1
509J pr1-m2
509K a2-m1(ps)
509L a2-m1::dSpm; Spm-s
509M a2-m5::dSpm
509N A2-m1 (os)-r1
510 A a 2 bm 1 pr 1 v 2 ; A1 C1 C2 R1
510 D a2 pr1 g18; A1 C1 C2 R1
510 E a2 ae1 pr1 gl8; A1 C1 C2 R1
510 G a2 bm1 pr1 eg1; A1 C1 C2 R1
511 C a2 bt1 pr1; A1 C1 C2 R1
511 F a2 bt1 Pr1 ga**Rhoades; A1 C1 C2 R1
511 H a2 bt1; A1 C1 C2 R1
512 C a2 bt1 pr1 ga^{*}-Rhoades; A1 C1 C2 R1
512D vp2-N1136B
512E Wi4-N2445A
512F pb4
512G gl8-N166A
$512 \mathrm{H} v 13$
$512 \mid$ lw2-vp12
513A a2 pr1; A1 C1 C2 R1
513C a2 pr1 v2; A1 C1 C2 R1
513D A2 pr1 sh4; A1 C1 C2 R1
513E a2 pr1 v12; A1 C1 C2 R1
514 A a $2 \mathrm{bm1}$ pr1; A1 C1 C2 R1
514B ae1-PS1
514 C ae1-PS2
514 D ae1-PS3
514E ae1-PS4
514F ae1-PS5
514 G ae1-PS6
514 H ae1-PS7
5141 ae1-PS8
514J ae1-PS9
514K ae1-PS10
514L ae1-PS11
514M Ae1-5180-r4
514 N bt1-m1::dSpm
5140 bt1-m2
514P bt1-m3::dSpm
514 Q bt1-m4::Ds
514R Bt1-m1-r1
515A vp2
515AA vp2-DR5180
515 AB a2 vp2-green mosaic; A1 C1 C2 R1
515C ps1-Sprague

515CA ps1-8776
515CB ps1-881565-2M
515CC ps1-N80
515CD ps1-8205
515D bm1
515E bt1-N1992
515F bt1-N2308
515G bt1-N2309
516B bt1-R
516BA bt1-Elmore
516BB bt1-C103
516BC bt1-Singleton
516BD bt1-sh3
516BE bt1-sh5
516BF bt1-Eldridge
516BH bt1-6-783-7
516BI bt1-Vineyard
516BJ bt1-T
516BK bt1-W187R
516BL bt1-3040
516BM bt1-N797A
516 C ms 5
516 D td 1 ae 1
516DA td1-Nickerson
516G A2 bm1 pr1 yg1; A1 C1 C2 R1
517A v3
517AB v3-8982
517B ae1
517BA ae1-EMS
517BB ae1-PS12
517BC ae1-PS13
517BD ae1-PS14
517BE ae1-PS15
517BF ae1-PS16
517BH ae1-Elmore
517E ae1 pr1 gl8
518A sh4
518AA sh4-Rhoades
518 AB sh4-09
518B gl8-Salamini
518BA gl8-R
518BB gl8-6:COOP
518BC gl8-6:Salamini
518BD gl8-10:COOP
518BE gl8-PI180167
518 C na2
518D Iw2
519AA ys $1-\mathrm{W} 23$
519AB ys $1-5344$
519AC ys1-N755A
519AD ys1-74-1924-1
519B eg1
519 C 2
519D yg1
$519 E$ A2 pr1 yg1; A1 C1 C2 R1
519 F A2 pr1 gl8; A1 C1 C2 R1
519 H zb1
5191 zb1-2
520A hcf38-N1273
520B v12
520 C br3
520F A2 Dap1; A1 C1 C2 R1
520G A2 pr1 Dap1; A1 C1 C2 R1
520H Dap1-2
5201 ae1-1979-7
520J ae1-MOEWS
520 K ae1-1981-MuT
521A nec3-N409
521B Nec*-3-9c
521C nec*-8624
521D nec*-5-9(5614)
521E nec*-7476
521 F nec* ${ }^{*}-6853$
521G nec*-7281

521H nec*-8376
$5211 \mathrm{v}^{\star}$-6373
521J yg^{*} - 8951
521K Iw3; Iw4
521L $\mathrm{w}^{*}-021-7$
521N Inec*-5931
521NA Inec*-8549
521P Iw3; Lw4
524A v^{*}-PI267226
524B les*-3F-3330
527A dek18-N931A
527B dek9-N1365
527C dek26-N1331
527D dek27-N1380A
527E grt1-N1308B
527F nec7-N756B
527G dek33-N1299
527H Msc2-N1124B
5271 ppg1-N199
527J nec6-N493
528A Hsf1-N1595
528B wgs1-N206B
528C anl1-N1634
528CA anl1-330C
528E prg1-MS8186
528F ren1-MS807
528H dek*-MS2146
5281 dek $^{*}-M S 1182$
529A anl1-N1643
529B anl1-N1645
529C anl1-N1671
529D anl1-N1685
529E anl1-N1691
529F anl1-N1673

CHROMOSOME 6 MARKER

601C rgd1 y1
601F po1-ms6 y1 pl1
$601 \mathrm{Hhm1}$ rgd1 y1
6011 rhm1 y 111
601J Wsm1 Mdm1; Wsm2 Wsm3
601K wsm1 mdm1; wsm2 wsm3
601L Mdm1 y1
602A po1-ms6 wil y1
602C y1
602 D rm1 Y 1
602J y1-w-mut
602 K y1-gbl
602 L 1 -pb1
602M y1-8549
602N y1-Caspar
6020 y1-0317
602P y1-129E
603A y1 I10
603AA y1 110-1359
603B y1 111-4120
603C y1 112-4920
603D w15-8896 y1
603H mn3-1184 y1
604D y1 I15-Brawn1
604F y1 si1-mssi
604FA y1 si1-ts8
604FB y1 si1-Sam
604 H 1 ms 1
604HA y1 ms1-Robertson
6041 Y1 ms1
604IA ms $1-6050$
605A wi1 y1
605C y1 pg11; Wx1 pg12
605E wi1 Y1 Pl1
605 F wi1 Y1 pl1
605G I3
606A Y1 pg11-4484; Wx1 pg12-

4484	$613 \mathrm{D} \mathrm{vms}^{*}-8522$
606AA pg11-8925; pg12-8925	613 F w14-8613
606AB pg11-48-040-8; pg 12-48-	6131 tus*-5267
040-8	$613 \mathrm{~J} \mathrm{gm} *$-6372
606AC pg11-8563; pg12-8563	$613 \mathrm{~L} \mathrm{w}^{*}$-8954
606AD pg11-8322; pg12-8322	613M yel**-039-13
606B y 1 pg11; pg12 wx1	613 N yel*-7285
606 C Y1 pg11; pg12 wx1	$\left.6130\right\|^{*}-4-6(4447)$
$606 \mathrm{E} 1 \mathrm{pl1}$	613 P yel*-8631
606 F 11 Pl 1	613 T pg11-6656; pg12-6656
6061 y1 pg11 su2; Wx1 pg12	627A dek28-N1307A
607A y1 P11-Bh1; A1 A2 C2 R1 c1	627B dek19-N1296A
sh1 wx1	${ }^{627}$ C vp*-5111
607C y1 su2	627G dek*-MS1104; ${ }^{\text {²}}$-1104
607 E y 1 pl1 su2 v7	
607H y1 PI1-Bh1; A1 A2 C2 R1 Wx1 c1 sh1	CHROMOSOME 7 MARKER
6071 y1 Pl1-Bh1; A1 A2 C2 R1 c1 sh1 skb1 wx1	$\begin{aligned} & \text { 701B } \ln 1-D \\ & 701 \mathrm{D} 02 \end{aligned}$
607J sm1-Brawn168	701E 02-Mum1
607K sm1-Brawn178	701 FHs 1
607L sm1-Brawn184	702A 02 v5
608A gs3-N268	702B $02 \mathrm{v5}$ ra1-Ref gl1
608C sbd1-N2292	7021 In1-Brawn
608D Les13-N2003	703A $02 \mathrm{v5} \mathrm{gl1}$
608 F y 111 w 1	703B De*-B30
608G Y1 111	703C 02-m(r); Bg
609D Y1 su2	703D 02 ra1-Ref gl1
609DA Y1 su2-89-1273	703E 02-R; Bg
609DB su2-PS1	703F 02-m12::Spm
609DC su2-PS2	703G 02-m2: Ds ; Ac
609DD su2-1979-5	703H 02-m5::Ac
609DE su2-87-2279-12	703 J R1-O
609DF su2-1981	703JA Rs1-1025:Mu6/7
609DG su2-1982	703K Rs1-Z
609DH su2-0203	704B 02 ra1-Ref gl1 sl1
609DI su2-PI193430	704C 02-NA696
609DJ su2-1979-1	704D 02-NA697
$609 \mathrm{Fms1-Albertsen}$	704E gl1-m8
610B Dt2 P11; A2 C1 C2 R1 a1-m	704F ms22-6036
$610 \mathrm{~F} 11 \mathrm{pl1}$ su2 v7	704 H 02-orange
610G hcf34-N1269C	705A $02 \mathrm{gl1}$
610H Y1 Dt2 pl1; A2 C1 C2 R1 a1m	$\begin{aligned} & \text { 705B o2 gl1 sl1 } \\ & 705 \mathrm{D} 02 \mathrm{bd1} \end{aligned}$
6101 hcf36-N1271B	706A $02 \mathrm{sl1}$
610 J hct48-N1282C	706B vp9-Bot100
610 K hct26-N1263C	707A y8 v5 gl1
610 Lhc 323	707B in1; A1 A2 C1 C2 R1 pr1
610M hcf5-N510C	$707 \mathrm{Cin} 1 \mathrm{gl1}$; A1 A2 C1 C2 R1 pr1
611A Pl1 sm1; P1-rr	707D v5
$611 \mathrm{P}+1$	$707 \mathrm{Evp9}-\mathrm{R}$
$611 \mathrm{E} \mathrm{Y1} \mathrm{pl1} \mathrm{w1}$	707EA vp9-3111
611 EA w1-7366	707EB vp9-86GN9
6111 sm1 tan1-py1; P1-rr	707EC vp9-86GN15
611K Y1 Pl1 w1	707F y $8 \mathrm{gl1}$
611 L w1; I1	707G in1 gl1; A1 A2 C1 C2 Pr1 R1
611M afd1	708A ra1-Ref
611 N sr4-N65A	708AA ra1-PI262495
6110 014-N924	708AB ra1-Pl184279
612 A w14	708AC ra1-PI239103
612B po1	708AD ra1-PI267181
612BA poi-ms6	708AE ra1-PI267184
612C ${ }^{*}$-4923	708AF ra1-63-3359
612 D oro1	708B bd1-N2355
612DA orol-6474	708C 015-N1117
6121 tan1-py1	708D y8-lty2
612J w14-8657	709A gl1
612K w14-8050	709AA gl1-56-3013-20
612L w14-6853	709AB gl1-56-3122-7
612M w14-025-12	709AC gl1-Pl183644
612 N w14-1-7(4302-31)	709AD gl1-Pl218043
6120 yel $*$ - $1-7(4302-31)$	709AE gl1-Pl251652
613A 2NOR y1; A1 C1 C2 R1 a2	709AF gl1-Pl257507
bm1 pr1 v2 wx1	709AG gl1-Istra

613D vms*-8522
613 F w14-8613
6131 tus -5267
$613 \mathrm{~L} \mathrm{w}^{\star}-8954$
613M yel ${ }^{*}-039-13$
$\left.6130\right|^{*}-4-6(4447)$
613 P yel*-8631
627A dek28-N1307A
627B dek19-N1296A
627C vp*-5111
dek-MS104; | ${ }^{*}-1104$

701E 02-Mum1
701 F Hs 1
702A 02 v5
glt
702 In1-Brawn
703B De*-B30
$703 \mathrm{C} 02-\mathrm{m}(\mathrm{r}) ; \mathrm{Bg}$
03D ra1-Ref gl1
703F 02-m12::Spm
703G 02-m2::Ds; Ac
703H 02-m5::Ac
RI-O
703K Rs1-Z
704B 02 ra1-Ref gl1 sl1
02-NA696
704D 02-NA697
704 F 22 60
704F ms22-6036

705A 02 gl1
705B 02 gl1 sl1
d
706B vp9-Bot100
707A y8 v5 gl1
707C in 111 A1 A2 C1 C2 R1

707EA vpg-3111
707EB vp9-86GN9

707G in1 gl1; A1 A2 C1 C2 Pr1 R1
708A ra1-Ref
708AA ra1-Pl262495

ral-P1239103
708A
708AF ra1-63-335
708B bd1-N2355
$708 \mathrm{C} 015-\mathrm{N} 1117$
709 A alt
709 A

709 AB g11-56-3122-7
709AC gl1-PI183644
gl-P128043
709AF gl1-Pl257507
709AG gl1-Istra

709AH gl1-BMS
709Al gl1-7L
709AJ gl1-9:COOP
709AK gl1-N212
709AL gl1-N269
709AM gl1-N345B
709C gl1-m
710A gl1 Tp1
$710 \mathrm{Bgl1} \mathrm{mn} 2$
$710 \mathrm{E} 05 \mathrm{gl1}$
$710 \mathrm{~g} \mid 1 \mathrm{Bn} 1$
710 J gl1-N271
710 K gl1-dy
710 L gl1-Pl218038
711A Tp1
711B ij1-ref::Ds
711C ij1-60-2454-20
711 G ts*-br
712A ms7
712AA ms7-6007
712B ms7 gl1
713A Bn1
713 En 1 bd 1
713 H Bn1 ij1
7131 bd1 Pn1
714A Pn1
714B 05
714BA 05-PS3038
714BB 05-N76B
$714 \mathrm{BC} 05-\mathrm{N} 874 \mathrm{~B}$
714C 05-N1241
714 D va1
715A Dt3; A2 C1 C2 R1 a1-m
715 C g11 Dt3; A2 C1 C2 R1 a1-m
716A v*-8647
716B yel*-7748
716C dif1-N2389A
716D dlf1-N2461
716F Les9-N2008
727A dek11-N788
727B wlu2-N543A
727 D v27-N590A
727DA v27-N53B
727DB v27-N413C
727 E gl1-cgl
727F Rs4-N1606
727G Rs1-O 02 v5 ra1-Ref gl1
727H ms34-6004
7271 ms34-6010
727J ms34-6013
727K ms34-6014
728 A Px3-6
728B ptd2-MS3193
$728 \mathrm{Cmn} 2-\mathrm{cp} 1$
728D sh6-8601
728E sh6-N1295
728F ren2-NS326
728 G dek*-MS2082
728H dek*-MS5153

CHROMOSOME 8 MARKER

801A gl18-g
801 B v16
8011 yel**-024-5
801 K v16 ms8
802A rgh1-N1285
802B emp3-N1386A
802 CH 2
802G ms43
802H gl18-Pl262473
8021 gl18-Pl262490
803A ms8
803B nec1-025-4

803D gl18-g ms8
803F nec1-7748
803G nec1-6697
804A v21-A552
804B dp*-8925
804C tb*-poey1013
805A fl3
805C gl18-g v21-A552
805 E el1
805G ms8 j1
808A ct1
808B Lg4-0
808C Htn1
810A v16 11; I1
810B j1
810C j1-JSM
827A dek20-N1392A
827B dek29-N1387A
827C Bif1-N1440
827CA Bif1-N2001
827D Sdw1-N1592
827E Clt1-N985
827F pro1-N1058
827G pro1-N1121A
827H pro1-N1528
8271 pro1-N1533
827J wlu3-N203A
827K pro1
827L pro1-Tracy
828A ats 1
828C pro1-N1154A
828D pro1-NA342
828E pro1-N1530

CHROMOSOME 9 MARKER

901 By 2 C 1 sh1 bz1; A1 A2 C2 R1
901C yg2 C1 sh1 bz1 wx1; A1 A2 C2 R1
901E yg2 C1 bz1 wx1; A1 A2 C2 R1
901H yg2 C1 Bz1; A1 A2 C2 R1
902A yg2 c1 sh1 bz1 wx1; A1 A2 C2 R1
902B yg2 c1 sh1 wx1; A1 A2 C2 R1
902C yg2 c1 sh1 wx1 gl15-Hayes; A1 A2 C2 R1
902D yg2 c1 sh1 Bz1 wx1 gl15 K9S s; A1 A2 C2 R1
902E C1 sh1 Bz1-McC1; A1 A2 C2 R1
902G C1 sh1 bz1 wx1; A1 A2 C2 R1 Spm
9021 bz1-m13CS1
902J bz1-m13CS3
902K bz1-m13CS4
902L bz1-m13CS5
902M bz1-m13CS6
902N bz1-m13CS7
903A C1 sh1 bz1; A1 A2 C2 R1
903B C1 sh1 bz1 wx1; A1 A2 C2 R1
903D C1-I sh1 bz1 wx1; A1 A2 C2 R1
903E bz1-m13CS8
903F bz1-m13CS10
903G bz1-m13CS11
903H bz1-m13CS12
904B C1 sh1; A1 A2 C2 R1
904C C1 sh1 wx1; A1 A2 C2 R1
904D C1 wx1 ar1; A1 A2 C2 R1
904F C1 sh1 bz1 gl15 bm4; A1 A2 C2 R1
904G rgo1-Sarkar
905A C1 sh1 wx1 K9S-I; A1 A2 C2 R1

905C C1 bz1 Wx1; A1 A2 C2 R1
905D C1 sh1 wx1 K9S-I; A1 A2 C2 K10-I R1
905 G C1 bz1 wx1; A1 A2 C2 R1
905 H c1 sh1 wx1; A1 A2 C2 R1scm2 b1
9051 ms $45-6040$
906A C1 wx1; A1 A2 C2 Dsl Pr1 R1 y 1
906B C1 wx1; A1 A2 C2 Dsl R1 Y1 pr1
906 C C1-I Wx1; A1 A2 C2 Dsl R1
906D C1-I; A1 A2 C2 R1
906G C1-I Sh1 Bz1 Wx1; Dsl
906H C1 Sh1 bz1 wx1; Ac
907A C1 wx1; A1 A2 C2 R1
907E C1-I wx1; A1 A2 C2 R1 y1
907G c1-p; A1 A2 B1-b C2 R1 pl1
907 H c1-n; A1 A2 C2 R1 b1 pl1
907l C1-S wx1; A1 A2 C2 R1
908A C1 wx1 da1 ar1; A1 A2 C2 R1
908B C1 wx1 v1; A1 A2 C2 R1
908D C1 wx1 gl15; A1 A2 C2 R1
908F C1 wx1 da1; A1 A2 C2 R1
908G c1-mt13
909A C1 wx1 Bf1-ref; A1 A2 C2 R1
909B c1 bz1 wx1; A1 A2 C2 R1
909C c1 sh1 bz1 wx1; A1 A2 C2 R1
909D c1 sh1 wx1; A1 A2 C2 R1
909 E 1 sh1 wx1 v1; A1 A2 C2 R1
909F c1 sh1 wx1 gl15; A1 A2 C2 R1
909G hct42-N1276B
910B c1 sh1 wx1 gl15 Bf1-ref; A1 A2 C2 R1
910D c1; A1 A2 C2 R1
910G C1 sh1-bz1-x2 Wx1; A1 A2 C2 R1
910H C1 sh1-bz1-x3; A1 A2 C2 R1
910l sh1-bb1981 bz1-m4::Ds
910IA sh1-bb1981 bz1-m4::Ds; Ac
910L yg2-str
911A c1 wx1; A1 A2 C2 R1
911B c1 wx1 v1; A1 A2 C2 R1
911C c1 wx1 gl15-Hayes; A1 A2 C2 R1
911D Fas 1
911E sem1-1364
911F $\operatorname{def}(B f 1 . . b m 4) 044-4$
912A sh1
912AA sh1-1746
912AB sh1-9026-11
912AC sh1-3-6(6349)
912AD sh1-60-155
912AE sh1-EMS
912AF sh1-4020
912AG sh1-9552
912AH sh1-9626
912Al sh1-3017
912AJ sh1-6
912B sh1 wx1 v1
912E lo2
912H lo2 wx 1
913C sh1 17
913D sh1 16
913E baf1
913F yg2-Mum1
913G yg2-Mum2
913H yg2-Mum3
913I yg2-Mum4
913J yg2-Mum5
913K yg2-Mum6
913L yg2-Mum7
913M yg2-Mum8
913N yg2-Mum9

9130 yg2-DR83-106-3
913P yg2-DR83-106-5
914A wx1 d3-COOP
914B dek12-N1054
914K Wc1-ly; Y1
914L bz1-Mus1
914M bz1-Mus2
914N bz1-Mus3
9140 bz1-Mus5
914P bz1-Mus6
914Q bz1-Mus7
914R bz1-Mus10
915A wx1
915B wx1-a
915C w11
915D wx1-N1050A
915E wx1-Alexander
915F wx1-N1240A
916A wx1 v1
916B wx1 v1-JRL
916C wx1 bk2
916E wx1 v1 gl15
916G Trn1-N1597
916H v31-N828
9161 d3-8201
917A wx1 Bf1-ref
917C v1
917D ms2
917DA ms2-6002
917DB ms2-6012
917E gl15-Sprague
917EA gl15-Lambert
917EB gl15-KEW
917 F d3-COOP
917FA d3-d2
917FB d3-015-12
917FC d3-072-7
917FD d3-8054
917FF d3-d2-Harberd
917FG d3-d2-Phillips
917FH d3-N660B
918A gl15 Bf1-ref
918B gl15 bm4
918C bk2 Wc1
918D Wc1
918F Wx1 Bf1-ref
918G WC1 Bf1-ref bm4
918GA Wc1-Wh Bf1-ref bm4
918K bk2 v30
918L wx1 Wc1
919A bm4
919B Bf1-ref bm4
919C I6
919D 17
919G I6; 11
919/ Bf1-DR-046-1
919J bz1-Mum9; MuDR
919K bz1-Mum4::Mu1
919L bz1-Mum1
919M bz1-Mum2
919N bz1-Mum3
9190 bz1-Mum5
919P bz1-Mum6
919Q bz1-Mum7
919R bz1-Mum8
919S bz1-Mum9
919T bz1-Mum10
919 U bz1-Mum11
919V bz1-Mum12
919W bz1-Mum15
919X bz1-Mum16
919Y bz1-Mum18
920A yel*-034-16
920B $w^{*}-4889$

920C $\mathrm{w}^{*}-8889$
920E $\mathrm{w}^{*}-8950$
920F $\mathrm{w}^{*}-9000$
920G Tp3L-9SRhoades
920L ygzb**-5588
920M wnl*-034-5
920 N pyd1
923A wx1-a
923B wx1-B
923C wx1-B1
923 D w1-B2::TouristA
923E wx1-B3::Ac
923F wx1-B4::Ds2
923G wx1-B6
923H wx1-B7
9231 wx1-B8
923J wx1-BL2
923K wx1-BL3
$923 \mathrm{~L} w \times 1-\mathrm{C}$
923M wx1-C1
923 N wx1-C2
9230 wx1-C3
923P wx1-C4
923Q wx1-C31
923R wx1-C34
923 S wx1-F
923T wx1-90
923 U wx1-H
923 V wx1-H21
923 W wx1-I
923X wx1-J
923 Y wx1-M
9232 wx1-m1::Ds
923ZA wx1-m6R
923ZB wx1-m6NR
923ZC wx1-m8::Spm-18
923ZD wx1-P60
923ZE wx1-R
923ZF wx1-Stonor
924A Wd1 wd1 C1 C1-I Ring 9S;
A1 A2 C2 R1
924B C1-I Ring 9S; A1 A2 C2 R1
924C yg2
924D wd1
924E wd1 C1 sh1 bz1
924F C1 Sh1 sh1 Bz1 bz1 wx1 tiny fragment 9
924G C1-I Bz1; Ac DsI
924H c1 sh1 bz1 wx1; Ac
925A bz1-m1::Ds wx1-m9::Ac
925B wx1-m9::Ds; Ac
925 C bz1-m2::Ac
925D Wx1-m9r1
925E bz1-m2(DII)::Ds wx1-m6::Ds
925F C1 sh1 bz1 wx1-m8::Spm-18
925H bz1-m2(DI)::Ds wx1; R1-sc
9251 c1-m2::Ds Wx1; Ac
925J c1-m858::dSpm wx1
925K c1-m1::Ds
926A sh1-m5933::Ds
926B Sh1-r3(5933)
926C Sh1-r6(5933)
926D Sh1-r7(5933)
926E Sh1-r8(5933)
926F Sh1-r9(5933)
926G Sh1-r10(5933)
926H Sh1-r11(5933)
9261 sh1-m6233::Ds
926J Sh1-r1(6233)
926K Sh1-r2(6233)
926L C1-I sh1-m6258::Ds
926M Sh1-m6258-r1
926N Sh1-r6795-1
9260 bz1-m5::Ac

926P Bz1-wm::Ds 1
926 Q Bz1-m1-p
926R Bz1-m2-r1
926S Bz1-m2(DII)-r1
926T Bz1-m2(DII)-r2
926 U Bz1-m2(DII)-r3
926V sh1-bb1981 Bz1-m4-p1
926W sh1-bb1981 Bz1-m4-r6851
926X sh1-bb1981 Bz1-m4-r7840B
926Y sh1-bb1981 Bz1-m4-r8332
$926 Z$ Bz1-m5-p1
926ZA Bz1-m5-r1
926ZB Bz1-m5-r2
927A dek12-N873
927B dek13-N744
927C dek30-N1391
927D Les8-N2005
927E Zb8-N1443
927H C1 Dt7; A2 C2 R1 a1-r
9271 G6-N1585
927K RId1-N1990
927L RId1-N1441
928A yg2-N27
928AA yg2-N585
928AB yg2-N697
928AC yg2-N610
928B wlu4-N41A
928C ms20
928G c1-m5::Spm wx1-m8::Spm-
I8; A1 A2 C2 R1
928H wx1-m7::Ac7
9281 C1 bz1-mut::rMut; A1 A2
Bz2 C2 Mut R1
928J C1 bz1-(r)d; A1 A2 C2 R1
928K C1 Sh1 bz1-s; A1 A2 C2 Mut R1
928L ms45-6006
928M ms35-6011
928 N ms $35-6018$
$9280 \mathrm{~ms}^{*}-6021$
$928 \mathrm{~ms}^{*}-6022$
928Q ms35-6027
928R ms35-6031
$928 \mathrm{Sms}{ }^{*}-6046$
$928 \mathrm{~T} \mathrm{~ms}^{*}$-6047
929E Dp9
930A wx1-Mum1
930B wx1-Mum2
930C wx1-Mum3
930D wx1-Mum4
930E wx1-Mum5::Mu
930F wx1-Mum6
930G wx1-Mum7
930H wx1-Mum8
9301 wx1-Mum9
930J wx1-Mum10
930K wx1-Mum11
930L wx1-Mus16
930M wx1-Mus181
930N wx1-Mus215
931A Wx1-m5::Ds
931B wx1-m6::Ds
931C wx1-m6-01
931D Wx1-m7-i1
931E Wx1-m8-r10
931F Wx1-m9-r3
931G Wx1-m9-r4
931H wd1-Mus1
9311 wd1-Mus2
931J wd1-Mus3
931K wd1-Mus4
931L wd1-Mus5
931M wd1-Mus6

CHROMOSOME 10 MARKER

X01A oy1-Anderson
X01AA oy $1-\mathrm{yg}$
X01AB oy 1-8923
X01B oy1 R1; A1 A2 C1 C2
X01C oy 1 bf2
X01E oy 1 bf2 R1; A1 A2 C1 C2
X02C oy1 zn1 R1; A1 A2 C1 C2
X02E oy1 du1 r1; A1 A2 C1 C2
X02G oy 1 zn 1
X02H Oy1-N1459
X02| Oy1-N1538
X02J Oy1-N1583
X02K Oy1-N1588
X02L Oy1-N1989
X03A sr3
X03B Og1
X03D Og1 R1; A1 A2 C1 C2
X03E oy 1 y9
X03F Inr1-Ref
X04A Og1 du1 R1; A1 A2 C1 C2
X04B ms 11
X04BA ms 11-6051
X04D bf2
X04DA bf2-N185A
X04E du1-8501
X04F du1-8802
X05A $\mathrm{Og}^{*}-0376$
X05B Gs4-N1439
X05E bf2 sr2
X05G bf2 g1 R1-r; A1 A2 C1 C2
X06A bf2 r1 sr2; A1 A2 C1 C2
X06C nl1 g1 R1; A1 A2 C1 C2
X06F bf2 R1 sr2; A1 A2 C1 C2
X07A nl1 g1 r1; A1 A2 C1 C2
X07C y9
X07CA y9-y 12
X07D nl1
X08A vp10
X08B vp10-86GN5
X08C vp10-TX8552
X08F li1
X08FA lit-IL90-243Tco
X09B li1 g1 R1; A1 A2 C1 C2
X09EA g1-g4
X09EB g1-56-3005-24
X09EC $91-1-7(X-55-16)$
X09ED g1-68-609-13
X09EE g1-ws2
X09EF g1-Pl262473
X09F ms 10
X09FA ms $10-6001$
X09FB ms10-6035
X09G li1 g1 r1; A1 A2 C1 C2
X10A du1
X10AA du1-PS1
X10AB du1-PS2
X10AC du1-PS3
X10AD du1-PS6
X10AE du1-PS4
X10AF du1-PS5
X10AG du1-8801
X10AH du1-84-5350-31
X10D du1 g1 r1; A1 A2 C1 C2
X10F zn1
X10FA zn1-N25
X10G du1 v18
X11A zn1 g1
X11D Tp2 g1 r1; A1 A2 C1 C2
X11E g1 R1 sr2; A1 A2 C1 C2
X11F g1 r1; A1 A2 C1 C2
X11H zn1 R1-r; A1 A2 C1 C2
X111 Tp2 g1 sr2

X12A g1 r1 sr2; A1 A2 C1 C2
X12C g1 R1-g sr2; A1 A2 C1 C2
X12E g1 R1; A1 A2 C1 C2
X13D g1 r1-r sr2; A1 A2 C1 C2
X13E g1 r1-ch; A1 A2 C1 C2 wx1
X13G R1-p
X13H R1-b
X14A r1-r Isr1-Ej; A1 A2 C1 C2
X14E r1; A1 A2 C1 C2 wx1
X14F v18 r1; A1 A2 C1 C2
X141 r1-sc:m3::Ds
X14J R1-nj::Ac
X14K r1-Del902
X14L r1-g; A1 A2 C1 C2
X15B I1 r1 sr2; A1 A2 C1 C2
X15C R1-g; A1 A2 C1 C2
X15D r1-ch; A1 A2 C1 C2
X15F Isr1 R1-g sr2
X15G isr1 r1-g sr2
X15H isr1 R1-r:PI302369
X15HA isr1 R1-r:P1302369 sr2
X15I isr1 R1-nj Mst1
X16B r1 K10-l; A1 A2 C1 C2
X16C R1-ch; A1 A2 C1 C2 Pl1
X16CA R1-ch
X16D r1 sr2; A1 A2 C1 C2
X16E r1 K10-II; A1 A2 C1 C2
X16F R1 K10-II; A1 A2 C1 C2
X17B r1-r; A1 A2 C1 C2
X17C R1-mb; A1 A2 C1 C2
X17D R1-nj; A1 A2 C1 C2
X17E R1-r; A1 A2 C1 C2
X18A R1-lsk; A1 A2 C1 C2
X18B R1-sk:nc-2; A1 A2 C1 C2
X18C R1-st; A1 A2 C1 C2
X18D R1-sk; A1 A2 C1 C2
X18E R1-st Mst1
X18G R1-scm2; A1 A2 C1 C2 bz2
X18H R1-nj; A1 A2 C1 C2 bz2
X181 r1; A1 A2 C1 C2
X19A R1-sc:124
X19B w2
X19BA w2-Burnham
X19BB w2-2221
X19C I1 w2
X19D 07
X19E R1-r Lc1-Ecuador; b1
X19F r1 w2
X19G r1-n19 Lc1; b1
X19H r1-g:e Lc1; b1
X20B 11
X20C v18
X201 R1-d:Arapaho
X20J R1-d:Catspaw
X24A cm1
X24B lep*-8691
X24C $v^{*}-8574$
X25A R1-scm2; A2 C1 C2 a1-st
X25B R1-scm2; A1 A2 C1 c2
X25C R1-sc:122; A1 A2 C1 C2 pr1
X25D R1-scm2; A1 C1 C2 a2
X25E R1-scm2; A1 A2 C2 c1
X26A r1-X1 / R1; A1 A2 C1 C2
X26B R1-scm2; A1 A2 C1 C2
X26C R1-sc:122; A1 A2 C1 C2
X26D R1-sc:5691; A1 A2 C1 C2
X26E R1-scm2; A1 A2 C1 C2 pr1 wx1
X26F R1-scm2; A1 A2 C1 C2 In1-D
X26G R1-scm2; A1 A2 C1 c2-
m2:: dSpm
X26H R1-scm2; A1 A2 C1 C2 wx1
X27A dek14-N1435
X27B dek15-N1427A

X27C w2-N1330
X27D Les6-N1451
X27E gl21-N478B; gl22-N478C
X27F Vsr1-N1446
X27G Oy1-N700
X27H orp2-N1186B; orp1-N1186A
X271 I19-N425
X27J I13-N59A
X27K v29-N418
X27L Les12-N1453
X28B R1-scm2; a1-m1::rDt

(Neuffer)

X28C R1-nj:Cudu; A1 A2 C1 C2
X28D Vsr*-N716
X28E Les3
X28F cr4-6143
X28G R1-nj:Chase; A1 A2 C1 C2
X281 R1-scm2; A2 C1 C2 a1-m15719::dSpm
X28J R1-scm2; A1 A2 C1 C2 bz1
X29A ren3-MS1339
X29B dek *-MS2181
X29C cr4-N590C
X29D cr4-N647
X29E cr4-N411

UNPLACED GENES

U140A aph1
U140AA Aph1
U140C I4
U140G ms22
U140H ms24
U140I zn2-94-234
U240A Les7-N1461
U240D 011
U240E zn2
U240F zn2-Pl251887
U240G zn2-Pl236997
U240H zn2-PI239110
U2401 zn2-56-3012-10
U340D ws1-COOP ws2-COOP
U340DA ws1-Pawnee ws2-Pawnee
U340H oro4
U440B gl13
U440C hct49-N1480
U440D ub1-76C
U440E frz1
U440F mg1-Sprague
U540A dv1
U540B dy1
U640A dsy1-Doyle
U640B dsy1-Russian
U640C pam1
U640D pam2
U640E ada1
U640F atn1 Adh1-1S5657
U740A abs1-PI254851
U740C Ity1
U740F pi1 pi2
U740G Fbr1-N1602
U740H ad2-N2356A
U840A csp1-NA1173
U840D Les21-N1442
U840F agt1
U840G Wi3-N1614
U840H nld1-N2346
U8401 Mc1
U840J hcf16
U940A Ht3
U940B dsy 1
U940D hcf11-N1250A
U940E hcf17
U940F hcf73

U940G Glb2-0
U940C v25-N17

MULTIPLE GENES

M141A A1 A2 B1 C1 C2 Pl1 Pr1 R1-
g
M141AA A1 A2 B1 C1 C2 Pl1Rhoades Pr1 R1-g
M141B A1 A2 B1 C1 C2 pl1 Pr1 R1$\stackrel{g}{8}$ A1 A2 b1 C1 C2 pl1 R1-r
M142B a1 A2 b1 C1 C2 pl1 R1-r
M142C A1 a2 b1 C1 C2 pl1 R1-r
M142D A1 A2 b1 bz1 C1 C2 p11 R1-
r
M142E A1 A2 b1 bz2 C1 C2 pl1 R1-r
M142F A1 A2 b1 c1-p C2 p11 R1-r
M142G A1 A2 b1 C1-I C2 pl1 R1-r
M142H A1 A2 b1 C1 c2 pl1 R1-r
M142l A1 A2 b1 C1 C2-Idfm pl1 R1-r
M142J A1 A2 b1 C1 C2-Idf1(Active-1) pl1 R1-r
M142K A1 A2 b1 C1 C2 pl1 pr1 R1-r
M142L A1 A2 b1 C1 C2 gl1 in pl1 R1-r
M142M A1 A2 b1 C1 C2 In1-D pl1 R1-r
M142N A1 a2 bt1 C1 C2 pr1 R1
M1420 C1 sh1 bz1 wx1; A1 A2 C2 R1-r
M142P c1 sh1 wx1; A1 A2 C2 R1-r
M142Q yg2 c1 sh1 wx1; A1 A2 C2 R1-g
M142R A1 A2 C1-I C2 R1-r wx1
M142S su1 c2; A1 A2 C1 R1-r
M142T A1 A2 b1 C1 C2 pl1 r1-g
M142U A1 A2 b1 C1 C2 pl1 r1-r
M142V A1 A2 C1 C2 R1-nj
M142W A1 A2 C1 C2 R1-st
M142X A1 A2 b1 C1 C2 Pl1 r1-g
M142Y A1 A2 B1 C1 C2 Pl1 r1-g
M142Z a1-st A2 b1 C1 C2 p11 R1scm2
M142ZA A1 a2 b1 C1 C2 pl1 R1scm2
M142ZB b1 bz1 C1 pl1 R1-scm2 sh1
M142ZC A1 A2 b1 bz2 C1 C2 pl1 R1-scm2
M142ZD A1 A2 b1 c1-n C2 pl1 R1scm2
M142ZE A1 A2 b1 c1-p C2 pl1 R1scm2
M241A A1 A2 B1 C1 C2 Pl1 Pr1 r1${ }^{9}$
M241C A1 A2 B1 C1 C2 Pl1 Pr1 R1-
r
M241D A1 A2 b1 C1 C2 PI1Rhoades r1-g
M242A A1 A2 b1 C1 c2 pl1 R1scm2
M242B A1 A2 b1 C1 C2 pl1 pr1 R1scm2
M242C in1 gl1; A1 A2 b1 C1 C2 pl1 R1-scm2
M242D a1 sh2; A2 b1 C1 C2 pl1 R1scm2
M242E c1 sh1 wx1; A1 A2 b1 C2 pl1 R1-scm2
M242F su1 c2; A1 A2 b1 C1 pl1 R1scm2
M242G A1 A2 b1 C1 C2 pl1 R1scm2

M242H A1 A2 b1 C1 C2 pl1 r1-g
M242l A1 A2 b1 C1 C2 pl1 r1-r
M340A A1 A2 B1 c1 C2 pl1 Pr1 R1. g
M340B A1 A2 B1 c1 C2 Pl1 Pr1 R1$\stackrel{g}{\mathrm{M}} 4 \mathrm{O}_{\mathrm{C}}$ A1 A2 b1 c1 C2 pl1 Pr1 R1g
M341B A1 A2 B1 C1 C2 pl1 Pr1 R1-
M341C A1 A2 b1 C1 C2 Pl1 Pr1 R1-
r
M341CA A1 A2 b1 C1 C2 PI1Rhoades Pr1 R1-r
M341D A1 A2 B1 c1 C2 Pl1 Pr1 R1r
M341F A1 A2 b1 C1 C2 pl1 Pr1 R1-r
M441B A1 A2 B1 C1 C2 pl1 Pr1 R1r wx1
M441D A1 A2 B1 C1 C2 Pl1 Pr1 r1-r
M441F A1 A2 b1 C1 C2 pl1 Pr1 R1g wx1
M541B A1 A2 b1 C1 C2 pl1 Pr1 R1g
M541F a1 A2 C1 C2 R1-nj
M541G A1 a2 C1 C2 R1-nj
M541H A1 A2 c1 C2 R1-nj
M541I A1 A2 C1-I C2 R1-nj
M541J A1 A2 C1 c2 R1-nj
M541K A1 A2 C1 C2-Idf1 (Active1) $R 1-n j$

M541L A1 A2 bz1 C1 C2 Pr1 R1-nj M541M A1 A2 Bz1 C1 C2 pr1 R1-nj
M541N A1 A2 C1 C2 gl1 in1 R1-nj
M5410 A1 A2 C1 C2 In1-D R1-nj
M541P ae1 wx1
M641C A1 A2 b1 C1 C2 pl1 Pr1 R1-r wx1
M641D A1 A2 C1 C2 Pr1 r1 wx1 y1
M641E A1 A2 C1 C2 r1-g wx1 y1
M641F r1-g y1; A1 A2 C1 C2
M741A A1 A2 b1 C1 C2 pl1 Pr1 r1-g wx1
M741B Stock 6; A1 A2 B1 C1 C2 PI1 R1-r
M741C Stock 6; A1 A2 B1 C1 C2 pl1 R1-r
M741F Stock 6; A1 A2 C1 C2 pl1 R1-g y1
M741G Stock 6; A1 A2 C1-I C2 pl1 R1-g wx1 y1
M741H Stock 6; A1 A2 B1 C1 C2 Pl1 R1-nj
M741। Stock 6; A1 A2 C1 C2 R1
M841A A1 A2 C1 C2 pr1 R1 su1
M841B f1 wx 1
M841C v4 wx1
M841D v2 wx1
M841F A1 A2 bz2 C1 C2 R1-scm2 wx1
M841G A1 A2 C1 c2 R1-scm2 wx1
M841H gl6 wx1
M841I su1 wx1
M841J v16 wx1
M841K gl4 wx 1
M841L gl2 lg 1 wx
M941A A1 A2 c1 C2 Pr1 R1 wx1 y1
M941B Mangelsdorf's tester; a1 bm2 g1 gl1 j1 lg1 pr1 su1 wx1 $y 1$
M941BA Mangelsdorf's tester + R1-nj
M941C a1 Dt1 gl2 lg1 wt1
M941D g|1 wx1 y1

M941E gl8-R wx1 y
MX40A A1 A2 C1 C2 P1-vv::Ac r1sc:m3::Ds
MX40B A1 A2 Ac2 bz2-m::Ds C1 C2 R1
MX40C A1 A2 C1 C2 r1-sc:m3::Ds trAc8168
MX40D P1-vv::Ac r1
MX41A A1 A2 C1 C2 gl1 pr1 R1 wx1 y1
MX41B A1 A2 C1 C2 gl1 pr1 R1 su1 wx1 y1
MX41C a1 a2 bz1 bz2 c1 c2 pr1 r1 wx1 y1
MX41D a1 A2 C1 C2 gl1 pr1 R1 su1 wx1 y1
MX41E a1-m1-n::dSpm A2 C1 C2 R1 wx1-m8::Spm-18

B-CHROMOSOME

B542A Black Mexican Sweet; B chromosomes present
B542B Black Mexican Sweet; B chromosomes absent

TRISOMIC

123A trisomic 1.
223A trisomic 2
328A trisomic 3
422A trisomic 4
523A trisomic 5
615A trisomic 6
718A trisomic 7
807A trisomic 8
922A trisomic 9
X23A trisomic 10

TETRAPLOID

N102A Autotetraploid; A1 A2 B1 C1 C2 Pl1 Pr1 R1
N102D Autotetraploid; A1 A2 C1 C2 R1
N102E Autotetraploid; B chromosomes present
N102EA Autotetraploid; B chromosomes present
N102F Autotetraploid; A1 a2 C1 C2 R1
N103A Autotetraploid; P1-rr
N103B Autotetraploid; P1-vv:: Ac
N103C Autotetraploid; P1-ww
N103D Autotetraploid; P1-wr
N103E Autotetraploid; P1-mm
N104A Autotetraploid; su1
N104B Autotetraploid; A1 A2 C1 C2 pr1 R1
N105B Autotetraploid; wx1 y1
N105D Autotetraploid; A1 a2 bt1 C1 C2 R1
N105E Autotetraploid; bt1
N106C Autotetraploid; wx1
N107B Autotetraploid; W23
N107C Autotetraploid; Synthetic B
N107D Autotetraploid; N6

CYTOPLASMIC

 STERILE/RESTORERC736A R213 (N); mito-N Rf1 rf2
C736AB R213 (T) Sterile; cms-T Rf1 rf2

C736B Ky21 (N); mito-N Rf1 Rf2 Rf3 RfC
C736C B37 (N); mito-N rf1 Rf2 rf3 rfC
C736CA B37 (T) Sterile; cms-T rf1 Rf2
C736CB B37 (T) Restored; cms-T Rf1 Rf2
C736E $\operatorname{Tr}(\mathrm{N})$; mito-N Rf3 rfC rfT
C736F W23 (N); mito-N rf1 Rf2 rf3 RfC
C736FA W23 (N); mito-N rf1 Rf2 rf3 RfC
C736G B73 (N); mito-N rf1 Rf2 rf3 rfC
C736H L317 (N); mito-N rf3 RfC rfT
C836A Wf9 (T) Sterile; cms-T rf1 rf2
C836B Wf9 (N); mito-N rf1 rf2 rf3 rfC
C836C Wf9 (T) Restored; cms-T Rf1 Rf2 rf3 rfC
C836D Wf9 (S) Sterile; cms-S ff1 rf2 rf3 rfC
C836E Mo17 (T) Sterile; cms-T rf1 Rf2 rf3 rfC
C836F Mo17 (N); mito-N rf1 Rf2 rf3 rfC
C836G Mo17 (C) Sterile; cms-C rf1 Rf2 rf3 rfC
C836H Mo17 (S) Sterile; cms-S rf1 Rf2 rf3 rfC
C936D K55 (N); mito-N Rf1 Rf2 rf3 RfC
C936DA K55 (N); mito-N Rf1 Rf2 rf3 RfC
C936F N6 (N); mito-N rf1 Rf2 rf3 RfC
C936FA N6 (N); mito-N rf1 Rf2 rf3 RfC
C936G N6 (T) Sterile; cms-T rf1 Rf2
C936H N6 (T) Restored; cms-T Rf1 Rf2
C936l SK2 (N); mito-N rf1 Rf2 rf3 rfC
C936J SK2 (T) Sterile; cms-T rf1 Rf2
C936K SK2 (T) Restored; cms-T Rf1 Rf2
C936M 38-11 (N); mito-N rf1 Rf2 rf3 rfC
CX36A N6 (C) Restored; cms-C rf1 Rf2 rf3 RfC
CX36B N6 (S) Sterile; cms-S rf1 Rf2 rf3 RfC
CX36C B37 (C) Sterile; cms-C rf1 Rf2 rf3 rfC
CX36D B37 (S) Sterile; cms-S rf1 Rf2 rf3 rfC

CYTOPLASMIC TRAIT

C337A NCS2
C337B NCS3

TOOLKIT

T0318AA TB-3Ld lg1; ig1R1-nj
T0318AB cms-L; ig1 R1-nj
T0318AC cms-MY; ig1 R1-nj
T0318AD cms-ME; ig1 R1-nj
T0318AE cms-S; ig1 R1-nj
T0318AF cms-SD; ig1 R1-nj

T0318AG cms-VG; ig1 R1-nj
TO318AH cms-CA; ig1 R1-nj
T0318AI cms-C; ig1 R1-nj
T0318AJ cms-Q; ig1 R1-nj
T0940A Hi-ll Parent A (for producing embryogenic callus cultures)
T0940B Hi-ll Parent B (for producing embryogenic callus cultures)
T0940C Hi-II A \times B (for producing embryogenic callus cultures)
T0940D KYS (for chromosome observations in pachytene microsporocytes)
T0940E Mu off; a1-Mum2 A2 C1 C2 R1
T3302A Inv1m; P1-vv::Ac bz2m::Ds
T3302C T1-2b; P1-vv::Ac bz2m::Ds
T3302D T1-2(036-7); P1-vv::Ac bz2-m::Ds
T3302E T1-2c; P1-vv::Ac bz2m::Ds
T3302F T1-3(5883); P1-vv::Ac bz2-m::Ds
T3302G T1-3k; P1-vv::Ac bz2m::Ds
T3302H T1-3(5597); P1-vv::Ac bz2-m::Ds
T3302I T1-3(5982); P1-vv::Ac bz2-m::Ds
T3302J T1-4i; P1-vv::Ac bz2-m::Ds
T3302K T1-4(064-20); P1-vv::Ac bz2-m::Ds
T3302L T1-4(4308); P1-vv::Ac bz2-m::Ds
T3302M T1-4(8602); P1-vv::Ac bz2-m::Ds
T3302N T1-4b; P1-vv::Ac bz2m::Ds
T33020 T1-5(5525); P1-vv::Ac bz2-m::Ds
T3303A T1-5(6899); P1-vv::Ac bz2-m::Ds
T3303B T1-5b; P1-vv::Ac bz2m::Ds
T3303C T1-5(4613); P1-vv::Ac bz2-m::Ds
T3303D T1-5(5045); P1-vv::Ac bz2-m::Ds
T3303E T1-5(043-15); P1-vv::Ac bz2-m::Ds
T3303F T1-5(5512); P1-vv::Ac bz2-m::Ds
T33031 T1-6(028-13); P1-vv::Ac bz2-m::Ds
T3303J T1-6(7352); P1-vv::Ac bz2-m::Ds
T3303K T1-6(7097); P1-vv::Ac bz2-m::Ds
T3303L T1-7(4405); P1-vv::Ac bz2-m::Ds
T3303M T1-7i; P1-vv::Ac bz2m::Ds
T3303N T1-7(4837); P1-vv::Ac bz2-m::Ds
T33030 T1-7(010-12); P1-vv::Ac bz2-m::Ds
T3304A T1-8(6591); P1-vv::Ac bz2-m::Ds
T3304B T1-8(4685); P1-vv::Ac bz2-m::Ds

T3304C T1-8(4307-4); P1-vv::Ac bz2-m::Ds
T3304D T1-9(7535); P1-vv::Ac bz2-m::Ds
T3304E T1-9(8302); P1-vv::Ac bz2-m::Ds
T3304F T1-9(6762); P1-vv::Ac bz2-m::Ds
T3304G T1-10g; P1-vv::Ac bz2m::Ds
T3304H T1-10f; P1-vv::Ac bz2m::Ds
T3304| bz2-m::Ds
T3304J Inv1m; P1-vv::Ac r1sc:m3::Ds
T3304K Inv1a; P1-vv::Ac r1sc:m3::Ds
T3304M T1-2c; P1-vv::Ac r1sc:m3::Ds
T3305A T1-3(5597); P1-vv::Ac r1sc:m3::Ds
T3305B T1-4i; P1-vv::Ac r1sc:m3::Ds
T3305C T1-4(064-20); P1-vv::Ac r1-sc:m3::Ds
T3305F T1-4b; P1-vv::Ac r1sc:m3::Ds
T3305H T1-5(6899); P1-vv::Ac r1sc:m3::Ds
T3305J T1-5(4613); P1-vv::Ac r1sc:m3::Ds
T3305M T1-6(5495); P1-vv::Ac r1sc:m3::Ds
T3305N T1-6e; P1-vv::Ac r1sc:m3::Ds
T33050 T1-6(028-13); P1-vv::Ac r1-sc:m3::Ds
T3306C T1-7(4444); P1-vv::Ac r1sc:m3::Ds
T3306D T1-7(4405); P1-vv::Ac r1sc:m3::Ds
T3306H T1-8(6591); P1-vv::Ac r1sc:m3::Ds
T3306L T1-9(8302); P1-vv::Ac r1sc:m3::Ds
T3306M T1-9(6762); P1-vv::Ac r1sc:m3::Ds
T3306N T1-10g; P1-vv::Ac r1sc:m3::Ds
T3307A trAc8178
T3307D trAc8163
T3307F trAc8183
T3308A trAc8200
T3308B trAc6076
T3308D trAc8175
T3308E trAc8193
T3308F trAc8179
T3308G trAc8181
T3308H trAc8186
T3309A trAc8196
T3309B trAc6062
T3309C trAc6063
T3309D trAc8172
T3309E trAc8184
T3310A trAc8161
T3310B trAc8173
T3310D trAc8190
T3310E trAc8194
T3310F trAc8185
T3311A trAc8162
T3311B trAc8182
T3311D trAc6059
T3311F trAc8180
T3312A Ds-1S1 P1-vv::Ac Dek1

T3312B Ds-1S2 P1-vv::Ac Dek1
T3312C Ds-1S3 P1-vv::Ac Dek1
T3312D Ds-1S4 P1-vv::Ac Dek1
T3312E Ds-1L1 P1-vv::Ac Bz2
T3312F Ds-1L3 Bz2; Ac
T3312G Ds-2S1 B1-Peru; P1-vv::Ac
T3312I Ds-2S3 B1-Peru; P1-vv::Ac
T3312J Ds-2S4; P1-vv::Ac
T3312L Ds-3L1 A1 Sh2; P1-vv::Ac
T3312M Ds-3L2 A1 Sh2; P1-vv::Ac
T33120 Ds-4L1 C2; P1-vv::Ac
T3312P Ds-4L3 C2; P1-vv::Ac
T3312Q Ds-4L4 C2; P1-vv::Ac
T3312S Ds-4L6 C2; P1-vv::Ac
T3312T Ds-4L7 C2; P1-vv::Ac
T3312U Ds-5L1 A2 Pr1 Bt1; P1vv::Ac
T3312V Ds-5S1 A2 Pr1 Bt1; P1vv::Ac
T3312W Ds-5S2 A2 Pr1 Bt1; P1vv::Ac
T3312Y Ds-9S1 C1-I wx1; Ac
T3312Z Ds-10L2 R1-sc; P1-vv::Ac
B-A TRANSLOCATIONS (BASIC SET)

122A TB-1La
122B TB-1Sb
222A TB-1Sb-2L4464
222B TB-3La-2S6270
327A TB-3La
327B TB-3Sb
421A TB-4Sa
423E TB-4Lf
522A TB-5La
522C TB-5SC
614B TB-6Sa
614C TB-6LC
717A TB-7Lb
719A TB-7Sc
809A TB-8LC
922B TB-9Lc Wc1
922D TB-9Sd
X21B TB-10L19
X22A TB-10Sc
B-A TRANSLOCATIONS (OTHERS)
122C TB1-LC
126G TB-1Sb P1-vv::Ac bz2-m::Ds
A1 A2 Bz1 C1 C2 R1
221। TB-2Sa B1-Peru
221J TB-2Sb
225A TB-3La-2L7285
225B TB-1Sb-2LC
320P TB-1La-3Le
320Q TB-5La-3L(1)
320R TB-5La-3L(2)
320S TB-5La-3L(3)
327C TB-3LC
327D TB-3Ld
$329 Z$ T3-B(La); T3-B(Sb)
331A TB-1La-3L5267
331B TB-1La-3L4759-3
331C TB-1La-3L5242
331E TB-3Lf
331F TB-3Lg
331G TB-3Lh
331H TB-3Li
331I TB-3Lj
331J TB-3Lk
331K TB-3LI
331L TB-3Lm

420B TB-9Sb-4L6504
420 TB-9Sb-4L6222
421B TB-1La-4L4692
421C TB-7Lb-4L4698
423A TB-4Lb
423B TB-4LC
423C TB-4Ld
423D TB-4Le
423F TB-1Sb-2L4464-4f
425A TB-4Sg
425B TB-4Lh
425 C TB-4Li
428 Dt6 TB-4Sa
522B TB-5Lb
522D TB-5Ld
528D TB-1La-5S8041
614A TB-6Lb
627E TB-6Lc Dt2; A2 C1 C2 R1 a1m
720A TB-7Lb Dt3; a1-m1::rDt (Neuffer)
806A TB-8La
806B TB-8Lb
921A TB-9La
921B TB-9Sb
921C TB-9LC
922C TB-9Sb C1-I
929A IsoB9-9 isochromosome
Type 1
929B IsoB9-9 isochromosome Type 2
929C T9-B(La); T9-B(Sb)
929D IsoB9-9 isochromosome (original)
929F T9-B (La +Sb)
929G TB-9Sb; T9-8(4453)
929H TB-9Sb; T9-3(6722)
9291 TB-9Sb-1866
929J TB-9Sb-1852
929K TB-9Sb-2150
929L TB-9Sb-14
929M TB-9Sb-2010
TX40D TB-1Sb P1-vv::Ac r1sc:m3::Ds
TX40E TB-3La a1-m Dt1
TX40F TB-8Lc Ac2 bz2-m::Ds
TX40G TB-9Sd a1-m Dt1
TX40H TB-9Lc trAc8168 r1sc:m3::Ds
TX40I TB-10L18 P1-vv::Ac r1sc:m3::Ds
X21A TB-10La
X21C TB-10Ld
X22B T1La-B-10L18
X22C TB-10Lb
X30A TB-10L1
Х30B TB-10L2
X30C TB-10L3
X30D TB-10L4
X30E TB-10L5
X30F TB-10L6
X30G TB-10L7
X31A TB-10L8
X31B TB-10L9
X31C TB-10L10
X31D TB-10L11
X31E TB-10L12
X31G TB-10L14
X31H TB-10L15
X31I TB-10L16
X31J TB-10L17
X32A TB-10L18
X32C TB-10L20
X32D TB-10L21

X32E TB-10L22
X32F TB-10L23
X32G TB-10L24
X32H TB-10L25
X32 TB-10L26
X32J TB-10L27
X32K TB-10L28
X33A TB-10L29
X33B TB-10L30
X33C TB-10L31
X33D TB-10L32
X33E TB-10L33
X33F TB-10L34
X33G TB-10L35
X33H TB-10L36
X34A TB-10L37
X34B TB-10L38

INVERSION

I143A Inv1a (1.S.30; 1.L.50)
I143B Inv1c (1.S.30; 1.L.01)
I143C Inv1d (1.L.55; 1.L.92)
1143D Inv1k (1.L.46; 1.L.82)
1243A Inv2b (2S.06; 2L.05)
1243B Inv2h (2L.13; 2L.51)
1444A Inv2a (2S.70; 2L.80)
I343A Inv3a (3L.38; 3L.95)
I343B Inv3b (3L.21; 3L.70)
I343C Inv3c (3L.05; 3L.95)
1343D $\operatorname{Inv3(8582)~(3S.55;~3L.82)~}$
1443A $\operatorname{Inv} 4 \mathrm{~b}$ (4S.10; 4L.12)
1443B $\operatorname{lnv} 4 \mathrm{c}$ (4S.89; 4L.62)
1443C Inv4a (4L.30; 4L.90)
1443D Inv4d (4L.40; 4L.96)
I443E Inv4f (4L.17; 4L.63)
1543A $\operatorname{Inv} 4 \mathrm{e}$ (4L.16; 4L.81)
1543B Inv5a (5S.05; 5L.72)
1743A $\operatorname{lnv} 5(8623)$ (5S.67; 5L.69)
1743B Inv6d (6S.70; 6L.33)
1743C $\operatorname{lnv6(3712)}$ (6S.76; 6L.63)
1743D Inv6a (6S.76; 6L.63)
1843A Inv6e (6S.80; 6L.32)
1943A Inv7f (7L.17; 7L.61)
1943B $\operatorname{lnv7(8540)~(7L.12;~7L.92)~}$
1943C $\operatorname{Inv7}(3717)$ (7S.32; 7L.30)
1943E Inv7a (7L.05; 7L.95)
IX43A Inv8a (8S.30; 8L.15)
1344A Inv9a (9S.70; 9L.90)
IX43B Inv9b (9S.05; 9L.87)

RECIPROCAL TRANSLOCATIONS (wx1 AND Wx1 MARKED)

wx01A T1-9c (9L.22; 1.S.48); wx1
wx01B T1-9(5622) (9L.12; 1.L.10); wx1
wx02A T1-9(4995) (9S.20; 1.L.19); wx1
wx02AA T1-9(4995) (9S.20; 1.L.19); wx1
wx03A T1-9(8389) (9L.13; 1.L.74); wx1
wx04A T2-9c (9S.33; 2S.49); wx1
wx05A T2-9b (9L.22; 2S.18); wx1
wx06A T2-9d (9L.27; 2L.83); wx1
wx07A T3-9(8447) (9L.14; 3S.44); wx1
wx08A T3-9c (9L.12; 3L.09); wx1
wx09A T3-9(8562) (9L.22; 3L.65); wx1
wx10A T4-9e (9L.26; 4S.53); wx1
wx11A T4-9g (9L.27; 4S.27); wx1
wx12A T4-9(5657) (9S.25; 4L.33);
wx1
wx13A T4-9b (9L.29; 4L.90); wx1 wx14A T5-9c (9L.10; 5S.07); wx1 wx14B T5-9(022-11) (9L.27;

5S.30); wx1
wx15A T5-9(4817) (9S.07; 5L.06); wx1
wx16A T5-9d (9L.10; 5L.14); wx1 wx17A T5-9a (9S.17; 5L.69); wx1 wx18A T6-9(4778) (9L.30; 6S.80); wx1
wx19A T6-9a (9L.40; 6S.79); wx1 wx19B T6-9e (9L.24; 6L.18); wx1 wx20A T6-9b (9S.37; 6L.10); wx1 y1
wx21A T6-9(4505) (9ctr.00; 6L.13); wx1
wx22A T7-9(4363) (9ctr.00; 7ctr.00); wx1
wx23A T7-9a (9S.07; 7L.63); wx1 wx24A T8-9d (9S.16; 8L.09); wx1 wx25A T8-9(6673) (9S.31; 8L.35); wx1
wx26B T9-10(059-10) (9S.31; 10L.53); wx1
wx27A T9-10b (9S.13; 10S.40); wx1
Wx30A T1-9c (9L.22; 1.S.48); Wx1
Wx30B T1-9(4995) (9S.20; 1.L.19); Wx1
Wx30C T1-9(8389) (9L.13; 1.L.74); Wx1
Wx31A T2-9c (9S.33; 2S.49); Wx1
Wx31B T2-9b (9L.22; 2S.18); Wx1
Wx31C T2-9d (9L.27; 2L.83); Wx1
Wx32A T3-9(8447) (9L.14; 3S.44); Wx1
Wx32B T3-9(8562) (9L.22; 3L.65); Wx1
Wx32C T3-9c (9L.12; 3L.09); Wx1
Wx33A T4-9e (9L.26; 4S.53); Wx1
Wx33B T4-9(5657) (9S.25; 4L.33); Wx1
Wx33C T4-9g (9L.27; 4S.27); Wx1
Wx34A T5-9c (9L.10; 5S.07); Wx1
Wx34B T5-9(4817) (9S.07; 5L.06); Wx1
Wx34C T4-9b (9L.29; 4L.90); Wx1
Wx35A T5-9(8386) (9S.13; 5L.87); Wx1
Wx35B T5-9a (9S.17; 5L.69); Wx1
Wx35C T5-9d (9L.10; 5L.14); Wx1
Wx36A T6-9(4778) (9L.30; 6S.80); Wx1
Wx37A T6-9(8768) (9S.61; 6L.89); Wx1
Wx37B T7-9(4363) (9ctr.00; 7ctr.00); Wx1
Wx37C T6-9(4505) (9ctr.00; 6L.13); Wx1
Wx38A T7-9a (9S.07; 7L.63); Wx1
Wx38B T8-9d (9S.16; 8L.09); Wx1
Wx38C T8-9(6673) (9S.31; 8L.35); W×1
Wx39A T9-10(8630) (9S.28; 10L.37); Wx1
Wx39B T9-10b (9S.13; 10S.40); Wx1

PHENOTYPE ONLY	collapsed endosperm CD*-N1076A	$\begin{aligned} & \mathrm{de}^{*}-86-1472-6 \\ & \mathrm{de}^{*}-8808 \end{aligned}$
Kernel Mutants	CP*-N1078B	de*-8809
	CP*-N1092A	de*-8810
blotched aleurone	cp*-N1104B	de*-8811
Bh^{*}-86-1381-1	CP*-N1275A	de*-8818
Bh-Tu*-Mumm	cp*-N1294	de*-N1002A
	CP*-N1311C	de*-N1007A
brittle endosperm	CP*-N1313	de*-N1122A
bt*-011-11	$C P^{*}-\mathrm{N} 1319 \mathrm{~A}$	de*-N1136A
bt*-0601-Alexander	cp*-N1338	de*-N1162
bt*-1979-14	cp*-N1369	de*-N1166
bt*-1979-16	CP*-N1379A	de*-N1177A
bt*-1982	cp*-N1385	de*-N1196
bt*-4380	CP*-N1393A	de*-N1310B
bt*-4539	CP*-N1399A	de*-N1336B
bt*-4973	cp*-N1430	de*-N1390A
bt*-60-151	CP*-N1436A	de*-N1400
bt*-8101	CP*-N2356B	de*-N1420
bt*-8102	CP*-N524E	de*-N232B
bt*-83-84-3541-1	CP^{*}-N628	de*-N260D
bt**-84-4	CP*-N863A	de*-N279B
bt*-84-5	Cp*-N886	de*-N296C
bt*-84-5091-9	CP*-N918A	de*-N307D
bt*-84-5257-1	Cp*-N968A	de*-N400A
bt**-84-6	CP*-N991	de*-N513B
bt*-85-3096-6		de*-N528C
bt*-85-3098-15	colored plumule	de*-N573A
bt*-85-3099-16	Pu*-1976-RYDCO	de*-N660C
bt*-85-3372-27		de*-N674A
bt*-87-2132-39	colorless aleurone	de*-N748B
bt^{*}-87-2297-1	cl *-85-86-3559-1	de*-N760B
bt*-87-88-2630-28	Cl*-86-1478-16	de*-N877A
bt*-88-3177-14	$\mathrm{Cl}^{*}-\mathrm{N} 1345 \mathrm{~A}$	de*-N891A
bt*-88-3177-2	Cl*-N1346A	de*-N903
bt**-88-3177-7 *	Cl*-N720E	de*-N929
bt*-8804	cl*-N795	de*-N979A
bt*-8805	cl*-N801	de-sml*-8813
bt*-89-1265-18	Cl*-N818A	de-sml*-8814
bt*-90286	cl-crown-pale-base*-85-86-3558-23	de-sml*-8815
bt*-A4109	r^{*}-86-1590-6	de-sml*-8816
bt*-Alexander		de-sml*-8817
bt*-Briggs-1998-1	colorless floury	def*-8101
bt*-F-15	clf*-N2425B	def*-8102
$\mathrm{bt}^{*}-\mathrm{F}-23$		def*-8103
bt*-F-31	crumpled kernel	def*-8104
bt*-F-34	crp*-N1429A	def*-8105
$\mathrm{bt}^{*}-\mathrm{F}-36$	crp*-N2207	def*-8106
bt*-F-8	dnj*-N1534	def*-8107
bt*-F10		def*-8108
bt*-Panzio	defective crown	def*-8109
bt*-PetersonResHy	dcr*-N1053A	def*-8110
bt*-PI200197	dcr*-N1176B	def*-8111
bt*-PI251887	dcr*-N1233A	def*-8112
bt-gm*-84-5045-39	dcr*-N1409	def*-8113
bt-gm*-85-3017-24	dcr*-N871A	def*-8114
bt-sh*-PI251930	dcr*-N925A	def*-8116
		def*-8118
brown endosperm	defective kernel	def*-8119
brn*-1981-1	de*-1276	def*-8120
brn*-1981-2	de*-17	def*-8121
brn*-1981-3	De*-1976-RYDCO	def*-8122
brn*-1981-4	de*-2080	def*-8123
brn*-84-23	de*-2192	def*-8125
brn-bt*-81-F-24	de*-2424	def*-8126
	de*-2915	def*-8127
brown kernel	de*-2919	def*-8128
lt-brn-sml*-86-1302-37	de*-3188	def*-8130
bnk*-N747B	de*-4309	def*-8131
	de*-5044Hagie	def*-8132
brown pericarp	de*-85-86-3567-35	def*-8134
bp*-P1183639	de*-8505	def*-8136
	de*-8507	def*-8137
	de*-8508	def*-8138

def* ${ }^{*}$-8201	et***-5270-40	f\|**sucaxo	pale-y*-84-5082-33
def $^{*}-84-22$	et ${ }^{*}$-85-86-3518-21	fl-cap*-1981	pale- y^{*}-84-5167-48
def**-84-28	et**-86-1493-6	fl-cap*-66-519-1	pale-y*-84-5288-19
def**-84-29	et**-8616	fl -de**-8905	pale-y*-85-3005-22
def**-84-30	et**-87-2349-13	sml-fl-cap*-1981	pale-y*-85-3006-30
def**-84-31	et ${ }^{*}$-88-89-3525-22		pale- y^{*}-85-3007-40
def^{*}-84-37	et***8-89-3554-33	germless	pale- y^{*}-85-3010-40
def**84-40	et**-89-90-1547-19	brn-gm ${ }^{*}-85-3315-6$	pale-y*-85-3016-15
def**84-41	et**-89-90-1548-13	brn-gm*-85-86-3587-46	pale-y*-85-3017-31
def**84-45	et**-Mu1767	brn-gm**5-86-3595-3	pale-y*-85-3065-25
def**-84-48	et**Mu2349	brn-gm**8-1161-5	pale-y**-85-3069-6
def**84-49	et-mutable**-87-2519-31	emb**-85-3100-32	pale-y*-85-3087-29
def**84-53	et**-N1361	emb**-85-3378-8	pale-y*-88-89-3551-35
def**-84-54	et**-N164B	gm*-1387	pale-y*-89-1313-3
def**84-58	et**-N357C	gm^{*}-1979-11	pale-y*-89-90-1525-23
def**-84-60	et*-N403A	gm^{*}-1979-53	pale-y*-90-3220-1
dek**-1979-32	et*-N509A	gm^{*}-5234	pale- y^{*}-90-3220-26
dek**-1981-1 $^{\text {a }}$	et*-N514A	gm^{*}-6372	w^{*} - N 677
dek*-74-0060-4	et**-N516C	$\mathrm{gm}^{*}-8510$	wh*-BMS-Rhoades
dek**-84-14	et**-N518B	gm^{*}-86-1011-2	
dek*-86-1496-35	et*-N556A	gm**86-1013-4	marbled aleurone
dek*-8902	et**-N561B	gm^{*}-86-1097-3	Dap*-3
dek*-8903	et*-N571A	gm^{*}-86-1335-1	dap**86-8126-2
dek*-8904	et*-N586A	gm**86-1591-7	Dap**89-3177.0
dek*-99-6273-1	et*-N615A	gm*-86-87-1742-18	Dap*-89-3177.5
dek*-F-16	et**-N617	gm^{*}-87-2456-9	Dap ${ }^{*}$-89-3178.3
dek*-PS602	et*-N629F	gm*-N1303	Marbled*-Sprague
wrinkled-de*-86-1473-5	et*-N643A	gm^{*}-N1311B	
wrinkled-gm**86-1582-32	et**-N670A	gm*-N1312	miniature kernel
	et**-N680C	gm^{*}-N1319B	mn^{*}-1981-51
dented kernel	et*-N701A	gm^{*}-N1390C	mn^{*}-87-2215-17
dnt**-N1185A	et**-N702A	gm*-N198C	$m n^{*}-87-2346-20$
dnt*-N1326	et*-N723A	gm^{*} - N 869 A	mn^{*}-87-2347-36
dnt^{*}-N884A	et*-N724D	0-gm**-84-44	mn^{*}-87-2422-14
	et**-N745	0-gm*-98-5733-1	mn^{*}-88-3177-2
dilute aleurone	et**-N76D	pr-gm*-86-1109-1	mn^{*}-88-89-3509-40
dil ${ }^{*}$-N452D	et**-N789	sh-gm*-84-5045-32	$m n^{*}$-88-89-3564-25
dil ${ }^{*}$-N524C	et*-N798A	sh-gm*-88-3082-4	mn*-N1536
	et**-N818B	sml-0-gm*-86-1323-4	mn^{*} - N 378 C
discolored kernel	et**-N837A	sml-dsc-gm*-95W-240	mn*-Pl239110
dsc**-N1084	et*-N861	w-0-gm*-85-3135-4	mn*-Pl245132
dsc**-N749	et**-N864A	w-0-gm*-86-1349-1	sml-k*-97-4784-1
pig**-84-5080-18	et *-N868A	w-0-gm*-88-3270-10	
pig*-86-1178-6	Et*-N876A	$y-g m^{*}$ - $85-3288-28$	mosaic aleurone color
pig-gm*-1979-51	et**-N953A		msc**-N593A
pig-gm*-1979-52	et**-N965	glassy endosperm	
pig-gm*-1979-9	et*-Osturana	ae***4-7	mottled aleurone
pig-gm*-1981-A	et-de*-88-89-3526-8	ae*-92-1365-3	$\mathrm{Mt}^{*}-2313$
pig-gm*-1981-B	et-gm*-86-1475-34	ae*-96-1449-1	Mt^{*}-65-2238
pig-gm*-1982-3	et-gm*-86-87-1742-38	ae*-Briggs 1998-1	$\mathrm{Mt}^{\star}-\mathrm{N} 1343 \mathrm{~A}$
pig-gm*-5020-14	et-gm*-87-2502-19	ae*-Mu32	Mt^{\star}-Sprague
pig-gm*-84-5078-10	granular-0*-84-5274-30		
pig-gm*-86-1200-3	sml-et*-85-3522-29	Iemon white	multiple aleurone layer
pig-gm*-87-2275-15	su-sh-et*-98-1887-1	1w*-1979-45	Mal**-Galinat
pig-gm*-87-2305-22		1w*-1979-46	Mal**-Nelson
pig-gm*-Briggs 1998-1	flint kernel	$1 w^{*}-1981$	Mal*-PI515052
pig-gm*-Briggs 1998-2	flint*-87-2126-22	$1 \mathrm{w}^{*}$-1998-1	
pig-gm*-Pl251930		$1 \mathrm{w}^{*}$-1998-2	opaque endosperm
ptd-dek*-1976-RYDCO	floury endosperm	$1 \mathrm{w}^{*}$-1998-4	Irg-0-crown*-89-1275-17
ptd-dek*-1981	fi**-67-412	$1 w^{*}-73-2548$	0^{*}-1979-54
ptd-dsc*-87-2490-22	fl^{*}-83-3386-19	$1 \mathrm{w}^{*}$ - $82-1$	0^{*}-1981-11-Fox-19
sml-pig-gm*-88-89-3554-44	fl^{*} - $84-44$	Iw*-85-3076-28	0^{*}-1981-3-Fox-7
	fl^{*} - 8515	$1 \mathrm{w}^{*}$-85-3252-5	0^{*}-1981-5-Fox-9
dull endosperm	fl^{*}-Mojo	$1 \mathrm{w}^{*}$-8509	0*-1981-6-Fox-10
du*-Sprague	fl^{*} - N 1145 A	$1 \mathrm{w}^{*}$-8513	0^{*}-1981-8-Fox-15
	ff^{*}-N1163	$1 \mathrm{w}^{*}-8514$	0^{*}-1982
etched endosperm	fl^{*} - N 1208 A	$1 w^{*}$-86-87-1828-7	0*-1982-2-Fox-13
et**3130	fl**-N1287	$1 W^{*}$-88-3177-2	$0^{*}-2$-Fox-6
et*-3576	fl^{*}-N1308A	$1 \mathrm{w}^{*}$-89-90-3609-5	$0^{*}-3015$
et**5191	fl^{*}-N1333B	$1 w^{*}$-87-2407-36	$0^{*}-73-798-1$
et**-6-9321-1	fl**-N1426	$1 \mathrm{w}^{*}$ - $\mathrm{B73}$	0*-76GH-76
et**-73-766-1	fl\| - N7B-65-1294	Iw*-Funk-81-5	$0^{*}-8129$
et * - $8-\mathrm{M}-4$	fl*-N872A	$1 w^{*}$-PI200203	$0^{*}-82: 288-1$
et**-84-5266-26	fl^{*}-shoepeg	pale-y*-83-84-3549-13	$0^{*}-83-84-3549-39$

0*-84-5025-15
0*-84-5025-17
$0^{*}-84-5025-8$
0*-84-5044-35
0*-84-5091-13
0*-84-5094-4
$0^{*}-84-5095-23$
0*-84-5117-16
$0^{*}-84-5261-37$
0*-84-5270-40
0*-84-5282-27
$0^{*}-84-5295-13$
0*-84-5321-28
$0^{*}-84-5324-29$
0*-84-8a
$0^{*}-85-3084-8$
0*-85-3088-3
0*-85-3335-35
0*-86-87-1767-10
0*-87-2285-33
$0 *-87-2350-2$
0*-88-89-3550-27
0*-97-4784-6
0*-Briggs-1998-1
0*-BS20-Fox-3
0*-Fox-12
0*-N1008A
0*-N1037A
0*-N1046
o*-N1065A
0*-N1074A
o*-N1119A
o*-N1189A
$0^{*}-\mathrm{N} 1195 \mathrm{~A}$
0*-N1218
0*-N1228
0*-N1244A
0*-N1245
0*-N1298
0*-N1301
0*-N1310A
0*-N1320A
0*-N1355
0*-N1358
0*-N1422
0*-N436C
0*-N829C
0^{*}-N870
0*-N885A
0*-N895
0*-N899
0*-N906A
0*-N930
0*-N938A
0*-N973
0*-N995A
0*-PI195245
0*-PI200285
o-de*-1981-9-Fox-18
0-dek*-6
0-dek*-87-2279-12
0-gm*-83-3398-6
$0-\mathrm{gm}^{*}-84-33$
0-sh*-86-1297-2
o-sh*-F1979-19
Os*-2162
pro*-Mu1
sh-o*-87-2455-7
sml-o*-87-88-2692-5
sml-0*-PI195243

pale aleurone	r-ch-Pl213730
pa*-N893A	red silk scar
$\mathrm{pa}^{*}-\mathrm{N} 917 \mathrm{~A}$	red-silk-scar*-MTC

pale-Cl*-86-1476-14
pale-Cl - LGC65
pale-Cl-gm ${ }^{*}-84-5251-1$
pale aleurone, with pigmented sectors
pa-CI*-m-86-1474-39
pa-Cl*-m-86-1478-4
pa-Cl*-m-87-2224-33
pale crown
pa-crown*-85-86-3558-23
pale yellow endosperm
al*-84-5020-32
pale-endo*-73-3
pale-endo*-73-4004
pale-y*-83-3382-16
pale-y*-83-3382-18
pale-y*-83-84-3548-25
pale-y*-84-5027-22
pale-y*-84-5103-16
pale-y*-84-5275-14
pale-y*-85-3016-30
pale- y^{*}-85-3036-38
pale-y*-85-3042-7
pale-y*-85-3044-34
pale-y*-85-3134-46
pale-y*-85-3374-13
pale-y*-85-3377-2
pale-y*-85-3511-18
pale- y^{*}-85-3562-31
pale-y*-85-86-3533-9
pale-y*-86-1151-7
pale-y*-86-1155-2
pale-y*-86-1155-3
pale-y*-86-87-1723-27
pale-y*-87-2160-16
pale-y*-87-2339-10
pale-y*-87-2350-2
pale-y*-87-2350-25
pale-Y*-87-2422-14
pale-y*-87-88-2679-1
pale-y-gm*-Rsssc-77-110
pale-y-o*-84-5288-2
pale-y-0*-86-1296-27
sml-y*-95-1930-2
y^{*}-84-5272-12
y*-84-5288-1
y^{*}-85-3041-2
y^{*}-85-3078-41
y^{*}-85-3087-12
$y^{*}-85-3125-7$
pitted kerne
ptd*-N660E
ptd ${ }^{*}$-N738B
ptd*-N855A
ptd*-N901A
ptd*-N923
purple pericarp
PI*-CFS-69
red aleurone
pr*-N707A
pr*-N850
red pericarp
r^{*}-ch-Burbank-CFS-80
red-silk-scar*-MTC
rough kernel
rgh*-N1060
rgh*-N1524
rgh*-N799A
rgh*-N802
rgh*-N882
shrunken kerne
pale-y-su-sh*-88-3133-28
sh*-1979-10
sh*-1982-2
sh*-2927-Mumm
sh*-2928-Mumm
sh*-83-3328-24
sh*-84-3
sh*-84-5248-20
sh*-84-5317-44
sh* *-85-3045-7
sh*-85-3104-27
sh*-85-3112-20
sh*-85-3375-38
sh*-8502
sh*-8503
sh*-8506
sh* $^{*}-8511$
sh*-8517
sh*-86-1565-17
sh*-87-2045-25
sh*-87-2045-6
sh*-87-2050-1
sh*-87-2050-3
sh*-87-2213-19
sh*-87-2215-12
sh** *-87-2355-29
sh*-87-2406-3
sh* *-87-2496-21
sh* *-88-89-3540-1
sh*-8806
sh*-8807
sh*-8906
sh*-8907
sh*-97P-29-5
sh*-Alexo1968
sh*-F-11
sh**-F-2
sh*-F-25
sh*-KERR
sh*-N1105B
sh*-N1320B
sh*-N1341
sh*-N1366
sh*-N1519B
sh*-N252B
sh*-N399A
sh*-N627A
sh*-N689
sh*-N741
sh*-N742
sh*-N750
sh*-N819
sh*-N849
Sh*-N881A
sh*-N887A
sh*-N911
sh*-RJL
sh-bt*-85-3392-31
sh-crown*-Briggs-1998-1
sh-de*-6607
sh-de*-RSSSC-117
sh-fl*-9180
sh-fl*-9392
sh-o*-87-2410-24
sh-wx*-F-18
su-sh*-F-5
small kernel
smk*-N1003
smk*-N1168A
smk*-N1203
smk*-N1529
smk*-N215D
smk*-N320
smk*-N433A
Smk*-N845B
smk*-N890A
smk*-N994A

spotted aleurone

cl-mut*-85-86-3564-1
cl-mut*-99-2170
coarse-mutable*-86-1417-7
Dt*-a; a1-m
Dt*-b; a1-m
Dt*-c; a1-m
Dt*-d; a1-m
Dt*-e; a1-m
Dt*-f; a1-m
Dt*-g; a1-m
Dt*-h; a1-m
Dt*-i; a1-m
spk*-N600Ce
spk*-N687A

sugary kernel

su*-1979-8
su*-83-3383-21
su*-84-5350-2
su*-85-3133-32
su*-8504
su*-8803
su*-89-1279-14
su*-L874261
su*-N1040
su*-N236C
su*-N748A
su*-N817
su-sh*-F-22
viviparous kernel
pale-vp*-87-2286-1
pale-vp*-87-2286-18
pale-vp*-87-2286-2
pale-vp*-87-2286-25
pale-vp*-87-2286-3
pale- y^{*}-84-5032-21
pale-y-vp*-83-3100-31
pale- $y-v p^{*}-83-3124-33$
pale-y-vp*-84-5266-5
pale- y-vp*-85-3140-15
pale-y-vp*-85-3240-5
pale-y-vp*-85-3267-6
pale- y-vp* ${ }^{*}$-85-3267-9
pale-y-vp*-85-3385-34
pale-y-vp*-86-1316-27
pale- y-vp*-88-3177-14
ps*-85-3288-28
ps*-85-3492-36
ps*-85-86-3567-1
ps*-86-1105-2
ps*-86-1352-4
ps*-86-1499-3
ps*-86-87-1742-18
ps*-89-90-1588-37
ps*-90-3222-27
ps*-90-91-8549-7
ps*-96-5032-6
ps*-98-5691-5
ps*-99-2157-1
ps*-Mu85-3061-21

ps*-Mu86-1105-1	$w-v p^{*}-85-3304-13$
$\mathrm{vp}(\mathrm{ps})^{*}-86-1449-3$	w-vp*-91-1859-8
vp(ps)*-86-1565-17	w-vp*-91-2544-7
$v p^{*}-0118$	$w-v p^{*}-92-1408-1$
$v p^{*}-0315$	$y-v p^{*}-0730$
$v p^{*}-2-8 \mathrm{c}$	$y-v p^{*}-1982-1$
$v \mathrm{v}^{*}-71-1367$	$y-v p^{*}-1982-2$
$v p^{*}-73-30173$	y-vp*-2062-Coop
$v p^{*}-8101$	$y-v p *-60-153$
$v p^{*}$-8104	y-vp*-65-792
$v p^{*}-8106$	$y-v p^{*}-6961$
$v p^{*}-8107$	y-vp*-73-2656
$v p^{*}-8108$	$y-v p^{*}-80-6118$
$v p^{*}$-8109	$y-v p^{*}-81-5$
$v p^{*}-8110$	$y-v p^{*}-8102$
$v p^{*}-8111$	$y-v p^{*}-8103$
$v p^{*}-8112$	$y-v p^{*}-8105$
$v p^{*}-8113$	$y-v p^{*}-8206$
$v p^{*}$-8114	$y-v p^{*}-8207$
$v p^{*}-8115$	$y-v p^{*}-83-1 A$
$v p^{*}-8116$	$y-v p^{*}-83-3101-36$
$v p^{*}$-8117	$y-v p^{*}-8336$
$v p^{*}-8201$	$y-v p^{*}-84-13$
$v p^{*}-8203$	$y-v p^{*}-8419$
$v p^{*}$-8204	$y-v p^{*}-85-3572-30$
$v p^{*}$-8208	$y-v p^{*}-8512$
vp*-8209	Y-vp*-87-2339-10
$v p^{*}$-8210	$y-v p^{*}-87-2340-36$
$v p^{*}-8211$	$y-v p^{*}-8701$
$v p^{*}-84-5079-29$	$y-v p^{*}-88-89-3563-33$
$v p^{*}-84-5279-29$	y-vp*-88-89-3613-25
$v p^{*}-84-5315-29$	$y-v p^{*}-99-2226-1$
$v p^{*}$-8418	y-vp*-Alexho68-195
$v p^{*}-8420$	
$v p^{*}-85-3011-11$	waxy endosperm
$v p^{*}-85-3017-9$	wx*-0208
$v p^{*}-85-3040-29$	wx*-98-1406-6
$v p^{*}$-85-3042-7	
$v p^{*}-85-3099-16$	white cap kernel
$v \mathrm{v}^{*}-85-3135-4$	Wc*-1982-1
$v p^{*}-85-3182-6$	Wc*-Funk-81-22
$v p^{*}-85-3250-1$	Wc*-Funk-81-23
$v p^{*}-85-3339-25$	WC*-87-2307-1
$v p^{*}-85-3422-13$	Wc*-DC
$v p^{*}$-85-86-3567-20	wc*-N1349
$v p^{*}$-86-1109-1	
$v p^{*}-86-1407-15$	white endosperm
$v p^{*}-86-1573-27$	y^{*}-1981
$v p^{*}-87-2146-18$	y^{*}-1982-3
$v p^{*}-87-2213-19$	y^{*}-73-2
$v p^{*}-87-2224-3$	y^{*}-73-2262-1
$v p^{*}-87-2274-37$	$\mathrm{y}^{*}-73-2262-2$
$v p^{*}$-87-2299-1	y^{*}-73-2394
$v p^{*}$-87-2339-1	y^{*}-73-324-1
vp*-88-89-3555-1	y^{*}-73-4035
$\mathrm{vp}^{*}-88-89-8625-5$	$\mathrm{y}^{*}-73-426$
$v p^{*}-89-1181-8$	$y^{*}-84-8 b$
$v p^{*}-89-1279-14$	y^{*}-87-2201-3
$v p^{*}$-89-90-1561-18	y^{*}-Funk-81-12
$v p^{*}-92-1401-8$	y^{*}-Funk-81-2
$v p^{*}-93-1017-2$	y*-Funk-81-20
$v p^{*}-95-2086-1$	y*-Funk-81-9
$v p^{*}$-N702C	y^{*}-Sprague
vp*-P1183642	y^{*}-syn-DOCI
$v p^{*}$-PI185847	y^{*}-Williams-60-154
$v p^{*}$-PI200204	
$v p^{*}$-PI254854	wrinkled kernel
$v p^{*}$-PI430482	wr*-N1389A
vp-de*-87-2406-23	wr*-N156C
vp-dek*-99-2197-1	wr*-N612A
vp- ${ }^{*}$ - 86 -1267-31	
$v p-Y^{*}-86-1361-7$	
w-vp*-84-5020-4	
w-vp*-85-3014-6	

Seedling Mutants	$\mathrm{w}^{*}-8630$
	w^{*}-8635
aberrant seedling	w^{*}-8637
abbt*-N454C	w^{*}-8670
abbt*-N594B	w^{*}-87-2215-8
abbt*-N595B	w^{*}-8963
abbt*-N712B	w^{*}-8977
	W*-8992
adherent leaf	w*-9235
ad*-87-2285-18	w^{*} - B-75
ad*-N253	w^{*}-BYD
ad*-N273B	w*-Canario Hembrilla Enano
ad*-N316	w^{*}-MontenegrinFlint
ad*-N377B	w^{*}-N103
$\mathrm{ad}^{*}-\mathrm{N} 512 \mathrm{~B}$	w*-N109
ad*-N551B	w^{*}-N115
ad*-N582	w^{*}-N126A
ad*-N605B	w^{*}-N137D
ad*-N640	w^{*}-N145
ad*-N664	w^{*}-N147B
ad^{*}-N682B	w^{*}-N167
ad*-N877B	w^{*}-N176
ad*-N984B	w^{*}-N178A
	w^{*}-N1834
albino seedling	w*-N1839
nlw*-85-3357-17	w*-N1854
peach-albino-mutable*-87-2209-30	w^{*}-N1865
w^{*}-002-12	w*-N1890
w^{*}-005-19	w^{*}-N191
w*-009-6	w*-N1915
w^{*}-010-4	w*-N192
w^{*}-011-11	w^{*} - N 21 A
w^{*}-017-14-A	w^{*}-N22
w^{*}-017-14-B	w^{*}-N23
w^{*}-020-9	w^{*}-N24
w^{*}-034-16	w^{*}-N278A
w^{*}-037-14	w^{*}-N285
w^{*}-039-15	w*-N318
w*-2065	w*-N332
w*-2246	w*-N335
W*-3858	w^{*}-N346A
W*-4670	w*-N355
$\mathrm{w}^{*}-4873$	w*-N364
w^{*}-5201	w*-N367B
w*-5255	w^{*}-N404
W*-5267	w^{*}-N405A
$\mathrm{w}^{*}-56-3003-12$	w^{*}-N413B
w*-5602	w^{*}-N42
w*-5622	w^{*}-N428B
$\mathrm{w}^{*}-5787$	w^{*}-N430B
W*-5863	w^{*}-N436A
W*-6293	w^{*}-N456A
w^{*}-6504	w^{*}-N457
w^{*}-6575	w*-N491B
$\mathrm{w}^{*}-7165$	w^{*}-N5
w*-7219	w^{*}-N509B
$\mathrm{w}^{*}-7281$	w^{*}-N516A
w*-74-1674-1	w^{*}-N524A
w^{*}-78-297-3	w^{*} - N532
w^{*}-8105W	w^{*}-N547A
W*-8129	w^{*}-N558B
w^{*}-8147	w^{*}-N563A
W*-8201	w^{*}-N569B
w^{*}-84-5205-46	w^{*} - N574
w^{*}-84-5222-30	w^{*}-N58
w^{*}-85-3359-11	w^{*}-N587C
w^{*}-85-3552-25	W*-N593B
W*-85-3559-30	w*-N6
W*-8529	w^{*}-N621B
W*-8549	w^{*}-N627B
w^{*}-8569	w^{*}-N67A
w^{*}-86-1078-6	w^{*}-N682A
w^{*}-86-1265-30	w^{*}-N704
w^{*}-86-2222-5	w^{*}-N708A

w^{*}-N727A	g ${ }^{*}$-N546C	I*-N1838	pg^{*}-N102
w^{*}-N729A	gl*-N616A	I*-N1878	pg**N11
w^{*}-N736A	gl*-N656A	I*-N188A	pg*-N12
w^{*}-N77	gl*-N681A	${ }^{*}$-N1908	pg*-N123C
w^{*}-N804B	gl*-N696E	I*-N1920	pg*-N127
w^{*}-N829B	gl*-PI184286	\|*-N195	pg*-N1389B
w^{*}-N883B	gl*-PI200203	1^{*}-N218	pg*-N146A
w^{*}-Pl184276	gl*-PI228177	1^{*}-N251	pg*-N147A
w*-PI201543	gl*-PI232974	1*-N31	pg*-N150A
w*-PI213747	gl*-PI239101	1^{*}-N336	pg*-N155A
w*-PI228176	gl*-PI239110	1^{*}-N347	pg*-N156B
W*-PI228179	gl*-PI251885	I*-N368B	Pg*-N1604
w^{*}-PI232965	gl*-PI251933	I*-N392A	pg^{*}-N161
W*-PI232968	gl*-PI262474	I*-N416A	pg*-N181
w*-Pl232972	gl*-PI262476	I*-N438A	pg*-N1822A
w*-PI239103	gl*-PI262494	I*-N496B	pg**N1866
w*-PI239110	gl*-PI262500	$1 *-N 52$	pg ${ }^{*}$-N1881
w*-PI251009	gl*-PI267203	।*-N523	pg*-N1885
w*-PI251885	gl*-PI267209	1*-N606	pg ${ }^{*}$-N1983
w*-PI251930	gl*-PI267212	${ }^{*}$ *-N612B	pg*-N213
w*-PI251932	gl-nec*-N516D	I*-N62	pg*-N215B
w*-PI254851		1*-N703	pg*-N272C
w*-PI267162	high chlorophyll fluorescence	1*-N730	pg*-N296A
w^{*}-PI267179	hcf *-88-3005-3	।*-PI183642	pg*-N346B
w*-PI267204		I*-PI183643	pg ${ }^{*}$-N35
w*-Singleton-16	luteus yellow seedling	I*-PI193433	pg*-N357B
w*-Singleton-22	I**009-6 $^{\text {a }}$	I*-PI193435	pg*-N361A
w^{*}-Singleton-24	I^{*}-017-3	1^{*}-PI193436	pg*-N362A
w*-Singleton-25	I**-025-4	1^{*}-PI195245	pg*-N375B
w*-Singleton-31	1*-062-3	1^{*}-PI213737	pg*-N379
w^{*}-Tama	\|*-2215	1^{*}-PI213745	pg*-N380
w^{*}-wh-mut	\|*-2673	।*-PI218038	pg*-N381
wh*-053-4	।*-4356	।*-PI239110	pg*-N384B
wh*-2083	\|*-4545	।*-PI239114	pg ${ }^{*}$-N40
wh*-89-578-6	1^{*}-4871	।*-PI251884	pg^{*}-N408C
	\|*-5-9b[X-7-39]	1^{*}-PI254854	pg*-N417A
clasping leaf	$1 *-549-1$ Derived Flint	।*-PI262495	pg*-N421
clsp*-87-2320-9	$\left.\right\|^{*}$-56-3003-12	।*-PI267215	pg*-N429B
clsp ${ }^{*}$-88-89-3522-1	1^{*}-570-2 Cincantin	।*-PI267226	pg^{*}-N445
	${ }^{*}$ - 5783 -straw	${ }^{*}$-Rumanian Flint	pg*-N452C
flecked leaf	\|*-62-489-2	I*-Tama	pg*-N459
flk*-N564B	।*-6474	${ }^{*}-\mathrm{y}$ wx 6-9b	pg**-N46
flk*-N570A	\|*-6923	pyg*-N761	pg*-N469
flk^{*}-N630B	।*-6973	y-1*-85-3234-6	pg^{*}-N481
	\|*-7165	y-1*-8910 Briggs	pg*-N484A
glossy leaf	${ }^{*}$ *-7281	yd*-87-2278-34	pg*-N506A
gl*-218-1	I*-73-563	yel*-5344	pg*-N507A
g ${ }^{*}$-32TaiTaiTaSarga	${ }^{*}$ *-7748	yel*-8721	pg*-N511
gl*-4339	1^{*}-8321	yel*-8793	pg*-N514B
gl*-5201	\|*-8376	yg*-8962	pg*-N524B
gl*-5249	\|*-84-5225-33		pg*-N550
gl*-56-3023-6	\|*-85-3215-2	orobanche	pg*-N556B
gl*-56-3023-9	\|*-85-3225-4	oro*-6577	pg*-N558A
gl*-56-3036-7	\|*-85-3457-40	oro*-69-9291-8	pg*-N570C
gl*-6	\|*-85-3513-1	Oro*-84-5080-15	pg*-N59B
gl*-60-2484-8	1*-85-3541-20	oro*-85-3087-3	pg*-N590B
gl* ${ }^{*}$ 63-2440-8	\|*-86-1112-1	Oro*-85-3106-41	pg*-N596B
g ${ }^{*}-85-3095-12$	\|*-86-1354-9	Oro*-85-3113-11	pg*-N597B
g\|*-8654	${ }^{*}$ *-8634	Oro*-88-3237-31	pg*-N600A
g\|*-87-2215-8	।*-88-89-3555-13	oro*-88-89-3550-32	pg*-N603
gl*-87-2215-30	${ }^{*}$ *-89-90-1552-10		pg*-N615B
gl*-87-2278-34	।*-8966	pale green seedling	pg*-N618
gl*-88-3142-4	${ }^{*}$ *-d-8694	pas*-90-3222-13	pg*-N619
gl*-97P-261-5	।*-LGC-43	pg*-2142	pg*-N638
gl*-Bizika	I*-N104	pg*-6372	pg*-N639
gl*-gl12	I*-N113	pg*-69-5079-2	pg*-N641
gl*-LGC-117	I*-N119	pg*-6923	pg*-N660A
gl*-LGC-27	${ }^{*}$ - N124B	pg*-7122	pg*-N663B
gl*-Loesch	I*-N129	pg*-8129	pg*-N673A
gl*-Manglesdorf	I^{*}-N137B	pg ${ }^{*}$-84-5234-29	pg*-N683A
gl*-Moritsa	I*-N140	pg*-8412	pg*-N686B
gl*-N168	I*-N171A	pg*-8911	pg*-N701B
gl*-N203C	I^{*}-N175	pg*-8959	pg*-N719C
gl*-N356	I*-N1806B	pg*-Caspar	pg*-N71A

$\mathrm{pg}^{*}-\mathrm{N} 724 \mathrm{~B}$	$\mathrm{v}^{*}-1-2(5376)$	v^{*}-N376	v^{*}-Singleton-22	
pg^{*} - N 73 A	$\mathrm{v}^{*}-1-9(5622)$	v^{*}-N378A	v^{*}-Singleton-34	
pg***55C	$\mathrm{v}^{*}-2-9(5257)$	v^{*}-N397	Vsr**N1447	
pg^{*}-N884B	v^{*}-388-Sprague	v^{*}-N400B	wst***643B	
pg**-N896B	v^{*}-4308	v^{*}-N41B		
pg**N906B	v^{*}-4698	v^{*}-N422B	white luteus seedling	
pg*-Pl183648	$\mathrm{v}^{*}-5-10(5355)$	v^{*}-N463	W ${ }^{*}$ - N 1	
pg*-Pl193424	$\mathrm{v}^{*}-5287$	v^{*}-N467	w ${ }^{*}$ - N 126 B	
pg*-P1262473	v^{*}-5413	v^{*}-N473B	w ${ }^{*}$-N1350B	
pg*-PI262495	v^{*}-5575	v^{*}-N499	w ${ }^{*}$-N1384B	
pg*-PI267162	v^{*}-56-3012-10	v^{*}-N517	w ${ }^{*}$ - N165A	
pg*-PI267215	v^{*}-5828	v^{*}-N526A	wl^{*}-N18	
pg-nec*-RJL-6527	v^{*}-60-151	v^{*}-N529B	wl**-N1803	
	v^{*}-60-2397-15	v^{*}-N53A	wl**-N1857	
pale pale green seedling	v^{*}-65-1433	v^{*}-N54A	w ${ }^{*}$-N189	
ppg*-N1474B	v^{*}-7230	v^{*}-N54B	wl**-N1930	
ppg**-N1963	v^{*}-7281	v^{*}-N55	wl**-N1931	
ppg**-N406A	v^{*}-7312	v^{*}-N560	wl^{*} - N 1949	
ppg*-N427A	v^{*}-74-1690-1	v^{*}-N587A	w ${ }^{*}$ - N 217 A	
ppg**-N449	v^{*}-74-1873-1	v^{*}-N620	w ${ }^{*}$ - N221	
ppg**-N458B	v^{*}-74-1948-1	v^{*}-N634A	w ${ }^{*}$ - N 241	
ppg**-N881B	v^{*}-8070	v^{*} - N 64 A	w ${ }^{*}$ - N 255	
	v^{*}-8129	v^{*}-N655A	w ${ }^{*}$ - N 283 A	
piebald leaf	v^{*}-8201	v^{*}-N65B	w ${ }^{*}$-N290	
$\mathrm{pb}^{*}-2-7-4400$	v^{*}-8339	v^{*}-N660D	wl*-N299A	
pb*-87-2442-5	v^{*}-8522	v^{*}-N661A	w ${ }^{*}$ - N313	
pb*-N1386C	v^{*}-8654	v^{*}-N674B	w ${ }^{*}$-N315	
	v^{*}-8743	v^{*}-N678B	w ${ }^{*}$ - N 345 A	
ragged seedling	v^{*}-8806	v^{*}-N69A	wl* ${ }^{*}$-N358	
rgd**N203E	v^{*}-8957	v^{*} - N 698 B	wl**-N362B	
rgd**-N2290C	v^{*}-8958	v^{*}-N710B	W ${ }^{*}$ - N 38 B	
rgd ${ }^{*}$-N261B	v^{*}-9026	v^{*}-N713B	W ${ }^{*}$ - N 4	
rgd**N378B	v^{*}-Funk-84-13	v^{*}-N728	w ${ }^{*}$-N401	
	v^{*}-Funk-84-9	v^{*}-N735	wl**-N408B	
red seedling leaf	v^{*}-leng	v^{*}-N748C	w ${ }^{*}$-N415	
red-leaf*-86-1569-7	v^{*}-LGC-111	v^{*}-N779A	wl**-N416B	
	v^{*}-LGC-142	v^{*}-N7B	wl^{*} - N 44	
small seedling	v^{*}-LGC-98	v^{*}-N806C	w ${ }^{*}$ - N 448	
d^{*}-N155B	v^{*}-N1007B	v^{*}-N826	W ${ }^{*}$ - N 47	
d^{*} - N 230 A	v^{*}-N110	v^{*}-N829A	W ${ }^{*}$-N500	
d^{*}-N254	v^{*}-N114A	v^{*}-N84B	wl**-N502B	
d^{*}-N266B	v^{*}-N116	v^{*}-N878B	w ${ }^{*}$-N508	
d^{*}-N293B	v^{*}-N125	v^{*}-N891C	wl*-N538A	
d^{*}-N408A	v^{*}-N128	v^{*}-N956C	w ${ }^{*}$-N551C	
d^{*}-N429A	v^{*}-N131	v^{*}-pb-3019-16	w ${ }^{*}$ - N554A	
d^{\star}-N526B	v^{*}-N133	v^{*}-P1180165	w ${ }^{*}$ - N 567	
sms**-N1964	v^{*}-N134	v^{*}-P1180231	wl*-N575A	
sms**-N1971	v^{*}-N135A	v^{*}-P1183640	wl^{*} - N 60	
sms**204B	v^{*}-N158	v^{*}-P1185851	wl**-N629A	
sms**N311C	v^{*}-N16	v^{*}-PI195244	w ${ }^{*}$ - N636	
sms**-N369B	v^{*}-N179	v*-P1195245	wl**-N637A	
sms*-N566	v^{*}-N1806A	v^{*}-PI200197	w ${ }^{*}$ - N 646	
sms**-N570B	v^{*}-N187	v*-PI200201	wl**-N663A	
sms**-N680B	v^{*}-N1886	v^{*}-PI218042	w ${ }^{*}$ - N 686 A	
	v^{*}-N1912	v^{*}-PI228174	w ${ }^{*}$ - N698A	
translucent leaf	v^{*}-N1966	v^{*}-PI228176	wl***09B	
trans-leaf*-56-3122-7	v^{*}-N201	v^{*}-PI232974	wl*-N720B	
trans-leaf*-68F-958	v^{*}-N206A	v^{*}-PI236996	wl*-N758A	
trans-leaf*-78-314	v^{*}-N229	v^{*}-PI239105	wl**-N998C	
trans-leaf*-79-6533	v^{*}-N243	v^{*}-PI239114		
trans-leaf*-PI228176	v^{*}-N245	v^{*}-PI239116	white margins	
	v^{*}-N246	v^{*}-PI251883	whm*-N1462	
tube leaf	v^{*}-N26	v^{*}-PI251891		
fused-leaves***36B	v^{*}-N260C	v^{*}-PI251930	white striped seedling	
fused-leaves*-N835B	v^{*}-N280	v^{*}-PI254856	ij-mos*-8624	
fused-leaves*-PI228170	v^{*}-N289	v^{*}-PI262476	stk*-N359B	
	v^{*}-N29	v^{*}-PI262487	str*-2104-4 EBP	
virescent seedling	v^{*}-N298	v^{*}-PI262489	str**2116-1 EBP	
$\\|^{*}$-N184	v^{*}-N303	v^{*}-PI267184	str*-5120B-Teo	
v^{*}-002-17	v^{*}-N330B	v^{*}-PI267209	str*-6-10-4307	
v^{*}-007-18	v^{*}-N34	v^{*}-PI267212	str**-78-314-4	
v^{*}-022-17	v^{*}-N341	v^{*}-PI270293	str**-78-314-5	
v^{*}-025-4	v^{*}-N352B	v^{*}-Pollacsek	str*-84-5222-7	
v^{*}-037-5	v^{*}-N358C	v^{*}-RumanianFlint	str**-86-1494-27	

$\begin{aligned} & \text { str**-PI262495 } \\ & \text { str-et }{ }^{\star} \text {-Pl184276 } \end{aligned}$	ba*-PI218135	defective tassel	green striped leaf	
	ba*-PI239105	Tp**54-55-Jos	gs*-98-5700-5	
	ba*-PI251885	Tp*-PI213734	gs**-N359A	
white tipped leaf	ba-ub*-94-4712	Tp*-Pk41-Jos		
wt**-N308		Tp*-T8-Jos	knotted husks	
wt**-N432A	bleached leaf	Tp*-Tenn61	mwp*-Nelson	
wt**-N580B	Blh^{*}-N1455			
wt^{*} - N 650 A	blh**2302B	dwarf plant	lesion	
	blh**N2359	d^{*}-018-3	les*-2119	
yellow green leaf	Blh ${ }^{*}$-N2421	$\mathrm{d}^{*}-119$	les*-74-1873-9	
pastel**-1-6-5495	Bh^{*}-SF98-12	$\mathrm{d}^{*}-136-220$	les**-ats	
pyg*-N1266A		$\mathrm{d}^{\star}-1821$	Les**-N1378	
pyg*-N223	blotched leaf	$\mathrm{d}^{*}-2108$	les*-N2290A	
pyg*-N321	bl**1278A	$\mathrm{d}^{*}-2201$	Les*-N2420	
yg*-0130	bl^{*}-N43	d^{*}-2447-8	Les*-N502C	
yg ${ }^{*}-4369$	red leaf blotch*-P1213779	d^{*}-3-eared-JC		
yg**-4484	yel-spl*-N152	$\mathrm{d}^{*}-3047$	liguleess	
yg*-4889		$\mathrm{d}^{*}-5312$	Lg**64-36	
$\mathrm{yg}^{*}-5-8(5575)$	brachytic plant	$\mathrm{d}^{*}-56-3037-23$	$1 \mathrm{~g} *$-PI228170	
yg*-56-3021-18	$\mathrm{br}^{*}-2180$	$\mathrm{d}^{*}-60-2428$		
yg**6697	br*-78-136KEW	d^{*}-64-4156-1	male sterile	
yg^{*}-68-1429	br*-Brawn219-221	$\mathrm{d}^{\star}-74-1701-5$	Ms*-2471	
yg**6853	br*-Brawn227-229	$\mathrm{d}^{\star}-75-6071-1$	ms*-6015	
yg^{*}-74-1827-1	br*-Brawn230	$\mathrm{d}^{\star}-76-1304-9$	$\mathrm{ms}^{*}-6025$	
yg^{*}-77-585	br*-Brawn231-233	$\mathrm{d}^{\star}-76-2186$	ms^{*}-6026	
yg**-8105	br*-Brawn235-237	$\mathrm{d}^{\star}-78-282-3$	ms^{*}-6033	
yg**8379	br*-Brawn259-260	$\mathrm{d}^{*}-78-286-1$	ms^{*}-6039	
yg**8622	br*-Brawn261-262	$\mathrm{d}^{*}-78-286-5$	ms^{*}-6045	
yg*-8631	br*-Brawn263-266	$\mathrm{d}^{\star}-85-3081-33$	ms^{*}-6048	
yg*-8682	br*-Brawn267-268	$\mathrm{d}^{\star}-87-2198-36$	$\mathrm{ms}^{*}-6049$	
yg*-8692	br*-Brawn269-271	d^{*}-gl11	ms^{*}-6052	
yg*-8946	br*-Brawn272-273	d^{*}-Brawn254-258	ms^{*}-6053	
yg*-910J	br*-Brawn274-275	d^{*}-MarovacWhiteDent	$\mathrm{ms}^{*}-6054$	
yg*-B73	br*-OSIJEK-Yugoslavia	$\mathrm{d}^{*}-\mathrm{N} 1352 \mathrm{~B}$	$\mathrm{ms}^{*}-6055$	
yg*-Caspar	br*-PI228171	d^{*}-N1883	ms^{*}-6057	
yg**-N1314B	br*-Pl239105	d^{*}-N1895	ms^{*}-6058	
yg^{*}-N157A	br*-Singleton-8	d^{*}-N203D	ms^{*}-6059	
yg*-N2246	br*-Singleton1969-252	d^{*}-N2295	ms^{*}-6060	
Yg^{*}-N2294	td*-PI262476	d^{*}-N282	ms^{*}-6061	
yg*-N37		d^{*}-N454A	$\mathrm{ms}^{*}-6062$	
yg*-N706B	brevis plant	d^{*}-N518A	$\mathrm{ms}^{*}-6064$	
yg^{*}-N72	bv^{*}-N2283	d^{\star}-N549B	$\mathrm{ms}^{*}-6065$	
yg^{*}-PI228174		d^{*}-N604	$\mathrm{ms}^{*}-6066$	
yg*-PI239114	brittle stalk	d^{*}-N699B	ms*-N2415	
yg*-PI267224	bk**N888D	d^{\star}-N994B	Ms**-N2474	
yg*-Singleton -23		d^{*}-Pl180231	ms**2484	
yg^{*}-Singleton-30	brown midrib	d^{\star}-P1183644	ms**-N352C	
yg-nec*-95-5320-7	bm*-Pl228174	d^{*}-P1184286	ms*-PI217219	
yg-nec*-Singleton-29	bm*-Pl251009	d^{\star}-P1200303	ms-si*-355	
Yg -str** ${ }^{*}$ Mu	bm*-Pl251893	d^{*}-P1213769		
	bm*-Pl251930	d^{*}-PI228169	many tillers	
zebra striped seedling	bm*-PI262480	d^{*}-PI228171	tlr*-N2243	
zb*-89-3137-5	bm*-Pl262485	d^{\star}-P1239110		
zb-g\|*-2187	bm*-Pl267186	d^{*}-PI245132	multiple midrib	
		d^{*}-PI251652	multiple-midrib*-87-2406-23	
Plant Mutants	burned leaf	d^{*}-PI251656		
	les*-Funk-4	d^{*}-PI251885	narrow leaf	
absence of leaf blade bladeless*-87-2406-23	les*-PI262474	d^{*}-P1254854	n\|**5688	
		d^{*}-PI262495	nl**-N232A	
	chromosome breaking	d^{*}-PI267219	nl**-N410B	
adherent tassel	Chrom-breaking*-Mu	d^{*}-rosette	nl**-N462B	
ad**-N613B		d^{*}-shlf-9-436-1	n1***625	
	colored leaf	d^{*}-su	n1**-N727B	
albescent	10^{*}-PI239110	d^{*}-su2	nl**-N732A	
al**1479		d^{\star}-Teo	nl*-Pl245132	
al*-PI245132 wh top*-Bauman	crinkled leaf	d^{*}-ts 1	stf*-N601	
	cr*-97P-111			
	cr*-98-1698	erect leaf	necrotic leaf	
barren stalk		dge*-N2410	$1 \\|^{*}$-N248A	
ba*-1447	crossbanded leaf		$11 * *$ N417D	
ba^{*}-68-679-8	cb^{*}-N1620A	gritty leaf	nec*-011-7	
$\mathrm{ba}^{*}-74-304-12$	Cb^{*}-N2290B	gtl*-N2297	nec**-017-3	
ba*-74-369-2	cb*-N696D		nec*-4871	
ba*-PI200290	$\mathrm{cb}^{*}-\mathrm{N} 719 \mathrm{~A}$		nec*-4889	

nec*-5588 early	d^{*}-N528B	white stripe leaf
nec*-5619	d*-N553D	ij*-N504A
nec*-5876	d*-N707B	$1{ }^{\text {a }}$-PI262476
nec*-77-574-1	D*-N987B	str*-PI262474
nec*-8624	smp*-N121	wst*-N248B
nec*-8737	smp*-N135B	wst*-N413A
nec*-fraz	smp**N153B	wst*-N548
nec*-N1119B	smp*-N156A	wst*-N564A
nec*-N1185B	smp*-N1954	wst*-N696B
nec*-N1487	smp*-N272A	
nec*-N193	smp*-N306	yellow stripe leaf
nec*-N200B	smp*-N586B	gs*-68-1354
nec*-N215F	smp*-N600B	ys*-1479
nec*-N283B	smp*-N602	ys*-5-8(5575)
nec*-N419	Smp*-N842	ys*-67-2403
nec*-N430A		ys*-68-1354
nec*-N468	speckled leaf	ys*-8912
nec*-N490A	spc*-N112	ys*-N326A
nec*-N510A	spc*-N198B	ys*-PI-262172
nec*-N541B	spc*-N357A	ys*-PI-262475
nec*-N545B	spc*-N370	ys*-PI228180
nec*-N559		ys*-whorled
nec*-N562	spotted leaf	
nec*-N581	les*-74-1820-6	zebra necrotic leaf
nec*-N596C	spt*-N278B	zn*-8637
nec*-N599A	spt*-N412A	zn*-N230B
nec*-N650D	spt*-N579B	zn*-N342A
nec*-N712C		zn*-N372A
nec*-P1228174	stiff leaf	zn*-N451
nec*-PI267184	stf*-N1092C	zn*-N571D
nec*-Vasco	stf*-N235B	
nec-pg*-PI239116		Ear Mutants
shootless*-99-677-6	streaked leaf	
	stk*-N351	distichous ear
oil yellow plant	stk*-N368A	distichous*-68-1227
oy*-N2360A	stk*-N433B	
	stk*-N584A	distorted segregation
pale green plant	stk*-N587D	off-ratio*-85-3255-6
pg*-56-3012-10	stk*-N670B	off-ratio*-86-1155-1
pg*-8321	stk*-N777B	wx-off-ratio*-86-1110-4
pg*-Hy2 Nob 7-5	stk*-N835A	
pg^{*}-LGC-61	stk*-N925B	polytypic ear pt*-McClintock
patched leaf	striate leaf	pt*-Mu
ptc*-N238A	Sr^{*} - N 2430	
ptc*-N611	sr*-N675B	reduced pollen fertility $\mathrm{ga}^{*}-0188$
pigmy plant	stubby plant	ga*-0213
py*-N656B	stb*-N938C	ga*-3615
py*-N714		ga*-91-5197-2
	tassel seed	ga*-94-764
ramosa	ts*-0174	Ga*-Yugoslavia
ra*-412E	ts*-69-Alex-M017	
ra*-4889	ts*-Anderson	silky
	Ts*-N1374	si*-0443
rolled leaf	ts*-N2409	si*-0503
rld*-N1405B	ts*-PI200203	si*-0648
rld*-N1525	ts*-PI251881	Si*-8104
	ts*-PI267209	
small plant	ts*-Sprague	tunicate
$\mathrm{d}^{*}-\mathrm{N} 1074 \mathrm{C}$		Tu*-5090B
d^{*}-N137C	tasselless	
d^{*}-N149	tls*-Funk	unpaired rows
$d^{*}-N 164$ A	tls*-Va35	up*-Shirer
d^{*}-N188B		
D*-N2023	tiny plant	
d^{*}-N208B	ty*-N215A	
$\mathrm{d}^{*}-\mathrm{N} 210$	ty*-N326C	
d^{*}-N262C		
d*-N287B	white sheath	
d^{*}-N305	ws*-N1979	
d*-N328	ws*-N537D	
d*-N394		
d^{*}-N524D		

V. MAIZE GENOME DATABASE
 www.agron.missouri.edu

MaizeDB has been busy integrating data from the published literature and from the new plant genome projects. WWW sites of interest to cooperators are summarized on p. iv of this Newsletter. While our goal remains to provide access to a comprehensive genome resource, we are engaging in interoperability with other data repositories such as the NCBI databases, and other maize and plant genome databases. The focus is genetically defined loci (17558 records) and maps (874) complete with documentation and functional annotation. Documentation includes the tools used, notably genetic stocks and source germplasm $(21,534)$ and probes $(151,579$,aka markers, clones, primers), sources and availability, map scores (8610) and recombination data (1950). Functional annotation includes agronomic traits (565), phenotypic variations (1001), locus expression and properties, and gene products (1359). Literature citations (62,465), including authors, with addresses (5523), are considered key documentation. In this report we present the highlights, a brief summary of Maize Conference 2001 feedback, a report on recent data types, and a table summarizing interoperability status with some major external database repositories.

Highlights this year:

- major feedback from the maize genetics community, posted on the homepage
- redesign of home page, featuring easier access routes in a central location
- full text search of the entire www site (Google)
- comparative map graphic utility in collaboration with the Rice Genome Program, Tsukuba Japan
- user accesses up 60% over last year, at 8000 accesses/day.

Note: these accesses were via MaizeDB services (browse utilities, forms, full text searches). They do not include the new Google site search (an additional 25\%) nor indexing activities by Internet robots and spiders.

Feedback synopsis.

We are delighted to report the success of the Maize Genetics Executive Committee Chair, Jeff Bennetzen, in eliciting a wide response from the community at the 2001 Maize Genetics Conference at Lake Geneva, WI. Thank you Jeff! We have in the past relied on our own sense, based on interactions with other genome and related databases on the Internet and a steady trickle of advice from the community. The Maize Conference 2001 feedback indicated an interest in retrieving data by graphical map displays (15% of responses), in comparative genomics (30\%), in retrieval of map information for a particular nucleotide sequence (30\%) and generally in easier, friendlier access (40%). We have made a start on addressing community wishes, (see highlights above). We will soon be implementing a graphical view of the genetically anchored BACs, and, additionally, a BLAST utility that returns map information in a custom report.

We are quite concerned that many of you find the MaizeDB interface difficult to navigate. We hope changes instituted this year will help, as well as those in progress. Consider our new utilities and rearrangings as first drafts, ready to be polished, embellished or surgically transformed based on your ongoing inputs and our resources. Especially try Google first for efficient searches.

Summary of recent datatypes.

SSR markers. Simple Sequence Repeats. Currently we represent data for 1735 SSR, for which 590 were discovered in public cDNA sequences. Data have been integrated from the Maize Mapping Project (US), Maize Mapping Consortium (EU), Pioneer, NC State, and the Brookhaven National Laboratory Acemaz. We are in contact with the Doebley maize evolution project and with CIMMYT regarding their SSR diversity data. Dynamic data summaries, organized by bin locations, and detailed map snapshots are provided by the SSR link in the database sidebar. A comparative map tool, featured in a central box on our home page, permits dynamic comparison of map coordinates for SSR mapped in distinct populations, as well as with other major maize maps.

ESTs, Expressed Sequence Tags: cDNA sequences most often deposited in the dbEST division of GenBank (NCBI, National Center for Biotechnology Information). Currently 112,582 cDNA GenBank accessions for some 66,996 clones are represented in MaizeDB and are linked to maps and other genetic and genomic information. Note that Google searches find all accessions. Of these 1,172 have genetic map locations.

EST Data flow: NCBI (GenBank) regularly sends files to MaizeDB with new ESTs or updates. MaizeDB processes these and imports information about each clone, the library, the source and availability. The universal sequence accessions are used to form links to GenBank and to ZmDB (for clone submissions from Stanford.) Information needed to create links to ZmDB contigs and to the TIGR gene index is extracted using the ZmDB table-maker or downloaded from an ftp site (TIGR), processed and updated several times/year.

EST Data Access: Zea mays-specific BLAST searches of all entries in dbEST are currently supported at NCBI and ZmDB. Mapped clones are accessible by the MaizeDB Probe Browser, an alphabetical tabulation, which can be delimited by bin location(s); it lists map coordinates and has dynamic links to selected MaizeDB pages (images, probe details), as well as to GenBank, ZmDB and TIGR. The first few letters of the Probe name reflect source; acronyms relevant to ESTs include: csu, California State University, isu, Iowa State

University, std, Stanford University. One exception, EST clones developed by Tim Helentjaris, but mapped to a uaz probed site, are named by plate location, and begin with 1C, 2C, 5C, 6C or 7C. A complete list of institutional acronyms is provided on-line with the suggested guidelines for nomenclature, www.agron.missouri.edu/maize nomenclature.html, and under locus names. With permission of Ginny Walbot, we mirror a set of trace files for the Stanford sequences, converted to various formats by Deverie Bongard-Pierce (Mass. General Hospital).

Unigene Overgo BAC (Bacterial Artificial Chromosome) Anchors.
Currently 4300 Unigene-Overgo primer pairs are represented in MaizeDB, complete with links to public sequences included in the assembly. These data were provided by the partnership of Dupont and Incyte Genomics with the Maize Mapping Project. We anticipate an additional 6000 Unigenes to be added summer 2001. Of the initial 4300 Unigenes, over 2200 have been anchored to either an EcoRI and/or HindIII BAC clone (B73 libraries) available from CUGI. These probes, of type 'Overgo', are listed with the public sequence accessions and clones that contribute to the Unigene. This process builds on the EST dataflow described. While DuPont EST and genomic data per se are not supplied to MaizeDB, DuPont EST and genomic data contribute (a) to refine the public consensus sequence, (b) to the assembly, often a collapse of multiple public assemblies, and (c) to mask repeat sequences. In MaizeDB, the assembly is linked to appropriate contributing (public) sequences, to map coordinates inherited from a public sequence, and to the corresponding ZmDB computed Unigene clone. Of note, some 450,000 BAC clones, from 3 public libraries are in queue at CUGI for contig assignment, based on fingerprint and marker data. CUGI updates the BAC contig computation approximately monthly and incorporates marker data submissions processed at MaizeDB.

Access to marker data currently is via Google, by focused searches on the Probe form, or by exploring the CUGI site. In process: (a) tabular summaries with query access and overview; (b) a physical/genetic map graphical display; (c) a BLAST utility that will return genetic map information and links to relevant external databases, including CUGI, TIGR, and ZmDB.

MTM Mutator Stocks.

Of new genetic Stocks represented in MaizeDB, there are 8,436 from the Cold Spring Harbor resource, which include 24 kernel phenotypes. Files were provided by MTM on request by MaizeDB, and phenotypic descriptors have been harmonized with MaizeDB listings, largely provided by Gerry Neuffer and the Stock Center. To view phenotypes, and their MTM Stocks, see the MaizeDB side bar, What' s New, and scroll to July 2000. If Mutator is known to be 'On' or 'Off' this is part of the Stock Name.

External Database Interoperability

Database 1	Data retrieved		
GenBank $(\text { EMBL,DDBJ })^{5}$	Sequences	MaizeDB data linked	Links 4
PubMed	Abstracts, full text, links out	Variation, Probes, Loci	116,980
ZmDB 5	Sequences, contigs, clones	Reference	2,805
TIGR $^{\text {CUGI }^{5}}$	Gene index, paralogs	Probe	135,369
RiceGenes	BAC contigs, clones	Probe	50,466
GrainGenes	Rice maps	Probe	68,545
SwissProt ${ }^{5}$	Triticeae maps	Probe	367
Enzyme	Protein sequence, function	Probe	287
ProSite	Reactions, sequences, pathways	Gene Product	448
GRIN5	Motif sequence and function	Gene Product	329
MTM	Germplasm evaluations, other	Term (Protein Feature)	1035

${ }^{1}$ Database www sites are provided on p.iv of this Newsletter.
${ }^{2}$ Data retrieved from the external database from the MaizeDB-created link
${ }^{3}$ Entities or data classes in MaizeDB with links to the external database listed
${ }^{4}$ Number of distinct accessions in MaizeDB for a given site. Thus multiple links of a GenBank accession to EMBL or DDBJ are counted once. Similarly, two distinct records, for example a Variation and a Probe with a link to the same GenBank accession, are also counted once.
${ }^{5}$ These databases have reciprocal links with MaizeDB.

VI. SYMBOL INDEX

a1 5764	bnlg1191 34	csu628 32	mdm1 41	phi100175 33	phi080 46
A1 18	bnlg1241 32	csu665a 32	mp2 33	phi427913 32	phi083 3246
a2 69	bnlg1270 33	csu665b 33	$\mathrm{ms}^{*} 603631$	phi101049 32	phi085 3334
asg19 55	bnlg1272 4647	csu745a 61	ms7 31	phi102228 32	phi088 46
asg31 18	bnlg1346 46	csu745d 32	ms22 31	phi233376 33	phi089 46
asg37 55	bnlg1347 46	csu745e 32	Ms22 31	phi364545 33	phi090 3246
asg45 18	bnlg1450 34	csu755 32	ms27 31	phi299852 33	phi093 334446
$\operatorname{atpA} 44$	bnlg1458 32	csu810a 32	ms34 31	phi104127 32	phi096 33
$\operatorname{atp} \mathrm{B} 44$	bnlg1520 32	csu814a 33	Mu 2	phi301654 34	phi097 47
atpE 44	bnlg1526 34	csu855 33	Mu8 19	phi236654 34	phi098 4446
atpF 44	bnlg1621a 33	csu868 32	Mv1 42	phi435417 32	phi099 444647
atpH 44	bnlg1647 32	csu870 34	na1 6	phi108411 34	phi102 4647
atpl 44	bnlg1729 47	csu920b 33	na2 6	phi109188 33	phi112 44
B1 1857	bnlg1796 32	csu981 61	nc004 46	phi109275 32	phi113 47
bcd134c 33	bnlg1828 46	csu1103 32	ndhA 44	phi109642 32	phi114 46
bcd221a 33	bnlg1831 32	csu1114 32	ndhB 44	phi438301 33	phi115 3347
bcd386b 34	bnlg1885 33	csu1164 33	ndhC 44	phi308090 33	phi116 334447
bcd808c 32	bnlg2136 32	csu1174 32	ndhD 44	phi374118 32	phi119 44
bf2 61	bnlg2160 33	csu1192 32	ndhE 44	phi308707 32	phi121 33
Bg-3449 52	bnlg2180 32	csu1193 32	ndhF 44	phi243966 32	phi125 44
Bg-hf 52	bnlg2235 33	csu1196 33	ndhG 44	phi445613 33	phi127 3246
Bg-lf 52	bnlg2336 46	cyp5 33	ndhH 44	phi251315 32	phi328175 33
Bg-rbg 5051	bu1 17	dek 19	ndhl 44	phi448880 33	phi328189 32
bnl(tas4l) 32	bz1 33	Df9 72	ndhJ 44	phi386223 34	phi330507 3334
bnl3.04 34	bz2 2	du1 6171	ndhK 44	phi452693 33	phi396160 33
bnl8.08c 33	c1 72	dup1383 32	Nec4 19	phi453121 32	phi265454 32
bnl8.39 33	C1 161872	dupssr21 4647	npi201a 32	phi323065 32	phi331888 33
bnl8.44b 32	c1 15	dupssr34 4647	npi235 41	phi323152 34	phi333597 33
bnl16.06 33	c2 67	En-1102 51	npi238 32	phi389203 33	phi335539 32
bnl17.06 32	ccsA 44	et1 21	npi254b 34	phi193225 32	phi402893 32
bnlg105 444647	cdo89 33	fl1 6	npi269b 34	phi260485 33	phi339017 32
bnlg118 34	cdo419a 32	f11-04 6	npi280 33	phi196387 34	phi213984 33
bnlg125 44	cdo459 32	f11-08 6	npi282b 32	phio02 324446	phi420701 33
bnlg127 47	cdo484 33	fl1-Ref 6	npi328b 32	phi011 32	phi423298 32
bnlg147 46	cdo680a 32	fl2 33	npi330 33	phi014 47	phi96100 32
bnlg149 3246	cdo938b 33	g1 61667071	npi409 64	phi015 3347	phi423796 33
bnlg162 46	cdo1160a 33	g2 66	npi417b 34	phi022 47	phi96342 34
bnlg198 4647	cdo1395e 33	gl1 67	npi425d 33	phi024 46	phi227562 32
bnlg210 47	cemA 44	gl2 15	npi449b 33	phi029 324446	php06012 33
bnlg240 47	cent5 33	gl4 69	npi563 34	phi032 3346	php10016 33
bnlg278 47	clg1 9	gl8 69	npi608 33	phi033 33444647	php20626 34
bnlg292b 33	Clg1 9	gs1 67	0250	phi034 17313344	php20727 33
bnlg339 47	clpP 44	gs1-PI2671811** 67	02-hf 52	phi037 46	php20728 33
bnlg371 47	CoxlV 19	gs1-Pl267181 67	02-If 52	phi041 3444	php20904 33
bnlg386 33	Cpx1 18	gt1 2	02-m(r) 51	phi042 44	php20905 32
bnlg389 4446	Cpx2 18	ibp1 55	02-m(r):3449 52	phi046 46	PIC13 42
bnlg400 47	cpx2-578 19	id1 2	02:rrbg-s1 51	phi050 344447	Pl1 1857
bnlg420 47	csh13 33	id1-m1 2	02::rbg-s2 51	phi051 3346	psaA 4244
bnlg439 44	csu28a 55	ij1 67	046	phi053 3247	psaB 44
bnlg469 47	csu29b 32	ij1-60-2454-20 67	086	phi056 32	psaC 44
bnlg490 4647	csu33b 32	In-D 21	p1 64	phi057 47	psal 44
bnlg504 4647	csu63a 32	in1 21	P1-rr 18	phi059 34	psaJ 44
bnlg572 4447	csu109a 32	infA 44	P1-wr 18	phi062 34	psbA 44
bnlg615 47	csu183b 55	inr1 71	P1-wrb 64	phi063 46	psbB 44
bnlg619 4647	csu200a 32	Inr2 71	p1-www 64	phi064 32	psbC 44
bnlg653 3347	csu223a 33	Kn1 36	pe1 2	phi069 33	psbD 44
bnlg1022 32	csu228 55	knob 53572	petA 44	phi070 33444647	psbE 44
bnlg1056 47	csu254d 33	$\lg 15$	petB 44	phi072 3246	psbF 44
bnlg1065 47	csu304a 32	li1 61	petD 44	phi073 324647	psbH 44
bnlg1108 32	csu315b 33	Lm1 16	petG 44	phi075 46	psbl 44
bnlg1112 32	csu531 32	Lm2 16	petL 44	phi076 33	psbJ 44
bnlg1156 34	csu580a 32	LTP2 35	petN 44	phi077 4446	psbK 44
bnlg1161 33	csu613 61	magE. 0547	phi295450 33	phi078 47	psbL 44
bnlg1182 47	csu625 34	matK 42	phi427434 32	phi079 3347	psbM 44

psbN 44	rps11 44	trnl(GAU) 44	umc275 32
psbT 44	rps12 44	trnK(UUU) 44	umc277 33
R1 71	rps14 44	$\operatorname{trnL}(\mathrm{CAA}) 44$	umc1066 46
r1 6170	rps15 44	trnL (UAA) 44	umc1225 46
R1 9161857	rps16 44	$\operatorname{trnL}($ UAG) 44	umc133147
R1-S 71	rps18 44	trnM(CAU) 44	v^{*}-N2260 66
ra1 66	rps19 44	$\operatorname{trnN}(\mathrm{GUU}) 44$	v1 54
ra1-63-3359 66	rrn4.5 44	trnP(UGG) 44	v2 54
ra1-Pl239103 66	rrn5 44	trnQ(UUG) 44	v3 54
ra1-P1184279 66	rm16 44	$\operatorname{trnR}($ ACG) 44	v4 54
ra1-Pl267181 66	rrn23 44	$\operatorname{trnR}($ UCU) 44	v13 54
ra1-Pl267184 66	rz206c 33	trnS(GCU) 44	v16 546769
ra2 66	rz444a 33	trnS(GGA) 44	v18 54
rbcL 44	rz446a 33	trnS(UGA) 44	v19 54
rf2 55	rz476a 33	trnT(GGU) 44	v26 54
RGH 42	rz476b 33	trnT(UGU) 44	vp1 68
rgpc654 32	rz569b 32	trnV(GAC) 44	Wd 72
rp1 40	Scm2 42	$\operatorname{trnV}(\mathrm{UAC}) 44$	ws3 1566
Rp1 40	sh1 1516	$t r n W$ (CCA) 44	wsm1 41
Rp1-A 40	sh2 4	$\operatorname{trnY}(\mathrm{GUA}) 44$	wsm2 41
Rp1-B 40	shr1 34	tub1 18	wsm3 41
Rp1-C 40	std2a 34	tug6 33	wx1 676871
Rp1-D 40	su1 68	tum3 33	Wx1 67
Rp1-F 40	T1-9(5622) 71	uat4a 32	wx1910151655
Rpi-I 40	T1-9(8389) 71	uaz20b 33	y1 156771
Rpi-J 40	T2-9b 71	uaz23a 33	ycf3 44
Rp1-JF69 41	T2-9c 71	uaz60 32	yct4 44
Rp1-K 40	T2-9d 71	uaz67 33	ycf5 44
Rp1-Kr1 40	T3-9(8447) 71	uaz69b 33	ycf6 44
Rp1-Kr1J6 40	T3-9(8562) 71	uaz119c 33	ycf9 44
Rp1-Kr1J92 40	T3-9c 68	uaz239b 32	ycf10 44
Rp1-Kr3 40	T4-9(5657) 6971	uaz241b 32	ycf14 4244
Rp1-Kr4 40	T4-9b 67	uaz251d 33	yg2 72
Rp1-M 40	T4-9e 68	ucr1b 33	Yg2 72
Rp1-N 41	T4-9g 68	umc1 33	zb*-94-234 66
rp3 4041	T5-9(022-11) 71	umc4a 32	zb1 66
Rp3 40	T5-9(4817) 69	umc10 42	zb3 17
Rp3-A 41	T5-9a 71	umcl2a 33	zb4 66
rp4 40	T5-9d 69	umc18 41	ZmKCS-1 21
Rp4-A 40	T6-9(4505) 67	umc32a 32	ZMKCS-2 21
Rp4-B 40	T7-9a 6771	umc35a 33	ZmRbAp1 45
rp5 40	T8-9(6673) 6770	umc36b 32	ZmRbAp2 4
Rp5 40	T8-9d 676971	umc44 41	ZmRbAp3 4
rp7 40	T9-10(8630) 70	umc44a 3461	ZmRBR1 5
Rp7 40	TB-9La 60	umc64 61	ZmRpd31 5
Rp8-A 40	TB-10L1 61	umc66a 33	zn*-4-6(4461) 66
Rp8-B 40	TB-10L6 6061	umc83a 32	zn1 61
Rpd3 5	TB-10L9 61	umc85 41	zn2 66
RpG 40	TB-10L11 61	umc88(P450) 32	zn2-4-6(4461) 66
rpl2 44	TB-10L12 61	umc92a 32	zn2-94-234 66
rpl14 44	TB-10L16 61	umc102 41	zp11a 33
rpl16 44	TB-10L19 6061	umc105a 55	
rpl20 44	TB-10L20 61	umc117 33	
rpl22 44	TB-10L21 61	umc132a 64	
rpl32 44	TB-10L22 61	umc134 6	
rpl33 44	tda51 33	umc154 32	
rpl36 44	trnA(UGC) 44	umc155 34	
rpoA 44	$\operatorname{trnC}(G C A) 44$	umc157 18	
rpoB 44	trnD(GUC) 44	umc161a 32	
rpoC1 44	trnE(UUC) 44	umc163 41	
rpoC2 44	$\operatorname{trnF}(\mathrm{GAA}) 44$	umc184b 32	
rps2 44	trnfM(CAU) 44	umc226a 32	
rps3 44	trnG(GCC) 44	umc243a 61	
rps4 44	trnG(UCC) 44	umc261 61	
rps7 44	$\operatorname{trnH}(\mathrm{GUG}) 44$	umc266c 33	
rps8 44	trnl(CAU) 44	umc274 32	

VII. AUTHOR INDEX
 (* identifies articles authored in this Newsletter)

Ainsworth, C 20	Chou, M 26	Hafliger, E 73	Lee, M 31	Peeters 19
Akhtar, SA 5^{*}	Chu 58	Haldimann, P 54	Lin, B-L 61*	Peters, U 21*
Alatortseva, TA 55* $56 *$	Chung, H-W 6^{*}	Hallauer, AR 3*	Lin, B-Y 60* $61{ }^{*}$	Petrovic, Z 49*
Albertsen, MC 31* 34^{*}	Close, TJ 28	Han, G-C 3	Lin, C-P 6*	Phillips, RL 6 54*
Altschul, SF 4	Cockerham, CC 3	Handoo, JK 6*	Liu, JA 26	Plaisted, D 64*
Anamthawat-Jonsson, K 36	$\begin{aligned} & \text { Coe, EH, Jr. } 1216^{*} 17^{*} \\ & 5073108127^{*} \end{aligned}$	Harbour, JW 5 Hardeman, K $18^{*} 19$	Livingston, SM 54* Locatelli, S 4* 5*	$\begin{aligned} & \text { Pobezhimova, TP } 21^{*} \\ & 22^{*} 23 \end{aligned}$
Anderson, LK $20{ }^{*}$	Colasanti, J 2*	Hartings, H 4*	Longley, AE 560	Poethig, S 73
Antipina, Al 25* 26 * 28^{*}	Collins, N 4041	Hautea, D 48	Lorbiecke, R $20 * 21^{*}$	Poggio, L 36*
Arziev, AS $23 *$	Comas, C 36*	Heckathorn, SA 2425	Lori, G 36*	Polacco, M 1* 127*
Astiz Gassó, MM 36*	Cone, KC 17*	Helentjaris, T 127	Louie, R 41*	Prasanna, BM 44* 45^{*}
Auger, D 108	Confalonieri, V 36*	Hernandez, JM 18*	Lowry 30	47* 48^{*}
Aulicino, MB 36*	Cook, D 31*	Herrmann, M 21*	Lund, AA 25	Prause, A $21 *$
Basha, EM 27	Cook, FS 10	Herrmann, RG 42*	Lusser, A 5	Prywer, C 5
Bass, HW 62* 63^{*}	Covarrubias-Prieto, J 3	Heun, M 4447	Lynch, RE 64*	Purvis, AC 23
Beadle, GW 20	Crane, PL 6	Hoisington, DA 19	Lysikov, VN 10*	Pusch, I21*
Bennett, J 17*	Cress, WD 5	Hoogvliet, O 21*	Madsen, O 19	Pushpavalli, SNCVL 44*
Bennetzen, J 42126	Cruz 37	Hooker, AL 40	Maier, RM 42*	Quarin, CL 50
Berger, JM 31	Cuypers, H 51	Houle, D 3	Mandal, SS 5* 6* $^{\text {* }}$	Rabinowicz, P 54
Bianchi, A 21	da Costa e Silva, O 21*	Hsia, A-P 21*	Mangelsdorf, PC 577	Randolph, LF 35
Birchler, J 1*	Darlington, CD 320	Hueros, G 21	Marocco, A 53*	Rathore, RS 47* 48^{*}
Bocanski, J 49*	Davis, G 42	Hulbert, SH 40* 41*	Maslobrod, SN 12	Register, JC, III 31* 34
Bommert P 35*	de Carvalho, CR 34*	Huntley, RP 5	McClintock, B 572	Reinbothe, C 19
Bongard-Pierce, D 127	Dean, DC 5	Ikhim, YG 15*	McIntosh, L 22	Reinbothe, S 19
Bordoli, SJ 63*	Delaney, D 40	Iltis, H 36	McMullen, MD 4164	Renfro 48
Borovskii, GB 24* 25*	Dempsey, E 72	Jackson, JD 66* 67*	Meader, EM 62	Rhoades, MM 72
$26^{*} 27^{*} 28^{*} 29^{*}$	Doebley, JF 36126	68* 108*	Melia-Hancock, S 17*	Richter, TE 41
Boudet 28	Doukhovny, Al 10	Janke, SA 21*	Mihailov, ME 9* $16 *$	Riera-Lizarazu, O 54
Brettschneider, R 21*	Downs, CA 2426	Jefferson, T 73	Millar, AA 21	Rines, HW 54*
Brewbaker, J 108	Doyle, GG 108	Jones, MW 41*	Ming, R 41	Rivin, CJ 18*
Broccoli, AM 37* $38{ }^{*}$	Drake, J 40	Joshi, CP 2526	Miranda, JB 3	Robertson, DS 68
Brown, WL 5	Dunbar, BS 242528	Kanehisa, M 19	Mitchell, SE 31	Robertson, J 17*
Buchanan-Wollaston, V	Eberhart, SA 37	Kang, LC 62*	Mohammadi, SA 44*	Rohlf 37
20	Elliger, C 64	Khatypova, IV 50*	Mol, JNM 18	Rossi, V 4* ${ }^{*}$
Burak, R $37 *$ 38*	Emanuelsson, 019	Kiesselbach, TA 73	Moll, RH 5	Rotarenco, VA 14*
Burnham, CR 68	Enaleeva, N 57	King 53	Moore 58	Rugen, M 17*
Burr, B 2	Estabrook, RW 26	Kirkland, L 73	Morris, M 73	Russell, CD 54*
Butron, A 64*	Eyzaguirre, A 62*	Kolesnichenko, AV 21*	Motto, M 5* 108	Russell, WA 37
Byrne, PF 64	Fox, TW 31* 34^{*}	$22^{*} 23^{*}$	Murashige, T 58	Sachs, M 108*
Caixeta, ET 72*	Frederiksen 48	Konstantinov, YM 23*	Murray, JAH 5	Salamini, F 52
Cameron, JW 5	Freeling, M 20	30*	Naidin, C 58*	Saraiva, LS 72*
Carranco, R 24	Frenzel, $\mathrm{K} 21{ }^{*}$	Korotaeva, NE 24* 25^{*}	Nair, SK 44* 47^{*}	Scanlon, M $21{ }^{*}$
Carson, CB $16^{*} 17^{*}$	Frey, M 21	26*	Nakai, K 19	Scheffler, B 21*
Carvalho, CR 72*	Fryer, MJ 23	Koterniak VV 50* 51 *	Naranjo, CA 36*	Schiefelbein, JW 52
Cavalli, LL 3	Fussel, B 73	Kowalewski, S 1	Naumova, TN 50*	Schmitz-Linneweber, C
Cerioli, S 53	Gadeva, P 59*	Krapchev, B 59*	Nedev, T 59*	42*
Ceska, 064	Galinat, WC 17 73* 77*	Kravchenko, AN 10*	Neidle, S 30	Schwarz-Sommer, Zs
Chakraborti, S 23	Gamborg, 058	Kravchenko, OA 10*	Nekrasov, AM 57*	52
Chalyk, ST 14*	Gan, X 6^{*}	Kresovich, S 31	Nelson, OE 108	Seifers, DL 41
Chandravadana, P 17	Garg, P 21*	Krishnappa, M 48	Neuffer, MG 21973	Senior, ML 314447
Chen 24	Golovin, VP 14	Kriz, A 108	108127	Seryi, AP 14
Chen, AY 30	Golubovskaya, I 108	Kruleva, M 59*	Odland, WE 54*	Seto, E 5
Chen, J-H 6*	Gonzalez, G 36*	Kukula, J 20*	Okagaki, RJ 54*	Setty, TA 47* 48^{*}
Chen, M 42	Goping, IS	Kumar, R 47* 48^{*}	Oloer, FG 12	Shaver, D 2
Cheng, P-c 6* 61*	Grabelnych, OI 21* 22*	Kumar, S 4	Palta 2729	Shinozaki, K 29
Cheng, WY 6*	23* 25 *	Kynast, RG 54*	Pandey 5	Shu, H 31
Cheng, Y-M 60* $61 *$	Graham, Gl 6	Lakhman, GK 14	Pandey, S 73	Silva 37
Chernov, AA 9* $16 *$	Green, CE 58	Laloi, M 22	Paollilo, DJ 53	Simcox, K 41
Chin, ECL 31	Griffing, B 5	Lamkey, KR	Parkin 23	Simic, D 3^{*}
Chirkov 12	Grokhovsky, SL 30*	Lande, R 3	Pataky, JK 40	Singh, NN 44* $47^{*} 48^{*}$
Chollet, R 53	Grotewold, E 18* 64	Lanzanova, C 4* * $^{\text {* }}$	Patterson, EB 3172	Sinha, NK 5* * *
Chopra, S 18	Gu, M 6^{*}	Lauert, P 21*	Paul, C 20*	Skoog, F 58
Chou 27	Guo, BZ 64*	Lee, EA 64	Payak, MM 48	Smialek, JL 18*

Smith 22
Smith, JSC 31
Smith, OS 31
Smith, SM 40*
Smolkina, YV 56*
Snook, ME 64*
Sokal 37
Sokolov, VA 50*
Sossountzov, L 35
Srivastava, AK 6*
Srivastava, M 5*
Stack, SM 20*
Starbuck, J 17
Stec, A 54*
Steine 58
Steiner, JJ 16
Stepanova, NL 14
Stierwalt, TR 6
Stinard, P $17^{*} 67^{*} 68^{*}$ 71* 108*
Strunikov, VA 14
Stuber, CW 31
Stupnikova, IV 27* 28^{*} 29*
Styles, ED 64
Subota, IY $23^{*} 30^{*}$
Sudan, C 44*
Sullivan, HR 31*
Sun, C-K 6* 61*
Sundaresan, V 2
Suresh, J 6
Tarasenko, VI $23^{*} 30^{*}$
Thompson, JD 4
Tillich, M 42*
Timmons, TM 242528
Ting, YC 9*
Titovets, VV 56*
Todd, A 77
Tourchaninova, VV 22* 23*
Tracy, WF 40
Tran, L 9*
Trimnell, MR 31* 34^{*}
Tyrnov, VS 55* $56^{*} 57^{*}$
Urechean, V 58*
Vanlerberghe, GC 22
Vanvichit, A 48
Varakina, NN 25^{*}
Vasal, SK 48*
Vaske, DA 31*
Vercesi, AE 22
Verma, R 37
Verreault, A 4
Viccini, LF 34^{*}
Vierling, E 24
Vladimirova, SV 28^{*}
Voinikov, VK 21* 22* $23^{*} 24^{*} 25^{*} 26^{*} 27^{*}$ 28* 29*
Volinsky, ME 14
Waiss, A 64
Walbot, V 20108127
Walden, DB 6 * 10
Wall, SJ 31
Wallace, HA 73
Wassmann, M 21*

[^6]Waters, ER 242526
Webb, CA $40^{*} 41^{*}$
Weber, D 108
Wehmeyer, N 24
Wellhausen, EJ 5
Werr W 35*
Wessler, S 273
Whalen, RH 6*
White 48
Widstrom, NW 64*
Wienand, $\cup 20^{*} 21^{*}$
Wilkinson, DR 40
Williams, P 18*
Wilson 22
Wilson, SB 30
Xu 24
Xu, M 41
Yamaguchi-Shinozaki, K 29
Yang, T 4*
Yen, TTO 45* 48*
Yun, Y 31*
Zaia, H 54^{*}
Zavalishina, AN 57*
Zeng, M 4 *
Zeng, Z-B 3
Zhang, ZJ 64*
Zhuze, AL 30*
Ziegle, J 31
Zimmerman, S 67* 68* 108*
Zykova, VV 23*

This newsletter shares current research on genetics, cytogenetics, molecular biology, and genomics of maize. Information is shared by Cooperators with the understanding that it will not be used in publications without their specific consent.

Send your notes for the 2002 Maize Genetics Cooperation Newsletter now, anytime before January 1. Your MNL Notes will go on the Web verbatim promptly, and will be prepared for printing in the annual issue. Be concise, not formal, but include specific data, tables, observations and methods. Check MaizeDB for the most current information on submission of notes. Send your notes as attachments or as the text of an email addressed to Newsletter@chaco.agron.missouri.edu (we will acknowledge receipt, and will contact you further if necessary). If email is not feasible, please mail a double-spaced, letter-quality copy of your note, preferably with a disk containing the electronic version. Please follow the simple style used in this issue (city /institution title /--authors; tab paragraphs; give citations with authors' initials --e.g., Maizer, BA et al., J Hered $35: 35$, 1995, or supply a bibliography). Figures, charts and tables should be compact and camera-ready, and supplied in electronic form (jpg or gif) if possible. To separate columns in tables, please tab instead of using spaces, to ensure quality tabulations on the web. Your MNL Notes will go on the Web verbatim promptly, and will be prepared for printing in the annual issue. Mailing address:

Cooperators (that means you) need the Stock Center.
The Stock Center needs Cooperators (this means you) to:
(1) Send stocks of new factors you report in this Newsletter or in publications, and stocks of new combinations, to the collection.
(2) Inform the Stock Center on your experience with materials received from the collection.
(3) Acknowledge the source, and advice or help you received, when you publish.

MaizeDB needs Cooperators (this means you) to:
(1) Look up "your favorite gene or expression" in MaizeDB (see section V in this Newsletter) and send refinements and updates to polaccom@missouri.edu, coee@missouri.edu, or db_request@chaco.agron.missouri.edu.
(2) Compile and provide mapping data in full, including the ordered array of map scores for molecular markers or counts by phenotypic classes; recombination percentage and standard error.
(3) Provide probe or primer information per http://www.agron.missouri.edu/cgi-bin/sybgw_mdb/mdb3/Probe/query; fingerprint data and fragment sizes are significantly useful to colleagues.

May you find a Unique corn in MM!

[^0]: Table 1. Average number of RNs for each SC of maize and a comparison of the map lengths predicted from the RN frequency with the map lengths determined by genetic methods (Maize DB).

[^1]: \% recombination $y 1-w x 1=12.0 \pm 0.6$

[^2]: \% recombination su1-wx1 $=7.6 \pm 0.8$

[^3]: \% recombination inr1--du1 $=0.17+/-0.04$

[^4]: 1 A black basalt stone found in 1799 that bears an inscription in hieroglyphics, demotic characters, and Greek and is celebrated for having given the first clue to the understanding of Egyptian hieroglyphics.

[^5]: 2 I was often accused by Paul Mangelsdorf of having an unfettered imagination, especially when he disagreed with me, and this fictional story may be just another example. But my fictional story here deals with real things and human nature to explain an accepted fact.

[^6]: Wasmann

