MAIZE GENETICS COOPERATION

NEWSLETTER

76

May 15, 2002

The data presented here are not to be used in publications without the consent of the authors.

Department of Agronomy and U.S. Department of Agriculture University of Missouri Columbia, Missouri

The Maize Genetics Executive Committee

Jeff Bennetzen, Chair, Class of 2006 Ron Phillips, Class of 2006 Mike Freeling, Class of 2002 Pat Schnable, Class of 2002 Sarah Hake, Class of 2003 Virginia Walbot, Class of 2003 Vicki Chandler, Class of 2004 Ed Coe, Class of 2004 Jim Birchler, Class of 2005 Sue Wessler, Class of 2005

Year 2003 Maize Genetics Conference Steering Committee

David Jackson, Co-Chair Sarah Hake, Co-Chair Marty Sachs, Local Organizer Gunther Feix Martha James Robert Meeley Mike Scanlon Pat Schnable Lynn Senior Dave Weber

> Ex Officio Karen Cone, Treasurer Mary Polacco Marty Sachs

	Table of Contents	i
	Oliver Evans Nelson, Jr. (August 16, 1920 - November 6, 2001)	V
I.	FOREWORD	1
∥.	REPORTS FROM COOPERATORS	2
	S IOWA	
PI	henotypic characterization of inbred lines and their <i>o2</i> conversionsScott, MP	2
BELC	ommon and different band for isozyme of the multiplasmic lines in maize (<i>Zea mays</i> L.)Zeng, M, Yang, T	2
TI	ne antagonistic effect of endophytic bacteria on phytopathogenic fungiDondo Gosic, S, Drinic Mladenovic, S, Konstantinov, K GAMO. ITALY	3
М	aize Rpd3-type histone deacetylase and retinoblastoma-related proteins cooperate in repressing gene transcription in a plant systemRossi, V, Locatelli, S, Lanzanova, C, Motto, M	4
G	enetic relatedness and variability among maize inbred lines selected in ItalyHartings, H, Chittò, A, Bertolini, M, Verderio, A, Motto, M.	5
BERI M	KELEY, CALIFORNIA <i>Iu Killer</i> (<i>MuK</i>) causes epigenetic silencing of Mutator elementsSlotkin, RK, Freeling, M, Lisch, D	6
BOL(DGNA, ITALY evelopment and preliminary evaluation of near-isogenic maize lines differing for a QTL which affects leaf ABA concentration	
BUFF	Landi, P, Salvi, S, Sanguineti, MC, Stefanelli, S, Tuberosa, R FALO, NEW YORK and TAIPEI, TAIWAN	7
Bi CAM	io-photonic crystal: SHG imagingCheng, PC, Sun, CK, Lin, BL, Chu, SW	8
G	enetic diversity among tropical maize inbred lines as revealed by SSR markersLaborda, PR, Oliveira, KM, Garcia, AAF, Paterniani, MEAGZ, Souza, AP	9
CHES	STNUT HILL, MASSACHUSETTS	11
CHIS	INAU (KISHINEV), REPUBLIC OF MOLDOVA	11
TI TI	The use of napiolo plants for evaluation of population genetic structureRotarenco, VA, Minaliov ME	13
M	aize embryo culture as a test for productivityChernov, AA, Mihailov, ME.	
N	ew scheme of haploid recurrent selection in maizeChalyk, ST, Rotarenco, VA, Bylich, VG	13
Tł	ne influence of the temperature, sufficient humidity and illumination duration on the (<i>Cg2</i> /+) hybrid expression Rusanovskava, EG, Krivov, NV	14
P	ostradiation effect of the electric fieldIkhim, YG, Bliandur, OV, Lysikov, VN	15
Ef	ffect of high and low temperature on male gametophyte viability of waxy maizeKravchenko, OA, Kravchenko, AN	15
Pi	roduction of matroclinous maize haploids following natural and artificial pollination with a haploid inducerRotarenco, VA	16
St	tudy of the phenomenon of antidromy with diploid and haploid maizeRotarenco, VA, Maslobrod, SN	16
Tł	ne influence of preplant γ-ray treatment of maize hybrids on bioisomery of the germs, grown from pairs of adjoining seeds. Electromagnetic mechanismMaslobrod, SN, Ganea, AI, Corlateanu, LB, Romanova, IM, Lysikov, VN	17
COLO	DGNE, GERMANY	
		18
	JGNE, GERMANY ynamics of <i>Shrunken1</i> (<i>Sh1</i>) transcriptional activity during maize embryogenesisBommert, P, Werr, W	19
COLU	JMBIA, MISSOURI ne development of a Plant Ontology™ Consortium and Plant Ontologies – –Vincent, PLD, Coe, EH, Polacco, M	20
DNIE Tł	PROPETROVSK, UKRAINE ne role of weather conditions in donor plant cultivation in corn anther cultureSatarova, TN, Chernousova, NM	21
EAST	AMHERST, NEW YORK and BUFFALO, NEW YORK and LONDON, ONTARIO, CANADA ne vascular development in the na2/na2 mutant Cheng, WY, Cheng, PC. Walden, DB	22
TI	ne number of vascular bundles in 18 different cultivars of inbred, hybrid or commercial sweet cornCheng, WY, Cheng, PC, Walden, DB.	24
Α	visualization of airflow pattern around a maize plant Cheng, WY, Cheng, PC, Walden, DB	26
М	echanical properties of stem vascular bundle Cheng, WY, P C Cheng, PC, Walden, DB, Shinozaki, DM	27
D	istribution of vascular bundles in Ohio43/KYS stemCheng, WY, Cheng, PC, Walden, DB	28
M	ethod for visualizing the vascular bundles in stemCheng, WY, Cheng, PC, Walden, DB	29
FUR	I GOLLINS, GOLOHADO ne relationship between synapsis, recombination nodules, and crossing over in maizeAnderson, LK, Stack, SM	30

FREISING, GERMANY	
Evaluation of international resistance genes against the European corn borer under Central European conditions Papst, C,	
Götze, S, Eder, J	30
IKKUISK, KUSSIA Pogulation of plant upogupling protoin CSP 210 content in maize mitachandria during cold stress Kelespichenke, AV, Zykeya, VV	
Voinikov. VK	
Metabolism DL-C ¹⁴ -tryptophan in the maize root cells at low temperatureAkimova, GP, Sokolova, MG, Nechaeva, LV,	25
The effects of hydrogen peroxide on the translational activity in mitochondria Konstantinov, YM, Subota, IY, Arziev, AS,	
Katyshev, Al	36
Redox modulation of activity of DNA-binding protein factors in mitochondria Konstantinov, YM, Tarasenko, VI, Kobzev, VF,	
Subota, IY, Katyshev, AI, Kirichenko , KA	36
JOHNSTON, IOWA Mala starila mutant ma24 managed to abramageme 10. Fax. TW. Trimpell, MD. Albertson, MC.	07
Wale-sterile mutant <i>ms24</i> mapped to chromosome torox, tw, trimmell, Mr, Albertsen, Mo	37 37
New chromosome 10 male-sterile mutant: ms47Trimnell, MR, Fox, TW, Albertsen, MC.	
New chromosome 9L male-sterile mutant: ms48Trimnell, MR, Fox, TW, Albertsen, MC	38
New chromosome 10 male-sterile mutant: ms49Trimnell, MR, Fox, TW, Albertsen, MC	38
New chromosome 6L male-sterile mutant: ms50Trimnell, MR, Fox, TW, Albertsen, MC	39
New male-sterile mutant alleles of known male-steriles Irimnell, MK, Fox, TW, Albertsen, MC.	39
JUHINSTUN, IUWA and RESEARCH TRIANGLE PARK and PEURIA, ILLINUIS and SAN DIEGU, CALIFURINIA Maiza pathagan dafansas activated by avirulance gang avrPay Simmans CP. Tasshara, IT. Sandahi, GA. March, WA	
Dowd PF Duvick JP Brians SP	40
IUIZ DE FORA-MG. BRAZIL and VIŸOSA-MG. BRAZIL	
Influence on seed size of chromosomal abnormalities in maize cells resulting from irradiated pollenViccini, LF, de Carvalho, CR	41
LLAVALLOL, ARGENTINA	
Meiotic analysis of the artificial hybrids between Zea luxurians and the subspecies of Zea maysGonzalez, G, Comas, C,	
Naranjo, CA, Poggio, L.	42
New maize inbreds in Argentina. I: Heat unit requirementsCorcuera, VR, Bernatene, EA, Naranjo, CA	42
I AVALLOL BLIENOS AIRES ARGENTINA and LOMAS DE ZAMORA BLIENOS AIRES ARGENTINA	
Exposure of Zea mays. Tripsacum dactyloides and its hybrid Zea x Tripsacum to short periods of chilling (5 C)Jatimliansky. JR.	
García, MD, Molina, M del C	45
MADISON, WISCONSIN	
tb1 is epistatic to ba2Hurkman, MM, Tracy, WF	45
MILAN, ITALY	
Isolation and preliminary characterization of a maize low phytic acid mutantPilu, R, Gavazzi, G, Nielsen, E	46
Cesium loierance trait in maizemagni, A, Nocito, FF, Filu, A	40
Agrobacterium tumefaciens – mediated genetic transformation of maizeDanilova, SA, Dolgikh, Yul, Osipova, FS, Lyapkova, NS,	
Kibardin, AV	47
NEWARK, DÉLAWARE	
Rapid EST mapping and SNP genotyping of individuals using pyrosequencingChing, A, Rafalski, A	47
NEW DELHI, INDIA and PANTNAGAR, INDIA	
Analysis of genetic relationships among Indian malze lines differing in their response to Brown Stripe Downy MildewKumar, A, Gadag BN Sayona SC	10
VOVOSIBIRSK BUSSIA and ST PETERSBURG BUSSIA	
Cytoembryological study of maize-Tripsacum hybridsKhatypova, IV. Naumova, TN. Kravtchenko, AY. Sokolov, VA	50
OTTAWA. CANADA	
Variations in levels of dehydrodimers of ferulic acid in the pericarp of maize infected by Fusarium graminearum Bily, AC,	
Reid, LM, Regnault-Roger, C, Arnason, JT, Philogène, BJR	52
OTTAWA, ONTARIO and ITHACA, NEW YORK	
A gene for resistance to northern leaf blight is inhibited by CO325Zhu, X, Reid, LM, Smith, M	53
PASCANI, REPUBLIC OF MOLDOVA	51
ST PALIE MINING OF THE 7DG EXCISIONS FROM THE OZ-7/1 AIRER	
Evidence for genetic variation for phenotypically invariant traits in teosinte	
ST. PAUL, MINNESOTA and MADISON, WISCONSIN and WOODWARD, OKLAHOMA	
Do transposon sequences in genic regions efficiently participate in recombination? Okagaki, RJ, Sullivan, TD, Kamps, TL	55
SHANDONG, CHINA	
Identification and characterization of three mutational NILs in maizeWang, ZL, Zhang, Y	57
SIMNIC-CRAIOVA, ROMANIA	
Morpho-physiological aspects of seedlings in a local maize population under abiotic stress conditionsUrechean, V	58
interspecific crossing Zea mays L. x Manimana sppcontent of anino acidsOrechean, V	

Local maize populations: sources of genetic variability for maize improvement programsUrechean, V, Naidin, C	59
SLIPPERY ROCK, PENNSYLVANIA Maiza aragged to illustrate opicitation of kornel colore Shotwell, MA	60
TAICHING TAIWAN	00
The cytological B-breakpoints of seven B-10L translocationsCheng, Y-M, Lin, B-Y	61
Cytological 10L-breakpoints of B-10L translocationsCheng, Y-M, Lin, B-Y	62
TALLAHASSEE, FLORIDA	
Pachytene arm ratios for maize chromosome 9 in OMAd9.2, a maize chromosome addition line of oatKoumbaris, G, Bass, HW	62
URBANA, ILLINUIS Three-point linkage data for <i>du1 int1</i> and <i>d1</i> on 101Stinard P	63
The isolation and characterization of su3 and su4 duplicate lociStinard, P.	63
Differences in phenotypic expression between brn1-R brn2-R and brn1-Nelson brn2-Nelson mutant kernels are attributable to the	
brn1 locusStinard, P	64
Failure to replicate the "cytoplasmic glossy" effectStinard, P	65
Additional linkage tests of non-waxy (<i>Waxy1</i>) reciprocal translocations involving chromosome 9 at the MGCSCJackson, JD	60
Stinard, P, Zimmerman, S.	67
VIÇOSA, BRAZIL	
Maize root tip cell cycle synchronization Carvalho, CR, Saraiva, LS, Otoni, WC	69
WOOSTER, OHIO	
Maize small neat snock protein 18-9 exhibits characteristics of a molecular chaperone in vitro Buss, J, Tsacoumangos, AM, Pett. V. Bouchard, BA	60
WI IHAN CHINA and NANNING CHINA	03
Physical mapping of the 5S and 45S rDNA in teosinteHan, YH, Li, LJ, Song, YC, Li, ZY, Xiong, ZY, Li, DY	70
YANGZHOU, CHINA	
Study on male-sterility in Zea mays. XIII. RFLP analysis of mtDNA of YII-1 type maize male-sterile cytoplasmQin, T, Xu, M,	70
Mapping the major restorer genes for C-type cytoplasmic male sterility using SSR markers Tang, JH, Liu, ZH, Chen, WC.	
Hu, YM, Ji, HQ, Ji, LY	73
III. SOLICITED GENOME PROJECT REPORTS	75
Regulation of maize inflorescence architectureHake, S. Jackson, D. Kellogg, E. Martienssen, R. Rocheford, T. Schmidt, R.	
Walbot, V, Brendel, V	75
AMES, IOWA	
Nested deletions: a new tool for plant genomicsPeterson, T, Zhang, J, Lee, M, Wang, K.	75
Establishment of robust malze transformation systems for the public sectorwang, K, Frame, B, Gelvin, S, Wang, S-J, Kaeppler H Akula C Thompson W Nguyen T Allen G	75
AMES. IOWA and LINCOLN. NEBRASKA	
High-throughput mapping and gene discovery tools for maize genomicsWen, TJ, Qiu, F, Guo, L, Fu, Y, Liu, F, Lee, M, Russell, K,	
Ashlock, D, Schnable, PS	76
ATHENS, GEORGIA	
Comparative genomics of malze and sorghumPaterson, AH	//
A small but significant maize functional genomics facilityEdwards D. Barker G. Wilson J. Grimmer M. Edwards K.	77
COLUMBIA. MISSOURI	
Functional genomics of plant polyploidsBirchler, JA	77
COLUMBIA, MISSOURI and CLEMSON, SOUTH CAROLINA and ATHENS, GEORGIA	
The Maize Mapping Project: Comprehensive genetic, physical and database resources for maizeCoe, E, Cone, K, Davis, G,	70
COLLIMBIA MISSOURI and ST LOUIS MISSOURI and SALTLAKE CITY LITAH	/ 0
Sequence, expression and evolution of mitochondrial genomes in the genus ZeaNewton, K. Clifton, SW. Fauron, C	79
EAST LANSING, MICHIGAN	
Functional genomics of hemicellulose biosynthesis in cerealsHazen, SP, Scott-Craig, JS, Walton, JD	80
EUGENE, OREGON	~
INSE prairit genome project: Functional genomics of chloroplast biogenesisBarkan, A, Stern, D, Hanson, M	81
Regional mutagenesis utilizing Activator (Ac) in maizeConrad, L. Hardeman, K. Lewis, P. Lebiko, S. Farmer, P. Ahern, K.	
Chomet, P, Brutnell, T	81
PISCATAWAY, NEW JERSEY	
A pot at transporte marze lines for legalized mutagenesis based on the As Detransporte system	83

PISC	ATAWAY, NEW JERSEY and WEST LAFAYETTE, INDIANA	
С	Collinearity of maize and sorghum at the DNA sequence levelMessing, J, Linton, E, Song, R, Lai, J, Tanyolac, B, Kulikowski, C,	
	Muchnik, I, do Lago, AP, Fuks, G, Armhold, G, Ramakrishna, W, Ma, J, Park, Y-J, Emberton, J, SanMiguel, P, Bennetzen, J	83
RALI	EIGH, NORTH CAROLINA and MADISON, WISCONSIN and IRVINE, CALIFORNIA and ITHACA, NEW YORK	
E	volutionary genomics of maizeBuckler, E, Doebley, J, Gaut, B, Goodman, M, Kresovich, S, Muse, S, Weir, B	86
ST F	PAUL, MINNESOTA	
A	radiation hybrid system for the genetic and physical mapping of the corn genomeOkagaki, RJ, Kynast, RG, Odland, WE, Stec, A, Russell, CD, Zaia, HA, Rines, HW, Phillips, RL	88
STA	NFORD, CALIFORNIA	
2	001 Report from the Maize Gene Discovery ProjectWalbot, V, Hake, S, Freeling, M, Schmidt, B, Smith, L, Chandler, VL,	
	Galbraith, D, Larkins, B, Sachs, M, Brendel, V	88
TUC	SON, ARIZONA	
F	unctional Genomics of Chromatin: a progress report for maizePlant Chromatin Consortium	91
Ν	laize cDNA microarraysElumalai, R, Gchachu, M, Pierson, E, Chandler, V, Galbraith, DW	92
WES	ST LAFAYETTE, INDIANA	
A	ssessment of gene content, colinearity and evolution in barley, maize, rice, sorghum and wheatBennetzen, JL	93
IV.	ADDRESS LIST	95
V.	MAIZE GENETICS COOPERATION STOCK CENTER	124
VI.	MAIZE GENOME DATABASE	144
VII	SYMBOL INDEX	146
VIII.	AUTHOR INDEX	147

Oliver Evans Nelson, Jr. (August 16, 1920 – November 6, 2001)

--Hannah, C, Burr, B, Dooner, H

University of Florida, Brookhaven National Laboratory and Rutgers University

Noted maize geneticist Oliver Nelson of the University of Wisconsin died in a Madison hospital November 6, 2001 after a long battle with both osteoporosis and Parkinson's disease. Having become acutely ill that afternoon, Oliver refused transport to the hospital in order to finish the communication of a paper concerning enhanced starch synthesis to the Proceedings of the National Academy of Sciences. He died soon after reaching the hospital.

Born in Seattle, Washington, Oliver was raised in the vicinity of New Haven, Connecticut and first experienced maize genetics as a summer high school assistant in the Department of Genetics, Connecticut Agricultural Experiment Station. Oliver graduated from Colgate *magna cum laude* in Botany at the age of 21. He subsequently received his M.S. and Ph.D. degrees from Yale under the direction of D. F. Jones.

Oliver joined the faculty at Purdue University as an Assistant Professor in 1947 and was promoted to Professor in 1954. To the great delight of R. A. Brink, Oliver left Purdue in 1969 for the University of Wisconsin. He spent the rest of his career there, having "retired" to emeritus status in 1991.

Throughout his long career, Oliver pursued many aspects of

maize genetics and biochemistry. Initially hired at Purdue as a popcorn breeder (at which he was quite successful -- some of his better lines were used in the popcorn industry long after he ended his breeding efforts), he found that most popcorn lines carried the *Ga1-s* allele and as such were cross-incompatible with dents, carrying the *ga1* allele, when used as females. This discovery led to a systematic study of the *ga1* locus. With L.R. House he showed that non-reciprocal cross-sterility was the result of poor *ga1* pollen tube growth on *Ga1-s* silks.

Oliver soon focused on the waxy1 locus to address questions of fundamental importance to biologists of the time, as well as to test predictions about transposable elements, then in vogue. Exploiting the finding of R.A. Brink and M. Demerec that the wx1 gene functions in the gametophytic genotype. Oliver realized that pollen populations of sufficient size to detect rare recombination within the gene could be quickly examined. If independent mutations of the waxy gene occurred at different sites, he could place these relative to each other by constructing a fine structure recombination map through the occurrence of rare wild-type recombinant grains. Looking at 50,000 pollen grains at a time he first showed that no wild-type pollen grains could be observed in plants that had two copies of the same waxy allele, but that rare, blue-black staining grains could be observed at frequencies between 0 to 80 per 100,000 in plants heterozygous for two independent waxy alleles. Characteristically, he also showed for one of these combinations that he could observe the same frequency of recombination in the seed. As he used stocks with flanking markers in this important control, this also allowed him to orient the mutations he was mapping relative to the other genes on the chromosome. Even though the frequency of recombination was not additive across the locus, he was able to construct his map using overlapping deletions. All told, the sites of 31 waxy mutants were mapped in this way. Among them were a number of stable transposable element-induced alleles. Oliver showed that these were distributed throughout the locus rather than being concentrated in a control region at one end of the gene. The construction of the first fine structure map of a plant gene, plus that done with the rosy locus of Drosophila, provided us with the most detailed glimpse of the structure of a gene before DNA sequencing. When the wx1 gene was cloned, Wessler and Varagona remapped 13 of the mutants at the DNA level. An excellent correlation between the genetic and physical maps was observed.

Oliver considered himself a biochemical geneticist. He began his career at a time when there was great excitement to learn how genes worked and what they could tell us about biochemical pathways. Oliver saw no reason that such studies could not also be pursued in higher plants. Since starch was the major component of corn seed, it stood to reason that mutations of this process would have a visible mutant phenotype. He and his colleagues conducted a systematic investigation of the deficiencies of a number of kernel mutations and over the course of three decades identified the biochemical defects associated with eight starch mutants including those responsible for wx1, sh1, sh2, sh4, bt1, bt2, du1 and su1. Placing these mutants in the biochemical pathways allowed us to have a better understanding of how this process operates in the corn kernel. This accomplishment is made even more impressive when one realizes that virtually all of this was done before recombinant DNA methodology was commonplace.

The starch work produced a number of "firsts". Identification

of the lesion with wx1, a starch-bound ADP-glucose glucosyl transferase, to our knowledge, represented the first case in a higher plant in which the biochemical lesion of a gene with a visible mutant phenotype was elucidated. At the pathway level, the work with wx1 provided the first and unexpected demonstration that amylose, the straight-chained glucose polymer is **not** a precursor for the branched polymer of glucose, amylopectin, a fact still not presented correctly in many plant physiology textbooks.

The elucidation of the enzyme associated with *su1*, in association with subsequent cloning and characterization of the gene in the Myers-James lab at Iowa State University, showed that **debranching** of alpha 1,6 bonds in starch is essential for the synthesis of wild-type levels of starch. This, too, was unexpected based on the then current view of starch synthesis. The cloning and identification of the protein associated with *bt1*, coupled with subsequent physiological/biochemical studies at Penn State University, provided the first definitive evidence that ADP-glucose, the precursor for starch, is synthesized in the cytosol (and not in the plastid) in the cereal endosperm.

As mentioned, Oliver's pursuit of wx1 was aimed initially at understanding the nature of the relationship between the gene and its associated transposable elements. This interest persisted throughout his career at Wisconsin. This line of investigation, to some extent with the sh2 locus, but in much more detail with the bz1 gene, also led to a number of "first" observations. These included the first reports that inserted transposable elements led to the production of a structurally altered protein. This was as expected if the elements were inserted throughout the gene - as shown in his wx1 recombination investigations – but was contrary to the idea that transposable elements act as normal regulatory elements of gene expression. Another first was the report that excision events led to a heterogeneous group of revertant alleles that displayed different protein properties, thus anticipating the alterations in coding regions created by transposon excision. These insights came before the application of recombinant DNA methodology to the study of transposable elements.

In the 80s, when the tools of molecular biology made it possible to address questions at the DNA level, Oliver's interest shifted to the transposable elements themselves. Another "first", in what immediately became classical work, his lab --in collaboration with Nina Fedoroff's-- isolated for the first time a plant gene by a then novel procedure of transposon tagging. The maize elements have been subsequently exported to other species and have revolutionized gene isolation procedures not only in maize but also in other plants. The second main contribution from Oliver's lab during his last decade of activity, and one that involved perhaps the largest number of students and postdocs that he had in his career at any one time, was the elucidation of many of the changes that these highly unstable elements are capable of undergoing.

Perhaps the greatest acclaim given to Oliver came for the work done during the period 1962 to 1969. These studies, done primarily in collaboration with Ed Mertz of Purdue University, showed that levels of the essential amino acids, lysine and tryptophan, could be enhanced by mutation. The discovery that certain amino acids were enhanced in *opaque2* and *floury2*, was of tremendous importance to maize breeding programs; however, problems of kernel softness and yield drag precluded early use in the corn industry. Only now, through development of "modified opaque" maize, is the *o2* mutation being incorporated into corn lines of

commerce.

A little known fact about the early *opaque2* and *floury2* work exemplifies Oliver's uncanny ability at understanding biology through mutant analysis. Before the understanding of *o2* and *fl2*, biochemists at Purdue were massively screening, with little success, maize lines for amino acid content. Oliver knew that lines selected at the University of Illinois for enhanced protein content exhibited an enhanced level of zeins. Because zeins contain little to no lysine, these lines were of little value for feeding monogastric animals. These lines also exhibited a translucent phenotype. Oliver reasoned that mutants with the opposite phenotype (opaque) might have reduced zein content. If non-zein proteins increased, lysine content would increase. Accordingly, four opaque mutants were analyzed: *o1, o2, fl1* and *fl2*. Lysine was doubled in two of the four mutants.

In addition to his many research accomplishments, Oliver was a tireless worker for the maize genetics community. Oliver played an instrumental role in hosting the maize meetings following its move from Allerton House in central Illinois to the various sites in Wisconsin and the Chicago area. He chaired and wrote the substantially unchanged "A Standard For Maize Genetics Nomenclature". Oliver also served as Chairman of the Genetics Department at Wisconsin, an Associate Editor for Plant Physiology and devoted more than his fair share of time to grant panels in Washington.

Oliver won many prestigious awards during his career. These included an honorary Doctorate of Agriculture from Purdue University in 1973, The Thomas Hunt Morgan Medal from the Genetics Society of America in 1997, the Stephen Hales Prize from the Ameican Society of Plant Physiologists (1998), the Herbert Newby McCoy Award (1967), the John Scott Medal (1967), the Holblitzele National Award in Agricultural Sciences (1968) and the Commemorative Medal of the Federal Land Bank System (1968). He was elected to the National Academy of Sciences in 1972.

Oliver was reserved, unfailingly courteous, rigorously honest, and forthright. He was an insightful and observant scientist. His strength was the use of genetics - mutant phenotypes and segregational analysis - to answer biologically and agronomically important questions. This careful and perceptive analytical bent of his was the hallmark of his career. Oliver played an instrumental role in maize genetics, plant biology, and the maize genetics community. He taught by example. He provided our introduction to a life-long career with the corn plant, and he gave us an everlasting appreciation of the values of Mendelism and appropriate controls. Not only was he a mentor to the three of us in the early stages of our careers, he continued to provide guidance, advice, wisdom and an unconditional friendship to us throughout the rest of his life. He will be missed.

I. Foreword

The Maize Genetics Cooperation Newsletter exists for the benefit of the maize community as an informal vehicle for communication. Its inception and continuation has been to foster cooperation among those interested in investigating maize. Your submissions are encouraged to disseminate knowledge about our field that might otherwise go unrecorded.

For this issue, we solicited reports on genome projects that include maize in some form. We received an enthusiastic response to these requests and for this we thank those investigators who contributed. The objectives of including these notes were severalfold. First, they provide the maize community with information about the studies being conducted and the resources being developed. Further, by providing a compendium for what is currently being performed, the reports might serve as an inspiration for future projects that will enrich the ability to use maize as a model system.

We remind the readers that contributions to the Newsletter do not constitute formal publications. Citations to them should be accompanied by permission from the authors if at all possible. Notes can be submitted at any time and are entered into MaizeDB. The deadline for the next print copy, volume 77, is January 1, 2003. Electronic submission is encouraged by sending your contributions as attachments, or as text of an email, to Newsletter@chaco.agron.missouri.edu.

We encourage the community to carry studies of general scientific interest to the formal literature. However, there is a great need to share technical tips, protocols, mutant descriptions, map information, ideas and other isolated information useful in the lab and field.

As in the past, Shirley Kowalewski has been responsible for assembly and correcting of the copy. She has performed this task with speed, precision and a great sense of humor.

Mary Polacco James A. Birchler Co-editors

Phenotypic characterization of inbred lines and their *o2* conversions

--Scott, MP

Peter Loesh was a plant breeder at Iowa State University from 1971 to 1980. During this time, he worked extensively with the *o2* mutation in an effort to improve the nutritional quality of maize. Unfortunately, he passed away suddenly, and this work was not brought to a conclusion. Some of his effort was devoted to developing *o2* back-cross conversions of public domain inbred lines. Because Dr. Loesh's field books have been lost, the extent of recovery of the recurrent parent phenotype is not known.

The objective of this study was to characterize Dr. Loesh's *o2* converted lines relative to their recurrent parents and to verify that they have the *o2* genotype. To accomplish this, I planted one row of each line adjacent to one row of the corresponding recurrent parent at the Iowa State University Agronomy Farm in the summer of 2001. The resulting plants were characterized phenotypically on the basis of their plant height, ear height and pollination date (see Table). With the exceptions noted in the table, the inbreds were phenotypically similar to their recurrent parents.

In order to verify that the Loesh inbreds carried the *o2* mutation, each of these lines was crossed to an *o2* mutant tester from the Maize Co-op Stock Center (701D). In all cases, the *o2* genotype was confirmed.

These lines will be valuable for comparing the effect of different genetic backgrounds on the *o2* mutation, and may also be useful to breeding programs aimed at improving nutritional quality with the *o2* mutation. Seed of these lines has been sent to the Maize Co-op Stock Center for maintenance and distribution.

Table. Phenotypic characterization of inbred lines and their o2 conversions.

Pedigree	plt ht ^a	ear ht	pol date ^b	comments
A257	NS	NS	-1	
A619	* *	NS	- 3	
B14A	* *	NS	-2	o2 small kernels
B45	NS	*	0	
B46	*	NS	2	O2 red cob, o2 white cob
B57	NS	NS	- 6	
B66	NS	NS	0	
M14	NS	*	-9	

^aPlant and ear height measurements are the average of the first five plants in the row. NS indicates the difference between the inbred line and its *o2* conversion is not significant, ** significant to P=0.05, * significant to P=0.1

^bPollen date = (number of days after planting when half the plants in the *O2* row first shed pollen) – (number of days after planting when half the plants in the *o2* row first shed pollen)

BEIJING, CHINA Academia Sinica

Common and different band for isozyme of the multiplasmic lines in maize (Zea mays L.) --Zeng, M, Yang, T

--zeng, w, rang, r

The term "multiplasm" was originally introduced into the research of CMS (cytoplasmic male sterility) by Grogan (1971). At the present time, "multiplasm" in the broad sense generally indicates a set of genetic materials: a homonucleo-hetero cytoplasmic line, a homocytoplasm-hetero nucleus line and different lines for single, double, multiple genes, including isogenic and near-isogenic lines. Multiplasm in a narrow sense indicates only the genetic material (line) of homeonucleo-hetero cytoplasm. Breeding for a multiplasmic line, has not only provided a new model of investigation into the genetics of cytoplasmic and nuclear genes and nucleoplasmic genetic interactions, but also has provided a fresh channel for avoiding a single cytoplasmic resource in germplasm and has increased the diversity of germplasm resource in crop production. This study surveys the isozymic band by electrophoresis.

Eleven multiplasmic lines of maize were used as experimental materials, i.e. (Fli) Mo17 [original Mo17 line, (Fli) was shown as flint cytoplasm], (su1)Mo17, (sh2)Mo17, (bt1)Mo17, (Pop)Mo17, (wx)Mo17, (Teo)Mo17, (cms-T)Mo17, (cms-S)Mo17, (cms-C)Mo17, (cms-21A)Mo17. (Fli)Mo17 was used as a control (CK) to carry out the analyses. The common degree of nuclear genes was 99.95% in 10 of the multiplasmic lines.

Isozymes were determined as described by Zeng (Determinations of the biochemistry for CMS and genetics for their restoration in maize. Science in China, 25(3):283~296, 1987). The electrophoreses were conducted analyzing the POD and EST of kernel at the 9th day after pollination, embryo at the 15th, 25th, and 34th day after pollination, endosperm at the 15th, 25th, and 34th day after pollination, and young shoot of mature seed, unfolded leaf at the 6-leaf, 8-leaf, and 14-leaf stage, emergent tassel stage, pollination stage, 15th day after pollination stage, respectively.

Experimental Results. The results obtained indicate there were 20 POD bands, and 18 EST bands in total. Comparing the 11 multiplasmic lines, the zymograms for POD electrophoresis of the

Figure 1 Zymograms of peroxidaes and esterase isozyme in multiplasms The following order is one of the increasing activities of isozymic bands. different tissues at different stages varied clearly, formed the same bands and specific bands, that of embryo at the 34th day after pollination and pollen at pollination was uniform. The difference of zymogram for EST electrophoresis of the 11 multiplasmic lines mainly appeared in the tissues of the kernel at the 9th day, the embryo at the 25th day and 34th day, the endosperm at the 34th day after pollination, and the tassel at the emergent tassel and the pollen at the pollination stage, formed the same bands and specific bands also. But EST of the other tissues (that of the embryo at the 15th day, the endosperm at the 25th day and the endosperm at the 25th day after pollination, and the young shoot, the leaf at 6th leaf, at 8th leaf, at 14th leaf, at emergent tassel, at pollination, at the 15th day after pollination stage) was all uniform.

> BELGRADE-ZEMUN, YUGOSLAVIA Maize Research Institute

The antagonistic effect of endophytic bacteria on phytopathogenic fungi

--Dondo Gosic, S, Drinic Mladenovic, S, Konstantinov, K

Diseases caused by phytopathogenic fungi are a serious problem in maize production, as they can result in premature ripeness of maize. Infected plants produce ears of poorer quality, and lodged plants are not suitable for mechanised harvest, etc. Control by the application of chemicals is limited due to resistance of fungi and destruction of antagonistic soil mycoflora.

The biological control of disease affecting plants has gained much attention in the past two decades as a way of reducing the use of chemical products. The existence and active metabolism of endophytic bacteria within plant tissue make them potential candidates for biological control of plant resistance to phytopathogenic fungi. The effects of endophytic bacteria isolated from maize and sunflower on growth of phytopathogenic fungi *B. zeicola, E. turcicum, F. oxysporum, Ph. zeae, M. bolleyi, N. oryzae* were observed in the present study under in vitro and in vivo conditions.

Two bacterial strains were selected for these investigations: *Bacillus licheniformis*, isolated from maize embryo, and *Seratia liquefaciens*, isolated from sunflower. The bacterial strains were determined by the application of API and Microlog 1 system. The slightly modified method of Gutterson et al. (Journal of Bacteriology, vol.165, No.3, 696-703, 1986) was applied to monitor fungi/bacterial interaction. The effects of bacteria on fungal development and growth were evaluated in dual cultures on media optimal for growth of bacteria (LB) and fungi (PDA) in the course of 3 and 7 days.

According to the results obtained, it can be concluded that effects of both bacteria on all fungi were antagonistic. Inhibition of fungal growth occurred without physical contact between the bacterium and the fungus. The typical appearance of dual culture growth on both mediums is shown in Figure 1.

The growth rate of fungi is expressed as the colony diameter of dual or separated cultures through seven days. The greatest antagonistic effect was obtained in dual cultures with *B. zeicola* and *Ph. zeae.* A greater effect on fungal growth was achieved on the LB medium. Results of fungal growth in dual cultures in relation to the control are presented in Figure 2.

Fig. 1. Separate and dual cultures of *Bacillus licheniformis* and *Seratia liquefaciens* on PDA and LB medium.

Fig 2. Colony diameter (cm)of fungi in separate (A, D) and dual cultures with B.licheniformis (B,E) and S.liquefaciens (C, F) during 3 and 7 days of incubation on PDA and LB media

Endophytic bacteria release components in the medium that reduce fungal growth. Proteins were isolated from bacteria grown as single cultures, as well as from bacteria interacting with fungi, and were separated on polyacrylamide gels. A greater number of new polypeptide fractions in relation to the control were determined in the interactions with observed fungi. The studies on the molecular basis of this antagonism are in progress.

Two fungi *B. zeicola* and *F. oxysporum*, i.e. *M. bolleyi* and *N. oryzae*, were selected for investigation of antagonistic effects of *B. licheniformis* and *S. liquefaciens*, respectively, under in vivo conditions. Untreated seed and seed treated only with fungi were used as the control. The length of the shoots and roots of treated and control maize plants were measured and results are presented in Figure 3.

Fig. 3. The length of shoots (a, c) and roots (b, d) of plants treated with bacteria and fungi as well as plants treated only with fungi and control plants.

Greater lengths of roots and shoots were detected in plants treated with both bacteria and fungi than in plants treated only with fungi.

The results obtained point out that endophytic bacteria isolated from maize and sunflower can be used in biological control of observed phytopathogenic fungi of maize.

BERGAMO, ITALY Istituto Sperimentale per la Cerealicoltura

Maize Rpd3-type histone deacetylase and retinoblastomarelated proteins cooperate in repressing gene transcription in a plant system

--Rossi, V, Locatelli, S, Lanzanova, C, Motto, M

In eukaryotic cells transcriptional activation is a dynamic and complex process, involving direct recruitment of co-activator complexes and assembly of the functional transcriptional machinery at the target gene promoter. Recent findings, indicating that several transcriptional co-activators and co-repressors possess histone acetyltransferase (HAT) and histone deacetylase (HDAC) activities, have revealed a direct mechanistic link between chromatin modification and transcriptional regulation (Strahl, BD and Allis, CD, Nature 403:41- 45, 2000).

The mammalian pRb/E2F complex has been reported to recruit chromatin remodeling enzymes, including Rpd3-type HDACs, to actively repress transcription of genes involved in G1/S transition during cell cycle progression (Harbour, JW and Dean, DC, Genes Dev 14:2393-2409, 2000). To investigate whether the maize Rpd3-type histone deacetylase, ZmRpd3, (Rossi, V, et al., Mol Gen Genet 258:288-296, 1998) and the maize retinoblastoma-related protein, ZmRBR, can repress transcription, we prepared a set of effector plasmids, in which either the complete ZmRpd3I coding sequence or the ZmRBR1 large pocket region were fused to the DNA-binding domain of the tetracycline repressor (TetR). The expression of these chimeric genes was driven by the 35S constitutive promoter of the cauliflower mosaic virus (CaMV). The TET system is based on the targeting of TetR-fused proteins to a synthetic promoter containing four tet operators upstream of a minimal promoter (TAX promoter, Bohner, S, et al., Plant J

14:87-95, 1999). Our experimental strategy was based on the following considerations. First, the reporter plasmid, containing the ß-alucuronidase gene (GUS) under the control of the TAX promoter was stably integrated into the tobacco genome (tobacco TAX transgenic lines) allowing formation of a natural chromatin structure. Second, analysis of the repression activity was carried out by means of competition assays, in which tobacco protoplasts from TAX lines were co-transformed with a TetR-fusion of the strong viral activator VP16 together with one of the TetR-fusion plasmids expected to repress transcription. To avoid heterodimerization of the TetR domains, which might interfere with VP16 transactivation efficiency, we employed different TetR DNA-binding domains unable to heterodimerize (TetR-B for VP16 fusions and TetR-B/E for the other TetR-fusions, respectively (Forster, K, et al., Nucl Acids Res 27:708-710, 1999). Third, the effect on transcriptional activity of the GUS gene, due solely to competition for binding the TET operators, was assessed by co-transforming TetR-B-VP16 (TET-VP16) and a TetR-B/E-fused maize zein (TET-zein), a structural protein unable to control transcriptional activity (Spena, A, et al., J Mol Biol 169:799-811, 1983). Therefore, evaluation of transcription repression activities of ZmRpd3I/ZmRBR1 TetR-fusion proteins was achieved by comparison with results obtained from TetR-B/E-zein transformed protoplasts.

The results of these experiments showed that VP16 strongly activated expression of the GUS gene, which was only slightly reduced by the presence of competing TetR-zein. Conversely, a plasmid carrying the ZmRpd3I TetR-fusion strongly reduced GUS activity. Furthermore, both a mutation in histidine 153, believed to be critical for HDAC activity, as well as treatment with the HDAC inhibitor TSA, were able to relieve the repression activity of ZmRpd3I. These results indicate that ZmRpd3I is likely to use its HDAC activity to repress transcription when artificially targeted to a promoter within a chromatin context. A negative effect on gene transcription was also observed for the ZmRBR1 TetR-fusion, although it was lower with respect to ZmRpd3I and almost insensitive to TSA treatment. Significantly, GUS activity was reduced to background levels by the simultaneous presence of TET-RBR and CaMV-Rpd3, a plasmid expressing ZmRpd3I not fused to the TetR DNA-binding domain. In this case, TSA relieved the effect of ZmRBR1 on GUS activity repression to a level observed with ZmRBR1 alone. The introduction of the C653F mutation, which affects A/B pocket integrity, resulted in a complete loss of transcription repression activity regardless of whether CaMV-Rpd3 was present or not. These findings suggest that ZmRBR1 possesses an HDAC-independent capacity to repress gene transcription, which relies on the integrity of the A/B pocket. However, our results also indicate that the ability of ZmRBR1 to recruit a ZmRpd3I-related HDAC enhances its effect in repressing gene transcription. The integrity of the A/B pocket domain is also a prerequisite for this repression mechanism. Finally, we observed that similar results were obtained when the reporter plasmid (pUC-TAX-GUS/INT) was co-transformed into protoplasts prepared from tobacco wild type plants together with the above described effector plasmids. In this last experiment the reporter plasmid may not adopt a complete chromatin structure suggesting that non-histone proteins may also be ZmRBR1/ZmRpd3I substrates.

Genetic relatedness and variability among maize inbred lines selected in Italy

--Hartings, H, Chitto, A, Bertolini, M, Verderio, A, Motto, M

In breeding programs, information on genetic relationships within and between species is used for organizing germplasm collections, identifying heterotic groups within crops, and selecting parents for purposes of crossing. In this respect, DNA fingerprinting offers the possibility of studying genetic variation and relationships at the molecular level.

To address the issue of genetic relatedness and variability between the inbred lines developed in Italy by the Bergamo Maize Station, an AFLP analysis (Vos, P et al., Ac. Res. 23:4407-4414, 1995) was performed on a series of 71 inbred lines, considered representative of optimized breeding material. Twenty reference lines, encompassing the major heterotic groups available in the U.S. Corn Belt were included in the analyses in order to maximize genetic variability across the data set. Hence, the reference lines supplied a basis of genetic diversity to which the Italian inbred lines were related in the evaluation of their relative genetic relationships.

AFLP analysis of the Italian and reference inbred lines produced stable and repeatable profiles, which allowed us to unequivocally fingerprint each inbred line analyzed. A total of 682 polymorphic bands were revealed by the use of 5 Pstl/Msel and 9 EcoRI/Msel primer combinations (PCs). E/M PCs displayed between 29 and 65 polymorphic bands resulting in an average of 47.56 12.68 markers. P/M PCs appeared less variable, disclosing between 41 and 54 polymorphic bands with an average of 50.8 5.63 markers. E/M PCs displayed an average Polymorphism Information Content (PICav) value of 0.33 0.027, while an average PICav of 0.35 0.014 was obtained with P/M PCs. In general, PICav values ranged from 0.28 to 0.36, demonstrating the good discriminatory power of the markers identified.

Scoring of the markers allowed the construction of a 682x91 binary array, which was consequently utilized to compute genetic distance (GD) values (Nei, M and Li, WH, Proc. Natl. Acad. Sci. USA 76:5269-5273, 1979) for all pairs of inbred lines considered. GD values ranged from 0.124 for inbred lines Lo876 and Lo1064, both derived from Lo876o2, to 0.62 for inbreds Lo3 and Lo903. An average GD of 0.437 0.012 was calculated for the entire data set.

Distance measures were subsequently used to construct a hierarchical tree using the UPGMA method using an NTSYS-PC program. Table 1 summarizes the grouping of inbred lines, presenting the major groups identified as well as their disclosed subgroups. Cluster analysis largely agreed with pedigree information as can be established by comparing the pedigree with clustering information.

For data with a hierarchical structure, analysis of molecular variance (AMOVA) allows the study of patterns of genetic variation within and between groups through the examination of variance. This assay can be extended to evaluate molecular marker data even in the absence of replicated values for samples (Law, JR et al., Euphytica 102:335-342, 1998). An AMOVA of the AFLP data based on the grouping obtained in cluster analysis of the inbred lines considered is presented in Table 2. Clusters were used to recompose, in broad terms, BSSS, LSC, and unrelated heterotic groups. The amalgamation into heterotic groups was performed using both a small number of larger clusters, as well as a

Table 1. Principal groups of inbred lines as identified by cluster analysis.

		BSSS1 (22)	а	BSSS2 (9)	References (12)
	L0950 L0951 L0960 L0964 L01054 L01053 L01087 L01087 L01094 L01173	Lo903 Lo904 Lo1086 Lo1101 Lo1106 Lo1127 Lo1167 B73	L0999 L01055 L01137 L01141 B37	Lo876 Lo1016 Lo1064 Lo1066 Lo1067 Lo1123 Lo1169 Lo1170 A632	Lo986 A71 A69Y B57 C1187-2 FR5 H55 N6 Oh07 Os420 W64A Wf9
Ave⁵ Min Max		0.32 0.13 0.48		0.37 0.12 0.49	0.47 0.27 0.54
	19	C1 (21)	19	(18)	1 0932 (1)
	Lo1059	10863	L 0881	102 (10)	1 0932
	Lo1061	Lo1077	Lo1038	L0924	L0937
	Lo1063	Lo1095	Lo1056	Lo976	Lo944
	Lo1076	Lo1096	Lo1035	Lo1124	W153
	Lo1156	Lo1125	Lo1090	Lo1126	
	Lo1157	Lo1128	Lo1140	Lo1142	
	Lo1158	Lo1172	C103	Lo1166	
	Lo1159	Lo1176	Va59	Mo17	
	Lo1160	L01182	18	Oh43	
	L01162				
	L01100				
Δνο		0.37		0.40	0.33
					0.00
Min		0.13		0.15	0.19

^anumbers in parentheses represent the number of inbreds in each group;

^bAve: average GD, Min: lowest GD, Max: highest GD within groups.

BSSS: Iowa Stiff Stalk Synthetic; LSC: Lancaster Sure Crop

larger number of clusters of reduced size. In both cases, the within-population (clusters) components of variance dominated the AMOVA, accounting for 73% to 79% of the variation, with less than five percent representing variation between heterotic groups. Changes in the grouping pattern applied had no significant effect on the distribution of variation. Furthermore, the genetic distance between clusters (F_{st} values) exceeded both the degree of inbreeding within clusters (F_{sc} values) and the degree of relatedness between genes within inbred lines (F_{ct} values) in all cases.

Table 2. Summary of AMOVA for AFLP data from Italian and U.S. Corn Belt Inbred Lines.

	Nested AMOVA Variance Components						
Between Between Within							
	Groups	Populations	Populati				
		Within Groups	ons				
Populations	V(A)%	V(B)%	V(C)%	F _{st}	F₅c	F _{ct}	
Large	2.61	18.31	79.1	0.209	0.188	0.026	
Small	4.27	22.38	73.4	0.266	0.234	0.043	

Heterogeneity within breeding groups was further analyzed by computing a series of diversity statistical indices from the AFLP data (Table 3). Estimates of θ , which is the product of population gene number and mutation rate, were computed based on the number of polymorphic sites ($\hat{\theta}_s$) and on the mean number of pairwise differences ($\hat{\theta}_{\pi}$). Both estimates hold under the assumption of random mating, population equilibrium and neutral mutations. If these assumptions are valid, $\hat{\theta}_s$ has smaller stochastic variance than $\hat{\theta}_{\pi}$. However, since $\hat{\theta}_{\pi}$ is independent of sample size while $\hat{\theta}_s$ is not, $\hat{\theta}_{\pi}$ may be a more reliable estimate of gene diversity within heterotic groups. None of the breeding groups analyzed

showed significant variation in $\hat{\sigma}_s$ and $\hat{\sigma}_{\pi}$ values. Subsequently, the average gene diversity per site was computed. This parameter of diversity, as determined on the entire population of inbreds analyzed, equaled 0.33 ± 0.16 and varied within a narrow range (0.24 - 0.33) when determined for the heterotic groups identified. Expansion or contraction of the heterotic groups was assayed by statistics developed by Tajima (Tajima, F, Genetics 123:585-595, 1989). Tajima's D statistics, computed on the heterotic groups listed in Table 3, did not reveal any expansion or contraction of groups, since none of the values obtained reached statistical significance using coalescent simulation (Hudson, R.R., Oxford Surways in Evalutionary Biology, Oxford Univ. Press, 1-44, 1990), or parametric approximation assuming a beta-distribution (Tajima, 1989).

Table 3.	Summary of	f diversity	statistics	for	Italian	and	U.S.	Corn Belt Inbred Lines.
----------	------------	-------------	------------	-----	---------	-----	------	-------------------------

	_		G	iroups		
	All Inbreds	Reference ^a	BSSS1	BSS2	LSC1	LSC2
No. inbreds	91	20	22	9	21	18
No. polymorphic sites	682	475	442	412	235	329
Theta(S)	0.16	0.33	0.27	0.36	0.28	0.29
S.D. ^b Theta(S)	0.04	0.13	0.09	0.15	0.09	0.10
Theta(π)	0.25	0.38	0.36	0.40	0.36	0.35
S.D. Theta(n)	0.12	0.20	0.17	0.22	0.18	0.18
Average gene diversity	0.33	0.33	0.24	0.26	0.27	0.30
+/- average diversity	0.16	0.17	0.12	0.14	0.14	0.15
Tajima's D	2.24	0.68	0.92	0.45	1.15	0.91

^aAll Reference lines; ^bS.D. Standard Deviation

In this study, AMOVA, performed on genetic structures obtained by means of two different amalgamation schemes showed that the within cluster component of variance largely exceeds the variance between heterotic groups, regardless of the amalgamation scheme selected. Moreover, additional statistical indices of diversity show that no significant differences occur between the variability encountered within identified heterotic groups and the overall level of genetic diversity among the inbred lines taken into consideration. It can therefore be concluded that breeding activity has by no means caused a decline of genetic variability within heterotic groups. On the contrary, levels of genetic diversity have remained substantially unchanged over time and hence, plant breeding has resulted in a qualitative rather than a quantitative shift in diversity. In conclusion, this study has shown that a large genetic variability occurs among maize germplasm available in Italy. This variability can be exploited in hybrid and line development for further yield improvement.

> BERKELEY, CALIFORNIA University of California Berkeley

Mu Killer (*MuK*) causes epigenetic silencing of *Mutator* elements

--Slotkin, RK, Freeling, M, Lisch, D

The *Mutator* family of transposable elements is under the control of the autonomous *Mu* element *MuDR*, which encodes transcripts essential for both its own and nonautonomous *Mu* element transposition. The loss of *Mutator* activity can occur in at least three previously described ways: the autonomous *MuDR* element can segregate away, transpose to a transpositionally weak position, or internally delete creating a non-functional element (Lisch and Freeling, Maydica 39:289-300, 1994). Otherwise functional *MuDR* elements have also been observed to become epigenetically silenced. This silencing is correlated with methylation of both *MuDR* and nonautonomous *Mu* elements. Here we report a dominant locus, *Mu Killer (MuK)*, which results in epigenetic silencing of a functional *MuDR* element at a known active position.

Normally in our minimal line, which carries a single MuDR element at a known position (MuDR(p1)) and a single Mu1 element, methylation only occurs in progeny that lack a functional MuDR element. In families segregating Mu Killer, however, half the progeny that carry MuDR(p1) have methylated Mu1 TIRs. This methylation is associated with a reduction or elimination of Mu1 excision activity.

Mu Killer activity was originally identified when a high color background was crossed to a minimal *Mutator* line carrying a *MuDR* element at an unknown position. It was observed that this *MuDR* element became silenced in the progeny of this cross (Lisch and Freeling, 1994). In subsequent generations, the silencing effect was genetically separated from any full-length *MuDR* elements.

In the winter of 2000, a male carrying an active MuDR(p1) element was crossed to both a Mu permissive tester and MuK ears. The progeny of these crosses were analyzed by Southern blot. As expected, all (12 of 12 examined) of the progeny of the Mu permissive tester that carried MuDR(p1) had hypomethylated Mu1 elements. In contrast, of the progeny of the MuK plant that inherited MuDR(p1), 40 out of 78 (51.3%) had methylated Mu1 elements, as expected for the independent segregation of MuDR(p1) and MuK. All of these Mu1 methylated plants had been grown from weakly spotted or pale kernels carrying a fulllength MuDR(p1). Pale kernels from this MuK ear were planted in the summer of 2001 and the resulting progeny were screened by DNA gel blot for the presence of MuDR. Although only half the progeny in this family were expected to carry MuK, none of those that carried MuDR(p1) exhibited signs of reactivation, demonstrating that even in the absence of MuK (due to segregation). silenced MuDR elements remain silent. Silenced MuDR(p1) elements also remained inactive when crossed to Mu permissive plants that did not contain MuDR (0/~1200 spotted kernels). Thus, *MuK* causes a heritable alteration of *MuDR* elements.

To test the heritability of MuK itself, several progeny plants from the above cross that lacked MuDR and that segregated for MuK were again crossed as females to males carrying MuDR(p1), and their progeny was analyzed by Southern blot. In one family that showed evidence of MuK activity (reduced excisions), 47.6% of the progeny that carried MuDR(p1) were methylated and inactive showing that MuK segregation was heritable (Table 1). In contrast, families derived from crosses between the same MuDR(p1) active plant and permissive testers resulted in all progeny with MuDR(p1) having hypomethylated Mu1 TIRs, demonstrating that MuDR was not inactivating prior to contact with the MuK ear.

Mu Killer's effect is not only on *Mu1* TIRs. *MuDR* TIRs also become methylated in the presence of *MuK*. Thus, the inactivation of *Mu1* is most likely a byproduct of *MuDR* silencing. *Mu Killer's* effect on *MuDR* is also not confined to the *MuDR* element at p1. *MuK* has been observed to silence single *MuDR* elements at other

Table 1

Female plant x single copy full-length MuDR(p1)

Female genotype and generation	Mu	Mu Killer	Mu	Mu Killer
	permissive	generation	permissive	generation
	generation 1	1	generation 2	21
MuDR(p1) with hypomethylated Mu1	12 ²	38	18 ²	11
MuDR(p1) with hypermethylated Mu1	0	40	0	10
¹ Mu Killer generation 2 individuals are	the pale kernel	progeny of M	u Killer genera	tion 1
2 The weakest spotted kernels of the Mu	permissive pro	geny were te	sted for Mul TI	R
methylation				

positions as well (Lisch and Freeling, 1994). Experiments are underway to determine if *Mu Killer* has the ability to silence complex *Mu* active lines currently used for transposon tagging. To date, *MuK* has been found not to cosegregate with any background *MuDR* deletion derivative.

> BOLOGNA, ITALY University of Bologna

Development and preliminary evaluation of near-isogenic maize lines differing for a QTL which affects leaf ABA concentration

--Landi, P, Salvi, S, Sanguineti, MC, Stefanelli, S, Tuberosa, R

In plants grown under stress conditions, particularly drought, the concentration of abscisic acid in the leaf (L-ABA) increases rapidly (Hartung, W and Davies, WJ, in Davies, WJ and Jones, HG (eds.), 1991); this suggests that L-ABA can be involved in attenuating the stress-induced injuries. However, with respect to the effects associated with genetic variation in L-ABA, controversial results have been reported in cereals (Quarrie, SA, in Davies, WJ and Jones, HG (eds.), 1991). As an example in maize, positive relationships have been found between L-ABA and drought tolerance by Pekic, S and Quarrie, SA (J Plant Phys 127:203-217, 1987 and Ann Bot 61:669-678, 1988) while negative relationships have been found by Landi, P et al. (Maydica 40:179-186, 1995) and by Sanguineti, MC et al. (J Exp Bot 50:1289-1297, 1999). These controversial findings can be likely related to the complex genetic control of the investigated traits and their interaction with different genetic backgrounds and environmental factors (e.g., timing and intensity of drought stresses).

To gain information on the genetic control of L-ABA in maize, we analyzed the segregating populations derived from the cross Os420 x IABO78; parental inbred Os420 was chosen because it shows high L-ABA, especially under drought, while inbred IABO78 shows low L-ABA (Conti, S et al., Euphytica 78:81-89, 1994). The studies on such populations allowed us to identify an important QTL affecting L-ABA located on chromosome 2 between the RFLP loci *umc34* and *csu4a* (Salvi, S et al., MNL 71:15-16, 1997; Tuberosa, R et al., Theor Appl Genet 97:744-755, 1998). To investigate the effects of this QTL on L-ABA and on related physiological traits, we undertook a backcross breeding program aimed at developing near-isogenic lines for this QTL. As emphasized by Prioul, JL et al. (J Exp Bot 48:1151-1163, 1997), near-isogenic lines are a useful "tool" to study the physiological basis of plant responses across environments.

In this note, we summarize the development of the near-isogenic lines and provide results of their preliminary evaluation.

As source material, we used the cross between Os420, providing the allele with increasing effect (+) on L-ABA at the target QTL, and IABO78, providing the allele with decreasing effect (-) on L-ABA. To develop the near-isogenic lines for both parents two backcross procedures were followed. In the first backcross procedure, Os420 was used as recurrent parent and IABO78 as the donor, while in the second one the role of the parents was reversed. The backcross procedure was aided by using the two closely linked RFLP loci umc34 and csu4a (ca. 8 cM apart) flanking the target QTL. If for simplicity we indicate umc34 as A and csu4a as B, then the genotype of Os420 can be indicated as A1B1/A1B1 and the genotype of IABO78 can be indicated as A2B2/A2B2. Plants heterozygous A1B1/A2B2 were also considered to be heterozygous for the two parental chromosome segments flanked by the two RFLP loci, assuming that no double crossover occurred between the two segments. These heterozygous plants were backcrossed for five generations and then selfed for one generation. Four BC5F2 families were developed throughout the breeding process because, starting from the BC2 generation, two different families were grown for each recurrent parent (the two families were identified as .1 and .2).

In 2000, the four BC5F2 families were grown near Bologna, under mild drought stress conditions in a randomized block design with three replications. All plants were assayed for their genotype at the two RFLP loci umc34 and csu4a. Plants that proved to be homozygous for the marker alleles provided by Os420 (i.e., A1B1/A1B1) were assumed to be homozygous (+/+) at the target QTL controlling L-ABA; analogously, plants homozygous for the two marker alleles provided by IABO78 (i.e., A2B2/A2B2) were assumed to be homozygous (-/-). Such BC5F2 homozygous plants were selfed to finally produce the BC5F3 near-isogenic lines. These were analyzed for L-ABA in order to obtain preliminary information on the effectiveness of the backcross-assisted procedure and on the additive effect of the QTL. In each plot, leaf samples for L-ABA analysis were collected at tassel appearance from four plants of the (+/+) near-isogenic line and from four plants of the (-/-) near-isogenic line.

The mean values for L-ABA of the four near-isogenic lines derived from Os420 as recurrent parent were higher than the mean values of the four near-isogenic lines derived from IABO78 (Table 1). Within each family, the (+/+) line showed a higher mean value than the corresponding (-/-) line; on a family mean basis, the additive effect was 14.8 and 14.0% for the two Os420 families and 8.2 and 10.2% for the two IABO78 families. Even if the additive effect of the target QTL was significant ($P \le 0.05$) only for the two Os420 families, the interaction "family x additive effect" was not significant. Across the four families, the additive effect was

Table 1. Mean values for L-ABA (ng ABA g⁻¹ DW) at tassel appearance of the near-isogenic lines (+/+) and (-/-) of the BC5F2 families derived from Os420 and IABO78 as recurrent parents.

Family	Near-isogenic lines		Additive effect			
	(+/+)	(-/-)	а	(%) ^b	C	
Os420.1	315	234	41	14.8	*	
Os420.2	358	270	44	14.0	*	
IABO78.1	211	179	16	8.2	ns	
IABO78.2	232	189	22	10.2	ns	
Mean	279	218	31	12.3	* *	

^aCalculated as [(+/+) - (-/-)]/2.

^bReferred to the family mean.

^{c*} and ^{**} indicate significance levels of $P \le 0.05$ and $P \le 0.01$, respectively; ns = not significant.

highly significant ($P \le 0.01$) and equal to 31 ng ABA g⁻¹ DW, corresponding to 12.3% of the overall mean. It is worth mentioning that in our previous investigation conducted on F4 families derived from the same single cross (Tuberosa, R et al., Theor Appl Genet 97:744-755, 1998), the additive effect at this QTL was 49 ng ABA g⁻¹ DW, corresponding to 12.1% of the overall mean.

The results of this preliminary investigation suggest that the target QTL was successfully transferred by the marker-assisted backcross and tend to confirm the relative importance of its additive effect in controlling L-ABA. As the next step, the nearisogenic BC5F3 lines (+/+) and (-/-) will be tested in field trials conducted at different levels of water stress. In addition, crosses between the lines derived from Os420 and from IABO78 will be produced (according to the factorial scheme), in order to investigate, in the absence of inbreeding depression, the QTL effects on physiological and agronomic traits related to drought tolerance.

> BUFFALO, NEW YORK State University of New York TAIPEI, TAIWAN National Taiwan University TAIPEI, TAIWAN Development Center for Biotechnology

Bio-photonic crystal: SHG imaging

--Cheng, PC, Sun, CK, Lin, BL, Chu, SW

The intrinsic optical sectioning properties in non-linear optical microscopy has drawn much interest in biological sciences (Denk et al., Science 248:73, 1990; Cheng et al., J. Microscopy 189:199-212, 1997); in conjunction with numerous fluorescence bio-probes, multi-photon fluorescence microscopy has become a powerful tool in deep tissue imaging. The technology has also been applied to micro-spectroscopy at high spatial resolution (Lin et al., SPIE Proceedings 4082:100-104, 2000). In addition to the fluorescence signals generated by the multi-photon excitation process, non-linear phenomena such as harmonic generation also provide useful information for the structure and optical properties of a specimen. Simultaneous recording of the spectral response in an image $(x-y-\lambda)$ provides insight for the nature of the signal. Due to low attenuation of biological sample in the infrared (Lin et al., MGCNL 75:61-62, 2001), one not only achieves deep penetration in the sample, but also opens the possibility of imaging modalities in second-harmonic generation (SHG) and third harmonic generation (THG). In addition, both visible and near infrared regions are open to efficient detection while the pump wavelength is far away from the sensitivity range of silicon-based detectors. The use of longer illumination wavelength dramatically reduces the background auto-fluorescence and photo-damage.

Two-photon fluorescence, SHG and THG imaging was performed using a Spectra-Physics Millennia IR (1064 nm) pumped Cr-forsterite laser operating at 1230mn (110MHz, 130fs) or a Coherent Verdi pumped Spectra-Physics Tsunami mode-locked Ti-sapphire laser operated at 780mn with 100fs pulse at 82MHz.. A modified Olympus BX microscope equipped with a confocal scanning unit (Olympus Fluoview FVX) was used. A TE-cooled CCD equipped SpectraPro-150 spectrometer was used. Spectro-microscopy was performed in transmission mode by using a computer-controlled scanning stage.

Similar to the two-photon fluorescence, second-harmonic gen-

eration (SHG), which is a X(2) second-order non-linear process, provides strong nonlinear signals but occurs only in noncentrosymmetric media. SHG process can thus be used to image bio-interface and orderly arranged structure, where centro-symmetry is broken. In SHG, only virtual state transition is involved, thus no photo-damage and bleaching from the process results. With a square dependence on the incident illumination intensity, the second-harmonic generation process also provides optical sectioning resolution as the two-photon fluorescence process if the same excitation wavelengths are used. There are a number of maize structures capable of generating strong SHG signals, these include cell walls (Fig. 1), starch granules, silica cells and possibly stacked membrane structures such as grana in the chloroplast. Since they behave similarly to photonic crystals, we suggest the use of "biophotonic crystals" to describe these types of structures. In fact, a piece of potato tuber is capable of producing a strong freguency-doubled beam similar to those non-linear crystals used in the photonic industry.

Figure 1. Multi-modality of maize parenchyma cell showing (a) THG, (b) SHG and (c) two-photon excited fluorescence. The bright patch (P) in (a) is the transverse wall of parenchyma cell. (d) Selected spectrum taken from parenchyma cell; the excitation wavelength was 1230nm, the peak at 680nm is two-photon excited autofluorescent, the 615nm and 410nm peaks corresponding the SHG and THG signals.

Third-harmonic (THG) is an X(3) third-order non-linear process. Like SHG, it involves only a virtual state, makes no energy deposition during the conversion process, and thus no photo-damage is expected. Due to the large refractive index difference between the fundamental and THG light and the positive dispersion in biological specimens, effective THG generation occurs only in thin layer or on the interface. This coherent length effect provides the THG process an excellent axial resolution in detecting the surface of cellular organelles, membranes and cell walls.

Simultaneously detecting the multi-photo fluorescence, SHG and THG provide a new way of studying biological specimens. This

type of multi-modality nonlinear microscopy allows co-localization of biologically significant fluorescence signals with structural information corresponding to SHG and THG signals. Figure 1 shows a set of images (THG, SHG and red fluorescence) and a selected spectrum obtained from the parenchyma cells of the maize stem. Recording the spectrum of each pixel in an image ensures positive identification of the origin of signals.

> CAMPINAS, BRAZIL Campinas State University

Genetic diversity among tropical maize inbred lines as revealed by SSR markers

--Laborda, PR, Oliveira, KM, Garcia, AAF, Paterniani, MEAGZ, Souza, AP

Diversity of maize inbreds has a major importance to the process of maize improvement. In Brazil, little is known about the variability of this crop and an analysis of its potential is extremely necessary. The use of codominant molecular markers such as the microsatellites, or Simple Sequence Repeats - SSRs, is an appropriate and useful way of acquiring data about diversity when the genome is being surveyed. This work has the objective of (1) analyzing the diversity among 95 maize inbred lines chosen from the IAC (Instituto Agronômico de Campinas) germplasm bank and (2) dividing them into heterotic groups. This germplasm bank is composed of old lines as well as recent lines, introduced from CIMMYT.

Amplifications were carried out using 50 ng of DNA and a "touchdown" PCR with annealing temperatures varying from 65 C to 55 C. The PCR products were visualized in 4% agarose/metaphor gels stained with ethidium bromide. In order to facilitate the genotyping of each microsatellite, an "allele pattern" was established among 28 inbreds. This pattern could represent the allele diversity and was organized as a molecular weight marker, which was used later for comparison with the other 67 inbreds.

To select the best primer pairs, three sets of tests were performed: the first among three lines, the second among eight lines and the third among 28 lines. The second was the most efficient of all, being able to reveal the polymorphism between the inbreds and not wasting much effort and time. A total of 193 microsatellite primer pairs were tested, and classifications according to amplification quality and genotyping difficulty were done. Most primer pairs had a good amplification quality; nevertheless, many of them were also classified as "difficult" for genotyping, with little difference in the number of base pairs among the amplification products obtained from the 95 inbreds. From the 193 microsatellites tested, 14 were chosen for the diversity analysis.

Results in Table 1 show the number of alleles for each locus studied and its PIC (or genic diversity) values. Among the 14 SSRs, a mean of 5.7 alleles/locus was observed and the mean for the genic diversity was 0.6. These results show the great discriminatory abilities of the loci analyzed and suggest large diversity among the germplasms being studied. The dendrogram presented in Figure 1 shows the genetic distances as provided by the modified Rogers coefficient (TFPGA and NTSYS/UPGMA 2.02 used). This index was chosen due to its Euclidian behavior and due to the fact that it may be compared to other measures of this kind, since it is calculated using means among the loci studied. Further, it considers allelic frequencies, which are extremely important when working with codominant markers. The cophenetic value was 0.57, which indicates that the schematic representation of the dendrogram was not able to show with confidence the distance matrix provided by the index. Moreover, it was not possible to visualize defined aroups within the dendrogram, which may be caused by the insufficient number of loci analyzed until now. In order to provide more confident schematic representation, the genetic distances in the distance matrix were grouped and represented in Figure 2. Notably, the majority of the distances are between 0.6 and 0.9, which indicates great divergence among the inbreds.

Table 1. Number of alleles obtained for each SSR locus and the respective PIC values.

Locus	Number of Alleles	PIC	
bnlg1621b	10	0.8614	
bnlg1724	6	0.4676	
phi022	3	0.5199	
umc1069	8	0.7076	
umc1122	4	0.5058	
umc1221	9	0.7981	
umc1230	6	0.7898	
umc1252	2	0.3006	
umc1357	4	0.6409	
umc1395	3	0.5203	
umc1416	2	0.4943	
umc1639	5	0.7521	
umc1804	15	0.8754	
umc1943	4	0.3166	
Mean	5.7	0.6107	

The results presented in this work suggest that the tropical germplasm under analysis is an excellent material for hybrid breeding programs. A greater characterization of this germplasm will provide a larger understanding of the potential tropical maize has and will provide quality data for the maize improvement programs in Brazil.

Figure 1. Dendrogram showing the genetic distances according to the modified Rogers coefficient and to the UPGMA clustering method. Cophenetic value = 0.5767.

Figure 2. Rate of occurrence of the genetic distances in the distance matrix obtained by using the modified Rogers coefficient.

More studies of day length effect on cloning gene in tetraploid maize

--Ting, YC, Tran, L

In order to find out how short-day illumination (12 hrs or less) affects the expression of cloning gene in tetraploid maize (Zea mays L.), several tests were conducted in the last few years. Descriptions of these tests follow:--In July of 1999, a short-day treatment was applied to 11 adult plants heterozygous for the cloning gene (*Clg clg clg clg*), by covering them with black plastic barrels from 6:00 PM to 10:00 AM the next day. At that time, those plants were a little over three months old and their male inflorescences just began to initiate. The treatment continued for three months. One month after the treatment was discontinued. contrary to expectation, none of the treated plants responded positively by regenerating tassel plantlets. However, three of the control-plants having the same genetic background manifested a weak expression of plantlet regeneration by growing out three to five plantlets per tassel. It was intriguing! When those controlplants showing regeneration were sib-crossed, many well developed kernels were obtained. Therefore, it was deemed necessary to make another test on the transmission of the cloning gene. Subsequently, in early November of the year 2000, 12 selected kernels of one of the above parental plants were sown in the greenhouse. In the first week of February of this year, the same number of kernels of another parental plant were sown next to the first planting. Last May, it was observed that six adult plants of the first planting were healthy and well developed, and four of the second planting did as well. About three weeks later, it was surprising to find that only one of six of the first group and two of the second responded respectively by regenerating vigorous tassel plantlets. Figure 1 depicts one of the tassels bearing many plantlets. This plant was one of the pedigree plants of the fifth generation of cloning gene transmission. In the middle of last June, a further test on the behavior of the cloning gene was carried out. Of each of the above positive respondents, 10 plantlets were detached and planted in the summer experimental plot. The plantlets were at the three- to four-leaf stage in development. In the first week of July, it was found that one of the plantlets grew to about two feet tall and regenerated plantlets. However, in contrast, all of the other plantlets continued to develop into normal adult plants and, on average, they reached about six feet in height two months later. They all failed to regenerate plantlets. The above plantlet transmission experiment was conducted under long-day (more than 12 hrs) condition, from the time of their initiation to the stage of their seed maturation. Up to the present, it appears that a tentative conclusion can be drawn on the inheritance of the cloning gene in the tetraploid, starchy and semiperennial maize. It is dominant. The expression of its phenotype was more likely to be affected by day length; short day was more effective in the induction of plantlet regeneration than long day. Nevertheless, under a short day regime, the stage of plant growth may play a certain role in the sensitivity of the cloning gene to day length.

Figure 1.

CHISINAU (KISHINEV), REPUBLIC OF MOLDOVA Institute of Genetics, Acad. Sci. Rep. Mold.

The use of haploid plants for evaluation of population genetic structure

--Rotarenco, VA, Mihailov ME

The utilization of matroclinal haploids in breeding programs and for genetic analysis has become possible based upon studies on the segregation of the haploid population using marker genes (Lashermes et al., 1988; Chalyk, ST and Chebotar, OD, 2000), as well as studies on the correlation between the traits of diploid inbred lines and those of the haploids derived from them (Chase, 1964, Chalyk, ST and Ostrovskiy, VV, 1993). The studies have shown that directed elimination of the genotypes and/or ovule selectivity does not occur when matroclinal haploids are induced, and that the correlation coefficients for most traits between haploids and diploids are quite high. Thus, haploids represent a randomly segregating population and might be employed for genetic analysis and selection of the genotypes possessing economic traits.

Our preliminary findings have demonstrated that recurrent selection involving haploid plants seems to be quite efficient in the improvement of synthetic populations (Chalyk, ST and Rotarenco, VA, MNL 73, 1999). Selection efficiency in this case is associated with the fact that only additive and epistatic gene effects are expressed in haploids; increasing the frequency of favorable alleles is the basis of the improvement of heterogeneous populations for the traits selected. In our opinion, this specific feature of haploids might be utilized to evaluate breeding and genetic values of populations as well as to assess selection efficiency.

The comparison of haploids demonstrated the importance of additive and epistatic gene effects in the development of the trait. This information might be especially useful in breeding programs and in the prediction of selection efficiency.

The study was aimed at the comparison of the haploid plants derived from different cycles of haploid recurrent selection for some quantitative traits. Simultaneously, we conducted an experiment to assess the genetic results of selection in two diploid populations (SP and SA) for five traits. The goal of the experiment was to obtain estimates of additive variance for each cycle of selection (C0,C1,C2) in both populations. The values of variance among half-sib families in each selection cycle was multiplied by four to estimate values of additive variance.

Table 1 shows the values of five traits of haploids resulting from three cycles in the SP population. Haploids of the later selection cycles (C1 and C2) significantly exceeded those derived from the initial population (C0) for most traits. The findings demonstrated the changes in the population due to selection, i.e. the changes in the frequency of the favorable alleles possessing additive and epistatic effects.

Table 1. Trait means and coefficients of variation in haploids derived from three selection cycles in the SP population.

Traits	Selection Cycles	Traits Means, cm	Coefficient of Variation
Ear Length	SPC0	7.03±0.3	29.2
	SPC1	7.85±0.4***	23.4
	SPC2	7.66±0.3***	25.3
Plant Height	SPC0	47.12±1.8	29.2
	SPC1	50.13±2.1***	26.5
	SPC2	56.47±1.9***	23.2
Height to the ear	SPC0	6.64±0.5	60
	SPC1	7.56±0.8***	70.6
	SPC2	6.76±0.6	64.3
Leaf Length	SPC0	27.19±0.7	20.5
	SPC1	28.67±1.8***	23
	SPC2	29.19±0.8***	20.5
Leaf Width	SPC0	4.07±0.09	16.8
	SPC1	4.15±0.1**	18.6
	SPC2	3.89±0.1	20.3

,* The differences from the haploids of the initial population (C0) are significant at 1% and 0.1% significance level, respectively.

The material was evaluated under extremely adverse environmental conditions for maize production, occurring in Moldova in the year of 2000. There was no rainfall during two months (May and June). This significantly reduced the total yield level of the SP and SA diploid populations (Tables 2 and 3). The unfavorable growing conditions are likely to have caused a considerable reduction in the variation between the initial population and subsequent selection cycles, especially in the SP population.

The values of the additive variance and corresponding coefficients of variation were higher in the initial SPC0 population than in the SAC0 population (Tables 2 and 3). Theoretically, selection would be expected to be more effective in the SP population, but the three years' trials show that selection was considerably more efficient in the SA population compared to the SP population.

Table 2.	Trait means,	coefficients of	variation a	nd estimates	of additive	variance of	i three	se-
lection cy	cles of the SP	diploid populat	ion.					

	Selection		Coefficient of	
Traits	Cycles	Trait Means	Variation	Additive Variance
Productivity	SPC0	64.4±2.7	25.2	1033.9
	SPC1	64.1±1.7	17.4	365.8
	SPC2	66.9±2.7	19.6	732.3
Ear Length	SPC0	13.3±0.3	12	9.9
	SPC1	14.2±0.15**	6.8	2.64
	SPC2	13.8±0.2	7.8	4.95
Ear Diameter	SPC0	3.8±0.03	5.5	0.17
	SPC1	3.8±0.01	3	0.03
	SPC2	3.9±0.04*	5	0.16
Number of Seed Rows	SPC0	12.7±0.13	6.2	2.2
	SPC1	13±0.1	5.2	1.1
	SPC2	13.6±0.2***	6.7	3.5
Plant Height	SPC0	115.8±2.5	13	1161.9
	SPC1	125.3±1.6	8.5	458.4
	SPC2	138.6±1.7*	6.8	471.4

*,**,*** The differences from the initial population (C0) are significant at 5%, 1% and 0.1% significance level, respectively.

Table 3. Trait means, coefficients of variation and estimates of additive variance of three selection cycles of the SA diploid population.

1	Selection		Coefficient of	1
Traits	Cycles	Trait Means	Variation	Additive Variance
Productivity	SAC0	54.02±1.5	17	264.5
	SAC1	70.5±1.8***	16.2	420.4
	SAC2	65.9±2.3***	23.2	865.7
Ear Length	SAC0	13.8±0.14	6.5	2.6
	SAC1	14.06±0.2	7.7	3.95
	SAC2	14.2±0.15***	7.2	3.7
Number of Seed Rows	SAC0	3.5±0.02	3.7	0.05
	SAC1	3.7±0.02***	3.6	0.05
	SAC2	3.62±0.04**	7.3	0.26
Number of Seed Rows	SAC0	12.2±0.09	4.8	1.04
	SAC1	12.5±0.09*	4.6	0.25
	SAC2	12.5±0.1*	5.5	1.64
Plant Height	SAC0	120.3±1.4	7.5	319.5
	SAC1	123.7±1.2	6.5	249
	SAC2	135.3±1.8***	9	624.3

*,****** The differences from the initial population (C0) are significant at 5%, 1% and 0.1% significance level, respectively.

Judging by the additive variance in subsequent selection cycles (C1, C2) of both populations, a supposition might be made that the SP population was losing its potential for further significant improvement, while the variation among the half-sib families was increasing in the SA population, which indicates that further selection might be promising.

The fact that two synthetic populations differ in their responsiveness to the same selection method is a common phenomenon, observed by many researchers. We would like once more to underline some discrepancy between the prediction of the selection results in populations based on the assessment of half-sib families and observed results. Our method of estimation, as well as the extreme environmental conditions of the year could be responsible, but the literature suggests that such results have been quite usual.

Coefficients of variation for plant height and ear length of the haploid population were greater than those of the half-sib families in the same selection cycles. Since genetic variation in the haploid population was expressed mostly by the non-allelic gene effects. This significant difference between the haploid and diploid population is likely to be the main reason for the discrepancy mentioned above. Based on the result of this comparison we may suggest that the variation among the half-sib families in each selection cycle in this case, did not quite reflect the variation among the genes possessing non-allelic effects. Hence, the additive variances obtained due to this variation could not reflect the differences for these gene effects between both populations and selection cycles in these populations.

In our opinion, a comparative analysis of populations at the haploid level to determine their genetic structure and to assess changes occurring in them might be promising. The necessity of special crossing for progeny testing is not necessary. A simple comparison of the values of haploid traits might provide the information on the efficiency of the selection, while the variations of the traits might prompt whether further selection is promising.

Additionally, haploid plants may be used to make it easy to obtain estimates of the heritability in the narrow sense. Haploids, as has already been mentioned, do not possess intra-allelic gene interactions and effects are based only on the additive and epistatic contributions of alleles. In haploid populations, narrow and broad sense heritabilities are equivalent in the absence of epistasis.

In our viewpoint, use of haploid plants might make the studies in population genetics significantly easier.

The supposed pleiotropic effect of the p1 locus

--Mihailov, ME, Chernov, AA

In F2 plants of two maize hybrids (Chernovitskaya 21 x 2-9m and Ku123 x 2-9m) the color of dry tassels was recorded a month after flowering. The 124 F2 plants of Chernovitskaya 21 x 2-9m were classified: 85 - dark tassel, 35 - light tassel, 4 - doubtful. The 88 F2 plants of Ku123 x 2-9m: 58 - dark tassel, 26 - light tassel. 4 - doubtful.

It was revealed after harvest that the dry tassel color correlates with the color of cob. Dark tassel corresponds, as a rule, to red cob, and light tassel to white cob (Table 1-2).

Table 1. Segregation for color of cob and dry tassel in F2 (Chernovitskaya 21 x 2-9m).

Colour of dry tassel	Red cob	White cob
dark	82	
doubtful	3	1
light	1	34

Table 2. Segregation for colour of cob and dry tassel in F2 (Ku123 x 2-9m).

Colour of dry tassel	Red cob	White cob
dark	57	1
doubtful	2	2
light	2	24

As is seen in the tables, there are recombinant plants. Two versions are possible:

1) The dry tassel color is caused by a locus closely linked (rf=3-4%) with the p1 locus controlling cob coloration;

2) There is a pleiotropic effect of the p1 locus and recombinants appear because of modification or classification error.

Maize embryo culture as a test for productivity

--Chernov, AA, Mihailov, ME

The 6 inbred lines of the maize were tested in embryo culture with hormonal treatment. The embryos with scutella have been excised from the grains to remove the influence of endosperm, and then were grown in agar medium with 4-amino,3,5,6-trichlorpicoline acid, 1 mg/l. The seedlings were analysed for coleoptile length, coleoptile weight and weight/length ratio. For each trait these lines were grouped into 3 classes: high (3), middle (2) and low (1). The seedling phenotype was compared with productivity (Table 1).

Table 1.	Productivity	and	embryo	culture	phenotype	0	i maize	lines
----------	--------------	-----	--------	---------	-----------	---	---------	-------

	F	Phenotypic cla			
Line	coleoptile length	coleoptile weight	weight/length	Marginality	Productivity, gm/plant
A619	2	2	2	0	75+11
MK109	1	1	3		113+2
MK133	2	3	3	0.67	80+6
MK196	2	2	2	0	34+4
W32	2	1	2	0.33	69+4
W64	3	3	1	1	95+6

It is proved that the lines of highest productivity are marginal for seedling traits, and the line of lowest productivity belongs to the middle classes. The marginality parameter was deduced from the three seedling traits. The Spearman rank correlation between marginality and productivity is 0.89 (P<0.05). This dependence is explicable since biosynthesis and organogenesis are based on hormonal reactions.

New scheme of haploid recurrent selection in maize --Chalyk, ST, Rotarenco, VA, Bylich, VG

In a previous publication, we suggested utilization of haploid plants in recurrent selection (Chalyk and Rotarenco, MNL 1999). Subsequent testing of synthetic populations has shown high efficiency of haploid sib recurrent selection (HSRS) (Chalvk and Rotarenco, Rus J Genet 2001).

In the scheme we used, selection was only carried out for haploid plants. We presume this allowed an increased frequency of genes with nonallelic interactions.

In order to create high-yield maize hybrids, it is necessary to select genotypes with all types of gene interactions contributing to the yield formation. Genes with allelic interactions should be combined with nonallelic ones. To improve synthetic populations more efficiently and to increase frequency of genes with both allelic and nonallelic interactions, a new scheme of haploid recurrent selection, haploid & diploid recurrent selection (H&DRS), is used in the Institute of Genetics, Moldova. In this scheme, selection of haploid plants is combined with selection of diploid plants. Diploid plants are selected based on their combining ability. The new scheme, H&DRS, is a two-step scheme, the same as HSRS.

For comparison purposes, below we present both schemes of recurrent selection - HSRS and H&DRS.

HSRS scheme:

Step 1: Haploids are obtained from a synthetic population.

Step 2: The haploids are pollinated with pollen taken from diploid plants of the improving synthetic population. Selection is carried out only for haploid plants.

The new scheme, H&DRS, differs from HSRS in that in Step 2 diploid plants are used twice. First, diploid plants serve as a source of pollen for haploids. Second, combining ability of diploid plants is tested. In order to test the combining ability, diploid plants from the improving synthetic population are self-pollinated and at the same time crossed with a tester. Hybrids obtained as a result of crossing are tested in Step 1 of the following cycle of selection.

H&DRS scheme: First Cycle of Selection

Step 1: Haploids are obtained from a synthetic population.

<u>Step 2</u>: a) The haploids are pollinated with pollen of diploid plants of the same synthetic population. The best haploids are selected.

b) Diploid plants, which serve as a source of pollen for the haploids, are self-pollinated and crossed with a tester. The tester is the maternal component of the cross.

Second Cycle of Selection

<u>Step 1</u>: a) New haploids are obtained from the population grown from seeds of the haploid plants selected in the previous cycle of selection.

b) Hybrids are tested, which were obtained in the previous cycle of selection.

<u>Step 2</u>: a) Haploids, obtained in Step 1, are pollinated with a mixture of pollen taken from progeny of the diploid plants, which displayed high combining ability. The best haploids are selected.

b) Diploid plants, which are a source of pollen for haploids, are self- pollinated and crossed with a tester in order to assess their combining ability.

Subsequent selection is performed the same as the second cycle of selection. The advantage of the H&DRS scheme over conventional recurrent selection schemes is that it allows the intensive selection of genotypes with additive and epistatic effects at the haploid plants level. Genotypes with high effects of overdominance and dominance are selected at the diploid level based on testing of hybrids. When haploids are pollinated with pollen of diploid plants, genes with high effects of overdominance and dominance are added to those with high additive and epistatic effects. The combination of these types of gene interactions must ensure high efficiency of the synthetic population improvement.

Determination of the combining ability of diploid plants in the H&DRS scheme is quite common for a recurrent selection. Lines, synthetic populations or hybrids can be used as a tester. In our work, a reciprocal version of the H&DRS scheme is used. The work is conducted with two synthetic populations – SP and SA. When combining ability is tested, they serve as each other's tester.

Diploid plants, which are selected for their combining ability and are used as a source of pollen for haploid plants, are assessed and selected based on many other traits. Before their pollen is used to pollinate haploids, they are selected based on their maturity group, resistance to lodging, resistance to diseases, etc.

When haploid plants are used, it is possible to obtain homozygous lines rapidly. During each cycle of selection, we treat a portion of haploid plants with colchicine in order to double their chromosome number. Thus, each cycle of the selection improves synthetic populations and at the same time produces homozygous lines by an accelerated method.

The authors believe that both HSRS and H&DRS schemes will be useful for maize breeders.

The influence of the temperature, sufficient humidity and illumination duration on the (*Cg2*/+) hybrid expression --Rusanovskaya, EG, Krivov, NV

The expression of heterochronous mutations depends on growing conditions. The reaction of the plants carrying the Cg gene to the differences in the light period duration has been first observed by W.R. Singleton (MNL 23, 1949). We evaluated the Cg2 gene expression by the male inflorescence which has had no branches in mutant plants and was only represented by a central axle. Besides, we measured plant height, panicle length, shoot, node and producing ear corn numbers, leaf length and width, and ear corn diameter in the maize hybrid plants.

As we expected, 100% penetration of the *Cg2* gene was observed in the Cg2-220 x *sr1 bm2*, Cg2-220 x *lg1 gl2 v4*, *lg1 gl2 v4* x Cg2-220, and *y1 pb4* x Cg2-143-41 combinations grown in both the field and greenhouse. Ordinary branched panicles were only observed in a significant part of the plants in the +o2 *gl*/Cg2-220 + + hybrid, which did not differ from the common maize phenotypically (Table 1), i.e. growing of hybrid offspring in the greenhouse contributes to the increase in percentage of plants with the heterochronous Cg2 phenotype.

Table 1. The influence of growing conditions on the Cg2 expression combination.

	Combination	wt	Cg2	% wt plant
Field	Cg2-220 x o2 gl	131	14	86.2
Greenhouse		6	26	17.8
Field	o2 gl x Cg2-220	39	23	62.9
Greenhouse		10	11	47.6

The hybrids grown in the greenhouse had few tillers with shorter and narrower leaves and shortened panicles and reduced plant heights (Graph 1). Graph 1 shows that the cytoplasm of the maternal line changes the distribution pattern of these traits in hybrid plants, i.e. if a marker line is used as a maternal plant, the hybrid offspring are taller and less tillered.

Three major factors, including temperature, efficient water supply and light period duration, influenced the formation of the maize hybrid plants. A four hour illumination in the greenhouse significantly increased the winter daylight. Therefore, the impact of this factor on the reduction of the hybrid plants in the greenhouse was insufficient. A low temperature in the greenhouse making 20 C2 at a sufficient water supply can contribute to the modification of quantitative traits in maize hybrids, which are largely heterozygous for Cq2.

Cytoplasm's role in the hybrids reactions on the cultivating conditions (field and greenhouse)

Postradiation effect of the electric field

--Ikhim, YG, Bliandur, OV, Lysikov, VN

Sufficiently many works have been carried out to assess the influence of electric fields on the plant organism. But the specific action of this factor during the postradiation period has not attracted close attention. While studying the impact of the electric field in the radiation mutagenesis we have come across the expressions of the effects both stimulating repair systems and enhancing the radiation damage.

We have set an experiment involving the radiation of 7-day-old seedlings of the 19-3-3 maize line to study these phenomena. A dose of 6 Gy, which is sublethal for seedlings, was applied for a control effect. The radiation was accomplished through a hard γ -irradiation using a PXM- γ -20 unit. Following a 10 min radiation, the Petri dishes containing the seedlings were exposed 1, 5, and 10 min to a 2 kW electric field. Rootlets were fixed to estimate chromosome aberrations and the findings were compared with control, in which the seedlings were not exposed to postradiation treatment. The rootlets were fixed at different periods, immediately after the treatment (0 min), after 30 min and 90 min to assess the dynamic action of the repair systems.

The number of chromosome aberrations, %

Treatment	Fixation time			
	0 min	30 min	90 min	
Control - 6Gy	48.36	48.09	48.62	
1) 6Gy + 1 min EF	51.14	49.02	46.43	
2) 6Gy + 5 min EF	62.70	63.97	65.29	
3) 6Gy+10 min EF	71.08	71.54	71.85	

The findings are summarized in the table. All the treatments increased the chromosome aberration with respect to the control.

Effect of high and low temperature on male gametophyte viability of waxy maize

--Kravchenko, OA, Kravchenko, AN

The aim of this study was to reveal the effect of high and low temperature on male gametophyte viability at the pollen germination stage and pollen tube growth stage. Inbred lines 346 and 502 and their waxy counterparts, as well as their MR5 progeny (obtained from irradiated immature embryos in vitro), were taken as experimental material. Fresh collected pollen from each genotype was planted on the nutrient medium (developed by Cook F.S., Walden D.B., Can.J.Bot. 43:779-786) and subjected to low (+12 C, for 6 hours) and high (+35 C, for 20 minutes) temperature treatment. At the same time, pollen of control variants was cultivated in normal (+24 C) temperature conditions. On average, 500-700 pollen grains from each genotype were analyzed to determined pollen viability.

A significant variability of male gametophyte viability among plants of the MR5 generation was found. The reliable effect of genotype and temperature was revealed by two factor analysis of variance (Table 1). Results indicate that pollen viability of MR5

Table 1. Genotype and temperature effect (%) on male gametophyte viability.

		Factors:	
MR5 progeny of inbred lines:	genotype	temperature	their interaction
346+/+	50.12***	7.41***	41.62***
346wx1wx1	55.34***	15.8***	23.57***
502+/+	47.02***	24.6***	26.43***
502wx1wx1	52.31***	17.7***	22.12***
***- P<0.001			

progeny of inbred lines 346 and 502, as well as that of their waxy counterparts, was genotype dependent. It should be noted that

pollen viability of MR5 progeny of inbred line 502 was more temperature dependent in comparison with MR5 progeny of other inbred lines. Generally, low and high temperature treatment resulted in a decrease of maize pollen viability. However, among the genotypes under analysis there were some which demonstrated high male gametophyte viability in both low and high temperature conditions.

Production of matroclinous maize haploids following natural and artificial pollination with a haploid inducer

--Rotarenco, VA

Studies carried out recently have significantly contributed to the solution of the main problem of haploidy in maize, which means the possibility for wide production of haploid plants. Mass production of haploids has become possible, mostly due to the development of efficient genetic inducers, which make it possible to obtain matroclinous haploids from practically any genotype (Tyrnov and Zavalishna, 1984; Zabirova, 1996; Chalyk, 1999).

We observed earlier that the percentage of the haploid yield varied somewhat following natural and artificial pollination with inducer pollen. Therefore we set a task for the current year (2001) of comparing the percentage of the seeds with a haploid embryo following natural and artificial pollination with an inducer of matroclinous haploids.

Two homozygous lines (092 and Rf-7) and a synthetic population (SA) were pollinated with the pollen of MHI line (Moldavian Haploid Inducer) (Chalyk, MNL 73, 1999). The material was grown also in an isolation plot, where it was pollinated with pollen of the MHI line.

The results presented in the Table show that, following artificial pollination, the percentage of the seeds possessing a haploid embryo in the inbred lines is more than twice as high in comparison with natural pollination at the isolation plot. A significant difference between the natural and artificial pollination by this criteria is also observed in the heterogeneous population.

Genotypes	Number of seeds with haploid embryos, %			
	Natural pollination Artificial pollination			
092	3.8	8.8		
Rf-7	2.3	6.0		
SA (population)	2.5	4.3		

Table 1. Percentage of haploids after natural and artificial pollination.

The reason for the difference in the haploid yields was, most probably, a delayed pollination in this case. The delayed pollination is known to be one of the techniques of producing matroclinous haploids in various crops, including maize. Pollination with the inducer pollen was carried out when a mass appearance of stigmata occurred, as is usually done. In our opinion, this delay caused an increase in the haploid yield in comparison with the material grown in an isolation plot. It should be noted that the inducer line was planted three times with a 10 day interval in the isolation plot to increase the period of pollen availability. Thus, the ears of the material under study were able to be pollinated during the whole period of their flowering.

Accordingly it has been established that the delayed pollination might contribute to a significant growth of the matroclinous haploid yield in maize when haploid inducers are used.

Study of the phenomenon of antidromy with diploid and haploid maize

--Rotarenco, VA, Maslobrod, SN

The phenomenon of antidromy, which is noticed with many species of plants and particularly well marked in grasses, was described by G. Maclosky (1895; 1896). The antidromy phenomenon consists of the periodic change of spirally - rolled up leaf tubes counterclockwise (leftness) and clockwise (rightness) with every new stalk's node. According to the data by Sulima (1970) left (L) and right (D) leaves of most gramineous plants alternate on the stalk with exceptional consistency. The exception to the antidromy rule is maize.

Together with the right antidromy plants (symmetrical) there are some plants of maize with an infringed antidromy (asymmetrical). The latter have an infringed alternation of L and D leaves on the stalk's nodes, which determines leftness and rightness of plants: L-plants appear to have an abundance of L-leaves, frequently repeating on several nodes after the other; D-plants on the contrary were noted to have a superfluous forming of D-leaves also repeating on several successive nodes. Zone of antidromy infringement is situated as a rule on the nodes from an ear to the panicle of a maize plant (Sulima,1970).

We wished to determine the amount of infringed antidromy (asymmetrical plants) on the diploid and haploid levels. We studied the character of alternation of L and D leaves on the nodes from the ear to the panicle. Diploids and their haploid analogues of two homozygous lines (092 and Rf-7) and also the synthetic population (SP), no less than 200 plants of every variant, were used. The results are presented in Table 1.

Table 1. Part of asymmetrical plants (with an infringed antidromy) on diploid (2n) and haploid (n) levels.

Genotype	Number of asymmetrical plants, (%)				
	2n	n			
092	6.8	37.0			
Rf-7	6.6	27.7			
SP(population)	25.4	41.5			

Sulima supposed that the infringements of antidromy with maize were not only harmless or indifferent for the species, but were even useful. According to his hypothesis, antidromy infringements on a maize stalk are a sort of filter regulating the flow of metabolites between the panicle and the ear. This filter should be considered as an evolutionarily expedient mechanism of regulation of the direction of the main flow of metabolites with its reorientation to the middle of the stalk, where the main consumer of substances, the ear is situated. Sulima and colleagues have analyzed 12 male (without ears) and 9 female (without panicles) forms of maize. Male forms had 30% and female had 92% with infringed antidromy. Such a high density of infringements is characteristic only for female plants (Sulima, 1970).

Based on Sulima's hypothesis it can be supposed that an increase of the number of dissymmetrical plants among haploids is caused by the fact that their panicles are practically completely sterile, but the ears are partially fertile. Through this the flow of metabolites in haploids blockades by means of antidromy infringements and reorientates mainly to the ears. In our work we received a confirmation of Sulima's hypothesis comparing numbers of asymmetrical plants in cycles of selection in the SP population. For the improvement of this population we use haploid recurrent selection (Chalyk and Rotarenco, MNL 1999). The results obtained on the diploid and haploid level are given in Table 2. An increase of the number of plants with an infringed antidromy in the cycle of selection takes place in both cases. Thus together with an increase of the ear's parameters (productivity) in our case, an increase in the number of asymmetrical plants takes place in the population.

Table 2. Part of asymmetrical - left (L) and right (D) plants in the cycles of selection on diploid (2n) and haploid (n) levels in SP population.

Cycles of selection	((n)				
	Asymmetrical plants,%	Of t	hem	Asymmetric al plants,%	Of t	hem
		L, % D, %			L, %	D, %
C0	16.2	43	57	36.2	53	47
C1	22.2	45	55	44.1	43	57
C2	32.9	30	70	36.0	37	63
C3	30.1	36	64	49.1	44	56

In the work by Maslobrod and others (2000, 2001) on tomatoes, it was shown that L-plants had a 15-20% higher yield than D-plants. In the work by Sulima (1970) D-plants of maize hybrids were more productive. In our investigation all the plants with an infringed antidromy were also divided into L and D-plants. It was determined that the number of D-plants with reference to Lplants, both on the diploid and haploid levels, increases in cycles of selection (Table 2). Thus the selection for yield leads to an increase in the number of D-plants with reference to L-plants. This indirectly confirms the fact that D-plants have a greater yield. Also a comparative analysis of quantitative traits (Table 3) has shown that D-plants on the diploid level essentially exceed Lplants for plant traits. On the haploid level, the differences in the traits studied are not essential. It is connected with the fact that haploids practically don't have correlations between traits of a plant and the ear (Rotarenco, MNL 2000).

Table 3. Parameters of quantitative plant's traits of L and D-plants in SP population on diploid (2n) and haploid (n) levels.

Traits	(2n)	(n)		
	L-plants	D-plants	L-plants	D-plants	
Plant height, cm	181.7	197.6***	85.3	87.9	
Height to the ear, cm	55	59.4**	18	17.7	
Leaf length, cm	63.6	69***	34.4	35.6	
Number of nodes	11.1	11.3*	8.1	8.5	

*,**,*** Difference is significant at 5%, 1% and 0.1% level, respectively.

Some additional investigations should be carried out. However, the first experiments have already shown the certain connection between the antidromy infringement and maize productivity.

The influence of preplant γ -ray treatment of maize hybrids on bioisomery of the germs, grown from pairs of adjoining seeds. Electromagnetic mechanism

--Maslobrod, SN, Ganea, AI, Corlateanu, LB, Romanova, IM, Lysikov, VN

It has been shown that from a pair of maize seeds with adjoining germs, reflection symmetric germs predominate (RSG): a left germ (1) grows from one seed of the pair, and a right germ (d) arows from the other seed. The phenomenon depends on the genotype, physiologic state of the components (seeds and germs) of the pair, environmental temperature, and electromagnetic fields. In the previous experiments, a different physiologic state of the components of the pair was achieved by differential swelling (Maslobrod, SN, Shabala, SN, Tretiakov, NN, 1994; Maslobrod,

SN, Shabala, SN et al., 1994; Maslobrod, SN, 2001).

The results of experiments where the differences in the state of the seeds of the pair were achieved by y-ray treatment of the seeds are given in this report. Initially, hybrid maize Moldavian 450 seeds were treated with a mutagenic dose (500Gy), which results in a drastic decrease of seed germination capacity and germ growth rate. The seeds were planted in pots filled with loamy black earth. The seeds were kept at 24 C during the daytime and at 20 C during the night. At the 15th day the height of the germs was measured, and their bioisomery was determined. The I germs have the first leaf rolled counter-clockwise, and the d germs have the first leaf rolled clockwise (Maslobrod SN, Shabala SN, Tretiakov NN, 1994). The number of RSG pairs (*Id+dI*), and the number of pairs with the same sign of bioisomery (II and dd) were counted. The number of repeats for each variant is no less than 100. The variants of the experiment are: 1) normal single seeds (N), 2) irradiated single seeds (γ), 3) a pair of N seeds, with adjoining germs and situated horizontally one after another (NN), 4) similar pair of γ seeds ($\gamma\gamma$), and 5) mixed pair (N γ). As appears from Table 1, the height of the germs of the NN pair is significantly above the control (N), which is a result of the interaction of germinating seeds (group effect - Shabala, SN, Maslobrod, SN, 1978; Titov, YV, 1978). In the $\gamma \gamma$ pair stimulation of the germ growth is absent in comparison with the γ variant. It is also absent in the N y pair. Thus, N seeds do not affect γ seeds in respect to germ growth, probably, because of the high radiation dose. The total number of the germs remains practically unchanged in comparison with the control N, except for the NN variant. Another criterion of pair seed interaction - the number of RSG (*Id+dI*) has the following pattern. The number of RSG in NN pairs is significantly above the control (i.e. RSG with no interaction of pair seeds, which is 442.5% for the given variant -Maslobrod SN, Shabala SN et al., 1994). The number of RSG in the pure pair $\gamma \gamma$ is slightly decreased, and in the mixed pair Ny it exceeds the level of RSG of the NN pair. Thus, some interaction between N and γ seeds in the mixed pairs is observed; it is manifested by the change of germ geometric parameters, and not growth parameters. We had observed the intensification of the reflection symmetry effect earlier, in the case of different physiological activity of the components of the pair (Maslobrod, SN, Shabala, SN, Tretiakov, NN, 1994; Maslobrod, SN, Shabala, SN et al., 1994; Maslobrod, SN, 2001). It is worth noting that in pure and mixed pairs with participation of γ irradiated seeds the number of *II* pairs increases. Is this a coincidence or a regularity? Is there a new type of interaction of germinating seeds involved? A test experiment on estimating the pattern of *ld+dl*, *ll* and *dd* pair formation from normal seeds, with the germs adjoined at different spatial orientation, horizontal (one after the other) and vertical (one above the other), was carried out. Additional variants with filters were used: plates of organic glass up to 1 mm thickness were placed between the seeds. Thus water-ionic (chemical) communication channel between seeds and communication channel by electric current were excluded, and the communication channel by seed electromagnetic fields was kept (Shabala SN, Maslobrod SN, 1978). The corresponding horizontal variants with no filter (NN), with filter (N|N) and vertical without filter (N) and with filter (\underline{N}) are given in Table 2. Ν Ν

Table 1. Growth and bioisomeric characteristics of maize hybrid Moldavian 450 germs when the seeds were treated with γ radiation dose 500 Gy

Variant of the experi-	Componen t of the	Germ height, mm	Number of I germs, %	Number of bioisomeric germ pairs, %		
ment	germ pair					
				ld+dl	11	dd
Ν	N	84.21.5	64.7			
		46.62.3*	61.1			
NN	Ν	95.62.5*	42.5	55.0	15.0	30.0
		50.63.4*	64.7	52.2	31.8	13.0
N	N	79.24.0	66.7	61.0	31.7	7.3
		43.32.7*	61.0			

* Differences from the control at 5% significance level

Table 2. Number of bioisomeric germ pairs of maize hybrid Moldavian 450 when seed pairs where arranged in horizontal and vertical directions with filter and with no filter, %

Variant of the experiment	ld+dl	=	dd
NN	63.6	19.5	16.9
N N	60.8	26.6	12.6
N	55.4	23.5	21.1
N			
N	61.4	19.6	19.0
N			

A new phenomenon was found: the RSG effect does not depend on the pattern of contacting seeds in horizontal or vertical directions. As can be seen from Table 2, the number of RSG in all variants is significantly above control, i.e. more evidence that the RSG effect appears to be due to the interaction of electromagnetic fields of germinating seeds was obtained. It expands our concept about the types of interactions between seeds and germs with the above-mentioned spatial orientation (Maslobrod SN, 2000). The number of *II* and *dd* pairs is approximately equal, except for the N/N variant. Thus, in the pure pairs of N seeds only one electromagnetic mechanism of RSG formation due to the combination of left-hand helical and right-hand helical fields of the seeds functions. The above-mentioned variants were used for checking up an additional mechanism of *II* pair formation in mixed pairs. An object in which the mechanism of RSG formation is absent was chosen, in order to increase the purity of the experiment. Such an object turned out to be maize hybrid Moldavian 291 (in other cases the RSG effect can be observed in this hybrid - Maslobrod, SN, Shabala, SN, Tretiakov, NN, 1994; Maslobrod, SN, Shabala, SN et al., 1994). In our case the number of Id+dl, II and dd pairs in Moldavian 291 was, correspondingly, in %: 49.2; 25.6 and 25.2. In addition, another seed radiation treatment dose was chosen, the rate of germ growth does not decrease at this dose, and their elimination does not occur (100 Gy). According to Table 3, the number of RSG in all variants of seed pattern was at the control level (442.5%). Thus, the above mentioned mechanism of RSG

Table 3. Number of bioisomeric germ pairs of maize hybrid M291 when normal and irradiated with 100 Gy seeds were arranged in horizontal and vertical directions with filter and with no filter, %

Variant of the experiment	ld+dl	Ш	dd
Ν	45.4	36.4	18.2
Ν	45.6	31.1	22.8
Ν	42.2	35.1	22.7
N	43.9	38.5	17.6
N	45.8	34.4	19.8
N	38.1	36.1	25.8
Mm	43.51.2	35.31.0	21.21.3

formation in Moldavian 291 seeds was not detected. At the same time the number of *II* pairs is significantly larger than that of *dd* pairs in case of both direct contact of seeds through the germs and indirect contact through the filter. We tend to think that here an additional mechanism of interaction of germinating seeds, also of an electromagnetic nature, is clearly manifested. This mechanism is absent in the pairs of seeds, the physiological activity of which was achieved by adequate factors, such as natural aging of seeds and different term of their swelling, and is manifested under the action of specific factors, such as radiation. In conclusion, we can note that the formation of the symmetry of two germinating seeds and germs, apparently is carried out by electromagnetic fields, not only of different spiralization signs (left and right), but also of the same signs (left and left). Probably, this is a demonstration of the principle of asymmetry of living and nonliving nature (Hehstrom, RA, Condeputy, DK, 1990).

> COLOGNE, GERMANY Max-Planck-Institut für Züchtungsforschung

Maize pollen expresses a truncated version of the transcriptional coactivator Ada2

--Riehl, M, Dresselhaus, T¹, McCormick, S², Thompson, RD ¹University of Hamburg, Applied Plant Molecular Biology II (GERMANY)

²Plant Gene Expression Center, USDA/ARS and UC-Berkeley, Albany, CA (USA)

Transcriptional adaptors and coactivators play important roles in the process of transcription by RNA polymerase II. A genetic screen in yeast led to the identification of the putative adaptors ADA2 (Berger et al., Cell 70(2): 251-65, 1992) which had properties consistent with an adaptor role in transcriptional activation. The Ada2 proteins of different species have been shown to potentiate transcription in vivo and may function as adaptors to bridge physical interactions between DNA-bound activators and the basal transcriptional machinery (Candau et al., J Biol Chem 271(9): 5237-45, 1996). All Ada2 sequences isolated so far share an N-terminal zinc finger motif and a sequence related to the myb DNA-binding domain, as well as a C-terminal Ada3 interaction domain. It has been shown for different species that the Nterminal region of the Ada2 protein is sufficient for an in vitro interaction with Gcn5. Arabidopsis was the first organism for which two Ada2 genes were identified (Stockinger et al., Nucleic Acids Res 29(7): 1524-33, 2001). It was speculated that the two genes may be expressed in different cell types within leaves. roots or other tissues.

We have previously reported on the isolation of central components of the yeast GCN5/ADA2 complex from maize (Becker, MNL 73:22, 1999).

Further analysis of ZmAda2 showed it is present as a small gene family of very closely related sequences (unpublished sequencing results) in the maize genome. Using a probe consisting of the entire cDNA derived from endosperm mRNA on Northern blots, we detected a 2.0 kb mRNA species in all tissues examined except for pollen, which expresses a 1.7 kb version.

We isolated clones corresponding to the smaller ZmAda2 transcript from a maize pollen cDNA library, and found the pollen transcript (ZmAda2-Pollen) lacks the N-terminal region of the longer, somatic ZmAda2 transcript. The full length ZmAda2 encodes a 565 amino acid long polypeptide, whereas ZmAda2-Pollen, encodes a 387 amino acid long polypeptide, which, apart from being truncated, is identical to the ZmAda2 protein sequence. With an anti-ZmAda2 antibody we are able to detect both predicted proteins in the corresponding maize tissues. ZmAda2-Pollen lacks both the N-terminal zinc finger motif and the myb DNA-bindinglike domain. Both full-length and truncated Ada2 proteins were expressed as GST-fusions in E. coli. While full-length ZmAda2 is able to interact with ZmGCN5 in yeast two-hybrid assays, as well as when expressed in E. coli and used in a pull-down assay, ZmAda2-Pollen is not able to interact with ZmGCN5, presumably because of the missing N-terminal domain. Conceivably, ZmAda2pollen might act as a dominant-negative factor to inhibit targeted histone acetvlation by GCN5 or other coactivator activities, in the pollen cells. This might also be related to the production of histone variants in pollen. Further experiments are directed at the possibility that the truncated ZmAda2 protein might influence chromatin organization during pollen maturation.

COLOGNE, GERMANY University of Cologne

Dynamics of Shrunken1 (Sh1) transcriptional activity during maize embryogenesis --Bommert, P, Werr, W

--Domment, F, Wen, W

We have investigated the expression pattern of the *Sh1* gene at different stages of embryogenesis to test its suitability as a molecular marker for pattern formation. As a probe DIG-labeled antisense RNA was generated using the unique 3'UTR of the *Sh1* mRNA as a template. We have never observed any *Sh1* activity in the suspensor of the developing maize embryo.

Sh1 transcripts are absent, or below the detection level in the embryo proper during the proembryo-stage (Fig. A). In the

Figures A-E.

transition-stage embryo, *Sh1* transcripts accumulate in the abaxial hemisphere of the embryo-proper. These *Sh1* expressing cells contribute to the development of the scutellum and rapidly enlarge at the end of the transition stage. This cellular enlargement is the main mechanism responsible for the outgrowth of the scutellum (Elster et al., Dev. Genes Evol. 210:300-310, 2000). In contrast, cells located adaxially in the region of the SAM-anlage stay compact and remain free of *Sh1* activity (Fig. B). A series of longitudinal sections through coleoptilar-stage embryos show that the *Sh1* transcriptional activity is not equally distributed throughout the scutellum, but a patchy pattern appears to be associated with domains of rapid cellular enlargement (Fig. C).

At later embryonic stages, Sh1 is downregulated in the elaborated scutellum, whereas expression at high levels is now detected in the root/shoot axis. Strong expression is found in the rhizodermis, but lower Sh1 transcript levels are observed in the central cylinder of the root. No Sh1 transcripts are observed in the root meristem (Fig. D), which is similar to the embryonic shoot apical meristem. Both primary meristems are therefore essentially free of Sh1 activity although cells in the meristems strictly depend on the import of carbohydrates.

In the shoot, high *Sh1* transcript levels are found in the epidermal layer of developing leaves. This *Sh1* activity in embryonic leaves is not restricted to the epidermis but extends into the parenchymal cell layer, although at a lower level relative to that in the epidermal layer, additionally weak expression can be detected in expanding coleoptile (Fig. E). Activation of the *Sh1* promoter in maize is thus linked to the initiation of leaf primordia as has been described for the tomato SAM (Pien et al., Plant J. 25:663-674, 2001).

In conclusion, transcriptional activity of the *Sh1* gene is highly dynamic during embryogenesis. The absence of *Sh1* transcripts in the primary root and shoot meristems with high rates of cell proliferation argues against a simple sink-based control. In contrast, the obvious link between cellular enlargement and *Sh1* transcription during scutellum development, supports a direct contribution to cell wall synthesis (Amor et al., Proc. Natl. Acad. Sci. USA 92:9353-9357, 1995), an assumption compatible with the repression of *Sh1* promoter activity by the cellulose biosynthesis inhibitor dichlorobenzonitril (Maas et al., EMBO J. 11:3447-345, 1990). One interesting new aspect of the *Sh1* pattern is the preferentially high activity in the epidermal cells of the primary root and young leaves, which may be related to functional specificities of both outer cell layers.

> COLUMBIA, MISSOURI University of Missouri-Columbia

The development of a Plant OntologyTM Consortium and Plant Ontologies

-Vincent, PLD, Coe, EH, Polacco, M

Abstract: The goal of the Plant OntologyTM Consortium is to produce structured controlled vocabularies, arranged in ontologies, that can be applied to plant-based database information even as knowledge of the biology of the relevant plant taxa (e.g. development, anatomy, morphology, genomics, proteomics...) is accumulating and changing.

Background: Plant databases are rapidly expanding in number, size and complexity. These information-rich databases face the challenge of accurately and consistently documenting features such as gene structures, products and functions, phenotypes, traits, developmental stages and anatomical parts besides other information. It will be increasingly desirable for inter-database queries to be performed between these plant-based databases to exploit comparative genomic strategies to elucidate functional aspects of plant biology. However, terms used to describe comparable objects in each database are sometimes quite variable and limit the ability to accurately and successfully query information in and across different databases. One solution to this problem involves the development and application of ontologies of structured controlled vocabularies.

What is an ontology? An ontology is a classification methodology for formalizing a subject's knowledge in a structured way (typically for consumption by an electronic database). Dictionaries and encyclopedias are examples of ontologies, as are many web-based entities, such as Yahoo and Excite, and so is the schema for a database. A more formal definition of ontology is available from: http://www-ksl.stanford.edu/onto-std/mailarchive/0136.html. In the world of structured information, ontologies, comprising controlled vocabularies, play a very important role in facilitating information retrieval. Furthermore, the definitions that accompany the controlled vocabulary terms facilitate the consistent use of the controlled vocabulary terms in database curation.

In biology-based ontologies the controlled vocabulary terms are arranged in an ontology in such a way that their placement reflects the known or putative biological associations between the objects represented by the controlled vocabulary terms. Consequently, considerable effort must be invested into the compilation of the controlled vocabulary terms and the definitions of these terms and the correct design of the ontologies which comprise these controlled vocabularies. If the ontology of the relationships between the terms is incorrect, the information retrieved via a database search is likely to be incorrect or useless. The converse is also likely to be true. The same applies to the controlled vocabulary terms used, although the use of synonyms can overcome difficulties which occur through the use of local terms which lack wider/international recognition.

While it is relatively easy to design an ontology based on concrete facts such as names, birthdates etc., it is considerably more difficult to design an ontology based on knowledge that as yet does not have unanimous support or which is not yet well understood. However, the Plant OntologyTM Consortium is attempting to develop various plant ontologies that will represent our current and future understanding of relationships amongst various plantbased knowledge domains. These ontologies would provide shared, common vocabularies of defined terms to describe various knowledge domains in plant-based databases. The relationships between elements (represented by controlled vocabulary terms) within and between ontologies would be represented by the use of Directed Acyclic Graphs (DAGs). A DAG is similar to a hierarchical structure but with the ability to have more than one 'parent' for an element in the hierarchy. DAGs are able to represent biological relationships more readily than typical hierarchical structures.

Some of the structured controlled vocabularies being developed would be generic enough to facilitate inter-database queries for related organisms (e.g. monocots and dicots).

Other ontologies would be taxon-specific but would still be able to be interrogated for inter-taxon comparisons. For example, an inter-database query for phenotypes involving the inflorescence should produce 'tassel' and 'ear' phenotypes in maize (*Zea mays*) and comparable inflorescence phenotypes in *Arabidopsis*. The relevant associated genomic information can then be obtained from each database for further analysis.

There is little doubt that the plant sciences community, worldwide, could benefit from having controlled vocabularies of terms arranged in ontologies. Furthermore, that the use of these controlled vocabularies would contribute towards consistent data curation and so contribute to the information management needs of the plant sciences.

The Plant OntologyTM (PO) Consortium is extending a paradigm developed by the Gene OntologyTM Consortium. The Gene OntologyTM (GO) Consortium (<u>http://www.geneontology.org</u>) has been developing ontologies and associated controlled vocabularies for several years. The objective of the GO consortium has been the development of ontologies and controlled vocabularies for three knowledge domains: the molecular function, biological process and cellular component of gene products. These ontologies are being developed for a generic eukaryotic cell. Several research groups have been annotating their databases according to the controlled vocabularies contained in the ontologies produced by the GO consortium.

The Plant OntologyTM consortium is a collaboration between representatives of model organism databases and currently comprises the following participants: Gramene (A Comparative

Mapping Resource for Grains - http://www.gramene.org/; the International Rice Research Institute (IRRI - http://www.irri.org (Index.htm) associated with The International Crop Information System (ICIS) database (http://www.cgiar.org/icis/); MaizeDB (http://www.agron.missouri.edu/) and the Maize Mapping Project (http://www.cafnr.missouri.edu/mmp/); The Arabidopsis Information Resource (TAIR - http://www.arabidopsis.org/). These collaborations are focusing on using and extending the GO paradigm to the very pressing need for ontology and controlled vocabulary development for plant-based databases. The GO paradigm is effectively described in the General Documentation at http://www.geneontology.org/GO.doc.html and in Gene Ontology: tool for the unification of biology, The Gene Ontology Consortium (2000) Nature Genet. 25:25-29 (http://www. geneontology.org/GO_nature_genetics_2000.pdf). Database representatives of other plant-based databases (e.g. Medicago truncatula, soybean (Glycine max), Phaseolus vulgaris, cassava (Manihot esculenta) will be invited to become involved in the collaborative efforts of the Plant Ontology[™] Consortium.

A website for the Plant OntologyTM Consortium is to be developed. The URL will be: <u>www.plantontology.org</u>.

Relevant entities in MaizeDB (<u>http://www.agron.missouri.</u> edu/) will be annotated with Plant OntologyTM I.D. numbers (PO:id) as these become available and annotation is implemented.

Further information on the Plant OntologyTM Consortium can be obtained from Leszek Vincent (<u>Leszek@missouri.edu</u>).

DNIEPROPETROVSK, UKRAINE Institute of Grain Farming, UAAS

The role of weather conditions in donor plant cultivation in corn anther culture

--Satarova, TN, Chernousova, NM

The process of embryoid induction in anther culture is determined not only by the period of anther cultivation in vitro, but also by the period of donor plant growing. The environment factors change physiological features of initial plants and can promote the increase or reduction of androgenic response. During the work on anther cultivation of corn at the Institute of Grain Farming, UAAS some genotypes were studied over a few years under identical soil conditions of donor plant growing and uniform technique of cultivation in vitro. This allows characterization of the variability of embryoid induction depending on the weather conditions, which changed from year to year.

Donor plants were grown in a field in 1993-1999 in the southeast of Ukraine (Dniepropetrovsk). Annually complete mineral fertilizer N60P60K30 was applied by plowing. In the spring the field was treated with soil herbicide harness 3 l/hec. Sowing was carried out at the end of April - the beginning of May. The cutting of tassels for anther culture was made in July. Anther planting in vitro was on nutrient medium YP according to Genovesi, AD and Collins, GB (Crop Sci 22:1137-1144, 1982) after cold pretreatment at a temperature of 8 C for 14 days. Anthers from 5-7 plants were taken for one variant of the experiment. Anthers were used at the stage of young bicellular pollen grain. Anthers at the appropriate stage of development were isolated from sites on the central core of each tassel. The percentage of responsive anthers (anther response) and the number of embryoids per 100 anthers cultivated were registered after 6 weeks of cultivation in vitro. The experimental results were compared with meteorological data of the corresponding years. The coefficients of pair and multiple correlations between the change of weather characteristics and two parameters of androgenic induction were counted.

The frequencies of anther response and numbers of embryoids per 100 anthers for various genotypes in different years are submitted in Tables 1 and 2.

Table 1. Anther response (%) for corn genotypes in different years of investigations.

Genotype	Years							F/F0.01**
	1993	1994	1995	1996	1997	1998	1999	
And44	0.64a*	-	12.14b	0a	1.08a	1.19a	0a	85.24/3.02
H99xWf9	0a	0.30a	1.32b	0.37a	0a	-	-	12.85/3.32
Wf9xH99	0.34a	0.56a	3.78b	-	0a	-	0a	26.99/3.32
B14xWf9	17.70a	3.43b	6.92c	0.29e	3.93b	-	1.71be	169.12/3.02
Wf9xB14	-	2.94a	10.99b	0.26c	0c	-	1.94ac	190.50/3.32
Wf9xLH148	-	5.68a	-	0b	-	15.86c	-	56.45/4.61
And44xLH148	1.07a	0.13ac	2.78b	2.20b	0.24ad	-	0.07cd	11.30/3.02
Wf9xAnd44	0.21a	-	4.41b	-	0a	-	2.38c	45.75/3.78
Average	2.75a	0.94b	3.06c	0.65be	0.71bf	1.48d	0.46def	126.8/2.80

* - Data for one genotype with the same letter are not significant at the level 0.01. ** F - the criterion of Fisher for the given genotype, F0.01 - standard criterion of Fisher at the level 0.01.

Table 2. Number of embryoids per 100 anthers for corn genotypes in different years of investigations.

Genotypes	Years							F/F0.01**
	1993	1994	1995	1996	1997	1998	1999	
And44	0.64a*	-	29.57b	0a	1.16a	1.63a	0a	325.03/3.02
H99xWf9	0a	0.30a	1.70b	0.37a	0a	-	-	17.72/3.32
Wf9xH99	0.34a	0.64a	6.33b	-	0a	-	0a	56.38/3.32
B14xWf9	38.46a	5.25b	18.26c	0.32de	7.40b	-	2.86be	463.31/3.02
Wf9xB14	-	3.73a	28.13b	0.44a	0a	-	5.08a	190.50/3.32
Wf9xLH148	-	8.40a	-	0b	-	27.24c	-	113.19/4.61
And44xLH148	1.32a	0.13b	6.85c	3.20c	0.95ab	-	0.07b	28.62/3.02
Wf9xAnd44	0.24a	-	8.32b	-	0a	-	8.25b	103.60/3.78
Average	5.45a	1.32b	6.88c	0.93b	1.08b	2.30d	1.13b	358.5/3.18

* - Data for one genotype with the same letter are not significant at the level 0.01. ** F - the criterion of Fisher for the given genotype, F0.01 - standard criterion of Fisher at the level 0.01.

The data testify to the significant influence of such factors as " year " on both parameters of induction in anther culture of corn. Each genotype was studied within 3-6 years, and for each genotype, except B14xWf9, and for the average of genotypes the year 1995 was outstanding among the years investigated. For hybrid B14xWf9 the most positive was the year 1993, though the other genotypes had not shown high results that year. We designed coefficients of pair correlation between parameters of androgenic induction and such weather characteristics as average annual temperature of air, average monthly temperatures of air in May, June and July, sums of average monthly temperatures of air in May -June, May - July, maximal temperatures of air in May, June, July, humidity of air in May, July, the sum of rainfalls in September -December of a previous year, sums of rainfalls in January - April, May, June, July, May - June, May - July of a current year, and the changes of these characteristics in comparison with long-term norms. The majority of such coefficients had small values (<0.7) and were non-significant. For further analysis we have selected only those coefficients, which even for one of the genotypes were at the level of 0.7 and higher. There were coefficients of pair correlation between parameters of androgenic induction and maximal temperature of June, the sum of rainfalls in January - April and the sum of rainfalls in May - July (Table 3).

The coefficients of pair correlation between parameters of androgenic induction and maximal air temperature of June for And44 and And44xLH148 were approximately +0.7 and were significant at the level of probability 0.1. For other genotypes, Table 3. The coefficients of pair correlation between the parameters of androgenic induction in corn anther culture and weather characteristics .

	-	-			-			
Genotype	Number of years	Coefficient tween anthe	of pair correla er response a	ation be- nd	Coefficient of pair correlation be- tween number of embryoids per 100 anthers and			
		max temp			max temp			
		of June	sum of rain	fall in	of June	sum of rain	all in	
			January -	May-		January -	May-	
			April	July		April	July	
And44	6	0.720	0.806**	-0.578	0.733*	0.809**	-0.589	
H99 x Wf9	5	0.706	0.800*	-0.738	0.729	0.808*	-0.686	
Wf9 x H99	5	0.684	0.758	-0.804*	0.706	0.781*	-0.777	
B14 x Wf9	6	0.168	-0.408	0.181	0.278	-0.311	0.120	
Wf9 x B14	5	0.631	0.834*	0.834* -0.506		0.873**	-0.452	
And44 x LH148	6	0.743**	0.469	-0.731*	0.772*	0.709*	-0.680	

* - significant at the level 0.1; ** - significant at the level 0.05.

except B14xWf9, the coefficients of correlation were +0.6 - +0.7, but were not significant because of the limited number of years investigated. The pair correlation between parameters of androgenic induction and the sum of rainfalls in January - April for And44 and And44xLH148 was high, positive and significant at the level 0.05 (r = +0.8). The coefficients of the same dependence for other genotypes, except B14xWf9, and the correlation with anther response for And44xLH148 also were +0.7 - +0.8, but were not significant. The coefficients of pair correlation between parameters of androgenic induction and the sum of rainfalls in May - July for all genotypes, except B14xWf9, were negative (r= -0.5 - 0.8) and significant for Wf9xH99 and And44xLH148 for anther response.

The coefficients of multiple correlation between parameters of androgenic induction and joint influence of weather conditions, such as maximal air temperature of June and the sum of rainfalls in January - April, maximal temperature of air in June and the sum of rainfalls in May - July and sums of rainfalls in January - April and May - July, are shown in Table 4. These coefficients for all genotypes, except B14xWf9, were +0.6 - +0.9. Depending on considered connection for And44 they were significant at levels 0.01, 0.05 and 0.1, for H99xWf9 - at the level 0.1. For Wf9xH99 five coefficients of six, and for Wf9xB14 three of six were significant at the level 0.1, for And44xLH148 four coefficients of six were significant at the level 0.05, one - at the level 0.1.

Thus, the cultivation of donor plants in different years under the same conditions of field growing and cultivation in vitro leads to significant distinctions in androgenic induction for the same genotype. The most probable weather factors affecting the androgenesis through a donor plant are maximal temperature of June, the sum of rainfalls in January - April and the sum of rainfalls in May - July. For the first two weather characteristics mentioned above a positive correlation with parameters of androgenesis for a number of genotypes was noticed and for the last one - the negative. The coefficients of multiple correlation show that the interaction of these elements especially maximal air temperature of June and the sum of rainfalls in January - April influences the reaction of genotypes. From these positions it is possible to explain, why the year 1995 was the most favorable for induction. That year the maximal air temperature of June (38 C) and the rainfall amount in January - April (284.3 mm) were the highest for the years investigated, and the rainfall amount in May -July (84.3 mm) - the lowest. Possibly, the increased amount of moisture in soil at the time of sowing, the effect of rainfalls in January - April, ensures favorable conditions for initial and further plant growth and development. The high maximal temperature of June and the lowered rainfall amount in the period of vegetation before cutting tassels in July create stress conditions, which promote transition of pollen grains from the gametophytic to the sporophytic way of development. In June - July meiosis occurs in corn plants, and the effect of stress factors in the period of meiosis was always considered to be decisive for transition on the androgenic way of development in cereals (Batygina, TB, Chlebnoe zerno, Nauka, 1987).

Table 4. The coefficients of multiple correlation between the parameters of androgenic induction in corn anther culture and weather characteristics.

Genotype	Number of years	Coefficient of multiple correlation be- tween anther response			Coefficient of multiple correlation be- tween number of embryoids per 100 anthers		
		max temp of June and		the sum of rainfall n January - April and May-July	max temp of June and		the sum of rainfall n January - April and May-July
		the sum of rainfall in January - April	the sum of rainfall in May- July		the sum of rainfall in January - April	the sum of rainfall in May- July	
And44	6	0.922***	0.824*	0.875**	0.931***	0.837*	0.879**
H99 x Wf9	5	0.882*	0.877*	0.913*	0.899*	0.867*	0.902*
Wf9 x H99	5	0.850	0.902*	0.922*	0.874*	0.894*	0.917*
B14 x Wf9	6	0.527	0.243	0.441	0.672	0.300	0.330
Wf9 x B14	5	0.842	0.615	0.882*	0.896*	0.790	0.899*
And44 x LH148	6	0.760	0.888*	0.796*	0.876**	0.885**	0.854**

 * - significant at the level 0.1; ** - significant at the level 0.05.; *** - significant at the level 0.01.

The marked tendencies of the influence of weather conditions on androgenic efficiency of corn donor plants with various degrees of probability are inherent to different investigated genotypes. Only the reaction of B14xWf9 was not typical for donor plant response.

In that way, not only the conditions of anther cultivation in vitro, but also certain weather factors of field donor plant growing are capable of determining the androgenic ability in corn.

> EAST AMHERST, NEW YORK Williamsville East High School BUFFALO, NEW YORK State University of New York LONDON, ONTARIO, CANADA University of Western Ontario

The vascular development in the *na2/na2* mutant --Cheng, WY, Cheng, PC, Walden, DB

The phenotype of nana2 (*na2/na2*, Fig 1-6) is characterized by its stubby dwarf appearance. As reported earlier, the longitudinal sections of stem of *na2/na2* generally appear similar to the wild-type but with significantly shorter internodes (Cheng et al., Microsc. Microanal. Vol. 6, Supp 2:692-693, 2000). However, in the 2001 summer nursery (an excellent growing season) in London, Ontario, we observed an interesting characteristic (described below) of the mutant in more than 60 homozygous *na2/na2* plants. This phenotypic expression was also observed in two plants previously in our 1999 and 1998 summer crop (relatively poor growing sessions).

The lower portion of the mutant *na2/na2* (Fig. 1-6) stem has a "normal" stem appearance but the internode length is significantly shortened compared to that found in the wild type (Fig. 1-1, 1-2,

Figure 1. (1 and 2) Longitudinal section of *na2/na2* in sagital (1) and bilateral (2), (3) *na2/na2* plant showing tilted leaf sheaths attachment, (4) Cross-section of internode, (5) Cross-section of a nodal region, (6) *na2/na2* plant, (7 and 8) Digested sagital and bilateral sections, (9) 3D-pair of tilted nodes and ear attachment (E), (10) Diagram representing a *na2/na2* stem.

1-8). The cross-sectional views (Fig. 1-4, 1-5) reveal similar nodal and internodal vascular arrangements, as found in the wild type (Cheng et al., Microsc. Microanal. 7:444-445, 2001). However, at a more apical portion of the plant, one frequently observes a continuous "zig-zag" nodal structure; slanted nodes with wedgeshaped internodes characterize this phenotype. Figure 1-2 shows a longitudinal section cutting through the bi-lateral axis of the stem. Figure 1-1 shows a longitudinal section with a sagital cut plane, perpendicular to Fig. 1-2, 1-8. Sandwiched between the slanted nodes, one finds the initiation of axilary buds apparently supplied by the two joining nodal networks (Fig. 1-9 stereogram). The leaf-sheath insertion on the plant is also tilted (Fig. 1-3, indicated by white-line pairs). These results suggest that the lower internodes may have been initiated in the embryonic stage assuming the expression of the na2 is not in effect, while the expression of the allele occurs only in the post-germination growth. The tassel internodes in na2/na2 revert to normal, suggesting that this gene expression is "turned off" in the reproductive organs (Fig. 1-1 and 1-3). A diagrammatic representation of the nodal arrangement is shown in Fig. 1-10.

This article is part of a report by WYC for Siemens Westinghouse Science and Technology Competition (Semi Finalist) and Intel Science Talent Search (2001).

The number of vascular bundles in 18 different cultivars of inbred, hybrid or commercial sweet corn

--Cheng, WY, Cheng, PC, Walden, DB

This article reports a study on the vascular bundles in a number of cultivars. In this study, inbred, hybrid lines and mutants were grown in the nurseries at the University of Western Ontario (London, ON, Canada) in the summers of 1999, 2000, and 2001. The inbred lines used in this study included Oh43, B73, W23, CM48, KYS, Mo17, and Gaspé. Hybrids were Oh43/B73, Oh43/W23, Oh43/CM48, Oh43/Gaspé, Oh43/Mo17, Oh43/KYS, CM48/Oh43, CM48/Gaspé, CM48/W23, Mo17/B73, and B73/Mo17. In addition, commercial sweet corn varieties, including: 'Platinum Lady,' 'Honey and Cream,' 'Seneca Chief,' and 'Odyssey,' were employed. In order to determine the effect of parental influence on stem development, reciprocal F1 hybrid plants where available also were employed. The specimens were harvested and fixed in methanol and/or EtOH/acetic acid (3:1), serially sectioned with a razor blade using a special jig we made. The hand sections, approximately 800 µm in thickness, were decolored in 70% iso-propanol, dehydrated in acetone and cleared in xylene. The number of vascular bundles, cross-sectional area of the immediate (1st) internodes and second internodes (2nd) below the main ear-bearing node, and perimeter of the stem were obtained by using the counting function in ImageAcquireTM software (Williamsville, NY).

A minimum of five samples were collected from each variety at silking. The data were tabulated and a Student T-test was performed. For further analyses, the cross section of an internode was subdivided into three zones: the para-epidermal zone 1 (19% of the total area), zone 2 (56%) and zone 3 (pith) (25%). This zoning was achieved by first detecting the edge of the stem by intensity threshold, followed by edge-detection using an image processing software (Paint Shop Pro, v5.0). This procedure obtained the outline of the stem which could then linearly reduce the outline to 50% and 90%. Finally, the outline was pasted onto the

original image to define the zoning (Fig. 1). Cross sectional area (in mm2) and stem perimeter (in mm), as well as the number of vascular bundles, were obtained using ImageAcquireTM. Statistical analyses were performed using Origin software (V5.0, Microcal Inc., MA).

Figure 1. Definition of zoning used in this article. Zone 1: 19%, Zone 2: 56%, Zone 3: 25%

In a systematic study of various inbreds and their F1 hybrids, a number of interesting observations were made. While the general pattern of vascular distribution is similar, the numbers of vascular bundles and cross sectional areas of the stem can be significantly different. For a given cultivar, the standard deviation of the number of bundles is well within 5-10% of the value, while cross-sectional areas show a much larger standard deviation (Fig. 2 and Table 1). These observations suggest that the vascular bundle number is largely determined genetically and may be set in the embryonic phase, while the internode cross sectional area is more influenced environmentally. In B73/Mo17, Oh43/CM48, and their reciprocal F1 hybrids, the number of vascular bundles shows no significant difference (Fig. 2-C to 2-F), suggesting that cytoplasmic factors may have little influence in the determination of vascular numbers. Depending on the parental backgrounds, the F1 hybrids show a significant "hybrid vigor" in increasing the number of vascular bundles and cross sectional area (e.g. Oh43/KYS and B73/Mo17), although the early maturing hybrids, (CM48/Gaspé and Oh43/Gaspé) have bundle counts which resemble one of the parents or are an intermediate between the parents (Fig 2-G, 2-H). However, the results may indicate the degree of genetic similarity in the inbred lines used in this study as far as the vascular development is concerned. For comparison, the data from four commercial sweet corn varieties are also shown in Fig. 2-I, 2-J. It is important to note that for proper comparison, all the samples examined were obtained at the half silk stage; the time required from planting to silking is listed in Table 1.

This article is part of a report by WYC for Siemens Westinghouse Science and Technology Competition (Semi Finalist) and Intel Science Talent Search (2001).

Figure 2. Histograms showing the number of vascular bundles (1st three bars from left) in zone 1, 2, and 3 respectively, number of total bundles (4th bar), cross sectional area of stem (5th bar) and stem perimeter (6th bar) for the two internodes below the top ear node in different cultivars.

Table 1. Comparison of the CS area (mm2), and perimeter (mm), the number of vascular bundles in zones 1, 2, 3 and total, and the number of bundles in zone 1 per mm of stem	perimeter (B/mm)
rom two internodes of various inbreds, hybrids, and commercial sweet corn hybrids. n: sample size.	

Cultivars	n	Days to half	Cross sect. Area	Perimeter	Total Bundles	Zone 1	Zone 2	Zone 3	B/mm
(1st, 2nd internode)	_	Silking	(mm2)	(mm)					
Oh43 1st	7	73	178.70 <u>+</u> 62.93	59.33 <u>+</u> 12.08	393.7 <u>+</u> 14.6	235.0 <u>+</u> 8.5	124.5 ± 2.3	32.7 ± 5.6	3.9
Oh43 2nd	5	73	182.67 ± 40.46	57.07 <u>+</u> 5.36	447.0 <u>+</u> 9.6	265.0 ± 9.8	145.8 ± 2.5	36.2 ± 2.7	4.6
Gaspé flint 1st	7	41	44.22 <u>+</u> 18.98	29.81 <u>+</u> 5.70	158.8 <u>+</u> 8.4	84.0 <u>+</u> 3.1	60.8 <u>+</u> 5.9	14.0 <u>+</u> 2.6	2.9
CM48 1st	7	64	151.50 <u>+</u> 37.74	54.16 <u>+</u> 5.64	352.0 <u>+</u> 7.0	222.0 <u>+</u> 3.3	99.2 ±3.0	30.8 ± 3.0	4.1
CM48 2nd	7	64	165.55 <u>+</u> 26.18	54.34 <u>+</u> 4.3	322.8 <u>+</u> 10.8	213.0 <u>+</u> 7.3	85.2 <u>+</u> 24.6	24.6 ± 4.7	3.9
KYS 1st	4	89	347.44 <u>+</u> 20.27	82.30 <u>+</u> 3.41	460.2 <u>+</u> 9.4	288.5 <u>+</u> 7.5	130.2 <u>+</u> 5.1	41.5 <u>+</u> 2.6	3.5
KYS 2nd	5	89	431.48 <u>+</u> 19.37	91.88 <u>+</u> 1.37	552 <u>+</u> 6.4	354.7 <u>+</u> 8.3	149.7 <u>+</u> 2.9	47.5 ± 1.0	3.8
Mo17 1st	5	83	191.62 ± 15.60	59.29 <u>+</u> 2.03	340.6 ± 7.7	224.8 ± 4.	92.8 <u>+</u> 5.4	23.0 ± 3.5	3.7
Mo17 2nd	6	83	174.14 <u>+</u> 17.07	55.75 <u>+</u> 2.41	363.8 <u>+</u> 9.9	206.3 <u>+</u> 7.3	129.5 <u>+</u> 5.7	28.0 <u>+</u> 4.4	3.7
B73 1st	7	80	179.01 ± 43.55	60.31 <u>+</u> 8.22	326.5 <u>+</u> 49.6	213.5 <u>+</u> 29.3	89.5 <u>+</u> 17.7	23.4 ± 5.4	3.5
B73 2nd	8	80	186.47 <u>+</u> 67.02	58.86 <u>+</u> 10.84	308.8 ± 86.3	164.2 <u>+</u> 65.5	116.1 <u>+</u> 17.3	28.5 ± 5.5	2.7
Mo17/B73 1st	7	74	249.08 ± 51.04	70.59 <u>+</u> 7.47	464.7 <u>+</u> 25.8	304.8 <u>+</u> 17.6	127.4 <u>+</u> 10.9	36.1 <u>+</u> 4.4	3.9
Mo17/B73 2nd	7	74	331.02 <u>+</u> 75.69	78.07 <u>+</u> 8.31	510.4 <u>+</u> 21.8	316.8 <u>+</u> 15.2	152.4 ± 8.5	41.1 <u>+</u> 3.6	4.0
B73/Mo17 1st	7	76	284.29 ± 65.33	75.28 <u>+</u> 7.01	468.4 <u>+</u> 32.1	295.2 ± 20.6	131.2 <u>+</u> 12.7	38.1 <u>+</u> 3.1	3.8
B73/Mo17 2nd	7	76	284.58 ± 66.01	72.29 <u>+</u> 9.13	480.1 <u>+</u> 64.1	318.2 <u>+</u> 57.8	120.1 <u>+</u> 29.3	41.7 <u>+</u> 2.5	4.4
CM48/Oh43 1st	5	61	229.16 <u>+</u> 17.77	67.49 <u>+</u> 7.25	401.2 ± 9.4	254.4 <u>+</u> 11.3	111.2 <u>+</u> 10.3	34.6 ± 3.2	3.7
CM48/Oh43 2nd	7	61	301.72 ± 30.27	77.57 <u>+</u> 2.91	442.5 <u>+</u> 14.5	272.8 <u>+</u> 8.5	130.1 <u>+</u> 8.0	39.5 ±1.9	3.5
Oh43/CM48 1st	7	63	184.89 <u>+</u> 44.08	60.12 <u>+</u> 7.25	393.2 <u>+</u> 23.7	254.4 <u>+</u> 15.0	106.7 <u>+</u> 10.3	32.1 <u>+</u> 3.2	4.2
Oh43/CM48 2nd	7	63	223.32 ± 71.98	62.32 <u>+</u> 9.25	416.1 <u>+</u> 29.1	258.4 <u>+</u> 21.9	121.7 <u>+</u> 10.6	36.0 ± 4.2	4.1
Oh43/Gaspé 1st	5	58	163.60 <u>+</u> 21.88	57.64 <u>+</u> 4.0	278.6 <u>+</u> 38.4	172.6 <u>+</u> 27.5	84.4 ± 10.0	21.6 ± 3.0	2.9
Oh43/KYS 1st	7	88	367.31 <u>+</u> 77.69	86.54 <u>+</u> 8.98	580.4 <u>+</u> 34.3	369.1 <u>+</u> 18.0	166.2 <u>+</u> 13.8	45.0 <u>+</u> 3.7	4.2
Oh43/KYS 2nd	4	88	477.98 <u>+</u> 99.00	92.45 <u>+</u> 9.37	685.0 ± 44.5	421.2 <u>+</u> 25.5	212.5 <u>+</u> 18.1	51.2 <u>+</u> 3.2	4.5
CM48/Gaspé 1st	5	59	172.51 <u>+</u> 38.76	56.53 <u>+</u> 6.54	307.1 <u>+</u> 40.2	204.8 ± 20.9	81.1 <u>+</u> 22.8	21.1 ± 3.8	3.6
Platinum Lady 1st	7	72	177.63 <u>+</u> 36.23	60.64 <u>+</u> 5.45	324.7 <u>+</u> 33.5	214.2 <u>+</u> 17.8	83.0 <u>+</u> 14.4	27.4 <u>+</u> 2.9	3.5
Platinum Lady 2nd	7	72	215.59 <u>+</u> 32.57	63.73 <u>+</u> 4.87	345.7 <u>+</u> 23.3	212.5 <u>+</u> 13.4	103.5 ± 9.8	29.5 ± 1.7	3.3
Honey & Cream 1st	7	70	196.29 <u>+</u> 14.79	60.16 <u>+</u> 1.94	379.1 <u>+</u> 21.6	252.5 <u>+</u> 14.5	95.5 <u>+</u> 9.1	31.1 ± 4.3	4.1
Honey & Cream 2nd	7	70	256.35 <u>+</u> 20.96	69.64 <u>+</u> 2.45	404.0 <u>+</u> 16.8	244.5 <u>+</u> 11.7	123.7 ±7.1	35.7 <u>+</u> 2.7	3.5
Seneca chief 1st	7	75	278.38 ± 33.09	74.58 <u>+</u> 4.89	443.4 <u>+</u> 25.9	293.0 <u>+</u> 17.9	118.0 <u>+</u> 10.2	32.4 ± 2.2	3.9
Seneca chief 2nd	7	75	320.68 ± 32.96	76.15 <u>+</u> 4.88	474.5 <u>+</u> 16.1	298.2 <u>+</u> 11.4	138.1 <u>+</u> 10.0	38.1 ± 3.7	3.8
Odyssey 1st	7	78	218.30 <u>+</u> 60.94	67.92 <u>+</u> 8.84	425.1 <u>+</u> 34.1	272.5 <u>+</u> 17.8	119.0 <u>+</u> 14.5	33.5 <u>+</u> 4.9	4.0
Odyssey 2nd	7	78	267.83 ± 67.89	71.45 <u>+</u> 8.62	526.1 <u>+</u> 45.6	348.4 <u>+</u> 30.8	140.0 <u>+</u> 22.1	37.7 ± 4.3	4.8

A visualization of airflow pattern around a maize plant

--Cheng, WY, Cheng, PC, Walden, DB

In order to study the airflow pattern around different organs of a maize plant, a small wind tunnel was constructed (Figure 1a). Three 16-inch box fans were stacked in series to provide different airflow velocities. Laminar flow was achieved by using a honeycomb panel constructed by using 5mm McDonald^R plastic beverage straws (Figure 1a). A Kestrel 3000 anemometer (Nielsen-Kellerman, Chester, PA) was used to determine the air velocity. Two 15cm spherical mirrors (f=150cm $1/10\lambda$) were used to construct a Schlieren optical set-up (Edmund Optics Inc., NJ) (Figure 1b). A 100W Hg lamp (XBO) was used as the light source: a SonyTM camcorder operated in night-vision mode with built-in IR illuminator disabled was used to acquire the Schlieren images (Figure 1c). Acetone vapor was generated and ejected from a set of specially made nozzles in the air stream. The acetone vapor has a different reflective index from surrounding air, hence it can be easily delineated from the surrounding air. Plants were placed downstream from the nozzle in the wind tunnel, and rotated to allow a study of multiple wind directions.

At 3 km/h and 4.6 km/h breeze conditions, a significant updraft flow pattern and turbulence were detected when the lamellar airflow encountered leaf blades (Figure 2b, 2c, 2d, and 2e, arrows). The turbulence in the leeward side suggests significant drag acting on the plant. We have also observed an interesting turbulent pattern occurring at the tassel region of the plant

Figure 1. (a) Wind tunnel with straw plate and nozzle. (b) Schlieren optics layout, (c), Schlieren optical setup.

(Figure 2f, 2g, arrows). This turbulence caused the tassel and the dehiscing anthers to vibrate even at low wind velocities and, in conjunction with the leaf-generated updraft, may play an important role in the efficient dispersing of pollen grains. The leafgenerated updraft may also minimize pollen deposition on the surface of the leaf. Downward draft can be observed only at the basal part of a leaf blade; this downward draft may assist the airborne pollen grains attaching to the silk.

Figure 2. (a-g), Airflow pattern around a plant, L: leaf, T: tassel, white arrows: turbulence flow.

Due to the limitations on the size of the mirrors and the wind tunnel, our Schlieren optical study can only be performed on young plants and isolated plant parts such as the tassel. Nevertheless, the results demonstrate the potential application of Schlieren optics to the study of aerodynamic response and pollen dispersion of maize.

This article is part of a report by WYC for Siemens Westinghouse Science and Technology Competition (Semi Finalist) and Intel Science Talent Search (2001).

Mechanical properties of stem vascular bundle

--Cheng, WY, Cheng, PC, Walden, DB, Shinozaki, DM

Mechanically, the maize plant can be characterized as a "foam stick" with a reinforced outer shell, which resembles a concrete pillar in modern constructions. The peripheral region can be considered as the steel reinforcing bars and cylinder, and the interconnecting nodal networks are the steel bracings ("rebar") found in a concrete pillar. In the early stage of development, the vasculatures act as the tensile element, while the highly turgid parenchyma cells are the compression element in the model. In the later stage while the parenchyma cells become air-filled, the highly lignified para-epidermal bundles become the structural element. The binding between individual para-epidermal vascular bundles by lignified sclerenchyma cells is an important structural development. This binding transforms those loosely parallel arranged vascular bundles into a solid cylindrical structure as depicted in a model built of straws (as vascular bundles) and foam boards (as node (N) and internode (IN)) (Fig. 1a). If the individual straws are not glued together, the "stem" is subject to a "twisting" motion (Fig. 1a-left; arrow), but the stem becomes rigid when the straws are bound together (Fig. 1a-right).

To isolate the vascular bundle, mature stems (Oh43/KYS) were placed in cellulase-pectinase solution to remove parenchyma cells. (Cellulase from *T. longibrachiatum*; Cat. WA18420, and pectinase from *A. niger*; Cat. 18579; Fluka, Switzerland.) This digestion process took 1-6 days, depending on the age of the specimen. Heavily lignified vascular bundles are resistant to the enzymatic digestion and remain intact. The longitudinal vascular bundles

Figure 1. (a) a stem model demonstrating the effect of torsion force (arrow), (b, c) Isolated bundles. N: node, IN: internode.

dles in the stem can be isolated by enzymatic treatment as long fibers (Fig 1b, 1c), which allow us to perform mechanical testing on individual bundles. A tensile load-displacement curve was obtained from individual bundles using a computer-controlled thinfilm tensile tester developed by D M Shinozaki (Faculty of UWO).

Preliminary material testing on the isolated vascular bundle reveals the structure is moderately strong (Fig. 2); the individual vascular bundles fractured around 100g (or about 1 N), with an elongation of about 1200µm. For a bundle diameter approximately 0.5mm, the effective stress is about 5MPa at fracture. This is probably lower than the real value since it fractured at the grip in our preliminary experiment. Since the vascular bundle is not a solid rod, the true stress at fracture is much higher. Therefore, effectively the bundle may be stiffer than polyethylene. This test was done wet (in 30% iso-propanol); therefore, the strength probably increases when it is dried.

Figure 2. 30mm isolated vascular bundle of Oh43/KYS fractures at approx. 100 g. with an elongation about 1200 μm

This article is part of a report by WYC for Siemens Westinghouse Science and Technology Competition (Semi Finalist) and Intel Science Talent Search (2001).

Distribution of vascular bundles in Ohio43/KYS stem

--Cheng, WY, Cheng, PC, Walden, DB

Throughout the maize plant, most of the longitudinal vascular bundles travel through a number of nodes where side branching occurs (Fig. 1). In other than the nodal region, it seems that no interconnections occur. The longitudinal vascular bundles form branches just before entering the nodal region (Fig. 1); these vascular branches in turn form an interconnecting network. We observed that most of the branches are derived from the cortex of the stem while the vasculatures in pith tend to pass through with few connections. Where the leaf initiates, the vascular bundles form an intense array (Fig 1), which shows as dark radiating structures (A) in the MRI image (Cheng et al., MGCNL 75:8, 2000)

Figure 1. Vascular bundles below and through a node. Note the branching before the vasculatures enter the node (black arrow). V: vascular bundles, White Arrow: Direction of Apex.

Figure 2 shows the internode cross sectional area and the distribution of bundles in cortex (the para-epidermal zone 1 is 19% of the total cross sectional area) and pith (89%) in four Ohio43/KYS plants at the stage of silking. The numbering system adapted places the top ear above the internode #12 (Fig. 2a). The tassel begins above internodes #2-3 and the top crown roots initiate at the node above internodes #19-20. The results indicate a maximum bundle number at the ground level (#19) and demonstrate a general exponential reduction in the number of vascular bundles and cross-section area toward the apex of the plant. However, a shoulder in the curve was observed around the earbearing node (internodes 12-16) as the large number of vascular bundles supplying the ear (Fig. 2b-e).

This article is part of a report by WYC for Siemens Westinghouse Science and Technology Competition (Semi Finalist) and Intel Science Talent Search (2001).

Figure 2. (a) Diagrammatic representation of the using internode numbering system used in this article, (b) number of vasculatures in zone 1, (c) number of vasculatures in pith (core), (d) number of total vasculatures, (e) cross sectional area.

Method for visualizing the vascular bundles in stem

--Cheng, WY, Cheng, PC, Walden, DB

A method was developed to visualize the arrangement of vasculatures in the absence of the parenchyma cells. To visualize the vasculature, mature stems were placed in cellulase-pectinase solution to remove parenchyma cells. (Cellulase from *T. longibrachiatum*; Cat. WA18420, and pectinase from *A. niger*; Cat. 18579; Fluka, Switzerland.) This digestion process took 1-6 days, depending on the age of the specimen. Heavily lignified vascular bundles are resistant to the enzymatic digestion and remain intact. This leaves the vasculatures, and the outer "shell" of the plant without any support, which thus collapse.

In order to preserve the vascular architecture, the stem segments when wet, were pre-glued by cyanoacrylate glue in a polystyrene frame prior to enzymatic digestion (Fig. 1-a). This prevents the vascular bundles from collapsing after the removal of parenchyma cells (Fig. 1-b). During the digestion process, tissue fragments were washed away by flushing the specimen gently with a Pasteur pipette. Figure 1-c shows the node region of Ohio43/KYS after digestion. Note the parallel bundles running through the node with branches before entering the node from below.

Figure 1. Undigested (a) and partially digested (b) stem sections glued into polystyrene frames. (c) Digested nodal region, note the straight through vasculatures.

FORT COLLINS, COLORADO Colorado State University

The relationship between synapsis, recombination nodules, and crossing over in maize

--Anderson, LK, Stack, SM

We examined spreads of synaptonemal complexes (SCs) from inbred KYS maize using electron microscopy to determine the pattern of synapsis in relationship to the frequency and distribution of recombination nodules (RNs). In maize, synapsis generally initiates distally (near ends) and proceeds proximally, although there are also a few interstitial SC initiation sites. Segments near centromeres are ordinarily the last to synapse.

Early RNs (ENs), like late RNs (LNs), are proteinaceous ellipsoids found on the central element of SCs, but ENs are found during zygotene and occur six times more frequently than maize LNs, which occur later in pachytene (see below). ENs are thought to have roles in synapsis and/or early recombination events. Evidence from yeast, mammals, and plants indicates that a subset of ENs gives rise to LNs. Maize ENs do not appear to show interference with respect to one another, although the distribution of ENs along the length of bivalents varies. For example, distal SC segments that synapse early in zygotene have nearly two-fold more ENs per unit length of SC than more proximal segments that synapse later. It is interesting that as zygotene progresses, the frequency of ENs does not increase in distal segments, indicating that ENs do not continue to assemble on already formed SC. This, coupled with the observation that the highest frequency of ENs occurs at synaptic forks, suggests that ENs are assembled on SCs at synaptic forks where synapsis is temporarily delayed.

ENs disappear early in pachytene to reveal LNs. In contrast to ENs, LNs show interference just like crossover events, and, indeed, LNs appear to reside at sites of crossing over. The frequency of LNs per m of SC is six-fold higher in distal compared to proximal segments of SCs. Thus, distal chromosomal segments that synapse first have more ENs in zygotene and more LNs in pachytene. These results suggest that (1) synaptic patterns are important in determining crossover patterns in maize and (2) the first ENs to associate with SC are more likely to give rise to LNs (and crossover events) than ENs that associate with the SC later in zygotene.

FREISING, GERMANY Bayerische Landesanstalt für Bodenkultur und Pflanzenbau

Evaluation of international resistance genes against the European corn borer under Central European conditions --Papst, C, Götze, S, Eder, J

The European corn borer (ECB, *Ostrinia nubilalis*) is a worldwide major pest of maize. Populations with up to four generations per year are observed (<u>http://www.ent.iastate.edu/pest/cornborer/intro.html</u> 2001) in the U.S. corn belt, in contrast to Central Europe, where only one generation per year is usual. Depending on the stage of development of the plant at infestation time, more or less extensive yield reductions are reported. The first generation mainly feeds on the leaves of young plants, the following generation appears, in case of shorter

growing seasons like in Germany, the plants are mostly damaged by tunneling in stalks and ears. Here the neonate larvae feed only a short time during the first two stages of development (early to mid-July) on the leaves before they begin tunneling. In most cases, the larvae feed from the tassel down to the stem base, where they overwinter as the fifth larval stage (L5) and in spring they pupate. The flight of the moths and egg-laying is observed from mid-June to mid-July.

In the most important maize growing regions, like in the Middle West of the U.S.A. and in Mexico, material with increased resistance to ECB is being developed. Particularly in the case of a resistance to the second generation, this material could be useful for European maize breeding as a source of resistance. But in most cases this material needs far longer growing-seasons than central European material. To determine the resistance of international material under German conditions, experiments with populations and inbred lines were carried out for the present study.

Germplasm. For resistance examination, 18 (1999) to 34 (2000) lines and populations from the U.S.A., Mexico and South Africa were cultivated (Table 1). To compare the resistance and agronomic traits with adapted European material, the two inbred lines D06 und D408 were evaluated in 2000. D06 is regarded as resistant, and D408 as susceptible (Melchinger, AE et al., Euphytica 99:115-125, 1998). The populations 590, 590B, 591 and G1 IST were provided by CIMMYT (Mexico). They have been selected for resistance to the first generation of ECB, and in the case of population 591, also for resistance to the second generation of larvae (Bergvinson, D, unpublished, 1999). In 2000, selfings from these populations were tested and signed with "S" and the respective population number. Diverse MBR/MDR lines (multiple borer resistance/multiple disease resistance) also derive from the populations described above by self-pollination. Material from South Africa has come out of a backcross program of various selections with one experimental line from North American material (verbal information, van Rensburg 1999). The lines Mo45, Mo46 and Mo47 (Barry, BD et al., Crop Science 35:1232-1233, 1995), as well as the Mo-2 ECB population from Missouri is adapted to the climatic conditions in the southern part of the U.S. "Corn Belt" and carries resistance genes to the second generation of ECB. The Mo-2 ECB-2 population is derived from the "Nigerian Composite B" material by a recurrent selection for resistance to the second generation of ECB. Material from Iowa (Hallauer, AR, Crop Science 37:1405-1406, 1997) is reported to be resistant to the first generation of ECB.

In the year 1999, the lines and populations were tested in onerow plots of 23 plants and without replication. The plot size was 4.0 m x 0.75 m with a planting density of 8 plants/m². In 2000, the variants were evaluated in a lattice design with two replications in one-row plots of 4.0 m x 0.75 m and 25 plants. The trials were overplanted and later thinned to the necessary plant density of 8 plants/m². Because of extremely late maturation of the foreign genotypes in 1999, the trial was covered with a perforated transparent polyethylene foliage for three weeks after sowing in 2000.

For evaluating the level of resistance against ECB, every plant was manually infested at three times in weekly intervals with 20 neonate ECB larvae. The date of application was synchronized with the natural flight of the ECB. For the infestation freshly hatched larvae were mixed with maize-cob grits and placed into the whorl or leaf collar of maize plants with a dispenser (Mihm, JA, Table 1. Overview of the evaluated genotypes and results of our study.

			ation-	DA*				· ·
		ye	ar	days				
0		1000	••••	after	PH	DME	LA 1000	
Urigin Movico	genotype	<u> </u>	2000	sawing	ст	<u> 70</u>	1999	2000
MEXICO	MBR/MDR F117	X	X	115	245	31.5	0	2
	MBR/MDR F12	X	X	109	190	38.4	0	4
	MBR/MDR F20	Х	х	105	240	47.5	0	47
	MBR/MDR F68	Х	х	109	240	34.2	7	20
	MBR/MDR F78	Х	х	106	210	38.0	7	37
	P. 590†	Х	х	118	328	32.7	0	4
	S. 590-1¶		х	106	250	40.5		8
	P. 590B†	Х	х	110	323	39.2	7	0
	S. 590B-1¶		х	109	275	40.9		4
	S. 590B-2¶		х	111	305	32.5		23
	S. 590B-3¶		х	110	275	45.7		9
	P. 591†	Х	х	116	325	31.3	0	8
	S. 591-1¶		х	113	245	27.1		2
	S. 591-2¶		х	109	260	35.2		11
	S. 591-2¶		х	113	208	19.7		9
	PG1†	Х	х	108	290	37.3	8	22
	S G1-1¶		х	109	223	45.1		19
	S G1-2¶		х	112	250	40.8		13
South Africa	4131 P28-16		x	110	270	39.6		16
	4131 P28-6		х	109	260	35.7		46
	4191.120 0 609 P28-2		х	105	230	37.3		43
	P6528 P28-2		х	117	210	15.7		20
	P6528.P28-3		х	107	250	38.0		32
	P6528 P28-4		х	109	250	36.2		21
	SM42.P28-7		х	105	260	61.3		27
Missouri	Nr. 45	x	x	100	245	41.0	~	20
1111550ull	Mo 45	x	x	108	245	41.9	5	29
	Mo 46	x	x	101	205	45./	29	51
	Mo 47	x	x	102	213	47.9	6	6
	Mo2-ECB†	v	v	100	225	54.0	24	77
	Mo2-ECB2†	л	л	99	185	51.8	18	51
Iowa	B 102	х	х	108	155	34.3	21	36
	B 103	х	х	99	140	45.5	22	78
	B 104	х	х	109	180	42.2	20	43
	B 106	х	х	106	225	49.7	6	55
Europe	D06		x	78	169	57.1		155
	D408		x	76	166	55.5		77

*DA = date of anthesis, PH = plant height, DME = dry matter content of ears, LA = larvae alive per 100 plants \dagger population \P selfings (S1) from the population

CIMMYT, Mexico, D.F., Mexico, 1983). In both years of experimentation, the plants were split longitudinally from the stem base to the tassel at harvesting time in late October to record infestation level and the number of larvae alive (LA). From the number of infested plants per plot, the relative infestation frequency (RIF) was calculated referring to 100 plants. Additionally, in 2000, the stalk damage rating (SDR) was evaluated based on a 1 to 9 scale (1 for intact plant, 9 for dropped ears or breakage below the ear, Hudon, M and Chang, MS, Maydica 36:69-70, 1991).

As agronomic traits, date of anthesis in days after sowing (DA) and plant height (PH) were recorded in both years, and dry matter content of the ears (DME) was determined from 3 ears per genotype in the year 2000.

The two European dent lines had an RIF of 100%, whereas the non-European genotypes were infested in 1999 between 0 and 94%, and in 2000 between 8.3 and 98%. The highest RIF of more than 64% showed the genotypes from Missouri and lowa, except Mo47 with a relatively low RIF in the year 2000 (Fig. 1). The populations, their progenies as well as the lines from Mexico and South Africa achieved a RIF of less than 64%. The analysis of variance showed in 2000 highly significant differences among the

genotypes ($p \le 0.01$; $r^2 = 15.2\%$).

In the established European dent lines D06 and D408, 155 and 77, respectively larvae could survive per 100 plants in 2000. Whereas in 1999 only between 0 and 29 larvae and in 2000 between 0 and 78 larvae per 100 plants could survive in the international genotypes. The analysis of variance showed highly significant differences ($p \le 0.01$; $r^2 = 17.6$ %) in 2000. The highest amounts of larvae (52 - 78 larvae/100 plants) were found in two genotypes from lowa and Missouri, the lowest number in the genotypes from Mexico. The only exception was Mo47 from Missouri with 6 larvae per 100 plants.

The European lines D06 and D408 showed a SDR of 2.2 and 3.8, respectively, whereas the SDR of the foreign genotypes varied between 1.0 and 3.0 ($p \le 0.05$; $r^2 = 0.4$). Populations from Mexico and lines from South Africa showed no stalk damage, whereas only lines from Iowa and Missouri had higher SDR levels (Fig. 2).

genotypes

Figure 1. Comparison of relative infestation frequency in % of 1999 and 2000.

Figure 2. Stalk damage rating in 2000, according to a 1-9 rating scale of Hudon et al. (Maydica 36:69-70, 1991)(1=intact plant, 9=stalk damage below the ear or dropped ears).

For the European dent lines D06 and D408, the DA was after 78 and 76 days, using a foliage for three weeks after sowing. In contrast the DA of the foreign genotypes was much later between 99 and 116 days after sowing (Table 1).

In the year 2000, the DME was 57.1% and 55.5 %, respectively, for lines D06 and D408. In contrast to this, the DME of 19 genotypes mostly originating from Mexico and South Africa was below 40 %. Ten genotypes – mainly from Missouri and Iowa - reached between 40 % and 50 % and only four lines (SM42-7; Mo2-ECB, Mo2-ECB2 and B106) had a DME of 50 % or more (Table 1) and, thus, were comparable to the adapted European lines.

PH of the European lines D06 and D408 was 169 cm and 166 cm, respectively, whereas the foreign genotypes had a PH between 140 cm and 328 cm.

Highly significant correlations among the resistance characteristics were observed in the present study (Table 2). The resistance traits RIF, LA, and SDR showed a positive correlation (r = 0.5 - 0.9; $p \le 0.01$) in both years. In 2000 the correlation between RIF, LA, and SDR was highly significant (r = 0.5 and 0.6), so that in the future probably the resistance could only be evaluated by SDR instead of the more labour intensive traits RIF and LA.

A high RIF could be observed in genotypes of lowa and Missouri. These lines also showed a higher SDR in our evaluation and had the highest number of LA. In contrast the populations and lines from Mexico, had a very low RIF and in most cases no or only very small SDR. The European lines had a substantially higher RIF than all the other genotypes. For these, a very high number of LA and a relatively high SDR were found. Even the line D06, classified as resistant, had a SDR of 2.2, and was with one exception (Line B102 from lowa) not exceeded by the other genotypes. Already in an earlier study with European material (Melchinger et al., Euphytica 99:115-125, 1998), relatively high SDRs between 2.5 and 7.3 were observed. Many of the genotypes examined in the present study showed an essentially lower infestation level than the established material, and thus, are very promising as probable sources of resistance genes.

A positive relationship between resistance traits and DA as

well as maturity (DME) could be observed. Also in earlier studies (Russell, Crop Science 14:725-727, 1974; Kreps, Vortr. Pflanzenzüchtung 38:171-186, 1997), a positive correlation between late flowering time and increased resistance (lower SDR, AL, and RIF) to ECB has been found. Hudon, M and Chang, MS (Maydica 36:69-70, 1991) explained this relationship by an improved stalk stability of late maturing germplasm at harvesting time. For the non-adapted genotypes the DA was on average about 30 days later than for the European dent lines D06 and D408. Because of the late flowering also a bad maturation and therefore low DME, sometimes below 50 %, was observed. As the correlation analysis showed, the more susceptible lines from lowa and Missouri were guite early in flowering (DA: 99 to 109 days after sowing), whereas the resistant populations from Mexico were later (DA: 110 to 118 days after sowing). So it could be supposed that the extraordinary "resistance potential" of the populations is not only based on genetic tolerance and antibiosis, but also is a consequence of late maturity. To study the influence of late maturity on the ECB resistance, and to use these genotypes commercially the material has to be adapted to Central European climatic conditions. Only a few of the genotypes examined (B106, Mo2-ECB2, Mo2-ECB and SM42.P28-7) reached a DME between 50 and 60% in late October and, thus, are near to the European breeding material in maturity. These genotypes appear to be the most suitable for further studies and practical breeding efforts.

Besides maturity, the PH as a further agronomic trait could also play a role in resistance. The negative correlation, observed between the PH and resistance, has already been described by Schulz, B et al. (Plant Breeding 116:415-422, 1997) and by Magg, T et al. (Plant Breeding 120:397-403, 2000). They showed that bigger genotypes mostly had a lower SDR and RIF. Possibly an increased stem stability of big plants is responsible for a smaller SDR. Additionally high lignin or phenol levels in higher plants are reported (Bergvinson, D et al., Insect resistant maize, CIMMYT, 1994) to have on the one hand an influence on the plant stability, and on the other hand a negative effect on the development and survival rate of larvae. Kreps, R et al. (Vortr. Pflanzenzüchtung 38:171-186, 1997) describe a "diluting effect"

Table 2. Correlations among agronomic and resistance traits.

	LA† 2000	RIF in % 1999	RIF in % 2000	SDR 2000	DME in % 2000	DA in days after sawing 2000	РНТ 2000
AL 1999	0.72**	0.61**	0.82**	0.56*	0.44 ^s	-0.61**	-0.62**
AL 2000		0.69**	0.85**	0.54**	0.47**	-0.49**	-0.53**
RIF in % 1999			0.60**	0.35	0.54*	-0.37 ^s	-0.41 ^s
RIF in % 2000				0.63**	0.48**	-0.44**	-0.53**
SDR 2000					0.2	-0.23	-0.55**
DME in % 2000						-0.57**	-0.14
2000							0.24

† AL= number of larvae alive per 100 plants, RIF = relative infestation level, SDR = stalk damage rating, DME = dry matter content of ears, DA = date of anthesis, PHT = plant height

^S correlation was significant at the 0.05 probability level

* correlation was significant at the 0.01 probability level

** correlation was significant at the 0.001 probability level

on the larvae by the increased PH, whereby the damage is minimized. But even if a better stalk stability is desirable for a lower SDR, for silage use the digestability should not be disregarded. As t is shown in Bohn, M et al. (TAG 101:907-917, 2000) the in vitro digestability of the organic matter (IVDOM) is negatively correlated with resistance. By splitting the stems for the resistance traits, we observed that the very tall and resistant populations of Mexico just had a great stalk stability in contrast to other lines. Therefore the digestibility of the plants is also to be evaluated for further ECB trials.

The non-European genetic material showed a very low susceptibility to the ECB that could not be reached by most of the Central European lines (see Melchinger, AE et al., Euphytica 99:115-125, 1998). Especially with regard to controversial discussions about transgenic maize and to the increasing importance of the European corn borer in Central Europe, the use of conventional sources of resistance genes is of great importance. Therefore marker assisted selection is promising to avoid high costs for manual infection and evaluation. Because breeding in Central Europe requires early material, above all the earlier flowering genotypes from Missouri and Iowa are of great interest. In these lines the high level of resistance is not only a consequence of late maturity. Nevertheless further breeding processes are necessary to improve the yield characteristics of this genetical material and to eliminate the effect of late maturity on the ECB resistance. The next step will be the selection for early-flowering individuals from the most promising sources, as well as a backcross program with established German material. Because ECB resistance is a quantitative trait, a lot of QTL (quantitative trait loci) studies for certain adapted populations have already been done (Groh S et al., Plant Breeding 117:193-202, 1998; Jampatong, C, Conference Maize Genetics Abstracts 40 (http://www.agron.missouri.edu/Coop/Conf/1998.html), 1998; Bohn M et al., J Econ Entomol 92:1892-1902, 2000), so the combination of different gene pools and their QTL could be of great importance for further genetic analyses and the improvement of the European breeding material.

Acknowledgement. Thanks to our colleague M. Walser for her excellent assistance in the course of the implementation of the experiments and the working-up of the data, as well as L. Schleicher for the helpful translation of the manuscript. We also thank our colleagues from the University Hohenheim-Stuttgart for the provision of know-how and equipment for raising the larvae and their application.

> IRKUTSK, RUSSIA Siberian Institute of Plant Physiology and Biochemistry

Regulation of plant uncoupling protein CSP 310 content in maize mitochondria during cold stress

--Kolesnichenko, AV, Zykova, VV, Voinikov, VK

Previously it was found that cytoplasmatic CSP 310 caused uncoupling of oxidation and phosphorylation in cereals (Voinikov et al., J. Therm. Biol. 23:1-4, 1998) because of its association with mitochondria (Kolesnichenko et al., J. Plant Physiol., 156:805-807, 2000). The presence of cold shock protein CSP 310 and CSP 310-like proteins in maize mitochondria was established (Kolesnichenko et al., J. Therm. Biol. 25:203-209, 2000) and its uncoupling activity in maize mitochondria was shown (Grabelnych et al., MNL 75: 21-22, 2001). Since it was shown previously that in winter cereals such as wheat and rye, CSP 310 uncoupling activity depends on the presence of a cytoplasmic "depot" of a low active form of this protein binding with nucleic acid, the aim of the present work was to study regulation of CSP 310 uncoupling activity in 3-day-old maize shoots during cold stress.

Mitochondria were extracted from three-day-old maize shoots by differential centrifugation as described previously (Pobezhimova et al., J. Therm. Biol. 21:283-288, 1996). Cold stress treatment was performed at 4 C for 1 h. The electrophoresis of native proteins was performed as described previously (Kolesnichenko et al., J. Therm. Biol. 25:203-209, 2000). Protein relative molecular weights were determined using the HMW kit of markers (Pharmacia, Sweden). Western blotting and ethydium bromide staining of native gels were performed as described previously (Kolesnichenko et al., J. Therm. Biol. 25:203-209, 2000).

Ethydium bromide staining of native maize proteins showed the absence of nucleic acids (NA) binding to 300-310 kD cytoplasmic proteins (Fig. 1A). CSP 310 – like maize cytoplasmic proteins isolated by affinity chromatography as described previously (Kolesnichenko et al., J. Therm. Biol. 24:211-215, 1999) also showed the absence of NA (Fig. 1B). On the other hand, western blotting of the native maize mitochondrial proteins showed an increase of CSP 310 concentration during cold stress (Fig. 2). Therefore, we can suppose that the increased CSP 310 content in maize mitochondria depends on the synthesis of this protein de novo during cold shock or on possible structural changes in cytoplasmatic CSP 310-like proteins with different molecular mass but not on the presence of non-active CSP 310 "depot" in cytoplasm.

Figure 1. A. Ethydium bromide staining of native electrophoresis of control (1) and stressed (2) at 4 C, 1h maize cytoplasmic proteins; B. Ethydium bromide staining of cytoplasmic CSP-310-like proteins isolated by affinity chromatography from maize (1) and winter wheat (2).

Figure 2. Western blotting of control (1) and stressed (2) at 4 C, 1h maize native mitochondrial proteins with antibodies toward CSP 310 from winter rye.

Based on the data obtained we can conclude that in maize the defense mechanisms against cold stress connected with uncoupling in mitochondria caused by cold stress protein CSP 310 differ from those in winter cereals.

Acknowledgements: The work has been performed with the support of the Russian Foundation of Basic Research (project 01-04-48953).

Metabolism DL-C¹⁴-tryptophan in the maize root cells at low temperature

--Akimova, GP, Sokolova, MG, Nechaeva, LV, Luzova, GB

One of the factors regulating the synthesis of endogenous indolylacetic acid (IAA) may be the amount of available tryptophan (Trp), which is known to convert into IAA in plants, with the acid level regulated by the content of free Trp inside the tissue.

The present research was aimed at the demonstration of temperature impact on the content of free Trp in the roots of maize seedlings in connection with the change of IAA level at low positive temperature, and to determine the impact of a temperature of 10 C on metabolism of DL-C¹⁴-tryptophan.

The study was carried out on the primary roots of 2 day old seedlings of maize varieties differing in resistance to low temperature - Omskava-2 (resistant to low temperature) and Uzbeksksya tooth-like (non-resistant). Quantitative determination of free tryptophan was conducted using an amino acid analyser. Growth zones of maize root seedlings (meristem, commencement and termination of cell expansion) with the view to determine the impact of a temperature of 10 C on DL-C¹⁴-Trp metabolism were cut immediately prior to the introduction of DL-C¹⁴-Trp into the incubation medium. 0.05 ml of DL-C¹⁴-Trp were placed into small Petri dishes with 5 ml of H2O; incubation was conducted at 27 C for 4 hours. The plant material was separated from the medium, washed three times with distilled water and put into Petri dishes on wet filter paper. Some of the dishes were transferred in a thermostate with the temperature of 10 C (test), the other part was left at the temperature 27 C (control) for 20 hours. The cut pieces were thoroughly ground, 10-fold volume of boiling ethanole was poured onto them; the samples were used to C¹⁴-IAA and its metabolites.

Table 1 demonstrates a gradual increase of free Trp in the course of cell growth. At a temperature of 10 C Trp content in the growth zones of maize seedling roots of Uzbekskaya non-resistant variety goes through the following changes: it increases in the expanding cells and reduces in the cells, which have terminated expansion. The resistant variety Omskaya-2 shows Trp content close to the control.

Table 1. Free tryptophan content in maize root growth zones in optimal growth conditions and at low temperature.

Variety	Root growth zones	Tryptophan, mcg10-6/cell	
		27 C	10 C
Omskaya-2	Meristem	0.240.01	0.160.00
	Expansion commencement	1.660.03	1.760.04
	Expansion termination	3.860.15	3.770.06
Uzbekskaya	Meristem	0.600.01	0.420.01
tooth-like	Expansion commencement	5.800.09	12.360.25
	Expansion termination	21.600.22	14.900.30

Radio-isotope analysis showed that meristem cells and expansion zones actively adsorb Trp (Table 2). Marked Trp is incorporated into water and ether fractions and in the zones of chromatograms with Rf IAA (Table 3). Radioactivity of chromatogram zones with Rf IAA in percentage of radioactive ether fraction in the options with a temperature of 10 C in the cells of resistant variety reduces, and increases in the cells of non-resistant variety.

The data acquired allow the supposition that in the resistant variety IAA metabolism at 10 C takes place with a higher speed,

Table 2. DL-C ¹⁴-tryptophan absorption speed by root growth zones.

Variety	Impulse/min per 1 g of raw material		
	Meristem	Expansion commencement	
Omskaya-2	5952120	597297	
Uzbekskaya tooth-like	438392	437487	

Table 3. Radioactivity of water residue (1), ether fraction (2) and chromatogram zones with Rf IAA (3) (103 impulse/min/g of the raw material).

Growth	Control, 27 C			Test, 10 C			
zones							
	1	2 3		1	2	3	
		Omskay	/a - 2 (resista	ant)			
Meristem	55.51.1	27.70.6	0.440.09	66.41.2	31.40.6	0.310.06	
Expansion	48.01.0	24.00.5	0.240.06	66.51.2	52.91.6	0.310.06	
commencement							
	Uzbekskaya tooth-like (non-resistant)						
Meristem	62.21.3	32.10.6	0.270.06	64.41.3	26.40.5	0.460.01	
Expansion	58.11.2	42.20.8	0.320.07	94.421.9	47.51.2	0.540.01	
commencement							

that is why C¹⁴-IAA content amounts to a lower percentage as compared to control. In the non-resistant variety C¹⁴-IAA metabolism slows down at 10 C, which is likely to account for IAA accumulation.

Therefore, the results of the investigation show a certain dependence between Trp content and the level of endogenous IAA in the maize root cells: low temperature increases tryptophan levels and IAA content compared to controls. At the same time, at 10 C the proportion between the rate of synthesis and IAA metabolism changes, and is obviously one of the critical factors of growth regulation in maize varieties differing in cold-resistance.

The effects of hydrogen peroxide on the translational activity in mitochondria

-- Konstantinov, YM, Subota, IY, Arziev, AS, Katyshev, AI

Recent findings suggest that at moderately high concentrations certain forms of reactive oxygen species (ROS) such as H₂O₂ may act as signal transduction messengers (Sen and Packer, FASEB J 10:709-720, 1996) and/or participate in redox regulation of gene expression, particularly by means of redox regulation of appropriate transcription activators (Sun and Oberley, Free Radic Biol Med 21:335-348, 1996). We showed that chemical and physiological redox agents influence significantly transcriptional and translational activities in isolated mitochondria (MNL 72:33, 1998). Substantial activation of both transcription and translation in mitochondria under oxidizing conditions and its strong repression under reducing conditions suggest potential multi-level redox control of mitochondrial gene expression. These data showed also that the translational activity of mitochondria is subjected to the presumably regulatory influence of the redox state of glutathione. Little is known about the effects of hydrogen peroxide as a potential regulatory molecule on the activity of protein synthesis in mitochondria.

In this work we investigated the influence of hydrogen peroxide on the translational activity of mitochondria to compare effects of this physiological oxidant with other redox agents. Mitochondria were isolated from 3-day-old etiolated maize seedlings (hybrid VIR42 MV) by a standard method of differential centrifugation. Mitochondrial protein was determined by the Lowry method. Protein synthesis in mitochondria was measured according to the method of Bhat et al. (Biochemistry 21:2452-2460, 1982) with the use of [³⁵S]-methionine.

The results obtained show that hydrogen peroxide (0.5 mM and 1 mM) caused the significant increase of translational activity in maize mitochondria (Figure 1). There were no substantial differences between activation effect of the oxidized form of glutathione (GSSG) and hydrogen peroxide. These data suggest that a physiological oxidant such as hydrogen peroxide may be one of the regulatory factors involved in multi-level redox control of mitochondrial gene expression.

Redox modulation of activity of DNA-binding protein factors in mitochondria

-- Konstantinov, YM, Tarasenko, VI, Kobzev, VF, Subota, IY, Katyshev, AI, Kirichenko , KA

We have previously reported (MNL 72:33, 1998; MNL 75:23-24, 2001) that transcriptional and translational systems of isolated mitochondria are under redox control, which involves presumably the glutathione redox system. It is well known that DNA topoisomerase I is an important part of the transcription machinery. We showed recently also (MNL 75:30-31, 2001) that mitochondrial DNA topoisomerase I is involved in in organello RNA synthesis. Our previous study of redox conditions' impact on the activity of mitochondrial DNA topoisomerase I in maize, showed that under oxidizing conditions, in the presence of GSSG, a significant decrease of topoisomerase activity was observed, whereas under reducing conditions, in the presence of GSH, enzyme activation was observed (MNL 73:39-40, 1999). Based on these data we suggested that DNA topoisomerase I is involved in redox regulation of transcription in mitochondria in in vivo conditions.

A recent report (M.I. Ikeda and M.W. Gray, Mol Cell Biol 19:8113-8122, 1999) suggests that transcription in wheat mitochondria also involves special DNA-binding protein. There is a great body of evidence that eukaryotic transcriptional activators (c-Jun, c-Fos, c-Myb, Egr-1, AP-2) and their DNA-binding activity may be the target for special redox regulation (Y. Sun and L.W. Oberley, Free Radic Biol Med 21:335-348, 1996). It is clear now that redox status plays an important role in the control of gene expression, both in the nucleus and in mitochondria. Alterations of the redox status in the cell can lead to changes in DNA binding and trans-activating abilities of many transcription factors, and thus lead to changes in gene expression which may affect cellular metabolism and adaptive responses (Y. Huang, F.E. Domann, Bioch Biophys Res Commun 249: 307-312, 1998). But little is known about DNA-binding proteins in maize mitochondria and the sensitivity of the DNA-binding activity of these proteins to redox conditions. The aim of the present work was to investigate the influence of redox conditions on DNA-binding activity in mitochondrial protein extracts.

The mitochondria were isolated from 3-day-old etiolated maize

seedlings of hybrid VIR42 MV by a standard method of differential centrifugation. Mitochondrial protein was determined by the Lowry method. Mitochondrial protein extracts were prepared by a salt lysis procedure performed in a buffer containing 25 mM Tris-HCl (pH 7.8), 600 mM, 1 mM EDTA, 10% glycerol, 13.5 mM 2-mercaptoethanol, 0.5 mM PMSF, 100 µg/ml BSA under stirring for 15 minutes at +4 C. The lysate was centrifuged for 15 minutes under 15,000 rpm. The supernatant obtained was subjected to dialysis against EMSA buffer. DNA-binding activity in mitochondrial extracts was detected in a gel mobility shift assay (EMSA). A DNA probe containing the yeast DNA topoisomerase I binding site was prepared as described (Kagoshima et al., J Biol Chem 271:33074-33082, 1996).

The effects of chemical and physiological redox agents on DNA-binding activity in mitochondrial protein extracts is shown in Figure 1. The mitochondrial DNA-binding activity is seen to decrease in the presence of sodium dithionite. In contrast, the treatment of potassium ferricyanide and the oxidized form of glutathione (GSSG) leads to a significant increase in DNA-binding activity. At the moment we could not explain similar effects both oxidized and reduced forms of glutathione on DNA-binding activity in mitochondrial protein extracts. Possibly, GSH converted rapidly in GSSG form as a result of high oxidant content in non-purified mitochondrial extract.

Figure 1. The DNA binding activity of mitochondrial extracts is modulated by reduction-oxidation with chemical and physiological redox agents in vitro. 1, free probe; 2, mitochondrial extract; 3, mitochondrial extract + potassium ferricyanide (5 mM); 4, mitochondrial extract + sodium dithionite (5 mM); 5, mitochondrial extract + glutathione in oxidized form (GSSG) (5 mM); 6, mitochondrial extract + glutathione in reduced form (GSH) (5 mM).

The results obtained suggest that DNA binding activity of proteins potentially implicated in transcription in maize mitochondria is redox-modulated in vitro, presumably by GSSG-mediated oxidation of the appropriate regulatory cysteine residues in transcription factors. Financial support from the RFBR (Project Number 01-04-48162) is acknowledged.

JOHNSTON, IOWA

Pioneer Hi-Bred International, Inc.

Male-sterile mutant *ms24* mapped to chromosome 10 --Fox, TW, Trimnell, MR, Albertsen, MC

Male-sterile mutant *ms24* was first described by DP West and MC Albertsen in MNL 59:87. Until recently, we did not have a chromosome arm map location for this male-sterile mutant. This meant that any new male-sterile mutants that were found would have to be test crossed to *ms24* to verify that they were not allelic to it. For several years, we have been trying to chromosome arm map *ms24*, and finally we have been successful.

In the 1999 Johnston, IA, nursery, we planted an *ms24* F2 segregating family to determine the chromosome arm map location of this mutant. Leaf punches were taken from 24 male-sterile plants and from 24 male-fertile plants for DNA isolation. 96 SSR markers, dispersed throughout the genome, were used to genotype these samples. Three markers on chromosome 10 showed linkage with the *ms24* phenotype. Using markers *bngl1655* and *phi059*, four recombinant alleles were found for each in 19 mutant plants (38 alleles) and 1 recombinant allele was found with marker *bngl1079* in 17 mutant plants (34 alleles). This data indicates that *ms24* maps to chromosome 10 near the centromere.

We made a mistake! *ms35* is allelic to *ms23*, but what is the correct map location?

--Trimnell, MR, Fox, TW, Albertsen, MC

During conducting some cytology work in our lab, Shannon Stenejhem found a reference in a 1985 MNL article written by DP West and MC Albertsen (MNL 59:87) that *ms23* was allelic to a male-sterile mutant designated *ms*-Bear7* by the late Earl Patterson and who later designated it as *ms*-6011* (MNL 69:126-128). In 1999, we identified *ms*-6011* as being a new male-sterile mutant, and we designated it as *ms35* (MNL 73:49-50). For whatever reason, we did not consider all the available information when we gave it the *ms35* designation. One of the reasons this may have occurred is that *ms23* had been reported to be located on chromosome 3L (MNL 62:71); whereas *ms35* had been reported to be located on chromosome 9L (MNL 69:126-128).

We decided that we should first find out if the 1985 allele test data was correct. We made test-crosses between ms23 and ms35 in the summer of 1999 and grew the progeny in the 1999 Hawaii winter nursery. The two male-sterile mutants were found to be allelic (data shown below):

Female	Male	Pro	<u>geny</u>	X2(1:1, P>0.050=3.84)
<i>ms23</i> Hom	ms35 Het	19 Fertiles	20 Steriles	0.03
<i>ms35</i> Hom	ms23 Het	18 Fertiles	16 Steriles	0.12

We then planted the original *ms35* seed that Earl gave us and test-crossed it to both *ms23* and the later developed *ms35* material, to make sure seed stocks had not been "mixed up". These were grown in our 2001 Johnston, IA, nursery and also were found to be allelic (data shown below):

<u>Female</u>	Male	Progeny		<u>X2(1:1,</u>
				<u>P>0.050=3.84)</u>
ms35-Bear7 Hom	ms23 Het	13 Fertiles	25 Steriles	3.79
ms23 Hom	ms35-Bear7 Het	23 Fertiles	15 Steriles	1.68
<i>ms35</i> Hom	ms35-Bear7 Het	21 Fertiles	23 Steriles	0.09

In the 1999 Hawaii winter nursery, we grew an F2 that had been constructed to chromosome arm map ms35 by using SSR markers. We wanted to compare the SSR-derived map location with the B-A translocation-derived map locations previously assigned to ms23 and ms35. Leaf punches were taken from 24 male-sterile plants and from 24 male-fertile plants for DNA isolation. 96 SSR markers, dispersed throughout the genome, were used to genotype this family. No linkage was found with any markers on chromosome 3 or on chromosome 9. Because of this conflicting data, we are now preparing to re-map ms23 with other SSR markers in the hopes of determining the correct map location.

New chromosome 10 male-sterile mutant: ms47

--Trimnell, MR, Fox, TW, Albertsen, MC

A new male-sterile mutant has been identified from among a collection of male-sterile mutants received from the late Dr. Earl Patterson. Earl had designated it as ms^*-6039 (see MNL 69:126-128).

We planted an F2 segregating family of *ms**-6039 in our 1999 Hawaii nursery to determine the chromosome arm map location of the mutant as part of our standard procedure in working with unmapped male-sterile mutants. We first determine the chromosome arm location, then we conduct the appropriate allele testcrosses. Leaf punches were taken from 24 male-sterile plants and from 24 male-fertile plants for DNA isolation. 96 SSR markers were used to genotype these samples. Shown below are four markers from chromosome 10 that showed linkage to the mutation.

<u>Marker</u>	Recomb. Alleles	Mutant Plants	% Recombination
bngl1074	9	22	(9/44) 20.5
bngl1079	4	21	(5/42) 11.9
bngl1655	5	24	(5/48) 10.4
phi050	7	24	(7/48) 14.6

The ms^* -6039 mutant appears to map on the short arm of chromosome 10, near the centromere.

After receiving the mapping data, we test-crossed ms^*-6039 with the recessive male-sterile mutants found on chromosome 10 (ms10, ms11, ms24, ms29), as well as with the unmapped malesterile mutants (ms27, ms31), and those with questionable mapping data (ms35). The resultant progeny were grown in our 2001 Johnston, IA, nursery. At least 40 plants were observed for each test-cross. All test-cross progeny were found to be fertile, indicating that ms^*-6039 was not allelic to any of the tested mutants. Our new designation for male-sterile mutant ms^*-6039 is ms47.

New chromosome 9L male-sterile mutant: ms48

--Trimnell, MR, Fox, TW, Albertsen, MC

A new male-sterile mutant has been identified from among the male-sterile mutants received from the late Dr. Earl Patterson. Earl had designated it as *ms*-6049* (see MNL 69:126-128).

We planted an F2 segregating line of *ms*-6049* in our 1999 Johnston, IA, nursery to determine the chromosome arm map location of the mutant as part of our standard procedure in working with unmapped male-sterile mutants. We first determine the chromosome arm location. Then we conduct the appropriate allele test-crosses. Leaf punches were taken from 24 male-sterile plants and from 24 male-fertile plants for DNA isolation. 96 SSR markers were used to genotype these samples. The *ms**-*6049* mutant maps to the long arm of chromosome 9, with two SSR markers being linked. Only two recombinant alleles from 19 mutant plants (38 alleles total) were found with either *bngl1012* or *bngl1159*, indicating fairly tight linkage with the mutation.

After receiving the mapping data, we test-crossed ms^*-6049 with the recessive male-sterile mutants found on chromosome 9 (ms2, ms25, ms36, ms45), as well as the unmapped male-sterile mutants (ms27, ms31) and those with questionable mapping data (ms23, ms35). The resultant progeny were grown in our 2001 Johnston nursery. At least 40 plants were observed for each test-cross. All test-cross progeny were found to be fertile, indicating that ms^*-6049 was not allelic to any of the tested mutants. Our new designation for male-sterile mutant ms^*-6049 is ms48.

New chromosome 10 male-sterile mutant: *ms49* --Trimnell, MR, Fox, TW, Albertsen, MC

In the 1992 Hawaii winter nursery, Tony Stefani identified male-sterile plants segregating in the public inbred line ND203. He made sib pollinations with these male-sterile plants and gave the seed to us to grow in our 1993 Johnston, IA, nursery. These progenies did not segregate for the male-sterile phenotype, so they were self-pollinated. We did not grow these again until the 1995 Hawaii winter nursery. We planted two selfed ears in our nursery, and they segregated as follows:

<u>Genotype</u>	No. Fertile Plts.	No. Sterile Plts.	X2(3:1, P>0.050=3.84)
ND203 #)1	9	2	0.27
ND203 #)2	9	8	4.41

These male-sterile plants were then crossed with B73 and A632, and these F1 plants were self-pollinated. Their progeny were grown in our 1996 Hawaii nursery, and they segregated as follows:

<u>Genotype</u>	No. Fertile Plts.	No. Sterile Plts.	X2(3:1, P>0.050=3.84)
ND203/A632)1	11	4	0.02
ND203/B73)1	11	5	0.33

We designated this previously unknown male-sterile mutant as ms^* -MB92.

In the 1998 Hawaii winter nursery, we planted the ND203/B73 F2 listed in the above data to determine the chromosome arm map location of the mutant as part of our standard procedure in working with unmapped male-sterile mutants. We first determine the chromosome arm location. Then we conduct the appropriate allele test-crosses. Leaf punches were taken from 24 male-sterile plants and from 24 male-fertile plants for DNA isolation. 96 SSR markers were used to genotype these samples. Shown below are three chromosome 10 markers that show linkage to the mutation.

Marker	Recomb. Alleles	Mutant Plants	% Recombination
bngl1079	1	24	(1/48) 2.1
phi062	6	24	(6/48) 12.5
phi059	5	24	(5/48) 10.4

The ms*-MB92 mutant is closely linked to bng/1079 and maps

near the centromere on chromosome 10.

After receiving the mapping data, we test-crossed ms^* -MB92 with the recessive male-sterile mutants found on chromosome 10 (ms10, ms11, ms24, ms29, ms47), as well as the unmapped male-sterile mutants (ms27, ms31) and those with questionable mapping data (ms35). The resultant progeny were grown in our 2001 Johnston nursery. At least 40 plants were observed for each test-cross. All test-cross progeny were found to be fertile, indicating that ms^* -MB92 was not allelic. Our new designation for male-sterile mutant ms^* -MB92 is ms49.

New chromosome 6L male-sterile mutant: ms50

--Trimnell, MR, Fox, TW, Albertsen, MC

A new male-sterile mutant has been identified from among the male-sterile mutants received from the late Dr. Earl Patterson.

Earl had designated it as ms^*-6055 (see MNL 69:126-128). We planted an F2 segregating line of ms^*-6055 in our 1999 Johnston, IA, nursery to determine the chromosome arm map location of the mutant as part of our standard procedure in working with unmapped male-sterile mutants. We first determine the chromosome arm location. Then we conduct the appropriate allele test-crosses. Leaf punches were taken from 24 male-sterile plants and from 24 male-fertile plants for DNA isolation. 96 SSR markers, dispersed throughout the genome, were used to genotype these samples. Markers *phi445613* and *phi070*, on chromosome 6, were linked to the mutation, with three recombinant alleles out of 20 mutant plants (40 alleles) and four recombinant alleles out of 22 mutant plants, respectively. This linkage indicates that ms^*-6055 maps to the long arm of chromosome 6.

After receiving the mapping data, we test-crossed ms^*-6055 with the recessive male-sterile mutants found on chromosome 6 (ms1), as well as the unmapped male-sterile mutants (ms27, ms31) and those with questionable mapping data (ms35). We did not test-cross this with the dominant male-sterile mutant, Ms42, nor could we test-cross this with the lost male-sterile mutant, Ms42. The resultant progeny were grown in our 2001 Johnston nursery. At least 40 plants were observed for each test-cross. All test-cross progeny were found to be fertile, indicating that ms^* -6055 was not allelic to any of the tested mutants. Our new designation for male-sterile mutant ms^* -6055 is ms50.

New male-sterile mutant alleles of known male-steriles

--Trimnell, MR, Fox, TW, Albertsen, MC

As part of our ongoing effort to identify new male-sterile loci in maize, we have identified numerous new alleles of known malesterile genes. One of these new alleles, designated ms^* -NEMS, was found in an EMS mutation population established by Stephen Smith, whereas the others (ms^* -TG92A, ms^* -EA89A, ms^* -FA92) arose spontaneously in various breeding materials. Todd Piper, who at the time was the corn breeder at our Eau Claire, WI, Research Station, identified the ms^* -EA89 mutant and sent it to Marc Albertsen. Marc identified the other three mutations. The segregation of these male-sterile mutations in F2 familes is shown below except for ms^* -NEMS, which also was grown as a sib-pollinated family, segregating 1:1 for the mutation.

	Year	Year	# Fertile	# Sterile	
<u>Genotype</u>	Identified	Grown	Plants 1 1	Plants 1 1	X2(1:1, P>0.050=3.84)
ms*-NEMS ms# Ear 10	1984	1997	10	6	1.00
ms*-NEMS ms# Ear 2	1984	1997	8	8	0.00
ms*-NEMS ms# Ear 7	1984	1997	5	2	1.29
					(3:1, P>0.050=3.84)
ms*-NEMS/A632)1	1984	1999	12	8	2.40
ms*-NEMS/A632)2	1984	1999	12	6	0.67
<i>ms*-TG92A</i> /A632)1	1992	1995	10	4	0.10
ms*-EA89A/A632)1	1989	1995	14	2	1.33
ms*-EA89A/B73)1	1989	1995	13	5	0.07
ms*-FA92/A632)1	1992	1995	14	4	0.07
<i>ms*-FA92</i> /A632)2	1992	1995	12	4	0.00

In the 1999 Johnston, IA, nursery and the 1999 Hawaii winter nursery, we planted F2 families to determine the map location of these mutants. As part of our standard procedure in working with unmapped male-sterile mutants, we first determine the chromosome arm location for a given mutant, then we conduct the appropriate allele test-crosses. Leaf punches were taken from 24 male-sterile plants and from 24 male-fertile plants for DNA isolation. 96 SSR markers, dispersed throughout the genome, were used to genotype these samples. Results for the SSR mapping are as follows:

<u>Family</u>	Linked Markers	% Recombination*	Mutant Map Position
ms*-NEMS	phi96342	2.3	
ms*-NEMS	bngl1079	4.8	
ms*-NEMS	bngl1655	4.5	
ms*-NEMS	bngl1071	23.8	
ms*-NEMS	phi050	4.8	10C
ms*-TG92A	bngl1079	5.6	10L
ms*-EA89A	phi090	19	2L
ms*-FA92	bngl1065	2.1	
ms*-FA92	bngl1056	23	
ms*-FA92A	phi015	29	
ms*-FA92	phi121	27.1	8L

* % Recombination was determined using only segregation scores from mutants.

After receiving the mapping data, we made test-crosses with all of the known recessive male-sterile alleles that mapped to the same respective chromosome as these mutants, as well as crossing with the unmapped recessive male-sterile alleles (ms27, ms31) and those with questionable mapping data (ms35). The resultant progeny were grown in our 2001 Johnston nursery. At least 40 plants were observed for most of the test-crosses. The reciprocal test-crosses of these mutants that showed allelism with known male-sterile mutants are shown below, along with their respective allele designations.

Female*	<u>Male*</u>	Progeny	<u>X2(1:1)</u>	Allele Designation
ms*-NEMS	ms11	22 Fertiles:20 Steriles	0.10	ms11-NEMS
ms11	ms*-NEMS	18 Fertiles:22 Steriles	0.40	
ms*-TG92A	ms29	21 Fertiles:20 Steriles	0.02	ms29-TG92A
ms29	ms*-TG92A	7 Fertiles: 7 Steriles	0.00	
ms*-EA89A	ms33-GC89A	17 Fertiles:12 Steriles	0.86	ms33-EA89A
ms33-GC89A	ms*-EA89A	14 Fertiles:23 Steriles	2.19	
ms*-FA92	ms8	14 Fertiles:15 Steriles	0.03	ms8-FA92
ms8	ms*-FA92	18 Fertiles:22 Steriles	0.40	

* All females homozygous for mutation, all males heterozygous for mutation.

JOHNSTON, IOWA Pioneer, A DuPont Company RESEARCH TRIANGLE PARK Syngenta PEORIA, ILLINOIS U.S.D.A.-A.R.S. SAN DIEGO, CALIFORNIA Torrey Mesa Research Institute

Maize pathogen defenses activated by avirulence gene *avrRxv*

--Simmons, CR, Tossberg, JT, Sandahl, GA, Marsh, WA, Dowd, PF, Duvick, JP, Briggs, SP

The avrRxv gene Xanthomonas campestris pv. vesicatoria is responsible for gene-for-gene resistance interactions in the hosts tomato and pepper, but also in other plant species, including maize, as when the avrRxv gene is transferred to X. campestris pv. holcicola (Whalen et al., PNAS USA 1998 85:6743-6747; Whalen et al., MPMI 1993 6:616-627). The avrRxv gene was found to encode a protein related to diverse pathogen genes affecting pathogenesis reactions ranging from plants to animals, including humans, for example AvrA of Salmonella enterica. YopJ of Yersinia pseudotuberculosis, and YopP of Yersinia enterocolitica. YopJ has recently been shown to interact with MAPK kinases (MKKs) and interfere with phosphorylation and signal transduction that control apoptosis (Orth et al., Science 1999 285:1920-1923). This is particularly interesting as there is growing indication that MAPK kinases are directly involved in controlling plant defense responses (e.g., Zhang et al., PNAS USA 95:7433-7438; Yang et al., PNAS USA 98:741-746). A recent report also indicates that the YopJ protein may be a cysteine proteinase, and through which control cell death, even HR cell death in plants (Orth et al. 2000 Science 290:1594-1597).

We used a transient expression tungsten particle/helium gun bombardment transformation assay to investigate avrRxv function in maize. This assay employed the CRC reporter gene system (a fusion of the R and C1 transcriptional activator genes) that marks cells red due to flavonoid anthocyanin expression. The tissues used were prepared as follows. Mature embryos were derived from germinating scutella and placed face up on an agar medium such that there were 8 scutella in a 2 cm circle (7 peripheral and 1 central), each such octet constituting one bombardment target. Similarly immature embryos were isolated from fieldgrown ears 9-11 d after fertilization and plated scutellum-sideup on agar medium. Leaves (from stage V5-V6 plants) were obtained from the whorl, unfurled on an agar medium, and covered with a 1.3 cm diameter washer, the exposed center area constituting one target. For more details, see Briggs et al., 1999 PCT WO 99/43923.

When these maize tissues from various genotypic varieties were cotransformed with the *avrRxv* gene coding region and the CRC reporter system, both driven by the ubiquitin promoter, there frequently occurred suppression of the number of red anthocyanin-labeled cells expressing the CRC reporter gene construct. Table 1 provides quantification of this reduction in CRC expression caused by *avrRxv* cobombardment. A positive reaction to *avrRxv* was herein defined as a two-fold or more reduction in the number of red cells. The range in average number of red cells between transformation experiment events could be substantial.

Table 1. The effect of *avrRxv* expression on the CRC reporter gene expression (via anthocyanin-producing red cell phenotype), by tissue and genotype.

Genotype	Tingun 8	Datiab	0,000
Dunia	TISSUE	Rallo	DR
PHN46	ME	90.0	+
PHN46	ME	43.6	+
PHN46	ME	5.0	+
PHN46	ME	28.5	+
PHN46	ME	46.0	+
PHN46	IE	4.1	+
d PHN46	IE	47.0	+
B73	IF	2.0	+
B73	IF	6.9	+
B73	IF	2.2	+
B73	IF	1.6	е
1017			-
1047	ME	3.6	+
B/3	ME	49.5	+
PHKMO	ME	46.7	+
CN3K7	ME	162.9	+
PH428	ME	4.4	+
PHHB9	ME	4.0	+
953	ME	10.1	+
PHP02	ME	2.0	+
PHP82	ME	17.1	+
PHK03	ME	2.8	+
and f	ME	3.2	+
3394 DUIZ70	МЕ	0.0	
		0.8	-
PHKE1	ME	1.4	-
PHW52	ME	0.9	-
PHW52	ME	1.1	-
PHP38	ME	0.8	-
PHK46	ME	1.1	-
PH647	ME	0.6	-
PHK56	ME	0.9	-
Mo17	ME	0.7	-

^aTissues are: ME, mature embryo; IE, immature embryo; and LF, leaf.

^bRatio of average number red transformed cells for CRC only control divided by the average for CRC+avrRxv cotransformation.

^cWhen the CRC/CRC+*avrRxv* ratio exceeds two, a defense response (DR) is concluded present (+); when less than two, absent (-).

dHere only, the *avrRxv* gene DNA amount 10-fold higher than in the other experiments. ^eRatio falls just below two-fold threshold. here, but other B73 experiments are positive ^f3394 is F1 progeny of PHN46 and PHP38.

Nonetheless, multiple experiments for inbred varieties such as PHN46 clearly indicated that *avrRxv* caused a marked reduction in CRC expression. The positive reactions to *avrRxv* varied from 2.0 to 162.9-fold reductions in CRC expression.

Twenty maize varieties were used in these transient transformation studies, 19 inbreds and one hybrid, of which a majority of 12 showed reduction in CRC expression, and 8 did not. The variety 3394 is the F1 progeny of inbred PHN46, which shows the response, and inbred PHP38, which does not. The *avrRxv* caused a 3.2-fold reduction in CRC expression in 3394, indicating that the response is dominant, or at least semi-dominant. Most of these experiments were done for mature embryos, especially when surveying response in different varieties. However, experiments with PHN46 indicated that this *avrRxv* response was present in tissues ranging from leaves, immature embryos and mature embryos. In both embryos and leaves, the reduced CRC expression caused by *avrRxv* in these experiments was correlated with an increase in PR1 protein expression on western blots, a commonly used marker of plant defense system activation.

Maize immature embryo-derived cells were transformed with the ERE::avrRxv construct, which contains an estrogen-regulated promoter (ERE) to drive avrRxv gene expression. This ERE::avrRxv construct contains three tandem plant gene expression units; the estrogen receptor, the estrogen response elements controlling avrRxv, and the selectable marker PAT (phosphinothricin acetyltransferase). This system allows for a tightly controlled, high dynamic range of transgene avrRxv expression, with basal expression permitting recovery of healthy transgenic callus. In ERE::avrRxv transgenic Hill callus, estradiol treatment was demonstrated by northern blots to rapidly (within an hour) induce avrRxv mRNA expression, with a peak by 12-24 hours at 21-fold above baseline. Following estradiol treatment of ERE::avrRxv callus or cell suspensions, there occurred visible and biochemical changes consistent with a precipitant defense response, such as: 1) tissue browning and necrosis: 2) induced expression of methanol-soluble metabolites with an absorbance between 230-350 nm - these likely including phenolics, well-documented plant defense response compounds; 3) induced PR1 and chitinase expression on western blots; and 4) induced cationic peroxidase expression on native IEF gels. The cell death associated with the elevated accumulation of pathogenesis-related proteins and molecules are interpreted as indications that a defense response was chemically-induced in the ERE::avrRxv system. The induction of a cationic peroxidase species by avrRxv was of special interest, because a cationic peroxidase has been shown to be induced in incompatible interactions between rice and Xanthomosas oryzae pv oryzae (Reimers et al., Pl. Phys. 1992 99:1044-1050).

A high density Affymetrix GeneChip® microarray of some 1500 maize gene sequences (est. 1441 unique genes) representing diverse physiological processes, was next used for surveying mRNA expression changes following chemically-induced avrRxv expression in the ERE::avrRxv callus. Protocols for preparing in vitro-transcribed biotinylated cRNA probes from poly-A+ mRNA for Affymetrix GeneChip® gene expression analysis were carried out according to the manufacturer's recommendations (Affymetrix, Santa Clara, CA). It was observed that estradiol treatment of ERE::avrRxv callus caused a three-fold or more (range 3.5 to 33.2-fold) induction in the expression (mRNA abundance) of nine genes represented on this microarray (Table 2). None of these genes were induced three-fold or more by estradiol treatment of control callus. All of the induced genes are known or suspected plant defense-related genes. In fact, most of these nine have been independently confirmed to be defense inducible in various defense-related experiments, including those with live pathogens, using northerns and other profiling technologies. While one should be aware that promoter systems related to the

Table 2. Affymetrix 1500 GeneChip[®] Microarray Expression Profiling: mRNAs induced threefold or more in transgenic ERE:: *avrRxv* cells

	Fold Change ^b	
Gene Name or Description ^a	Ave	SE
Proteinase inhibitor WIP1 (Bowman-Birk) (=emb X71396)	33.2	5.9
Chitinase (Class I type) (=EST gi 8273121)	15.1	3.6
Old yellow enzyme homolog (=EST gi 6672185)	11.7	0.2
Proteinase inhibitor (Bowman-Birk) (=EST gi 7031219)	8.7	1.1
Proteinase inhibitor (Subtilisin-chymotrypsin) (=emb X69972)	7.8	1.1
Major latex protein, root allergen protein (=EST gi 3157104)	4.9	1.7
Antifungal zeamatin-like protein (=gb U06831)	4.7	0.4
Pathogenesis-related protein (nearly=EST gi 5398728)	4.0	0.3
Metallothionein (=EST gi 5499507)	4.0	0.9

^aGene name or general description derived from blast search of public NR, NT and EST databases. Equal signs (=) indicate essentially exact nucleotide match to the Pioneer Hi-Bred EST gene sequence used on the microarray.

^bFold change in mRNA abundance as measured by relative fluorescent intensity of hybridizing signal. Average and SE were calculated from 3 or 4 replicate comparisons between callus samples ERE::*avrRxv* estradiol-treated versus control not estradiol-treated.

ERE-estrogen response system could alter gene expression (see Kang et al., Plant J. 1999 20:127-133), these mRNA profiling results, along with the transient bombardment assay above and the previous studies by Whalen et al., appear to support that a maize defense reaction follows induced *avrRxv* expression. Of the 1500 gene sequences on the microarray, only these nine were induced three-fold or more by these criteria. None of the 1500 genes were repressed three-fold or more. Maize is variously estimated to have between 40,000-80,000 genes, so these 1441 genes represent only about 1.8-3.6% of the total. We can assume by extrapolation that there exist many other co-regulated maize genes not assayed in this study.

By extension from previous related studies involving avirulence gene expression in plants, it would appear that *avrRxv* elicits an incompatible-like HR response in maize possessing a cognate functional resistance gene (i.e. *Zm-Rxv*). This putative *Zm-Rxv* gene appears to be dominant or semi-dominant, like most *R* genes, and it functions in diverse tissues, namely leaves, mature and immature embryos, and callus/cell suspensions. It is also possible however that the *avrRxv* defense response is not specifically *R*-gene or HR-related. Alternatively, at least in maize, AvrRxv could be operating more as a pathogenicity factor that elicits a defense or stress response. Its relationship to *YopJ* and other pathogenicity or virulence factors, suggests a common and conserved molecular mechanism, one that may have just come to light (see Orth et al. 2000 Science 290:1594-1597).

Of general significance is the observation that an avirulence gene *avrRxv*, plucked from a specific host-pathogen system, can elicit defense reactions in non-host plants, even those as diverged as monocots and dicots. Together with other transgenic and conventional breeding studies, this appears to affirm an extensive portability of functional resistance and avirulence genes that bodes well for their application in crop improvement. Nonetheless, many avirulence gene types may not be so widely recognized as the group containing *avrRxv*, which by including *YopJ*, control defense responses in hosts as far apart as plants and animals.

> JUIZ DE FORA-MG, BRAZIL Universidade Federal de Juiz de Fora VIŸOSA-MG, BRAZIL Universidade Federal de Viÿosa

Influence on seed size of chromosomal abnormalities in maize cells resulting from irradiated pollen --Viccini, LF, de Carvalho, CR

The production of plants with chromosomal variations has evolved as a valuable cytogenetic tool for gene identification, isolation and mapping using molecular approaches. Considering the difficulty of identifying these plants, the determination of indicators of the existent level of alteration is important to facilitate the selection of abnormal plants. With the objective of verifying the relationship between seed size and chromosomal abnormalities in maize meristematic and meiotic cells resulting from irradiated pollen, maize tester line L-869 of the Federal University of Viÿosa pollen was exposed to 36 and 72 Gy of gamma irradiation and soon thereafter used for pollination. The seeds originating from those two doses were ranked in size classes in order to relate with the percentage of chromosomal alterations. For mitosis study, seeds were germinated in Petri dishes with a film of distilled water in the dark at 28-29 C. Root tips ranging from 0.5 to 1.0 cm in length were fixed in fresh cold methanol-acetic acid (3:1). Slides were prepared by the air drying technique with enzymatic maceration. After drying on a hot plate, the slides were stained with Giemsa solution. The percentage of abnormal anaphase cell carriers chromosomal bridges was evaluated. In the meiosis study, seeds were germinated in a greenhouse so that the immature tassels were collected at the appropriate stage. Slides were also prepared by the air drying technique. Deficiencies, heteromorphic pairs, partial pairing, laggards, bridges, fragments, fusions, translocations and cells with altered chromosome number due to structural anomalies were observed. The statistical analysis was carried out splitting the sum of the squares for treatments in orthogonal contrasts. Considering the 35.7 Gy dosage-irradiated meristematic cells, no relation was detected between size of the seeds and percentage of abnormal anaphases, while for the 71.4 Gy dosage it was possible to verify an increase of the percentage of abnormal anaphases with the decrease of seed size. Regarding the meiotic cells, the relationship between seed size and levels of chromosomal variations was verified for both radiation doses (36 e 72 Gy). That is to say, small seeds presented a larger number of chromosomal variations. The analysis of M1 plants confirmed this relationship, with smaller-sized plants being observed when small seeds were germinated.

LLAVALLOL, ARGENTINA

Instituto Fitotécnico de Santa Catalina (FCAF, UNLP) Centro de Investigaciones Genéticas (UNLP-CONICET-CIC)

Meiotic analysis of the artificial hybrids between Zea *luxurians* and the subspecies of Zea mays.

--Gonzalez, G*, Comas, C*, Naranjo, CA, Poggio, L*

*also affiliated with Dpto. de Ciencias Biológicas, FCEN, UBA.

Meiotic behavior in *Zea luxurians* and three subspecies of *Zea mays* belonging to Section *Zea* (*Z. mays* ssp. *parviglumis*, *Z. mays* ssp. *mexicana*, *Z. mays* ssp. *mays*) and their artificial F1 hybrids have been analyzed to investigate their meiotic configurations and to detect chromosomal rearrangements acting as reproductive isolation mechanisms. Poggio et al. (Genome 49:993-1000, 1999) showed that the hybrids between *Zea luxurians* and the other species of the Sect. *Luxuriantes* (*Z. perennis* and *Z. diploperennis*) have irregular meiotic configurations and low fertility.

The F1 hybrid *Z. luxurians* x *Z. mays* ssp. *parviglumis* showed pachytene heterozygosis in the knob regions (Fig. 1A), meiotic asynchrony of two groups of 5 II each (diplotene-diakinesis) (Fig. 1B), heteromorphic bivalents and univalents of different size (diplotene-diakinesis, metaphase I) (Fig. 1C), bridges and fragments (anaphase I), and laggard chromosomes (anaphase I and II). These phenomena were also observed in the F1 hybrid *Z. luxurians* x *Z. mays* ssp. *mexicana* (Fig. 1D, E, F)). In the F1 hybrid *Z. luxurians* x *Z. mays* ssp. *mays* heteromorphic bivalents and 1-2 bridges and fragments (anaphase I) were observed (Fig. 1 G-K).

In these hybrids 8 II + 4 I was the most frequent configuration, although the range of univalents were 0-20 per cell (Fig. 1D).

Figure 1. A-C: Z. luxurians x Z. mays ssp. parviglumis. D-F: Z. luxurians x Z. mays ssp. mexicana. G-K: Z. luxurians x Z. mays ssp. mays.

A: Pachytene: the arrows show irregular pairing in the knob regions.

B: Diakinesis: meiotic asynchrony of two groups of 5 II each.

C. Metaphase I: the arrow shows a heteromorphic bivalent, univalents of different size are observed off the plate.

D: Diakinesis: 20 univalents.

E: Metaphase I: heteromorphic bivalent and univalents of different size off the plate.

F: Anaphase I: Two bridges and two fragments.

G: Diakinesis: 10 heteromorphic bivalents.

H: Metaphase I: heteromorphic bivalent.

I - J: Open heteromorphic bivalents.

K: Anaphase I showing one bridge.

Moreover, they were highly sterile (pollen stainability: 0-12%) and showed loss of pairing in heterozygotes for knobs in pachytene. The genome size varies between 2C=5.8 - 6.8 pg in the subspecies of *Zea mays*, while *Z. luxurians* has 2C=9 pg. The difference in the genome size between the hybrid's parental species could explain the presence of heteromorphic bivalents. The presence of two asynchronic groups of 5 II was also frequent.

The bridges and fragments, observed in anaphase I, in the studied hybrids would indicate that the parental species differ in 2-3 paracentric inversions between them.

The presence of two groups of 5 II suggests that the genomes of these hybrids maintain structural and functional independent domains, despite the existence of intergenomic rearrangements revealed by molecular data.

New maize inbreds in Argentina. I: Heat unit requirements. --Corcuera, VR, Bernatené, EA, Naranjo, CA

During the last growing season 2000/2001 a field trial was sown at the Inst. Fitotécnico de Santa Catalina to evaluate different maize inbreds developed during the last decade for several agronomic traits. The list of materials is shown in Table 1. The inbreds studied can be divided by their endosperm type into the following categories: 1) waxy maize, 2) opaque-2 maize, 3) +/wx maize and 4) opaque-2/wx maize.

Table 1. List of materials evaluated by their HUR in a field trial during 2000/01.

PEDIGREE	ENDOSPERM	GENERATION	PEDIGREE	ENDOSPERM	GENERATION
2000-3098	OPAQUE2	INBRED	2000-3092	OPAQUE2	INBRED
2000-3088	OPAQUE2	S7	2000-3130	OPAQUE2	S1
2000-3141	NOR/O2	S1	2000-3142	NOR/O2	S1
2000-3132	NOR/O2	S1	2000-3133	NOR/O2	S1
2000-3134	O2/wx	S1	2000-3135	O2/wx	S4
2000-3096b	O2/wx	S3	2000-3096c	O2/wx	S4
2000-3096a	O2/wx	S3	2000-3136b	O2/wx	S3
2000-3137	NOR/O2	S1	2000-3138	NOR/O2	S1
2000-3139	OPAQUE2	S1	2000-3022c	NOR/wx	S7
2000-3022b	NOR/wx	S7	2000-3022a	NOR/wx	S7
2000-3072	NOR/wx	S3	2000-3003	NOR/wx	S3
2000-3024	NOR/wx	S4	2000-3014	NOR/wx	S4
2000-3074a	NOR/wx	S2	2000-3074b	NOR/wx	S3
2000-3074c*	NOR/wx	S4	2000-3074d*	NOR/wx	S3
2000-3016a	WAXY	S7	2000-3016b	WAXY	S4
2000-3002a	WAXY	S4	2000-3002c	WAXY	S6
2000-3078a	WAXY	S4	2000-3078b	WAXY	S4
2000-3136a	O2/wx	S2	2000-3078d	NOR/wx	S4

*: irradiated materials, 150 Gy Co60.

Different evolutive cycle traits were measured and analyzed, but in this article we shall only refer to Heat Unit (C) requirements necessary for silking (stage R1, Hanway scale). Heat Units (C) were calculated according to the formula proposed by the US Weather Bureau (USWB, 1958):

HUR (C) = Σ DHU

 $DHU = (\min temp C + \max temp C) / 2 - 10 C^{1}$

HUR = Heat Unit Requirements during the whole cycle

DHU = Daily Heat Units

¹: 10 C was taken as the growing base temperature of these materials.

We prefer to base the discussion on HUR instead of number of days to silking because, as is well known, it makes it possible to compare amongst genotypes evaluated in different years and locations.

Most of the waxy maize selected as "foundationals" at the beginning of this breeding programme in 1990 were precocious (418 C - 518 C for silking). On the other hand, while the "foundationals" opaque-2 type showed a long evolutive cycle (750 C - 870 C for silking), some normal endosperm maize denoted medium or short evolutive cycle (484 C - 568 C). All data collected since 1990 up-to-date through the inbreeding and selection process point out that whether inbreeding tends to lengthen evolutive cycle traits, it was possible to obtain new short evolutive cycle (472 C - 535 C) opaque-2 maize inbreds (93.75 % homozygosity) (see Table 2 and Graphs 1 and 4). Then selection by precocity was successful in these materials. In a similar way, the different S3 - S7 waxy inbreds (87.5 % to 99.2% homozygosity) complete their thermal requirements to R1 with 451 C-609 C (see Table 2 and Graphs 2 and 3).

Inbred 3074 merits separate analysis. It was developed from the original backcross (SCV1 x A255) x SCV1. During the growing season 2000/01, the S2 and S3 generations of this inbred were evaluated, as were an irradiated sample of the S3 and S4 generations. Gamma irradiation consisted of a dose of 150 Gy of Co60 using a Gamma-cell. The S2 showed the lower HUR for silking (451.5 C) whilst S3 showed the highest (581.1 C). The differences between values are statistically significant at 1% prob Table 2. Comparisons of means for Heat Units for silking (C).

a. Opaque-2 m	aizes		b. Opaque-2/w	axv maizes	
Genotype	Average	Groups *	Genotype	Average	Groups *
3098	585.9	A	3136b	608.6	A
3130	571.3	AB	3136a	599.1	Α
3092	562.3	AB	3133	591.8	Α
3088	559.2	AB	3135	587.0	Α
3141	542.2	ABC	3137	585.0	A
3132	539.0	ABC	3134	574.9	Α
3139	535.1	ABC	3096b	566.9	Α
3142	505.5	BC	3096c	490.4	В
3138	471.6	С	3096a	484.8	В
c. +/waxy maiz	es		d. Waxy maize	s	
Genotype	Average	Groups *	Genotype	Average	Groups *
3078d	615.1	A	3078b	609.5	A
3022b	595.0	AB	3002c	535.6	В
3074b	580.5	ABC	3020	535.6	В
3022a	578.1	BC	3016b	526.8	В
3022c	575.4	BC	3002a	525.9	В
3003	552.9	CD	3078a	512.1	В
3072	551.6	CD	3016a	451.2	С
3024	538.3	DE			
3074c	513.1	F			
3074d	498.7	F			
3014	487.1	F			
3074a	451.6	G			

* Averages followed by the same letter belong to the same group and do not differ significantly at 1% of probability.

ability based on t *Student*. The irradiated generations showed different values: S3 (498.7 C) and S4 (513.5 C). Then, the results are clear that the irradiated generations of the inbred have a shorter cycle than their non-irradiated counterpart. According to the data presented in this article one could state the following:

1. When the inbreeding process progressively lengthens the evolutive cycle, precocious materials can be obtained by selection.

2. Gamma irradiation was a useful tool to generate new precocity in some materials.

3. New precocious inbreds were obtained by quality breeding and are now being tested to produce commercial hybrids.

New maize inbreds in Argentina. II. Reponse to *Puccinia* sorghi (Schw.)

--Corcuera, VR, Sandoval, MC

During the growing season 2000/01 a field trial was conducted at the Inst. Fitotécnico de Sta. Catalina in order to measure the ability and competitiveness of different inbreds developed during the last years within a qualitybreeding programme held at our Institution. Amongst several agronomic traits, respone to "maize common rust" was determined considering: 1) attack *severity* or % of leaf area with pustules (based on the visual scale developed by Peterson et al., 1948 for Wheat orange rust) and 2) type or degree of infection, based on a modification of Cobb's scale as follows:

No. pustules/leaf	Severity %	Degree of infection	Behaviour to pathogen
<11	<5	1	Very resistant
12-19	6-10	11	Resistant
20-38	11-25	III	Mid-resistant
39-67	26-40	IV	Mid-susceptible
68-83	41-65	V	Susceptible
>84	66-100	VI	Very susceptible

Measurements in the field were taken one month after anthesis and 3 leaves/plant were considered (those of the upper ear and one leaf up and down). Twenty-four plants per inbred (3 repetitions) were observed and their data were averaged. Table 1 summarizes all data collected and gives the respone of each inbred to the pathogen. Attack severity data were transformed into *arcsin* according to Snedecor G(1962) and then an ANOVA test was performed within inbreds with the same type of endosperm (normal or modified). In all the cases analyzed, the differences found amongst averages were due only to variation of the genotype, so no environmental influence exists. In spite of this, the different inbreds can be grouped depending on their average values for attack severity (see Tables 2 and 3). There are 5 different groups in modified endosperm maize and only 3 in normal endosperm inbreds.

Table 1. List of Materials evaluated and their behaviour to Puccinia sorghi(Schw.).

Pedigree	Generation	Endosperm	Severity(%)	No. Pustules	Infection Grade	Behaviour*
2000-3098	OPACO2	LE	11a 25	24		MR
2000-3092	OPACO2	LE	11 a 25	24		MR
2000-3088	OPACO2	S7	6A10	17	 - 	R
2000-3130	OPACO2	S1	41A65	81	IV	MS
2000-3141	NOR/OPAC2	S1	66-100	114	VI	S
2000-3142	NOR/OPAC2	S1	66-100	98	VI	S
2000-3131	NOR/OPAC2	S1	5	10	1	R
2000-3132	NOR/OPAC2	S1	11 A 25	36	III-IV	MR
2000-3133	NOR/OPAC2	S1	6 A 10	17	I	R
2000-3134	o2/cshwx	S1	11 A 25	29	II-III	R
2000-3135	o2/cshwx	S4	⊲5	8	1	R
2000-3096b	o2/cshwx	S3	26 A 40	43	IV	MS
2000-3096c	o2/cshwx	S4	11 A 25	20	III-IV	MR
2000-3096a	o2/cshwx	S3	11 A 25	30	III-IV	MR
3136b	o2/cshwx	S3	0	0	1	VR
2000-3137	nor/cshwxo2	S1	11 A 25	28		MR
2000-3138	nor/o2/o5	S1	41 A 65	60	III-V	MS
2000-3139	o2/o2Oh43	S1	ත්	9	I	R
2000-3022c	nor/wx	S7	0	0	0	VR
2000-3022b	nor/wx	S7	45	6	I	R
2000-3072	nor/wx	S3	26 a 40	60	IV	MS
2000-3002a	W X	S4	65	72	IV	MS
2000-3002c	W X	S6	26 a 40	57	IV	MS
2000-3043a	normal	LE	11 a 25	37	III-IV	MR
2000-3043b	normal	LE	26 a 40	62	IV	MS
2000-3063a	normal	S2	11 a 25	36		MR
2000-3063b	normal	S3	41 a 65	75	IV-V	MS
2000-3140	normal	S2	40	67	IV	MS
2000-3165	normal	S2	<11	5	HI	R
2000-3031	normal	S6	26 a 40	46	IV	MS
2000-3008a	normal	S5	<11	5	HI	R
2000-3043a	normal	LE	11 a 25	37	III-IV	MR
2000-3027	normal	S5	ත්	8	0-1	VR
2000-3071	normal	S4	10	19	I	R
2000-3011	normal	S3	45	3	0-1	VR
2000-3028	normal	S3	ත්	2	0-I	VR
2000-3057	normal	S4	25	35		MR
2000-3136a	o2/cshwx	S2	26 a 40	44	III-IV	MR

*: VR: very resistant, MR: mid-resistant, MS: mid-susceptible, S: susceptible

Table 2. Comparison of means of "attack severity" to Puccinia sorghi (Schw.) in modified endosperm maize.

Genotype	Endosperm	Average	Groups(1)
3142	NOR/OPAC2	77.30	Α
3141	NOR/OPAC2	75.00	Α
3130	OPAQUE2	46.53	В
3096b	o2/cshwx	35.40	BC
3098	OPAQUE2	28.63	BCD
3092	OPAQUE2	28.17	BCD
3096c	o2/cshwx	27.50	BCD
3132	NOR/OPAC2	25.13	CD
3096a	o2/cshwx	24.47	CD
3137	nor/cshwxo2	24.43	CD
3134	o2/cshwx	24.20	CD
3088	OPAQUE2	16.70	CDE
3133	NOR/OPAC2	16.33	CDE
3135	o2/cshwx	11.83	DE
3131	NOR/OPAC2	11.05	DE
3022c	NOR/wx	0.00	E
3022b	NOR/wx	0.00	E
3136b	o2/cshwx	0.00	E

(1) Averages followed by the same letters do not differ significantly at 1% of probability

Table 3. Comparison of means of "attack severity" to *Puccinia sorghi* (Schw.) in normal endosperm maize.

Genotype	Media		
3063b	53.73	A	
3043b	34.37	В	
3031	33.95	В	
3057	29.78	В	
3043a	24.82	BC	
3071	18.45	BC	
3028	13.23	С	
3027	12.91	С	
3008a	11.97	C	

*: averages followed by the same letter do not differ significantly at 1% probability.

Of all the inbreds studied during 2000/01 under natural infection conditions, 5 inbreds were very resistant to maize common rust, 10 were resistant, 11 were mid-resistant, 10 were susceptible and 2 were very susceptible. Inbreds 3131, 3135, 3136b and 3139 which are very resistant to "maize common rust" attack, are quality protein maizes and they carry in their background the opaque-2 gene from the same progenitor (inbred 7515 Mazoti). Likewise, the inbreds 3022c, 3135 and 3136b which are also very resistant derive from the same progenitor (FW) and normal inbreds 3027 and 3028 came from the progenitor CP27. Finally we want to stress the fact that 10 new inbreds resistant to *Puccinia sorghi* (Schw.) and obtained within a quality breeding programme, are available to develop new hybrids in Argentina.

LLAVALLOL, BUENOS AIRES, ARGENTINA Universidad Nacional de La Plata LOMAS DE ZAMORA, BUENOS AIRES, ARGENTINA Universidad Nacional de Lomas de Zamora

Exposure of Zea mays, Tripsacum dactyloides and its hybrid Zea x Tripsacum to short periods of chilling (5 C)

--Jatimliansky, JR, García, MD, Molina, M del C

Maize and *Tripsacum* are known for their susceptibility to chilling injuries. Maize-*Tripsacum* F1 plants (2n = 56) have shown more tolerance to chilling temperatures in the field than their parents: *Zea mays* (2n = 40) and *Tripsacum dactyloides* (2n = 72). Whilst minimum temperatures of -2 C during 2 days produced irreversible injuries in both parents, no visible damages were observed in the hybrid. A comparative study of the three genotypes was made in controlled conditions to ascertain the different growth behavior of the hybrid relative to its ancestors in the field.

We measured: a) the photochemical efficiency of photosystem (PS) II expressed as the ratio of the variable fluorescence (F_V) to the maximum fluorescence yield (F_M) (F_V/F_M ratio) and b) the injuries of the cell membranes of leaves during growth at 5 C or at 25 C by the electric conductivity of solutions due to electrolyte leakage of leaf slices in distilled water.

Maize seedlings were obtained by germination of seeds while *Tripsacum* and hybrid plants were grown from its rhizomes. When plants were at the four-leaf stage of development, chilling conditions (5 C) were applied in a growth chamber up to 3 days (16 h light - 8 h dark; 400 mol m⁻² s⁻¹ PAR at leaf level; 80% RH). Data were analyzed by ANOVA and differences among individual means were compared by the least significant difference (LSD) test.

Table 1. F_V/F_M ratios in leaves of control (25 C) and chilled (5 C) plants.

	maize	Tripsacum	maize x Tripsacum
	(2n = 40)	(2n = 72)	(2n = 56)
Control plants	0.796 a	0.727 a	0.764 a
Chilled plants			
5C 1 day	0.547 b	0.513 b	0.593 b
5 C 2 days	0.297 cd	0.264 d	0.517 b
5 C 3 days	0.150 e	0.173 e	0.380 c

Means followed by the same small letter are not significantly different (P \leq 0.05) according to the LSD test.

Table 2. Electric conductivity (μ S cm⁻¹ g FM⁻¹ hour⁻¹) of leaf slices suspension in distilled water.

Genotypes	Stressed plants	Control plants
	(5 C; 3 d)	(25 C)
Zea mays (2n = 40)	71.1 ab	36.7 d
Tripsacum dactyloides (2n = 72)	84.9 a	47.0 cd
Zea x Tripsacum (2n = 56)	61.5 c	35.9 d
Mean	72.5 A	39.9 B

Results of both comparisons indicated that the hybrid was less affected than its parents. After the measures, all chilled plants were cultured at 25 C in the same place as the control plants. After one week, stressed maize seedlings died and, also, leaves from chilled *Tripsacum* plants, while stressed hybrid plants remained alive as they did in the field.

MADISON, WISCONSIN University of Wisconsin

tb1 is epistatic to ba2

--Hurkman, MM, Tracy, WF

The genes *teosinte branched1* (*tb1*), *barren stalk1* (*ba1*), and *barren stalk2* (*ba2*), affect branch development. Homozygous *tb1* plants lose apical dominance and exhibit many elongated lateral branches at axillary buds along the main culm. In *ba1* plants, tillers, ears, and the concave groove on the culm are absent while the tassels lack branches or spikelets. *ba1* is epistatic to *tb1* and suppresses lateral branching in both the vegetative and inflorescence meristems. *ba2* plants, like *ba1*, lack ears and the concave groove on the culm, but the tassels exhibit bundled branches that have peduncles fused to the culm at the base. The tassels usually develop fertile spikelets. *ba2* plants often have tillers and sometimes develop an ear at the soil surface (Fig. 1). Our objective was to determine the epistatic relationship of *ba2* and *tb1*.

An F2 population segregating for *ba2* and *tb1* was created. In the F2 there was a significant excess of *tb1* individuals. *tb1* homozygotes and putative *ba2/tb1* double mutants were impossible to distinguish. The F2 fit a 9 (wild type): 3 (*ba2*) : 4 (*tb1*) ratio, indicating that *tb1* is epistatic to *ba2* (Shroeck and Tracy, 1998 Maize Genetics Conference Abstracts, p. 81).

In 2001 we grew the same F2 and collected DNA from all the *tb1* plants. We used a SSR marker that was closely linked to *ba2* to determine what proportion of the *tb1* segregates were also homozygous for *ba2*. Of 76 *tb1* plants 25 of them were also homozy-gous for the *ba2* marker. This was not significantly different from expected ($X^2 = 2.51$, p<0.10). These *tb1tb1 ba2 ba2* plants were all indistinguishable from *tb1tb1 Ba2*- plants. Thus, *tb1* is epistatic to *ba2*, while *ba1* is epistatic to *tb1*.

Given the phenotype of these mutants it appears that ba1

suppresses lateral branching at all nodes including those in the tassel. tb1 induces branching at both juvenile and adult vegetative nodes but does not affect the development tassel. Since ba2 plants have tillers, no ears, but relatively normal tassels it appears that ba2 suppresses branch development in the adult vegetative section of the plant.

Figure 1. The base of a homozygous recessive *ba2* plant, showing the development of an ear from an underground node.

MILAN, ITALY University of Milan

Isolation and preliminary characterization of a maize low phytic acid mutant

--Pilu, R, Gavazzi, G, Nielsen E* *Dipartimento di Genetica e Microbiologia, Università degli Studi di Pavia

Phytic acid (phytine), *myo*-inositol 1,2,3,4,5,6-hexa*kis*phosphate (IP6), is the major storage compound of phosphorous in plants, accumulating predominantly in seeds (up to 4-5% of dry weight) and pollen. In cereals, up to 80% of P is present as phytate P, which has generally very little bio-availability for monogastric animals due to their lack of phytase activity. As a consequence, it is common to supplement the animals' diet with inorganic phosphate or, in the last decade, with microbial phytase (Pointillart et al., 1987). The latter practice has been shown to increase the utilization of feed P by animals, as well as to decrease the amount of the phytic P excreted with manure, thus significantly reducing eutrophication of surface water. Recently, transgenic seeds were obtained accumulating *Aspergillus* phytase, which can then be included in feeds for animals (Pen et al., 1993).

An alternative strategy to tackle the problem consists in the isolation of cereal mutants accumulating less phytic P and more

free phosphate in the seed (Raboy et al. 1990, Rasmussen et al. 1998). We have chosen to apply this approach in maize.

Since normal mature maize seeds contain high phytate phosphate and low free phosphate levels, a screening for high level of free phosphate in seeds provides a quick and inherently sensitive assay for the detection of *lpa* (low phytic acid) mutants. A population of EMS (ethyl methanesulfonate)-induced mutants was thus generated using the pollen-treatment method and approximately 600 M2 families were screened. The first assay was carried out by titrating free phosphate using the molybdate staining method. Putative mutants were then challenged by a TLC (Thin Layer Chromatography) method allowing the simultaneous detection of free phosphate and phytate.

One monogenic recessive mutation (named *lpa 241*), causing approximately a ten fold increase in the amount of free phosphate titratable and a reduction of about 90 % of phytic acid, apparently did not affect normal germination or seedling growth. Genetic analysis of this mutation, as well as its biochemical characterization aimed at identifying the biosynthetic step involved are under way.

Cesium tolerance trait in maize

--Magni, A, Nocito, FF, Pilu, R

Potassium plays a pivotal role in many biochemical and physiological processes. It has been proposed that higher plants have evolved at least two pathways for root potassium uptake, with high and low-affinity transport properties. Although details on the structure and electrical properties of these transporters are beginning to emerge, many aspects related to their function and regulation need to be investigated further. Selection of mutants modified in potassium transport or potassium homeostasis could be a powerful approach to study these topics. For this purpose we are isolating putative maize mutants tolerant to Cs^+ , a cytotoxic analogue of potassium which acts as a competitive K⁺ uptake inhibitor and as a K⁺ channel blocker.

In a preliminary work we isolated 10 putative monogenic recessive Cs-tolerant mutants by screening several hundred M2 families obtained following chemical (EMS) mutagenesis. Selection was carried out detecting the number of seeds (30 for each experiment) able to germinate and grow in the presence of 100 mM Cs⁺ (as sulphate) for 10 days. From this initial screening we isolated 10 resistant lines showing a Mendelian segregation ratio expected for a single-gene recessive mutation. These putative Cs-tolerant families were selfed in the last field and the screening of the M3 progenies obtained is now in progress. Preliminary data show that the Cs tolerance trait is maintained at least in two M3 families. Interestingly, one of these putative mutants is able to accumulate more Cs⁺ than wild-type in the shoot. MOSCOW, RUSSIA ¹Institute of Plant Physiology ²Institute of Agricultural Biotechnology ³Institute of Gene Biology

Agrobacterium tumefaciens -mediated genetic transformation of maize

--Danilova, SA¹, Dolgikh, Yul, Osipova, ES, Lyapkova, NS², Kibardin, AV³

In order to enhance the frequency of *Agrobacterium tumefaciens* - mediated transformation of maize, we have modified the method underlying an inoculation of plant explants by *Agrobacterium*. Embryogenic callus tissues of A188 and 91 lines (somaclone obtained from F2 of hybrid Chi31xCateto S. G.) and of the hybrid A188x91 were used in the present work. The genetic transformation of the chosen plants was carried out with the use of the strain of *Agrobacterium* LBA4404 that contained plasmid pB1121 carrying the genes encoding neomycin phosphotransferase II (*nptII*) and β -glucuronidase (*uidA*).

The maize callus was incubated in a saturated *Agrobacterium* culture for 1 h, then cultivated on the MS medium containing cefotaxime to eliminate its contamination by the bacteria. After the formation of shoots, the latter were transferred to the medium supplemented with kanamycin (Kn) to select the plants resistant to this antibiotic. The frequency of producing the Kn-resistant plants by such a method of plant transformation was found to amount to 3.3 and 14.4% for A188x91 and 91 line, respectively. However, our attempts to select the Kn-resistant plants of A188 appeared to be unsuccessful.

In order to accelerate infection of the explants, the callus cultivated with *Agrobacterium* was vortexed for 30 sec or subjected to vacuum infiltration. According to the data reported by Ishida et al. (Nature Biotechnology 14:745-750, 1996), which used immature maize embryos as explants, the vortex treatment of the explants enhanced an efficiency of their genetic transformation and did not bring about any embryo injury. However, the embryonic callus used by us appeared to be more sensitive to mechanic injuries: the vortexed callus inocula grew slowly, and their regeneration capacity was found to significantly decrease. Among the few plants recovered from the use of this procedure, Kn-resistant ones appeared to be absent. The use of vacuum infiltration allowed an increase in the yield of A188x91 green plants of about three-fold, but was found to be ineffective in the case of the A188 line that was more sensitive to such a treatment.

To enhance virulence of *Agrobacterium*, the overnight culture used for co-cultivation with maize callus was supplemented with acetosyringone or tobacco leaf exudate. The application of acetosyringone resulted in the increase of about three-fold of the frequency of the regeneration of the Kn-resistant A188x91 plants, but had only a slight effect on the transformation efficiency of A188 and 91 lines. The exudate-induced activation of *Agrobacterium* was more effective, because in this case the amount of the Kn-resistant plants of 91 line and A188x91 appeared to be 2.4 and 5.4 times, respectively, higher as compared to that of the plants obtained by using inactivated *Agrobacterium*. This may be due to the fact that the tobacco leaf exudate, unlike acetosyringone, contains a wider spectrum of phenols and other compounds capable of affecting the gene transfection.

We have found that incubation of maize callus in a suspension of Agrobacterium results in a significant decrease of its morphogenetic capacity. This effect was expressed in a marked decrease in a probability of selection of the transformed plants. For this reason the duration of the co-cultivation was confined, as a rule, to 1 h. Using these findings as the base, we offer a new method of infection of explants that involves cultivation of callus inocula for 15-20 days on the lawn of the Agrobacterium activated by tobacco leaf exudate. The advantage of the suggested method is prolonged contact of growing plant tissues with the activated Agrobacterium, which provides a high enough probability of plant In addition, it should be noted that in the infection. Agrobacterium-containing cultivation medium, both an active growth of the embryogenic callus and regenerative capacity of the latter are still retained.

The above described method of plant transformation was found to be effective upon infection of both immature maize embryos and embryogenic callus. According to our results, the frequency of producing the Kn-resistant plants of A188, 91 and A188x91 was estimated as 17.8, 40.6 and 21.1%, respectively. With the use of fluorometric and histochemical methods, an expression of the inserted reporter GUS gene in tissues of the plants obtained was demonstrated. The resistance to Kn was inherited to the T1 generation.

The designed method of genetic transformation of plants was applied for insertion in embryonic maize callus of plasmid pK22rs containing the genes *nptll* and *rs* from radish, encoding defensin. This transformation was used for the purpose of enhancing plant resistance to some phytopathogenic fungi. The transfer of the plasmid into plant cells was performed with the use of strain LBA 4404 of *A. tumefaciens*. In the transgenic plants thus obtained the insertions of genes *nptll* and *rs* were confirmed by both PCR and Southern blot hybridization.

NEWARK, DELAWARE E.I. DuPont deNemours and Company

Rapid EST mapping and SNP genotyping of individuals using pyrosequencing

--Ching, A, Rafalski, A

Mapping of a trait or a genetic locus is traditionally done with RFLP, AFLP or SSR markers. Here we described the use of single nucleotide polymorphisms (SNP) for rapid mapping of expressed sequence tags (ESTs). The genotyping of SNPs is performed by pyrosequencing. Other methods of genotyping SNPs can be found in a review by A.C. Syvanen (Nature Reviews Genetics 2:930, 2001).

Pyrosequencing is a new method of obtaining short segments of DNA sequence, typically up to 20 nucleotides, simultaneously on 96 different templates. Once the templates have been prepared, 96 templates can be sequenced in 15 minutes. The methodology was developed by P. Nyren (Nyrén, P, Analytical Biochemistry 167:235, 1987; Ronaghi, M. et al, Science 281:363, 1998). It relies on the stepwise elongation of the primer upon sequential addition of the different deoxynucleotide triphosphates. The pyrophosphate released from an incorporated NTP is converted into ATP, which in turn triggers the emission of light from the luciferin – luciferase system. Excess nucleotide triphosphates are degraded

	2	3	4	5	6	7	8	9	10	11	12
B73	В	Μ	В	Μ	M	Μ	В	В	В	В	В
MD17	в	М	В	В	В	В	Μ	Μ	-	В	M
M	В	В	В	В	M	Μ	Μ	В	В	M	M
В	в	Μ	В	в	В	М	Μ	В	Μ	Μ	M
М	М	В	В	В	B/M	В	M	M	ВМ	ВМ	M
В	М	М	М	в	M	М	М	Μ	В	B/M	M
М	М	М	Μ	Μ	M	М	В	Μ	Μ	В	M
М	М	В	М	В	Μ	М	М	М	М	ВМ	Μ
	B73 MO17 M B M B M M M	B73 B MO17 B M B M M B M M M M M M M M M M M M M M M M M M M M M	B73 B M MO17 B M M B B B B M M M B B M M M M M M M M M M M M M M M M B	B73 B M B MO17 B M B M B B B M B M B M B M B M M M B M M M M M M M M M M M M M M M M M M B M	B73 B M B M MO17 B M B B M B B B B M B B B B B B M B B M M B B B M M B B B M M M M B M M M M M M M M M M M M B M M	B73 B M B M M MO17 B M B B B M B B B B M B B B B B B M B B B B B M M B B B B M M B B B M M M M M M M M M M M M M M M M M M M	B73 B M B M M M MD17 B M B B B B B B B B B B B B B B M <td>B73 B M B M M M B MO17 B M B B B B B M<td>B73 B M B M M M B B MO17 B M B B B B M M M M B B B B B M M M M M B B B B M M M B B B M B B B M M B M M B B B M M M M M B B B M M M M M M M B M M M M M M M M M M M M M M M M M M M</td><td>B73 B M B M M M B B B MO17 B M B B B B B B M M - M B B B B B M M M B B B B B B B M M B B B B M B B B M M B M M B B B M M B M M M B B B M M M M M M M B M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M</td><td>B73 B M B M M M B B B B MO17 B M B M M - B M B B B B B B B B M M B B M</td></td>	B73 B M B M M M B MO17 B M B B B B B M <td>B73 B M B M M M B B MO17 B M B B B B M M M M B B B B B M M M M M B B B B M M M B B B M B B B M M B M M B B B M M M M M B B B M M M M M M M B M M M M M M M M M M M M M M M M M M M</td> <td>B73 B M B M M M B B B MO17 B M B B B B B B M M - M B B B B B M M M B B B B B B B M M B B B B M B B B M M B M M B B B M M B M M M B B B M M M M M M M B M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M</td> <td>B73 B M B M M M B B B B MO17 B M B M M - B M B B B B B B B B M M B B M</td>	B73 B M B M M M B B MO17 B M B B B B M M M M B B B B B M M M M M B B B B M M M B B B M B B B M M B M M B B B M M M M M B B B M M M M M M M B M M M M M M M M M M M M M M M M M M M	B73 B M B M M M B B B MO17 B M B B B B B B M M - M B B B B B M M M B B B B B B B M M B B B B M B B B M M B M M B B B M M B M M M B B B M M M M M M M B M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M	B73 B M B M M M B B B B MO17 B M B M M - B M B B B B B B B B M M B B M

Mapping result for 94 individuals plus parents

Figure 1.

Good correlation between Pyrosequencing results and agarose gel data. Here the PCR product of one allelle is larger than it's counterpart, heterozygous individuals therefore have 2 gel bands. In the Pyrosequencing data, one finds the presence of both nucleotides, A and G, at the SNP site in these individuals.

Figure 2.

by apyrase. As the sequencing reaction progresses, the DNA strand is extended and the sequence is determined from the measured signal output of light upon nucleotide incorporation. The reactions are performed in a 96-well plate in an automated device (PSQ-96, Pyrosequencing, Inc. Uppsala, Sweden). The resulting sequence trace is analyzed automatically by the Pyrosequencing software.

To place an EST on the genetic map, we first identified polymorphisms between the two mapping parents within the EST sequence. This is done by standard dideoxy- terminator fluorescent sequencing of the PCR amplified segments of genomic DNA corresponding to that EST. Sequencing of the 3'-UTR segment of the EST clone increases the likelihood of finding multiple SNPs. SNP frequencies of 1 polymorphism in 60 nt on average are found in a diverse set of maize germplasm (A. Ching, unpublished data). Next, a sequencing primer close to the identified SNP site(s) is prepared. The locus is then PCR amplified from the genomic DNA of the mapping population, this time using one biotinylated and one standard PCR primer. The PCR product is then bound to streptavidin-coated paramagnetic beads, denatured by sodium hydroxide, and a magnetic tool is used to capture the biotinylated template strand for sequencing. Several bases, including the SNP site, are sequenced in the Pyrosequencing machine, using the above-mentioned sequencing primer and the bead-bound template. EST mapping using this approach was tested by mapping the sucrose synthase locus (sh1) using the SX19 mapping population (Lee, M et al., Maize Genetics Conference Abstracts 40). The expected sequence read is AAACA/GTGGGC, (SNP position at 4739 GenBank accession X02382, A in B73 and G in MO17, Fig.1). In a heterozygous individual, a half-height peak of both A and G is found. In the case of sh1, the genotypes obtained from Pyrosequencing can be further verified by separating the PCR products on an agarose gel. This is because the PCR product of one of the alleles is larger than its counterpart, due to the presence of a 142 bp insertion in B73 (position 4080 in GenBank accession X02382). A heterozygous individual will therefore have two bands per lane (Fig 2). The genotyping scores were placed on the genetic map of the SX19 population using MapMaker software (Lander, E and Green, P, PNAS 84:2363, 1987). As expected, the sucrose synthetase locus co-segregated with sh1. We have since placed a number of other EST loci on the SX-19 map using Pyrosequencing genotyping of SNPs, with a success rate of >95% per locus. Failures were due to a poor PCR, and could be rectified by a more careful quantification of the amount of DNA per well before PCR amplification.

> NEW DELHI, INDIA Indian Agricultural Research Institute *PANTNAGAR, INDIA GBP University of Agriculture & Technology

Analysis of genetic relationships among Indian maize lines differing in their response to Brown Stripe Downy Mildew --Kumar, A, Gadag, RN, *Saxena, SC

Twenty-eight maize genotypes comprising parental lines of elite single cross hybrids, lines derived from inter-specific crosses and North Eastern Hills (NEH) races, were evaluated for their response to Brown Stripe Downy Mildew (BSDM). The pathogen causing this disease in maize in India was first identified in 1967 as *Sclerophthora raysieae* var. *zea* (Payak & Renfro, Phytopath. 57: 394-397, 1967). This disease affects maize crops in the northern part of India. Disease screening was done during Kharif 2000, at Pantnagar, a hot spot for the pathogen, under artificial epiphytotic conditions. Disease was recorded following the standard procedure with a 1-5 scale along with appropriate resistant and susceptible lines as checks. While twenty genotypes had resistance to the BSDM pathogen (score of < 2.0), the remaining eight lines were found to be susceptible (score of > 2.0).

Interestingly, the genotypes in the two groups (resistant and susceptible) were represented by three different categories. A set of six genotypes, three belonging to each of the resistant [N-3, MZD-3, and AH 918 (F)] and susceptible [CM 213, MZP-1C and AH 421 (F)] groups were chosen for analyzing genetic relationship. Particulars of these genotypes are as follows: N-3-NEH race from Nagaland; MZD-3-Interspecifc derivative from Z. maize X Z. diploperennis; AH 918 (F)-Female parent of an experimental hybrid; CM 213 -Female parent of a released single cross hybrid; MZP-1C -Derivative of inter-specific cross Z. maize X Z. parviglumis; AH 421(F) -Female parent of an experimental hybrid. Data on morphological characteristics as well as those generated by polymorphism survey using SSR (Simple Sequence Repeats) were used to analyze genetic relationships. Of the 36 SSR markers used, 17 were found to be effective in detecting polymorphism. The similarity matrix was analyzed by NTSYS-PC Version 2.02 (Rohlf, 1992, Exeter Pub. New York) by employing UPGMA with average linkage (Sneath and Sokal, 1973, Numerical Taxonomy, W.H. Freeman & Co., San Francisco).

The clustering pattern obtained individually with a morphological or molecular marker was compared with that obtained by using both in combination. Interestingly, grouping of genotypes followed a common pattern and reflected the response of genotypes to BSDM also (Fig. 1). Thus, a relatively small number of SSR markers (17) in combination with morphological markers enabled meaningful grouping. Improvement in clustering may be expected by analyzing a greater number of polymorphic SSR markers, as there is limited scope for further increasing the number of easily discernible morphological characters.

The present study highlighted the diversity in the material chosen with respect to BSDM disease. For a better understanding of the mechanism of disease response and for increasing the

precision in incorporating disease resistance, molecular markers like SSRs may be effective tools. In this endeavor, considering information regarding the level of heterozygosity and polymorphism, AH 918 (F) and CM 213 are potential lines for further studies.

> NOVOSIBIRSK, RUSSIA Institute of Cytology and Genetics ST. PETERSBURG, RUSSIA Komarov Botanical Institute

Cytoembryological study of maize-Tripsacum hybrids

--Khatypova, IV, Naumova, TN, Kravtchenko, AY, Sokolov, VA

Information in the literature about the reproductive mechanisms of eastern gamagrass (*Tripsacum dactyloides* L.) and maize-*Tripsacum* hybrids is incomplete. Burson, BL and coworkers (Crop Sci. 30:86-89, 1990) demonstrated that tetraploid (2n=4x=72) and triploid (2n=3x=54) eastern gamagrass reproduced by diplospory and the *Antennaria*-type megagametogenesis, diploid parthenogenesis and pseudogamous endosperm formation. The diploid forms of *Tripsacum* reproduced sexually. Analysis of natural populations and various *Tripsacum* species of different ploidy levels (2n=36, 54, 72, 90,108) confirmed diplosporous apomixis in the polyploids and sexual reproduction in the diploids. Rare cases of meiotically derived dyads and tetrads were observed at very low frequencies (2%) in some apomictic populations (Leblanc, O et al., Am. J. Bot. 82 (1):57-63, 1995).

In the hybrids between tetraploid maize and *T.dactyloides* whose offspring we are continuing to investigate, Laikova reported that 56-chromosome F1 hybrids (20Zm + 36Td) were genetically heterogeneous (In: Petrov, DF (ed.)Apomixis and its role in evolution and breeding, New Dehli, India, 79-87, 1984). Hybrids H416 and H418 (2n=56), developed from backcrossing apomictic F1 hybrid H278 (2n=56) with maize, were also the apomicts and had embryo sacs similar to those observed in the paternal *Tripsacum*. At the same time among F1 hybrid H166 (2n=56) only BII-hybrids with 38 chromosomes (20Zm + 18Td) were recovered in the BC1. Sexual reproduction was confirmed by the presence of meiotically derived linear tetrads of megaspores.

Offspring of the maize-Tripsacum hybrids H278 and H32 (2n=56; 20Zm + 36Td), 39-chromosome forms (30Zm + 9Td) retained apomictic reproduction (Sokolov, VA et al., Russian Genetics 34:499-506, 1998). Low female fertility in the F1 hybrids was overcome in subsequent generations by reducing the number of Tripsacum chromosomes and selecting the most productive genotypes. However, low seed production remained a problem. The practical use of the hybrids was also restrained by their male sterility. It was important to understand the mechanism of apomixis inheritance when genes of eastern gamagrass were expressed in cytoplasm of maize in the presence of three maize genomes (thirty chromosomes) and only nine Tripsacum chromosomes. To determine the causes of decreased kernel set, we examined megasporogenesis, megagametogenesis and pollen tube growth in the maize-Tripsacum hybrids. This was in collaboration with scientists from the Komarov Botanical Institute, Saint Petersburg, Russia, and Plant Research International, Wageningen, the Netherlands.

For the study of megasporogenesis and megagametogenesis, ears 3-10 cm long were fixed in FAA [3:7:1 (V:V:V) formalin: 70%

alcohol: glacial acetic acid] for 48 hours. The fixed material was stored in 70%-ethanol. The ovules were cleared in methyl benzoate and examined using phase-contrast microscopy and Nomarsky optics (Naumova, TN et al., Sex. Plant Reprod. 12:43-52, 1999).

To study the pollen tube growth, ears were pollinated by maize pollen and then fixed in FAA two days after pollination (DAP). The styles were placed in 10% KOH for 1.5 hours. After maceration the styles were washed with distilled water, placed on slides and stained in a drop of 0.005% aniline blue in 0.15M K2HPO4. The styles were squashed and observed for the presence of the pollen tubes using fluorescent microscopy.

More than 120 ovules from 12 plants of two different lines 4x-6 and W39 with 30 chromosomes of maize and 9 chromosomes of Tripsacum were examined. Megasporogenesis and embryo sac formation in both lines proceeded similarly. The subepidermal nucellar cell enlarged and became the archesporial cell and later differentiated into the megaspore mother cell (MMC) (Fig. 1a). Instead of initiating meiosis, characteristic of sexual plants, the elongated MMC enlarged and became vacuolated, the nucleus remained inactive, the chalazal end of the cell became narrow. The thickening of the cell wall was accompanied by degeneration of the adjacent nucellar cells. Integuments enclosed the micropylar part of the ovule (Fig. 1b). After isolation, MMC divided mitotically (Fig. 1c) to produce a 2-nucleate megagametophyte with a huge central vacuole (Fig.1d). The second mitotic division produced a 4-nucleate embryo sac (Fig. 1e) and the third division produced an 8-nucleate embryo sac (Fig. 1f). After cellularization, the embryo sac consisted of two synergids, egg-cell, two polar nuclei and three antipodal cells, which often divided later on to form five or six antipodals (Fig.1g, h). The complete absence of meiosis and the megaspore tetrad formation indicated that the 39-chromo-

Figure 1 (a) Ovule with archesporial cell. (b) Ovule with big megasporocyte (MMC) showing vacuolization and tendency to dyplospory. (c) Ovule with diplosporous one-nucleate embryo sac of *Antennaria*-type originated directly from MMC. (d) Two-nucleate embryo sac. (e) Fournucleate embryo sac. (f) Eight-nucleate embryo sac prior to the cell formation. (g, h) Eight-nucleate embryo sac after cellularization and with two synergids, egg cell, central cell with two unfused polar nuclei and three antipodal cells (two successive focus levels of the same ovule). (i) Egg cell at the metaphase stage and 4-nuclei endosperm. Bar: for **a**, **i**, 50 µm; **c**, 20 µm; **b**, **d**, **e**, **f**, **g**, **h**, 100 µm.

some maize-*Tripsacum* hybrids reproduced by mitotic diplospory and the *Antennaria*-type megagametogenesis. In the material studied, neither meiosis nor abnormal embryo sac development were observed.

The embryo in the maize-*Tripsacum* hybrids developed parthenogenetically. Fertilization of polar nuclei is necessary for the formation of the endosperm. In the isolated ears that were not pollinated, only unfertilized embryo sacs with enlarged egg-cell, fused polar nuclei and multiplying antipodals were found on the second to third day after the ejection of stigmata. Thus, pseudogamous apomixis occurred in the 39-chromosome maize-*Tripsacum* hybrids. This is similar to the development of eastern gamagrass as reported by Farquharson, LI (Am.J.Bot.42:737-743,1955), Brown, WV and Emery, WHP (Am.J.Bot. 45:253-263,1958) and Burson, BL et al.(1990).

Cases of embryo development without pollination were not observed in our maize-*Tripsacum* hybrids. Moreover, at 3DAP the endosperm usually overtook the egg cell in the rate of cell divisions (Fig. 1i). Pollination and fertilization of the polar nuclei appeared to be the signal of parthenogenetic embryo development. A similar phenomenon was described in apomictic *Arabis holboellii* (Naumova, TN et al., Sex. Plant Reprod. 2001, in press). Parthenogenesis without pollination was reported by Laikova, LI (1984) and Fokina, ES (In: Petrov, DF (ed.) Inducirovannyi mutagenez i apomiksis, Novosibirsk, USSR, pp. 57-63, 1980).

The absence of embryo and endosperm development in part of the ovules in the pollinated ears suggested that fertilization of polar nuclei did not occur in these. To elucidate the causes of this phenomenon, we examined the pollen tube growth in line 4x-6 (30Zm + 9Td chromosomes) in 1999 and conducted a comparative study of this line with the 38-chromosome line (20Zm + 18Td) in 2000. The investigation of styles of pollinated ears showed that in rare cases, the maize pollen tubes had regular callose plugs and grew toward the ovule (Fig. 2a). More often the pollen tubes stopped growing shortly after germination (Fig. 2b, c) and sometimes within the stylar tissue (Fig. 2d, e, f). Lack and stoppage of growth were accompanied by anomalous callose deposition in the tubes, tube twisting and branching (Fig. 2g, h). In 1999, after the 39-chromosome hybrids were pollinated with the maize Tetraploid Shumnogo (2n=4x=40), pollen tubes grew toward the ovule in 15% of the styles, whereas in the maize control pollen tube growth was 100%. The number of pollen tubes reaching the ovule was also considerably lower in the hybrids when compared to maize. There were 1-2 tubes per style in hybrids as compared to 7-9 tubes in maize. In 2000, we also studied the influence of the pollinator on the pollen tube growth in the 39- and 38-chromosome hybrids. Diploid (Popcorn) and tetraploid (Tetraploid Shumnogo, Purple marker) maize were used as the pollen sources. For each combination, 10 ears were pollinated and 40-50 styles from each ear were analyzed. The percentage of styles with pollen tubes that reached the ovule was calculated. Significant differences for this characteristic between pollinators and the maternal genotypes were not observed. The mean values of pollen tube growth were higher than in 1999: Popcorn - 41%, Tetraploid Shumnogo - 48%, Purple marker - 32% (P>0.05). However when analyzing the material by pollination day it was established that in the last three days of pollination, beginning from 27 August, the percent of styles with tubes and the number of tubes per style increased (Table 1).

Figure 2. (a) Pollen tube growth is normal, the plugs are equi-distant from each other. (b, c) Pollen tube growth is interrupted at an early stage, soon after germination. (d, e, f) Pollen tube growth is interrupted at later developmental stage, inside the style. (g, h) Abnormality (branching) of the pollen tubes inside the style.

Table 1. Pollen tube growth in the maize-Tripsacum hybrids on different days of pollination.

Pollination date	10.08	15.08	24.08	25.08	26.08	27.08	28.08	29.08
Number of styles studied	78	88	116	412	328	550	121	190
Number of styles with pollen tubes	32	12	19	109	53	374	80	149
% of styles with tubes	41	4	16	27	17	***68	***66	***78
Number of tubes found	62	18	34	201	92	769	193	499
Number of tubes per 1 style	0.80	0.20	029	0.49	0.28	***1.40	***1.60	***2.63
Natas *** the	difform	an hotu		07.00	00 000	the ether	davia of a	allination

Note: *** - the differences between days 27-29.08. and the other days of pollination are significant with P<0.001

The weather conditions in the pollination period were characterized by a lack of sharp fluctuations with 15-20C in the day time and 8-9C at night on average. However, on the night of 26-27 August a fall of temperature to 1-2C occurred, so differences between the average and decreased temperature was about 7 degrees. As known from the literature, a change in temperature adversely affects the pollen fertility, the process of fertilization and ovary development (Jakobsen, HB and Martens, H, Annals Bot. 74(5):493-501, 1994; McKee, J and Richards, AJ, Annals Bot. 82(3):359-374, 1998; Tromp, J and Borsboom, O, Scientia Horticulturae 60(1-2):23-30, 1994). It is possible that the low temperature influenced incompatibility mechanisms in the maize-*Tripsacum* hybrids. Apparently in this case the short-term decrease in temperature weakened the incompatibility of maize pollen tubes and tissues of style of the maize-*Tripsacum* hybrids without having an effect on viability of pollinator-maize pollen. The effect of temperature shock on incompatibility has been reported in *Lolium perenne* (Wilkins, PW and Thorogood, D, Euphytica 64:65-69, 1992).

Thus, one can conclude that abnormal growth of maize pollen tubes in styles of 39- and 38-chromosome maize-*Tripsacum* hybrids was one of the main reasons for poor kernel set. The three maize-pollinator varieties used did not significantly influence the efficiency of pollination. A short-term low-temperature shock promoted the weakening of the incompatibility mechanisms.

The authors thank B.L. Burson for the fruitful discussions and K. Boutilier for comments on the manuscript. The research was supported by NWO, the Netherlands, Research Grant No.047.007.019 and Russian Foundation of Basic Research, Grant No.00-04-49542.

OTTAWA, CANADA University of Ottawa

Variations in levels of dehydrodimers of ferulic acid in the pericarp of maize infected by *Fusarium graminearum*

--Bily, AC, Reid, LM, Regnault-Roger, C, Arnason, JT, Philogène, BJR

Phenylpropanoids have been suspected of implication in plant resistance in many different plant-pathogen interactions (Bell, Annu. Rev. Plant Physiol. 32:21-81, 1981). These secondary metabolites are generally induced after elicitation. In maize, different flavones have been found to increase significantly during silk infections in resistant genotypes (Reid et al., Can. J. Bot. 70:1697-1702, 1992). Some other phenolics implicated in resistance are constitutively present in tissues, like 4-ABOA in grain (Miller et al., J. Agric. Food Chem. 45:4456-4459, 1996). We are investigating the implication of cell wall phenylpropanoids in maize resistance to *Fusarium graminearum*. Ferulic acid and pcoumaric acid are the two predominant constitutive forms of phenolics in the cell wall of grasses. These compounds in free forms are known to be fungistatic for different fungi. In vivo, these compounds are ester-linked to cell wall arabinoxylan residues. A positive correlation has been observed between resistance to *Gibberella* ear rot and levels of these compounds at harvest (Assabgui et al., Phytopathology, 83(9):949-53, 1991). Ferulic acid has the ability to be dimerized forming cross-links strengthening the primary cell wall (Fry, Ann. Rev. Plant Physiol. 37:165-186, 1986). Maize genotypes with high levels of diferulates present high levels of resistance to leaf borers (Bergvinson et al., Environ Entomol 23:1516-1523, 1994).

During the 2000 field season, we monitored the level of cell wall phenolics and particularly diferulates in inbred lines of maize developed by Agriculture and Agri-Food Canada with improved resistance to *Gibberella* ear rot (CO432 and CO433). Twelve days after silk emergence, plants of this inbred plus susceptible inbreds were artificially inoculated with a macroconidial suspension of *F. graminearum*. Control plants were inoculated with distilled water. Ears were collected at 0, 2, 4, 6, 8, 10, 15, 20, 30 days and harvesting time. Ergosterol levels were monitored by HPLC (Young, J. Agric. Food Chem., 43(11), 2904-2910, 1995) in whole grains. Pericarp and aleurone layers were separated from the rest of the grain. Cell wall bound phenylpropanoids were analyzed after NaOH digestion of crude cell wall using a HPLC and LC-MS that we developed.

The levels of diferulates were significantly different among genotypes. More interestingly, in CO433, a resistant genotype, diferulates/ferulate ratio was significantly higher in inoculated pericarps than in the controls during the first six days of infection and after the twentieth day (Figure 1). No such differences were found in CO344, a susceptible genotype. High levels of diferulates impede the action of cell wall hydrolases (Grabber et al., J. Sc. Food Agric. 77:193-200, 1996). The high level of dimerization of the cell wall may impede cell wall degradation and cell disruption necessary for the progression of *Fusarium* which is a necrotroph phytopathogen. Cross-links of cell wall proteins in response to fungal elicitors have already been described in bean and soybean cell suspension (Bradley et al., Cell 70: 21-30, 1992) and is considered as a quick and early response of the plant to pathogens.

Figure 1. Diferulates/ferulate ratio in maize pericarp of infected (A) and control (O) pericarp and aleurone layers. Disease ratings (O) are also shown (lower values indicate less infection).

OTTAWA, ONTARIO Eastern Cereal and Oilseed Research Centre ITHACA, NEW YORK Cornell University

A gene for resistance to northern leaf blight is inhibited by CO325

--Zhu, X, Reid, LM, Smith, M

In 1999 and 2000, eight inbreds with different levels of resistance (Table 1) to northern leaf blight [Exserohilum turcicum (Pass.) K.J. Leonard & E.G. Suggs (teleomorph = Setosphaeria turcica (Luttrell) K.J. Leonard & E.G. Suggs; syn. = Helminthosporium turcicum Pass.)] were used in a complete 8 x 8 diallel cross study. All genotypes were planted in single-row plots with 15 plants per row and three replicates in a completely randomized design at the Eastern Cereal and Oilseed Research Centre, Ottawa, Ontario. All plants were inoculated twice. At the 6-8 leaf-stage, the whorl was filled with a ground powder of infected leaves collected the previous year. At the 10-12 leafstage, three inoculated corn kernels were placed in each whorl. The inoculated kernels were prepared by boiling the kernels for 1 hr, placing them in 1000 ml flasks, sterilizing for 45 min., and adding 6-8 pieces of 1 x 1 cm² PDA inoculum into each flask followed by culturing at room temperature (24-28 C) for 14-21 days. After inoculation, plots were irrigated for 10-15 minutes daily if there was no rain.

Table 1. Pedigree and putative alleles affecting northern corn leaf blight reaction in eight inbred lines used in an 8 x 8 diallel study.

Inbred	Source	Pedigree	Putative alleles
73353	USA	FR23 x H111. FR23 = Mo17 x A653, H111 = Mayorbela x B37(2)	<i>Htm1</i> from Mayorbela (Robbins and Warren, Maydica 38:209-213, 1993)
73405	USA	B59 x Oh43Ht2, B59 = N32 x B14(2)	Hi2 from Oh43Ht2, Possibly Sht1 from B14 (Ceballos and Gracen,Plant Breeding 102:35-44, 1993)
CHN2	China	Chinese inbred x B73(2)	None
CHN1	China	Chinese inbred Yellow early 4	None
CM174	Canada	V3 x B14(2)	Possibly <i>Sht1</i> from B14 Ceballos and Gracen, Plant Breeding 102:35 - 44, 1993)
CO325	Canada	CO256 x CO264 (3). CO256 = BSSS, CO264 = CO109 x 190(2)	None
CO354	Canada	Asgrow RX777	None
CO387	Canada	CO272 x CO266. CO272 = BSTE x [(CO109 x CO106)CO109(2)](2), BSTE = Iowa Two Ear Synthetic CO266 = Pioneer 3990	None

Based on the pedigree of the inbred lines, presumed (or putative) resistance genes were used in this experiment. Four lesion types were recorded 15-20 days after silking: 1) resistant lesion (R) = stripe or narrow elliptical green-yellowish lesion; 2) moderately resistant lesion (MR) = narrow, long, elliptical gray lesion with green-yellowish border; 3) moderately susceptible lesion (MS) = long, elliptical, gray lesion with green-yellowish border; and 4) susceptible lesion (S) = long, elliptical, gray or tan lesion. Table 2 summarizes the lesion types and putative alleles affecting northern leaf blight expression recorded for each genotype in the 8 x 8 diallel cross. Several conclusions can be drawn from this data:

Table 2. Lesion types expressed for resistance to northern leaf blight in an 8 x 8 diallel cross in 1999 and 2000.

Parents ^a	73353	73405	CHN2	CHN1	CM174	CO325	CO354	CO387
73353	RD	R	R	R	MR/R	S/MS ^c	MR	R
73405	R	MR	MS	S	S	S	S	S
CHN2	R	MS	MS	S	S	S	S	S
CHN1	R	S	S	S	S	S	S	S
CM174	MR/R	S	S	S	S	S	S	S
CO325	S/MS	S	S	S	S	S	S	S
CO354	MR	S	S	S	S	S	S	S
CO387	н	S	S	S	5	S	5	S

^aDiagonal are lesion types expressed for eight inbred lines. Above diagonal are F1 hybrid crosses and below diagonal are their reciprocal crosses.

^bR (resistant lesion) = stripe or narrow elliptical green-yellowish lesion; MR (moderately resistant lesion) = narrow, long, elliptical gray lesion with green-yellowish border; MS (moderately susceptible lesion) = long, elliptical, gray or tan lesion.

^cLesion type expressed differently in 1999 and 2000 (types noted are for 1999/2000).

1. Resistant gene(s) appeared to exist in both 73353 and 73405. From the pedigrees (Table 1), the putative resistant gene of 73353 is *Htm1*, which came from Mayorbela (Robbins and Warren, Maydica 38: 209-213, 1993. Maize DB, www.agron.missouri.edu/cgi-bin/sybgw_mbd/mdb3/Locus/ 65746); and the putative resistant gene of 73405 is *Ht2*, which came from Oh43Ht2.

2. No reciprocal differences exist in the expression of these genes.

3. The presumed resistance gene, Htm1, of 73353, did not always express dominance. Its expression was affected by different genotypes and environmental factors. In this diallel cross, Htm1 expressed dominance in crosses of 73353 x 73405, 73353 x CHN2, 73353 x CHN1, 73353 x CO387 and their reciprocal crosses. Htm1 expressed partial dominance in 73353 x CM174 and its reciprocal cross in 1999 but complete dominance in 2000. 1999 was much warmer than 2000. Htm1 only expressed partial dominance in 73353 x CO354 and its reciprocal cross in both years. Htm1 did not express dominance in the cross 73353 x CO325 and its reciprocal; CO325 may have a gene(s) that inhibits the expression of Htm1. This inhibition also was affected by environmental factors, with complete inhibition in 1999, the warmer year, but only partial inhibition in 2000.

4. The expression of the putative resistance gene *Ht2* of 73405 was difficult to explain. Inbred 73405 itself expressed moderate resistance, but when crossed with all susceptible inbred lines (CHN2, CHN1, CM174, CO325, CO354, and CO387) all hybrids were susceptible. This raises several questions. (A) What race (Leonard et al., Plant Dis. 73:776-777, 1989) was used for the inoculations? If it were race 0 (*Ht1, Ht2, Ht3, HtN/*0) or race 1 (*Ht2, Ht3, HtN/Ht1*), why were all hybrids susceptible? If it was race 12 (*Ht3, HtN/Ht1, Ht2*), race 23 (*Ht1, HtN/Ht2, Ht3*), or race 23N (*Ht1/Ht2, Ht3, HtN*), why is 73405 moderately resistant? (B) Because 73405 came from B59 x Oh43*Ht2* and B59 includes a dominant inhibitor gene to *Ht2* called *Sht1* (Ceballos and Gracen, Plant Breeding 102: 35-44, 1989) (Maize DB, Variation *Sht1*, www.agron.missouri.edu/cgi-bin/sybgw_mdb/mdb3/Variation/ 99275), then if 73405 had genes like *Sht1Sht1/Ht2Ht2*, it should

be susceptible. If 73405 had no *Sht1* gene, then why were all of its F1 hybrids susceptible and not moderately resistant? All of these questions indicate that the relationships among *Ht2, Sht1,* and races are much more complicated than we expected.

5. Both 73405 and CM174 possibly have *Sht1*, which comes from B14 (Ceballos and Gracen, Plant Breeding 102:35-44, 1989. Maize DB, Variation *Sht1*, www.agron.missouri.edu/cgi-bin/sybgw_mdb/mdb3/Variation/99275). Crosses of 73353 to 73405 and CM174 showed resistance, indicating that *Htm1* in 73353 might not be affected by *Sht1*.

PASCANI, REPUBLIC OF MOLDOVA Maize and Sorghum Research Institute

On the timing of the *rbg* excisions from the *o2-hf* allele --Koterniak, VV

A characteristic feature of the o2-m(r), the mutable receptive allele at the maize opaque2 locus formed as a result of insertion of the receptor element rbg into this locus, is that the excisions of the rbg element from the o2-m(r) (which are possible in the presence of the regulatory element Bg) take place during mega- or microsporogenesis or during endosperm development, but not during embryo or sporophyte development (Montanelli et al., Molecular and General Genetics 197:209-218, 1984). Though this feature is generally confirmed in our stock of instability at the o2 locus controlled by the Bg-rbg system of transposable elements, the possibility of rbg excisions before meiosis was not excluded completely (Genetika 31: 950-954, 1995).

The phenotypic expression of the reversion of o2-m(r) alleles to the normal depends on its timing. Reversion of the mutable allele occurring after the first division of the primary endosperm nucleus is manifested by the apparition of variegated kernels which are characterized by alternation of opaque and vitreous sectors in the endosperm. If the reversion takes place before the first division of the primary endosperm nucleus, the phenotypically normal kernel (whole endosperm revertants, WER) appear. In addition, if such a reversion occurs during development of the gametes participating in embryo formation, the embryo revertants develop carrying the dominant allele O2.

Premeiotic reversion of the mutable o2-m(r) alleles should lead to a clustering distribution of WER on ears with the frequency of the embryo revertants in such clusters of 50% (in case of reversion event in one of the homologous chromosomes).

The distribution of WER kernels was analyzed on two selfed ears belonging to earlier obtained strains characterized by a high frequency of WER formation (HFWER strains) which were homozygous for the receptive allele o2-hf and the regulatory element Bg-hf. A high frequency of WER in indicated strains is conditioned by the presence of the o2-hf allele (Maydica 44:195-203, 1999).

The first ear analyzed contained 49 WER and 191 variegated kernels, the second one had 73 WER and 119 variegated. Analysis of ear maps of these ears showed that an overwhelming majority of WER (115 out of 122) were in clusters of contiguous kernels. This was quite unexpected for random WER formation and allowed the suggestion of premeiotic reversion of the mutable allele during ear development. To determine which of the WER were embryo rever-

tants, all WER from indicated ears were planted in field conditions and the resulting plants were selfed or crossed with homozygous recessive o2-m(r) tester lacking the regulatory element *Bg*. From 80 progenies of WER kernels tested from both ears only 15 were heterozygous for the *O2* allele. A low fraction of embryo revertants confirms the earlier conclusion that the major part of WER is formed during the period from the fusion of gametes to the first division of the primary endosperm nucleus (Maydica 44:195-203, 1999).

Most of the embryo revertants (13 out of 15) were found on the first ear. Five embryo revertants in this ear formed two clusters consisting of 2 and 3 contiguous revertant kernels. Since the frequency of gametes carrying reversions to the normal *O2* allele on this ear is not less than 0.027 (or 13/(240x2)) the probability of the clusters of 2 and 3 contiguous embryo revertants in this ear should be at least $7.3 \cdot 10^{-4}$ and $2.0 \cdot 10^{-5}$ respectively. Consequently this means that the formation of such clusters through the reversions at the postmeiotic stages is unlikely and indicates the possibility of premeiotic reversion events of the *o2hf* allele in at least one of the homologous chromosomes. Taking into account the small size of the clusters mentioned, these reversion events occurred at the late stages of ear premeiotic development.

Another phenomenon to explain is the clustering distribution of WER, most of which are non-embryo revertants. One of the possible explanations could be the joint action of two factors at the early stages of endosperm development: 1) diffusion of the additional quantities of transposase from the developing endosperm with its level high enough for *rbg* excision in adjacent developing kernels; 2) high ratio of kernels with above- and sub-threshold excision level of transposase in developing endosperm in HFWER strains. The second cause could be connected both with the possible lower threshold level needed for the *rbg* excision from the *o2-hf* allele and the higher transposase production by the *Bg-hf* element.

ST. PAUL, MINNESOTA University of Minnesota MADISON, WISCONSIN University of Wisconsin

Evidence for genetic variation for phenotypically invariant traits in teosinte

--Lauter, N, Doebley, J

Many of the plant and inflorescence morphologies in teosinte are discretely different from maize, and vary little or not at all within and among teosinte populations. For example, teosinte ears always have exactly two ranks of cupules that each bear only one spikelet, while maize ears have many ranks of cupules that bear paired spikelets. While the lack of phenotypic variation for such traits in teosinte may suggest an absence of underlying genetic variation, it could also be the case that teosinte harbors genetic variation for such traits that is not phenotypically expressed in the teosinte genetic background.

Among F1 hybrids derived by crossing teosintes to maize inbred lines, we have often observed a broad range of phenotypes for otherwise discrete traits, suggesting that genetic variation for these traits may exist in teosinte. If this variation is genetic, then F1 hybrids of different teosintes with the same maize inbred should have distinct phenotypes. If this variation is strictly environmental in origin, then all maize-teosinte F1 hybrids with the same inbred should be equivalent. In order to assess to what extent phenotypic variation among maize-teosinte hybrids depends on the teosinte parent (i.e. is genetic), we examined plant and inflorescence morphologies in 12 F1 families derived from crosses between maize inbred W22 and 12 teosinte plants, each of which came from a different natural population in Mexico. So that we could also compare the contributions of the two subspecies of Mexican annual teosinte, we used five *Zea mays* ssp. *mexicana* and seven *Zea mays* ssp. *parviglumis* plants as teosinte parents (Table 1).

Table 1. Accession data for the teosinte parents of the F1 families

Family #	Collector and number	Location
1	Benz 967	El Rodeo, Mexico
2	Beadle and Kato site 1	Mazatlan, Guerrero
3	Beadle and Kato site 2	Chilpancingo, Guerrero
4	Beadle and Kato site 4	Palo Blanco, Guerrero
5	Beadle and Kato site 6	Valle de Bravo, Guerrero
6	Beadle (no number)	El Salado, Guerrero
7	Kato site 4	Palo Blanco, Guerrero
8	Iltis et al. 28622	Chalco, Mexico
9	Iltis et al. 28620	Texcoco, Mexico
10	Puga 11066	Degollado, Jalisco, Mexico
11	Wilkes 45461	Panindicuaro, Michoachan
12	Beadle (no number)	Nobogame, Chihuahua

The family numbers cross-reference the accession data with the phenotype data in Table 2. The location of the populations where the teosintes came from are listed according to the nearest town/city, state.

Five traits were measured two to three weeks post-anthesis on the uppermost primary lateral branch and on the inflorescence at its tip. These traits were chosen because they define the key morphological differences between maize and teosinte (Doebley and Stec, Genetics 134: 559-570, 1993). Because teosinte has a long lateral branch and maize a short one, we measured the lateral branch length and divided this by the number of internodes in the branch to determine the lateral branch internode length (LBIL). The inflorescence at the tip of the primary lateral branch is a branched male inflorescence (tassel) in teosinte and an unbranched female inflorescence (ear) in maize. To record variation in the sex of this inflorescence, we counted the number of inflorescence internodes with male spikelets and the number with female spikelets, and computed the percentage of the total that were male or staminate (STAM). To record variation in inflorescence branching, we counted the number of branches on the primary lateral inflorescence (LIBN). The ears of teosinte bear single sessile spikelets on each internode, while those of maize have paired spikelets on each internode, one sessile and one pedicellate. To record variation in this trait, the percentage of female internodes lacking the pedicellate spikelet was computed and termed PEDS. Finally, teosinte bears its spikelets in two ranks on opposite sides of the ears, while maize has its spikelet pairs in four or more ranks and thus around the entire circumference of the ear. To record variation in this trait, the number of ranks of spikelets (or spikelet pairs) was counted for the primary lateral inflorescence. Since RANK can vary over the length of the inflorescence in teosintemaize hybrids, it was calculated as a weighted sum.

There was considerable phenotypic variation among the maizeteosinte F1 families for all five traits (Table 2). Family means ranged from 13.5% to 89% for PEDS, from 20% to 69% for STAM and from 2.5 cm to 5.7 cm for LBIL. It is possible that this wide phenotypic variation is exclusively environmental in origin; however, we think this unlikely, since all twelve families were grown together in the same nursery and the data suggest that there are significant differences among families (Table 2). Since the maize parent of the F1 families was an inbred and therefore isogenic, it could not have been a source of genetic variation for differences among the F1 families. Thus, we suspect that genetic variation affecting these traits existed among the 12 teosinte plants used as parents, even though they each exhibited the same fixed-inteosinte phenotypes for them.

Table 2. Average phenotypes of inbred maize by teosinte F1 families

Ssp	Family #	n	LBIL	LIBN	PEDS	RANK	STAM
р	1	4	4.2 ± 1.1	1.0 ± 0.6	18.7 ± 6.2	4.0 ± 0.0	27.2 ± 14.6
p	2	4	4.4 ± 0.8	0.5 ± 0.5	78.1 ± 18.5	3.3 ± 0.4	55.0 ± 16.7
p	3	5	2.5 ± 0.3	0.0 ± 0.0	89.1 ± 6.0	3.6 ± 0.2	19.6 ± 5.0
p	4	4	5.5 ± 1.2	0.8 ± 0.5	56.4 ± 10.0	2.7 ± 0.4	69.3 ± 12.2
p	5	6	3.1 ± 0.5	0.0 ± 0.0	45.5 ± 13.8	2.6 ± 0.3	55.6 ± 6.4
p	6	6	3.4 ± 0.9	0.0 ± 0.0	46.0 ± 11.9	3.4 ± 0.3	58.8 ± 7.0
p	7	6	5.7 ± 1.3	0.0 ± 0.0	83.0 ± 4.9	3.2 ± 0.3	66.6 ± 7.6
	Average		4.1 ± 0.5	0.3 ± 0.2	60.2 ± 5.3	3.3 ± 0.1	51.2 ± 4.5
	-						
т	8	5	3.6 ± 1.0	1.0 ± 0.8	13.5 ± 6.2	3.1 ± 0.3	35.6 ± 9.6
т	9	7	5.3 ± 1.0	0.4 ± 0.3	49.5 ± 9.2	3.5 ± 0.3	50.3 ± 6.5
т	10	8	5.2 ± 1.4	1.1 ± 0.6	26.9 ± 10.7	2.4 ± 0.2	62.0 ± 11.0
т	11	4	5.4 ± 1.5	0.0 ± 0.0	57.4 ± 20.7	4.0 ± 0.0	34.0 ± 11.2
т	12	7	5.3 ± 1.4	0.3 ± 0.3	32.3 ± 12.1	3.7 ± 0.3	38.7 ± 11.4
	Average		5.0 ± 0.5	0.6 ± 0.2	35.0 ± 5.7	3.3 ± 0.1	46.2 ± 4.8

The subspecies of the teosinte parent is listed as *p* for ssp. *parviglumis* and *m* for ssp. *mexicana*. The family number cross-references the phenotype data with the accession data in Table 1. n is the number of plants per family. The family averages and their standard errors are listed in trait units: cm, branches, %, cupule columns, %, respectively.

We compared the group of 35 F1 plants that had a ssp. parviglumis parent to the group of 31 plants which had a ssp. mexicana parent in order to investigate whether or not one subspecies consistently harbors alleles that make the plants more maize-like (Table 2). For all traits except PEDS, t-tests indicated that the contributions made by the two classes of parents were statistically equivalent. For PEDS, the F1 plants that had a ssp. mexicana parent had a lower percentage of female cupules that lacked the pedicillate spikelet (P=0.002). This difference could be attributable to introgression of maize germplasm, since ssp. mexicana plants grow largely as a weed in Mexican maize fields. It could also be the case that these differences simply represent natural differences in allele frequencies that exist between the two subspecies. In either case, our data suggest that teosinte populations contain hidden genetic variation for morphological traits for which they exhibit no phenotypic variation.

> ST. PAUL, MINNESOTA University of Minnesota MADISON, WISCONSIN University of Wisconsin WOODWARD, OKLAHOMA Southern Plains Range Research Station, USDA-ARS

Do transposon sequences in genic regions efficiently participate in recombination?

--Okagaki, RJ, Sullivan, TD, Kamps, TL

Available data suggest that recombination in maize preferentially occurs in genes and other low copy sequences (Xu et al., Plant Cell 7:2151, 1995; Dooner and Martinez-Ferez, Plant Cell 9:1633, 1997). Available evidence in maize also suggests that genes and other low copy sequences are flanked by blocks of retrotransposons. Within euchromatic DNA, retrotransposons either flank individual genes or small groups of genes (SanMiguel et al., Science 274:765, 1996; Fu et al., PNAS 98:8903, 2001). These results suggest that retrotransposon sequences are refractory to recombination. DNA transposons are another class of repetitive elements, and unlike retrotransposons, DNA transposons are often located in genic regions. Here we present some preliminary results from experiments designed to detect recombination in DNA transposons. The specific question we are asking is whether recombination can occur within a dSpm element located inside the bz1 gene. Recombination between dSpm elements could provide a mechanism for the duplication or deletion of genes. Weather and nicking problems prevented us from making the ideal crosses, but the initial results may be of interest.

Alleles used in this work were derived from bz1-m13 (Fig. 1). The bz1-m13 allele contains a 2.2 kb defective-Spm (dSpm) element inserted 38 bp downstream of the bz1 intron. In the absence of an autonomous Spm element, seed carrying the bz1-m13 allele have a purple aleurone. The dSpm element is spliced from the transcript using a cryptic 3' splice acceptor site in the dSpm. A partially functional enzyme is made which gives the purple aleurone (Kim, HY et al., PNAS 84:5863, 1987). In the presence of an autonomous Spm element, bz1-m13 is very mutable.

Derivative bz1-m13 alleles obtained in the presence of an autonomous *Spm* element are easily identified by their phenotype, and a number of derivatives have been isolated and characterized. bz1-m13:CS6 (Schiefelbein, JW et al., in Plant Transposable Elements pp 261, 1988) and bz1-m13:CS3 (Okagaki, RJ et al., Plant Cell 4:1453, 1992) are deletion derivatives of bz1-m13. bz1-m13:CS64 (Okagaki, RJ et al., Plant Cell 4:1453, 1992) has a four basepair deletion that disrupts the cryptic 3' splice acceptor site; this allele gives a bronze colored aleurone. In bz1'-9, the dSpm insertion excised leaving behind a four basepair footprint (Okagaki, RJ et al., MGNL 64:83, 1990).

bz1-m14 was derived from bz1-m13 and has two dSpm insertions. Its structure is consistent with a replicative transposition of the dSpm element in bz1-m13 back into the bz1 locus (Sullivan, TD unpublished data). The upstream element is unique to bz1-m14, and the downstream element is in common with bz1-m13. bz1-m14DII has lost the downstream dSpm element; excision either restored the non-mutant sequences or the transposable element footprint restored the correct reading frame (Sullivan, TD unpublished data).

The first experiment looked for recombination in two heteroallelic combinations where the mutations were separated either by approximately 500 bp or by 2.7 kb; the difference was due to the presence of the *dSpm* insertion (Fig. 2). A recombination event between the *dSpm* insertion in *bz1-m14DII* and the excision footprint in *bz1'-9* would produce a functional *Bz1* allele and give a purple aleurone. Similarly, a recombination event occuring between the upstream *dSpm* insertion in *bz1-m14* and the deletion in *bz1m13:CS64* would produce a functional *bz1-m13* allele and give a purple aleurone. In the *bz1-m14DII/bz1'-9* combination this recombination event would occur in a region approximately 500 bp in length while the interval in the *bz1-m14/bz1-m13:CS64* combination was approximately 2.7 kb long. If the repetitive *dSpm* sequence does not participate in recombination the reversion fre-

Figure 1. Alleles used in the study and their phenotypes. Asterisks indicate the locations of mutations.

Figure 2. Heteroallelic combinations and crossover products. Genotypes are shown at left. Alleles are shown in the middle; grey lines represent crossovers. Recombinant products are shown on the right.

quency should be similar. But if the *dSpm* sequence participates in recombination revertants should be five times more frequent from the *bz1-m14/bz1-m13:CS64* combination assuming that reversion frequency is proportional to the physical distance between mutations.

Problems with nicking prevented us from making crosses with the *bz1* tester. Plants were selfed instead. Twelve purple revertant kernels were found in 65,700 selfed seed from *bz1m14DII/bz1'-9* plants. Six purple revertant seeds were found in 58,500 selfed seeds from *bz1-m14/bz1-m13:CS64* plants. This result suggests that a *dSpm* element within a gene does not participate in recombination and may even inhibit recombination in adjacent sequences. The two *dSpm* sequences in *bz1-m14* may pair; this could inhibit the recovery of revertants. We hope to isolate new derivative alleles from *bz1-m14* and *bz1-m14DII* that would lack the upstream insertion.

The second experiment looked for recombination within the dSpm sequence to generate an intact bz1-m13 allele that could be identified by its mutable phenotype. The deletion derivative bz1-m13:CS6 has a 2 bp deletion at the 5' end of the element as it is oriented in bz1. bz1-m13:CS3 has a 439 bp deletion at the 3' end

of the element. A crossover within the 1.8 kb of overlapping dSpm sequence would produce the bz1-m13 structure. In the presence of the autonomous element Spm, bz1-m13:CS3 and bz1-m13:CS6 give small revertant sectors. bz1-m13+Spm gives early frequent revertant sectors. bz1-m13:CS3/bz1-m13:CS6 plants were crossed with a *sh bz1* tester homozygous for the autonomous *Spm* element, and ears were examined for kernels with large revertant sectors. Weather and worms hit this field hard, and this experiment will be repeated.

SHANDONG, CHINA Agricultural University of Shandong Academy of Agricultural Sciences of Laizhou

Identification and characterization of three mutational NILs in maize

--Wang, ZL, Zhang, Y

In developing countries that have limited adapted maize genetic resources for building up good breeding materials, induced mutations may be useful for variability. But, unfortunately theory indicates that chances are low that any new mutant (including adaptively beneficial mutants) will become established in the population and inbred lines in which they occur. On the other hand, practice indicates that mutants for so-called quantitatively inherited traits cause differences of degree (e.g. in yield, plant height, leaf number and seed size etc.) rather than kind. For this we have developed three pairs of near isogenic lines (NILs) derived from inbred female lines 478 (normal-seeded and normal-leaf - 6 leaves above the top ear) and the inbred male is line 340, of the superior performance of hybrid, Yedan 13, which has a large top growing area and a long life span among Chinese major maize hybrids. The mutants were named 488-1 (big-seeded and 6 leaves above the top ear) and 488-2 (big-seeded and 5 leaves above the top ear).

Three crosses were made among 4 inbred lines. The crosses were 478340, 488-1340 and 488-2340. The crosses and 4 in

Figure 1. Description of the selection processes of the mutant inbred resulting from spontaneous mutations. R.16=original inbred line, 6 leaves; BS.16= big size seed inbred line, 6 leaves; BS.15=big size seed, 5 leaves; S.M=spontaneous mutations.

bred lines were planted 2 May 2000 in Shandong, China and 10 May in Columbia, Missouri, USA and harvested on 6 Sept, and 10 Sept respectively. There were three replications in 2000 and two replications in 2001. The three NILs were formed in 1999 (Figure 1).

Means, two standard deviations of the mean and t-test were calculated for some traits measured (Table 1 and Table 2).

Table 1. Means of NIL traits for two years in China and the U.S.A.

Varieties	Plant Height	Leaf Number	Leaf Length	Leaf Width	Culm. Circum.	100 kernel weight, g	Grainweight per ear, g
478	1802.1	60.8	811.4	12.01.6	7.40.7	24.21.0	98.67.7
488-1	1892.4	6.22.0	801.8	12.32.4	7.51.1	34.11.3	121.88.1
488-2	1822.0	5.11.9	783.2	11.42.8	7.41.5	32.92.2	120.19.3
340	1961.7	5.00.9	791.7	11.51.2	8.50.9	33.0.1.2	124.36.5
478x340	2761.8	6.21.6	93.1.9	11.52.0	8.21.4	34.24.6	197.28.0
488-1x340	2913.1	6.01.9	964.6	12.23.2	8.31.7	36.45.0	242.59.0
488-2x340	2863.4	6.02.1	924.1	12.42.9	8.12.0	36.15.9	2309.8

Table 2. t-test of NIL traits for two years in China and the U.S.A (**p<0.01 *p<0.05, NS = no significant).

Parent	478	488-1	488-2		Hybrid	478x340	478-1x340	478-2x340	
				t-tes	t for plant heigh	t			
478	1	*	NS		478x340	1	**	*	
488-1	*	1	NS		488-1x340	**	1	NS	
488-2	NS	NS	1		488-2x340	*	NS	1	
			t-te	est	for leaf len	gth			
478	1	NS	NS		478x340	1	NS	NS	
488-1	NS	1	NS		488-1x340	NS	1	*	
488-2	NS	NS	1		488-2x340	NS	*	1	
t-test for leaf width									
478	1	NS	NS		478x340	1	NS	NS	
488-1	NS	1	NS		488-1x340	NS	1	NS	
488-2	NS	NS	1		488-2x340	NS	NS	1	
			t-test	for	100 kernel	weight			
478	1	**	**		478x340	1	**	**	
488-1	**	1	NS		488-1x340	**	1	NS	
488-2	**	NS	1		488-2x340	**	NS	1	
			t-test fo	or g	rain weigh	t per ear			
478	1	*	*		478x340	1	**	**	
488-1	*	1	NS		488-1x340	**	1	*	
488-2	*	NS	1		488-2x340	**	*	1	

There were only significant differences for plant height between the parent NILs, 478 and 488-1, and their hybrids for 5 replications at two locations from 2000 to 2001. But there were no significant difference for leaf length and leaf width, except for hybrids 478x340 and 488-1x340 for leaf length (Table 2).

The t-test for grain weight per ear and 100 kernel weight shows that the two mutant NILs were significantly different from the original inbred line of 478, but there is no significant difference between the two mutant NILs. However, when those NILs were crossed with paternal parent line 340, 100 kernel weight and grain weight per ear of the hybrids derived from the original inbred line of 478 were significantly different from those derived from the two mutant NILs at the P<0.01 level. For the hybrids derived from the two mutants NILs the grain weight per ear showed a significant difference at the P<0.05 level, but 100 kernel weight does not shown any difference (Table 2).

For maize genetics, mutations are of interest in two different ways. They provide us with new starting material (or building blocks) for the production of new hybrid cultivators and they give us a tool for identifying and cloning new genes. A mapping population has been established for studying the nature of genes and their way of controlling heterosis and biochemical seed size and leaf number.

This material was based upon work supported by a grant from the Shandong China foundation for basic research. Research space at University of Missouri provided by James A. Birchler. We thank James A. Birchler for his critical and grammatical review of this manuscript.

> SIMNIC-CRAIOVA, ROMANIA Agricultural Research Station

Morpho-physiological aspects of seedlings in a local maize population under abiotic stress conditions

--Urechean, V

Local populations of maize represent a source of genetic variability for reducing genetic vulnerability to the biotic and abiotic stress factors.

P21 is a local population collected from the Tia Mare-Corabia area which has been maintained in Agricultural Research Station Simnic's collection of maize populations for twenty years by multiplication in plots isolated in space. Open pollination assured the genetic variability; both yellow grain and red-purple grain plants were identified in this population.

P21 with yellow grain is the object of this study .The grains were put under abiotic stress conditions in order to germinate:

Five grains/Petri dish x 5 repetitions, covered with 40g dry and well chapped soil and then watered with the following solutions: MT(control)-watered with water, 10 mM NaCl, 100 mM Na Cl, 10 mM PRO (proline), 100 mM PRO, 10 μ M ABA (abscisic acid), 100 μ M ABA, 100 mM MAN(mannitol), 500 mM MAN, 2 ml/Petri dish, every 48 hours, for 14 days, in laboratory conditions (temperature varied between 15 C and 18 C). When temperature attained 22 - 23 C, the watering rate was 10 ml solution/Petri dish (every 48 hours) until transfer of the seedlings into vegetation dishes.

The timing of the coleoptile's appearance was determined for each treatment variant (Table 1).

Treatment									
Number of days from the experiment's beginning	5	6	7	8	9	12	19	% coleoptile`s appearance	Difference from MT (control) %
Mt (control)	1	4	5	10	16	18		72	100
10 mM Na Cl		2	4	6	11	18	19	76	105
100 mM Na Cl		2	2	3	5	17	16	68	94
10 mM PRO		5	6	13	16	20	21	84	116
100 mM PRO	1	1	1	2	5	13	11	52	72
10 µM ABA		2	6	11	13			52	72
100 µM ABA		1	7	13	15			60	83
100 mM MAN		3	3	8	9	12		48	66
500 mM MAN				1	5	14		56	77

Table 1. Timing of coleoptile appearance for a local maize population (P21-yellow grain) under varied stress conditions.

At the 5-6 leaf stage the stress becomes visible, the percentage of wilted leaves varying between 3% (MT) and 31% (100 μ MABA) (Table 2). At this time, one week, the percentage of wilted leaves increases to 73% in 500 mMMAN treatment variant.

Table 2. Plant height and leaf wilting for stressed seedlings of maize.

Treatment	No. of leaves	No. of wilted leaves I	% dry wilted leaves I	Plant's height cm I	Number of wilted leaves II	Wilted leaves II %	Plant's height am II	Difference of height (II-I) cm
MT(control)	6.0	0.2	3.0	49.3	1.6	26	53.2	3.9
10 mMNaCl	6.5	1.6	25	57.0	2.7	41	63.1	6.1
100mMNaCl	5.5	1.5	27	37.8	2.6	47	39.8	2.0
10mM PRO	6.0	1.4	23	55.2	2.5	41	61.2	6.0
100µM ABA	4.5	1.4	31	37.8	1.9	42	38.1	0.3
100mM MAN	6.5	1.1	17	52.6	2.8	43	65.0	12.4
500mM MAN	4.5	1.3	28	49.1	3.3	73	59.6	10.5

Plant height appears to be stimulated by high mannitol.

In the 5-6 leaf stage a red purple stalk coloration was obsreved on the first basic internodes in response to stress factors. We used a grading scale of the stalk coloration from zero to 2 where zero=the lack of purple coloration and 2=full coloration.

Mannitol determined the most intensely purple coloration of the stalk, with the color intensity increasing with the mannitol concentration. Seedling survival was highest in the 100 mMMAN (92days) and 10 mMPRO (89days) treatment variants.

The plants selected represent sources of valuable genes for the programs to improve maize response to stress factors.

Interspecific crossing Zea mays L. x Mamillaria spp.-content of amino acids

--Urechean, V

The improvement of intergeneric and interspecific crossbreeding methods (most of the time by using the phytohormones) permitted the crossing of species more and more distant from a taxonomic point of view.

Starting from the idea that the *Cactaceae* family is very well adapted to dry areas, wanting to find out whether there is any gametic compatibility and hoping to obtain a transfer of genetic material to the *Zea mays L*. species, we realized a cross-breeding: *Zea mays L*. *x Mamillaria spp*.

As a pollen parent we used *Mamillaria* species (cultivated in our country only in green houses and vegetation dishes) which emits a sufficient quantity of easily collectable pollen, and the maternal parent was an inbred maize line very sensitive to drought and heat (Lc 460).

Pollination was made under a bag and a typical maize ear well covered with kernels resulted. The kernels were sowed in the field the next year and, surprisingly, the descendant F1 has the phenotypic aspect (morpho-anatomical characters) of the *Zea mays L*. species, presenting even the heterozygotic vigor specific for the maize hybrids cultivated in that area.

Since the two species were distant from a taxonomic point of view, the elimination of one species genome (in this case genome of *Mamillaria spp.*) was expected, but the hybrid vigor put questions about the homozygotic/heterozygotic aspect of the F1 descendant.

The lack of tests for the analysis of the *Mamillaria* chromosomes didn't permit us to ascertain whether the whole genome of the *Mamillaria* species had been eliminated or a transfer of genetic material had taken place between the two species.

Our research was based on the analysis of the grain's amino acids for the maternal line Lc 460, belonging to *Zea mays L.* species, and also of the hybrid descendant *Zea mays* (Lc 460) x *Mamillaria spp.*, comparing with the two simple maize hybrids obtained and cultivated in the same medium conditions (Table 1).

In the interspecific hybrid combination Zea mays L. x Mamillaria spp., the content of threonine, serine, and glutamic acid, is a little bit higher than that of the maternal inbred line (Lc 460), being close to the values of the two simple maize hybrids HSS 409 and HSS 49.

The hybrid has the highest content of glycine and a very high content of alanine in comparison to the other genotypes studied. It has, also, the highest content of methionine and leucine which is very high in comparison with the maternal form (Lc 460).

Table 1. The content of amino acid from the kernel at Zea mays L.x Mamillaria spp. in comparison with the maternal parent and two simple maize hybrids F1.

Amino acid	Lc 460	Lc460 x M. spp.	HSS409	HSS49
Aspartic acid	0.788	0.762	0.843	0.707
Threonine	0.437	0.456	0.489	0.461
Serine	0.574	0.650	0.601	0.590
Glutamic acid	1.543	1.640	1.695	1.701
Proline	0.693	0.606	0.789	0.738
Cystine	0.345	0.289	0.472	0.384
Glycine	0.401	0.491	0.429	0.390
Alanine	0868	1.054	0.826	0.750
Valine	0.625	0.503	0.550	0.522
Methionine	0.119	0.341	0.187	0.182
Isoleucine	0.479	0.403	0.676	0.559
Leucine	1.121	1.451	1.177	1.169
Tyrosine	0.836	0.652	0.657	0.750
Phenilalanine	0.809	0.847	0.777	0.851
Histidine	0.462	0.509	0.693	0.688
Lysine	0.591	0.408	0.572	0.561
Arginine	0.980	-	-	-
TAA%	11.671	10.062	11.407	11.003
TAAE%	5.625	4.918	5.121	4.993
TAAE/TAA%	48.17	48.87	44.89	45.40
LYS/TAA%	5.06	4.05	5.01	5.09
GLU/TAA%	13.22	16.30	14.86	15.46
ASP/TAA%	6.75	7.57	7.39	6.42
PRO/TAA%	5.93	6.02	6.91	6.70

TAA-total amino acids; TAAE-total essential amino acids; LYS- lysine; GLU- glutamic acid; ASP-aspartic acid; PRO-proline.

The content of tyrosine diminishes considerably in comparison with the maternal form, but stays close to the others hybrids value. The lysine diminishes, having the lowest value related with the total of amino acids (4.05%).

The proline, cystine, valine, and isoleucine have also the lowest values at the hybrid combination *Zea mays x Mamillaria spp.* in comparison with the other genotypes studied, but the quantity of proline related to the total of amino acids (6.02%) is higher than the one obtained at the maternal form (5.93%).

Although the total content of amino acids at the hybrid combination Zea mays L. x Mamillaria spp. is lower (10.062mg/100g dray matter) there is a favorable relationship between the total content of essential amino acids and the total content of amino acids (48.87%) that is superior to the two simple maize hybrids (HSS 409 and HSS 49).

The glutamic and aspartic acid, as precursors of the other amino acids, also have the highest values.

All these differences between the hybrid combination *Zea* mays *L*. x *Mamillaria spp.* and the maternal form (the inbred maize line Lc 460) led us to believe that between the two parent plants belonging to two distant species, from a taxonomic point of view, but also geographically isolated, a transfer of genetic material took place.

Subsequent studies, especially an analysis of the chromosomal maps, will be able to show exactly whether these kinds of crossings are recommended for the improvement of maize programs or not.

Local maize populations: sources of genetic variability for maize improvement programs

--Urechean, V, Naidin, C

By cultivating only some varieties and species of plants obtained by improvement methods year after year, a great part of genetic diversity has disappeared. With their reserve of ancestral genes, maize local populations are real sources of genetic diversity and variability for maize improvement programs.

A population can be improved in order to obtain specific characteristics: precocity, disease resistance, strong stalk (mechanical resistance) or a large grain's content of proteins with implications in the production's improvement on the whole that can be used for the infusion with genes of adaptability to particular environment conditions.

In this research we studied five maize local populations (P21; P28; P68; P71; P106) which have been maintained in the genetic stock collection for twenty years, by propagation in isolated lots. Open-pollination assured the transmission of genetic variability of these populations along different generations.

A proof of this genetic diversity was the identification, as part of the same population, of plants that differ in grain color. In this way we found: P21 - yellow grain; P21 - purple grain; P28 yellow-lemon grain; P28 - white grain; P68 - yellow-orange grain; P71 - white grain; P71 - yellow-orange grain; P106 - white grain; P106 - yellow-lemon grain; P106-yellow-orange grain. For each of these ten genotypes we analyzed the content of amino acids from the grain (Table 1).

The coefficient of variation (c.v. %) for the ten genotypes analyzed shows a middling variation for tyrosine(15.80%); arginine (15.51%) phenylalanine (12.70%) and glutamic acid (11.38%), the other amino acids having a c.v.<10%. At the level of each population there are differences concerning the amino acid content depending on the grain's color. In this way, at P21, the content of arginine is much higher than that of the genotype with purple-colored grain, which probably assures the favorable ratio between the total essential amino acids and the total amino acids (19.38%). The yellow grain genotype (P21 with yellow grain) has a higher content of aspartic acid/TAA% (7.17%) and tyrosine+phenylalanine (TYR+PHE/TAA=13.11 %).

The white grain genotype (P28 white grain) has a higher content of lysine related with the total of amino acids (4.31%), as well as the tyrosine+phenylalanine (11.43%), the rest of the amino acids having close values. P71 with white grain and yellow-orange grain shows the greatest difference at the level of the tyrosine, the yellow-orange grain genotype having 1,088mg/100g dry matter and the white grain genotype 0,641mg/100g dry matter.

The total content of amino acids and essential amino acids is also higher in P71 with yellow-orange grain. The content of lysine is higher for the P21 genotype with white grain, but TYR+PHE/TAA=16.26% for the yellow-orange grain genotype is the highest of all genotypes studied.

The P106 population with P106-white grain; P106-yellowlemon grain and P106 yellow-orange grain genotypes have the lowest total content of amino acids (TAAmg/100g dray matter.) at the white grain variant (11.449mg/100g dry matter.) but the best TAAE/TAA=49.200%. P106 with yellow-lemon grain has the highest content of glutamic acid (1.612 mg), leucine (1.166 mg) and total essential amino acids TAAE mg/100g dry matter (5.905). P106 with yellow-orange grain genotype has a higher content of proline and tyrosine but the lowest arginine level (0.823mg). Also the total content of essential amino acids is the lowest (46.65%).

All these variations of the content of amino acids reflect the genetic variability of the maize local populations on the whole and the genetic diversity existent at each population's level. Because the quality of the grain is one of our maize improvement programs priorities we tried to establish if there was any correlation be-

Table 1. The variation in content of amino acids of the grains of loca	al maize populations mg./100g.dry matter).
--	--

	POPULATION-Intensity of the grain color											
Amino acid	P21 y-	P21 p	P28 y-l	P28 w	P68 y-o	P71w	P71 y-o	P106 w	P106y-l	P106y-o	X	C.V.
	1.2	1.5	1.1	1	1.3	1	1.3	1	1.1	1.3		%
Aspartic acid	0.825	0.788	0.801	0.916	0.634	0.824	0.850	0.794	0.866	0.840	0.814	7.00
threonine	0.417	0.427	0.472	0.462	0.331	0.426	0.470	0.438	0.453	0.472	0.437	4.03
serine	0.547	0.576	0.583	0.631	0.428	0.538	0.527	0.559	0.583	0.610	0.558	5.29
Glutanic acid	1.545	1.533	1.622	1.630	1.236	1.444	1.589	1.475	1.612	1.592	1.528	11.38
proline	0.735	0.624	0.842	0.732	0.722	0.653	0.709	0.704	0.720	0.858	0.730	6.88
cystine	0.372	0.344	0.395	0.328	0.166	0.376	0.364	0.387	0.329	0.456	0.352	7.13
glycine	0.399	0.392	0.395	0.448	0.330	0.411	0.481	0.399	0.425	0.405	0.409	3.73
alanine	0.902	0.963	0.961	0.841	0.611	0.904	0.916	0.896	0.852	0.822	0.867	9.61
valine	0.635	0.613	0.583	0.685	0.535	0.602	0.742	0.574	0.617	0.591	0.618	5.59
methionine	0.140	0.121	0.153	0.129	0.076	0.118	0.133	0.167	0.095	0.098	0.123	2.63
isoleucine	0.564	0.580	0.421	0.631	0.353	0.388	0.470	0.400	0.524	0.467	0.480	8.75
leucine	1.068	1.110	1.147	1.172	0.930	1.056	1.263	0.998	1.166	1.086	1.100	8.99
tyrosine	0.727	0.540	0.577	0.612	0.550	0.641	1.088	0.601	0.747	0.814	0.690	15.80
phenylalanine	0.782	0.641	0.606	0.750	0.548	0.750	0.967	0.827	0.917	0.837	0.763	12.70
histidine	0.623	0.445	0.483	0.631	0.623	0.574	0.629	0.624	0.549	0.618	0.580	6.38
lysine	0.519	0.562	0.383	0.513	0.462	0.733	0.638	0.605	0.568	0.602	0.559	9.20
arginine	0.707	1.122	0.913	0.800	0.561	0.797	0.800	1.001	1.016	0.823	0.854	15.51
TAA %	11.507	11.381	11.337	11.911	9.096	11.235	12.636	11.449	12.039	11.991	11.458	
TAAE %	5.455	5.621	5.161	5.773	4.419	5.444	6.112	5.634	5.905	5.594	5.512]
TAAE/TAA%	47.40	49.38	45.52	48.46	48.58	48.45	48.36	49.2	49.04	46.65	48.10]
GLU/TAA,%	13.43	13.47	14.31	13.68	13.59	12.85	12.58	12.88	13.39	13.28	13.33]
LYS/TAA,%	4.51	4.94	3.38	4.31	5.08	6.52	5.05	5.28	4.72	5.02	4.87]
ASP/TAA,%	7.17	6.92	7.07	7.69	6.97	7.33	6.73	6.94	7.19	7.01	7.10]
TYR+PHE/TAA	13.11	10.38	10.43	11.43	12.07	12.38	16.26	12.47	13.82	13.77	12.67]

TAA -total amino acids; TAAE - total essential amino acids; GLU - glutamic acid; LYS - lysine; ASP - aspartic acid; TRY+PHE-tyrosine+phenylalanine

tween grain's content of amino acids and the color of the grain. We used a grade scale of the grain color's intensity:1=white grain; 1.1=yellow-lemon grain; 1.2=yellow grain; 1.3 yellow-orange grain; 1.5=purple-coloured grain. For the genotypes studied we calculated: total content of amino acids (TAAmg/100g dry matter) and color of the grain, where r = -0.128; total content of essential amino acids (TAAE mg/100g dry matter) and color of the grain, where r = -0.128; total content of essential amino acids (TAAE mg/100g dry matter) and color of the grain, where r = -0.110. The genotypes were grouped by intensity of grain colors: genotypes with light colored grain (1 and 1.1 grade) and genotypes with dark colored grain (1.3 and 1.5 grade.

We analyzed the correlation between every essential amino acid and the light color of the grain. We found negative correlations between the level of essential amino acids and the light color of the grain (Table 2).

Table 2. Correlation between the grain's content of essential amino acids and the light color of the maize grain.

Amino acid	Color grain	coefficient of correlation
threonine	1 and 1.1	0.666
valine	1 and 1.1	- 0.375
methionine	1 and 1.1	-0.666
isoleucine	1 and 1.1	-0.002
leucine	1 and 1.1	0.562
phenylalanine	1 and 1.1	-0.125
histidine	1 and 1.1	-1.0
lysine	1 and 1.1	-0.666
arginine	1 and 1.1	0.50

SLIPPERY ROCK, PENNSYLVANIA Slippery Rock University

Maize crosses to illustrate epistatic ratios of kernel colors --Shotwell, MA

Epistasis, the nonreciprocal interaction between nonallelic genes, is an important concept in genetics, but one that students often struggle to master. Understanding of this concept is greatly aided by laboratory exercises in which examples of epistasis are examined. Kernel color in maize is an ideal phenotype for illustrating epistasis in the teaching lab. Not only are there a variety of independently assorting genes that influence pigment accumulation, but the large number of kernels on each ear allows for the calculation of statistically meaningful phenotype ratios.

One lab in the genetics course I teach is devoted to epistasis, with the exercise centering on kernel color in maize. Over the years, I grew dissatisfied with the quality of the ears I acquired from commercial sources. The colors were often indistinct, and in some cases the phenotype ratios were not as advertised. I therefore decided to do my own crosses to produce ears that illustrated four epistatic interactions: (1) dominant, (2) recessive, (3) duplicate recessive, and (4) dominant and recessive.

In planning these crosses I was assisted by Phil Stinard of the Maize Genetics Cooperation Stock Center. Of the 12 crosses that I completed, only four will be described here. These involved the parental lines listed in Table 1, all of which were acquired from the Maize Genetics Cooperation Stock Center.

Table 1. Parental lines used in crosses to illustrate epistasis.

Stock No.	Genotype	Phenotype
ACRY	A1 A2 C1 R1 Pr1 Y1	purple
506B	A1 A2 C1 R1 pr1 y1	red
507A(Y1)	A1 a2 C1 R1 Pr1 Y1	yellow
507A(y1)	A1 a2 C1 R1 pr1 y1	white
906D	A1 A2 CI-1 R1 Pr1 y1	white
910D	A1 A2 c1 R1 Pr1 Y1	yellow

The parental lines were crossed in 1999, and the F1 plants were self-fertilized in 2000 to give F2 ears. Owing to the small size of these ears, new F1 crosses were re-done in 2001; these are the F2 ears that are reported here. Table 2 shows the results of the four crosses, and Figure 1 shows representative F2 ears from each cross. In each cross (except for cross 4; see below), there were two genes segregating that affect kernel color.

Table 2. Phenotypes in the F1 and F2 generations of crosses to illustrate epistasis.

Cross no.	Parental lines	F1 phenotype	F	2 phenotype	s*
1	906D x 506B	white	white	purple	red
			1809	448	166
2	906D x ACRY	yellow	yellow	white	purple
			1836	574	772
3	507A(<i>Y1</i>) x 910D	purple	purple	yellow	
			2901	2195	
4	906D x 507A(y1)	white	white	purple	red
			3530	657	69

*7, 6, 12, and 9 F2 ears were examined for crosses 1, 2, 3, and 4 respectively.

Figure 1. Representative F2 ears from crosses to illustrate epistasis.

In cross 4, only white and purple kernels were expected in the F2 generation, but a small number (69 = 1.6%) of red kernels appeared. These red kernels are the result of the segregation of *Pr1* alleles. The red kernels were unexpected because parental line 507A(*y1*) was believed to be *Pr1*, not *pr1*. There were thus three genes segregating in cross 4. When the red kernels are combined with the purple kernels, however, the expected F2 phenotype ratio for dominant and recessive epistasis is approximated.

As shown in Table 3, in all four crosses the observed ratio of F2 kernel phenotypes was very close to the expected ratio based on an assumption of recessive epistasis, dominant epistasis, duplicate recessive epistasis, and dominant and recessive epistasis between the two segregating genes (ignoring the third segregating gene in cross 4). These F2 ears are superior to those commercially available, and I have begun using them in my genetics labs. Future crosses will be aimed at getting a better example of dominant and recessive epistasis (the 13:3 ratio). In the meantime, I will make the F1 seeds available to anyone who would like them.

Table 3.	Ratio	of phenotypes	in the F2	generation of	crosses t	o illustrate	epistasis
----------	-------	---------------	-----------	---------------	-----------	--------------	-----------

Cross no.	Epistatic interaction	Expected F2 ratio	Observed F2 ratio
1	Dominant	12 white	11.95 white
		3 purple	2.96 purple
		1 red	1.10 red
2	Recessive	9 yellow	9.23 yellow
		3 white	2.89 white
		4 purple	3.88 purple
3	Duplicate recessive	9 purple	9.11 purple
		7 yellow	6.89 yellow
4	Dominant and	13 white	13.27 white
	recessive	3 purple	2.73 purple+red

TAICHUNG, TAIWAN National Chung Hsing University

The cytological B-breakpoints of seven B-10L translocations

--Cheng, Y-M, Lin, B-Y

The pachytene structure of the B chromosome comprises, from proximal to distal, the short arm, the centromeric knob, the proximal euchromatic region (including five chromomeres), the distal heterochromatic region (H1, H2, H3 and H4), and the euchromatic tip (Fig.1A). Of the 38 B-10L translocations previously isolated by Lin (MNL 46: 193-194, 1972), the cytological B-breakpoint of 31 had been determined based on the pachytene figure of hyperploids (Genetics 90:613-627, 1978; Genetics 92:931-945, 1979; Genetics 100:475-486, 1982 and MNL 60:54, 1986). This article reports the B-breakpoints of an additional five translocations. Also included are two of the previously analyzed breakpoints (TB-10L20 and TB-10L36).

Of the seven translocations, only one (TB-10L16) has a break in the proximal euchromatic region, at the fourth chromomere (Fig.1B). Six others (TB-10L13, TB-10L20, TB-10L32, TB-10L34, TB-10L36 and TB-10L38) have breakpoints in the distal heterochromatic region: TB-10L34 and TB-10L38 at the junction of H1 and H2 (Fig.1C and 1D), TB-10L32 in H3 close to the junction of H2 and H3 (Fig.1E) and TB-10L13 at the junction of H2

Figure 1. A-H Pachytene figure of the B chromosome and seven B-10 chromosomes. (A) B chromosome. (B) TB-10L16. (C) TB-10L34. (D) TB-10L38. (E) TB-10L32. (F) TB-10L13. (G) TB-10L20. (H) TB-10L36. The breakpoints are marked with an arrow.

and H3 (Fig.1F). TB-10L20 and TB-10L36 break in H3 (Fig.1G and1H), consistent with Lin's earlier observation (Genetics 90: 613-627, 1978). The breakpoint of TB-10L36 is distal but close to that of TB-10L20. The results are summarized in Figure 2.

Figure 2. B-breakpoints of seven B-10L translocations.

Cytological 10L-breakpoints of B-10L translocations --Cheng, Y-M, Lin, B-Y

We reported previously (MNL 75:61, 2001) cytological breakpoints on 10L of ten B-10L translocations. Here, we report the 10L breakpoint of an additional 17 (Table 1). Results of these two studies were combined in Figure 1. Comparison of this map with the previous linkage data (Lin, MNL 48:182-184, 1974) reveals several discrepancies, most of which may be attributable to errors of small sample size associated with the linkage analyses.

Table 1. Cytological breakpoint on 10L of 17 B-10L translocations.

Translocations	Breakpoint on 10L	Average	Standard Error	Lin's data ^a
TB-10L3	0.33, 0.27, 0.35, 0.32, 0.29	0.31	0.03	0.61
TB-10L7	0.50, 0.46, 0.52, 0.54, 0.47	0.50	0.03	0.77
TB-10L8	0.36, 0.35, 0.25, 0.35, 0.46, 0.42	0.37	0.07	0.50
TB-10L5	0.44, 0.51, 0.41, 0.48, 0.41, 0.46	0.45	0.04	0.61
TB-10L10	0.37, 0.50, 0.39, 0.48, 0.33	0.41	0.07	0.65
TB-10L13	0.58, 0.61	0.60	0.02	nd ^b
TB-10L14	0.59, 0.71, 0.69, 0.73, 0.58, 0.67, 0.71	0.67	0.02	0.45
TB-10L18	Centromere	Centromere	-	1.35
TB-10L25	0.44, 0.56, 0.45, 0.46, 0.40, 0.49	0.47	0.05	0.67
TB-10L28	0.53, 0.46, 0.41, 0.36, 0.49, 0.46	0.45	0.06	0.82
TB-10L29	0.43, 0.37, 0.46, 0.40, 0.35, 0.37	0.40	0.04	0.39
TB-10L31	0.65, 0.67, 0.65, 0.71, 0.65, 0.64	0.66	0.03	0.86
TB-10L32	0.69, 0.59, 0.67, 0.73	0.67	0.06	0
TB-10L34	0.59, 0.49, 0.53, 0.46, 0.61, 0.54	0.54	0.06	0.47
TB-10L35	0.58, 0.46, 0.60, 0.56, 0.48	0.53	0.06	0.41
TB-10L37	0.61, 0.64, 0.58, 0.57	0.60	0.03	0.63
TB-10L38	0.60, 0.58, 0.56, 0.63, 0.67	0.61	0.04	0.54

^aRecombination ratio of breakpoint-*R/g- R* (from Lin, 1974).

^bNo data.

Figure 1. Cytological 10L breakpoints of 26 B-10L translocations.

TALLAHASSEE, FLORIDA The Florida State University

Pachytene arm ratios for maize chromosome 9 in OMAd9.2, a maize chromosome addition line of oat --Koumbaris, G, Bass, HW

We are developing a cytogenetic mapping system using a maize disomic chromosome addition line of oat designated OMAd9.2 (origin and use of OMA lines reviewed by Kynast et al., Plant Physiol. 125:1216, 2001). Cytogenetic maps are experimentally useful and biologically informative (reviewed by Harper and Cande, Funct. Integr. Genomics, 1:89, 2000). We have used a newly designed centromeric FISH probe and whole chromosome painting to examine the cytogenetic structure of maize chromosome 9 from OMAd9.2 anthers fixed at the pachytene stage of meiotic prophase. The probe, MCCY, was designed from the junction between two CentC sequence repeats (Ananiev et al., Proc. Nat. Acad. Sci. USA 95:13073, 1998) and used with the 3D acrylamide FISH method as previously described (Bass et al., J. Cell Biol. 137:5, 1997). The MCCY probe is 5'-Cy5-GAAAAACGAAGAAATGGTTCTGGTG-3'. The MCCY probe hybridized to a small discrete spot that appears to co-localize with the primary constriction of the maize 9 centromere. The FISH paint signals from the maize 9 pachytene fibers were imaged, traced, and straightened as previously described (Bass et al., J. Cell Sci. 113:1033, 2000). Total DNA from knobless lines of maize provided good whole-chromosome paints. Knobless Tama Flint (KTF, MGCSC stock 11074) DNA painted the entire fiber with fairly uniformly FISH signal intensity along its length. Knobless Wilbur's Flint (KWF, MGCSC stock 11075) DNA provided a good baseline fiber image for cytogenetic mapping because it painted the entire fiber and in the same wavelength revealed two important bonus loci, the 9S telomeric knob and the centromere.

Figure 1 shows a pachytene nucleus displayed as projections of 3D images from separate wavelengths (A, DAPI, total DNA; B, rhodamine, maize 9 FISH signals; C, Cy5, MCCY centromere FISH signals). The computer-straightened chromosome (D) is shown at the bottom (9S, short arm; C; centromere; 9L; long arm) and the FISH probes are indicated at the right. We have found that the arm length ratios are similar to those for the endogenous maize chromosome 9 (in maize) from either meiotic prophase or somatic metaphase cells (Table 1). The maize 9 chromosome in OMAd9.2 maintained a pachytene arm ratio of about 1.8, despite large variations in total length. Previously published arm ratios for maize 9 range from 1.7 to 2.0.

Figure 1.

Table 1. Maize 9 arm length ratios (long/short).

Ratio	maize	cell	Reference or source of information
L/S	line	type	
1.8	KYS	mei	Rhoades (1950) J Hered. 61:59.
2.0	KYS	mei	Neuffer et al. (1997) in "Mutants of maize" CSHL Press.
1.93	KYS	mei	Chen et al. (2000) Theor. Appl. Genet. 101:30.
2	KYS	som	Sadder and Weber (2001) Plant Mol. Bio. Reporter 19:117-123.
1.7	Se60	som	Chen, CC, (1969) Can. J. Genet. Cytol. 11:752.
1.8	OM9	mei	this report, total length 22.8 micron.
1.8	OM9	mei	this report, total length 25.2 micron.
1.7	OM9	mei	this report, total length 35.2 micron.

Table Notes: L/S long to short arm ratio; mei meiotic; som somatic; Se60 Seneca60; OM9 OMAd9.2 maize 9 from oat x maize addition line OMAd9.2 (from pollen of Seneca 60).

These numbers suggest that the higher order packaging of meiotic chromosomes, at least with respect to the constancy of arm ratio, may be governed by some intrinsic properties of the chromosome itself. Such properties may involve matrix attachment region sequences, genes, aspects of the chromatin-folding pathway, or the distribution of trans-acting factors. It is interesting to consider that the packing and segregation of maize 9 chromosome in OMAd9.2 probably involves specific and conserved molecular interactions between *Avena* proteins and *Zea* DNA or chromatin elements. Analysis of this material may help unravel

some of the complexities of the structure-function relationships operating on meiotic chromosomes. This material should also be suitable for cytogenetic mapping of maize loci by FISH.

> URBANA, ILLINOIS Maize Genetics Cooperation • Stock Center USDA/ARS/MWA

Three-point linkage data for *du1, inr1* and *g1* on 10L --Stinard, P

In last year's MNL (Stinard, P, MNL 75:71, 2001), we reported two-point linkage data for du1 and inr1 on the long arm of chromosome 10. In that experiment, a three-point linkage test involving the 10L markers inr1, du1, and g1 had been set up as indicated in Table 1 (R1-S is an r1 allele that is susceptible to inhibition by *Inr1*; *wx1* facilitates the scoring of *du1*). However, scoring of the progeny for *g1* had not been done by the MNL deadline, so only two-point du1 inr1 data were presented. This past winter and summer, Du1 inr1 and du1 Inr1 crossover kernels from these crosses were planted and the resulting plants scored for a1 in order to provide partial three-point linkage data. Crosses were made in order to confirm the *du1* and *inr1* scoring as well. Complete scoring of the parental classes for *q1* was not done because of the large populations involved, and because complete scoring was not necessary for determining the gene order since the linkage relation between du1 and a1 is already well-characterized (these two loci are 19 centimorgans apart). The partial three-point linkage data are presented in Table 1. These data confirm that *inr1* and *du1* are very tightly linked, with an approximately 0.14 centimorgan distance between them. These data furthermore determine the global order of the three loci on chromosome 10 as du1 inr1 g1.

Reg.	Phenotype	No.	Totals
0; 2	Du Inr; G or g	4357	
	du inr; G or g	4411	8768
1	Du inr g	6	
	du Inr G	4	10
1+2	Du inr G	1	
	du Inr g	1	2

Table 1. Partial three-point linkage data for *du1, inr1* and *g1*. Testcross: (*Du1 Inr1 G1 R1-S wx1 X du1 inr1 g1 R1-S wx1*) X *du1 inr1 g1 R1-S wx1*.

% recombination du1--inr1 = 0.14 +/- 0.04

The isolation and characterization of su3 and su4 duplicate loci

--Stinard, P

In 1992 (Stinard, PS. 1992. MNL 66:4-5), we reported the isolation of a new sugary endosperm mutation, su3. At that time, we presented data indicating linkage of su3 with wx1 T4-9g (6.5 centimorgans between su3 and wx1), but not with other wx1-marked translocations. This seemed to indicate a location of su3 on chromosome 4. However, linkage tests of su3 with the chromosome 4 markers su1 and gl4 showed no linkage of su3 with these markers. Since su1 is tightly linked to wx1 in the translocation

T4-9g (p \sim .04, Jackson, J and Stinard, P, MNL 72:79-81, 1998; p \sim .14, Jackson, JD et al., MNL 75:68-71, 2001), these results were inconsistent with our observations of linkage of *su3* with *wx1* T4-9g.

Other anomalies were also observed. F2's of su3 with inbreds W64A and B73 consistently yielded ears segregating for a low frequency of su3 mutant kernels, approximating 15:1 ratios. At the time, we thought that this was due to poor penetrance since homozygous su3 lines often give a range of phenotypes from extreme to near normal. However, the 15:1 F2 ratios held up after several generations of backcrossing. Since the 15:1 ratios were suggestive of the involvement of duplicate loci, both of which need to be homozygous mutant in order to produce a mutant phenotype, we tested this hypothesis.

From the self-pollinated 15:1 segregating ear of a fifth generation outcross of su3 to W64A, nonmutant kernels were planted in our 1999 winter nursery, and the resulting plants self-pollinated. From the resulting ears, four ears with good 3:1 segregation of nonmutant:mutant kernels were selected and labeled A. B. C, and D. These ears would presumably be from plants homozygous mutant at one duplicate locus, and heterozygous mutant at the second duplicate locus. Nonmutant kernels from these ears were planted in our summer 2000 nursery, and the resulting plants were self-pollinated. Ears segregating 3:1 as well as ears with only nonmutant kernels were obtained. The latter ears would be expected to be homozygous mutant at one duplicate locus and homozygous nonmutant at the other duplicate locus; such ears will be referred to as single factor lines. Kernels from these four single factor lines (A, B, C, and D) were planted in our 2000 winter nursery, and intercrosses were made between these lines in all possible combinations.

During the summer of 2001, kernels from these intercrosses were planted, and the resulting plants were self-pollinated. The following results were obtained: F2's of intercrosses A X C (8 ears) and B X D (8 ears) yielded nonmutant kernels only. F2's of intercrosses A X B (8 ears), A X D (8 ears), B X C (9 ears), and C X D (8 ears) yielded 15:1 ratios of nonmutant: mutant kernels. We can conclude that the *su3* mutant does indeed require two homozygous mutant at one locus, and lines B and D are homozygous mutant at the other locus.

The existence of duplicate loci for su3 could explain the anomalous linkage results reported in 1992. The linkage experiment involving wx1 T4-9g might have been tracking one locus, and the linkage experiment involving su1 and g/4 might have been tracking the second locus. We have given the name su3 to the locus linked to wx1 T4-9g, and the name su4 to the unlinked locus. We are currently conducting a new round of linkage experiments using the separated factor lines in order to determine which are homozygous for su3 and which are homozygous for su4.

Differences in phenotypic expression between *brn1-R brn2-R* and *brn1-Nelson brn2-Nelson* mutant kernels are attributable to the *brn1* locus

--Stinard, P

Phenotypic variation in mutant kernel expression exists among the various alleles of the brown aleurone duplicate factor pair *brn1 brn2* (Stinard, PS, Maydica 39:273-278, 1994). In the B73 inbred background, homozygous mutant kernels of the reference alleles, *brn1-R brn2-R* are normal sized with normal embryos and dark brown pigmentation of the aleurone. Homozygous mutant kernels of Oliver Nelson's alleles, *brn1-Nelson brn2-Nelson*, are small, with defective embryos and lighter brown aleurone pigmentation (Figure 1). In order to better understand the nature of the phenotypic differences, we decided to isolate the four alleles (*brn1-R, brn1-Nelson, brn2-R*, and *brn2-Nelson*) and combine them in all possible pairs in order to determine the effect of allelic differences on mutant expression.

Figure 1. Segregating mutant (upper row) and nonmutant (lower row) kernels from F2 ears of *bm1-R brn2-R* (upper left), *bm1-Nelson brn2-Nelson* (upper right), *bm1-R brn2-Nelson* (lower left), and *bm1-Nelson brn2-R* (lower right). All mutant alleles are in inbred B73 background (six backcross generations).

All four mutant alleles were isolated in the B73 background (six backcross generations) according to the procedure previously outlined by the author (Stinard, P, MNL 74:70, 2000). The nonmutant alleles in these lines are provided by the inbred B73, which is *Brn1 Brn2*. Intercrosses were made between the complementary reference and Nelson alleles to produce the combinations *brn1-R Brn1 brn2-Nelson Brn2* and *brn1-Nelson Brn1 brn2-R Brn2*, and the resulting F1's were self-pollinated to produce segregating F2 ears.

Mutant and nonmutant kernels from these ears are shown in comparison with kernels from segregating ears of *brn1-R Brn1 brn2-R Brn2* and *brn1-Nelson Brn1 brn2-Nelson Brn2* in Figure 1. Mutant kernels of the combination *brn1-R brn2-Nelson* share the normal kernel and embryo size, and dark brown aleurone pigmentation with the reference allele combination *brn1-R brn2-R*. On the other hand, mutant kernels of the combination *brn1-R brn2-R*. On the other hand, mutant kernels of the combination *brn1-Nelson brn2-R* share the small kernel size and defective embryo, and light brown aleurone pigmentation with the Nelson allele combination *brn1-Nelson brn2-Nelson*. Thus, it is allelic differences at the *brn1* locus that determine the differences in mutant kernel expression between the reference and Nelson alleles.

It should be noted that at least a few inbred and hybrid lines are homozygous mutant at the *brn2* locus. Inbred B73 is the only exception found to date (Stinard, P, MNL 74:70, 2000). Although the *brn2-R* and *brn2-Nelson* alleles have been maintained separately from each other since they were received by the author, it is conceivable that they could share a common ancestry, as could
all lines that "naturally" carry a mutant allele at the *brn2* locus. Only a molecular analysis will resolve this issue.

Failure to replicate the "cytoplasmic glossy" effect

--Stinard, P

In 1983, Dr. George Sprague reported on a "cytoplasmic glossy" line, whereby a line carrying a particular *gl1* allele (*gl1-c*) in a particular cytoplasmic background (*cgl*) produces glossy seedling progeny when crossed as a female by glossy mutants at other specific loci (*gl2*, *gl3*, *gl4*, *gl5 gl20*, *gl6*, *gl7*, *gl11*, and *gl15*), but not when crossed as a male (Sprague, GF. 1983. Maydica 28:189-200). Female crosses by *gl8* and *gl17* lines result in non-glossy seedlings. We have made extensive attempts to reproduce these results, with no success.

The *gl1-c cgl* line used in our experiments was provided to the Maize Genetics Stock Center by Dr. Sprague in 1989. Initial crosses of this line by *gl2*, *gl3*, and *gl6* testers made in 1999 gave 0 to 3 kernels per ear when *gl1-c cgl* was used as a female, but full sets when used as a male. The few kernels produced on female outcross ears gave rise to nonglossy seedlings. The male outcross progeny were also nonglossy. The disparity in ear sets suggested the involvement of a gametophytic factor. If the *gl1-c cgl* line carried a *Ga1-S* allele, then pollination by our glossy tester lines carrying *ga1* would give poor sets since *ga1* pollen shows poor pollen tube growth on *Ga1-S* silks. However, pollination of this line by a *Ga1-S* line would give a full kernel set. We tested this hypothesis by crossing the *gl1-c cgl* line by a *Ga1-S* tester the following winter. Female outcrosses of *gl1-c cgl* produced full sets, confirming that this line carries a *Ga1-S* allele.

In order to get better sets on g/1-c cg/ females in our experiments, we converted g/2, g/3, and g/6 tester stocks to a Ga1-S background. We completed these conversions in 2000. During the summer of 2001, we reciprocally crossed Sprague's g/1-c cg/ line with our g/2, g/3, and g/6 Ga1-S lines. Full seed sets were observed in both directions, and all progeny produced nonglossy seedlings. Thus, we failed to reproduce Dr. Sprague's results and we conclude that the cytoplasmic glossy phenomenon is not real.

The question remains as to how Dr. Sprague obtained the results that he reported. Since his g/1-c cg/l line is homozygous Ga1-S and most genetic stocks are ga1, few seeds would set when g/1-ccgl is used as a female in crosses with most glossy testers. However, g/1-c cg/Ga1-S pollen from self-contamination would be fully functional and capable of out-competing ga1 tester pollen on g/1-c cg/Ga1-S silks, and would result in the production of glossy (homozygous g/1-c) progeny. Sprague's observation that the glossy progeny from such crosses are always homozygous for g/1-cand never carry the glossy tester allele used in the cross provides support for a self-contamination hypothesis. The fact that female crosses involving g/8 and g/17 produced nonglossy progeny could indicate that either these particular tester lines carry Ga1-S, or that the crosses were made with no self-contamination by the g/1-ccg/ parent.

Additional linkage tests of *waxy1* marked reciprocal translocations at the MGCSC

--Jackson, JD, Stinard, P, Zimmerman, S

In the collection of A-A translocation stocks maintained at MGCSC is a series of *waxy1*-linked translocations that are used for mapping unplaced mutants. Also, new *wx1*-linked translocations are being introduced into this series and are in a conversion program to convert each translocation to the inbred backgrounds M14 and W23. These inbred conversions are then crossed together to produce vigorous F1's to fill seed requests. Over the years, pedigree and classification problems arose during the propagation of these stocks. We have been able to sort through the problem ones, and can now supply good sources proven by linkage tests to include the correct translocated chromosomes. Additional pedigree information on bad sources is available should anyone want to check on sources supplied to them previously by the Stock Center.

Previously we reported the linkage results for some of these stocks (MNL72:81-82; MNL73:88-89; MNL74:67-69; MNL75:68-71). Below is a summary of additional translocation stocks we have completed testing. Additional translocation stocks will be tested as time allows.

Table 1. wx1 T1-9(8389) (1L.74; 9L.13)

A) The F1 source showed linkage of wx1 with bm2.

Three point linkage data for *bm2*-T1-9(8389) *wx1* Modified backcross: *bm2* N *wx1* x [*bm2* N *Wx1* x *Bm2* T1-9(8389) *wx1*]

source: 93-930-3^F1

Region	Phenotype	No.	Totals
0	+Twx	95	
	bm N Wx	82	177
1	+ N Wx	36	
	bm T wx	53	89
2	+ T Wx	14	
	bm N wx	4	18
1+2	+ N wx	10	
	bm T Wx	9	19

% recombination bm2-T =35.6 ±2.8

% recombination T -wx1 = 12.2 ± 1.9

% recombination bm2-wx1 = 47.9 \pm 2.9

Table 2. wx1 T2-9d (2L.83; 9L.27)

A) The M14 source showed linkage of wx1 with ch1.

Three point linkage data for Ch1-T2-9d wx1 Modified backcross: ch1 N wx1 x [Ch1 N Wx1 x ch1 T2-9d wx1]

source: 92-396-1^M14

Region	Phenotype	No.	Totals
0	+Twx	40	
	Ch N Wx	63	103
1	+ N Wx	36	
	Ch T wx	28	64
2	+ T Wx	3	
	Ch N wx	4	7
1+2	+ N wx	1	
	Ch T Wx	3	4

% recombination ch1-T =38.3±3.6

% recombination T -wx1=6.2±1.8

% recombination ch1-wx1 =44.4±3.7

B) The W23 source showed linkage of wx1 with ch1.

Three point linkage data for Ch1-T2-9d wx1 Modified backcross: ch1 N wx1 x [Ch1 N Wx1 x ch1 T2-9d wx1] source: 92-395-1^W23

Region	Phenotype	No.	Totals
0	+Twx	94	
	Ch N Wx	92	186
1	+ N Wx	27	
	Ch T wx	32	59
2	+ T Wx	0	
	Ch N wx	0	0
1+2	+ N wx	1	
	Ch T Wx	1	2

% recombination ch1-T =24.7±2.7

% recombination T -wx1=0.8±0.6

% recombination ch1-wx1 = 25.5±2.8

Table 3. wx1 T3-9(8447) (3S.44; 9L.14)

A) The F1 source showed linkage of wx1 with gl6.

Two point linkage data for *gl6-wx1* T3-9(8447) Testcross: [*Gl6 wx1* T3-9(8447) x *gl6 Wx1* N] x *gl6 wx1* N

.....

source:93-438-1 x 439^F1

Region	Phenotype	No.	Totals
0	gl Wx	503	
	+ WX	452	955
1	+ Wx	60	
	gl wx	53	113

% recombination gl6-wx1=10.6±0.9

B) The M14 source showed linkage of wx1 with gl6.

Two point linkage data for *gl6-wx1* T3-9(8447) Testcross: [*Gl6 wx1* T3-9(8447) x *gl6 Wx1* N] x *gl6 wx1* N

source: 92-399-1@^M14

Region	Phenotype	No.	Totals
0	gl Wx	437	
	+ WX	448	885
1	+ Wx	28	
	gl wx	30	58

% recombination gl6-wx1=6.2+0.8

C) The W23 source showed linkage of wx1 with gl6.

2 point linkage data for *gl6-wx1* T3-9(8447) Testcross: [*Gl6 wx1* T3-9(8447) x *gl6 Wx1* N] x *gl6 wx1* N

source: 92-397-1 x SIB^W23

Region	Phenotype	No.	Totals
0	gl Wx	1288	
	+ WX	1298	2586
1	+ Wx	111	
	gl wx	105	216

% recombination gl6-wx1=7.7±0.5

Table 4. wx1 T4-9b (4L.90; 9L.29)

A) The F1 source showed linkage of wx1 with c2.

.....

Two point linkage data for *c2-wx1* T4-9b Testcross: [*C2 wx1* T4-9b x *c2 Wx1* N] x *c2 wx1* N

source: 93W-11392-1 x 1391-1^F1

Region	Phenotype	No.	Totals
0	+ WX	739	
	c2 Wx	929	1668
1	+ Wx	82	
	c2 wx	89	171

% recombination c2-wx1=9.3+0.7

B) The M14 source showed linkage of wx1 with c2.

Two point linkage data for *c2-wx1* T4-9b Testcross: [*C2 wx1* T4-9b x *c2 Wx1* N] x *c2 wx1* N

source: 92-410-1 x SIB^M14

Region	Phenotype	No.	Totals
0	+ WX	1801	
	c2 Wx	2077	3878
1	+ Wx	295	
	c2 wx	206	501

% recombination c2-wx1=11.4 ±0.5

C) The W23 source showed linkage of wx1 with c2.

Two point linkage data for *c2-wx1* T4-9b Testcross: [*C2 wx1* T4-9b x *c2 Wx1* N] x *c2 wx1* N

source: 92H-472-1 x SIB

Region	Phenotype	No.	Totals
0	+ WX	547	
	c2 Wx	568	1115
1	+ Wx	59	
	c2 wx	65	124

% recombination c2-wx1=10.0±0.9

Table 5. wx1 T6-9e (6L.18; 9L.24) (Source from D. Robertson)

A) The original source converted to M14 showed linkage of wx1 with y1.

Two point linkage data for y1-wx1 T6-9e Testcross: [y1 wx1 T6-9e x Y1 Wx1 N] x y1 wx1 N

source: 93W-1487-4^M14

Region	Phenotype	No.	Totals
0	y wx	1583	
	+ Wx	1598	3181
1	+ WX	190	
	y Wx	180	370

% recombination y1-wx1=10.4+0.5

The following is a correction on data previously reported in MNL74:67-69.

Table 6. wx1 T2-9c (2S.49; 9S.33)

A) The F1 source showed linkage of wx1 with lg1gl2.

Three point linkage data for Ig1 gl2-wx1 T2-9c Testcross: [Ig1 gl2 Wx1 N x Lg1 Gl2 wx1 T2-9c] x Ig1 gl2 wx1 N

source: 93-432-2 x 433 ^F1

Region	Phenotype	No.	Totals
0	lg gl Wx	748	
	+ + WX	1289	2037
1	+ gl Wx	178	
	lg + wx	277	455
2	+ + Wx	115	
	lg gl wx	94	209
1+2	lg + Wx	9	
	+ al wx	3	12

% recombination /g1-g12 =17.2+0.7

% recombination gl2-wx1=8.1 ±0.5

% recombination lg1-wx1 = 25.4±0.8 (originally reported to be 24.9±0.8)

B) The W23 source showed linkage of wx1 with lg1gl2.

Three point linkage data for Ig1 gl2-wx1 T2-9c Testcross: [Ig1 gl2 Wx1 N x Lg1 Gl2 wx1 T2-9c] x Ig1 gl2 wx1 N

source: 87-838 x 839 ^W23

Region	Phenotype	No.	Totals	
0	lg gl Wx	378		
	+ + WX	745	1123	
1	+ gl Wx	105		
	lg + wx	159	264	
2	+ + Wx	58		
	lg gl wx	64	122	
1+2	lg + Wx	4		
	+ gl wx	4	8	
% recombination $la1-al2 = 17.9+1.0$				

% recombination gl2-wx1=8.6±0.7

% recombination lg1-wx1 = 26.5±1.1 (originally reported to be 25.9±1.1)

Additional linkage tests of non-waxy (Waxy1) reciprocal translocations involving chromosome 9 at the MGCSC --Jackson, JD, Stinard, P, Zimmerman, S

Approximately one acre each year is devoted to the propagation of the large collection of A-A translocation stocks. In this collection is a series of Waxy1-linked translocations that are used for mapping unplaced mutants. Each translocation is maintained in separate M14 and W23 inbred backgrounds, which are crossed, together to produce vigorous F1's to fill seed requests. Over the years, pedigree and classification problems arose during the propagation of these stocks. We have been able to sort through the problem ones, and can now supply good sources proven by linkage tests to include the correct translocated chromosomes.

Previously we reported the linkage results for some of these stocks (MNL72:79-81; MNL73:86-88; MNL74:67; MNL75:67). Below is a summary of additional translocation stocks we have completed testing.

Table 1. Wx1 T1-9(8389) (1L.74; 9L.13)

A) The F1 source showed linkage of wx1 with bm2.

Three point linkage data for bm2-T1-9(8389)Wx1 Modified backcross: bm2 N wx1 x [bm2 N wx1 x Bm2 T1-9(8389) Wx1]

source: 87-958-2^F1

Region	Phenotype	No.	Totals
0	+ T Wx	102	
	bm N wx	78	180
1	+ N wx	46	
	bm T Wx	40	86
2	+Twx	11	
	bm N Wx	6	17
1+2	+ N Wx	13	
	bm T wx	25	38

% recombination bm2-T = 38.6±2.7

% recombination T -wx1 =17.1±2.1

% recombination bm2-wx1 = 55.8±2.8

Table 2. Wx1 T2-9d (2L.83; 9L.27)

A) The F1 source showed linkage of wx1 with ch1.

Three point linkage data for Ch1-T2-9dWx1 Modified backcross: ch1 N wx1 x [Ch1 N wx1 x ch1 T2-9d Wx1]

source: 98-842-1^F1

Region	Phenotype	No.	Totals
0	+ T Wx	80	
	Ch N wx	78	158
1	+ N wx	41	
	Ch T Wx	49	90
2	+Twx	13	
	Ch N Wx	6	19
1+2	+ N Wx	2	
	Ch T wx	21	23

% recombination ch1-T =39.0±2.9

% recombination T -wx1=14.5+2.1

% recombination ch1-wx1 =53.4+2.9

B) The M14 source showed linkage of wx1 with ch1.

Three point linkage data for Ch1-T2-9dWx1 Modified backcross: ch1 N wx1 x [Ch1 N wx1 x ch1 T2-9d Wx1]

source: 75-242-2; fr.95W-257^M14

Region	Phenotype	No.	Totals
0	+ T Wx	110	
	Ch N wx	109	219
1	+ N wx	65	
	Ch T Wx	66	131
2	+Twx	10	
	Ch N Wx	7	17
1+2	+ N Wx	9	
	Ch T wx	9	18

% recombination ch1-T =38.7+2.5

% recombination T -wx1=9.1 ±1.5

% recombination ch1-wx1 =47.8±2.5

C) The W23 source showed linkage of wx1 with ch1.

Three point linkage data for Ch1-T2-9dWx1 Modified backcross: ch1 N wx1 x [Ch1 N wx1 x ch1 T2-9d Wx1]

source: 93W-1439-3^W23

	-		
Region	Phenotype	No.	Totals
0	+ T Wx	121	
	Ch N wx	97	218
1	+ N wx	35	
	Ch T Wx	59	94
2	+Twx	21	
	Ch N Wx	2	23
1+2	+ N Wx	3	
	Ch T wx	13	16

% recombination ch1-T =31.3±2.5

% recombination T -wx1=11.1+1.7

% recombination ch1-wx1 =42.5+2.6

Table 3. Wx1 T2-9c (2S.49; 9S.33)

A) The F1 source showed linkage of wx1 with lg1gl2.

Three point linkage data for *lg1 gl2-Wx1* T2-9c Testcross: *lg1 gl2 wx1* N x [*lg1 gl2 wx1* N x *Lg1 Gl2 Wx1* T2-9c]

source: 87-962 x 960 ^F1

-			
Region	Phenotype	No.	Totals
0	lg gl wx	429	
	+ + Wx	617	1046
1	+ gl wx	158	
	lg + Wx	217	375
2	+ + WX	82	
	lg gl Wx	88	170
1+2	lg + wx	12	
	+ ql Wx	12	24

% recombination /g1-g12 =24.7±1.1

% recombination gl2-wx1=12.0±0.8

% recombination /g1-wx1 =36.7±1.2

B) The F1 source showed linkage of wx1 with v4.

Two point linkage data for v4-Wx1 T2-9c Testcross: [V4 Wx1 T2-9c x v4 wx1 N] x v4 wx1 N

source: 87-962 x 960^F1

Region	Phenotype	No.	Totals
0	+ Wx	381	
	V WX	333	714
1	v Wx	212	
	+ WX	120	332

% recombination v4-wx1=31.7±1.4

Table 4. Wx1 T3-9(8447) (3S.44; 9L.14)

A) The F1 source showed linkage of wx1 with gl6.

Two point linkage data for g/6-Wx1 T3-9(8447) Testcross: [G/6 Wx1 T3-9(8447) x g/6 wx1 N] x g/6 wx1 N

source: 87-974 x 972^F1

Region	Phenotype	No.	Totals
0	+ Wx	1688	
	gl wx	1675	3363
1	gl Wx	122	
	+ WX	121	243
% recombination al6-wx1=6.7+0.4			

Table 5. Wx1 T4-9(5657) (4L.33; 9S.25)

A) The F1 source showed linkage of wx1 with gl4.

Two point linkage data for g/4-Wx1 T4-9(5657) Testcross: [G/4 Wx1 T4-9(5657) x g/4 wx1 N] x g/4 wx1 N

source: 87-995 x 992^F1

Region	Phenotype	No.	Totals
0	+ Wx	1724	
	gl wx	1569	3293
1	gl Wx	16	
	+ WX	12	28

% recombination gl4-wx1= 0.8 ±0.2

Table 6. Wx T6-9b (6L.10; 9S.37)

A) The M14 sources showed linkage of wx1 with y1.

Two point linkage data for y1-Wx1 T6-9b Testcross: [y1 Wx1 T6-9b x Y1 wx1 N] x y1 wx1 N

source: 96-840-4^M14

Region	Phenotype	No.	Totals
0	y Wx	2071	
	+ WX	3026	5097
1	+ Wx	397	
	y wx	34	431
% recombination <i>y1-wx1</i> = 7.8 <u>+</u> 0.4			

source: 96-839-10^M14

Source: 90-039-10 MI14				
Region	Phenotype	No.	Totals	
0	y Wx	1280		
	+ WX	2042	3322	
1	+ Wx	251		
	y wx	13	264	

% recombination y1- $wx1 = 7.4\pm0.4$

B) The W23 sources gave varying linkage values of *wx1* with *y1* depending on whether Translocation was transmitted through male or female.

Two point linkage data for y1-Wx1 T6-9b 1) Testcross: [Y1 wx1 N x y1 Wx1 T6-9b] x y1 wx1 N

source: 97-1271-1^W23

Region	Phenotype	No.	Totals
0	y Wx	941	
	+ WX	1404	2345
1	+ Wx	246	
	y wx	29	275
% recombination y1-wx1 = 10.5+0.6			

source: 97-1271-2^W23

Region	Phenotype	No.	Totals
0	y Wx	1373	
	+ WX	1822	3195
1	+ Wx	367	
	y wx	37	404

% recombination *y1-wx1* =11.2±0.5

Source: 37-1275-1 W25					
Region	Phenotype	No.	Totals		
0	y Wx	4003			
	+ WX	5294	9297		
1	+ Wx	883			
	y wx	99	982		

% recombination y1-wx1=9.6±0.3

2) Testcross: y1 wx1 N x [Y1 wx1 N x y1 Wx1 T6-9b]

source: 97-1271-1^W23

Region	Phenotype	No.	Totals
0	y Wx	228	
	+ WX	229	457
1	+ Wx	5	
	y wx	6	11

% recombination y1-wx1=2.4±0.7

source: 97-1271-2^W23

Region	Phenotype	No.	Totals
0	y Wx	388	
	+ WX	370	758
1	+ Wx	21	
	y wx	15	36

% recombination y1-wx1 = 4.5±0.7

source:97-1273-1^W23

Region	Phenotype	No.	Totals
0	y Wx	1180	
	+ WX	1125	2305
1	+ Wx	40	
	y wx	14	54

% recombination y1-wx1 = 2.3±0.3

VIÇOSA, BRAZIL Universidade Federal de Viçosa

Maize root tip cell cycle synchronization -- Carvalho, CR, Saraiva, LS, Otoni, WC

Accumulation of the cells in metaphase implies the use of some cytogenetic strategies. The well-known spindle mitotic inhibitors action, on normal meristematic cycle treatment, leads to metaphasic chromosome numbers appropriated for several cytogenetic approaches. However, this chromosome amount is not suitable for running flow cytometry analysis. This way, chromosome accumulation procedures, previously to the metaphase blocking, must be improved by means of an additional synchronization step. Treatments were optimized in our laboratory to synchronize meristematic root tip cell cycles of germinating maize seeds (test line L-869). Seeds were germinated in Petri dishes containing a film of distilled water, and incubated at 29 C in the dark. Seedlings (1.5 to 2 cm root length) were carefully transferred to a plastic mesh adapted inside a 6 cm diameter plastic vessels containing 100 ml of either 0, 1, 2, 4, and 6 µM hydroxyurea (HU). After two cycles, approximately 18 h, the roots were recovered by washing for 15 min (running tap water) and incubated in distilled water under the same conditions as before. Thereafter, samples of root tips were taken from 0 to 10 h, at 1 h intervals, and fixed in a fresh ice-cold methanol:acetic acid solution (3:1), and kept in a freezer for at least 24 h. Next, root tips were excised at 0.1 cm and macerated with 200 µM of freshly prepared Flaxzyme (NOVO) enzymatic solution plus 1.6 ml distilled water, and incubated at 35 C for 2h 30 min. The macerated cells were dissociated in a clean slide with a freshly fixative solution, air-dried and stained with a Giemsa solution. Meiotic figures were photomicrographed and digitized directly by a microscope-coupled CCD video camera to a computer. Under the experimental conditions, 2 µM HU enabled higher cell synchronization indexes (Figure 1) as compared to higher HU concentrations. By using only the synchronization step, at 2 µM HU, combined with 6-7 h recovering time, an average of 28% of metaphasic cells (Figure 2) was obtained in comparison to 0 µM HU control treatment (Figure 3),

Figure 1. Highly synchronized interphasic maize root tip cells after 18 h at 2 μM HU. Bar = 20 $\mu m.$

Figure 2. Highly synchronized metaphasic maize root tip cells obtained after 2 μ M HU treatment and 6-7 h recovering time without HU. Bar = 20 µm.

Figure 3. Typical pattern of maize root tip cell cycle from control treatment (0 μM HU). Bar = 20 $\mu m.$

that normally displayed less than 1% of metaphasic cells. It was also noted that at 6 μ M HU the cells remained in interphase, therefore losing the reversibility. This technique proved to be reproducible, being applied not only to cytogenetic and cytometric purposes, but to a wide range of cell cycle studies.

WOOSTER, OHIO The College of Wooster

Maize small heat shock protein 18-9 exhibits characteristics of a molecular chaperone *in vitro*.

--Buss, J, Tsacoumangos, AM, Pett, V, Bouchard, RA

Studies of several plant small heat shock proteins have indicated that they exhibit certain properties of molecular chaperones in vitro. Two key aspects have been well characterized for the *Pisum sativum* HSP18.1 (Lee and Vierling, EMBO J. 16:659-71, 1997). One is the formation of dodecameric oligomers under native conditions. The other is the capacity to prevent the formation of denatured aggregates by thermally-sensitive substrate proteins at temperatures where irreversible denaturation would otherwise occur. We now report initial results indicating the presence of both these activities in a bacterially expressed fusion protein comprising a 6-histidine affinity leader peptide and the product encoded by a member of the maize shsp gene family. Maize shsp18-9 (*uwo 11*) has been previously shown to undergo strong induction during heat shock (Goping et al., Plant Mol. Biol.16:699-711, 1991). It also shows developmentally modulated expression at several stages in the growing anthers and spikelets (Bouchard et al., Maydica 38:135-144, 1993) as well as induction by insult with toxic heavy metals (Yang and Walden, MNL 71:55, 1997). Construction of a plasmid encoding fusion protein TRCHIS18-9 and preparation and affinity-purification of the product under denaturing conditions was as described in Greyson et al. (Dev. Genetics 18:244-253, 1996). Purified TRCHIS18-9 was then dialyzed into 50mM Sodium Acetate buffer, pH 4.5, aliguoted, and frozen until use.

We examined the protein's capacity for dodecamer formation using pore gradient Native-PAGE electrophoresis at temperatures ranging from 4 C and 43 C. Under all conditions, all of the fusion protein ran as a defined band with an estimated molecular weight of 250 kDa relative to native protein standards, consistent with formation of a single dodecameric oligomer. A characteristic example of this oligomer alongside Native-PAGE standards is shown in Figure 1 below.

We also tested chaperone activity of this oligomer using the substrate protein citrate synthase (CS), an enzyme which normally undergoes rapid, irreversible aggregation and denaturation upon incubation at 43 C. In our assays, a solution containing CS was incubated at denaturing temperature and samples withdrawn at regular intervals were then assayed for residual activity at 25 C. In the absence of TRCHIS18-9, CS was rendered totally inactive after 10 minutes of incubation at 43 C. Upon incubation with increasing ratios of TRCHIS18-9, however, higher and higher proportions of the CS activity were preserved. At our highest tested ratio of 15:1 of TRCHIS18-9 dodecamer to CS homodimer, nearly full CS activity was found in samples even after 50 minutes at 43 C, the longest incubation period tested.

These results suggest that maize sHSP18-9 may provide molecular chaperone activity under a variety of stress and developmental conditions where it is expressed. We are currently performing additional experiments to investigate the role of conserved amino acids and structural motifs in oligomer formation and chaperone function.

> WUHAN, CHINA Wuhan University NANNING, CHINA Guangxi Institute of Farming

Physical mapping of the 5S and 45S rDNA in teosinte

--Han, YH, Li, LJ, Song, YC, Li, ZY, Xiong, ZY, Li, DY

Teosinte, the closest relative of maize, is cytologically so similar to maize that it can spontaneously cross with cultivated maize to produce hybrids, resulting in effective introgression of teosinte germplasm into cultivated maize (Wilkes, Bot. Mus. Leaflets, Harvard Univ. 22:297-311, 1970). Therefore, teosinte is an important source of germplasm for maize improvement. But teosinte has for quite some time been considered by many workers to present a number of taxonomic problems. Most modern systems of classification place teosinte into the genus *Zea* (Iltis and Doebley, Am. J. Bot. 67:994-1004, 1980). All annual forms of teosinte have generally been included within *Zea mexicana*, and two perennial species are *Zea diploperennis* and *Zea perennis*. In fact, certain annual teosinte populations are so close to maize that they were ascribed to a subspecies of *Zea mays* as ssp. *mexicana* (Doebley and Iltis, Am. J. Bot. 67:982-993, 1980).

In the genus Zea, the chromosome number of all the species is 2n=20 except Zea perennis which is 2n=40. For quite some time, Zea perennis has been considered an autotetraploid and other species have been thought to be diploid species. But much evidence supporting x=5 as the basic chromosome number of the genus Zea, which was proposed by Anderson (Chron. Bot. 9:88-92, 1945), has been obtained (Molina and Naranjo, Theor. Appl. Genet. 73:542-550, 1987). Anderson pointed out that the genus Zea could be originated by allopolyploidy from different diploid ancestral species (2n=10), probably extinct at the present time. In these diploid species, the distinct original genomes (x=5) that are present in the actual polyploid may be differentiated. It is most important to know the basic number of the Zea genus for clarifying the hypothesis proposed by Anderson.

The highly conserved tandem repeats 5S and 45S rDNA sequences are useful chromosome markers for understanding genomic evolution and taxonomic relationships at both the molecular and the chromosomal levels. They have been successfully applied for phylogenetic analysis in many other plants (Jiang and Gill, Chromosoma 103:179-185, 1994; Fukui et al., Theor. Appl. Genet. 96:325-330, 1998; Sang and Liang, Genome 43:918-922, 2000).

In this study, we have detected the number and distribution of 5S and 45S rDNA loci in three teosinte species including *Zea* mays ssp. mexicana (2n=20), *Zea diploperennis* (2n=20) and *Zea perennis* (2n=40), by FISH, and provide additional information for their phylogenetic relationships.

Plant materials. The materials tested include *Zea mays ssp. mexicana* (2n=20), *Zea diploperennis* (2n=20) and *Zea perennis* (2n=40). The materials were kindly supplied by Professor M. G. Gu (Institute of Genetics, Chinese Academy of Sciences, Beijing)

DNA Probes and labelling. The plasmids of 5S and 45S rDNA which were cloned in the vector pUC18 (Arumuganthan et al., Mol. Gen. Genet. 22:551-558, 1994) were kindly provided by K. Arumuganathan, University of Nebraska. The tested probes were labeled with Bio-11-dUTP following the nick translation protocol using the kit (Sino-American Biotechnology Company, China. See also Gustafson and Dille, 1992). Dot Blotting was performed to detect the labelling efficiency.

Chromosome preparation. The root tips of 1-2 mm length from vigorously grown teosinte plants were treated with saturated bromonaphthalene at 25 C for 2.5 h, and fixed with methanol-acetic acid (3:1) overnight. After being fully washed with water, the root tips were treated with a mixture of 2% pectinase and 2% cellulase (SERVA) at 28 C for approximately 3 h. Finally, the treated root tips were squashed and dried in a flame (Song and Gustafson, Genome 36:658-661, 1993). The slides were kept in a -20 C freezer for FISH.

A

In situ hybridization and fluorescence detection (FISH). For in situ hybridization, the method published by Gustafson and Dille (Natl. Acad. Sci. USA 89:8646-8650, 1992) was adopted with some modifications. Slide preparations were pretreated with 100µg/ml RNase in 2xSSC (0.3 M sodium chloride plus 0.03 M sodium citrate) at 37 C for 1 h, rinsed briefly in 2xSSC, probe DNA was then denatured by immersing the slides in 70% deionized formamide in 2x SSC at 70 C for 3.5 min. After dehydration in an ice-cold ethanol series, 40µl of denatured probe mixture (50% (v/v) formamide, 10% (w/v) dextran sulfate, 0.5% (w/v) SDS (sodium dodecyl sulfate), 0.2% (w/v) sheared salmon sperm DNA, in 2xSSC) was added to each slide and covered with a coverslip. Hybridization was carried out at 37°Ê in a humid chamber overnight. The slides were then washed in 2XSSC, 0.1XSSC, at 42 C for 3-5 min each step, and subsequently washed in 0.1% of TritonX-100, PBS at RT, 5 min each step. Sites of hybridization were detected with streptavidin-Cy3 (Pharmacia) at 37 C for 30 min. Finally the slides were counterstained with 1 µg/ml DAPI. Chromosomes were viewed with an Olympus BX60 fluorescence microscope equipped with a Sensys 1401E CCD camera. Red and blue images were captured in black and white with different filters. The images were combined and pesudocolored in the computer using software V++.

The FISH results showed that the chromosomes were blue, while the signals were red (Fig. 1). Each of the tested materials showed only one hybridization site of 5S rDNA and all of the sites were located on the subterminal regions (Fig. 1A-C). It was detected on the long arm of chromosome 2 in Zea mays ssp. mexicana (Fig. 1A), on the short arm of chromosome 5 in Zea diploperennis (Fig. 1B), and on the short arm of the detected chromosome pair, which could not be identified, in Zea perennis (Fig. 1C). The detected chromosomes for Zea mays ssp. mexicana and Zea diploperennis were recognized according to the standard karyotypes published by Zhang et al. (J. Wuhan Univ. 1:111-132, 1992) and Pasupuleti et al. (J. Hered. 73:168-170, 1982) respectively. In Zea mays ssp. mexicana and Zea diploperennis, the signal spot of 45S rDNA was detected on the subterminal region of the short arm of chromosome 6 where it covered the nucleolar organizer (NOR) and no minor 45S rDNA loci were detected (Fig. 1D-E). Whereas in Zea perennis, hybridization signals of 45S rDNA were localized on the subterminal regions of the short arms in two different chromosome pairs (Fig. 1F). The signal spots were larger on one pair of them, and smaller on the other. The signal spots for two members of each detected homologous chromosome pair resemble each other in size. It meant that the differences of signal size between the two detected chromosome pairs were not induced by technical reasons. They seem to correspond to the major and minor locus for 45S rDNA respectively.

The signals were observed on each chromatid in the detected chromosomes, which showed separated sister chromatids (Fig. 1A, D and E), while the larger signals combined by two spots were detected in those in which each two sister chromatids had not separated yet (Fig. 1B, C and F).

Our results showed that *Zea mays ssp. mexicana* and cultivated maize (*Zea mays*) (Mascia et al., Gene 15:7-20, 1981) were the same for the position of 5S rDNA, which were located on the long arms of chromosome 2, while *Zea diploperennis* and *Zea perennis* were different and their positions of 5S rDNA were located on the short arms of the unidentified chromosomes. These

results support the biochemical, karyotypic, and morphological evidence for the suggested taxonomy in the genus *Zea*.

Based on synapsis data. Molina and Naranjo (1987) deduced that all species of the genus Zea were allotetraploid except for Zea perennis. RFLP mapping showed that many markers mapped to two or more chromosome locations in the maize genome (Davis et al., Genetics 152:1137-1172, 1999). Actually, different genes in the maize genome could have single, double, triple, and even guadruple locations according to ISH results (Li et al., Hereditas 129(2):101-106, 1998; Ren et al., Hereditas 126(3):211-217, 1997). This means that only a part of the genes were tetraploid in the maize genome. It is evident that synapsis analysis could not tell the site number for a given sequence, nor did the Southern hybridization techniques, the copy number of which could only be inferred. However, FISH technique could not only confirm the site number of the gene on chromosomes, but also map them to a special region. In this study, the FISH results of the location for 5S rDNA showed that all of the tested Zea species had only one site in their genomes. For 45S rDNA, all also showed one site except for Zea perennis, which had two sites on different chromosomes. All of the sites were located on the subterminal regions of the chromosomes. Compared with the RFLP linkage map, the FISH results were also more precise. Therefore, FISH technique should be a powerful tool for the analysis of structure in a genome.

Zea perennis showed two 45S rDNA hybridization sites correspondingly to two different chromosome pairs (Fig. 1F). This provides evidence that Zea perennis is not a simple autopolyploid; it is allotetraploid at least for 45S rDNA. The results were also supported by the results with meiotic and karyotypic analyses (Molina and Naranjo, 1987).

If the genus Zea really originated as an allopolyploid from different diploid species (2n=10), that probably are extinct at the present time, as has been postulated (Anderson, 1945), then our results clearly demonstrated that diploidization and evolutionary loss of the 5S rDNA and 45S rDNA have apparently occurred in three teosinte species. This is the case because each diploid ancestral genome must have at least one site of 5S and 45S rDNA in their genome. Such evolutionary reorganization of rDNA loci has been reported in several plant genera in the studies with allopolyploid species including *Scilla* (Araki, Genetica 66:3-10, 1985; Vaughan et al., Heredity 71:574-580, 1993), *Milium* (Bennett and Thomas, Genome 34:868-878, 1991) and *Brassica* (Maluszynska and Heslop-Harrison, Ann. Bot. 71:479-484, 1993). The mechanisms for the diploidization and evolutionary loss of genes remain to be studied.

We would like to thank Prof. K. Arumuganthan, University of Nebraska for kindly providing the 5S and 45S rDNA probes. The work was supported by the National Natural Science Foundation of China (No. 30070376) and the Research Fund for the Doctoral Program of Higher Education (No. 207980112).

YANGZHOU, CHINA Yangzhou University

Study on male-sterility in Zea mays. XIII. RFLP analysis of mtDNA of Y_{II-1} type maize male-sterile cytoplasm --Qin, T, Xu, M, Dun, D, Chen, R, Bian, Y

One set of male-sterile lines with the same nuclear back-

grounds in maize, Cms-Tu₈₁₁₂, Cms-Su₈₁₁₂, Cms-Cu₈₁₁₂, Cms-Y_{II-1} U₈₁₁₂, were used in our experiments. MtDNA was prepared according to Kemble, RJ. Hybridization has been described by Sambrook, J. Long-length agarose gel electrophoresis can bring out high resolution for *Eco*RI, *Hin*dIII, *Bam*HI and *Pst*I digests of mtDNA of corn T, S, C groups and new Y_{II-1} type male-sterile cytoplasms. Hybridization of 5 mtDNA specific probes to restricted mtDNA showed that many different hybridized bands existed among T, S and C groups, The Y_{II-1} type was different from the T and S group, but there was little difference to the C group. We would apply the technique of sequence analysis to the division of male-sterile line Y_{II-1} type.

ZHENGZHOU, CHINA Henan Agricultural University

Mapping the major restorer genes for C-type cytoplasmic male sterility using SSR markers

--Tang, JH, Liu, ŽH, Chen, WC, Hu, YM, Ji, HQ, Ji, LY

For a long time, the fertility restoration of cms-C has been found to be a very complex system of inheritance in some analyses, and only the restorer gene Rf4 on chromosome 8S has been mapped. In this study, restoring line Fengke1 and male sterile lines cms-CMo17 and cms-C237 were used to study the inheritance of restoration of cms-C. The F2 and BC1 progeny were planted in Zhengzhou, China, and scoring was done in the spring and summer 1999-2000. The data indicated that fertility segregation in F2 and BC1 progeny of two crosses suited the theoretical ratio 15:1 and 3:1 (Table 1), and that Fengke1 had two dominant duplicating restorer genes Rf4 and Rf5. This result was the same as Chen WC et al. (1979).

Year	Combination	Total numbers	Restorer numbers	Sterile numbers	Theoretical ratio	Chi - square test
1999, Spring	(cms-CMo17 x Fengke1) F2	315	292	17	15:1	0.294
	(cms-CMo17 x Fengke1) BC1	87	70	17	3:1	1.673
	(cms-C237 X Fengke1) F2	195	180	15	15:1	0.692
	(cms-C237 x Fengke1) BC1	118	92	26	3:1	0.544
1999, Summer	(cms-CMo17 x Fengke1) F2	324	292	21	15:1	0.113
	(cms-CMo17 x Fengke1) BC1	148	116	32	3:1	1.01
	(cms-C237 x Fengke1) F2	114	103	7	15:1	0.002
	(cms-C237 x Fengke1) BC1	122	80	41	3:1	4.091*
2000, Spring	(cms-CMo17 x Fengke1) F2	391	365	26	15:1	0.107
	(cms-CMo17 x Fengke1) BC1	83	61	22	3:1	0.100

Table 1. The results of restoration of segregating populations of a restoring line and two sterile lines.

Note: *, Chi-square test did not suit to theoretical ratio

Equal amounts of DNA from 20 restorer plants and 20 sterile plants, from the F2 progeny of the crosses (cms-CMo17 x Fengke1), were mixed randomly to get the bulked pools. One hundred and sixteen pairs of microsatellite primers were used to screen parents and pools. Primers *bnlg1711*, *umc1225*, *bnlg1346*, *umc1072*, *phi058* on chromosome 5L and the primer *bnlg2307* on chromosome 8S produced polymorphic fragments which amplified in one parent or pool and not the other.

The primers, *bnlg1711*, *bnlg1346*, *phi058*, linked tightly with *Rf5*, and *bnlg2307* linked with *Rf4*, amplified successfully for both parents and 141 individuals selected from F2 progeny (Table 2). Microsatellite DNA products amplified by *bnlg1711* and *bnlg1346* are shown in Figure 1 and Figure 2.

Table 2. The statistical results of molecular markers and phenotypes of F2 segregating populations of (cms-CMo17 x Fengke1).

	А		Н		В		U	
SSR	Sterili	Resto	Sterili	Resto	Sterili	Resto	Sterili	Resto
primers	ty	rer	ty	rer	ty	rer	ty	rer
bnlg1711	0	32	3	75	2	29	0	0
phi058	3	28	2	77	0	31	0	0
bnlg1346	0	20	5	78	0	36	0	2
bnlg2307	0	24	1	89	4	23	0	0

Note: A: Labeled band of Fengke1; B: Labeled band of cms-CMo17; H: Hybrid band; U: Unknown band

P1P2SSSSSSRRRRRRRRRRRRRRRRRRRR

Note: P1: Fengke1; P2: cms-CMo17; R: F2 restorer individuals; S: F2 sterile individuals

Figure 1. Microsatellite DNA products amplified by *bnlg1711* in parents and some individuals of F2 progeny.

SSSSSSRRRRRRRRRRRRRR BSBRP2PIM

Note: M: maker; P1: Fengke1; P2: cms-CMo17; BR: restorer BSA; BS: sterile BSA; R: F2 restorer individuals: S: F2 sterile individuals.

Figure 2. Microsatellite DNA products amplified by *bnlg1346* in parents and some individuals of F2 progeny.

The linkage analysis between *Rf5* and microsatellite markers was performed by JOINMAP version 1.4. The linkage distances between *bnlg1346-Rf5-bnlg1711* were 1.68 cM and 7.51 cM respectively, and for *phi058-Rf5* the distance was 9.87 cM. As the three microsatellite primers tightly linked with *Rf5* are in bin 5.07 of chromosome 5, the restorer gene *Rf5* is also at bin 5.07 of chromosome 5. The locations of the markers, *phi058, bnlg1346, bnlg1711*, and *Rf5* are displayed in Figure 3.

Figure 3. Map location of *Rf5/rf5* and the microsatellite markers.

ALBANY, CALIFORNIA Plant Gene Expression Center

Regulation of maize inflorescence architecture

--Hake, S, Jackson, D, Kellogg, E, Martienssen, R, Rocheford, T, Schmidt, R, Walbot, V, Brendel, V

Crops that are considered cereals, like maize, rice, wheat, sorohum, barley, millet, and oats, account for the majority of calories consumed in the world. In addition to the cereal crops, there are approximately 10,000 species of wild grasses, which together cover about 11% of the earth's land surface. Genetic information on the regulation of maize inflorescence architecture should be readily transferable between other species, both cultivated and wild. Development of maize as a model system assumes that information from maize should be applicable to other cereals, and indeed to any other plant. Comparisons between maize and the other cereals, and between maize and wild grasses, will test this basic assumption of model system development. Nearly all grasses are characterized by the spikelet, a short branch that contains floral meristems. The arrangement of these spikelets in different grasses, and the branches on which they are home, reflects differing fates of the meristems produced during inflorescence development. Identifying the genes that determine meristem fates and understanding the mechanism by which these genes integrate their activities would be of immense value for developmental biology. evolutionary biology, and applied genetics and breeding. Genomic-based approaches will be integrated with existing genetic and molecular resources developed in maize. Inflorescence genes will be identified that will serve as tools for three different disciplines: investigation of meristem development, quantitative trait analysis, and comparative biology in the grasses. A combination of sequencing and expression analysis will be used to identify a subset of genes expressed at the earliest stages of development, and also correlating with the proliferation of specific meristem types in selected mutants. The function of these genes will be determined through genetics and mapping. Map positions of the inflorescence genes will provide a link to quantitative traits, and to mutations in maize and other grasses. A subset of these genes will be studied in other cereals and wild grasses. These comparisons will provide a valuable data set for the study of evolution and diversity across 60 million years of grass evolution. Whether these genes have been modified over evolutionary time and whether they function in other grasses the same way as they do in maize will be determined.

> AMES, IOWA Iowa State University

Nested deletions: a new tool for plant genomics --Peterson, T, Zhang, J, Lee, M, Wang, K

Plant genomes are laden with local sequence duplications and clusters of homologous genes. To simplify the analysis of these duplications and gene clusters, this project will develop a new genetic technology to generate chromosomal deletions quickly and efficiently. This approach is based on the finding that transposable elements can participate in alternative transposition pathways that generate novel recombination products, including large deletions and duplications. These products result when transposase acts upon transposon ends in direct orientation as occur in *doubleDs* or certain alleles of the maize p1 locus (Zhang, J and Peterson, T, Genetics 153:1403-1410, 1999).

The system employed here utilizes a transgene construct containing maize *Ac/Ds* transposon ends in direct orientation within an *I/dSpm* transposon (*Ned1*; *Nested deletions* 1). The *Ned1* construct will be transformed into maize; subsequent crosses will introduce the *En/Spm* transposase to mobilize *Ned1* to various genomic locations, and the *Ac* transposase to activate the deletion process. The action of *Ac* transposase on the *Ac* termini within *Ned1* generates an unlimited set of nested deletions with one end anchored at the transgene locus. The *Ned1* construct contains marker genes for detection of both *Ned1* transpositions and *Ac*induced deletions, as well as sequences for easy cloning of deletion endpoints via plasmid rescue.

If this demonstration project is successful, this approach could, in the future, be extended to the production of a set of maize lines containing *Ned1* elements at dispersed sites throughout the genome. Researchers could then use these lines to isolate deletions and other rearrangements in specific regions of the genome for a variety of research applications:

1. Nested deletions will facilitate mapping of molecular and genetic markers to defined intervals. Deletions can be used in simple and robust assays for mapping molecular markers; similarly, genetic mutants are easily mapped by test crossing.

2. Deletions will be useful for assigning functions to individual gene copies within complex loci, such as disease resistance loci.

3. Deletions and duplications will be useful in gene dosage studies that seek to examine the effects of gene copy number on expression and silencing.

4. Deletion endpoints can provide landmarks that are critical for genome sequencing projects. Such landmarks can be used for the unambiguous alignment of YAC or BAC clones which may contain multiple repetitive sequence elements.

AMES, IOWA

Iowa State University

Establishment of robust maize transformation systems for the public sector

--Wang, K, Frame, B, Gelvin, S¹, Wang, S-J¹, Kaeppler, H², Akula, C², Thompson, W³, Nguyen, T³, Allen, G³

¹Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392

²Department of Agronomy, University of Wisconsin, Madison, WI 53706

³Department of Botany, North Carolina State University, Raleigh, NC 27607

Recent advancements in molecular biology have enabled the large scale, rapid identification and isolation of plant genes. The determination of the function for thousands of genes, and the application of that knowledge to crop improvement, is now one of the major challenges facing plant biologists. Plant transformation is a key technology for functional analysis of genes via complementation, over-expression, or gene silencing strategies and will be equally essential in the application of genomic technology to crop improvement.

For most public research groups, maize transformation technology remains non-straightforward because they do not have access to the physical or human resources necessary to establish an efficient transformation effort. In addition, serious limitations exist with the technology, including low efficiency and throughput, difficulty in inbred line transformation, unpredictable transgene copy numbers, gene rearrangements and undesirable levels of transgene silencing through generations.

The long-term goal of this research is to establish a robust maize transformation system to enable the maize research community for future functional genomic research as well as crop improvement. Our specific objectives are:

1) **Developing a routine Agrobacterium-mediated transformation system.** We will conduct experiments to systematically optimize transformation and regeneration parameters for *Agrobacterium*-mediated maize transformation using non-super binary vector systems.

2) **Enhancing transgene integration and expression.** We will transfer and express the *Arabidopsis* and maize *rat* (resistant to <u>Agrobacterium transformation</u>) genes/proteins in maize to evaluate their effects in enhancing transgene integration. We will also evaluate the effect of tobacco and maize MARs (Matrix <u>A</u>ttachment <u>Regions</u>) on the efficiency of our transformation protocols and on the frequency of somatic silencing events in maize.

3) **Investigating germline transformation protocols.** We will investigate tissue culture-independent transformation protocols such as meristem transformation and female gametophyte transformation.

4) *Exploring inbred line transformation.* We will conduct research to improve inbred line transformation on B73, H99, Oh43 and W22.

In addition, we will facilitate transfer of improved protocols to the public sector by providing a more efficient transformation service at the Plant Transformation Facility at Iowa State University and organizing transformation workshops during the course of this program. It is also our intention that any vector systems, reliable transformation protocols and information generated from this research program will be made available for the maize community upon request.

> AMES, IOWA Iowa State University LINCOLN, NEBRASKA University of Nebraska

High-throughput mapping and gene discovery tools for maize genomics

--Wen, TJ, Qiu, F, Guo, L, Fu, Y, Liu, F, Lee, M, Russell, K, Ashlock, D, Schnable, PS

EST libraries. Two normalized B73 cDNA libraries with complexities >106 were prepared using mRNA from seedlings and silk (ISUM4-TN), and a wide variety of organs, stages of development, and conditions (ISUM5-RN). More than 27,000 3' ESTs from these libraries have been submitted to GenBank. Mean and modal trimmed sequence lengths are 545 and 575 bp, respectively. Unlike EST projects that are composed of 5' sequences

derived from a variety of genetic backgrounds, it is possible for these ESTs to be assembled into a set of unique genes with a very high degree of confidence. Two independent methods have been used to assay the number of genes defined by this collection of ESTs. In the first assay ESTs were contiged using CAP3 (Huang et. al, Genome Res 9:868-877, 1999). Representative contigs were manually QCed using Consed (Gordon et al., Genome Res 8:195-202, 1998). This analysis defined 4,666 singletons and 3,540 clusters for a total of 8,206 genes, resulting in an overall gene discovery rate of 30%. The second assay relies on preliminary grouping via the application of a novel bioinformatic tool developed during this project (the Cosine Homology Tool) followed by local Smith-Waterman alignment. Based on this analysis, these 27,020 3' B73 ESTs define 13,328 genes. Hence, one gene was defined for every two to three ESTs sequenced from these normalized libraries.

An additional B73 library (ISUM6) was prepared using the same mRNAs as ISUM5-RN, but 21 specific 6-bp "bar-code" tags were added to each mRNA prior to cloning (Qiu, et al, submitted). These tags allow the particular mRNA source from which a given EST was derived to be determined, even though this library was prepared using multiple sources of mRNAs. Over 3,600 3' ESTs from ISUM6 have been sequenced and submitted to GenBank.

Over 1,000 3' ESTs from a Mo17 cDNA library (ISUM7) were sequenced and aligned with the 3'UTRs of corresponding B73 alleles. At least one indel is present in 48% (277/572) of these alignments.

Development of IDP Markers and Genetic Mapping of ESTs. IDPs (InDel Polymorphisms) are a class of PCR-based, allele-specific genetic marker that detects insertion and deletions (indels) among maize alleles. Primer pairs were designed based on the 3' UTRs of ESTs and used to PCR amplify B73 and Mo17 alleles from genomic DNA. A useful primer pair can distinguish B73 and Mo17 alleles because it can amplify one allele but not the other, or because the PCR products from the two inbreds display a size polymorphism. A high-throughput primer design tool was developed. 531 out of 7,702 (6.9%) primers designed with this tool yielded validated +/- results or size polymorphisms between B73 and Mo17. About one third of the IDPs are polymorphic between any pair of inbreds tested, demonstrating the widespread utility of these genetic markers. The 531 IDP markers were genetically mapped using a panel of 94 RIs from the Intermated B73 X Mo17 (IBM) population. A set of 22 inbreds has been surveyed with 3,884 primer pairs. About 31% of these primers detect polymorphisms between at least one inbred and B73 or one inbred and Mo17. 88 F1BC populations are being developed and will be used to map an additional 3,000 IDPs and the corresponding cDNAs.

Rescue: a new tool for gene discovery. Because genes are present at equimolar concentrations in genomic DNA, genomic sequencing provides a means to uncover those genes that will be missed via EST projects as a consequence of being expressed only under unusual conditions or at very low levels. Unfortunately, it is not currently feasible/cost-effective to sequence the entire crop genomes. Hence, biochemical approaches need to be developed to filter out the non-coding regions of the genome so that limited sequences resources can be focused on genic DNA. A novel expression vector system has been developed to directly rescue openreading frames (ORFs) from genomic DNA. In a preliminary experiment, 250 maize genomic fragments cloned into this vector were selected based on a colorimetric screen. Sequence analysis of these clones revealed that 93.6% (234 out of 250) contain an uninterrupted ORF and 55% (129 out of 234) exhibit significant degrees of sequence similarity to entries in protein and EST databases. Many of the remaining clones are thought to contain ORFs that have not yet been discovered via EST sequencing.

> ATHENS, GEORGIA University of Georgia

Comparative genomics of maize and sorghum --Paterson, AH

The small genome of sorghum (Sorghum bicolor) is valuable in several ways for advancing study of the much more complex genome of maize. Sorghum and maize are thought to have diverged from a common ancestor about 20-25 million years ago and share a high degree of macro-colinearity albeit with localized deviations. Most sorghum and maize chromosomes differ by 1-2 major rearrangements, a much higher level of similarity than either has with rice. Based on outputs and ongoing activities of an NSF-funded comparative genomics project, a growing set of opportunities will soon exist to take advantage of the close relationship between maize and sorghum for genomic research. Highlights of these opportunities include Genbank access to about 50,000 two-pass sorghum ESTs, and BAC hybridization data for genetically mapped probes that are anchor points between sorghum, maize, and rice. The underlying BAC libraries include those being used in the international rice sequencing effort, and the NSF maize genomics effort led by Univ. Missouri -- all BAC libraries have been fingerprinted at CUGI. A host of opportunities in structural, functional, and evolutionary genomics are anticipated through the detailed comparison of the maize and sorghum genomes.

> BRISTOL, UNITED KINGDOM University of Bristol

A small but significant maize functional genomics facility --Edwards, D, Barker, G, Wilson, I, Grimmer, M, Edwards, KJ

High throughput transposon tagging. We have produced a variety of transposon mutagenesis resources based on Robertson's Mutator (Mu) transposable elements. Currently over 700 amplified Mu-tagged insertion sequences are available on a blast searchable database MuDB and seed harbouring these inevents available sertion are on request (http://www.cerealsdb.uk.net/). In 1998, we developed a classic PCR screen for mutants within known maize genes; however, this has now been superseded by the MuArray. Muarray has been developed for the rapid identification of maize plants harbouring Mutator transposon insertions within specific genes. Mu-flanking sequences have been amplified from over eight thousand individual Mu-active plants (representing over 400,000-insertion events) using an optimised MuAFLP protocol. These transposon-flanking sequences have been arrayed at a high density onto glass slides, with each microarray feature representing an individual Mu-active maize plant. Hybridisation of these arrays with Cy dye labelled genes identifies plants with Mu-insertions within these genes. Knockout plants are being characterised using a range of physiological, biochemical and molecular methods including gene expression microarrays to provide an insight into gene function. This resource is available for screening by the international maize community by contacting Dave.Edwards@bbsrc.ac.uk or via our web site www.cerealsdb.uk.net

EST-based SNP discovery. We have developed a SNP detection program to identify putative polymorphisms between orthologous and parologous sequences from expressed sequence databases. By calculating SNP scores based on redundancy and co segregation of haplotypes, we can differentiate between errors due to sequencing and true genetic polymorphisms. This has advantages in throughput and accuracy over previous methods, which relied on the analysis of original sequence trace files. This program has been applied initially to the >100 000 expressed maize sequences available in the public databases and will be used to identify putative polymorphisms within expressed sequences derived from the Bristol-based IGF program and other public wheat sequence repositories. Please contact Dave Edwards for further details.

Microsatellite-based SNP discovery. By characterising the flanking regions of 52 sequence tagged microsatellites from 11 Zea mays inbred lines we have identified a total of 324 sequence polymorphisms. These polymorphisms consisted of both single nucleotide polymorphisms and indels in a ratio of approximately two to one. Interestingly, the level of sequence variation within the flanking regions of microsatellites linked to expressed sequence tags appears to be lower than microsatellites that were unlinked to expressed sequence tags. Conversion of the SNPs into allele specific oligonucleotides followed by covalent binding to glass slides allowed the sequence polymorphisms to be used in a simple hybridisation-based genotyping procedure. This procedure allowed us to discriminate between different inbred lines and allowed variations within a single inbred to be identified. The sequence information generated and the assay developed could be used as a starting point for the further development of a non-gel based, multi-locus, multi-allele screen for large-scale maize genotyping (Mogg et al. In press).

ZEASTAR: A Functional Blueprint for the Zea mays Endosperm Cell factory. In March 2001 the Bristol lab began to co-ordinate a 10 partner EU Framework V programme designed to generate a set of resources for studying Flint-maize grain development. These resources will include numerous cDNA libraries from key stages in endosperm development; high-density EST insert arrays, a proteomics-based description of the endosperm and numerous transposon tagged lines. It is our hope that by characterising the Flint endosperm to this level we will be able to provide both further research materials for the academic laboratories involved and material for European-based plant breeders and food processors.

> COLUMBIA, MISSOURI University of Missouri

Functional genomics of plant polyploids --Birchler, JA

The NSF genome project "Functional Genomics of Plant Polyploids" seeks to understand the impact of ploidy on gene expression, the genomic changes that accompany newly formed polyploids and the molecular basis of heterosis with special emphasis on its interrelationship with ploidy. The group is composed of Tom Osborn, PI, University of Wisconsin, Jeff Chen, Texas A and M, Luca Comai, University of Washington, Rebecca Doerge, Purdue University, Rob Martienssen, Cold Spring Harbor, and Jim Birchler, University of Missouri. The species being examined are Arabidopsis, Brassica and Corn (The ABCs).

This report will focus on the maize aspects of the project. Postdoctorate Akio Kato has succeeded in producing tetraploids of diverse inbred lines using a nitrous oxide gas treatment shortly after fertilization of diploids. The gas blocks the first mitosis of development causing a doubling of chromosomes. When the kernels were mature, they were germinated and root tip chromosome counts identified the tetraploid individuals. This procedure allows the production of highly homozygous tetraploids of standard inbred lines. The four tetraploid inbreds that we are focusing on are A188, W22, B73 and Oh43. The generation of other tetraploids is in progress.

Dr. Kato had already developed a technique that is capable of generating triploid embryos that are associated with normal endosperm (Genome 42:154-157, 1999). This involves treatment of developing pollen with trifluralin. This compound blocks mitosis and when applied at the appropriate stage, generates high levels of diploid sperm. Using this technique, it will be possible to generate triploids of these four lines. Using stock 6, material has been generated that will yield maternal haploids of these lines. Thus 1-4x dosage series will soon be available for analysis.

Gene expression will be examined in the 1-4x dosage series to determine the impact of allelic variation on the modulations of gene expression that result from changes in ploidy. These materials will also be useful for examining any epigenetic effects on gene expression or chromatin that might be influenced by ploidy. Lastly, these materials will be used to examine the molecular basis of heterosis. Hybrids and inbreds at the 2x to 4x levels will be examined for global patterns of gene expression and for morphological characteristics to gain an understanding of the relationship of dosage dependent gene regulation and heterosis.

> COLUMBIA, MISSOURI USDA-ARS and University of Missouri CLEMSON, SOUTH CAROLINA Clemson University ATHENS, GEORGIA University of Georgia

The Maize Mapping Project: Comprehensive genetic, physical and database resources for maize

--Coe, E, Cone, K, Davis, G, Gardiner, J, McMullen, M, Polacco, M, Sanchez-Villeda, H, Wing, R, Soderlund, C, Chen, M, Paterson, A

The objective of this project, supported by the National Science Foundation Plant Genome Research Program, grant DBI 9872655, is to produce an integrated genetic and physical map, with a high-resolution genetic map joined to fingerprinted and assembled BAC contigs. A comprehensive and systematic set of genetic and physical map resources will facilitate (1) cloning target genes based on their function and their position in the genome; (2) documenting all genes and their interplay; (3) defining, exploring, and exploiting all the existing genetic diversity in a species; (4) extrapolating to gene functions in crop plants with functional information and syntenic relationships among related species; and

(5) sequencing of the maize genome.

The maize genome is comparable in size to that of humans. Its complexity is even higher because of the many families of retroelements distributed throughout the genome, estimated to be over 80% of the genome content. Fragmenting such a genome, fingerprinting the BAC fragments, and assembling the fragments requires deep coverage accompanied by pegging with markers to confirm and to intercalate the assembled contigs. The markers should be anchored to the genetic map insofar as feasible. This is our central strategy.

The Genetic Map. The goal is a densely marked, high-resolution genetic map, constructed for the intermated B73/Mo17 (IBM) population. We have developed a map containing >1850 markers. The parents of the population, B73 and Mo17, represent the two major heterotic groups of U.S. maize germplasm, and B73 is the inbred line used for the BAC libraries. The IBM population consists of 302 recombinant inbred lines that underwent four rounds of random mating at the F2 stage. The additional meioses result in a three-fold expansion of the genetic map (Liu et al., Genetics 142:247-258, 1996). The combination of a large number of lines and the map expansion generate a map resource with ~17 times the order-resolving power of our previous maize maps (UMC 98 map, Davis et al., Genetics 152:1137-1172, 1999; BNL 96 map, Burr et al., Genetics 118:519-526, 1988). The IBM map now contains >1000 RFLP loci, of which 185 are with new Pstl probes developed in the MMP, 46 with new Limagrain (lim) probes, and 129 with nonmaize probes. It contains >800 SSR loci, of which 583 were developed in the MMP.

To contribute to map development, we have produced a number of new single copy RFLP probes, SSR primer sets, and markers for Mutator insertion sites. Screening images for RFLP probes, primer and screening information for 1800 maize SSR loci, and mapscore data for the IBM population are being made available in the Maize Genome Database (MaizeDB, <u>http://www.agron.</u> <u>missouri.edu/</u>). Twelve hundred new SSR loci have been defined in this project (Sharopova et al., Plant Mol Biol 48, 2002) on IBM or either of two other mapping populations. Comparison maps with SSR loci for IBM and the two other populations have been constructed and are displayed at http://www.agron.missouri.edu/ body/ssr.html#mapfiles. SSRs in process are expected to reach the goal of 2000 public SSR loci, which are compiled and tabulated at <u>http://www.agron.missouri.edu/ssr.html</u>.

Seed of the IBM lines, or of a subset of 94 of them, can be obtained from the Maize Genetics Cooperation Stock Center, Urbana, IL. In addition to making seed available, we have elected to aid and promote the use of the IBM map by distributing DNA of the 94 lines in microtitre plate format for individual investigators to use to map target genes of their choice (see http://www.cafnr. missouri.edu/mmp/dna_kits.htm). Web entry for submission of map score data, from which the resulting locus positions are returned to the investigator, is available at http://www.cafnr. missouri.edu/mmp/ibm_resources.htm. Our intention is to provide the community of maize investigators with resources by which all can contribute to comprehensive information on maize gene map position.

To map unigenes that are pegged to BAC contigs but are not on IBM, SNP and INDEL markers are being developed from unigene sequences (see below). Genomic sequencing for regions corresponding to 480 unigenes across 12 inbred lines has been completed. SNP assay is by primer extension and detection on the ABI 3700, and the data are automatically genotyped and processed for mapping by the Laboratory Information Management System (LIMS). The target is to add 2000 genetically mapped SNP pegs.

Mapping of MITEs and AFLPs, which will add to pegs on BAC pools (see below), is also in progress. IBM DNA has been prepared and validated, multiplexed genotyping has been optimized, selective amplifications are completed, and data are ready for evaluation.

The LIMS for the project includes automated genotyping and validation of RFLP, SSR, and INDEL scoring, and preparation of mapping files.

A viewer interface for genetic maps, which provides for selection of various maps and the ability to compare and align any two maps between mapping populations or between chromosomes, or with the 3,267-marker RGP maps for rice, has been deployed and is viewable at http://www.agron.missouri.edu/cMapDB/ cMap.html. This utility has been derived from INE of the Japanese Rice Genome Program (http://rgp.dna.affrc.go.jp/giot/ INE.html), and was made available to modify for maize applications through the cooperation of Drs. Takuji Sasaki and Bal Antonio. Aligning comparisons with sorghum are to be added as available.

A BLAST server is being made available to return a map location if known.

Mutant mapping has placed 412 mutants to bins with highthroughput SSR protocols.

The Physical Map. Our proposed goal was to derive a 10X public BAC library with one enzyme, and to fingerprint and assemble the BACs into contigs to the extent possible. We have succeeded in expanding beyond this goal to genomic DNA libraries derived with HindIII (12.6X) and EcoRI (7X), plus a third library with Mbol (7X), produced in collaboration with Jo Messing. Sixfilter sets (6X for HindIII, 7X for EcoRI, 7X for Mbol) are made available by CUGI at http://www.genome.clemson.edu/orders/. BACs of the HindIII library may be obtained from CUGI, and of the EcoRI and MboI libraries from CHORI at http://www.chori.org/ bacpac/home.htm).

Filter hybridizations of complex markers (telomere, centromere, knob, ribosomal probes) have been scored and are being Data have been incorporated in the FPC summarized. presentation at CUGI.

Filter hybridizations of selected single-copy RFLP markers. including the core markers, have been carried out to peg and anchor BAC contigs to the genetic map. The data have been incorporated in the FPC presentation at CUGI.

Filter hybridizations of RFLP markers that have been mapped in sorghum, maize, and rice are being carried out at the University of Georgia with overgo probes to peg and anchor BAC contigs to cross-species maps. The data will be incorporated in the FPC presentation at CUGI and will be incorporated into MaizeDB.

Following the innovations of Klein et al. (Genome Res 10:789-807, 2000) for pegging with mapped AFLP markers in pools of sorghum BACs, we have prepared 288 pools from six dimensions in a 48 x 48 x 48 array (110,592 BACs, 6X) for analysis with AFLPs, MITES, and selected SSRs. Quality checks on the pools with RFLPs and SSRs have been completed and are positive. So far 100 genetically mapped SSRs have been applied to the pools, and successful tests of deconvolutions of the pools have been done.

On a larger scale, pegging of ESTs has been done in a partnership of the Maize Mapping project with DuPont and Incyte, initiated in April 2001 and completed in November 2001. Over 10,000 EST unigene consensus assemblies have been filter-hybridized to 165,000 BACs (~10X) with overgos. The Public Cornsensus and Unigene set developed by Dupont has been submitted to GenBank. The data have been incorporated in the FPC presentation at CUGI. An ongoing summary of EST documentation is presented at http://www.agron.missouri.edu/ests.html.

Because each library is from the inbred line B73, this enables the project to proceed apace with fingerprinting and assembly of the entire robust resource using the functions of FPC. Fingerprinting progress, including pegging with markers, is viewable at http://www.genome.clemson.edu/projects/maize/fpc/. As of December 23, 2001, 164,701 fingerprints (8X) and 7,760 markers form 9,462 contigs and 7,437 singletons at cutoff 10-12

A viewer interface is prepared to display the IBM map and BAC contigs with popups for dynamic marker links. This utility has been derived from INE of the Japanese Rice Genome Program (http://rgp.dna.affrc.go.jp/giot/INE.html), and was made available to modify for maize applications through the cooperation of Drs. Takuji Sasaki and Bal Antonio. The viewer, termed iMAP, is being populated with data preparatory to deployment.

Educational Links

Interactive Maize Plant is presented at http://www.agron. missouri.edu/IMP/frames imp2.html.

Methods for Controlled Pollinations of Maize/Corn are presented at http://www.agron.missouri.edu/IMP/WEB/pollen.htm.

Information about the Life Science Undergraduate Research Opportunities Program at Missouri is provided at http://www. lsurop.missouri.edu/PGI.

> COLUMBIA, MISSOURI University of Missouri ST. LOUIS, MISSOURI Washington University SALT LAKE CITY, UTAH University of Utah

Sequence, expression and evolution of mitochondrial genomes in the genus Zea --Newton, K, Clifton, SW, Fauron, C

Plant mitochondrial genomes are unusual in their diversity of structure and rapidity of change. Although most of the known coding regions are very conserved, large intergenic regions show no sequence similarities. These "non-coding" regions have important roles in the rapid structural evolution seen for plant mitochondrial genomes, and they can become functional as components of chimeric genes that have been described as being responsible for several cases of cytoplasmic male sterility (CMS). In order to understand how non-coding regions of mitochondrial genomes contribute to their structural and functional diversity, it is necessary to examine closely related species. To address these issues, five mitochondrial genomes within the genus Zea, including fertile and CMS mtDNAs of maize, Zea parvialumis (the probable progenitor of maize), Zea perennis (from the most distant section of the teosintes), will be sequenced and compared to the mtDNA sequences of a related grass, Tripsacum dactyloides and a more distantly related plant, Sorghum bicolor. A direct sequencing approach will be complemented with the efficient mapping of several *Zea* mitochondrial genotypes. The regions of a fertile maize mitochondrial genome that are functional will be determined by expression analyses using mitochondrial RNAs from different tissues and stages of development. Previous data indicated that some mitochondrial genes are expressed preferentially during specific stages of development. The extent of this diversity of expression will be examined. This NSF-funded genome project will contribute to an understanding of the content, organization and expression of grass mitochondrial genomes.

> EAST LANSING, MICHIGAN Michigan State University

Functional genomics of hemicellulose biosynthesis in cereals

--Hazen, SP, Scott-Craig, JS, Walton, JD

Elucidation of the biosynthetic pathways for the complex polysaccharides of plant cell walls remains one of the major unsolved questions in plant biology. We summarize here a research grant from the NSF Plant Genome program (award #99-75815) to Jon Walton, Natasha Raikhel, Ken Keegstra, and Curtis Wilkerson, Michigan State University. The goals are to use modern genomic and proteomic strategies to identify candidate genes encoding hemicellulose biosynthetic enzymes and to test their function biochemically and genetically. The hemicelluloses are chemically complex and show striking differences between species and between cell types within a plant. Hemicelluloses are metabolically dynamic and influence many important biological and economic properties of cell walls. Because the cell walls of the Poaceae are different from the walls of other plants, we are working on both dicots (cotton, Arabidopsis, and Nasturtium), and cereals (maize and rice). Here we discuss two of our strategies for identifying hemicellulose genes in cereals.

Analysis of the *CSL* gene family of rice: Cellulose synthase catalytic subunits are encoded by the large *CESA* family in all plants (e.g., Holland, N et al., Plant Physiol 123:1313, 2000). Plants also contain a large super-family of related genes, called "cellulose synthase-like", or *CSL*. Arabidopsis contains six families of *CSL* genes (*CSLA*, *CSLB*, *CSLC*, *CSLD*, *CSLE*, and *CSLG*). On several grounds it appears likely that *CSL* genes encode hemicellulose biosynthetic enzymes (Richmond, TA, Somerville, CR, Plant Physiol 124:495, 2000).

We have analyzed the CSL genes of cereals, particularly rice but also maize and sorghum (Hazen, S et al., Plant Physiol, in 2002; available press. on-line at http://www.prl.msu.edu/walton/research-cwb.htm). CSL genes are not highly represented in EST collections from any cereal. Our analysis of the rice CSL genes has been based on the Monsanto rice genome database (~50% complete), public genomic data, and the public EST collection (~100,000 ESTs). cDNAs corresponding to the ESTs were obtained mainly from the Rice Genome Project (RGP) in Japan and their sequences completed by us. Based on our experience, the rice EST collection at the Rice Genome Project in Japan (RGP) is of very high quality - virtually all of the clones that we have ordered have arrived quickly and been correct.

To date, we have identified 37 *CSL* genes in rice. Of these, we can reliably predict 23 full-length proteins using gene prediction

software and manual alignments to the *Arabidopsis* CsI proteins. All of our sequences have been submitted to GenBank and are also available on-line at http://www.prl.msu.edu/walton/researchcwb.htm.

The *CSL* genes of rice and *Arabidopsis* have striking similarities as well as differences, which is consistent with the fact that the hemicelluloses of dicots and cereals are similar in some respects and different in others. For example, rice has Csl proteins that are closely related to the *Arabidopsis* CslA, CslC, CslD, and CslE families. Some *CSL* genes are physically linked in both species, e.g., the *CSLB* genes in *Arabidopsis* and four of seven *CSLF* genes in rice. On the other hand, rice has no members of the *CSLG* or *CSLB* families but instead has two new families, which we have named *CSLF* and *CSLH* (Hazen, S et al., 2002; and see TA Richmond's web page at: http://cellwall.stanford.edu).

As one way to test the function of the *CSL* genes, we are using *Agrobacterium* to transform rice calli with plasmid constructs designed to express double-stranded RNAs (RNAi), which has been shown in rice and other plants to result in post-transcriptional gene silencing of the endogenous message (Wesley, SV et al., Plant J 27:581, 2001). We are now in the process of analyzing regenerated transgenic plants representing twelve *CSL* genes. Since the *CSL* mRNAs are not sufficiently abundant to analyze by RNA blotting, and RT-PCR cannot reliably detect quantitative changes in mRNA levels, our initial screening is being done at the whole plant level. To date, we have found that some RNAi *CSL* plants have no detectable phenotype whereas at least one, a plant designed to silence *OsCSLC9*, is dwarfed and partially sterile and has no or few root hairs.

Natural genetic variation and map-based candidate gene discovery: Hemicelluloses contribute to several complex phenotypic traits in cereals including pest resistance and digestibility of stover and silage in maize (Hedin, PA et al., J Chem Ecol 22:1655, 1996; Brice, RE, Morrison, IM, Carbohydr Res 101:93, 1982), nutritional quality and dough viscosity in wheat and rye (e.g., Vinkx, CJA, Delcour, JA, J Cereal Sci 24:1, 1996), and barley brewing clarity. Hemicellulose content has been shown to be under complex genetic control, and QTLs affecting hemicellulose composition have been identified in at least one case.

With the existing and emerging genetic resources available for cereals, especially maize, it should be possible to identify QTLs affecting hemicellulose composition and thereby identify the responsible genes. We found significant (p < 0.05) differences in cell wall monosaccharide composition (arabinose, xylose, and/or galactose) among eleven of eighteen seedling tissue types tested and among six of eighteen juvenile tissue types. Ten inbreds were analyzed. We have found that the inbred lines Mo17 and B73 are significantly different for cell wall arabinose and xylose content. We can therefore take advantage of the high-density genetic linkage map being developed from a cross of B73 and Mo17 (called by the Missouri Maize Mapping Project IBM) (http://www.cafnr.missouri.edu/mmp/) (Vuylsteke, M et al., Theor Appl Genet 99:921, 1999; Davis, G et al. Maize Genetics Conference Abstracts 42:P79, 2000). We have analyzed the walls of a subset of the IBM population with the intent to identify QTLs associated with the genetic variation we have identified. Once the marker data is made available, these efforts should reveal the number and impact of genes contributing to the variation. A similar and unique study identified a major QTL associated with

the ratio of arabinose to xylose in wheat flour (Martinant, JP et al., Theor Appl Genet 97:1069, 1998). Subsequent to mapping one or more QTLs, candidate genes can be identified using comparative mapping databases. Completion of the rice genome will allow the identification of candidate genes controlling hemicellulose composition in rice based on synteny with maize.

> EUGENE, OREGON University of Oregon

NSF plant genome project: Functional genomics of chloroplast biogenesis

--Barkan, A, Stern, D¹, Hanson, M² ¹Boyce Thompson Institute ²Cornell University

Through funding by the NSF Plant Genome Research Program, we are developing a genetic resource in maize that is tailored for the study of chloroplast biogenesis and function (http://chloroplast.uoregon.edu). The goals of the project are to assemble a saturated collection of *Mu*-induced non-photosynthetic mutants, and to develop the collection for use in two ways: (i) as an efficient reverse genetic resource to identify loss-of-function alleles of nuclear genes suspected of influencing chloroplast functions; and (ii) as a forward genetic resource to identify and clone "new" genes involved in chloroplast biogenesis.

The Mutant Collection. Mutants are identified by screening the F2 progeny of high copy *Mu* lines for the segregation of seedlings with chlorophyll-deficient (pale green, yellow, albino, virescent, albescent, striate, zebra-stripe), or high chlorophyll fluorescent leaves. Prior studies with maize and other organisms indicate that these phenotypes report defects in most aspects of chloroplast biogenesis and function, including defects in the expression of chloroplast or nuclear genes encoding components of the photosynthetic apparatus; assembly of photosynthetic enzymes; protein targeting to and within the chloroplast; plastid pigment/ lipid/ prosthetic group synthesis; light signaling; and bundle sheath cell differentiation.

To ensure that mutants in the collection are independentlyarising, *Mu*-active F0 founder plants are progeny-tested to determine whether they carry mutations that cause any of our selected phenotypes. If the progeny of a self-pollination segregate any such phenotype, the corresponding F1 outcross is not used for the generation of F2 screening material. Many different founder plants have been used, to maximize coverage of the genome. Complete lineage information for each mutant is stored in a database that is available on-line.

There are currently ~2000 mutants in the collection. We believe that we are nearing saturation because those reverse genetic screens that are successful generally yield multiple alleles. We intend to add ~500 additional mutants in the coming year and anticipate that the collection will be complete at that time.

The Reverse Genetic Screening Service. The reverse-genetic screening service involves PCR screens of pooled mutant DNAs for *Mu* insertions in genes of known sequence. The fact that these screens are limited to mutants with phenotypes offers the advantage that mutant alleles recovered generally have phenotypes, obviating the need to sort through numerous "silent" insertions in introns and UTRs. Of course, if disruption of the targeted gene does not cause one of the collected phenotypes, alleles are unlikely to be recovered. Therefore, we are limiting screens to genes predicted to encode chloroplast-localized proteins, or for which there is genetic or biochemical evidence that the mutant phenotype will be within the spectrum of those in our collection. A more detailed discussion of the advantages and disadvantages of this resource in comparison with various related resources can be found on our web site.

In pilot screens we have recovered numerous useful alleles, including (a) mutant alleles of genes identified in 2-hybrid screens involving genetically-defined chloroplast gene expression factors; (b) new mutant alleles of chloroplast biogenesis genes previously cloned by transposon-tagging; (c) mutant alleles of genes whose sequences are related to known chloroplast biogenesis genes; (d) mutant alleles of genes with bacterial homologs that function in conserved processes in common to bacteria and plastids.

Users design and test primers according to the protocol on our web site. Screens and heritability tests are then done at the University of Oregon and seed from positive families are provided to the user for propagation and analysis. There will be no charge for this service through the end of 2002. Users should anticipate a turn around time of 2-3 weeks.

The Phenotype Database. The phenotype database contains information on leaf pigmentation, and chloroplast protein and RNA deficiencies. For mutants that are not completely lacking in chlorophyll, a snapshot of chloroplast protein deficiencies is obtained by probing immunoblots with an antibody cocktail that simultaneously detects one core subunit of each of the major photosynthetic enzyme complexes. These characterizations are nearing completion. To detect defects in chloroplast RNA metabolism, plastid RNAs encoding missing proteins are being analyzed by Northern hybridization; these data will be added to the database as they become available.

Users can search the database for pigment or protein defects of interest and request mutant seed for further study and/or cloning.

The Web Site. Our web site (http://chloroplast.uoregon. edu) provides an overview of the mutant collection and its potential applications, instructions for using the reverse genetic screening service, and access to the phenotype and lineage databases.

> ITHACA, NEW YORK Cornell University MYSTIC CONNECTICUT Monsanto Company

Regional mutagenesis utilizing Activator (Ac) in maize --Conrad, L, Hardeman, K, Lewis, P, Lebjko, S, Farmer, P, Ahern, K, Chomet, P, Brutnell, T

As demonstrated in numerous studies, the *Ac/Ds* family of transposable elements can serve as powerful mutagens in the cloning and characterization of genes (see Dellaporta and Moreno in: The Maize Handbook, pp. 219-233, 1994). Nevertheless, the propensity of *Ac* for short-range transposition has limited its use in genome-wide mutagenesis experiments. The comprehensive goal of this NSF-funded Plant Genome Research project is to overcome this limitation and provide the maize research community with

MappedAc Elements

Figure 1.

a series of *Ac*-containing lines for use in regional mutagenesis. We are in the process of creating a collection of approximately 200 near-isogenic lines each containing a single active *anchor Ac* (*aAc*). Each *aAc* will be positioned on publicly available recombinant inbred populations to identify those elements at roughly 10 cM intervals throughout the entire genome. Importantly, the maintenance of this *Ac* population in a well-characterized genetic inbred, W22, will permit screens for subtle phenotypic changes associated with *Ac* insertion. These phenotypes are likely to arise when a single gene contributing to a multigenic quantitative trait is disrupted or when a single member of a multigene family is inactivated. In addition, it will be possible to exploit the tendency of *Ac* to move to linked sites to create an allelic series of a target gene.

To date, we have cloned sequences flanking 64 Ac elements and confirmed 39 as linked to an active, germinally-inherited Ac element. We have placed 18 on the genetic map, and are continually cloning, mapping, and generating additional active Ac's at unique locations throughout the genome (Figure 1).

In addition to the development of the technology and protocols for regional mutagenesis, we plan to calculate the efficiency of localized *Ac*-mutagenesis. Utilizing several *aAc* lines positioned on chromosome 1, we are generating transpositions and screening the F2 progeny for Ac- induced mutations. This will allow us to determine the frequency of Ac-induced mutations and to examine the relationship between proximity of a target locus and the donor Ac line.

Finally, an important objective of this project is to develop a summer genetics program involving senior researchers, graduate students, undergraduate students, high school teachers, and high school students. This program is designed to facilitate interactions between often isolated groups in both research and education. It is our hope that this will give researchers a chance to familiarize themselves with the use of these aAc lines, while at the same time educating young students about maize genetics, and increasing the public understanding of science. The Emerson Summer Genetics Program officially began in June 2001. The participants included: five high school students (local and national), one high school teacher, three undergraduates (local and international), two post-docs, two graduate students, and two senior researchers. The participants cooperated on various projects in the field and lab and have developed a web site detailing the program activities at: (http://bti.cornell.edu

<u>/Brutnell_lab2/Projects/ESGP/ESGP-Program.html</u>). Importantly, the students participating in this program helped generate 3,000 transpositions from *Ac*'s positioned on chromosome 1 that will be used in determining the frequency of *Ac*-induced mutations.

> PISCATAWAY, NEW JERSEY Rutgers University

A set of transgenic maize lines for localized mutagenesis based on the *Ac-Ds* transposon system

--Dooner, HK

The goals of our NSF Plant Genome project are: (a) to demonstrate that the transposon Ac (*Activator*) can be used as a gene identification and isolation tool, as well as a mutagen, in the complex maize genome, and (b) to develop the necessary tools to facilitate that use.

In the first phase of the project we confirmed that Ac inserts exclusively in or close to genes and is, therefore, an excellent genesearching engine in the highly repetitive maize genome (Cowperthwaite et al., The Plant Cell 14: in press, 2002). A collection of 1225 independent germinal Ac transposants from the mutable allele wx-m7(Ac) was generated and deposited in the Maize Stock Center. All transposed Acs were mapped relative to the wx donor locus. In parallel, PCR methods were adapted for the isolation of DNA adjacent to the insertion (tac sites). Over 40 tac sites were isolated, sequenced, and deposited in GenBank, after confirming that they corresponded to bona fide germinal transpositions. All detected either one or two bands in genomic Southern blots and 54% had homology to sequences in the databases. Expression of most of these putative genes was confirmed by Northern blots. tac sites from several Ac-tagged mutants were also isolated, but most Ac insertions did not cause obvious phenotypes, as could have been anticipated from the highly duplicate nature of the maize genome (Gaut, B.S., Gen. Research 11:55, 2001). Besides, Ac insertions differed significantly in the subtlety of their mutant phenotypes. At one end was an insertion in a chloroplast ribosomal protein gene, which resulted in a lethal embryo. At the other, was an insertion in a sesquiterpenoid cyclase gene involved in an indirect defense response against insects. which required special assays for detection (Shen, B. et al., Proc. Natl. Acad. Sci. USA 97:14807-14812, 2000). In addition, we began transformation experiments to eventually produce a comprehensive set of transgenic maize lines that will facilitate the isolation of genes from any location in the genome. A highly embryogenic bz wx inbred line was developed and transformed with Ac* and Ds* constructs that had been modified to facilitate the PCR isolation of the transposon-adjacent sequence.

The main goal of the second phase of this project is to create a comprehensive set of transgenic lines that will serve as starting points for the production of future insertion libraries. First, we will demonstrate the germinal transposition of an engineered Ac^* or Ds^* element and the ready isolation of the DNA adjacent to the transposon. This will be accomplished in transgenic plants transformed with either uniquely marked Ac^* or Ds^* elements. An Agrobacterium-based method is necessary for the former, whereas a biolistics method is sufficient for the latter. Upon deciding on a particular combination of transposon and transforma-

tion method, we will proceed to create a set of 124 transgenic lines with a uniquely marked Ac^* or Ds^* element at regularly spaced locations in the genome. In this set, most genes in the maize genome will be within 7 cM of a launching platform and will be, therefore, realistic targets in a localized transposon mutagenesis experiment. These lines will be deposited in the Maize Stock Center and will serve as starting materials for the generation of future insertion libraries by interested scientists.

PISCATAWAY, NEW JERSEY Rutgers University WEST LAFAYETTE, INDIANA Purdue University

Collinearity of maize and sorghum at the DNA sequence level

--Messing, J, Linton, E, Song, R, Lai, J, Tanyolac, B, Kulikowski, C, Muchnik, I, do Lago, AP, Fuks, G, Armhold, G, Ramakrishna, W, Ma, J, Park, Y-J, Emberton, J, SanMiguel, P, Bennetzen, J

Summary. Comparative analysis of plant chromosomal regions has exceptional, but largely untested, potential for the discovery of genes, new classes of mobile DNA's, and the nature, rates and mechanisms of evolutionary change. Moreover, comparative analysis of closely related genomes that differ greatly in size can indicate both the origin(s) of that genome size difference and whether the small genome could be used as a surrogate for mapbased cloning of significant genes in the large genome species. By comparing gene clusters in a bi-genomic fashion, better computational programs for predicting gene boundaries and repeat elements will emerge. In a number of cases, gene sequences will be discovered with known phenotypes because of the integration of genetic and DNA sequence data. In this project, the genomes of sorohum (Sorohum bicolor L. Moench) and maize (Zea mays L.). two sister taxa from the grass family, have been chosen for such an analysis because of their importance as crop plants and as model genetic systems. Current projects to increase the density of DNA markers and phenotypes on both maize and sorghum maps will also benefit from this analysis because it will provide extensive evidence on the feasibility/difficulty of positional cloning in maize or its relatives. Evolutionary studies of cereal genomes, based on gene islands, will now be enhanced by the analysis of gene clusters and intergenic regions.

Selection of target sites. Since the maize genome (2.7 Gb) has expanded in size because of the recent amplification of eight major retrotransposon families (SanMiguel and Bennetzen, Ann. Bot. 81:27-44, 1998; Meyers et al., Genome Res. 11:1660-76, 2001), a certain length of genomic DNA has to be sequenced to facilitate a comparison between the larger maize and the smaller sorghum genome (0.77 Gb). In the case of sorghum, usually we select a single bacterial artificial chromosome (BAC) clone for each locus. These BACs contained inserts that ranged between 80 and 160-kb. These clones were chosen using maize sequences of a number of selected loci. After sequencing the sorghum clones and subjecting them to gene prediction programs, sorghum sequences were used to select maize BAC clones. Such reverse screening gave us an indication whether orthologous gene sequences are present and closely linked. However, sometimes translocation of paralogous sequences could yield two BAC clones from different chromosomal locations.

A total of 15 maize loci have been used as entry points into the genome. Twelve of these loci represent six duplicate factors (orthologous positions) in the maize genome (Rhoades, Am. Nat. 85:105-110, 1951). The remaining three loci do not represent duplicate factors, but are special gene clusters.

Two examples involve two closely linked orthologous regions. Two BAC clones, Z477F24 and Z178A11, are from chromosome arm 1L and contain the tbp1 (TATA box-binding protein) and the tb1 (teosinte-branched) locus at position 190.8 and 197.6, respectively; genetic positions have been taken from the Pioneer composite map, 1999, which has hyperlinks to all references (see MaizeDB). This segment is duplicated on chromosome arm 5S around position 55. Two BAC clones, Z474J15 and Z195D10, contain the tbp2 and tb2 loci, respectively. We have already sequenced the orthologous clones from sorghum. SB32H17 contains the TATA box-binding protein gene. Sorghum clone SB45I19 contains the ortholog to maize tb2 on maize chromosome arm 5S. rather than tb1. Another predicted gene linked to tb2 is present in sorghum, but not maize 1L. It will be interesting to see what function the orthologous genes on 5S might have. In the case of tb2, we already know that it is degenerate and probably not expressed, which may explain why tb1 acts as a single Mendelian factor in crosses with teosinte (J. Doebley, pers. comm.). Interestingly, tb1 appears to in a gene-poor region, as it is the only gene that we can find with certainty within 130-kb, while tb2 is contained within a gene-rich region, indicating the divergence of orthologous regions in the maize genome because of retrotranspositions.

Other closely linked duplicate factors are orange pericarp (orp) and fertilization-independent-endosperm (mfie), mapping about 1 cM apart on 4S and 10S. We are currently sequencing Z332A24 and Z409L08, which contain the genes for orp1 (4S, 66.3) and orp2 (10S, 61). The orthologous clone SB18C08 of sorghum has already been sequenced. The orp1 and orp2 loci encode a tryptophan synthase b subunit that is highly conserved from Arabidopsis to rice. Z273B07 (mfie1) and Z078P04 (mfie2) contain the other duplicate factors that are closely linked to the Orp genes (Lai and Messing, in preparation). In Arabidopsis, the FIE gene is important for seed development and is subject to parental imprinting (Luo et al., Proc. Natl. Acad. Sci. USA 97:10637-10642, 2000). In maize, only one of the duplicate factors undergoes imprinting. Since, in mammalian systems, genomic imprinting may involve chromosomal regions that contain several genes (Leighton et al., Nature 375, 34-39, 1995), comparison of the two subgenomes of maize in this region may provide new insights into parental imprinting in plants.

The fifth set of duplicate markers provides an example of regions within two maize chromosomes that have arisen from an ancestral chromosome by a large chromosomal inversion (Devos et al., Genetics 138:1287-1292). RFLP mapping supports this hypothesis because of the reverse order of collinear markers. We are currently sequencing two BAC clones Z438D03 and Z576C20 that contain the *c1* (chromosome 9) and the *pl1* (chromosome 6) loci, respectively, which are positioned in the center of this inversion (*c1*, 33.1 on 9; *pl1*, 75.4). We have also sequenced an orthologous clone from sorghum, SB35P03, to investigate which subgenome is closer to sorghum. The *C1* and *Pl1* genes encode myb-like DNA binding proteins that control pigment synthesis in maize; a closely conserved sequence in rice is located on rice chromosome 2. The duplicate factors in maize differ in their tissue specificity, indicating that gene regulation rather than gene function has diverged. Another duplicate factor that represents transcription factors are r1 (chromosome 10L, 105.3) and b1(chromosome 2S, 65.6). A contig has been formed from two overlapping BAC clones, Z138B04 and Z333J11, from the r1 region. Z092E12 represents the b1 locus. The orthologous region from sorghum is on SB20007. These two loci have been intensively studied because of imprinting and paramutation.

The last three loci are not based on duplicate factors, but on clusters of related genes. One example involves resistance against Puccinia sorghi or maize rust. There are several loci, rp1, rp5, rp6, and rpp9 (resistance to Puccinia polysora and sorghi) that map to chromosome arm 10S from 8.5 to 10.1. It has been estimated that 11 or more genes are spread over 400 kb (Ramakrishna and Bennetzen, in preparation). We have sequenced two BACs from this interval from a different B73 source. The two BACs contain a 43-kb direct repeat that contains both rp1 genes and retrotransposons, indicating that amplification of this region occurred in large blocks (Ramakrishna and Bennetzen, in preparation). The orthologous sequence in sorghum differs significantly. We have sequenced SB98N08 and SB95A23, which overlap. This sorghum contig seems to contain most of the orthologous rp1 genes. The rp1 genes are all very closely placed in sorghum and other gene sequences were also duplicated, but without the intervening retroelements present in maize. The second region contains members of the DIMBOA pathway. The

|--|

Marker	Name	Man	Finished	Size bp	In Production
m1	rust	8.5 - 10.1 C10	Z163K15	95.078	
	resistance		Z238E11	99,156	
			SB98N08	239,785	
			SB95A23	97.616	
r1/b1	red color	65.6 C2	Z092E12	147.198	
	booster	105.3 C10	Z138B04	115,734	
					Z333J11 (B04 Ext.)
					SB20007
tb1/2	teosinte		SB45I19	77,947	
	branched	197.6 C1	Z178A11	130,843	
		55 C5	Z195D10	141,939	
					TBD (A11 5' Ext.)
orp1/2	orange		SB18C08	159,669	
	pericarp	66.3 C4			Z332A24
		61 C10	1		Z409L08
tbp1/2	TATA-box		SB32H17	100,707	
	binding	190.8 C1			Z477F24
	protein	55 C5	1		Z474J15
c1/pl1	colored		SB35P03	144,120	
	aleurone	33.1 C9	1		Z438D03
	purple	75.4 C6	1		Z576C20
	plant				
bx3	benzoxazin				S106M24
		13.1 - 16.9 C4	1		TBD
mfie1/2	fertilization	C4			Z273B07
	independent	C10	1		Z078P04
	endosperm				
	development				
php200725	RFLP marker	27.3 C4	ZMRS204	435,084	
	linked to		ZMRS1/1 ZMRS072		
	zzin/kofirin		CD0EM10	105 000	
	cluster		SB20116	420,090	
	oldotol		SB126P21		
			SB234M12		
		97.4 C11	L01H19	77,605	
			T16F19	70,311	

homologies (regions highly similar to other sequences) >800bp are shown

Figure 1. Gene prediction analysis of the maize and sorghum *tb2* regions. Each sequence is first subjected to a gene prediction program as indicated. The predicted proteins are then subjected to BLASTP. The graphic output indicates the polarity of the predicted coding sequence with the accession number of the best hit above it. In addition, each sequence is compared by the new global alignment tool (do Lago et al., in preparation). Arrows on both sides of the bp scale indicate conserved sequences and their polarity. Conserved sequences between the two clones are indicated by the vertical lines.

genes in guestion are all involved in the biosynthesis of DIMBOA. which inhibits fungal, bacterial and insect damage to aerial parts and roots in Bx1 plants. Several genes, bx1, bx2, bx3, bx5, two cytochrome P450 loci and rp4 have been mapped to the interval between 13.1 and 16.9 on maize chromosome arm 4S. Again we have isolated orthologous clones from maize and sorghum, but we do not know yet whether the same compactness of the rp1 genes exists for these genes in sorghum as well. The third region contains a cluster of storage protein genes on chromosome 4S. This example required the construction of a new BAC library of BSSS53 because of our interest in the positional cloning of dzr1 (Chaudhuri and Messing, Proc. Natl. Acad. Sci. 91:4867-4871, 1994). Two overlapping clones contain 346-kb of maize genomic sequence (Song et al., Genome Res. 11:1817-1825, 2001). This region contains 22 tandem repeated 22-kDa a zein genes that are linked to the php200725 marker (27.3). Using this marker, orthologous clones have been isolated and sequenced from sorghum and rice (Song, Llaca, and Messing, in preparation).

Table 1 summarizes the current status of our BAC clones. All of the sequences under the heading 'Finished' are being annotated and will be deposited into GenBank. Clones under the heading 'In Production' are either at Phase I or Phase II assembly.

Bioinformatics. Because of the large size and number of BAC clones that were sequenced during this project we found the existing annotation tools to be inadequate for our purposes. Therefore, development of new computational tools for local and global alignments, along with semi-automation of existing methods of gene finding and annotations was undertaken.

Initially we leveraged the existing resources available on the

web, FGENESH (www.softberry.com), GenScan (CCR-081.mit.edu/GENSCAN.html), BlastP and BlastN (www.ncbi.nlm. nih.gov), in combination with custom Perl scripts for sequence analyses. After analyses the results were manually reviewed, and a quality annotation of the BAC sequence data was produced. This annotated sequence was produced from reviewed data contained in an Excel spreadsheet. A Perl script converted the spreadsheet data into a graphic JPEG file. At present the descriptive fields for each gene are added manually, though we are working to also automate this final step. Additional work to integrate these processes in an easy-to-use web-based format is underway.

Besides combining existing gene finding methods into an integrated process, new methods of DNA sequence analyses are also being developed. Currently, a new method for comparing two DNA sequences for conserved regions while taking into account events like local inversions has been developed (do Lago et al. in preparation). While the details of this new method are beyond the scope of this report, a brief explanation is possible.

Most pairwise alignment programs use the paradigm of the Longest Common Subsequence (LCS). That is, they try to maximize the overall (global) alignment, but end up sacrificing the best local alignments in their search for the longest single sequence common to both sequences. Our method does not make this sacrifice and identifies local inversions.

Steps in the Alignment Process. 1) Original sequences are decomposed into fragments of equal length that may overlap. 2) Fragments from one sequence are aligned to fragments of the other sequence, based on their alignment scores. 3) Clustering is performed on the obtained assignment of fragments.

An example of the integration of gene prediction and global alignment is shown in Fig. 1. In this example, clone Z195D10 (maize *tb2*) and clone SB45119 (sorghum *tb2*) are first subjected to gene prediction analysis and homology searches of predicted proteins with the respective databases. The results are presented in two horizontal bars. In addition, sequences are compared by the global alignment methods described above. The results are presented in a collinear fashion with the gene prediction results. The method is more sensitive since it does not rely on ORFs. Interestingly, regions of orthology can be extended beyond gene sequences.

RALEIGH, NORTH CAROLINA North Carolina State University MADISON, WISCONSIN University of Wisconsin IRVINE, CALIFORNIA University of California ITHACA, NEW YORK Cornell University

Evolutionary genomics of maize

--Buckler, E, Doebley, J, Gaut, B, Goodman, M, Kresovich, S, Muse, S, Weir, B

A fundamental challenge for contemporary biologists is to identify those genes that control variation in important traits and to define the effects of diverse alleles at these genes on the traits. To do this, one must understand the distribution of genetic variation in a species and in its genome and the forces that have shaped this distribution. Our project is creating the necessary infrastructure to do this in maize. We are defining where in the maize germplasm pool and where in the maize genome variation is most apt to be found. We are examining nucleotide diversity in a set of candidate genes for agronomic traits and testing whether specific DNA sequence polymorphisms can be associated with phenotypic variation for these traits. Our overall goals are to better understand the distribution of genetic diversity within the maize genome and to facilitate the identification of polymorphisms at the nucleic acid level in candidate genes that control variation at the phenotypic level in agronomic traits.

Our project is composed of three data-generating laboratory groups plus a statistical genetics support group. Group 1, led by John Doebley and Steve Kresovich, is examining microsatellite diversity in maize. Group 1 employs microsatellites in part because they are relatively inexpensive, allowing a large and comprehensive sample of the maize germplasm pool and the entire maize genome to be assayed for genetic diversity. Group 2, headed by Brandon Gaut, is examining DNA sequence diversity in maize with a focus on a limited set of accessions and regions of the genome. Group 3, headed by Ed Buckler, seeks to identify polymorphisms within candidate genes that influence agronomically important traits. To do this, the Buckler group draws on the knowledge of diversity in maize generated by the first two groups since one cannot safely make inferences about the associations between genotypes and phenotypes without incorporating a knowledge of the distribution of diversity into the analysis. The project includes a fourth group headed by Spencer Muse and Bruce Weir. This group provides statistical support for the three data-generating groups and is designing and implementing a database for genetic diversity in

maize. Finally, Major Goodman is assisting the data generating groups by selecting and providing appropriate germplasm samples for their analyses and working with Ed Buckler's group on the phenotypic analyses.

Below we summarize the goals and activities of the four groups within our project to date.

Group 1: Microsatellite Diversity In Maize. This portion of the project is investigating the evolutionary dynamics of maize microsatellites and exploiting microsatellites to characterize genetic diversity in maize. We are addressing the following questions.

(1) Do maize microsatellites follow a stepwise mutation model? Microsatellites are simple sequence repeats (SSRs) that in theory evolve in a stepwise manner by changes in the number of repeat units. For example, a trinucleotide (CCG) repeat SSRs should have alleles that differ from each other by multiples of 3 bp. Our results show that maize microsatellites do not follow the stepwise mutation model. Rather, we found that there is a continuous distribution of allele sizes for most maize microsatellites. To answer why this is the case, we sequenced a selection of maize and teosinte alleles at several microsatellites and learned that most of the variation is due to indels in the regions flanking the microsatellite repeat (Matsuoka et al., Theor. Appl. Genet., in press, 2002). Thus, the reason for this violation of the stepwise mutation process is that most variation at maize microsatellite loci is due to indels in the flanking regions and not changes in the number of repeats.

(2) At what rate do microsatellites evolve? We have found that mutation rates for maize microsatellites are similar to those of humans and yeast but higher than those of Drosophila. We determined the mutation rate for SSRs by assaying 100 SSRs for 86 RI lines after 11 generations of selfing (about 80,000 allele-generations). The mutation rate for dinucleotide SSRs was 4.4 x 10-4 for repeat length changes. Among these lines, we observed no indels in the flanking regions, indicating the different dynamics for repeat length changes and indel mutations during short-term evolution. Also, SSRs with trinucleotide repeats or higher produced no mutations in our mutation accumulation experiment showing that these classes of SSRs evolve at a much slower rate (Vigouroux et al., Mol. Biol. Evol., in review).

(3) How is diversity in the maize germplasm pool distributed? Native Americans distributed and adapted maize from Chile to Canada. We are using microsatellites to understand how diversity is structured among native landraces, US breeding lines and maize's wild relative (teosinte). We have screened over 1200 landraces and 200 wild maize (teosinte). An initial analysis of a comprehensive sample of maize landraces revealed that maize genetic diversity is structured largely along eco-geographic lines (Matsuoka et al., Proc. Natl. Acad. Sci. USA, in review) and that maize was domesticated from teosinte only once. This analysis also indicated that the maize exotic germplasm pool can be divided into three supragroups: North American Maize (maize of the Indian tribes of the US and Canada), tropical maize (most maize of Mexico, Central and Iowland South America), and Andean maize (maize of the Andes Mountains growing above 2000 meter elevation).

(4) How is microsatellite diversity distributed across the maize genome? We seek to determine how factors such as the domestication bottleneck and proximity to genes under selection during domestication have sculptured SSR genetic diversity in the maize genome. We have found that diversity is not highly patterned across the genome. For example, SSR diversity in regions

of the genome that harbor domestication QTL is not substantially lower than in other regions. Nevertheless, our analyses have identified several dozen SSRs in genic regions that appear to have been targets of selection during domestication. Over all SSR types, maize possesses only 81% of the SSR allelic diversity seen in teosinte, demonstrating that SSRs have yet to fully recover from the domestication bottleneck.

Group 2: Processes that Shape Genetic Diversity in the Maize Genome. Patterns of genetic diversity can provide insight into evolutionary processes that shape genomes, like mutation, recombination, and natural selection. Brandon Gaut's group is studying DNA sequence diversity in maize and its wild relatives to elucidate processes that have shaped the evolution of the maize genome. Thus far, they have characterized single nucleotide polymorphisms (SNPs) in 21 loci along chromosome 1, based on a sample of 25 individuals representing 16 exotic landraces and 9 U.S. inbreds (Tenaillon et al., Proc. Natl. Acad. Sci. USA 98:9161-9166, 2001). These data indicate:

A. Among the organisms that have been well-characterized to date at the DNA sequence level, maize contains the most SNP diversity (Table 1). On average, two randomly chosen maize sequences will vary at 1 out of 104 base pairs.

Table 1. A comparison of sequence diversity among three species. Human estimates are based on two different studies, corresponding to the two columns, that varied in the genes sampled. Values for (a measure of diversity) indicate that maize is 11 times more variable than humans and 1.4 times more variable than *D. melanogaster*.

	Humans		Drosophila	Maize
No. of loci	75	105	24	21
θ_{total}	8.3 ± 1.9	5.3 ± 1.3	70 ± 58	96 ± 32
$\hat{\theta}_{coding}$	8.0 ± 1.9	5.4 ± 1.3	40 ± 31	72 ± 25
$\theta_{synonymous}$	15.1 ± 3.6	11.7 ± 2.9	130 ± 92	173 ± 61
$\theta_{nonsynonymous}$	5.7 ± 1.4	3.4 ± 0.9	15 ± 14	39 ± 14
${m heta}_{\scriptscriptstyle noncoding}$	8.5 ± 2.0	5.2 ± 1.3	105 ± 80	111 ± 37

B. U.S. inbreds retain only 77% of the SNP diversity of exotic landraces, indicating a loss in diversity due to selective breeding. Surprisingly, the same inbred sample retains >95% of the genetic diversity of landraces at microsatellites (SSRs) within the 21 chromosome 1 loci. Differences between SNP and SSRs may be due to rapid SSR mutation rates that mask historical diversity-reducing events.

C. There is no obvious pattern of SNP diversity along the genetic map of chromosome 1. For example, in Drosophila, it has been shown that loci near the centromere are less variable than those distant from the centromere. This relationship does not appear to occur for SNPs in maize.

Currently, the Gaut laboratory is investigating the relationship between diversity and recombination. Diversity and recombination is correlated in several organisms, but the relationship is not straightforward in maize. We believe the relationship has been obscured by the genetic effects of domestication. This theory will be addressed in our studies of wild relatives.

Group 3: Relating Nucleotide Diversity to Phenotypic Diversity. Ed Buckler's group is pioneering the application of association analyses to plants. Association analyses seek to measure whether polymorphisms in a candidate gene are correlated (or associated) with phenotypic variation for traits that the gene is known to influence. Association approaches are fast and provide high resolution, but they had not been applied to plants due to problems with population structure, linkage disequilibrium (LD), and sequencing costs. We are trying to overcome some of these obstacles by incorporating factors such as population structure and LD into the statistical models used.

An initial issue addressed by the Buckler group was to document the extent of linkage disequillibria in maize. Understanding LD is the key to determining the possible genetic resolution of candidate gene association approaches in maize. Linkage disequilibrium is the correlation between polymorphisms across a sample. By sequencing 18 candidate genes from 102 diverse maize inbred lines, it was found that LD generally decays very rapidly in most loci. LD generally decays within 1500bp (Remington et al., Proc. Natl. Acad. Sci. USA 98:11479-11484, 2001).

Another important issue in association analyses is population structure. If genetic diversity is highly structured among subpopulations, it can lead to false associations between genes and phenotypes. The Buckler group was able to control statistically for this bias by using SSR genotypes provided by our microsatellite group. Essentially, they constructed a model that first factored out associations between genes and phenotypes due to population structure as measured by SSRs before testing for associations between genes and phenotypes.

The Buckler group first investigated candidate genes for flowering time (Thornsberry et al., Nature Genetics 28:286-289, 2001). By sequencing the *Dwarf8* gene from a set of 92 maize lines, they could test whether individual nucleotide polymorphisms are associated with a large effect on flowering time. This research also involved the development of statistics to handle population structure, which had been a major confounding factor in many animal and human studies. They found three important polymorphisms that were significantly associated with flowering time. Of particular interest is the 6bp deletion flanking the SH2 domain. The development of novel statistical approaches was key to our analysis, and is why this research will attract attention in many other organisms.

Group 4: Statistical Genetics and Database Development. The data being generated by the first three groups poses some novel analytical problems and the need for an innovative database that will allow the maize genetics community to make full use of the data and results. Spencer Muse and Bruce Weir are working on these issues.

To assist in data analysis, the Muse group has developed data analysis tools, such as PowerSSR, which is designed for evolutionary analysis using SSR data (see www.stat.ncsu.edu/ ~panzea/software/software.html). PowerSSR has a variety of attractive features and capabilities. It features an Internet Explorer-like user interface. It performs the following analyses: basic data description, allele frequency estimation, 17 genetic distance measures, phylogenetic analysis, population structure analysis, and linkage disequillibrium analysis. It includes a hierarchy editor that allow up to 4 hierarchical levels for population structure analysis. PowerSSR reads and exports multiple data formats including Excel, Nexus and Arlequin.

The Muse group is also working to develop a genetic diversity database for maize called Panzea (<u>www.stat.ncsu.edu/~panzea/</u>). This database will allow project members and the community in general to create datasets that combine the disparate data types generated by our project, including DNA sequences, SSRs and phenotypes. Web-based data submission tools allow project members to submit data into our databases. The basic scheme and

design of the database have been implemented and the current focus is on developing a variety of graphical search tools targeting "major" categories of work, including genetic diversity, genotypephenotype association and geography. One tool under development is a genetic map based portal into Panzea. Here, the user could select a chromosome (or set of chromosomal bins) and then view a genetic map of that chromosome with the loci along its length and measures of genetic diversity at each locus. The user could then click on an individual locus to view or down load the data for further analysis. Other tools would allow the user to enter the database by first viewing a geographic map of maize varieties and then view or download diversity data based on geographic criteria. Finally, a phylogenetic tool would show the user a phylogeny for maize varieties and allow the user to view or analyze diversity or phenotypes for the selected varieties.

> ST. PAUL, MINNESOTA University of Minnesota and USDA-ARS

A radiation hybrid system for the genetic and physical mapping of the corn genome

--Okagaki, RJ, Kynast, RG, Odland, WE, Stec, A, Russell, CD, Zaia, HA, Rines, HW, Phillips, RL

Oat-maize chromosome addition lines can be generated by crossing oat with maize and rescuing the developing F1 embryos through in vitro culture. Approximately one-third of the plantlets retained one or more maize chromosomes added to the haploid oat genome. These plants provide the starting material for a project to develop a radiation hybrid system for mapping individual maize chromosomes. The major objectives for this project are:

1) Establish fertile disomic addition lines for each maize chromosome and supply seed and genomic DNA to the scientific community.

2) Produce low and high-resolution radiation hybrid maps.

3) Develop high-throughput technologies for mapping ESTs to chromosomal region.

4) Screen these materials for agronomic and genetic traits that may be of interest to the plant research community.

All 10 maize chromosomes have been successfully introduced into oat. Fertile disomic lines exist for nine of the maize chromosomes. Maize chromosome 10 addition plants have not transmitted the maize chromosome to offspring; these plants are propagated vegetatively. DNA is available for all 10 oat-maize chromosome addition lines. Transmission of the maize chromosome is nearly 100% in a majority of the addition lines. The disomic addition plants carrying chromosome 1, chromosome 5, chromosome 7 and chromosome 8 exhibited irregular transmission of the respective maize chromosome in early generations. Through selection we have obtained offspring for the disomic chromosome 1 and the chromosome 7 addition lines that transmit the maize chromosome nearly 100% of the time. Selection is underway with the chromosome 5 and chromosome 8 addition lines. We have also recovered fertile lines that carry two maize chromosomes, chromosomes 1 and 9, and chromosomes 4 and 6, each in disomic condition.

Radiation hybrid lines are derived from chromosome addition lines by irradiating seed monosomic for the maize chromosome. This treatment can fragment the maize chromosome and produce plants that carry deleted maize chromosomes and translocated maize chromosome segments. After identification and selection of appropriate offspring, maize chromosome-specific panels of radiation hybrid lines are produced and used to map sequences. Lowresolution mapping panels are nearing completion for chromosomes 2 and 9. The low-resolution panels will contain approximately 10 radiation hybrid lines enabling researchers to rapidly map a marker to a chromosomal region. High-resolution panels will then be generated using larger numbers of radiation hybrid lines with a goal to be able to map to a 1-2 Mb region.

Efforts are being made to adapt microarray technology for mapping ESTs with chromosome addition lines. Genomic DNA from maize, oat, and addition lines will be labeled and hybridized to EST sequences immobilized on glass slides. Hybridization with maize genomic DNA provides the positive control, and hybridization with oat genomic DNA provides the negative control. ESTs will be located to chromosome when the hybridization signal from an addition line is significantly above the signal with oat genomic DNA and close to the signal with maize genomic DNA. Preliminary experiments have demonstrated the ability to discriminate between oat and maize sequences with this technology.

An oat-maize addition line represents the introduction of thousands of maize genes into oat. Some of these genes give a visible phenotype. A *liguleless3* (*lg3*) transcript was detected in the chromosome 3 addition lines, and these lines have liguleless upper leaves and frequently a hooked panicle, which is consistent with the variant phenotype seen in maize *Lg3* plants (Muehlbauer, G et al., Genome 43:1055, 2000). The variant phenotype was observed in two independent chromosome 3 addition lines; one addition line was derived from the oat cultivar Preakness and the other from Sun II oat. Other maize chromosomes also have been introduced into different oat cultivars to investigate the effect of the oat background on the expression of maize genes. Efforts are being made to screen for characters such as disease resistance and photoperiod response in this material.

More information about the project, materials available, traits observed, and publications can be found at: //www.agro.agri.umn.edu/rp/genome/. This work was sponsored by NSF Grant No. 9872650. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

STANFORD, CALIFORNIA Stanford University

2001 Report from the Maize Gene Discovery Project

--Walbot, V, Hake, S¹, Freeling, M², Schmidt, B³, Smith, L³, Chandler, VL⁴, Galbraith, D⁴, Larkins, B⁴, Sachs, M⁵, Brendel, V⁶

¹USDA-ARS-PGEC, ²University of California-Berkeley, ³University of California-San Diego, ⁴University of Arizona, ⁵Maize Genetics Cooperation Stock Center, ⁶Iowa State University

The Maize Gene Discovery, DNA Sequencing and Phenotypic Analysis project (NSF DBI-9872657) was initiated in October 1998 during the first year of the Plant Genome Research Program. This large project involves 10 investigators and about 20 staff members. An important lesson from the Maize Gene Discovery Project has been that careful planning and expert knowledge must be combined with flexibility in exploiting research findings and in modifying methods and goals when new data are in hand. We are interested in furthering maize research through cooperation and collaboration with other projects.

New ZmDB Blast Alert Service. ZmDB introduces a new Blast Service - Blast Alert! ZmDB users can subscribe their blast search query sequences by filling out a simple registration form. Users will store their query sequences and blast specifications at ZmDB. An initial blast search will be carried out against the current database and the blast output will be sent to the user by email. For each registered query, a Query-ID is also sent to the user and is required for unsubscribing. If any new blast hits are found whenever ZmDB updates its sequence database, an email alert will be sent to the corresponding user. ZmDB Blast Alert Service can be accessed by clicking the "Search ZmDB" button at the ZmDB front page.

Table 1. Key Components of the Project

Subproject	Status	Comments
Sequence 50,000 ESTs	Currently ~95,000; ~28,000 Tentative Unique Genes	Exciting discovery that organs express different members of gene families; >2200 complete cDNAs
ZmDB web site	zmdb.iastate.edu key resource for corn	Databases maintained 1. EST assembly 2. Phenotypes of mutants 3. Microarray protocols & data 4. Genomic sequences.
RescueMu site sequencing	~4,000 likely germinal mutations sequenced with goal of 15,000	1 MB per month of gene-enriched maize genomic DNA per month. More than half of the sequences flanking likely germinal insertions of <i>RescueMu</i> are readily identified as genes by matches to ESTs. Only 4% of insertions match retrotransposons.
Phenotypes of <i>Mu</i> -induced mutants	On-going in the Sachs, Freeling, Schmidt, Smith and Hake labs	Ear, kernel and seedling screening for >20,000 families. Summer 2001 in-depth 3000 adult families screened at the Coop. We plan to repeat the adult screen next year.
Microarraying ESTs	4 array types now, with Unigene set in 2001-2002	Major effort managed by Univ. AZ (David Galbraith, Vicki Chandler). Current arrays cover 11,000 "genes" and the Unigene1.1, 1.2 and 1.3 arrays will cover ~24,000
Postdoctoral training	4 fellows	1 fellow at Stanford (oligo arrays); 1 at Arizona (microarray); 2 fellows at ISU (bioinformatics & intron retention experiments)
Library plates: Immortalized <i>RescueMu</i>	Resource for PCR screening to find germinal insertions	Initial plates available from summer 2000 tagging populations with transposed <i>RescueMu</i> elements

EST Sequencing. We have deposited nearly twice the original goal of 50,000 high quality ESTs (majority are phred >40, far above the GenBank minimum of 15 = 1 error per 33 bases for ESTs) mainly from inbreds B73, W23, and Oh43. Average length varies per library and has ranged from 380 bp to 520 bp. EST sequencing will continue during 2001-2002 (fourth project year) toward a new goal of 120,000 ESTs. We have been remarkably fruitful in gene discovery with >28,000 likely genes so far from the complete maize database of >114,000 ESTs. If short (100-200 b) and low quality, mainly pre-1998 ESTs are eliminated, ~25,000 genes are defined by ESTs. We attribute our success to libraries prepared from specific developmental stages of different organs. Our current project is BMS tissue culture cells; this library will be deeply sampled as the initial 1000 clones indicate very high diversity.

Our major findings from EST analysis are [1] that maize alleles are quite polymorphic and [2] that specific gene family members are expressed in different organs. In contrast, when such ESTs share >80-85% similarity over ~100 bases, they show a similar pattern of hybridization on microarrays fabricated with the Maize Gene Discovery ESTs (Fernandes et al., 2002; Y. Cho et al., in preparation). Comparisons of ESTs always have the criticism that insufficient sampling prevents detection of rare transcripts. but for gene families with robust EST support, we often find quite different patterns of expression. For example, TUC (Tentative Unique Contig) 09-07-6344.1 and TUC09-07-7818.1 share >99% sequence similarity to maize cytosolic glyceraldehvde-3-phosphate dehvdrogenase genes Gpc3 and Gpc4, respectively. Eleven ESTs derived from the mixed late tassel stages library were from Gpc4 (TUCO9-07-7818.1), but none were found for Gpc3 (TUCO9-07-6344.1). TUC04-05-8646.1 and TUC07-14-6306 both share ~95% nucleotide sequence and high overall similarity to maize 22kDa alpha zein protein. TUC04-05-8646.1 is expressed in seedling root tissue (library 614) as judged by the presence of 20 ESTs, although there are no matches to TUC07-14-6306. In contrast TUC07-14-6306 has ESTs expressed in the early embryo library (687), but there are no TUC04-05-8646.1 ESTs in the embryo group. It seems very unlikely that there has been contamination with endosperm in either the root or embryo libraries because none of the common zeins dominating endosperm expression were found. A third example of possible tissue-specific expression is provided by TUC01-26-861.2 and TUC07-14-6194.1, which share ~89% sequence similarity to a subunit of the vacuolar proton ATPase. TUC07-14-6194.1 is expressed in root with 23 ESTs from library 614, but no ESTs were recovered from any other source. There are no root ESTs in the likely homeologous TUC01-26-861.2. These data convince us that examination of gene-specific expression patterns using tools with greater resolution than cDNA microarrays will be required to properly annotate the transcript distribution of individual genes.

Figure 1. ESTs from 2 cm (618) and 1-2 mm (946) immature tassels overlap by only 14%. More than 5000 ESTs from two stages of tassel development were compared for overlaps of 50 bases, >95% similarity. C = contig; S = singlet.

Maize Gene Discovery Microarrays. Approximately 15 months after starting EST sequencing, coPI Galbraith began distributing microarrays: two identical slides for \$150. >600 slides have been distributed as of Nov. 2001. PCR yield of cDNA inserts has been ~90% up to 96%, ensuring excellent coverage of the EST diversity. By using leftover plasmid sequencing templates or the consolidated clones from Stanford, we effectively eliminate "tracking problems" in going from sequencing to microarrays. Thus far four EST projects, ~11,000 genes, are available http://gremlin3.zool.iastate.edu/zmdb/microarray/progress.html. The first of three Unigene1 slide types with 8,000

genes each will be available soon. The 24,000 Unigene1 array set should be available by December 2002. We estimate that Unigene arrays will contain about half of the expected number of maize genes.

Sequencing Genomic DNA. The second route to gene discovery is sequencing genomic DNA in a strategy that combines gene discovery with a key step in functional genomics, generating an insertional mutant. RescueMu, a 4.7 kb Mu1 derivative with pBluescript and other markers, inserts preferentially into genes and allows direct cloning of flanking maize DNA into E. coli (Raizada et al. 2001). Mutagenized plants are grown in grids of up to 48 rows and 48 columns, DNA is prepared from tissue samples from an entire row or column, and 96 (48 rows + 48 columns) E. coli libraries immortalize the RescueMu insertion sites. Maize inserts of up to 15 kb are amplified by PCR protocol; given the relatively compact size of maize introns (85% are <200 bp) most RescueMu plasmids contain an entire gene and its regulatory regions within the average ~ 6 - 7 kb maize insert. 96-well library plates containing the recovered plasmids organized by rows and columns of the grids are available to the community for PCR screening to find insertions in genes of interest. Heritable (or very rare, early somatic insertions) will be represented in both a row and a column; seed for germinal mutants is obtained from the Maize Coop. To complement ESTs for gene discovery, the Project is sequencing row plasmids (bidirectionally, about 400 bases from each Mu end), with a goal of completing 8 grids, about 15,000 likely germinal insertions and 30 MB of genomic sequences enriched for genes. This genomic sequence will identify genes not yet found by EST sequencing. The genomic DNA also contains presumptive introns and promoter regions, recognized after annotation against ESTs by the ISU staff; all of these results are displayed through ZmDB http://zmdb.iastate.edu.

In the Protocols section you will find information for efficiency screening of library plates to determine which plant has a likely germinal insertion mutation of interest to you. Also, the sequencing plan does not identify all germinal insertions (by definition these are sequenced multiple times), hence you may find it useful to do a PCR screen to determine if there is both a row and a column insertion in your favorite gene. Also, the library plates each contain a collection of 10 - 50% of the "gene-rich" part of the corn genome. A somatic plasmid of your favorite gene could contain the regulatory region and other information that interests you. Such plasmids can be found by transforming the DNA samples into *E. coli* to reconstruct a "gene-enriched" library.

Overcoming Transposon Biology to Make Mutants More Efficiently. We encountered a serious problem in scaling from the few dozen plants analyzed initially to the thousands in early grids. *RescueMu* transposition out of the transgene arrays was only 10-30%, compared to the ~100% of *Mu1*. In a massive project coordinated by coPI Vicki Chandler, the team surveyed 1200 *RescueMu* outcross progeny in January 2000 by DNA blot hybridization to identify individuals with transposed *RescueMu* but no transgene array. Fourteen individuals had 2 or 3 transposed *RescueMu*, and these were outcrossed multiple times to generate the tagging populations for summer 2000. In the Stanford 2000 grid, we found 100% *RescueMu* insertion frequency from the once transposed elements; other grids had 150% tagging efficiency. Now we are testing two smaller *RescueMu* elements, *miniMu* (2.2 kb) and *midiMu* (2.7 kb) in a new "cleaner" Mutator background (multiple transposase-encoding *MuDR* but few other *Mu* elements) and in a standard, medium copy *Mu* line. Native 1.4 - 2.2 kb *Mu* elements transpose more frequently than larger elements, and the smaller plasmid size will be more amenable to shotgun sequencing approaches.

Phenotype Database and Direct Access to Transposon-Tagged Mutants. Each plant in a *RescueMu* grid is self-pollinated (or outcrossed if male or female sterile). Because we have systematically selected for the absence of Mutator silencing and new germinal insertions of RescueMu, the forward mutation frequency of our materials is about twice the "best lines" reported by Don Robertson. Eight percent of ears have segregating seed mutations, at the seedling stage15 - 28% of families have a visible mutation, and adult families have nearly a 40% mutation frequency (1154 mutants in 3000 families). CoPI Marty Sachs and his staff at the Maize Coop manage the seed and ear screen, and propagate lines as needed. coPI Mike Freeling performs a detailed seedling phenotype screen at UC-Berkeley. Descriptions in a controlled vocabulary and photos are logged into a ZmDB database designed by UC-SD and ISU. During the summer of 2001 we hosted an adult plant phenotype screen at the Maize Coop. 14 Maize Gene Discovery personnel (including four summer REU students) and community researchers annotated 3000 families of 30 individuals each. All phenotypes found in two or more individuals were logged and checked by two scorers. Most new mutants are caused by standard Mu elements. Nonetheless. RescueMu sequencing identifies likely germinal insertions into many genes, and seed requests based on insertion location have started. Furthermore, our public phenotype database can greatly accelerate maize research. It is difficult and time-consuming to establish effective Mutator populations and to analyze the phenotypes; now, maize researchers can go on line to screen phenotypes: http://zmfmdb.zool.iastate.edu/ layout/default.htm and get seed from the Coop. There are "no strings" attached to seed distribution.

Database of Project Information and Analytical Tools. ZmDB is the gateway to Maize Gene Discovery project data, materials, and analytical tools. CoPI Brendel manages ZmDB, and he and his laboratory have written software for gene identification and splice site prediction. As we relate EST data with genomic sequences obtained from the RescueMu-tagged sites, we face the same annotation problems as encountered in whole genome sequencing efforts. We have devised a number of computational tools that greatly facilitate our work. The SplicePredictor program assigns probabilities to potential splice sites based on species-specific training. (Brendel & Kleffe, 1998; Xing & Brendel, 2000). The GeneSeger program implements a dynamic programming algorithm for spliced alignment of ESTs or proteins to genomic DNA, with scores optimizing both sequence similarity and splice site probabilites (Usuka et al., 2000; Usuka & Brendel, 2000). An upcoming service will be a registered sequence search conducted by ZmDB staff; individuals can post sequences for 3 months and receive notification when a new EST or RescueMu genomic sequence is a match.

Functional Genomics of Chromatin: a progress report for maize

--Plant Chromatin Consortium* For information contact Vicki L. Chandler, University of Arizona, Tucson, AZ (chandler@ag.arizona.edu)

Overview. The goal of our NSF-funded project (DBI-9975930) is to identify and functionally analyze the entire complement of genes in maize and Arabidopsis that contribute to chromatin-based control of gene expression. This project will result in the generation and classification of a large set of mutations to facilitate investigations of chromatin-level gene regulation in plants, facilitating a deeper understanding of the complex mechanisms by which plants control the expression of their genes. In this report we summarize the genes that have been identified to date in both Arabidopsis and maize and summarize our progress with the maize experiments.

There are three principle objectives within this project. First, mutations are being generated in genes that can be identified in (a) the Arabidopsis genome sequence and (b) EST collections from maize and other plants by sequence similarity to known chromatin genes, especially those thought to play a role in the control of gene expression. Because certain tests of chromatin gene function require or are more efficiently carried out with dominant mutations, we are producing dominant negative mutations for each target chromatin gene, using RNA silencing triggered by transgenes producing double-stranded RNA molecules homologous to target genes (Smith et al., Nature 407:319, 2000; Wesley et al., Plant J. 27:581, 2001). In the case that dominant negatives are lethal or deleterious, dexamethasone-inducible dominant negative mutations are being generated in Arabidopsis (McNellis et al., Plant J. 14:247, 1998). T-DNA insertional mutations are being generated in Arabidopsis for genes encoding histones, histone acetyltransferases, and histone deacetylases, and other chromatin genes to the extent possible (Krysan et al., Proc Natl Acad Sci U S A 93:8145, 1996; McKinney et al., Plant J. 8:613, 1995). In the case of lethal or deleterious dominant negatives in maize, TILLING will be used to generate mutations (McCallum et al., Plant Physiol. 123:439, 2000). Second, all mutations will be characterized to determine their effects on genetic transmission, plant growth and development, and a comprehensive battery of biochemical and epigenetic tests. These tests include DNA methylation, the processes of epimutation and paramutation, and reactivation of silenced transgenes and transposons. Third, a Plant Chromatin Database is being developed to facilitate dissemination of information on chromatin level control in plants and other organisms.

Chromatin Genes in Arabidopsis and Maize. Extensive sequence similarity searches were performed in Arabidopsis using a variety of queries from well-characterized yeast, Drosophila, mammalian and plant chromatin genes and protein domains. To date 225 genes have been identified and 178 of these genes are targets for RNA silencing (the 45 core histones and two TBP homologs, GTF1 and GTF2 are targets for T-DNA insertions). After accounting for genes sharing greater than 80% nucleotide sequence identity, a minimum of 137 genes or gene pairs need to be targeted for RNA silencing in Arabidopsis. Using Arabidopsis genes as queries, we identified 1,356 maize ESTs that cluster into 184 tentative contigs. One hundred seventeen represent candidates for RNA silencing (core histone genes and several other contigs are not being targeted). After accounting for closely related genes (>80% sequence identity), 109 genes or gene pairs are potential targets for RNA silencing. The numbers of genes identified and their categories are summarized in Table 1.

Table 1. Arabidopsis and Maize Chromatin Genes Identified to Date

Categories of Chromatin Genes	Arabidopsis	Maize
(GNAT, MYST, CBP, Tafil250 homologs)	12	10
Histone acetyl-transferase complex components (ADA2 homologs)	2	1
Histone deacetylases (RPD3, HD2, SIR2 homologs)	15	11
SNF2 homologs (Chromatin remodelers, not including DNA repair-recombination proteins)	21	22
Components of remodeling complexes	7	1
DNA methyltransferases	7	7
Methyl binding domain proteins	12	7
Global Transcription Factors	6	7
Nucleosome/chromatin Assembly Factors (NAP, CAF, HMG proteins)	25	15
Silencing Genes (ASF1, ARD1 homologs)	5	2
MAR binding filament-like protein	1	0
Core histones	45	ND
Linker histones	5	7
SET domain proteins	35	21
Proteins similar to bromodomain proteins belonging to Ring3 /BDF1/ FSH group of proteins	12	2
Other Bromodomain proteins	13	3
Other Chromodomain proteins (not including retroelement polyproteins)	1	1
TOTAL	225	117

Sequencing, Mapping and Expression Studies With Maize Genes. As there is no genomic sequence currently available for maize, sequences for complete open reading frames will be determined to facilitate phylogenetic comparisons with other organisms. We are isolating full-length cDNA from inbred line B73 for each of the genes being targeted using a combination of sequencing ESTs and RACE/PCR. We continue to acquire and sequence ESTs primarily from the Stanford Maize Gene Discovery project. New ESTs are first verified for insert presence, and then the EST with the largest insert is sequenced to confirm its identity. If the EST is correct, it is sequenced completely. The sequence that is obtained is then immediately used to design primers for PCR amplification. High-quality sequence is being obtained for the full-length cDNA clones isolated by RACE and RT-PCR at Wisconsin. Three independent clones for each full-length cDNA are sequenced on both strands. Sequences are searched for a complete open reading frame that is then compared with the protein sequence in ChromDB. To date full length B73 clones have been obtained for 33 maize chromatin genes and 17 more are in the pipeline. Full-length sequences for 27 clones have been submitted to GenBank.

We are finding many highly similar maize chromatin genes. Mapping the genes is one way to determine whether different contigs and ESTs come from the same or similar genes. Having map positions for chromatin genes may also facilitate matching candidate genes to epigenetic mutants. Furthermore, mapping gives us information about whether similar, recently duplicated genes are parts of segmental duplications. These data are of interest in determining the evolutionary history of plant chromatin genes, and when combined with phenotypic data, will allow us to determine the range of functions performed by different members of chromatin gene families. As of this report, EST clones for nearly all targeted genes have been used as hybridization probes on DNA blots to determine gene copy number and screen for polymorphisms amenable for gene mapping. Images of these screening blots are posted on the project website. All polymorphic bands are being mapped on an abbreviated set (94 lines) of the intermated B73-Mo17 (IBM) recombinant inbred mapping population used in the Maize Mapping Project. When completed, results will be posted on MaizeDB, with links from ChromDB.

Expression of chromatin ESTs is evaluated by hybridization of cDNA clones to a panel of maize RNAs. Chromatin clones are used to probe Northern blots of immature ear, tassel, kernel, seedling leaf (9 days), mature leaf (8-leaf stage), and callus RNA. These experiments have been completed for more than a third of the targeted genes. Results can be viewed at the ChromDB website.

RNA Silencing Mutants in Maize. Ninety-one genes are being directly targeted for dsRNA constructs at this time. Because of the high sequence identity between closely related genes in maize these 91 constructs are expected to silence the 109 maize genes targeted to date. PCR primers have been designed to amplify ~700 bp fragments from the EST in the mid-region of each gene's coding sequence. These products are then each inserted twice into the vector pMCG161 in opposite orientations and flanking an intron. Transcription of this construct will give rise to a dsRNA that should direct the degradation of the target mRNA. The website has details on the vector. Sixty-five dsRNA constructs have been produced and 55 bombarded into immature maize embryos. Multiple transformation events (12-20/construct) have been obtained for 26 constructs. Regenerated plants for six different constructs are currently growing in the greenhouse. Fertile plants will be crossed to B73 to bulk seed, the transgene structure determined via DNA blots and silencing assayed by RNA blots and RT-PCR.

Planned Biochemical and Genetic Assays. The chromatin mutant collection will be characterized functionally with respect to genetic transmission, plant growth and development, DNA methylation, stability of epimutations and paramutation, and stability of silent states of transgenes and transposons.

ChromDB. ChromDB is both a repository for data produced by this project and a research tool to allow users to perform queries of the data contained within it. ChromDB is a relational database built with MySQL and a Perl-CGI interface that displays the contents of the database and allows users to browse through genes in various ways. The public interface to the ChromDB is www.chromdb.org. There are multiple options to access the chromatin genes in ChromDB. Searches can be done using a gene name as query on the welcome page or users can go via a link to a Perl-CGI script that generates a web page with three combinations of choices of how to access data. A local BLAST server is available to search sequences in ChromDB. The query results are displayed with hyperlinks to the genes.

ChromDB holds the following information on the sets of chromatin genes we have identified in Arabidopsis and maize: accession numbers for the sequences in GenBank, the functional class of chromatin gene, sequences, exon models, and corresponding ESTs, as well as experimental data produced by the project that includes the expression profiles and the genomic DNA gel blot images for maize genes to indicate copy number. Arabidopsis exon models incorporate information from EST sequences and project generated RT-PCR sequences so as to provide a better annotation of the gene. Sequence similarity relationships between the chromatin genes in the database have been generated by BLAST comparisons and can be either produced through user selection or viewed along with the detailed information on a gene. The database search for any gene leads to a detailed page containing all the above information for that gene and links from that page go to pages that display the predicted gene, mRNA and protein sequences. Links to GenBank are provided for all sequences. The web site also includes detailed information on the tools and strategies that are being used to silence target genes in Arabidopsis and maize. dsRNA silencing vectors are available for academic research purposes via simple procedures described at the web site.

All data generated in this project will be deposited in the Plant Chromatin Database and mutants will be deposited in public stock centers as soon as they are confirmed to be mutant.

*Plant Chromatin Consortium Participants

University of Arizona: Vicki L. Chandler, Richard Jorgensen, David Mount, Carolyn Napoli, Ross Atkinson, Ed Butler, Raghavendra Guru, Erin Guthrie, Arthur Kerschen, Traci Klein, Andreas Müller, Virginia O'Connell, Ritu Pandey, Robert Sandoval, Jr., Lyudmila Sidorenko, Dave Selinger, Ita Vargas-Lagunes and Qin Zeng.

Johns Hopkins University: Judith Bender, Brandie Rocci and Sharon Wilensky.

University of Missouri, Columbia; Karen Cone, Dean Bergstrom, Ebony Courtney and Miriam Hankins.

Purdue University: Stan Gelvin, Hongbin Cao and Xiaowen Zhao.

Washington University: Craig Pikaard, Eric Richards, Kari Hesselbach, Richard Lawrence, Todd Smith and Tuya Wulan.

University of Wisconsin: Heidi Kaeppler, Shawn Kaeppler, Anisha Akula, Chakradhar Akula, William Haun, Laura Schmitt, Alan Smith and Nathan Springer.

> TUCSON, ARIZONA University of Arizona

Maize cDNA microarrays

--Elumalai, R, Gchachu, M, Pierson, E, Chandler, V, Galbraith, DW

Microarray technology has revolutionized gene expression studies by providing a powerful approach to examine gene expression patterns of tens of thousands of genes at a time [M. Schena et al. 1995. Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science 270:467-470; M.K. Deyholos and D.W. Galbraith 2001. Highdensity DNA microarrays for gene expression analysis. Cytometry 43:229-238]. One component of the NSF-funded Maize Gene Discovery project led by Virginia Walbot at Stanford University (DBI- 9872657) is to produce cDNA microarrays for maize genes and distribute these to the research community at a reasonable cost. In this report (December 2001), we summarize the status of the maize microarrays. Below we give an overview on the production and summarize the content of each array produced to date. For the latest information, please see the project website at www.zmdb.iastate.edu.

At Stanford University over 100,000 ESTs have been sequenced from cDNA libraries constructed from different tissue types. The Arizona team receives a copy of the sequenced EST libraries for microarray production. The EST sequences are amplified by polymerase chain reaction (PCR) using universal primers in 96 well format. The PCR products are analyzed by gel electrophoresis for the quality of amplification and the approximate size of the PCR products are estimated and cataloged. The PCR products are then purified using the Millipore DNA purification system, dried in a Speed-vac, and re-suspended in buffer for microarray printing. The microarrays are printed onto aminosilane coated microscopic slides using a GeneMachines Omnigridder. For quality control, exemplar slides from each printing are subjected to several procedures prior to distribution. These include staining with DNA intercalating dye propidium iodide to determine the degree of uniformity of spots, and hybridization using targets prepared from mRNA isolated from the same type of tissue that was used for the original cDNA library construction. Information about every EST printed on each microarray is provided on our project web site, http://gremlin3.zool.iastate.edu/zmdb/microarray/ Included in this information is the size of the PCR amplification product, the sequence annotation, the location of each EST on the microarray and images providing hybridization examples. We also provide details of the primers used for the amplification of each library, and our methods for PCR amplification, slide production, RNA isolation, mRNA purification, mRNA labeling and slide hybridization. We are also available to answer any questions and provide help as needed. Contact information can be found at the website. To date we have distributed 600 slides to 55 laboratories and hosted 15 visitors to the laboratory.

605 Endosperm microarrays. The 605 microarray comprises cDNAs from developing endosperm (14 days post pollination). It contains 8064 ESTs, representing approximately 2000-3000 unique genes. Each EST is spotted twice on the microarray array either in duplicate array format or in duplicate spot format. The 605 microarrays were validated by hybridizing with fluorescent labeled mRNAs isolated from 14 day-old immature endosperm. The reproducibility was high, within a slide the R values ranged from 0.92 to 0.98 for the individual channel intensity values and between the slides R values ranged from 0.77 to 0.95. Details are provided on the web site and in Fernandes et al., 2002, Plant Physiology, in press.

606 Immature ear microarrays. The 606 microarrays comprise cDNAs from developing ear (0.5-2 cm long), and contain 5065 ESTs, representing an estimated 2000 genes. Cherry picking was implemented to reduce the redundancy of cDNAs on this microarray to a maximum of 2 - 3 X; also, ESTs that did not

produce good quality sequence were not printed. In the 606 microarrays, each EST is printed in triplicate with the three spots immediately adjacent to each other. The 606 microarrays were validated by hybridizing with fluorescent targets produced from mRNA of 2-3 cM long developing ears. The reproducibility was high, within a slide the R values ranged from 0.92 to 0.98 for the individual channel intensity values and between the slides R values ranged from 0.61 to 0.92. Details are provided on the web site and in Fernandes et al., 2002, Plant Physiology, in press.

614 Root microarrays. The 614 microarrays comprise cD-NAs from developing roots (3-4 days old), and contain 5065 ESTs, representing 2000 – 2500 unique genes. As for the 606 microarrays, we reduced the redundancy of abundant ESTs to 2 –3 X, removed those ESTs that did not produce good quality sequence, and printed three adjacent spots for each EST. The 614 microarrays were validated by hybridizing with fluorescent target prepared from mRNA of 4 day-old developing roots. The reproducibility was high, within a slide the R values ranged from 0.91 to 0.96 for the individual channel intensity values and between the slides R values ranged from 0.78 to 0.96.

486 Immature leaf microarrays. The 486 microarrays comprise cDNAs from developing leaf primordia (P4/6-P10/11 leaf primordial stage), and contain 4454 ESTs, representing an estimated 2000 unique genes. As for the 606 and 614 arrays, we have reduced the redundancy of abundant ESTs to 2 - 3 X, removed those ESTs that did not produce good quality sequence, and printed three adjacent spots for each EST. The 486 microarrays were tested by hybridizing with fluorescent target prepared from mRNA of the P4/6-P10/11 leaf primordial stage. The reproducibility within a slide was high with a R value of 0.94 for the individual channel intensity values.

Unigene 1-1-01 microarrays. The unigene 1-1-01 microarrays are the first component of our Unigene microarray set, which is designed to contain unique genes without redundancy. The unigene 1-1-01 microarrays each contain 5280 unique genes from 3 different cDNA libraries (707&945; mixed adult tissues, 687; developing embryo and 603; salt stressed root). The unigene 1-1-01 array was printed in a triplicate spot format. The Unigene 1-1-01 array has been validated by hybridization with cy5 labeled target from mRNA of husk tissue. The reproducibility within a slide was high with a R value of 0.96 for the individual channel intensity values.

Summary. The microarrays described above are available by ordering from the project website. Our plans for the coming year are to print the rest of the consolidated Unigene library, which will contain a total of 15000 estimated unique genes. As the additional slides become available, this will be announced on the project website.

WEST LAFAYETTE, INDIANA Purdue University

Assessment of gene content, colinearity and evolution in barley, maize, rice, sorghum and wheat

--Bennetzen, JL

In 1999, the Plant Genome Program (PGP) at the US National Science Foundation funded a two-year project to investigate the structural relationships of orthologous regions of several grass genomes. I was the PI on this project, and the co-PIs were Dr.

Jorge Dubcovsky (UC Davis), Andris Kleinhofs (Washington State Univ.), Phillip SanMiguel (Purdue University), and Bruno Sobral (National Center for Genome Resources). The goals of this project were to sequence a total of twenty bacterial artificial chromosomes (BACs), containing inserts from five orthologous regions of five different grass genomes. The original genomes chosen were barley, maize, rice, sorghum and wheat because they are important grasses with known phylogenetic relationships. At the time of the proposal, some of the BAC libraries were of unproven quality, so we could not be sure that all 25 possible BACs would be recovered. Hence, our proposal to sequence only 20. The proposal was funded at 100% of the requested support.

The chief justification for the proposal related to our nearly complete deficiency in understanding the composition and organization of most grass genomes. Thus, more comprehensive studies of grass genome structure and/or evolution could not be proposed in a reasonable manner until the basal characteristics of these genomes were identified. Moreover, these studies would give a first general impression of the natures, lineages and rates of genome rearrangement in the 50 or so million years of grass diversification from a common ancestor.

At the same time that this proposal was funded, we received word that a similar proposal focused exclusively on maize/sorghum comparisons would be funded by the NSF PGP. This project, "Colinearity of Maize and Sorghum at the DNA Sequence Level" (PI, Dr. Jo Messing), is described elsewhere in this Newsletter issue. Because the depth of the Messing et al. proposal was so much greater than our two-year proposal, we decided to de-emphasize maize and sorghum. Hence, in our final project, we have sequenced six barley, one maize (the Wx1 region), five rice, two sorghum and eight wheat BACs. We also sequenced one pearl millet BAC, from the Wx1-orthologous region, the first large stretch of DNA sequenced from that genome, as part of a collaboration with Dr. Katrien Devos (John Innes Centre). In total, we sequenced 23 BACs from six orthologous regions, for a total of about 3 Mb of completed sequence. These results amount to about 120% of the proposed goals of the project.

Most of the results of this project have not yet been published, although the sequences have been downloaded to GenBank. One paper (Dubcovsky, J et al., Plant Physiol 125:1342, 2001) has been published, two more are in press, an additional four have been submitted, and several others are in preparation. The results of these studies have been quite interesting, and would require several pages of text to summarize. However, I will try to point out a few major observations in the next two paragraphs.

All of the large grass genomes that we have investigated by BAC sequence analysis (barley, maize, pearl millet and wheat) have relatively high gene density compared to their genome size, but still much lower than the gene densities observed for rice and sorghum (about one gene per 8 kb). The greater size of orthologous regions in the large genomes is largely caused by the presence of retrotransposon insertions. Each of the large genomes often has these elements inserted as nested series, although the degree varies between regions and between species. Most retrotransposons appear to be fairly recent insertions (within the last few million years) in each genome, and we find very few cases where the same element is identified at the same location in even our most closely related species (barley and wheat).

Comparisons of gene composition and arrangement between the selected areas has been complicated by the fact that genefinding procedures are far from perfect. Many small genes may be missed, while pieces of mobile DNAs are often misidentified as genes. Despite these constraints, we have been able to use highly conservative analyses to make an estimate of the degree of conserved gene content and order between the six grasses that we have investigated. The somewhat surprising result is that we see a high frequency of small genic rearrangements. Small inversions encompassing one or a few genes have been seen, while duplication or deletion of tandem gene family members are also frequent events. In maize, the deletion of one or a few genes is fairly common. This loss of genes may be tolerated in maize because of its polyploid origin. Most surprising, translocations of single genes or a few adjacent genes to different chromosomes also appear to be fairly routine events, at least from an evolutionary perspective. In four regions that we have studied in this and other projects, we see that only 80-90% of the same genes are found in the same region in comparisons of maize with rice or maize with sorghum. Even more dramatic, because of the numerous small rearrangements, we see different adjacent genes in 20-60% of the pairwise gene comparisons between maize and rice or between maize and sorghum. We often see better colinearity when comparing rice with sorghum, despite their more ancient divergence, probably because they are closer to true diploids. These genic rearrangement results demonstrate that rice and sorghum will be poor surrogate species for such technologies as chromosome walking. Hence, to understand the genic composition and order of the entire maize genome, we will need to sequence the maize genome.

Perhaps the most important outcome of this project has been the resultant synergy in data generation and (especially) analysis that was gained by assembly of a diverse set of highly trained young scientists. Dr. Wusirika Ramakrishna (Purdue Univ.) was in charge of the overall sequencing project, with exceptional collaborative contributions from John Emberton, Dr. Jianxin Ma, Matt Ogden, Dr. Yong-Jin Park, and Dr. Yinan Yuan at Purdue University. Dr. Nils Rostoks (Washington State Univ.) led all of the barley studies, while Drs. Carlos Busso and Liuling Yan took the lead on the wheat genome analyses. Dr. Bryan Shiloff, working with Drs. Callum Bell and Bill Beavis at NCGR, developed some important annotation tools for the project, and was a vital consultant on all of our genome analyses. In future years, I am sure that this crew of outstanding scientists will continue as highly productive plant geneticists.

IV. ADDRESS LIST

(Most-current addresses are available on the web (http://www.agron.missouri.edu/))

Abbaraju, Hari Kishan Rao; Garst Seed Co.; 2369 330th St.; Slater IA 50244; 515-685-5916; ahkrao@garstseedco.com

Abedon, Bruce; Marlboro College; Marlboro VT 05344; 802-464-0801; bruceabedon@yahoo.com

Aboh, Ntiege Émile; Inst Agric Res Devel; PO Box 25 Ekona; Buea; REPUBLIC OF CAMEROON; 00237-35-42-19; mbellajoe@yahoo.com Adams, Karen R.; 2837 E. Beverly Dr.; Tucson AZ 85716-5716; 520-326-8994

Adams, Thomas; DeKalb Genetics Corp; 62 Maritime Dr.; Mystic CT 06355-1958; 860-572-5232; 860-572-5233 (fax); tadams@dekalb.com

Adamu, A Kasim; Dept Biol Sci, Fac Sci; Ahmadu Bello Univ; Zaria; NIGERIA; Zaria 50581x108

Agrama, Hesham A; Gulf Coast REC; University of Florida; 5007 60th Street East; Bradenton FL 34203-9324; Bradenton FL 34203-9324; 941-751-7636; 941-751-7639 (fax); haagrama@mail.ifas.ufl.edu

Aguiar-Perecin, Margarida; Dept Genetica - ESALQ; Universidade de S. Paulo; 13400-970 Piracicaba, SP; BRAZIL; 55 (0) 19 429 4125; 55 (0) 19 433 6706 (fax); mlrapere@carpa.ciagri.usp.br

Ajmone-Marsan, P.; Ist Sper Cereal; Via Stezzano 24; Milano; ITALY

Akula, Anisha; Univ Wisconsin; 1575 Linden Dr; Madison WI 53706; 608-262-0600; 608-262-5217 (fax); aakula@facstaff.wisc.edu

Akula, Chakradhar; Univ Wisconsin; 1575 Linden Dr; Madison WI 53706; 608-262-0600; 608-262-5217 (fax); cakula@facstaff.wisc.edu

Akulova-Barlow, Zoya; Univ California; 111 Koshland Hall; Berkeley CA 94720; 510-642-9782; zakulova@uclink.berkeley.edu

Al, Ronald; 2nd floor bioteknologibygget; P.O. Box 5040; Ås N-1432; NORWAY; (+47) 64 94 94 82/63; (+47) 64 94 14 65 (fax); ronald.al@ikb.nlh.no

Albertsen, Marc C.; Pioneer Hi-Bred Internat Inc; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131-0552; 515-270-3648; 515-253-2149 (fax); Marc.Albertsen@pioneer.com

Alexander, Danny; BASF Plant Sciences; 26 Davis Drive; Research Triangle Park NC 27709; 919-541-2024; alexand@basf-corp.com

Alexander, Debbie; Univ Oxford; Dept Plant Sci; South Parks Rd; Oxford OX1 3RB; UNITED KINGDOM; debbie.alexander@plants.ox.ac.uk

Alfenito, Mark; 61 Avondale Ave; Redwood City CA 94062; 650-368-1206

Aljanabi, Salah M.; Mauritius Sugar Industry Research Inst; Reduit; MAURITIUS; 230-454-1061 ext 3125; 230-454-1971 (fax); pathology@msiri.intnet.mu

Allard, Sharon; Agric & Agri-Food Canada; Bldg 21 CE Farm; 960 Carling Ave; Ottawa, ONT K1A 0C6; CANADA; 613-759-1551; 613-759-6566 (fax); allards@em.agr.ca

Alleman, Mary; 253 Mellon Hall; Duquesne University; Dept. Biol. Sci.; Pittsburgh PA 15282; 412-396-1660; 412-396-5907 (fax); ALLEMAN@DUQ.EDU Allen, Edward; PO Box 309; 117 Shepard St; Gilbert IA 50105; 515-294-3277; 515-294-6669 (fax); edallen@iastate.edu

Allen, Jim; Department of Biological Sciences; Florida Internatl Univ; Miami FL 33199; 305-348-6632; 305-348-1986 (fax); allenjo@fiu.edu Altendorf, Paul; Syngenta Seeds; 317 330th St; Stanton MN 55018-4308; 507-663-7630; 507-645-7519 (fax); paul.altendorf@syngenta.com Alvarez-Venegas, Raul; Purdue Univ; Dept Biol Sci; West Lafayette IN 47907; 765-494-2506; 765-496-1496 (fax); Ralvarez@purdue.edu Alvey, David; 237 Myrtle Drive; W. Lafayette IN 47906; 765-567-2115; 765-567-4046 (fax)

Amano, Etsuo; Biol Resources Res & Dev Centre; Fukui Prefectural Univ; 88-1, Futaomote, Awara-cho, Sakai-gun; Fukui-ken, 910-41; JAPAN; 81-776-77-1443; 81-776-77-1448 (fax); amano@fpu.ac.jp

Ambrose, Barbara; UCSD-Bio 0116; 9500 Gilman Dr; La Jolla CA 92093; 619-534-2514; 619-534-7108 (fax); bambrose@jeeves.ucsd.edu

Ananiev, Evgueni; Pioneer Hi-Bred Int'l Inc; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131-1004; 515-253-2477/5740; 515-270-3367 (fax); ananievev@phibred.com

Anderson, John; Colorado State Univ; Biology Dept; Ft. Collins CO 80523-1878; 970-491-3348; 970-491-0649 (fax); janderso@lamar.colostate.edu Anderson, Lorinda; Colorado State Univ; Dept Biol; Fort Collins CO 80523-1878; 970-491-6802; 970-491-6249 (fax); lorrie@lamar.colostate.edu Arbuckle, John; Syngenta; 317 330th St; Stanton MN 55018; 507-663-7690; 507-645-7519 (fax); john.arbuckle@syngenta.com

Armstrong, Charles L.; Monsanto, GG4C; 700 Chesterfield Parkway North; St. Louis MO 63198; 314-737-7229; 314-737-6567 (fax); charles.l.armstrong@monsanto.com

Arpat, Hacimurat; Ohio State University; OARDC, Dept of Agronomy; 1680 Madison Avenue; Wooster OH 44691-4096; 330-263-2882; 330-263-3658 (fax) Arruda, Paulo; Univ. Estadual de Campinas; Cidade Univ. Zeferino Vaz; Distrito de Barao Geraldo; Campinas - SP; BRAZIL; (192)398351; (192)394717 (fax) Arthur, Lane; Life Cycle Information Management; Pioneer Hi-Bred Internat Inc; 7300 NW 62nd Ave, PO Box 1004; Johnston IA 50131-1004; arthurwl@phibred.com

Artim-Moore, Lori; Ciba-Ag Biotechn; PO Box 12257; Research Triangle Park NC 27709

Arumuganathan, Kathiravetpilla; Univ of Nebraska; Ctr for Biotech, N308; Lincoln NE 68588-0665; 402-472-4197; 402-472-3139 (fax); karu2@unl.edu Atanassov, A.; Institute of Genetic Engineering; 2232 Kostinbrod 2; BULGARIA; 359.0721.2552; 359.721.4985 (fax)

Auger, Donald L.; Biol Sci; 117 Tucker Hall; Univ Missouri; Columbia MO 65211; 573-882-4871; 573-882-0123 (fax); augerd@missouri.edu

Avramova, Zoya; Purdue Univ; Lilly Hall; West Lafayette IN 47907; 317-434-9837; 317-496-1496 (fax); zavramov@bilbo.bio.purdue.edu

Ayala-Osuna, Juan; Rua Dos Trabalhadores 906; 14870.000 Jaboticabal-SP; BRAZIL; 016-3220260; 016-3224275 (fax)

Aycock, Harold S; Cornnuts Genetic Research; P.O. Box 215; Greenfield CA 93927; 831-674-3131; 831-674-5139 (fax); avcockh@nabisco.com

Ayers, John E; Dept Plant Pathology; 308 Buckhout Lab; Pennsylvania State Univ; University Park PA 16802; 814-865-7776; 814-863-7217 (fax); jea@psu.edu

Azanza, Fermin; Syngenta; Crop Genetic research; 12 Chemin de l'hobit; 31790 Saint-Sauveur; FRANCE; (33)5.62.79.98.09; (33)5.62.79.99.96 (fax); fermin.azanza@syngenta.com

Bachman, Michael; Syngenta; 317 330th St; Stanton MN 55018-4308; 507-645-7684; 507-645-7519 (fax)

Bai, Yongyan; Inst. of Plant Physiol.; 300 Fengling Road; Shanghai 200032; CHINA

Bailey-Serres, Julia; Botany & Plant Sciences; Batchelor Hall; Univ. Calif. Riverside; Riverside CA 92521; 909-787-3738; 909-787-4437 (fax); SERRES@UCRAC1.UCR.EDU

Baker, Barbara; USDA; Plant Gene Expression Center; 800 Buchanan Street; Albany CA 94710; 510-559-5912; 510-559-5678 (fax); bbaker@garnet.berkeley.edu

Baker, R. Frank; UC Berkeley; Dept Plant Biol; 111 Koshland Hall; Berkeley CA 94720; 510-642-7948; 510-642-4995 (fax); rbaker@nature.berkeley.edu

Baldwin, Don; Pioneer Hi-Bred Internatl; 7300 NW 62nd Avenue; PO Box 1004; Johnston IA 50131-1004; 515-254-2721; 575-253-2149 (fax); baldwinda@phibred.com

Ball, James; Dekalb Genetics; 62 Maritime Dr; Mystic CT 06355; 860-572-5274; 860-572-5282 (fax)

Ball, Pamela; Dekalb Genetics; 62 Maritime Dr; Mystic CT 06355; 860-572-5265; 860-572-5282 (fax); pball@dekalb.com

Bar-Zur, Avri; Moshava; P.O. Box 32; Yokneam 20600; ISRAEL; 972-4-989-4026; 972-4-985-3291 (fax)

Barbazuk, Brad; Monsanto; Bioinformatics Lead Identification.; 800 North Lindbergh Blvd.; Mail Zone N1EC; St Louis MO 63167; (314) 694-5051; (314) 694-1006 (fax); brad.w.barbazuk@monsanto.com

Barbour, Eric; Pioneer Hi-Bred Internat., Inc.; 7300 NW 62nd Ave.; PO Box 1004; Johnston IA 50131-1004

Barkan, Alice: Institute of Molecular Biology; University of Oregon; Eugene OR 97403; 541-346-5145; 541-346-5891 (fax); abarkan@molbio.uoregon.edu Barker, Tom; Pioneer Hi-Bred Intl; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131; 515-270-4312; 515-270-4312 (fax); BarkerTC@phibred.com Barrett, Brent; Washington State Univ; 201 Johnson Hall; Crop & Soil Sci; Pullman WA 99164; 509-335-4838; 509-335-8674 (fax); brent@mail.wsu.edu Barros, MEC; PO Box 395; Pretoria, 0001; SOUTH AFRICA; 27-12-841-3221

Barry, Gerard; Monsanto; 800 N Lindbergh Blvd; St. Louis MO 63167; 314-694-5566; 314-694-1671 (fax); gerard.f.barry@monsanto.com

Baskin, Tobias; 109 Tucker Hall; Div. Biol. Sci.; University of Missouri; Columbia MO 65211; 573-882-0173; BaskinT@missouri.edu

Bass, Hank (Henry) W.; Dept Biol Sci; Biology Unit I, Chieftan Way; Florida State Univ; Tallahassee FL 32306-4370; 850-644-9711; 850-644-0481 (fax); bass@bio.fsu.edu

Basso, Barbara; Centro Studi Biol Cell Molec Piante; CNR / Dipartimento di Biologia; Univ di Milano, Via Celoria, 26; Milano 20133; ITALY; 39-02-26604393; 39-02-26604399 (fax); barbara.basso@unimi.it

Baszczynski, C. L.; Pioneer Hi-Bred International, Inc.; 7250 N.W. 62nd Avenue; P.O. Box 552; Johnston IA 50131-0552; (515)270-3693; (515)334-4729 (fax); BASZCZYNSKI@PHIBRED.COM

Bate, Nic; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131; 515-270-5991

Bates, Lynn S.; Alteca Ltd.; 731 McCall Road; Manhattan KS 66502; 913-537-9773; 913-537-1800 (fax)

Bates, Nic; Pioneer Hi-Bred Internatl; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131; 515-270-5991; 515-334-4778 (fax)

Batley, Jacqueline; IACR - Long Ashton; Research Station; Long Ashton; Bristol BS41 9AF; UNITED KINGDOM; 44 117 9287592; 44 117 9257374 (fax) Bauer, Matthew; Univ Missouri; 105 Tucker Hall; Columbia MO 65211; 573-882-9228; mjbc4b@mizzou.edu

Bauer, Petra: Dept Plant Biology: 111 Koshland: Univ California: Berkeley CA 94720; 510-642-7948; 510-642-4995 (fax)

Baumgarten, Andrew; Univ Minnesota; 220 Biosciences Ctr; 1445 Gortner Ave; St. Paul MN 55108; 612-624-8786; baum0217@maroon.tc.umn.edu

Bayliss, Mike; Syngenta; Jealott's Hill Res Stn; Bracknell; RG42 6ET Berkshire; UNITED KINGDOM; 44 1344 414076; mike.bayliss@syngenta.com

Bayram, Mustafa; Washington State Univ; 201 Johnson Hall; Crop & Soil Sci; Pullman WA 99164; 509-335-4838

Baysdorfer, Chris; Biological Sciences; California State U; Hayward CA 94542; 510-885-3459; 510-888-4747 (fax)

Beach, Larry: Pioneer Hi-Bred Internati: PO Box 1004; Johnston IA 50131-9410; 515-270-3798; 515-270-3367 (fax); beachl@phibred.com

Beavis, Bill; Nat Center for Genome Resources; 1800-A Old Pecos Trail; Santa Fe NM 87505; 800-450-4854x4412; 505-995-4432 (fax); wdb@ncgr.org

Becker, Anthony; Univ Illinois; Department of Molecular & Integrative Physiology; Burrill Hall; 407 S. Goodwin Avenue; Urbana IL 61801; (217) 333-1734; aebecker@uiuc.edu

Beckert, M.; INRA Station D'Amelioration des Plantes; 63039 Clermont Ferrand; FRANCE; (33)73 624319; (33)73 624453 (fax); beckert@clermont.inra.fr Beckett, Jack; 607 Longfellow Lane: Columbia MO 65203-1630; 573-445-3472; 573-884-7850 (fax)

Becraft, Philip; Zoology & Genetics/Agronomy Depts; 2116 Molecular Biology Bldg; Iowa State University; Ames IA 50011; 515-294-2903; 515-294-6755 (fax); becraft@iastate.edu

Bedinger, Patricia; Biology Dept; Colorado State Univ.; Fort Collins CO 80523-1878; 970-491-2879; 970-491-0649 (fax); bedinger@lamar.colostate.edu

Belanger, Faith; Dept of Crop Science; Cook College, Lipman Hall; Rutgers University; New Brunswick NJ 08816; 908-932-8165; belanger@aesop.rutgers.edu

Belele, Christiane; Univ Arizona; 303 Forbes Bldg; Tucson AZ 85719; 520-621-8964; 520-621-7186 (fax); christi@ag.arizona.edu

Bell, Duane; 304 Pearl St.; Blissfield MI 49228; (517)486-3520; (517)486-2631 (fax)

Benfey, Philip; New York Univ; 1009 Main Bldg, 100 Wash Sq E; Dept Biol; New York NY 10003; 212-998-3961; 212-995-4204 (fax); philip.benfey@nyu.edu Benito, Maria-Ines; The Institute for Genomic Research; 9712 Medical Center Dr; Rockville MD 20850; 301-610-5963; 301-838-0208 (fax)

Benner, Michael; Science and Technology Center; Rider University; 2083 Lawrenceville Rd; Lawrenceville NJ 08648-3099; 609-896-5097; 609-895-5782 (fax); benner@rider.edu

Bennett, Michael; Jodrell Laboratory; Royal Botanic Gardens; Kew, Richmond; Surrey, TW9 3AB; UNITED KINGDOM; 44-1181-332-5000; 44-1181-332-5310 (fax); M.Bennett@rbgkew.org.uk

Bennetzen, Jeff; Dept of Biological Sciences; Purdue University; W. Lafayette IN 47907-1392; 765-494-4763; 765-496-1496 (fax); Maize@bilbo.bio.purdue.edu

Bensen, Robert; Pioneer Hi-Bred Int'l Inc.; 7300 NW 62nd Ave., P.O. Box 1004; Johnston IA 50131; 515-270-3645; 515-253-2149 (fax)

Benzion, Gary; 303 W. Lanvale St.; Baltimore MD 21217; 703-308-1119; benzion@USPTO.GOV

Bercury, Scott; Univ Massachusetts; Dept Biol; Amherst MA 01003; 413-545-9622; 413-545-3243 (fax); bercury@bio.umass.edu

Berger, Dave; ARS-Roodeplaat; Veg & Ornamental Plant Inst; Private Bag X293; Pretoria 0001; SOUTH AFRICA

Bergquist, Richard R.; 401 East Sixth Street; El Paso IL 61738; 309-527-6000

Bergstrom, Dean E.; Biological Sciences; 101 Tucker Hall; University of Missouri; Columbia MO 65211-7020; 573-882-1168; bergstrom@biosci.mbp.missouri.edu

Bergstrom, Gary C.; Dept. Plant Pathology; 316 Plant Science Bldg.; Cornell University; Ithaca NY 14853-5908; 607-255-7849; 607-255-4471 (fax); gcb3@cornell.edu

Bergvinson, David; CIMMYT; Apdo. Postal #370; P.O. Box 60326; Houston TX 77205; 525-804-2004; 525-804-7558 (fax); d.bergvinson@cgiar.org Berke, Terry; Seminis Vegetable Seeds; 37437 State Hwy 16; Woodland CA 95695; 550-669-6119; 530-666-6791 (fax); terryberke@netscape.net

Berlyn, Mary; Dept. of Biology; Yale University; New Haven CT 06520; 203-432-9997; 203-432-3854 (fax); mary@fetalpig.biology.yale.edu Bernardo, Rex; Dept Agron Plant Genetics; University of Minnesota; 411 Borlaug Hall; 1991 Buford Circle; St Paul MN 55108-6026; 612-625-6282; 612-625 -1268; berna022@umn.edu

Bernot, John; Dept. of Biological Sciences; Duquesne University; Pittsburg PA 15282 Bernstein, Brad; 4606 Plant Sciences; Univ Georgia; Athens GA 30602; 706-542-1954; bdb@arches.uga.edu

Berthaud, Julien; UR 31 Centre ORSTOM; 911, Avenue Agropolis; BP 5045; 34032 Montpellier cedex; FRANCE; 33(0)467 41 6165; 33(0)467 54 7800 (fax); julien.berthaud@mpl.orstom.fr

Bertrand, Ralph L.: 14 E Cache La Poudre; Dept. of Biology; Colorado College; Colorado Springs CO 80903; (719)389-6402; (719)389-6940 (fax); rbertrand@cc.colorado.edu

Betran, FJ; Dept Soil & Crop Sci; Texas A&M Univ; College Station TX 77843-2474; 979-845-3469; 979-862-1931 (fax); javier-betran@tamu.edu

Betzner, Andreas: Groupe Limagrain Pacific P/L: GPO Box 475; Canberra ACT 2601; AUSTRALIA; 61 2 6125 4011; 61 2 6125 8593 (fax)

Bhattramakki, Dinakar; Pioneer Hi-Bred International, Inc.; 7300 N.W. 62nd Avenue; Reid 33C, PO Box 1004; Johnston IA 50131-1004; 515-270-3606; 515-270-3367 (fax); BHATTRDINA@phibred.com

Bianchi, Angelo; Ist Sper Cerealicoltura; Via Cassia 176; 00191 Rome; ITALY; 06-3295705; 06-3630-6022 (fax)

Bicar, Earl; Iowa State Univ; Dept Agronomy; 1401 Agronomy Hall; Ames IA 50011; 515-294-0837; ehb@iastate.edu

Biradar, Madhuri; 320 ERML, Crop Sci; Univ. of Illinois; 1201 W. Gregory; Urbana IL 61801

Birchler, James; Biological Sciences; Tucker Hall; University of Missouri; Columbia MO 65211; 573-882-4905; 573-882-0123 (fax); birchlerj@missouri.edu Bird, Robert; 1211 Dogwood Lane; Raleigh NC 27607; 919-787-8452; rmckbird@earthlink.net Bjarnason, Magni; IM Aufeld 5; D-77815 Buehl; GERMANY; 49-7227-5691; 49-7227-5691 (fax); bjarnason@t-online.de

Blakey, Cynthia Ann; Cooper Science Bldg; Dept. of Biology; Ball State University; Muncie IN 47306; 765-285-8820; 765-285-2351 (fax); ablakey@gw.bsu.edu

Blauth, Susan; Penn State; 302 Wartik Lab; University Park PA 16802; 814-863-7958; 814-863-1357 (fax)

Bocanski, Jan; Faculty of Agriculture; Univ of Novi Said; 21000 Novi Sad; YUGOSLAVIA; bocanski@polj.ns.ac.yu

Bodeau, John; PE Applied Biosystems; 384 Foster City Blvd; Foster City CA 94404; 650-638-6972; jbodeau@genscope.com

Bogorad, Lawrence; Biol Labs; Harvard Univ; 16 Divinity Ave; Cambridge MA 02138; 617-495-4292; 617-495-4292 (fax); bogorad@biosun.harvard.edu

Bohn, Martin; Deparment of Crop Sciences,; University of Illinois,; S-110 Turner Hall; 1102 S. Goodwin Ave.; Urbana IL 61801; 217-244-2536; mbohn@uiuc.edu

Bohnert, Hans; Depts. Crop Sciences and Plant Biology,; University of Illinois,; 190 ERML, MC 051,; 1201 W. Gregory Dr.; Urbana IL 61801; 217-265-5475; hbohnert@uiuc.edu

Bokde, S.; 599 Laurel Ave. #3; St. Paul MN 55102-2047

Bollman, Krista; Dept. of Biology; Plant Science Institute; University of Pennsylvania; Philadelphia PA 19104-6018

Bomblies, Kirsten; Genetics Dept, Doebley Lab; 445 Henry Mall; Univ Wisconsin; Madison WI 53706; 608-265-5804; kbomblies@students.wisc.edu

Bommert, Peter; Universitaet Koeln; 50922 Koeln; GERMANY; 49-221-470-2488; 49-221-470-5164 (fax); peter.bommert@uni-koeln.de

Bommineni, Venkat R; Exelixis Plant Sciences, Inc; 16160 SW Upper Boones Ferry Rd; Building C; Portland OR 97224-7744; 503-213-2061; 503-670-7703 (fax); vbommineni@exelixis.com

Bongard-Pierce, Deverie K.; Dept Molec Biology; Wellman 11; Massachusetts General Hosp; Boston MA 02114; 617-726-5938; 617-726-6893 (fax); BONGARD@MOLBIO.MGH.HARVARD.EDU

Borovskii, Genadii; Siberian Inst Plant Physiol Biochem; P.O. Box 1243; Irkutsk-33, 664033; RUSSIA; root@sifibr.irkutsk.su

Bosch, Lluis; Escola Superior d'Agricultura; Comte d'Urgell, 187; 08036 Barcelona; SPAIN; 3-4304207; 3-4192601 (fax)

Boston, Rebecca S.; Box 7612; Dept Botany; North Carolina State Univ; Raleigh NC 27695-7612; (919)515-3390; (919)515-3436 (fax); boston@unity.ncsu.edu

Bouchard, Robert A.; College of Wooster; Chemistry Dept.; Wooster OH 44691; 330-263-2433; 330-263-2378 (fax); rbouchard@acs.wooster.edu

Bowen, Ben; Lynx Therapeutics, Inc; 25861 Industrial Boulevard; Hayward CA 94545; 510-670-9441; 510-670-9302 (fax); ben@lynxgen.com

Boyer, Charles D.; Dept. of Horticulture; Oregon State University; Ag & Life Sciences 4017; Corvallis OR 97331-7304; 503-737-5474

Boyer, John; College of Marine Studies, Univ of Delaware, 700 Pilottown Rd.; Lewes DE 19958; boyer@udel.edu

Brading, Penelope; Syngenta Wheat Improve Ctr; Norwich Research Park; Norwich; NR4 7UH Norfolk; UNITED KINGDOM; 44 0 1603 252600; 44 0 1603 252699 (fax); penny.brading@syngenta.com

Brar, Gurdip; Monsanto Co.; 8520 University Green; P.O. Box 620999; Middleton WI 53562; 608-821-3483; 608-836-9710 (fax); gurdip.s.brar@monsanto.com

Braun, David; Dept Plant Biology; 111Koshland; Univ California; Berkeley CA 94720; 510-642-8058; 510-642-4995 (fax); dbraun@nature.berkeley.edu

Braun, Edward; Dept Plant Biol & Plant Biotech Ctr; The Ohio State University; 206 Righmire Hall, 1060 Carmack Rd; Columbus OH 43210; 614-688-4954; 614-292-5379 (fax); braun.83@osu.edu

Bray, Jeff; ProdiGene; 101 Gateway Blvd Ste 100; College Station TX 77845; 979-690-8537; 979-690-9527 (fax); jbray@prodigene.com

Brendel, Volker; Iowa State Univ; Dept Zoology and Genetics; 2112 Molecular Biology Bldg; Ames IA 50011-3260; 515-294-9884; 515-294-6755 (fax); vbrendel@iastate.edu

Breto, Paz; Pioneer Hi-Bred Int. Inc.; 7300 NW 62nd Ave.; PO Box 1004; Johnston IA 50131-1004

Brettell, Richard; CSIRO; Tropical Ecosystems Research Centre; Private Bag 44; Winnellie NT 0822; AUSTRALIA; 61-8-8944-8486; dick@pican.pi.csiro.au

Bretting, Peter K.; USDA/ARS, NPS; 5601 Sunnyside Ave.; Bldg. 4, Room 2212; Beltsville MD 20705-5139; 301-504-5541; 301-504-6191 (fax); pkb@ars.usda.gov

Brettschneider, Reinhold; Univ Hamburg-Allgemeine Bot; Ohnhorststr 18; 22609 Hamburg; GERMANY; 49-40-42876-384; 49-40-42876-503 (fax); brettsch@botanik.uni-hamburg.de

Brewbaker, James; Horticulture; Univ of Hawaii; 3190 Maile Way; Honolulu HI 96822; 808-956-7985; 808-956-3894 (fax); brewbake@Hawaii.Edu

Brewer, Nathan; 1021 Ashland Rd, No 501; Columbia MO 65201; 573-449-7881; nrb1d5@mizzou.edu

Briggs, Kristen; Pioneer Hi-Bred Internat Inc; Trait and Technol Development; 7300 NW 62nd Ave PO Box 1004; Johnston IA 50131-1004; 515-254-2623; 515-254-2619 (fax)

Briggs, Robert W.; 112 Hunt St.; Towanda IL 61776; 309-728-2187; 309-728-2187 (fax); bbriggs@frontiernet.net

Briggs, Steven; Novartis Agrib Disc Inst Inc; 3050 Science Park Rd Suite 102; San Diego CA 92121-1102; 616-784-8670; steven.briggs@nadii.novartis.com Britt, Anne Bagg; Section of Plant Biology; U of CA; Davis CA 95616; 916-752-0699; 916-752-5410 (fax); abbritt@ucdavis.edu

Brockman, Laura L.; Cargill Hybrid Seeds; 2600 W. Galena Blvd; Aurora IL 60506; 630-801-2352

Brouwer, Cory; Bioinformatics; CuraGen Corporation; 555 Long Wharf Drive, 9th Floor; New Haven CT 06511; 203-974-6405; 203-401-3368 (fax); cbrouwer@curagen.com

Brown, Douglas; Dept of Biology; Bishops University; Lennoxville J1M 1Z7 Quebec; CANADA; 819-822-9632; 819-822-9661 (fax)

Brown, Robert L; USDA/ARS/SRRC; 1100 Robert E. Lee Blvd; New Orleans LA 70125; 504-286-4359; 504-286-4419 (fax); rbrown@nola.srrc.usda.gov

Browne, Chris; Curtis Hall; University of Missouri; Columbia MO 65211-7020; 573-882-7616; cbrowne@socketis.net Bruce, Wes; Pioneer Hi-Bred International, Inc.; 7300 NW 62nd Ave.; P.O. Box 1004; Johnston IA 50131-1004; 515-270-4167; (515)270-3367 (fax);

wes.bruce@pioneer.com Bruggemann, E; Pioneer Hi Bred Intl; 7250 NW 62nd Ave; PO Box 1000; Johnston IA 50131-1000; 515-270-4143; 515-334-4788 (fax);

edward.bruggemann@pioneer.com

Brutnell, Thomas P.; Boyce Thompson Inst; Tower Rd; Ithaca NY 14853; 607-254-8656; 607-254-1242 (fax); tpb8@cornell.edu

Bubeck, David; Northrup King Co.; 317 330th St.; Stanton MN 55018-4308; (507)663-7666

Buckler, Carlyn S. Keith; Dept Statistics; North Carolina State Univ; Box 8203; Raleigh NC 27695-8203

Buckler, Edward; Dept Statistics; North Carolina State Univ; Box 7614; Raleigh NC 27695-7614; 919-513-1475; 919-515-3355 (fax); buckler@statgen.ncsu.edu

Buckner, Brent; Div. Science, Magruder Hall; Truman State Univ; 100 East Normal; Kirksville MO 63501-4221; 816-785-4083; 816-785-4045 (fax); bbuckner@truman.edu

Buell, Robin; Inst Genomic Research; 9712 Medical Center Dr; Rockville MD 20850; 301-838-3558; 301-838-0208 (fax); rbuell@tigr.org

Bueter, Bernd; Swiss Federal Inst. Sci. (ETH) Zurich; Inst. Plant Sci.; ETH - Eschikon 33; CH - 8315 Lindau; SWITZERLAND; 41-52-33-92-83; 41-52-33-27-06 (fax)

Buhinicek, Ivica; Univ Minnesota; 1991 Upper Buford Circle; St. Paul MN 55108; 612-625-6223; 612-625-1268 (fax); buhin001@umn.edu

Bullock, W. Paul; Garst Seeds Company; 2369 330th St; P.O. Box 500; Slater IA 50244; 515-685-5116; 515-685-5080 (fax); paul.bullock@garstseedco.com Bunner, Anne; Dept Zool & Genet; Friley 3525 Lowe; Iowa State Univ; Ames IA 50012; 515-572-5242; 515-294-0345 (fax); bunner@iastate.edu Bureau, Thomas; Dept. of Genetics; University of Georgia; Athens GA 30602

Burr, Benjamin; Biology Dept; Brookhaven National Lab; Bldg 463; Upton NY 11973; 631-344-3396; 631-344-3407 (fax); burr@bnl.gov

Burr, Frances; Brookhaven National Lab; Biol Dept; Bldg 463; Upton NY 11973; 631-344-3396; 631-344-3407 (fax); burr@bnl.gov

Bushman, B. Shaun; 302 Curtis Hall; Univ Missouri; Columbia MO 65211; 573-882-2033; bsb4be@mizzou.edu

Butler, Edward; Department of Plant Sciences; 303 Forbes Hall; University of Arizona; Tucson AZ 85721; 520-626-3824; (520)621-7186 (fax); ebutler@ag.arizona.edu

Butler, Lou; 303 Forbes Hall; Department of Plant Sciences; University of Arizona; Tucson AZ 58721; 520-626-2632; (520)621-7186 (fax); loub@ag.arizona.edu

Butnaru, Gallia; Univ Stiinte Agricole A Banatului; Disciplina de Genetica; C. Post 136, O.P. 1; Timisoara 1900; ROMANIA; 40.56.141424; 40.56.200296 (fax) Butron, A; USDA/ARS; IBPMRL; PO Box 748; Tifton GA 31793; 912-387-2377; 9130387-2321 (fax)

Byrne, Mary; Cold Spring Harbor Laboratory; PO Box 100; 1 Bungtown Rd; Cold Spring Harbor NY 11724; 516-367-8836; 516-367-8369 (fax); byrne@cshl.org

Byrne, Patrick; Dept Soil and Crop Sci; Colorado State Univ; Ft Collins CO 80523; 970-491-6985; 970-491-0564 (fax); pbyrne@lamar.colostate.edu

Cai, Hong-Wei; Japan Grass-Farm Forage Seed Assoc; 388-5 Higashiakata; Nishinasuno; Tochigi 329-2742; JAPAN

Caldwell, Elizabeth E. Oberthur; 4505 Regal Ave NE; Cedar Rapids IA 52402-2143; 319-378-8636; wcceec@ia.net

Camara-Hernandez, J.; Altolaguirre 1295; Buenos Aires 1427; ARGENTINA; 54-1-521-6464; 54-1-522-1687 (fax)

Camargo, Luiz; Depto. Fitopatologia -ESALQ/USP; C.P. 09; 13418-900 Piracicaba-SP; BRAZIL; 55-194-294124; 55-194-344839 (fax); leacamar@carpa.ciagri.usp.br

Campbell, Wilbur H.; Dept. of Biological Sciences; Michigan Technological Univ.; 1400 Townsend Drive; Houghton MI 49931-1295; 906-487-2214; 906-487-3355 (fax); WCAMPBEL@MTU.EDU

Camussi, Alessandro; Genetic Unit - Fac of Agriculture; Via S. Bonaventura 13; I-50129 Firenze; ITALY

Cande, Zac; Dept of Molec & Cell Biology; Box 341 LSA; Univ of California; Berkeley CA 94720-3200; 510-642-1669; 510-643-6791 (fax); zcande@uclink4.berkeley.edu

Cao, Heping; Iowa State Univ; 2154 MBB; Ames IA 50011; 515-294-8202; 515-294-0453 (fax)

Cao, Jun; B420 Agronomy Hall: Iowa State Univ; Ames IA 50011; 515-294-1659; 515-294-2299 (fax); juncao@iastate.edu

Caren, Joel; Univ of Florida; Box 110690 Horticultural Sci; Gainesville FL 32611; 352-392-1928x314; JCAREN@nersp.nerdc.ufl.edu

Carey, Charles; Dept Biol; 303 Forbes Hall; Univ Arizona; Tucson AZ 85721; 520-621-8964; 520-621-7186 (fax); ccarey@ag.arizona.edu Carlson, Lawrence A.; 7 North Winthrop Street; St. Paul MN 55119-4674; 612-738-8812; carls245@tc.umn.edu

Carlson, Susan; Univ of Florida; Plant Pathology Dept; Gainesville FL 32611; 352-392-1792; 352-392-6532 (fax); sujcarl@nervm.nerdc.ufl.edu

Carlson, Wayne; Dept. of Biol. Sci.; University of Iowa; Iowa City IA 52242; (319)335-1316; (319)335-3620 (fax); wayne-carlson@uiowa.edu

Carlton, Peter; UC Berkeley; 345 LSA; Berkeley CA 94720; 510-643-8277; 510-643-6791 (fax); pcarlton@uclink4.berkeley.edu

Carson, Chris; Curtis Hall; University of Missouri; Columbia MO 65211-7020; 573-882-0832; 573-884-7850 (fax); carsoncb@missouri.edu

Carson, Martin L.; Dept. Plant Pathology; Box 7616; NCSU; Raleigh NC 27695-7616; (919)515-3516; (919)515-7716 (fax)

Cartinhour, Sam; USDA-ARS & Dept Plant Breeding; 252 Emerson Hall; Cornell Univ; Ithaca NY 14853; 607-255-8091; 607-255-6683 (fax); scartinh@greengenes.cit.cornell.edu

Cartwright, Heather; Univ California; 9500 Gilman Dr; Rm 3125 M2B, Biology 0116; La Jolla CA 92093; 858-822-2558; 858-534-7108 (fax); heatherc@biomail.ucsd.edu

Casa, Alexandra; Cornell Univ; 147 Biotechnology Bldg; Ithaca NY 14853; 607-254-4849; 607-255-6249 (fax); sem30@cornell.edu

Cassab, GI; PO Box 510-3; National Univ Mexico; Cuernavaca; Morelos 62250; MEXICO; 52-73-29-16-60; 52-73-13-99-88 (fax); gladys@ibt.unam.mx

Cervantes-Cervantes, Miguel; Lehman College, CUNY; Dept Biol Sci; Davis Hall 131, 250 Bedford Park Blvd W; Bronx NY 10468; 718-960-4994; 718-960-8236 (fax); mcclc@cunyvm.cuny.edu

Chalyk, Sergey; M. Spataru 15, ap. 134; Chisinau 2075; MOLDOVA; 37-32-78-83-67; 37-32-55-61-80 (fax); schalyk@hotmail.com

Chan, Annette; Dept. of Plant Biology; 345 LSA; University of California; Berkeley CA 94720-3102; 510-643-8277; 510-643-6791 (fax); ACHAN@UCLINK3.BERKELEY.EDU

Chandler, Vicki; Dept Plant Sciences; 303 Forbes Hall; University of Arizona; Tucson AZ 85721; 520-626-8725; 520-621-7186 (fax); chandler@ag.arizona.edu

Chandrakanth, E.; Crop Biotechnology Center; Texas A&M Univ; College Station TX 77843; 979-260-4563; emani@tamu.edu

Chang, Chun-Hsiang; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131; 515-253-2233; 515-253-2619 (fax); changch@phibred.com

Chang, Ming-Tang; ExSeeds Genetics; 2901 South Loop Dr.; Bldg 3 Suite 3800; Ames IA 50010; (515)296-5345/0957; 515-296-5349 (fax); mchang@exseed.com; changm@basf-corp.com

Chang, S. C.; 13, LN36, Chung Shan Rd.; Chiavi, ROC; TAIWAN; 05-278-4603

Chao, Shiaoman; USDA-ARS-Western Regional Research Ctr; 800 Buchanan St; Albany CA 94710-1105 USA; schao@pw.usda.gov

Char, Bharat; Plant Gene Expression Center; 800 Buchanan; Albany CA 94710

Charcosset,; INRA; Station de Genetique Vegetale; Ferme du Moulon; Gif sur Yvette 91190; FRANCE; 33-1-69-33-23-35; 33-1-69-33-23-40 (fax); charcos@moulon.inra.fr

Charles, Brian: #127423; ASPC Florence, PO Box 8200; Central Unit CB3-I-13; Central Unit CB1-C-9 POB8200; Florence AZ 85232-8200

Charles, Fred; 1316 Hillshire Meadow Dr; Matthews NC 28105

Charlton, Wayne; Rodney Porter Building; Dept. of Plant Sciences; University of Oxford, South Parks Road; Oxford, OX1 3RB; UNITED KINGDOM; 44-1865-275814; 44-1865-275805 (fax)

Chase, Christine D.; Horticultural Sciences Dept.; 1143 Fifield Hall; Univ of Florida; Gainesville FL 32611-0690; 352-392-1928x316; 352-392-6479 (fax); ctdc@mail.ifas.ufl.edu

Chase, Sherret S.; Chase Road; P.O. Box 193; Shokan NY 12481; 914-657-2392

Chaudhuri, Sumita; Monsanto; 1920 5th St; Davis CA 95616; 530-792-2318; 530-972-2453 (fax)

Chen, Fure-Chyi; Dept. Plant Industry; Natl. Pingtung Univ. Sci. & Tech.; Neipu, Pingtung 91201; TAIWAN; 886-8-774-0267; 886-8-774-0371 (fax); furechen@mail.npust.edu.tw

Chen, Jialiang; Lima Grain Genetics; 4640 E State Rd 32; Lebanon IN 46052; 765-482-9833; 765-482-9448 (fax); jialiang.chen@limagraingenetics.com

Chen, Jychian; Institute of Molec Biol; Academia Sinica; Taipei 11529; TAIWAN; 011-8862-2789-9208; 011-8862-2782-6085 (fax); mbjchen@ccvax.sinica.edu.tw

Chen, Shouyi; Academia Sinica; Institute of Genetics; Datun Road, Andingmen Wai; Beijing,100101; CHINA

Chen, Weicheng; Dept. of Agronomy; Henan Agric. University; ZhengZhou 450002; CHINA

Chen, Zhiyuan; Louisiana State Univ; Dept Plant Path & Crop Physiol; 1100 Robert E Lee Blvd, PO Box 19687; New Orleans LA 70179; 504-286-4345; 504-286-4419 (fax); zchen@nola.srrc.usda.gov

Cheng, Kan-Sheng; Yunnan Academy of Agricultural Sciences; Kunming; Yunnan 650205; CHINA

Cheng, Ping-chin; Advanced Microscopy and Imaging Lab; Dept Elect Comp Eng, 201 Bell Hall; State University of New York at Buffalo; Buffalo NY 14260; (716)645-3868; (716)645-3868 (fax)

Cheng, Ruiyang; Nankai University; Biology Division; Plant Molecular Biology Dept.; Tianjin 300071; CHINA

Chernov, Alex; Institute of Genetics; Acad Sci Mold Repub; Kishinev; MOLDOVA

Chikwamba, Rachel; Iowa State Univ; G503 Agronomy Hall; Ames IA 50010; 515-294-8832; 515-294-3163 (fax); rchikwam@iastate.edu

Chilton, Scott; Dept of Botany; Box 7612; N. Č. State University; Raleigh NC 27695-7612; (919)515-3792; (919)515-3436 (fax); schilton@unity.ncsu.edu Chin, Emily; Garst Seeds Co; Hwy 210; PO Box 500; Slater IA 50244; 800-831-6630x5229; 515-685-5080 (fax); Emily.Chin@GarstSeedCo.com

Choe, Bong-Ho; Agronomy Dept; College of Agriculture; Chungnam National University; Dae-Jon 305-764; KOREA; KOREA-042-821-5723; 82-42-823-8050 (fax)

Choffnes, Dan; Univ Berkeley; 111 Koshland Hall; Berkeley CA 94720; choffnes@nature.berkeley.edu

Choi, Jaehyuk; Univ of Florida: 2204 Fifield Hall; Gainesville FL 32611; 352-392-1928 x314; 352-392-6479 (fax); JHCH@GNV.IFAS.UFL.EDU

Choi, Keun-Jin; Dept. of Corn Breeding; Upland Crop Div.; Crop Experiment Station; Suwon; KOREA; (0331)292-3823; (0331)292-4560 (fax)

Chojecki, Jan; Plant Bioscience Limited; Norwich Research Park; Colney Lane; Norwich NR4 7UH; UNITED KINGDOM; 44-(0)1603-4565500; 44-(0)1603-456552 (fax); ajsc@plantbioscience.com

Chomet, Paul; DeKalb Plant Genetics/Monsanto; 62 Maritime Drive; Mystic CT 06355-1958; 860-572-5224; 860-572-5282 (fax); Paul.Chomet@Monsanto.com

Chongkid, Boonhong; Dept. of Agricultural Technology; Fac. of Science & Technology; Thammasat Univ., Rangsit Campus; Pathum Thani 12121; THAILAND; 5160020-39 ext. 1712, 1713; 5160963 (fax)

Chopra, Surinder; Department of Agronomy; 216 ASI Building; Penn State University; University Park PA 16802; 814-865-1159; 814-863-7043 (fax); sic3@psu.edu

Choubey, RN; Indian Grassl & Fodder Res Inst; Pahuj Dam; Jhansi-Gwalior Road; Jhansi-284003 (U.P.); INDIA; 0517-440908

Chourey, Prem; USDA-ARS; Plant Pathology Department; University of Florida; Gainesville FL 32611-0680; 352-392-2806; 352-392-6532 (fax); PSCH@GNV.IFAS.UFL.EDU

Choy, Ming; Dept Plant Microbial Biol; PO Box 13625; Univ California; Berkeley CA 94712; 510-642-7918; choymy@nature.berkeley.edu

Christensen, Dean W.: Syngenta; 317 330th St; Northfield MN 55018; 507-663-7619; 507-645-7519 (fax)

Christensen, Todd; Botany & Plant Path Dept; 2082 Cordley Hall; Oregon State Univ; Corvallis OR 97331-2902; 541-737-5295; 541-737-3573 (fax)

Chuck, George; 4174 3rd Ave #18; Univ California; San Diego CA 92103; 858-534-2514; 858-534-7108 (fax); gchuck@biomail.ucsd.edu

Chughtai, Sajjad R.; Maize Program; NARC, P.O. NIH; Islamabad; PAKISTAN; (051)241534; 51-812968 (fax)

Chumak, Nina; Krasnodar Agr Res Inst Lukyanenko; Krasnodar 350012; RUSSIA; 226985; molbio@mail.kubtelec

Cicek, Muzaffer; Dept Biology; Virginia Tech; Blacksburg VA 24061; 540-231-8951; 540-231-9307 (fax); mcicek@vt.edu

Ciceri, Pietro; Biology Dept 0116; UCSD, 9500 Gilman Dr; La Jolla CA 92093-0116; 619-534-2514; 619-536-7108 (fax); pciceri@biomail.ucsd.edu

Cigan, A. Mark; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave, Box 1004; Johnston IA 50131-1004; 515-270-3904; 515-270-3367 (fax); ciganam@phibred.com

Clancy, Maureen; Univ of Florida; Fifield Hall, PO Box 110690; Gainesville FL 32611; 352-392-1928 x314; 352-392-5653 (fax); clancy@gnv.ifas.ufl.edu Clark, Janice K.; Dept. of Biology; University of North Dakota; Grand Forks ND 58202-9019; (701)777-2621; (701)777-2623 (fax)

Clark, Richard; 5210 Genetics; 445 Henry Mall; Madison WI 53706; 608-262-5804; 608-262-2976 (fax)

Clayton, Kathryn; Dow Agrosciences; 9330 Zionsville Rd; Bldg 306-C2-833; Indianapolis IN 46268; 317-337-3842; 317-337-5989 (fax); kaclayton@dowagro.com

Close, Pam; 300 Maplewood Dr; Columbia MO 65203; 573-442-8031

Close, Timothy J.; Dept. Bot. & Plant Sci.; Univ. of California Riverside; Riverside CA 92521; 909-787-3318; 909-787-4437 (fax); TIMCLOSE@UCRAC1.UCR.EDU

Clutter, Mary; BIO/BIO; National Science Foundation Room 605N; 4201 Wilson Blvd.; Arlington VA 22230; 703-292-1400; mclutter@note.nsf.gov

Cobb, Greg; Texas A&M Univ; Dept Horticulture; College Station TX 77843; 979-845-5615; 979-845-0627 (fax); gregcobb@tamu.edu

Cocciolone, Suzy; ExSeed Genetics; 2901 S. Loop Dr. Bldg. 3; Suite 3800; Ames IA 50010; 515-296-0929; 515-296-5349 (fax); coccios@basf-corp.com Coe, Ed; 202 Curtis Hall; University of Missouri; Columbia MO 65211-7020; 573-882-2768; 573-884-7850 (fax); CoeE@missouri.edu

Coelho, CM; 211 Forbes Bldg, Rm 303; Univ Arizona; Tucson AZ 85721; 520-621-9254; coelho@ag.arizona.edu

Colasanti, Joseph J.; Univ California-Berkeley; PGEC; 800 Buchanan Street; Albany CA 94710; 510-559-5908; 510-559-5678 (fax); colasant@uclink4.berkeley.edu

Colbert, Terry; Pioneer Hi-Bred International, Inc.; Princeton Research Center; RR1, Box 90A; Princeton IN 47670; Terry.Colbert@pioneer.com Coleman, Craig; Dept Botany & Range Sci; Brigham Young Univ; Provo UT 84602; 801-378-3784; 801-378-7499 (fax); cec3@email.byu.edu Colleoni, Christophe; Iowa State Univ; 2154 Molec Biol Bldg; Ames IA 50011; 515-294-8202; 515-294-0453 (fax); colleoni@iastate.edu Cone, Karen C.; Biological Sciences; University of Missouri; Columbia MO 65211; 573-882-2118; 573-882-0123 (fax); Cone@biosci.mbp.missouri.edu Conner, Jennifer; Dept Biol Environ Sci; Univ Tenn Chattanooga; 615 McCallie Ave; Chattanooga TN 37403-2598; 423-755-4341; 423-785-2285 (fax) Consonni, Gabriella; Dipart Fisioll e Chim Agraria; Univ di Milano; Via Celoria 2; 20133 Milan; ITALY; 39.02.26607212; 39.02.2663057 (fax); gabriella.consonni@unimi.it

Cook, Bill; Biology Department; Midwestern State University; 3410 Taft Blvd.; Wichita Falls TX 76308; 940-397-4192; 940-397-4442 (fax); fcookb@nexus.mwsu.edu

Cooper, Jennifer; Univ of Missouri; 105 Tucker Hall; Columbia MO 65211; 573-882-4871; 573-882-0123 (fax); jlcea1@missouri.edu Cooper, Pamela S.; Univ. of Missouri; Div. of Biological Science; Columbia MO 65211; 573-882-0123 (fax); cooper@biosci.mbp.missouri.edu Coors, James G.; Department of Agronomy; University of Wisconsin; 1575 Linden Drive; Madison WI 53706; 608-262-7959; jgcoors@facstaff.wisc.edu Corcuera, Raul Victor; Inst Fitotec de Santa Catalina; Garibaldi 3400; Llavallol; Buenos Aires; ARGENTINA; 54 11 42820233; 54 11 42820233 (fax); Yuxkan@hotmail.com

Corke, Harold; 45 Highwest; 142 Pokfulam Road; Hong Kong; HONG KONG; 011 852 2859 2820; 011 852 2858 3477 (fax); harold@hkuxa.hku.hk Corley, Susie; Univ Oxford; Dept Plant Sci; South Parks Rd; OX1 3RB Oxford; UNITED KINGDOM; 44 0 1865 275030; susan.corley@plants.ox.ac.uk Cormack, Jean; Monsanto; 62 Maritime Dr.; Mystic CT 06355-1958; (860) 572-5239; (860) 572-5240 (fax); jcormack@dekalb.com

Cornu, A.; Sta d'Amelior des Plantes; B V 1540; 21034 Dijon; FRANCE; 80-63-3159; 80-63-3263 (fax)

Cortes-Cruz, Moises; Univ Missouri; 205 Curtis Hall; Columbia MO 65211; 573-882-2033; 573-884-7850 (fax); cortes@chaco.agron.missouri.edu Costa, Liliana Maria; Univ Oxford; Dept Plant Sci; South Parks Rd; OX1 3RB Oxford; UNITED KINGDOM; 0044 1865 275819; liliana.costa@plants.ox.ac.uk Cota, Carla; Lehman College, CUNY; Dept Biological Sci; Bronx NY 10468; 718-960-4994; 718-960-8236 (fax); g34lc@cunyvm.cuny.edu Courtney, Ebony; 101 Tucker Hall; Univ Missouri; Columbia MO 6211; 573-882-1168

Cowan, Carrie R.; Univ California-Berkeley; 345 LSA; Berkeley CA 94720; 510-643-8277; 510-643-6791 (fax); carriec@candelab.berkeley.edu Cowperthwaite, Matthew; Rutgers Univ; Waksman Inst; Piscataway NJ 08855; 732-445-6247; 732-445-5735 (fax); mattc@waksman.rutgers.edu Crane, Virginia; Trait and Technology Development; Pioneer Hi-Bred International, Inc.; 7300 N. W. 62nd Ave, Box 1004; Johnston IA 50131-1004;

(515)270-3645; (515)253-2149 (fax); CRANEVC@PHIBRED.COM Crawford, Margaret; Monsanto; 3302 SE Convenience Blvd; Ankeny IA 50021; 515-963-4215; 515-963-4242 (fax) Creech, Roy G.; Plant & Soil Sciences; Box 9555; Mississippi State University; Mississippi State MS 39762; 601-325-2699; 601-325-8742 (fax); rgcreech@ra.msstate.edu

Cross, Joanna; 1143 Fifield Hall; Univ Florida; Gainesville FL 32611; 352-392-1928; 352-392-6479 (fax); jmfc@gnv.ifas.ufl.edu

Cui, Cory; Dow Agrosciences: 9330 Zionsville Rd; Indianapolis IN 46268; 317-337-3599; 317-337-5989 (fax)

Cui, Xiangqin; Iowa State Univ; B420 Agronomy; Ames IA 50010; 515-294-1659; 515-294-2299 (fax); xcui@iastate.edu

Cullis, Chris; Plant Genome Research Program; National Science Foundation; 4201 Wilson Boulevard; Arlington VA 22230; ccullis@nsf.gov

Cummings, D. P.; Dekalb Genetics Corporation; P.O. Box 367; 908 North Independence; Windfall IN 46076-0367; 317-945-7125; 317-945-7152 (fax)

Currie, Randall; SWREC; 4500 E. Mary; Garden City KS 67842; 316-276-8286; 316-276-6028 (fax); RCURRIE@OZNET.KSU.EDU

D'Halluin, Kathleen; Plant Genetic Systems N.V.; Jozef Plateaustraat 22-B 9000; Gent; BELGIUM; (32) (9)2358486; (32) (9)2240694 (fax); pas@pasaent.be

Daido, Hisaaki; Nat Inst Livestock Grassl Sci; Senbonmatsu, Nishinasuno; Tochigi; JAPAN 329-2793; 81-287-37/7551; 81-287-36-6629 (fax); hdaido@affrc.go.jp

Damerval, Catherine; Station de Genetique Vegetale; Ferme du Moulon; 91190 Gif Sur Yvette; FRANCE; (1)01 69 33 23 66; 33(1)01 69 33 23 40 (fax) Damon, Steve; Syngenta Seeds, Inc.,; 4133 E. County Road O; Janesville WI 53546; steve.damon@syngenta.com

Dan, Yinghui; Monsanto700 Chesterfield Pkwy; N GG4B; Chesterfield MO 60305; 636-737-5309; 636-737-6567 (fax); yinghui.dan@monsanto.com

Danilevskaya, Olga; Pioneer Hi-Bred Internati; 7250 NW 62nd Avenue; PO Box 552; Johnston IA 50131-0552; 515-270-4128; 515-334-4788 (fax); danileon@phibred.com

Dankov, Toma; 93-Tzaz Iwan Assen II Str.; Sofia 1124; BULGARIA; 43-82-73; nedeva@biofac.uni-sofia.bg

Dannenhoffer, Joanne; Central Michigan Univ; Dept of Biology; 217 Brooks Hall; Mt. Pleasant MI 48859; 517-774-2509

Daohong, Xie; Maize Research Institute; Jilin Acad.; 5 W. Xing Hua Street; Gongzhuling, Jilin, P.R. 136100; CHINA; (86)-04441-215179; (86)-04441 -214884 (fax)

Darrah, Larry; 110A Curtis Hall; University of Missouri; Columbia MO 65211-7020; 573-882-2349; 573-884-7850 (fax); DarrahL@missouri.edu

Davis, Doug; 101 Tucker Hall; Univ Missori; Columbia MO 65211; 573-882-1168; 573-884-0123 (fax); DavisDo@missouri.edu

Davis, Georgia; 1-87 Agric Bldg; Univ of Missouri; Columbia MO 65211; 573-882-9228; 573-882-1469 (fax); DavisGe@missouri.edu

- Dawe, R. Kelly; Department of Botany; University of Georgia; Athens GA 30602; 706-542-1658; 706-542-1805 (fax); kelly@dogwood.botany.uga.edu
- Day, Peter R.; Center for Ag Molec Biology; Cook College, Rutgers Univ; Foran Hall, Dudley Road; New Brunswick NJ 08903-0231; 908-932-8165; 908-932-6535 (fax); day@aesop.rutgers.edu
- de Carvalho, Carlos Roberto; Universidade Federal de Vicosa; Depto Biologia Geral; 36571.000 Vicosa MG; BRAZIL; 31-899-2568; 31-899-2203 (fax); ccarvalh@mail.ufv.br
- De Leon, Carlos; Maize Program; c/o CIAT; Apdo. Aereo 67-13; Cali; COLOMBIA
- de Oliveira, Antonio Costa; Centro de Biotecnologia, Predio 19; Campus UFPel, P.O. Box 354; 96001-970, Pelotas, RS; BRAZIL; 055532757158; 055532759031 (fax); acosta@ufpel.tche.br
- de Wolff, F; Advanta Seeds B.V.; PO Box 1; 4410 AA Rilland; NEDERLAND; 31-1135-2151; 31-1135-2237 (fax)

Dean, Caroline; BBSRC; John Innes Centre; Colney Lane; Norwich NR4 7UH; UNITED KINGDOM; 011-44-1603-452571; 011-44-1603-505725 (fax); caroline.dean@bbsrc.ac.uk

Dean, Ralph; Dept Plant Path; North Carolina State Univ; 1200 Partners Bldg II; Raleigh NC 27695; 919-513-0020; 919-513-0024 (fax); ralph dean@ncsu.edu

Debaene, Jan; Betaseed, Inc.; PO Box 858; Kimberly ID 83341; jdebaene@betaseed.com DeBroux, Steve; 700 E. Butler Ave.; Delaware Valley College; Doylestown PA 18901; 215-345-1500; 215-345-5277 (fax)

Delannay, Xavier; Monsanto - N3SB; 800 N. Lindbergh Blvd.; St. Louis MO 63167; 314-537-6611; 314-694-3644 (fax); xavier.delannay@monsanto.com Della Vedova, Chris; 403 Tucker Hall; Univ Missouri; Columbia MO 65211; 573-449-0851; cbd4c8@mizzou.edu Dellaporta, Steve; Yale University; Molec Cell Devel Biol; New Haven CT 06520-8104; 203-432-3895; 203-432-3854 (fax); stephen.dellaporta@yale.edu

Delzer, Brent; Syngenta; 4133 É County Road "O"; Janesville WI 53546; 608-757-1102; 608-757-0080 (fax); brent.delzer@syngenta.com

DeMason, Darleen; Botany & Plant Sciences; Univ of California; Riverside CA 92521; 909-787-3580; 909-787-4437 (fax); demason@ucrac1.ucr.edu Dempsey, Ellen; 7 Prospect St; Cornwall-on-Hudson NY 12520; 914-534-5285

Dennis, Elizabeth; CSIRO; Division of Plant Industry; P.O. Box 1600; Canberra, ACT 2601; AUSTRALIA; 61-6-246-5061; 61-6-246-5000 (fax); liz@pican.pi.csiro.au

Dermastia, Marina; Univ Florida; Plant Pathology Dept; 1453 Fifield Hall; Gainesville FL 32611; 352-392-3631; 352-392-6532 (fax)

Deshpande, Aparna; Biology Dept; Purdue Univ; West Lafayette IN 47907; 752-494-4919; 756-496-1496 (fax); adeshpan@bilbo.bio.purdue.edu

Deutsch, James A.; Garst Seed Company; RR 2 Box 16; Marshall MO 65340; 660-886-6363; 660-886-9877 (fax); jim.deutsch@garstseedco.com

Devereaux, Alissa; BASF Plant Sci; 26 Davis Dr; Research Triangle Park NC 27709; 919-547-2905; 919-547-2423 (fax); deverea@basf-corp.com

Dewald, Chester L.; ARS-USDA; 2000 18th St.; Woodward OK 73801; 580-256-7449; 580-256-1322 (fax); cdewald@spa.ars.usda.gov

Dev, Nrisingha; Iowa State Univ; 2156 MBB; Ames IA 50011; 515-294-4445; 515-294-6755 (fax); ndey00@hotmail.com

Dhillon, B. S.; Director, NBPGR; Pusa Campus; New Delhi-110012; INDIA; 091-5783697 (O); 091-5772107 (R); 585-1495, 5785619 (fax); bsdhillon@nbpgr.delhi.nic.in

Dias, Anusha; Ohio State Univ; 218A Rightmire Hall; 1060 Carmack Rd; Columbus OH 43210; 614-688-4954; 614-292-5379 (fax); dias.9@osu.edu Dias, Dilip; Garst Seed; 2369 300th St; Slater IA 50244; 515-685-5117; 515-685-5080 (fax); dilip.dias@garstseedco.com Dick, Don; Northwest Tech, LLC; 513 N Main; Fairview OK 73737; 580-227-2345; 580-227-3851 (fax); bramco@pldi.net

- Diehn, Scott; Pioneer Hi-Bred Intl; 7250 NW 62nd Ave; Johnston IA 50131; 515-254-2866; 515-334-4722 (fax); diehnsh@phibred.com
- Dietrich, Chuck; B420 Agronomy Hall; Iowa State University; Ames IA 50011; 515-294-1659; 515-294-2299 (fax); bones@iastate.edu

Dijkhuizen, Arian; Monsanto SAS; Route D'Epincy; Louville La Chenard 28150 France; +33 2 37 22 18 76; arian.dijkhuizen@monsanto.com

Dilkes, Brian; Dept Plant Sci; Forbes Bldg, Rm 36; Univ Arizona; Tucson AZ 85721; 520-621-9154; 520-521-3692 (fax); pdilkes@ag.arizona.edu

Dille, John E.; Winthrop College Biology Dept; Rock Hill SC 29733; 803-323-2111; 803-323-3448 (fax); dillej@winthrop.edu

Dilworth, Machi; Plant Sci Initiatives; National Science Foundation; 4201 Wilson Blvd.; Arlington VA 22230; 703-292-8470; mdilwort@nsf.gov

Dinges, Jason; 2182 Molec Biol Bldg; Iowa State Univ; Ames IA 50011; 515-294-8202; 515-294-0453 (fax); jdinges@iastate.edu Dodd, J. L.; Professional Seed Research, Inc; 7 South 437 Dugan Road; Sugar Grove IL 60554; 630-466-1060; 630-466-1068 (fax)

Doebley, John F.: Genetics Department: University of Wisconsin; Madison WI 53706; 608-265-5803/5804; 608-262-2976 (fax); jdoebley@facstaff.wisc.edu

Dolfini, Silvana Faccio; Dipartimento di Genetica; University of Milano; Via Celoria 26; 20133 Milano; ITALY; 39 2 266051; 39 2 2664551 (fax)

Dolgikh, Yulia; Inst of Plant Physiology; ul. Botanicheskaya, 35; Moscow 127276; RUSSIA; 7-095-9039392; 7-095-9778018 (fax); gsc@ippras.ru Dombrink-Kurtzman, Mary Ann; Natl. Ctr. for Agric. Utilization Research; USDA, ARS; 1815 N. University St.; Peoria IL 61604-3902; (309)681-6254; (309)681-6686 (fax); dombrink@mail.ncaur.usda.gov

Dong, Jinzhuo; Monsanto; 800 N Lindbergh Blvd T3A; St. Louis MO 63167; 314-694-7640; 314-694-8275 (fax); jinzhuo.dong@monsanto.com
Donnison, Jain: Cell Biol Dept: Inst Grassl & Env Research: Aberystwyth SY23 3EB; UK: 44 0 1970 823092; 44 0 1970 828357 (fax); iain.donnison@bbsrc.ac.uk

Doohan, Fiona; John Innes Centre; Norwich Research Park; Colney NR4 7UH; UNITED KINGDOM; 011-44-1603-452571; 011-44-1603-456844 (fax)

Dooner, Hugo K.; The Waksman Institute; Rutgers University; P.O. Box 0759; Piscataway NJ 08855; 732-445-4684; 732-445-5735 (fax); dooner@waksman.rutgers.edu

Dorweiler, Jane: Dept Plant Sciences; 303 Forbes Hall: University of Arizona; Tucson AZ 85721; 520-621-8964; 520-621-7186 (fax); jdorweil@ag.arizona.edu

Doss, Brian; Univ Georgia; Dept of Genetics/Botany; Athens GA 30605; 706-354-8986

Doust, Andrew; University of Missouri - St Louis; Department of Biology; 8001 Natural Bridge Road; St Louis MO 63121; 314 516 6225; 314 516 6233 (fax); adoust@umsl.edu

Dowd, Pat; USDA-ARS; 1815 N. University St.; Peoria IL 61604; 309-681-6242; 309-681-6686 (fax); dowdpf@mail.ncaur.usda.gov

Doyle, Greg; Curtis Hall; University of Missouri; Columbia MO 65211-7020; 573-882-2674

Dress, Virginia; Pioneer Hi-Bret Intl, Inc; 7300 NW 62nd Ave, Box 1004; Johnston IA 50131-1004; 515-270-4078; 515-254-2619 (fax); dressvm@phibred.com

Dresselhaus, Thomas; Univ Hamburg, AMP II; Ohnhorststr 18; Hamburg D-22609; GERMANY; 49 40 42816 312; 49 40 42816 229 (fax); dresselh@botanik.uni-hamburg.de

Drinic Mladenovic, Snezana; Maize Research Inst; S Bajica 1; MOS1 Zemun-Belgrade; YUGOSLAVIA; 11-2356-704; 11-2356-707 (fax); msnezana@mrizp.co.yu

Drummond, Bruce; Pioneer Hi-Bred Internat., Inc.; 7300 NW 62nd Ave.; PO Box 1004; Johnston IA 50131-1004

Dudley, John W.; Crop Sciences, S112 Turner Hall; University of Illinois; 1102 S Goodwin Ave; Urbana IL 61801; 217-333-9640; 217-333-9817 (fax); idudley@uiuc.edu

Dufour, Philippe; Biocem 24, Av des Landai; Campus Universitaire des Cejeauz; 63170 Aubiere; FRANCE; 33-4-73-42-79-80; 33-4-73-27-57-36 (fax)

Duncan, David; Corn Discovery Team Leader; Monsanto Co.; 700 Chesterfield Parkway N.; Mail Zone GG4C; St.Louis MO 63198; 636-737-6923; 636-737-6567 (fax); david.r.duncan@monsanto.com

Duru, Ngozi; 403 Tucker Hall; Univ Missouri; Columbia MO 65211; 573-884-3715; 573-882-0123 (fax); durun@missouri.edu

Duvick, Donald N.: P.O. Box 446: 6837 N.W. Beaver Drive; Johnston IA 50131: 515-278-0861: 515-253-2125 (fax): dnd307@AOL.com

Duvick, Jonathan P.; Pioneer Hi-Bred Internatl; Dept of Biotechnology Res; 7300 N.W. 62nd Ave; Johnston IA 50131-1004; 515-270-3176; 515-253-2147 (fax); duvickj@phibred.com

Duvick, Susan; 1501 Agronomy; Iowa State University; Ames IA 50011; 515-294-5545

Earle, Elizabeth D.; Dept Plant Breed & Biom; Cornell University; 252 Emerson Hall; Ithaca NY 14853-1902; 607-255-3102; 607-255-6683 (fax); ede3@cornell.edu

Eathington, Samuel R.; 910 Gaskill; Ames IA 50014; 515-956-3073; 515-232-7170 (fax)

Edgerton, Mike; Cereon Genomics, LLC; 45 Sidney St; Cambridge MA 02139; 617-551-8292; 617-551-1960 (fax)

Edmeades, Greg; Pioneer Hi-Bred Internatl.; Waimea Research Center; P.O. Box 609; Waimea HI 96796; 808-338-8300; 808-338-8325 (fax); edmeadgreg@phibred.com

Edwards, Jode; Monsanto Company; 101 Tomaras Ave; Savoy IL 61874; 217-356-6879; 217-356-7863 (fax); jode.w.edwards@monsanto.com

Edwards, Keith; Crop Genetics; IACR-Long Ashton Res Stn; Univ Bristol, Long Ashton; Bristol BS18 9AF; UNITED KINGDOM; 44 1275 549431; 44 1275 394281 (fax); KEITH.EDWARDS@BBSRC.AC.UK

Edwards, Marlin; Monsanto Company; Mail Zone GG3A; 700 Chesterfield Parkway North; St Louis MO 63198; (636) 737-5858; marlin.d.edwards@monsanto.com

Efremov, Alexander; Max-Planck-Institute; Carl-von-Linne-Weg 10; D-50829 Koln (Vogelsang); GERMANY

Egesel, Cem; Plant Breeding and Genetics; Department of Field Crops; Canakkale Onsekiz Mart Univ; Canakkale; TURKEY; cemegesel@hotmail.com

Eggleston, William; Department of Biology; Virginia Commonwealth University; 816 Park Ave; Richmond VA 23284; 804-828-1562; 804-828-0503 (fax); Weggles@saturn.vcu.edu

Egli, Margaret A.; Dept Agron & Plant Genetics; Univ of Minnesota, 411 Borlaug Hall; 1991 Buford Circle; St. Paul MN 55108; (612)625-5215/5793; (612)625-1268 (fax); peggy@biosci.cbs.umn.edu

Eichholtz, David A.; Monsanto, BB4D; 700 Chesterfield Village Pkwy; St. Louis MO 63198; 314-537-6227; 314-537-6047 (fax); DAEICH@CCMAIL.MONSANTO.COM

Ellis, Leland; Geo Wash Carver Ctr Bldg; 5601 Sunnyside Avenue; Rm 4-2192, MAIL STOP 5138; Beltsville MD 20705; 301-504-4788/7050; 301-504-4725 (fax); lce@ars.usda.gov

Elsing, Evan; Pioneer Hi-Bred Intl Inc.; 1-385 Kaumualii Hwy; PO Box 609; Waimea Kauai HI 96796; 808-338-8300 ext 105; 808-338-8325 (fax); elsing@phibred.com

Emmanuel, Saah: Inst Agric Res Devel; PO Box 25 Ekona; Southwest Province; Buea; REPUBLIC OF CAMEROON; 00237 35 43 71; 00237 31 99 25 (fax); evasama@yahoo.com

Erickson, Brian; Univ Wisconsin; 900 Wood Rd: PO Box 2000; Kenosha WI 53141; canuck fan@hotmail.com

Ernst, Cynthia; 9330 Zionsville Road; Indianapolis IN 46268 USA; 317-337-5123; 317-337-5989 (fax); caernst@dowagro.com

Esen, Asim; Dept Biology; Va Polytech Inst & State Univ; Blacksburg VA 24061; 540-231-5894; 540-231-9307 (fax); esen@vt.edu

Espinosa, Elsa; CIMMYT; Apdo 6-641; Lisboa; Mexico City 06 600; MEXICO

Eubanks, Mary W.; Dept. Biology; Box 90338; Duke University; Durham NC 27708; 919-660-7417; 919-660-7425 (fax); eubanks@duke.edu

Evans, Matthew; Laboratory of Genetics; 445 Henry Mall; University of Wisconsin; Madison WI 53706; 608-262-3286; 608-262-2976 (fax); mmevans@facstaff.wisc.edu

Evans, Mike; Dept Plant Biology; Ohio State Univ; Columbus OH 43210; 614-292-9162; 614-292-6345 (fax); evans.20@osu.edu

Eversole, Kellye; Eversole Associates; 3208 Park View Road; Chevy Chase MD 20815; 301-951-3345; 301-951-1846 (fax); kellye@eversoleassociates.com Evola, S. V., Novartis Biotechnology; 3054 Cornwallis Rd; Durham NC 27709; 910-547-1038; 910-547-1030 (fax); steve.evola@nabri.novartis.com

Fabbri, Brad; Monsanto; 800 N Lindbergh N2SA; St. Louis MO 63167; 314-694-5607; 314-694-1080 (fax); bradon.j.fabbri@monsanto.com Falbel, Tanya; Department of Biochemistry; University of Wisconsin; 433 Babcock Drive; Madison WI 53705; 608-263-0314; 608-262-3453 (fax); tgfalbel@biochem.wisc.edu

Falque, Matthieu; INRA; Station de Genet Veg; du Moulon; Gif-sur-Yvette 91190; FRANCE; 33 169332364; 33 169332340 (fax); falque@moulon.inra.fr Fang, Zhiwei; Engineering West; EBW 347; University of Missouri; Columbia MO 65211; 573-882-6887; fangz@missouri.edu

Farish, Guy; Biology Dept; Adams State College; Alamosa CO 81102; 719-587-7969; 719-587-7242 (fax); gefarish@adams.edu

Fauron, Christiane; University of Utah; 2100 Eccles Genetics Bldg; Salt Lake City UT 84112; 435-581-4435; 435-585-7177 (fax); christiane.fauron@genetics.utah.edu

Feazel, Rhonda; Monsanto; GG4G; 700 Chesterfield Parkway West; Chesterfield MO 63017; (636)737-5250; rhonda.feazel@monsanto.com Fedoroff, Nina; Biology; 0519 Wartik Laboratory; University Park PA 16802; 814-863-5717; 814-863-1357 (fax); nvf1@psu.edu

Feix, Gunter; Institut Fur Biologie III; Universitat Freiburg; 79104 Freiburg; GERMANY; 497-6120-32724; 497-6120-32745 (fax); feix01@aol.com Feng, Jia Shi; Maize Research Institute Shandong; Academy of Agricultural Sciences; 11 Sang Yuan Road; Jinan, Shandong 250100, P.R.; CHINA; (0531)860329

Fergason, Virgil; Custom Farm Seed; 100 East Shafer, P.O. Box 380; Forsyth IL 62535; 217-875-2826; 217-875-9437 (fax)

Ferl, Robert; Horticultural Sciences; Univ Florida; Gainesville FL 32611; 352-392-4711 x313; 352-392-4072 (fax); Robferl@NERVM.NERDC.UFL.EDU Fernandes, Agnaldo: Av Azarias Jorge: n 1504 Centro Pontalina; Goias 75620/000; BRAZIL; 62-471-1237

Feschotte, Cedric; Univ Georgia; Botany Dept; Miller Plant Sci; Athens GA 30602; 706-542-1857; cedric@dogwood.botany.uga.edu

Fisher, Dane; Mail Zone AA3E; Monsanto Co.; 700 Chesterfield Pkwy North; St. Louis MO 63198; 314-737-7434; dane.k.fisher@monsanto.com

Fisher, Dave; Seminis Vegetable Seeds; 7202 Portage Road; DeForest WI 53532; 608-846-7889; 608-846-7892 (fax)

Flament, Pascal; Biocem; Campus Universitaire des Cezeaux; 24 Avenue des Landais; 63170 Aubiere; FRANCE; (33)73 42 79 70; (33)73 27 57 36 (fax)

Flint-Garcia, Sherry; Department of Genetics; 2523 Gardner Hall, Box 7614; North Carolina State University; Raleigh NC 27695; (919) 513-2821; (919) 515-3355 (fax); saflintg@unity.ncsu.edu

Fluminhan, Antonio; University of Western São Paulo; Division of Graduate Studies; Campus II - Rod. Raposo Tavares, km 572; CEP: 19.067-175; Presidente Prudente (SP); BRAZIL; (55) 18-229-2077/2078/2079; (55) 18-229-2080 (fax); fluminhan@posgrad.unoeste.br Foley, Terry; Holden's Foundation Seeds L.L.C.; P.O. Box 839; Williamsburg IA 52361; 319-668-1100; 319-668-2453 (fax); terry.foley@holdens.com

Fomanka, Épah Sebastian; Inst Agric Res Devel; PO Box 25 Ekona; Southwest Province; Buea; REPUBLIC OF CAMEROON; 00237 35 43 71; 00237 31 99 25 (fax); tumbuf@yahoo.com

Foster, Toshi; Plant Gene Expression Center; USDA; 800 Buchanan St.; Albany CA 94710

Fowler, John; Botany and Plant Path Dept; 2082 Cordley Hall; Oregon State Univ; Corvallis OR 97331-2902; 541-737-5295; 541-737-3573 (fax); fowlerj@bcc.orst.edu

Fox, Tim; Pioneer Hi-Bred Internat., Inc.; 7300 NW 62nd Ave. NW; P.O. Box 1004; Johnston IA 50131

Frame, Brongyn; Iowa State Univ; Plant Transformation Facility; G503 Agronomy; Ames IA 50011-1010; 515-294-8832; 515-294-2299 (fax); bframe@iastate.edu

Francis, T. R.; Novartis Seeds Canada Inc; R. R. 1; Arva, Ont NOM 1C0; CANADA; 519-461-0072; 519-461-0275 (fax)

Frank, Carren; Dow Agrosciences; 9330 Zionsville Rd; Bldg 306; Indianapolis IN 46268-1054; 317-337-5965; 317-337-5989 (fax)

Frank, Mary; Dept. of Biology; MC0116; Univ. of California - San Diego; La Jolla CA 92093-7108

Frank, Todd; Mycogen Seeds; 1985 E 500 N; Windfall IN 46076; 765--945-8145; 765-945-8150 (fax)

Franklin, Amie; Pangene Corporation; 5500 Stewart Ave; Fremont CA 94538; 510-360-9100x2716

Freeling, Michael; Dept of Plant Biology; 111 Genetics & Plant Biology Bldg; Univ of California; Berkeley CA 94720; 510-642-8058; 510-642-4995 (fax); freeling@nature.berkeley.edu

Frei, Mark; LG Seeds; Eggenkamp 1; Greven 48268; GERMANY; 49-2571-55939; 49-2571-53808 (fax); lggrev@aol.com

Frenzel, Karsten; Univ Hamburg; Allgemeine Bot; Ohnhorststrasse 18; 22609 Hamburg; GERMANY; 00494-042816-389; 00494-042816-503 (fax)

Frey, Monika; Lehrstuhl fur Gentechnik Hoherer Pflanzen; Tech Univ Munchen; Lichtenbergstrabe 4; 85747 Garching; GERMANY; 49-89-2891-3532; 49-89 - 2891-2892 (fax)

Freymark, Peter J., 16 Cameron Road; P.O. Borrowdale; Harare; ZIMBABWE; 011-263-4-726061; 011-263-4-726061 (fax)

Fridlender, Marcelo; Pioneer Hi-Bred Internatl; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131; 515-334-4619; 515-334-4755 (fax)

Friedberg, Jeremy; 24 Silvergrove Rd; North York, Ont M2L 2N6; CANADA; 416-449-2098; jfriedb@plant.uoguelph.ca

Friedman, Robert B.; Cerestar USA; 1100 Indianapolis Blvd; Hammond IN 46320-1094; 219-659-2000 ext 390; 219-473-6607 (fax)

Friedrich, James W.; Maize Genetic Resources, Inc; 10570 Hwy. 50 North; Angier NC 27501; 919-894-5594; 919-894-5660 (fax)

Frolich, Walter; Oberriexingerstr. 32; D-74343 Sachsenheim; GERMANY

Frost, Jenelle; Univ Missouri; 105 Tucker; Columbia MO 65211; 573-882-9228

Frova, Carla; Dept of Genetics & Microbiology; University of Milano; Via Celoria 26; 20133 Milano; ITALY; 39 2 26605244; 39 2 2664551 (fax); carla.frova@unimi.it

Fu, Huihua; Waksman Inst; Rutgers Univ; Piscataway NJ 08854; 732-445-2307; 732-445-5735 (fax); huihua@waksman.rutgers.edu

Fu, Suneng; 2502 Miller Plant Sci Bldg; Botany Dept; Univ Georgia; Athens GA 30602; 706-542-1010; 706-542-1805 (fax); fsneng@dogwood.botany.uga.edu

Fu, Xi-Qin; Hunan Academy of Agricultural Sciences; Hybrid Rice Research Center; Mapoling, Dong Jiao, Changsha; Hunan 410125; CHINA; 86-731-469-1443; 86-731-469-1877 (fax)

Fu, Yan; Iowa State Univ; B420 Agronomy; Ames IA 50010; 515-294-1659; yanfu@iastate.edu

Fuerstenberg, Susan; Tilligen; 215A Madson Place; Davis CA 95616; 530-756-4760; 530-756-4928 (fax); suz@tilligen.com

Furtek, D. B.; Inst. Molecular Biology Labs; Pennsylvania State Univ.; 214 Borland Lab; University Park PA 16802-2505; 814-863-7785; 814-863-6123 (fax)

Gabay-Laughnan, Susan; Plant Biology/265 Morrill Hall; University of Illinois; 505 S. Goodwin Avenue; Urbana IL 61801; 217-333-2919; 217-244-7246 (fax); gabaylau@life.uiuc.edu

Gai, Xiaowu; Iowa State Univ; 2104 Molecular Biology Bldg; Ames IA 50011; 515-294-0022; xgai@iastate.edu

Gaillard, Antoine; Maisadour Semences; Unite Biotechnologie; BP 27; 40001 Mont-de-Marsan; FRANCE; 58 05 84 54; 58 05 84 87 (fax); gaillard@maisadour.com

Gale, Michael; John Innes Centre; Norwich Research Park; Colney; Norwich NR4 7UH; UNITED KINGDOM; 44 1603 450 599; 44 1603 450 024 (fax); mike.gale@bbsrc.ac.uk

Galinat, Walton C.; Eastern Agric. Center, U. Mass.; 240 Beaver Street; Waltham MA 02154-8096; 617-891-0650; 617-899-6054 (fax)

Gallagher, Cynthia; Lehman College - CUNY; 250 Bedford Park Blvd W; Bronx NY 10468; 718-960-4994; 718-960-8236 (fax); cegallagher_68@yahoo.com Gallagher, Larbi; Univ Florida; Hortic Sci Dept; PO Box 110690; Gainesville FL 32611; 352-392-1928 ext 316; 352-392-6479 (fax); larbi@ufl.edu

Gallie, Daniel; Dept. of Biochemistry; University of California; Riverside CA 92521; (909)787-7298; (909)787-3590 (fax); DRGALLIE@UCRAC1.UCR.EDU

Gallo-Meagher, Maraia; Univ Florida; 2183 McCarty Hall; P.O. Box 110300; Gainesville FL 32611-0300; 352-392-1823; 352-392-7248 (fax)

Gao, Min-Wei; Zhejiang Agricultural University; Institute of Nuclear-Agric. Science; Hangzhou; Zhejiang 310029; CHINA

Garcia-Olmedo, F.; Lab Biochemistry and Molecular Biology; Dept. Biotechnology; E T S Ingenieros Agronomos; 28040-Madrid; SPAIN; 34-1-3365707; 34-1-3365757 (fax)

Gardiner, Jack; 214 Curtis Hall; University of Missouri; Columbia MO 65211-7202; 573-884-3134; 573-884-7850 (fax); GardinerJ@Missouri.edu

Gardiner, Michele; Rogers NK Seed Co; 6338 Highway 20-26; Nampa ID 83687; (208)466-0319; (208)467-4559 (fax); michele.gardiner@seeds.novartis.com Gardner, Candice; USDA-ARS Research Leader; NCR Plant Introduction Station; G214 Agronomy Hall; Iowa State University; Ames IA 50011-1170; 515 -294-7967; 515-294-4880 (fax); gardnerc@iastate.edu

Garg, Preeti; Inst Allgemeine Botanik; Univ Hamburg; Ohnhorststr 18; Hamburg; GERMANY; 049-40-42876390; 049-40-42876503 (fax)

Garnaat, Carl W.; Pioneer Hi-Bred Int'l; Department of Biotechnology Research; 7300 N. W. 62nd Ave-P.O. Box 1004; Johnston IA 50131-1004; (515)253-2251; (515)270-3367 (fax); carl.garnaat@pioneer.com

Garton, James; 220 Biosciences Ctr; 1445 Gortner Ave; Univ Minnesota; St. Paul MN 55108; 651-489-5535; jgarton@biosci.cbs.umn.edu

Garwood, D. L.; Garwood Seed Company; 1929 N. 2050 East Rd.; Stonington IL 62567-5306; 217-325-3715; 217-325-3578 (fax) Garwood, Todd; Univ Idaho; Biological Ściences; Moscow ID 83844-3051; 208-885-2550; 208-885-7905 (fax) Gaut, Brandon; 321 Steinhaus Hall; Dept Eco & Evol; UC Irvine; Irvine CA 92697-2525; 949-824-2564; 949-824-2181 (fax); bgaut@uci.edu Gavazzi, Giuseppe; Universita degli Studi di Milano; Dip di Produzione Vegetale; Via Celoria 2; 20133 Milano; ITALY; +39 02-5835-6532; +39 02-5835-6521 (fax); giuseppe.gavazzi@unimi.it Geadelmann, Jon L.: Holden's Foundation Seeds, Inc: 2440 Highway 19 Blvd: Stanton MN 55018-7220; 507-263-3476; 507-263-4839 (fax) Gebauer, Juan E.; Corn Breeding; Casilla 190; Buin; CHILE; 011(56-2)821-1552; 011(56-2)821-3564 (fax) Geiger, Hartwig H.; Univ Hohenheim; 350 Inst Pflanzenzucht; Seed Sci and Pop Genetics; D-70593 Stuttgart; GERMANY; 49-711-459-2644; 49-711-459-2343 (fax); geigerhh@uni-hohenheim.de Gengenbach, Burle G.; Agron & Plant Genetics; Univ of Minnesota; 1991 Upper Buford Cir.; St Paul MN 55108; 612-625-8761; 612-625-1268 (fax); burle@umn.edu Genschel, Ulrich; Tech Univ Munchen; Lehrstuhl fur Genetik; Lictenbergstrasse 4; D-85747 Garching; GERMANY; 49 89 2891 3532; genschel@bio.tum.de George, Maria; CIMMYT; MCPO Box 3127; 1271 Makati; PHILIPPINES; 63-2 845-2563 ext 6828; 63-2 761-2406 (fax); m.george@cgiar.org Gerentes, Denise; Univ Des Cezeaux - Biogemma; 24 Avenue des Landais; Aubiere 63170; FRANCE; 33 473 42 7970; 33 673 42 7981 (fax); denise.gerentes@biogemma.com Gerke, Justin; Univ Missouri; 302 Curtis Hall; Columbia MO 65211; 573-882-2033; JPG4ba@mizzou.edu Giedt, Chris; Univ Idaho; Dept Biol Sci; 229 Gibb Hall; Moscow ID 83844-3051; 208-885-2550; 208-885-7905 (fax) Gierl, Alfons; Lehrstuhl fur Genetik; Technische Universitat Munchen; Lichtenbergstrasse 4: 85747 Garching; GERMANY; 49-89-289-12890; 49-89-289-12892 (fax); gierl@bio.tum.de Gilliam, Jacob; Pioneer Hi-Bred Internat Inc; Crop Protection; 7300 NW 62nd Ave., PO Box 1004; Johnston IA 50131-1004 Gillies, Christopher; Macleay Bldg A12; Univ of Sydney; Sydney NSW 2006; AUSTRALIA; 61-2-351-2688; 61-2-351-4771 (fax) Gilna, Paul; MS J586 B-S2; B Division Resource Unit; Los Alamos National Labs; Los Alamos NM 87545; 505-667-1514; 505-667-9611 (fax); pgil@lanl.gov Giorio, Giovanni: c/o Metapontum Agrobios; SS. Ionica Km 448.2; I-75010 Metaponto (MT); ITALY; 39-835-740276; 39-835-745306 (fax) Girard, Lisa; Plant Biology Dept; 111 Koshland Hall; UC Berkeley; Berkeley CA 94720-3102 Giulini, Anna; Cold Spring Harbor Lab; 1 Bungtown Rd; PO Box 100; Cold Spring Harbor NY 11724; 516-367-8827; 516-367-8369 (fax); giulini@cshl.org Glover, David V.; Dept of Agronomy; Purdue University; W. Lafayette IN 47907; 765-494-8067; 765-494-6508 (fax); DGLOVER@dept.agry.purdue.edu Gobel, Elke; KWS Kleinwanzlebener Saatzucht AG; Grimschlstrasse 31; Einbeck; GERMANY; 49-5561-311636; 49-5561-311337(fax) Goday, Adela; CSIC Dept Genet Molec; Jordi Girona 18; 08034 Barcelona; SPAIN; 34-93-4006100; 36-93-2045904 (fax); adggmm@cid.csic.es Goettel, Wolfgang; Waksman Inst - Univ New Jersey; 190 Frelinghuysen Rd; Piscataway NJ 08854-8020; 908-445-3801; 908-445-5735 (fax); goettel@waksman.rutgers.edu Goff, Steve; CIBA-GEIGY Biotechnology; 3054 Cornwallis Road; Research Triangle Park NC 27709 Goldman, Irwin; Department of Horticulture; Univ. of Wisconsin; 1575 Linden Drive; Madison WI 53706; (608)262-7781; (608)262-4743 (fax) Goldman, Stephen; Dept of Biology; University of Toledo; Toledo OH 43606; 419-530-1540; 419-530-7737 (fax); stephen.goldman@utoledo.edu Golubovskaya, Inna; Cande Lab; Dept of Molec & Cell Biology; Box 341 LSA; Univ of California; Berkeley CA 94720; 510-643-8277; innagol@uclink4.berkeley.edu Gomez, Elisa; Departmento de Biol Cel Genet; Univ de Alcala; Crta Madrid-Barcelona Km 33.600; E-28871 Alcala de Henares; SPAIN; 91-8854758; 91 -8854799 (fax); elisa.gomez@uah.es Goncalves-Butruille, Marymar; Univ Wisconsin; 445 Henry Mall; Room 118, Genetics Dept; Madison WI 53706; 608-262-3286; 608-262-2976 (fax); MGONCALV@STUDENTS.WISC.EDU Gong, Zuxun: Academia Sinica; Shanghai Inst. of Biochem.; 320 Yue-Yang Road; Shanghai 200031; CHINA Gonzalez, Juan Manuel; Urb. San Jose A-10, Yanahuara; Arequipa; PERU; 051 54 251115; 051 54 258898 (fax); gpaqp@terra.com.pe Gonzalez de Leon, Diego; Paseo del Atardecer 360; Villas de Irapuato; Irapuato 36650 Guanajuato; MEXICO; 52-462-31137 (phone/fax) Goodman, Major; Department of Crop Sciences; North Carolina State Univ; P.O. Box 7620; Raleigh NC 27695; 919-515-7039; 919-515-7959 (fax) Gordon, Stuart; Ohio State Univ; 1680 Madison Ave; Wooster OH 44691; 330-236-3878; 330-236-3887 (fax); gordon.25@osu.edu Gordon-Kamm, William; Pioneer Hi-Bred Internat Inc; 7300 NW 62nd Ave., PO Box 1004; Johnston IA 50131-1004 Gorenstein, Nina; Purdue Univ; Dept Biological Sciences; 1392 Lilly Hall; West Lafayette IN 47907; 765-496-2506; ninagor@bilbo.bio.purdue.edu Gouesnard, B; INRA Centre de Montpellier; Sta Genet Amel Plantes; domaine de Melgueil; 34130 Mauguio; FRANCE; 67 29 39 90 (fax); gouesnar@montpellier.inra.fr Gould, Jean; Texas A&M; Forest Science Dept; College Station TX 77843-2135; 979-845-5078; 979-845-6049 (fax); gould@tamu.edu Gracen, Vernon; Cargill Worldwide Seed: Box 5645; Minneapolis MN 55440; 612-742-7244; 612-742-7235 (fax) Grant, David; G304 Agronomy Hall; Iowa State Univ; Ames IA 50011-1010; 515-294-1205; 515-294-2299 (fax); dgrant@iastate.edu Gray, Anjali; Biology Dept; University of Toledo; 2801 West Bancroft St; Toledo OH 43606; 419-530-2135; 419-530-7737 (fax); agray2@uoft02.utoledo.edu Gray, John; Dept of Biology; Univ of Toledo; 2801 West Bancroft St; Toledo OH 43606; 419-530-1537; 419-530-7737 (fax); jgray5@uoft02.utoledo.edu Greene, Thomas W.; Dow AgroSciences; 9330 Zionsville Rd; Indianapolis IN 46268; 317-337-5956; 317-337-3228 (fax); twgreene@dow.com Greenland, Andy; Zeneca Plant Science; Jealott's Hill; Bracknell; Berkshire RG2 6ET; UNITED KINGDOM; 44-1344-414820; 44-1344-414996 (fax); Andy.Greenland@aguk.zeneca.com Grier, Stephen L.; Novartis Seeds; 317 330th St.; Stanton MN 55018-4308; 507-663-7662; 507-645-7519 (fax); steve.grier@syngenta.com Griffin, Daniel; Univ Minnesota; 220 Biosciences Ctr; 1445 Gortner Ave; St. Paul MN 55108; 612-625-5241; 612-625-1738 (fax); dgriffin@biosci.cbs.umn.edu Griffor, Matthew: DeKalb Genetics; 62 Maritime Road; Mystic CT 06355; 860-572-5229; 860-572-5240 (fax) Grimanelli, Daniel; ORSTOM - CIMMYT; Apdo Postal 6-641; 06600 Mexico D.F.; MEXICO; (52) 5 726-9091; (52) 5 726-7558 (fax); dgrimanelli@cgiar.org Grobman, Alexander; Semillas Penta del Peru S.A.; Apartado 270227; Lima 27; PERU; (5114)426375; (5114)425465 (fax) Grossniklaus, Ueli; Cold Spring Harbor Laboratory; PO Box 100; Cold Spring Harbor NY 11724; 516-367-8825; 516-367-8369 (fax) Grotewold, Erich; Ohio State Univ Biotech Ctr; 232 Rightmire Hall; 1060 Carmack Rd; Columbus OH 43210; 614-292-2483; 614-292-5379 (fax); grotewold.1@osu.edu Grun, Sebastian; Lehrstuhl Gentechnik Hoherer Pflanzen; TUM; Lichtenbergstrabe 4; 85747 Garching; GERMANY; 0049-89-289-13746; 0049-89-289-12892 (fax); gruen@snoopy.org.chemie.tu-muenchen.de Gu, Ming-Hong; Jiangsu Agricultural College; Dept. of Agronomy; Yangzhou; Jiangsu 225001; CHINA Gu, Mingguang; Institute of Genetics; Chinese Academy of Sciences; Beijing; CHINA Guiltinan, Mark; Penn State Biotechnology Institute; 306 Wartik Lab; Dept of Horticulture; Univ. Park PA 16802-5807; 814-863-7958; 814-863-6139 (fax); mjg9@psu.edu Guo, Baozhu: USDA/ARS/CPMRU: PO Box 748; Tifton GA 31793-0748; 912-387-2326; 912-387-2321 (fax); bguo@tifton.cpes.peachnet.edu Guo, Jun-Yuan; Academia Sinica; South China Institute of Botany; Guangzhou 510650; CHINA Guo, Mei; Pioneer Hi-Bred Intl, Inc; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131-0552; 515-253-2146; 515-334-4788 (fax); Mei.Guo@pioneer.com

Gupta, Manju; Dow AgroSciences USA; 9330 Zionsville Rd; Building 306/C-1; Indianapolis IN 46268-1054; 317-337-5980; 317-337-5989 (fax); mgupta@dowagro.com

Gutierrez-Marcos, Jose; Plant Science; Oxford Univ; South Parks Rd; Oxford OX1 3RB; UNITED KINGDOM; 01865-275815; 01865-275074 (fax); jose.gutierrez@plants.ox.ac.uk

Gwyn, Jefferson; DeKalb Genetics Corp; 2139 CR 2500 N.; Thomasboro IL 61878; 217-694-4141; 217-694-4549 (fax)

Haag, Wayne L.; Sasakawa Global 2000; C. P. 4247; Maputo; MOZAMBIQUE; 258-1-490004; 258-1-491417 (fax)

Hajek, Kathryn; Dept Biol Env Sci; Univ Tennessee-Chattanooga; 615 McCallie Ave; Chattanooga TN 37403-2598; 423-755-4397; 423-785-2285 (fax)

Hake, Sarah; USDA-ARS-PGEC; 800 Buchanan Street; Albany CA 94710; 510-559-5907; 510-559-5678 (fax); maizesh@nature.berkeley.edu

Hall, Ira; Watson School Biol Sci; 1 Bungtown Rd; PO Box 100; Cold Spring Harbor NY 11724; 516-367-5156; hall@cshl.org

Hall, Lisa Naomi; Oxford Univ; Dept Plant Sci; South Parks Road; Oxford OX1 3RB; UNITED KINGDOM; 865-275030; 865-275147 (fax)

Hallauer, Arnel R.; Agronomy Building; 1505 Agronomy Hall; Iowa State University; Ames IA 50011-1010; 515-294-3052; 515-294-3163 (fax); mlents@iastate.edu

Hamilton, RI; 3199 Klondike Road; North Gower; Ontario K0A2T0; CANADA; 613-489-3166; 613-489-3166 (fax); rih@cyberus.ca

Han, Changdeok; Gyeongsang National University; Gazwa Dong; Chinju 660-701; KOREA; 082-591-751-6029; 82-591-759-9363 (fax); cdhan@nongae.gsnu.ac.kr

Hancock, Denis C.; 213 Curtis Hall; University of Missouri; Columbia MO 65211; 573-882-1722; 573-884-7850 (fax); HancockDC@missouri.edu

Hannah, Curtis; Veg Crops Dept; Univ of Florida, IFAS; 1143 Fifield Hall, P.O. Box 110690; Gainesville FL 32611-0690; 352-392-1928x315; 352-392-5653 (fax); Hannah@GNV.IFAS.UFL.EDU

Hannappel, Ulrich; Long Ashton Research Station; Univ Bristol; Bristol BS18 9AF; UNITED KINGDOM; 44 1275 549412; 44 1275 394 281 (fax)

Hansel, W. C.; Hansel Cons & Mgmt; Box 283; Carrollton MO 64633; 816-542-1616

Hansen, Joel; 2254 Molecular Biology Bldg.; Iowa State University; Ames IA 50011; 515-294-0347; 515-294-0453 (fax); jdhansen@iastate.edu

Hansen, Leon A.; Novartis Seeds, Inc.; 6338 Highway 20-26; Nampa ID 83687; 208-465-8554; 208-467-4559 (fax)

Hansen, Susanne; Univ Hamburg; Ohnhoststrasse 18; D-22609 Hamburg; GERMANY; hansen@botanik.uni-hamburg.de

Hanson, Maureen R.; Dept Mol Biol & Genetics; Cornell Univ.; Biotech Bldg; Ithaca NY 14853; 607-254-4833/4832 lab; 607-255-2428 (fax); mrh5@cornell.edu

Hantke, Sabine; Pioneer Hi-Bred Intl, Inc; 7300 NW 62nd Ave; P.O. Box 1004; Johnston IA 50131; 515-253-2493; 515-270-3367 (fax)

Harberd, Nicholas; John Innes Centre,; Norwich Research Park,; Colney Lane,; Norwich NR4 7UJ UK; +44-1603 452 571; x2525; nicholas.harberd@bbsrc.ac.uk

Hardeman, Kristine; Dekalb Plant Genetics/Monsanto; 62 Maritime Dr; Mystic CT 06355; 860-572-5279; 860-572-5282 (fax); Kristine.hardeman@monsanto.com

Harper, Lisa; Dept Molec & Cell Biol; 345 LSA; University of CA; Berkeley CA 94720; 510-643-8277; 510-643-6791 (fax); ligule@nature.berkeley.edu

Harper, Stacy; Novartis Seeds; Biotech Research Unit; PO Box 12257; Research Triangle Park NC 27709; 919-541-8514; 919-541-8585 (fax); stacy.harper@nabri.novartis.com

Harris, John W.; Dept of Biology; Tennessee Tech Univ; Cookeville TN 38505; 615-372-3143; 615-528-4097 (fax)

Harris, Linda J.; Eastern Cereal & Oilseed Res Centre; Agriculture & Agri-food Canada; Bldg. #21, Central Exp. Farm; Ottawa, Ontario K1A 0C6; CANADA; (613)759-1314; (613)759-6566 (fax); harrislj@em.agr.ca

Harry, David; DataGenetics; 810 E Hammond Ln; Phoenix AZ 85034-6515

Hartl, Thomas; Dow AgroSciences; 9330 Zionsville Rd; Bldg 306/C2-875; Indianapolis IN 46268; 317-337-5958; 317-337-5989 (fax); tahartl@dowagro.com Hartman, Carl; 155 South St. Rd. 2; Valparaiso IN 46383; 219-462-1927

Hausler, Mark; Monsanto; PO Box 3010; Ankeny IA 50021; 515-963-4213; 515-963-4242 (fax); mark.c.hausler@monsanto.com

Havecker, Ericka; Iowa State Univ; B420 Agronomy Hall; Ames IA 50011; 515-294-1659; 515-294-2299 (fax); havecker@iastate.edu

Havukkala, Ilkka; Genesis R & D Corp. Ltd.; P.O. Box 50; Auckland; NEW ZEALAND; 64-9-373-5600; 64-9-373-5601 (fax); i.havukkala@genesis.co.nz

Hawk, James A.; Dept Plant & Soil Sciences; University of Delaware; Newark DE 19717-1303; 302-831-1379; 302-831-3651 (fax); jhawk@strauss.udel.edu Hay, Angela; Univ California-Berkeley; 800 Buchanan Street; Albany CA 94710; 510-559-5922; 510-559-5678 (fax); ASHAY@nature.berkeley.edu

Hazen, Samuel; MSU-DOE Plant Research Laboratory; Michigan State University; East Lansing MI 48824; 517-353-8854; 517-353-3955 (fax); hazensam@msu.edu

He, Zuhua; Zhejiang Agricultural University; Biotechnology Institute; Hangzhou; Zhejiang 310029; CHINA

Headley, Joel; Dept Plant Sciences; 303 Forbes Hall; University of Arizona; Tucson AZ 85721; 520-626-8725; 520-621-7186 (fax); jheadley@ag.arizona.edu Hebert-Soule, Dominique; Novartis Seeds S.A.; 12 Chemin de L-Hobit; B.P. 27; 31790 Saint Sauveur; FRANCE; 33.5.62.79.99.12; 33.5.62.79.99.96 (fax); dominique.hebertsoule@syngenta.com

Heck, Donald; Iowa State Univ; Dept Biochemistry; 4178 MBB; Ames IA 50010; 515-294-4042; 515-294-0453 (fax); daheck@iastate.edu

Helentjaris, Tim; Pioneer Hi-Bred Int., Inc.; Agronomic Traits/TTD; 7300 N.W. 62nd Ave. P.O. Box 1004; Johnston IA 50131-1004; 515-270-3691; 515-254-2619 (fax); helentjartg@phibred.com

Helmer, Georgia; North Carolina State Univ; Dept of Botany; Box 7612; Raleigh NC 27695; 919-515-7166; 919-515-3436 (fax); georgia_helmer@ncsu.edu Henderson, David; Univ Georgia; 2502 Plant Sci Bldg; Dept Botany; Athens GA 30602; davidh@dogwood.botany.uga.edu

Heredia-Diaz, Oscar; Monšanto; 700 Chesterfield Pkway North GG6A; St. Louis MO 63198; 314-537-6902; 314-537-6950 (fax); oscar.heredia@monsanto.com

Hermon, Pedro; Pioneer Hi-Bred Intl; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131

Hernandez, Julia Marcela; The Ohio State Univ; 206 Rightmire Hall; 1060 Carmack Rd; Columbus OH 43210; 614-688-4954; 614-292-5379 (fax); hernandez.16@osu.edu

Hetz, Winfried; Institue of Biology; University of Freiburg; Schlanzlestr, 1; 79104 Freiburg; GERMANY

Heun, Manfred; Population Genetics; Dept Chem & Biotechnol; PO Box 5040, Agric Univ Norway; N-1432 AAs - NLH; NORWAY; 47-64947679; 47-64947691 (fax); manfred.heun@ikb.nlh.no

Hiatt, Evelyn N.; Dept of Genetics; Life Sciences Bldg; Univ Georgia; Athens GA 30602; 706-542-1010; 706-542-3910 (fax); hiatt@dogwood.botany.uga.edu

Higgs, David C.; Univ Wisconsin; 900 Wood Rd; PO Box 2000; Kenosha WI 53141; 262-595-2786; 262-595-2056 (fax); higgs@uwp.edu

Hile, Glenn C.; Syngenta; 7113 Alt 49 East; P.O. Box 249; Arcanum OH 45304; 513-692-5164; 513-692-8256 (fax); hilreal@erinet.com

Hill, Martha; Novartis Biotechnology; PO Box 12257; 3054 Cornwallis Rd; Research Triangle Park NC 27709-2257; 919-541-8580; 919-541-8585 (fax); martha.hill@nabri.novartis.com

Hochholdinger, Frank; University of Tuebingen; Center for plant molecular biology (ZMBP); Auf der Morgenstelle 28; 72076 Tuebingen; GERMANY; 49-7071 / 29 77 0 24; 49-7071 / 29 50 42 (fax); frank.hochholdinger@zmbp.uni-tuebingen.de

Hodges, Tom; Botany & Plant Pathology; Agricultural research Building; Purdue University; W. Lafayette IN 47907; 765-494-4657; 765-494-5896 (fax); hodges@btny.purdue.edu

Hoegemeyer, Thomas C.; Hoegemeyer Hybrids Inc; 1755 Hoegemeyer Rd; Hooper NE 68031; 402-654-3399; 402-654-3342 (fax)

Hoekenga, Owen: 321 US Plant Soil Nutrition Lab; Cornell University; Ithaca NY 14853-2901; (607) 255-2133; (607) 255-1132 (fax); oah1@cornell.edu Hoelscher, Angel; Monsanto Life Sciences; 700 Chesterfield Pkwy North; MZ BB3G; St. Louis MO 63198; 314-737-7577; 341-737-5223 (fax); angel.d.hoelscher@monsanto.com

Hoisington, David; CIMMYT; Lisboa 27. Aptdo. Postal 6-641; 06600 Mexico, D. F.; MEXICO; 52-55-5804-7575; 52-55-5804-7558 (fax); D.Hoisington@cgiar.org

Holdsworth, MJ; IACR-Long Ashton Res Stn; Univ Bristol; Long Ashton; Bristol BS18 9AF; UNITED KINGDOM; mike.holdsworth@bbsrc.ac.uk

Hole, David; Plant Soils & Biometeorology Dept.; Utah State Univ.; Logan UT 84322-4820; 435-797-2235; 435-797-3376 (fax); dhole@mendel.usu.edu Holley, Randall; Novartis Seeds; 340 Southside Dr.; Henderson KY 42420; 270-827-5787; 270-827-5703 (fax); randy.holley@seeds.novartis.com

Hollićk, Jay; 555 LSA 3200; Univ California; Berkeley CA 947203-200; 510-643-1734; 510-642-0355 (fax); hollick@nature.berkeley.edu

Holligan, Dawn; 2502 Plant Sci Bldg; Dept Botany; Univ Georgia; Athens GA 30602; 706-542-1857; 706-542-1805 (fax); dawn@dogwood.botany.uga.edu Holton, Hans; Univ California-Berkeley; 800 Buchanan Street; Albany CA 94710; 510-559-5922; 510-559-5678 (fax); hehe@nature.berkeley.edu Holtsford, Timothy; Biol Sci; Tucker Hall; Univ of Missouri; Columbia MO 65211; 573-882-3016; holtsford@biosci.mbp.missouri.edu

Hong, Guo-Fan; National Center for Gene Research; Chinese Academy of Science; 500 Cao Bao Road; Shanghai 200233; CHINA; 86-21-482-2885; 86-21-482-5775 (fax)

Hoogstraten, Rebecca; Monsanto; 1920 Fifth St; Davis CA 95616; 530-792-2230; 530-753-1510 (fax)

Hornstra, Luc: Keygene NV: 677 A E Wageningen; NETHERLANDS; 31-317-424939; 31-317-466866

Houchins, Kate; 302 Curtis Hall; University of Missouri; Columbia MO 65211; 573-882-2033; 573-884-7850 (fax); houchinske@missouri.edu

Houghteling, Billy; Dept Biology; Ball State Univ; Muncie IN 47306; 765-285-8854; 765-285-8804 (fax)

Houmard, Nancy; Dekalb; 62 Maritime Dr; Mystic CT 06355; 860-572-5219; 860-572-5240 (fax); nhoumard@dekalb.com

Hsia, An-Ping; B420 Agronomy Hall; Iowa State University; Ames IA 50011; 515-294-1659; 515-294-2299 (fax); hsia@iastate.edu

- Hu, Gongshe: Dept Plant & Microbial Biol; Plant Gene Expression Ctr: 800 Buchanan St; Albany CA 94710; 510-559-5919; 510-559-5678 (fax); gongshe@yahoo.com
- Hu, Jianping; Dept of Botany; University of Georgia; Athens GA 30602; 706-542-1857; 706-542-1805 (fax)

Hu, Yun; Univ Georgia; Botany Dept; Miller Plant Sci; Athens GA 30602; 706-542-1857; 706-542-1805 (fax); cloud@dogwood.botany.uga.edu

Huang, Bing-Quan; Biology Dept; Univ of North Dakota; Grand Forks ND 58202; 701-777-4479; 701-772-5041 (fax)

Huang, Danian; China National Rice Research Institute; Hangzhou; Zhejiang 310006; CHINA

Huang, Wei-Da; Fudan University; Dept. of Biochem.; Handan Road 220; Shanghai 200433; CHINA

Huang, Yih-Ching; Department of Agronomy; National Taiwan University; Taipei; TAIWAN; (02)2 363-0231 ext. 2727; (02)2 362-0879 (fax); vch@ccms.ntu.edu.tw

Hubbard, Lauren; USDA-ARS-PGEC; 800 Buchanan St.; Albany CA 94710; 510-559-5922; 510-559-5648 (fax); LHUBBARD@Nature.Berkeley.EDU

Hueros, Gregorio; Departmento de Biol Cel Genet; Univ Alcala; Crta Madrid-Barcelona Km 33.600; E-28871 Alcala de Henares; SPAIN; 91-8854758; 91-8854799 (fax); gregorio.hueros@uah.es

Huestis, Gordon; John Innes Centre; Colney Lane; Norwich NR4 7UH; UNITED KINGDOM

Huetl, Regine; Tech Univ Munchen; Lehrstuhl fur Genetik; Lichtenbergstrasse 4; D-85747 Garching; GERMANY; maize@c2h5oh.org.chemie.tumuenchen.de

Huffman, Gary A.; Pioneer Hi-Bred International; 7300 NW 62nd Ave.; P.O. Box 1004; Johnston IA 50131-1004; 515-270-3502; 515-270-3367 (fax); Gary.Huffman@pioneer.com

Hulbert, Scot; Kansas State University; Dept. of Plant Pathology; Throckmorton Hall; Manhattan KS 66506-5502; 913-532-1392; 913-532-5692 (fax); shulbrt@plantpath.ksu.edu

Hunsperger, John P.; P.O. Box 2217; Gilroy CA 95021-2217; (408)848-1161; jhunsp@ix.netcom.com

Hunter, Brenda; Dept Plant Sci; Forbes Hall, Room 303; Univ of Arizona; Tucson AZ 85721; bhunter@Ag.Arizona.Edu

Hunter, Clifford; 2111 Piilani Hwy.; P.O.Box 645; Kihei HI 96753; clifford.p.hunter@monsanto.com

Hurkman, Meg; N2499 Hwy. D; Brantwood WI 54513

Hussey, Patrick J.; University of London; Royal Holloway New College; Dept. Biochem., Egham Hill; Egham, Surrey TW20 OEX; UNITED KINGDOM

lida, Shigeru; Div Gene Expr & Regulation I; Nat Inst for Basic Biology; Okazaki 444; JAPAN; 0564-55-7680; 0564-55-7685 (fax); shigiida@nibb.ac.jp Im, Kyung Hoan; Dept Plant Path; Univ of Florida; Gainesville FL 32611

Inada, Noriko; Univ California; Dept Plant Microbiol; Berkeley CA 94720; inada@biol.s.u-tokyo.ac.jp

Ingham, Erika; 105 Tucker Hall; Univ of Missouri; Columbia MO 65211; 573-882-3481; 573-882-0123 (fax)

Ingram, Gwyneth; INRA; RDP, Ecole Normale Superieure de Lyon; 46 Allee d'Halie; 69364 Lyon Cedex 07; FRANCE; 0033 4 72 72 86 07; 0033 4 72 72 86 00 (fax)

Innes, R. L.; DeKalb Canada Inc.; R.R. 2; Glanworth, Ont. NOL 1L0; CANADA

Inoue, Yasuaki; National Grassland Res Inst; 768 Nishinasuno; Tochigi 329-27; JAPAN; 0287-36-0111

Irish, Erin; Department of Biological Sciences; 312 Chemistry Bldg; University of Iowa; Iowa City IA 52242; 319-335-2582; 319-335-3620 (fax); erinirish@uiowa.edu

Isaac, Peter: Adrogene S.A.: 620, rue Blaise Pascal: Z.I.-Immeuble Alligator; 77555 Moissy Cramavel; FRANCE: 33-1-64 13 31 80; 33-1-64 13 31 81 (fax); pete.i@agrogene.com

Ishige, Teruo; Biol Resources Div; JIRCAS; 1-2 Ohwashi; Tsukuba 305-8686; JAPAN; 81-298-38-6305; 81-298-38-6650 (fax)

Ishikawa, Ryuji; Faculty of Agriculture; Hirosaki Univ; Hirosaki Aomori 036; JAPAN; 011-81-172-39-3778; 011-81-172-39-3750 (fax); ishikawa@cc.hirosakiu.ac.ip

Islam-Faridi, M. Nurul; Dept Soil and Crop Sci; Texas A&M Univ; College Station TX 77843-2474

Ito, Momoyo; BioScience Ctr; Nagoya Univ; Chikusa; Nagoya 464-8601; JAPAN; 81-52-789-5225; 81-52-789-5226 (fax)

Itoh, Jun-Ichi; Univ California; 111 Koshland Hall; Plant Biol; Berkeley CA 94720; 510-642-8058; ajunito@mail.ecc.u-tokyo.ac.jp

Jackson, Dave; IACR-Long Ashton; Bristol BS18 9AF; UNITED KINGDOM; 44-1275--549428; 44-1275-394281 (fax); Dave.Edwards@BBSRC.AC.UK

Jackson, David; Cold Spring Harbor Lab; 1 Bungtown Rd; P.O. Box 100; Cold Spring Harbor NY 11724-2212; 516-367-8467; 516-367-8369 (fax); jacksond@cshl.org

Jackson, Janet Day; Maize Coop Stock Center/AW-101 Turner; University of Illinois; 1102 S. Goodwin Ave; Urbana IL 61801; 217-333-6331; 217-333-6064 (fax); j-day@uiuc.edu

Jacqueth, Jennifer; Pioneer Hi-Bred Intl; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131; 515-270-4369; jaquethjs@phibred.com

Jahn, Molly; Cornell Univ; 312 Bradfield Hall; Ithaca NY 14853; 607-255-8147; 607-255-6683 (fax)

James, Martha G.; Dept. of Bioch Bioph Mol Biol; Molecular Biology Building, Room 2152; Iowa State University; Ames IA 50011; 515-294-3818; 515-294-0453 (fax); mgjames@iastate.edu

Jamoom, Eric; Univ Florida; Hortic Dept; Gainesville FL 32611-0690; 352-846-8888; Jamoom@ufl.edu

Jampatong, Chaba; Natl Corn & Sorghum Res Ctr; Kasetsart Univ; Klangdong, Pakchong; Nakhonratchasima, 30320; THAILAND; 66-44-361771-4; 66-44-361108 (fax); raisuwan@korat.loxinfo.co.th

Jampatong, Sansern; Natl Corn & Sorohum Res Ctr; Kasetsart Univ; Klangdong, Pakchong; Nakhonratchasima, 30320; THAILAND; 66-44-361771-4; 66-44-361108 (fax); raisuwan@korat.loxinfo.co.th

Janick-Buckner, Diane; Truman State Univ; Div Sciences; Kirksville MO 63501; 816-785-4305; 816-785-4045 (fax); djb@truman.edu

Jankovsky, Julia; Biology Dept c/o Tim Nelson; PO Box 208104; Yale University; New Haven CT 06520-8104; 203-432-3862

Jarboe, Sue G.; Purdue University; Department of Agronomy; 1150 Lilly Hall of Life Sciences; West Lafayette IN 47907-1150; 765-494-4772; 765-496-1368 (fax)

Jeffries-Griffor, Joanne; DeKalb Genetics; 62 Maritime Rd; Mystic CT 06355

Jegla, Dorothy; Dept Biol Sci; 316 CB; University of Iowa; Iowa City IA 52242

Jenkins, Bethany; Institute of Molecular Biology; University of Oregon; Eugene OR 97403

Jewell, David C.; CIMMYT Maize Research Station; P.O. Box MP 163; Mount Pleasant; Harare; ZIMBABWE; (263)(4)301807; (263)(4)301327 (fax); D.Jewell@CGNET.com

Ji, Jiabing; Univ Georgia; 4606 Plant Sci; Athens GA 30602; 706-542-1954; 706-542-1805 (fax); Jiabing@dogwood.botany.uga.edu

Jia, Hongwu; Iowa State Univ; G418 Agronomy Hall; Ames IA 50010; 515-294-0837; hwjia@iastate.edu

Jiang, Cizhong; Iowa State Univ; 2288 Molec Biol Bldg; Ames IA 50011; 515-294-3277; CzJiang@iastate.edu

Jiang, Ning; Univ of Georgia; Plant Sci Building; Athens GA 30602; 706-542-1857; 706-542-1805 (fax); jiang@dogwood.botany.uga.edu

Jiao, Shunxing; 324 Tucker Hall; Univ Missouri; Columbia MO 65211; 573-882-8033; JiaoS@missouri.edu

Jin, Ping; Iowa State Univ; 2188 MBB; Ames IA 50011; 515-294-0337; 515-294-6755 (fax)

Jobling, Steve; Unilever Research; Colworth House; Sharnbrook; Bedford MK44 1LQ; UNITED KINGDOM; 44 1234 222575; 44 1234 222552 (fax); Steve.Jobling@unilever.com

Jockovic, Djordje; Inst Field and Veg Crops; 30 Maksima Gorkog; Novi Sad 21000; YUGOSLAVIA

Joets, Johann; INRA; Station Genet Veg; du Moulon; Gif-sur-Yvette 91190; FRANCE; 11 33 1 69 33 23; 11 33 1 69 33 23 (fax); joets@moulon.inra.fr Johal, Guri; 4519 91st ST; Urbandale IA 50132; 515 270 2394; gjohal@prodigy.net

Johns, Mitrick A.; Dept Biological Sciences; Northern Illinois University; DeKalb IL 60115; 815-753-7836; 815-753-0461 (fax); majohns@niu.edu

Johnson, Elizabeth; CIBA-GEIGY Corporation; P.O. Box 1830; Kaunakakai HI 96748; 808-567-6146; 808-567-6753 (fax)

Johnson, Elmer C.; 1525 Vine St.; Belmont CA 94002; 650-593-1525

Johnson, Melvin; 920 North Hwy 13; Henrietta MO 64036; 816-494-5561; mjohnson@icrob.com

Johnson, MW; Dept of Agronomy; Pennsylvania State Univ; University Park PA 16802; 814-865-0324; 825-863-7043 (fax)

Johnson, Richard; Monsanto Co; 101 West Tomaras Ave; Savoy IL 61874; 217-356-6879; 217-356-7863 (fax); djohnson@dekalb.com Johnson, Scott; Mycogen Plant Sciences; 301 Campus Dr; P.O. Box 280; Huxley IA 50124; 515-597-3284; 515-597-2875 (fax)

Johri, M. M.; Molecular Biology Unit; Tata Inst Fundamental Res; Homi Bhabha Road; Mumbai 400 005; INDIA; 215-2971; 091-22-215-2110 (fax); MMJOHRI@tifrvax.tifr.res.in

Jondle, Doug; Cargill Hybrid Seeds; 1502 N Gault; St. Peter MN 56082; 507-931-2940; 507-931-9691 (fax)

Jones, John Edward; 8429 Meadow Green Way; Gaithersburg MD 20877

Jones, Jonathan; Sainsbury Laboratory; John Innes Centre; Colney Lane; Norwich NR4 7UH; UNITED KINGDOM; 44-1603-452571; 250024 (fax); JONESJ@bbsrc.AC.UK

Jones, Mark; 031 Selby Hall; 1680 Madison Ave; Wooster OH 44691; 330-263-3838x2837; 330-263-3841 (fax); jones.390@osu.edu

Jorgensen, Richard; Dept Plant Sci; Univ Arizona; 303 Forbes Bldg; Tucson AZ 85721-0036; 520-626-9216; 520-621-7186 (fax); raj@ag.arizona.edu

Juarez, Michelle; Cold Spring Harbor Lab; 1 Bungtown Rd; PO Box 100; Cold Spring Harbor NY 11724; 516-367-6818; 516-367-8869 (fax); juarez@cshl.org Julstrom, Paul; c/o CIMMYT; Lisboa 27, Apdo. Postal 6-641; 06600 Mexico, D.F.; MEXICO; 52 5 726 9091; 52 5 726 7558 (fax)

Jun, Wei; Box 8118; Beijing 100081; CHINA

Jung, Rudolf; Pioneer Hi-Bred Internat Inc; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131-1004; 515-270-5934; 515-270-2619 (fax); Rudolf.jung@pioneer.com

Juvik, J. A.; Dept. Nat. Res. Environ. Sci.; University of Illinois; 307 ERML; Urbana IL 61801; 217-333-1966; 217-333-4777 (fax); i-juvik@uiuc.edu

Kaeppler, Heidi F.; Moore Hall 461; Dept of Agronomy, Univ of Wisconsin; 1575 Linden Dr; Madison WI 53706-1597; 608-262-0246; 608-262-5217 (fax); hfkaeppl@facstaff.wisc.edu

Kaeppler, Shawn; Dept of Agronomy; University of Wisconsin; 1575 Linden Drive; Madison WI 53706; 608-262-9571; 608-262-5217 (fax); smkaeppl@facstaff.wisc.edu

Kahler, Alex L; Biogenetic Services, Inc; 801 32nd Ave; Brookings SD 57006-4716; 605-697-8500; 605-697-8507 (fax); biogene@brookings.net

Kaleikau, Ed; NRI Plant Genome Program; Stop 2241; 1400 Independence Avenue SW; Washington DC 20250-2241; 202-401-1931; 202-401-6488 (fax); EKALEIKAU@REEUSDA.GOV

Kalia, V.; Regional Research Station; Dhaulakuan-173001; Distt Sirmur (H. P.); INDIA

Kallis, Russ; Univ Illinois; 259 ERML; 1201 S Gregory Dr; Urbana IL 61801; 217-244-5760; r-kallis@uiuc.edu

Kampani, Archana; Univ Illinois; 1201 W Gregory Dr; Urbana IL 61801; 217-244-6146; 217-333-4582 (fax); kampani@uiuc.edu

Kamps, Terry L.; So Plains Res Sta; 2000 18th St; Woodward OK 73801; 580-256-7449; 580-256-1322 (fax); tkamps@spa.ars.usda.gov

Kang, Chun-Lin; Hunan Agricultural College; Dong Jiao; Changsa; Hunan 410128; CHINA

Kang, Manjit; Department of Agronomy; Louisiana State University; Baton Rouge LA 70803-2110; 504-388-2110; 504-388-1403 (fax); mkang@agctr.lsu.edu

Kantety, Ramesh; Dept of Agronomy; 1150 Lilly Hall; Purdue University; West Lafayette IN 47907-1150; 765-496-2729; 765-494-6508 (fax) Kaplinsky, Nick; Univ California-Berkeley; 111 Koshland Hall; Berkeley CA 94720; 510-642-7085; 510-642-4995 (fax); nkaplins@nature.berkeley.edu

Karpoff, Arnold; Dept of Biology; Univ of Louisville; Louisville KY 40292; 502-852-5934; 502-852-0725 (fax); AJKARP01@homer.Louisville.edu

Karpova, Olga; Univ Missouri; 105 Tucker Hall; Columbia MO 65211; 573-882-8033; 573-882-0123 (fax)

Kasha, Ken; Dept of Crop Science; Univ of Guelph; Guelph, Ontario N1G 2W1; CANADA; 519-824-4120 EXT 2507; 519-763-8933 (fax)

Kass, Lee; L. H. Bailey Hortorium; 462 Mann Library; Cornell Univ; Ithaca NY 14853; 607-255-2131; 607-255-7979 (fax); Ibk7@cornell.edu; LBKBHWON@aol.com

Kaszas, Etienne; Syngenta Biotechnology Inc; 3054 Cornwallis Rd; Research Triangle Park NC 27713; 919 765 5040; 919-541-8585 (fax); etienne.kaszas@syngenta.com

Katavose, Yuichi: Rice Genome Res Program, STAFF Inst; 446-1, Ippaizuka, Kamiyokoba; Ippaizuka, Tsukuba-shi; Ibaraki-ken 305; JAPAN; 81-298-38-2199; 81-298-38-2302 (fax); katayose@abr.affrc.go.jp

Kato, Akio; Univ Missouri; 117 Tucker Hall; Columbia MO 65211; 573-882-4871; 573-882-0123 (fax); KatoA@missouri.edu

Kato Y., T. Angel; Colegio de Postgraduados; Inst Rec Genet Productividad; Km 35.5 Carr Mexico-Texcoco; 56230 Montecillo, Texcoco; MEXICO; 595 1 02 30; 595 1 02 30 (fax)

Kaufman, Benjamin; Pioneer Hi-Bred Internat, Inc; 10700 Justin Dr.; Urbandale IA 50322; (515)334-6478; (515)334-6431 (fax); Benjamin.Kaufman@pioneer.com

Kavakli, Ibrahim; 379 Clark Hall; Washington State Univ; Pullman WA 99164; 509-335-1047; 509-335-7643 (fax); halil@wsu.edu

Keeling, Peter; ExSeeds Genetics L.L.C.; 1573 Food Sci Bldg; Iowa State Univ; Ames IA 50011-1061; 515-294-3259; 515-294-2644 (fax); pkeeling@iastate.edu

Kellogg, Elizabeth A.; Dept of Biology; Univ of Missouri - St Louis; 8001 Natural Bridge Rd; St. Louis MO 63121; 314-516-6217; 314-516-6233 (fax); tkellogg@umsl.edu

Kemble, Roger; Pioneer Hi-Bred Intl, Inc; 7300 NW 62nd Ave; Johnston IA 50131; 515-270-3754; 515-270-3367 (fax); Kemblerj@phibred.com

Kendall, Tim; Pioneer Hi-Bred Internat., Inc.; 7300 NW 62nd Ave., PO Box 1004; Johnston IA 50131-1004; 515-270-5952; 515-270-3367 (fax); KENDALLTL@PHIBRED.COM

Kendra, David F.; Syngenta Seeds Inc; 317 330th Street; Stanton MN 55018; 507/663-7636; 507/645-7519 (fax); dave.kendra@syngenta.com

Kennard, Wayne; Monsanto; 3302 Convenience Blvd; Ankeny IA 50021; 515-963-4209; 515-963-4242 (fax); wayne.kennard@monsanto.com

Kermicle, Jerry: 218 Genetics Dept: 445 Henry Mall; University of Wisconsin; Madison WI 53706; 608-262-1253; 608-262-2976 (fax); kermicle@facstaff.wisc.edu

Kerns, Michael R.; Monsanto Company; 101 W. Tomaras Avenue; Savoy IL 61874; 217-356-6879 (ext. 5); 217-356-7663 (fax); mike.kerns@monsanto.com Kerns, Sarah; Univ Wisconsin; 1575 Linden Dr; Madison WI 53706; 608-262-6521; 608-262-5217 (fax)

Kerstetter, Randall; University of Pennsylvania; Dept of Biology, Leidy labs; Philadelphia PA 19104-6018; (215)898-8916; (215)898-8780 (fax); randallk@sas.upenn.edu

Kessler, Sharon; Section of Plant Biology; Division of Biological Sciences; Univ California; Davis CA 95616; 916-754-8692; 916-752-5410 (fax); sakessler@ucdavis.edu

Ketchum, Karen; TIGR; 9712 Medical Center Drive; Rockville MD 20850

Khairallah, Mireille; CIMMYT; Apdo. Postal 6-641; Mexico, D.F. 06600; MEXICO; 415-833-6655; 415-833-6656 (fax)

Khavkin, Emil E.; Inst Agric Biotech; 42 Timiryazevskaya ul.; Moscow, 127550; RUSSIA; (7-095)976-6544; (7-095)977-0947 (fax); emil@agrobio.msk.su; emil@iab.ac.ru

Kidwell, Kimberlee; Crop & Soil Sci; 201 Johnson Hall; Washington State Univ; Pullman WA 99164; 509-335-7247; 509-335-8674 (fax); kidwell@mail.wsu.edu

Kiefer, Mike; Northrup King Co.; 317 330th St.; Stanton MN 55018-4308

Kim, Byung Dong; Dept of Horticulture; Seoul National Univ; 103 Seodoon-dong; Suwon 441-744; KOREA; 82-331-296-2768 (fax); kimbd@plaza.snu.ac.kr

Kim, Cheol-soo; Univ Arizona; 303 Forbes Hall; Tucson AZ 85721; 520-621-9154; 520-621-3692 (fax); chkim@ag.arizona.edu

Kim, Insoon; Plant Biology Dept; 111 Koshland Hall; UC Berkeley; Berkeley CA 94720-3102

Kim, Kyung-Nam; Penn State; 302 Wartik Lab; University Park PA 16802; 814-863-7958; 814-863-7958 (fax)

Kim, Seungtaek; Iowa State Univ; 2182 Molec Biol Bldg; Ames IA 50011; 515-294-8202; 515-294-0453 (fax); kimst@iastate.edu

Kim, Soon Kwon; Internat Agric Research Inst; College of Agriculture; Kyungpook National Univ; Taegu 702-701; SOUTH KOREA; kimsk@bh.kyungpook.ac.kr

Kim, Woo-Yang; 2801 W Bancroft St; Univ Toledo; Toledo OH 43606; 419-530-1538; 419-530-7737 (fax)

Kindiger, Bryan; USDA-ARS; Grazinglands Research Laboratory; 7207 West Chevenne St; El Reno OK 73036; 405-262-5291; BKindige@GRL.ARS.USDA.GOV

Kinsey, Marcia; DeKalb Genetics Corp; 3100 Sycamore Rd; DeKalb IL 60115; 815-758-9361; 815-758-4106 (fax)

Kirsch, Helene; Inst Allgemeine Bot; Univ Hamburg; Ohnhorstrasse 18; Hamburg; GERMANY; 049-40-428-15-382; 049-40-428-16-503 (fax)

Kiss, Charles; 18 Avenue Gallieni; 49130 Les Ponts de Ce; FRANCE; 33-2-41-44-97-97; 33-2-41-44-98-69 (fax)

Klein, Anita S.; Department of Biochemistry; Spaulding Life Science Bldg; University of New Hampshire; Durham NH 03824; 603-862-2455; 603-862-4013 (fax); anita.klein@unh.edu

Kleinhofs, Andy; Crop & Soil Sci; 201 Johnson Hall; Washington State Univ; Pullman WA 99164-6420; 509-335-4389; 509-335-8674 (fax); andyk@wsu.edu Kloeckener-Gruissem, Barbara; Neurology; Univ Calif San Francisco; San Francisco CA 94143; (510) 985-3100; (510) 985-3101 (fax); bkg@gallo.ucsf.edu

Koch, Karen E.; 2147 Fifield Hall; Horticulture Dept, Plant Molec Cell Biol; University of Florida; Gainesville FL 32611; 352-392-4711 ext 309; 352-392-6479 (fax); kek@mail.ifas.ufl.edu

Kohashi, Josue; Dept of Botany; Colegio de Postgrad; Chapingo, Edo de Mex; MEXICO; (595)4-22-00 ext.5294; (595)428-73 (fax)

Koinuma, Keiichi; Hokkaido Natl Agric Exp Stn; Hitsujigaoka, Toyohira-ku; Sapporo; Hokkaido 0628555; JAPAN; koinuma@cryo.affrc.go.jp

Kolacz, Kathryn; Monsanto; 700 Chesterfield Pkwy; St. Louis MO 63198; 314-537-6406; 314-537-7015 (fax)

Kolomiets, Michael; Pioneer Hi-Bred Internati; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131; 507-457-1554; 507-457-1633 (fax); kolomimike@phibred.com

Kongsamai, Buppa; Iowa State Univ; Dept Agron; 1401 Agronomy Hall; Ames IA 50011; 515-294-0896; buppa@iastate.edu

Konstantinov, Kosana: Maize Research Institute: 11185 Zemun-Belgrade: YUGOSLAVIA: (381)11-3756-704: (381)11-3857-707 (fax); kkosana@mrizp.co.yu

Konstantinov, Yuri; Siberian Inst Plant Phys Bioch; P.O. Box 1243; Irkutsk 664033; RUSSIA; 39-52-46-09-03; 39-52-51-07-54 (fax); yukon@sifibr.irk.ru; plantgene@sifibr.irk.ru

Koterniak, Vladimir; Maize & Sorghum Res Inst; Pascani; reg. Criuleni 4834; MOLDOVA; koterniak@hotmail.com

Kowalewski, Shirley; Curtis Hall; University of Missouri; Columbia MO 65211; 573-882-2674; 573-884-7850 (fax); kowalewskis@missouri.edu

Kowles, Richard V.; Biology Department - Box 10; 700 Terrace Heights; St. Mary's University of Minnesota; Winona MN 55987; 507-457-1554; 507-457-1633 (fax); dkowles@smumn.edu

Krakowsky, Matthew; Iowa State Univ; 1541 Agronomy Hall; 100 Osborn Dr; Ames IA 50010; 515-294-5755; MDK@iastate.edu

Kramzar, Lynn; Univ Wisconsin; 900 Wood Rd; PO Box 2000; Kenosha WI 53141; 262-595-2786; kramz001@uwp.edu

Kravchenko, O. A.; Sprincenoaia Str. 1; Institute of Genetics; Chisinau, MD 2028; MOLDOVA; (3732)73-81-25; kravchenko@mail.md

Krebbers, Enno; DuPont de Nemours & Co.; Agricultural Biotechnology; Experimental Station 402/2253; Wilmington DE 19880-0402; (302)695-8577; (302)695-7361 (fax); enno.krebbers@usa.dupont.com

Kreisman, Lori S; Dept Biol Sci; Gibb Hall; Univ of Idaho; Moscow ID 83844

Krivov, Nikolai V.; Institute of Genetics; 20 Padurii St.; Kishinau 2002; MOLDOVA; 0422-52-20-68; 3732 556180 (fax); n.krivov@usa.net

Kriz, Al; Renessen LLC/Monsanto; 62 Maritime Dr.; Mystic CT 06355-1958; 860-572-5217; 860-572-5280 (fax); al.kriz@renessen.com

Krone, Todd; Asgrow Seed Co; 634 E. Lincoln Way; Ames IA 50010-6598; 515-232-6955; 515-232-6905 (fax)

Kross, Heike; 526 Science II; Iowa State University; Ames IA 50011; (515)294-4294; heike@iastate.edu Krueger, Roger W.; Monsanto; 800 N. Lindbergh Blvd. C2NA; St. Louis MO 63167; 314-694-3677; 314-694-5926 (fax); RWKRUE@ccmail.monsanto.com

Kuhn, William E; U.S. Corn Research Director; Pioneer Hi-Bred Internatl., Inc.; 7300 NW 62d Ave., PO Box 1004; Johnston IA 50131-1004; 515-270-3362; 515-253-2288 (fax); kuhnw@phibred.com

Kumar, M.; Department of Genetics; Rajendra Agric. Univ., Bihar; Pusa (Samastipur)-848125; INDIA

Kumar, Sanjeet; Project Directorate Veg Res; Post Box # 5002; Varanasi-221005; INDIA; sanjeetk1@mailcity.com

Kunze, Reinhard; Institut fuer Botanik II; Universitaet zu Koeln; Gyrhofstr. 15; 50931 Koeln; GERMANY; Tel. +49-221-470-6596; Fax +49-221-470-5039; Reinhard.Kunze@uni-koeln.de

Kuo, Chih-Horng; Iowa State Univ; B420 Agronomy Hall: Ames IA 50011; 513-294-1659; chkuo@iastate.edu

Kutka, Frank; Natural Resources Res Inst; 5013 Miller Trunk Hwy; Duluth MN 55811

Kuzmin, Eugene; Dept Biol Sci; Univ of Missouri; Columbia MO 65211; 573-882-8033; 573-882-0123 (fax); ekuzmin@biosci.mbp.missouri.edu

Kynast, Ralf; Univ Minnesota; Dept Agron Plant Genet; 411 Borlaug Hall, 1991 Buford Circle; St. Paul MN 55108-6026; 612-625-6223; 612-625-1268 (fax); kynas001@tc.umn.edu

Labkowitz, Mark; Dept Plant Biology; 111 Koshland; Univ California; Berkeley CA 94720; 510-642-8058; 510-642-4995 (fax)

Laccetti, Lucille B.; DeKalb Plant Genetics; 62 Maritime Park; Mystic CT 06355; 860-572-5247; 860-572-5240 (fax)

LaCognata, Ursula; Hermannswerder 14; 14473 Potsdam; GERMANY; 49-331-27-567-28; 49-331-27-567-77 (fax); lacognata@PlantTec.de

Lai, Fang-Ming; BASF Plant Sci; 26 Davis Dr; Research Triangle Park NC 27709; 919-547-2368; 919-547-2423 (fax); lait@basf.com

Lai, Jinsheng; Waksman Institute; State Univ of NJ; 190 Frelinghuysen Rd; Piscataway NJ 08854-8020; 732-445-3801; 732-445-5735 (fax); ilai@mbcl.rutgers.edu

Lal, Shailesh; Iowa State Univ; 2192 Molec Biol Bldg; Ames IA 50011; 515-294-3136; 515-294-0345 (fax); shailesh@iastate.edu

Lambert, Antoine; 11 rue du 11 Novembre; 49124; SAINT BARTHELEMY D'ANJOU; FRANCE; antoine.lambert@limagrain.com

Lambert, Carol Ann; Univ Stellenbosch; Dept Genet; Private Bag XI; Stellenbosch 7602; SOUTH AFRICA; 27 21 8085839; 27 21 8085237 (fax); vanstadenc@nu.ac.za

Lambert, Robert J.; Crop Science, Turner Hall; Univ of Illinois; 1102 S. Goodwin Ave.; Urbana IL 61801-4798; rjlamber@uiuc.edu

Lamkey, Kendall; Agronomy Building; Iowa State University; Ames IA 50011; 515-294-7826; 515-294-9359 (fax); KRLAMKEY@IASTATE.EDU

Lampoh, E.; Crops Res Inst; PO Box 3785 Kumasi; Ashanti Region; GHANA; 6221

Lanahan, Michael; Novartis Seeds; 3054 Cornwallis Rd; Research Triangle Park NC 27709-2257; 919-541-8513; 919-541-8585 (fax)

Lane, Barbara; College of Natural Resources; Dean's Office; University of California; Berkeley CA 94720-3100; 510-643-2203; 510-642-4612 (fax); babs@nature.berkeley.edu

Langdale, Jane; Department of Plant Sciences; University of Oxford; South Parks Road; Oxford OX1 3RB; UNITED KINGDOM; (44)1865275099; (44)1865275147 (fax); jane.langdale@plants.ox.ac.uk

Langham, Richard; Univ California; 111 Koshland Hall; Berkeley CA 94720; 510-642-7948; 510-642-4995 (fax); rlangham@nature.berkeley.edu

Langton, Steven; Pioneer Hi-Bred Intl; PO Box 668; Janesville WI 53547; 608-756-4030; 608-756-4038 (fax); langtonsj@phibred.com

Lanza, Luciana; Augusto Bench/Ester Eliana Lasry Bench; UNICAMP/CBMEG; Cldade Univ 'Zeferino Vaz'; Campinas SP 13083-970; BRAZIL; 55-19-788-1090; 55-19-788-1089 (fax); llasry@obelix.unicamp.br

Laparra, Helene; Yale Univ; MCD Biol Dept; 165 Prospect St, PO Box 208104; New Haven CT 06520-8104; 203-432-3894; 203-432-3854 (fax)

Larkins, Brian; Dept Plant Sciences; University of Arizona; Building #36; Tucson AZ 85721; (520)621-9958; (520)621-3692 (fax); LARKINS@ag.arizona.edu

Larsen, Jinjer; Univ California; 345 Life Sci Addition; Berkeley CA 94720; 510-643-8277; 510-643-6791 (fax); jinjer@nature.berkeley.edu

Lassagne, Herve; Biogemma; 24 Avenue des Landais; Aubiere; FRANCE; 33-4-73-42-79-70; 33-4-73-42-79-81 (fax); herve.lassagne@biogemma.com Latshaw, Sue: Univ Florida: Horticulture Sci; Gainesville FL 32611; 352-392-1928; 352-392-6479 (fax); latshaw@ufl.edu

Laudencia-Chingcuanco, Debbie; Plant Gene Expression Center; USDA-ARS; 800 Buchanan St.; Albany CA 94710; 510-559-5968; 510-559-5678 (fax); dchingcu@nature.berkeley.edu

Laurie, Cathy; Cereon Genomics; 45 Sidney St; Cambridge MA 02139; 617-551-8134; 617-551-1920 (fax); cathy.c.laurie@cereon.com

Laurie, David; JI Centre for Plant Science Res.; Colney Lane; Norwich NR4 7UH; UNITED KINGDOM; 44-01603-452571 x2610; 44-1603-502241 (fax); LAURIED@BBSRC.AC.UK

Lauter, Nick; UIUC Dept. of Crop Sciences; 389 ERML; 1201 W. Gregory Dr.; Urbana IL 61801; 217 244 6146; nickl@uiuc.edu

Lawrence, Carolyn; Univ Georgia; Botany; 2502 Miller Plant Sci Bldg; Athens GA 30602-7271; 706-542-3732; 706-542-1805 (fax); carolyn@dogwood.botany.uga.edu

Leaver, Chris; Dept Plant Sciences; University of Oxford; South Parks Road; Oxford OX1 3RB; UNITED KINGDOM; 01865 275143; 01865 275144 (fax); chris.leaver@plants.ox.ac.uk

LeBlanc, Olivier; ORSTOM-CIMMYT; Apdo Postal 6-641; 06600 Mexico DF; MEXICO; (52) 5 726 9091; (52) 5 726 7567 (fax); oleblanc@cgiar.org

LeDeaux, John: USDA-ARS; NCSU, PO Box 7614; Raleigh NC 27695-7614; 919-515-4087; 919-515-3355 (fax)

Lee, Danny; Section of Plant Biology; Robbins Hall c/o Neelima Sinha; UC Davis; Davis CA 95616

Lee, Elizabeth A.; OAC Plant Agric Dept; Crop Science Div; Rm 223 Crop Sci Bldg; Guelph, Ont N1G 2W1; CANADA; 519-824-4120x3360; 519-763-8933 (fax); elee@plant.uoguelph.ca

Lee, Hee Bong; Dept Agronomy, Coll Agriculture; Chungnam Natl Univ; 220 Gung-Dong, Yusung-Gu; Taejon 305-764; KOREA; 82-042-821-5721; 82-042-823-8050 (fax)

Lee, Hsueh-Sheng; Zoology Dept; University of Texas; Austin TX 78712-1064

Lee, In-sup; Department of Biology; College of Science; Kyungsung University; Pusan, 608-736; SOUTH KOREA; 051-620-4647; 051-627-4115 (fax)

Lee, Michael; Department of Agronomy; Iowa State University; Ames IA 50011-1010; 515-294-7951; 515-294-3163 (fax); mlee@iastate.edu

Lee, Warren; Dow Agrosciences; 9330 Zionsville Rd; Indianapolis IN 46268; 317-337-5920; wslee@dowagro.com

Lee, Yew; Pioneer Hi-Bred Internatil; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131; 515-334-4620; 515-334-4755 (fax)

Leffler, Nancy; DeKalb Genetics Corp; 3100 Sycamore Rd; DeKalb IL 60115; 815-758-9361; 815-758-4106 (fax); nleffler@dekalb.com

Lehmensiek, Anke; Univ Stellenbosch; Dept Genet; Private Bag XI; Stellenbosch; SOUTH AFRICA; 27 21 8085837; 27 21 8085833 (fax); aleh@maties.sun.ac.za

Leland, Tim; Monsanto BB3K; 700 Chesterfield Parkway; Chesterfield MO 63198; 314-737-7208; 314-737-5223 (fax); timothy.j.leland@stl.monsanto.com Lemaux, Peggy; Dept Plant and Microbial Biology; 111 Koshland Hall; University of California, Berkeley; Berkeley CA 94720; 510-642-1589; 510-642-7356 (fax); lemauxpg@nature.berkeley.edu

Lemieux, Bertrand; Dept Plant & Soil Sci; Univ of Delaware; Newark DE 19717-1303; 302-831-1390/0593; 302-831-0721 (fax); blemieux@udel.edu

Leroy, Philippe; INRA; Domaine De Crouelle; 63039 Clermont-Ferrand; Cedex 2; FRANCE; 33 73 624337; 33 73 624453 (fax); leroy@valmont.clermont.inra.fr

Lesnick, Marc; Institute of Molecular Biology; University of Oregon; Eugene OR 97403; lesnick@molbio.uoregon.edu Levings, C. S.; Department of Genetics; North Carolina State Univ; Box 7614; Raleigh NC 27695-7614; 919-515-7115; 919-515-3355 (fax)

Levites, E. V.; Inst Cytol Genetics; Novosibirsk; RUSSIA

Levy, Avraham; Plant Genetics Department; Weizmann Institute of Science; Rehovot, 76100; ISRAEL; 972-8-342421; 972-8-466966 (fax); LPLEVY@WEIZMANN.WEIZMANN.AC.IL

Lewis, Lydia: Monsanto; 62 Maritime Dr; Mystic CT 06355; 860-572-5226; 860-572-5240 (fax); Ilewis@dekalb.com

Li, Bailin; DuPont Agic Biotechnol; DTP Suite 200, 1 Innovation Way; PO Box 6104; Newark DE 19714-6104; 302-631-2631; 302-631-2607 (fax); bailin.li@usa.dupont.com

Li, Baochun; Iowa State Univ; Agronomy Dept; Plant Transform Fac; Ames IA 50011; 515-294-6341; 515-294-2299 (fax)

Li, De-Bao; Zhejiang Agricultural University; Biotechnology Institute; Hangzhou; Zhejiang 310029; CHINA

- Li, Huifen; Institute of Genetics; Chinese Acad Sci; Beijing 100101; CHINA; (86-10)64873490; (86-10)64873428 (fax)
- Li, Jiansheng; Maize Improvement Center of China; Crop Science College; China Agricultural University; Haidan, Beijing 100094; CHINA; lijs@163bj.com Li, Jin; Iowa State Univ; B420 Agronomy; Ames IA 50010; 515-294-1659; 515-294-2299 (fax); jinli@iastate.edu
- Li, Kejian; Iowa State Univ; 5100 MBB; Ames IA 50011; 515-294-0337; 515-294-6755 (fax); kjli@iastate.edu
- Li, Meijuar; Novartis Seeds; 317 330th St; Stanton MN 55018-4308; 507-663-7622; 507-645-5621 (fax)
- Li, Ping; Sichuan Agricultural University; Rice Research Institute; Yaan; Sichuan 625014; CHINA
- Li, Qing; China Natl. Cente Biotech. Development; P.O. Box 8118; Beijing 10008; CHINA
- Li, Yuxing; 2312 Food Sciences; Iowa State Univ; Ames IA 50011
- Li, Zhaohui; Lehman College, CUNY; Biology Dept; 250 Bedford Park Blvd. West; Bronx NY 10468; 718-960-8643; 718-960-8236 (fax)

- Li, Zhuying; Iowa State Univ; 2288 Molec Biol Bldg; Ames IA 50011; 515-294.3277; zli@iastate.edu Lid, Stein; Dept Chem & Biotechnol; PO Box 5051; Univ Norway; As N-1432; NORWAY; 47-64949493; 47-64941465 (fax); stein.lid@ikb.nlh.no Lightfoot, David; Southern Illinois Univ; P.O. #23086-0006Z; Agriculture 174; Carbondale IL 62901-4415; 618-453-1797; 618-453-7457 (fax); GA4082@siu.edu
- Liljegren, Sarah; Dept of Biology 0116; UC San ëiego; La Jolla CA 92093-7108
- Lin, Bor-yaw; Institute of Molecular Biology; National Chung Hsing University; Taichung 402; TAIWAN; (886-4)285-1885; (886-4)287-4879 (fax); bylin@dragon.nchu.edu.tw
- Lin, Liang-Shiou; USDA/CSREES/NRICGP; STOP 2241; 1400 Independence Ave. SW; Washington DC 20250-2241; 202-401-5042; 202-401-6488 (fax); llin@reeusda.gov
- Lin, Yan; Univ Arizona; 303 Forbes Bldg; Tucson AZ 85719; 520-621-8964; ylin@ag.arizona.edu
- Lippman, Zachary; Cold Spring Harbor Lab; 1 Bungtown Rd; PO Box 100; Cold Spring Harbor NY 11724; 516-367-5154; 516-367-8369 (fax); lippman@cshl.org
- Lisch, Damon; Dept Plant Biol; 111 Koshland Hall; Univ California; Berkeley CA 94720; 510-642-7948; 510-642-4995 (fax); dlisch@uclink4.berkeley.edu Lison, Wyatt; Duquesne Univ; Dept Biol Sci; Pittsburgh PA 15282; 412-396-4356; 412-396-5907 (fax)
- Liu, Aimin; Jiangsu Academy of Agric. Science; Institute of Agrobiol. Genet. & Physiol.; Nanjing 210014; CHINA
- Liu, Feng; Iowa State Univ; B420 Agronomy Hall; Ames IA 50011; 515-294-1659; 515-294-2299 (fax); fgliu@iastate.edu
- Liu, Liang-Shi; Zhongshan University; Biotechnology Research Center; Guangzhou 510275; CHINA
- Liu, QinQin; Dept of Biology; Univ of Minnesota; Duluth MN 55812-2496; 218-726-7271; 218-726-8142 (fax)
- Liu, Xiangdong; South China Agricultural University; Agronomy Dept.; Wushan, Tianhe, Guangzhou; Guangdong 510642; CHINA Liu, Xiaochuan; China National Rice Research Institute; Genetics & Breeding Dept.; Hangzhou 310006; CHINA
- Liu, Yanhong; Botany Dept.; Univ. Georgia; Athens GA 30602; (706)542-1857; (706)542-1805 (fax)

Liu, Zhixian; 11 Sangyuan Road; Maize Research Inst; Shandong Academy of Agri. Science; Jinan, 250100; CHINA; (0531)8963721-2313; (0531)8962303 (fax)

- Llaca, Victor; Univ of New Jersey; 190 Frelinghuysen Rd; Piscataway NJ 08854-8020; 732-445-3801; 732-445-5735 (fax); Ilaca@waksman.rutgers.edu Loeffel, Frank; Agri Pro Res. Center; Rural Route #2 Box 411; Brookston IN 47923; 317-563-3111; 317-563-6848 (fax)
- Lonsdale, David M.; Cambridge Laboratory; IPSR John Innes Centre; Colney Lane; Norwich NR4 7UH; UNITED KINGDOM; 44 1603 452571; 44 1603 456844 (fax); LONSDALE@bbsrc.AC.UK
- Lopes, Mauricio A.; Natl. Maize & Sorghum Res. Ctr.; CNPMS/EMBRAPA; Caixa Postal 151, CEP 35 701-970; Sete Lagoas MG; BRAZIL; 011-55-31-773 -2866; 011-55-31-773-9252 (fax); mauricio@cnpms.embrapa.br
- Lopez, Cesar; 125 NW 35th St; Oregon State Univ; Corvallis OR 97330; 591-752-2993; 591-737-0909 (fax); lopezc@css.orst.edu
- Lopez, Jose A.: Univ Arizona: 303 Forbes Hall; Tucson AZ 85721; 520-621-9154; 520-621-3692 (fax); jalopez@ag.arizona.edu
- Lorbiecke, Rene; Univ Hamburg; Allgemeine Botanik; Ohnhorstrasse 18; Hamburg; GERMANY; 49 40 42816 381; 49 40 42816 503 (fax); lorbiecke@botanik.uni-hamburg.de
- Lorentzen, Jennifer A.; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave: PO Box 1004; Johnston IA 50131; 515-270-4020; 515-270-3367 (fax)
- Lorentzen, Michael; Pioneer Hi-Bred Intl; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131
- Lorenzen Dahl, Lisa; Pioneer Hi-Bred Internat., Inc.; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131-1004
- Lorenzoni, C.; Istituto di Genetica Vegetale; Universita Cattolica; Sede di Piacenza; 29100 Piacenza; ITALY; (523)599210; (523)599283 (fax)
- Lorz, Horst; Institut Allgemeine Botanik; Universitat Hamburg; Ohnhorststrasse 18; 22609 Hamburg; GERMANY; 49-40-82282-420; 49-40-82282-229 (fax)
- Love, Robert; ProdiGene; 101 Gateway Blvd; Suite 100; College Station TX 77845; 979-690-8537; 979-690-9527 (fax); rlove@prodigene.com
- Lowe, Brenda; DeKalb Genetics/Monsanto; 62 Maritime Dr; Mystic CT 06355-1958; 860-572-5216; 860-572-5280 (fax); blowe@dekalb.com
- Lu, Dihui; Waksman Inst; 190 Frelinghuysen Rd; Piscataway NJ 08854; 732-445-2307; 732-445-5735 (fax); dihuilu@eden.rutgers.edu
- Lu, Guihua; Pioneer Hi-Bred Internat., Inc.; 7300 NW 62nd Ave.; PO Box 1004; Johnston IA 50131-1004
- Lu, Mei-Kuang; 305 Manter Hall; Univ. Nebraska; Lincoln NE 68503; (402)472-6084
- Lu, Yong-Gen; South China Agricultural University; Guangzhou 510642; CHINA
- Lubkowitz, Mark; Univ California; Dept PlantBiol; 111 Koshland Hall; Berkeley CA 94720; 510-642-8058; 510-642-4995 (fax)
- Ludwig, Steven; Sterne, Kessler, Goldstein & Fox; 1100 New York Ave NW; Suite 600; Washington DC 20006; 202-371-2600; 202-371-2540 (fax); sludwig@skgf.com
- Luebberstedt, Thomas; Research Centre Flakkebjerg; Danish Inst Agric Sciences; DK-4200 Slagelse; DENMARK; ++45-58113484; thomas.luebberstedt@agrsci.dk
- Luethy, Michael; DeKalb Genetics; 62 Maritime Dr; Mystic CT 06355-1958; 860-752-5212; 860-572-5240 (fax); mluethy@dekalb.com
- Lunde, China; PGEC; 800 Buchanan St; Albany CA 94710; 510-559-5922; 510-559-5678 (fax); lundec@uclink.berkeley.edu
- Luo, Ming; Sichuan Agricultural University; Rice Research Institute; Yaan; Sichuan 62500; CHINA
- Luthe. Dawn S: Dept Biochemistry: Miss State Univ: Mississippi State MS 39762; 601-325-7733; 601 -325-8664 (fax); dsluthe@ra.msstate.edu
- Lutz, Joseph; Pillsbury/Green Giant; 1201 N 45th St; LeSueur MN 56058; 507-665-4457; 507-665-2682 (fax); jlutz@pillsbury.com
- Lutz, Sheila; Dept Agron Plant Genetics; 411 Borlaug Hall, 1991 Buford Circle; Univ of Minnesota; St. Paul MN 55108; 612-625-1728; smlutz@puccini.crl.umn.edu
- Lynch, Margaret; 1883 21st Ave; San Francisco CA 94122
- Lysikov, Valery; Inst. of Genet. of AS RM.; st. Paudurie 20; Kishinev-277002; MOLDOVA; (0422)622068; 3732-556180 (fax)
- Ma, Hong; Dept Biol, Life Sci Consortium; 519 Wartik Laboratory; Penn State Univ; University Park PA 16802; 814-863-6144/8082; 814-863-1357 (fax); hxm16@psu.edu

Ma, Jianxin; Purdue Univ; Biology Hanson; Rm 339; West Lafayette IN 47907; 765-494-0373; 765-496-1496 (fax); jma@bilbo.bio.purdue.edu

Ma, Zhengrong; Waksman Institute; 190 Frelinghuysen Rd; Piscataway NJ 08854-0820; 732-445-2307; 732-445-5735 (fax); zhenma@mbcl.rutgers.edu MacDonald, M. V.; Plant Breeding International; Maris Lane; Trumpington; Cambridge CB2 2LQ; UNITED KINGDOM; 01223-840411; 01223-844425 (fax)

Maddock, Sheila E; Pioneer Hi-Bred Int Inc.; 7300 NW 62nd Ave.; PO Box 1004; Johnston IA 50131-1004; 515-270-4047; 515-270-3444 (fax); maddocks@phibred.com

Magbanua, Zenaida V.; Univ Georgia; Dept Botany; Athens GA 30602; 706-542-1857; 706-542-1805 (fax); magbanua@arches.uga.edu Magill, Clint; Texas A & M University; Dept. of Plant Pathology; College Station TX 77843; 979-845-8250; 979-845-6483 (fax); c-magill@tamu.edu Maguire, Marjorie; Zoology Department; University of Texas; Austin TX 78712-1064; 512-471-7451; 512-471-9651 (fax); marjm@mail.utexas.edu Maheshwari, J. K.; National Botanical Res Inst; H.I.G.-130, Sector 'E'; Aliganj Extension, Aliganj; 226 020, U.P. - Lucknow; INDIA; 72655; 244330 (fax) Maitz, Monika; KWS SAAT AG; Grimsehstr 31; 37 555 Einbeck; GERMANY; 49 5561 311 636; 49 5561 311 337 (fax); m.maitz@kws.de Malmberg, Sharon; Monsanto Global Seed Group; 3100 Sycamore Rd; DeKalb IL 60115; 815-758-9516; 815-758-4106 (fax); smalmber@dekalb.com Maluf, Mirian; Universidade Estadual de Campinas; Campinas São Paulo 13081-970 Brazil

Mangano, MaryLou; DeKalb Genetics Corp.; 62 Maritime Dr.; Mystic CT 06355

Manjunath, Sivalinganna; Monsanto Company, Mail Zone T3A; 800 N. Lindbergh Blvd.; St. Louis MO 63167; 314-694-2985; 314-694-7868 (fax); s.manjunath@monsanto.com

Manley, Marilyn; Lima Grain Genetics; 4640 E State Rd 32; Lebanon IN 46052; 765-482-9833; 765-482-9448 (fax); marilyn.manley@limagraingenetics.com Manolii, Victor; Dept Plant Sci; Forbes Bldg Rm 36; Univ Arizona; Tucson AZ 85721; 520-621-9154; 520-621-3692 (fax)

Manzocchi, Lucia; Consiglio Nazionale delle Ricerche; Istituto Biosintesi Vegetali; Via Bassini 15; 20133 Milano; ITALY; (39) 02.23699.408; (39) 02.23699.411 (fax)

Marchand, Jean-Leu; TA 70/16; 73 Rue Jean-Francois Breton; F34398 Montpellier Cedex 5; FRANCE

Marocco, Adriano; Universita Cattolica S. Cuore; Istituto Di Genetica Vegetale; Via E. Parmense 84; 29100 Piacenza; ITALY; 39-523-599207; 39-523-599283 (fax); amarocco@pc.unicatt.it

Marshall, Josh; Dept Botany; 4610 Plant Sci Bldg; Univ Georgia; Athens CA 30602; 706-542-1010; 706-542-1805 (fax); josh@dogwood.botany.uga.edu

Marshall, Lori; Holden's Foundation Seeds, L.L.C.; P.O. Box 839; 503 S. Maplewood Ave; Williamsburg IA 52361; 319-668-1100; 319-668-2453 (fax); lori.marshall@holdens.com

Martens, Marvin; Northwest Tech, LLC; 513 N Main; Fairview OK 73737; 580-227-2345; 580-227-3851 (fax); bramco@pldi.net

Martienssen, Rob; Cold Spring Harbor Labs; P.O. Box 100; 1 Bungtown Rd; Cold Spring Harbor NY 11724-2212; 516-367-8322; 516-367-8369 (fax); MARTIENS@CSHL.ORG

Martin, Michael J.; 10454 NW 114th St; Granger IA 50109; 515-999-2548; 515-685-5204 (fax)

Martin, Ruth; 4017 Ag & Life Sci; Oregon State Univ; Corvallis OR 97331-7304; 541-737-5455; 541-737-3479 (fax); martinr@bcc.orst.edu

Martin Sanchez, J. A.; UdL-IRTA Centro R S D; Alcalde Rovira Roure 177; 25006 Lerida; SPAIN; 34-73-702569; 34-73-238301 (fax)

- Mascarenhas, Joseph P.; Department of Biol Sci; State University of New York; Albany NY 12222; 518/442-4388; 518/442-4354 (fax); jm558@cnsunix.albany.edu
- Mascia, Peter N.; Ceres, Inc.; 3007 Malibu Canyon Road; Malibu CA 90265; 310-317-8911; 310-317-9978 (fax); pmascia@ceres-inc.com
- Mather, Diane E.; Plant Sci Dept Macdonald Col; McGill Univ 21111 Lakeshore; Ste-Anne-de-Bellevue; Quebec H9X 3V9; CANADA; (514) 398-7854; (514) 398-7897 (fax); diane.mather@mcgill.ca

Mathur, D. S.; Div. of Genetics; Indian Agr Res Inst; New Delhi-110012; INDIA; 581481

Matsuoka, Yoshihiro; 425 Henry Mall; Univ Wisconsin; Madison WI 53706; 608-265-5804; 608-265-2976 (fax)

Matthews, Paul; Univ Minnesota; 1991 Upper Buford Circle; St. Paul MN 55108; 612-625-9258; moosmoss@hotmail.com

Matvienko, Marta; Celera AgGen; 756 Picasso Ave; Davis CA 95616; 530-297-3058; 530-297-3027 (fax); marta.matvienko@celera.com

Matz, Eileen C.; Dept of Biology; Building 463; Brookhaven National Laboratory; Upton NY 11973; 516-344-3396; 516-344-3407 (fax); matz@bnl.gov Maurer, Alberto; 401 N Ann St #7; Columbia MO 65201; 573-875-4362; am70b@mizzou.edu

Mawgood, Ahmed L. Abdel; Univ Wisconsin; Plant Pathology Dept; Madison WI 53706; amawgood@plantpath.wisc.edu

May, Bruce; Cold Spring Harbor Lab; PO Box 100; 1 Bungtown Rd; Cold Spring Harbor NY 11724; 516-637-8836; 516-367-8369 (fax); may@cshl.org

May, Georgiana; 220 Biosciences Bldg; Dept Plant Biol; 1445 Gortner Av; St Paul MN 55108; gmay@maroon.tc.umn.edu

Mazoti, Luis B.; Carlos Croce 145; 1832 Lomas de Zamora; ARGENTINA

Mazur, Barbara J.; DuPont Agr Products; Biotechnol Res & Devel; Experimental Sta E402/3226; Wilmington DE 19880-0402; 302-695-3700; 302-695-7361 (fax); Barbara.J.Mazur@usa.dupont.com

McCarthy Hall, Ira; 1710 Milvia St; Univ California; Berkeley CA 94709; 510-845-9508

McCarty, Donald R.; Vegetable Crops Department; 1255 Fifield Hall; University of Florida; Gainesville FL 32611; 352-392-1928 ext 322; 352-392-6479 (fax); drm@ufl.edu

- McConnell, R. L.; Research & Product Development; Pioneer Hi-Bred International; Box 1004; Johnston IA 50131-1004; (515)270-3363; (515)253-2478 (fax); McConnelR@phibred.com
- McCormick, Sheila; USDA-ARS-PGEC; 800 Buchanan Street; Albany CA 94710; 510-559-5906; 510-559-5678 (fax); sheilamc@nature.berkeley.edu
- McCouch, Susan; Cornell Univ; Dept Plant Breeding & Biometry; 252 Emerson Hall; Ithaca NY 14853; 607-255-0420; 607-255-6683 (fax); srm4@cornell.edu

McCullough, Andrew; Dept. of Biochemistry; Baylor College of Medicine; Houston TX 77030; 713-798-4622

McCurdy, Leroy; P.O. Box 77; McCurdy Seed Co; Fremont IA 52561; 515-933-4291

McFerson, John; Asgrow Seed Co.; 634 E. Lincoln Way; Ames IA 50010; (515)232-7170; (515)232-6905 (fax)

McLaren, James S.; Inverizon Int Inc; 2214 Stoneridge Terrace Court; St. Louis MO 63017-7120; 636-530-6943; 636-530-6945 (fax); mclaren@inverizon.com

McLaughlin, John; Univ Minnesota; St. Paul MN 55108; 612-641-1308

McMullen, Michael; USDA ARS MWA; Curtis Hall; University of Missouri; Columbia MO 65211; 573-882-7606; 573-884-7850 (fax); McMullenM@missouri.edu

McSteen, Paula; PGEC; 800 Buchanan St; Albany CA 94710; 510-559-5976; 510-559-5678 (fax); pmcsteen@nature.berkeley.edu

McWhirter, Ken; 127 Victoria Road; West Pennant Hills; NSW 2125; AUSTRALIA; 02 9484 7417; 02 9484 7417 (fax); kmcwhirt@ozemail.com.au

Meeley, Robert; Trait and Technology Dev.; Pioneer Hi-Bred Int'l; 7300 NW 62nd Ave. - Box 1004; Johnston IA 50131-1004; 515-270-3770; 515-253-2149 (fax); bob.meeley@pioneer.com

Meghji, Moez; Syngenta Seeds Inc.; Bloomington IL 61704; 309-823-8578; 309-823-8568 (fax); moez.meghji@syngenta.com

Mei, Mantong; South China Agricultural University; Genetic Engineering Laboratory; Guangzhou 510642; CHINA

Meijer, Anne Marie; Clusios Lab; PO Box 9505; Leiden Univ; 2300 RA Leiden; NETHERLANDS; 5274891; 5275039 (fax); meijer@rulbim.leidenuniv.nl

Meiklejohn, Colin; Harvard Univ; Dept Invertebrate Zoology; MCZ 138, 26 Oxford St; Cambridge MA 02138; 617-495-2447

Melanson, Denise; NCSU/Novartis; 108 E. Whitaker Mill Rd; Raleigh NC 57608; 919-541-8619; 919-541-8585 (fax)

Melchinger, Albrecht E.; Universitat Hohenheim; Institut fur Pflanzenzuchtung; Postfach 70 05 62 (350/1); D-70593 Stuttgart; GERMANY; 0711-459-2334; 0711-459-2343 (fax); melchinger@uni-hohenheim.de

Melia-Hancock, Susan; Curtis Hall - Agronomy; University of Missouri; Columbia MO 65211; 573-882-6566; 573-884-7850 (fax); Melia-HancockS@missouri.edu

Mello-Sampayo, Tristao; R. Padre Francisco 16, 5.F.; 1300 Lisboa; PORTUGAL

Messing, Joachim; Rutgers, The State Univ; Waksman Institute; 190 Frelinghuysen Rd; Piscataway NJ 08854-8020; 732-445-4256; 732-445-0072 (fax); messing@waksman.rutgers.edu

Mettler, I. J.; Northrup King Co.; 317 330th Street; Stanton MN 55018-4300; 507-663-7643; 507-645-7519 (fax)

Meyer, Terry; Pioneer Hi-Bred International; 7300 N.W. 62nd Avenue; P. O. Box 1004; Johnston IA 50131-1004; 515-270-3962; 515-270-3367 (fax); MEYERTE@PHIBRED.COM

Meyerowitz, Elliot; Biology Dept 156-29; California Inst Tech; Pasadena CA 91125; 626-395-6889; 626-449-0756 (fax); meyerow@caltech.edu Miao, Guo-Hua; Pioneer Hi-Bred Intl; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131; 515-334-4768; 515-334-4778 (fax); MiaoGuo@phibred.com Michelini, Luiz Antonio; R. Ayrton Playsant, 21; Ponta Grossa; Parana 84100-550; BRAZIL; 55-42-223-2774; 55-42-223-2774 (fax) Michiels. Frank; Plant Genetic Systems; Jozef Plateaustraat 22; Gent B-9000; BELGIUM; 32-9-2358475; 32-9-2240694 (fax); FRAL@PGSGENT.BE Mickelson-Young, Leigh; Dow AgroSciences; 9330 Zionsville Rd; Indianapolis IN 46268; 317-337-3805; 317-337-5989 (fax) Micu, Vasile; Scientific Res Inst Maize & Sorghum; Pashcani; Criuleni; 278336 Moldova; MOLDOVA; (3732)-22-24-78; (3732)-22-73-02 (fax) Middle, Christina; Iowa State Univ; Dept of Agronomy; 1401 Agronomy Hall; Ames IA 50011; 515-294-9233 Miernyk, Jan; ARS-USDA; Curtis Hall; University of Missouri; Columbia MO 65211-7020; 573/882-8167; 573/884-7850 (fax); miernykj@missouri.edu Mies, David; Syngenta seeds; PO Box 629; 1002 Old SR15; Milford IN 46524; 217-658-3081; 217-658-3083 (fax); dave.mies@syngenta.com Mihm, John A.; French Agricultural Research; RR2, Box 294; Lamberton MN 56152; 507-752-7274; 507-752-6132 (fax) Mikkilineni, Venugopal; Univ Delaware; 531 S College Ave; Newark DE 19717; 302-831-1044; 302-837-1969 (fax); vmikkilineni@yahoo.com Mikula, Bernard Č.; Defiance College; 901 College Drive; Defiance OH 43512; 419-784-4010 EXT 426; 419-784-0426 (fax) Milach, Sandra; 1991 Buford Circle; Room 411 Borlang Hall; St. Paul MN 55108; (612)625-6223; (612)625-1268 (fax) Miles, Donald; Tucker Hall; Div. Biological Sciences; University of Missouri; Columbia MO 65211; 573-882-7933; miles@biosci.mbp.missouri.edu Millard, Mark; North Centr Reg Plant Intr Sta; Iowa State University; Ames IA 50011-1170; 515-294-3715; 515-294-1903 (fax); mjmillar@iastate.edu Miller, Michael; Pioneer Hi-Bred Intl; 7300 NW 62nd Ave; Johnston IA 50131; 515-254-2622; 515-270-3444 (fax); millermd@phibred.com Min, Hwang Kee; Hongcheon Maize Exper Sta; 814 Jangnam; Doochon; Hongcheongun; KOREA; 82-366-435-3757; 82-366-435-6876 (fax) Min, Qian; Fudan Univ; 552 Tong Ji Xin Cun Siping Rd; Shanghai; CHINA; 021-65643715; 021-65021261 (fax); minqian@fudan.edu.cn Min, Shao-Kai; China National Rice Research Institute; Genetics and Breeding; 171 Ti Yu Chang Road, Hangzhou; Zhejiang 310006; CHINA Ming, Ray Reiguang; Hawaii Agric Research Center; 99-193 Aiea Heights Dr; Aiea HI 96701-3911; 808-486-5374; 808-486-5020 (fax); rming@harchspa.com Mitkovski, Miso; Univ Idaho; Biological Sciences; Moscow ID 83844-3051; 208-885-8581; 208-885-7805 (fax); mitk1562@uidaho.edu Miura, Y; Maize Breeding Station; Hokkaido Natl. Agr. Exp. Stn.; Hitsujigaoka; Sapporo 062; JAPAN Miyoshi, K.; Sakata Seed Corp.; Kakegawa Breed. STN; Yoshioka 1743-2; Kakegawa City, Shizuoka City 436-01; JAPAN Mizukami, Yukiko; Dept Plant Biol; 111 Koshland Hall; Univ California; Berkeley CA 94720; 510-642-6405; 510-642-9017 (fax); mizukami@nature.berkeley.edu Modena, Stephen: Dept. of Crop Science: North Carolina State Univ.; Box 7620; Raleigh NC 27695-7620; 919-515-2246; 919-515-7959 (fax); ab4el@MindSpring.com Modi, Mahendra; 1560 NE Merman Dr; Washington State Univ; Pullman WA 99163; 509-332-6031; 509-335-7643 (fax) Moeller, Evelyn; Univ. Hohenheim (350 b); Fruwirthstr. 21; D-70599 STUTTGART; GERMANY; tel ++49 711 459 2336; fax ++49 711 459 2343; moellere@uni-hohenheim.de Mogensen, Lloyd; Northern Arizona Univ; Dept of Biology, Box 5640; Flagstaff AZ 86011; 520-523-7328; 520-523-7500 (fax); Hans.Mogensen@nau.edu Molina, M. C.; Del Valle Iberlucea 3711; 1826 Remedios de Escalada; Buenos Aires; ARGENTINA Molina-Ochoa, Jaime; Univ Colima; Fac Ciencias Biol & Agropecuarias; Apartado Postal 36; Tecoman 28100, Colima; MEXICO; 332 4 42 37; jmolina@tecoman.ucol.mx Monde, Rita Ann; Inst Molec Biol; 1370 Franklin Ave; Univ Oregon; Eugene OR 97403; 541-346-2546; 541-346-5891 (fax); RM16@molbio.uoregon.edu Montagu, Jonathan; Cold Spring Harbor Lab; PO Box 100; Cold Spring Harbor NY 11724 Moon, Jennifer; 2500 Speedway Molec Biol Bldg: Univ Texas; Austin TX 78712; 512-232-5560; 512-471-2149 (fax); imoon@icmb.utexas.edu Mooney, Mark; UC Berkeley; Plant Biology Dept; 111 Koshland Hall; Berkeley CA 94720-3102 Moore, Graham; John Innes Ctr; Cereal Res Dept; Norwich Res Pk; Norwich NR4 7UJ; UNITED KINGDOM; 01603-452571; 01603-502241 (fax) Moore, Paul H.; USDA ARS PWA; Experiment Station HSPA; P.O. Box 1057; Aiea HI 96701; 808-487-5561; 808-486-5020 (fax) Moose, Stephen P.; Dept of Crop Sciences; Univ of Illinois; 389 ERML-MC051; 1201 W. Gregory Drive; Urbana IL 61801; 217-244-6308; 217-333-4582 (fax); smoose@uiuc.edu Moreira-Filho, Carlos A.; Dept. de Imunologia do ICP-USP; Av. Prof. Lineu Prestes, 2415; 05508-900 Sao Paulo S. P.; BRAZIL Morgante, Michele: DuPont Ag Biotech; Delaware Technol Park; Suite 200 PO Box 6104; Newark DE 19714-6104; 302-631-2638; 302-631-2607 (fax); michele.morgante@usa.dupont.com Moro, Gloverson Lamego; Novartis Seeds; Caixa Postal 585; 38406-270 Uberlandia MG; BRAZIL; 034-216-6005 Morrow, Sasha: Cargill Hybrid Seeds; 2600 W. Galena Blvd; Aurora IL 60506; 630-801-2326; 630-801-2345 (fax) Motorga, Virgil; S. C. A. SIMNIC; Str. BALCESTI no. 14; 1100-CRAIOVA; ROMANIA Motta, Annalisa; Univ Milan; via Celoria 26; 20133 Milano; ITALY; 39-02-26604392; 39-02-26604399 (fax) Mottlinger, John; Dept Bioch Microb Mol Gen; University of Rhode Island; Kingston RI 02881; 401-874-2625; 401-874-2202 (fax); john.mottlinger@uri.edu Motto, Mario; Ist Sper Cereal - Sez Bergamo; Via Stezzano 24; 24100 Bergamo; ITALY; 39-035-313132; 39-035-316054 (fax); motto@tin.it Mou, Beiquan; Iowa State Univ; 2154 Mol Biol Bldg; Dept Biochem, Biophys & Mol Biol; Ames IA 50011; 515-294-8202; 515-294-0453 (fax) Moutig, Rkia; Iowa State Univ; Dept Agronomy; 1401 Agronomy Hall; Ames IA 50011; 515-294-5755/8690; 515-294-3163 (fax); Rmoutig@iastate.edu Mozoub, Daniel; Lehman College, CUNY; Biology Dept, c/o Elli Wurtzel; 250 Bedford Park Blvd West; Bronx NY 10468 Mroczek, Rebecca; Botany Dept; Univ Georgia; Miller Plant Sci Bldg, rm 4508; Athens GA 30602; 706-542-1010; mroczek@dogwood.botany.uga.edu Mudalige, Rasika; Lehman College/CUNY; 250 W Bedford Park Blvd; Bronx NY 10468; 718-960-4994; 718-960-8236 (fax) Mueller, Suzanne; Univ of Wisconsin; 1575 Linden Drive; 430 Moore Hall; Madison WI 53706-1597; 608-262-3660; 608-262-5217 (fax); smmuell1@students.wisc.edu Mueller, Toby; Univ Wisconsin; 900 Wood Rd; PO Box 2000; Kenosha WI 53141 Muenchrath, Deborah A.; Agronomy; Iowa State Univ; Ames IA 50011-1010; 515/294-1360; 515/294-8146 (fax); mnchrath@iastate.edu Mulcahy, David; Botany Department; Univ of Massachusetts; Amherst MA 01003; 413-545-2238; 413-545-3243 (fax); dmulcahy@bio.umass.edu Mulligan, Timothy P.; P. O. Box 523; Cold Spring Harbor NY 11724; 516-367-8829; 516-367-4031 (fax); MULLIGAN@CSHL.ORG Multani, Dilbag; Pioneer Hi-Bred Intl Inc; 7250 NW 62nd Ave, PO Box 552; Reid E (39L); Johnston IA 50131-0552; multandilb@phibred.com Mungoma, Catherine; Mt. Makulu Research Station; P. B. 7; P.O. Box 30563; Chilanga; ZAMBIA: 260-1-278008; 260-1-249127 (fax) Murigneux, Alain; BIOCEM-Groupe Limagrain; Lab Biol Cell Molec, Campus Univ Cezeaux; 24 av des Landais; 63170 Aubiere; FRÁNCE; 33-4-73-42-79-70; 33-4-73-27-57-36 (fax); alain.murigneux@limagrain.com

Murphy, Marjorie; Pioneer Hi-Bred Intl; 7250 NW 62nd Ave; Johnston IA 50131; 515-270-5991

Murray, Michael G.; Dow AgroSciences; 9330 Zionsville Rd; Indianpolis IN 46268; 317-337-3982; 317-337-4266 (fax); mmurray@dowagro.com

Musket, Theresa; 1-87 Agriculture Building; University of Missouri; Columbia MO 65211; 573-882-9228; 573-882-1469 (fax); muskett@missouri.edu

Mustell, Robert A.; One Skyline Drive; Louisiana MO 63353; 573-754-6998; 509-356-5044 (fax); 573-754-6554 (fax); robertmustell@hotmail.com; robertmustell@sprynet.com

Muszynski, Michael G., Pioneer Hi-Bred Intl.; Agronomic Traits/TTD; 7250 NW 62nd Ave, POB 1004; Johnston IA 50131-1004; 515-254-2637; 515-334-4778 (fax); michael.muszynski@pioneer.com

Myers, Alan M; Dept Biochem & Biophys; 2110 Molecular Biology Bldg; Iowa State University; Ames IA 50011; 515-294-9548; 515-294-0453 (fax); ammyers@iastate.edu

Nagamura, Yoshiaki; Rice Genome Res Program, STAFF Inst; 446-1, Ippaizuka, Kamiyokoba; Ippaizuka, Tsukuba-shi; Ibaraki-ken 305; JAPAN; 81-298-38-2199; 81-298-38-2302 (fax)

Nagel, Alexander; Univ Georgia; Miller Plant Life Sci Bldg, rm 2502; Dept Botany; Athens GA 30602-7271; 706-542-1857; 706-542-3910 (fax); anagel@dogwood.botany.uga.edu

Nagel, Bruce; Mycogen Seeds; 29 North Hwy 51; PO Box 49; Arlington WI 53911-0049; 608-635-4045; 608-635-2206 (fax)

Naidin, Cornel; S. C. A. SIMINIC Str.; BALCESTI no. 14; 1100-CRAIOVA; ROMANIA

Nakagawa, Yoichi; Takii & Company LTD; P.O. Box 7; Kyoto C. P. O.; JAPAN; (075)365-0123; (075)365-0110 (fax)

Naranjo, Carlos; Inst Fitotecn Santa Catalina (UNLP); C.C.4 (1836) Llavallol; Buenos Aires; ARGENTINA; canaranjo@ciudad.com.ar

Nedev, Trendafil; Dept Tissue & Cell Cult; Inst of Genetics; Bulgarian Acad Sci; Sofia; BULGARIA; (+359 2) 75 40 41x233; (+359 2) 75 70 87 (fax)

Negrotto, David; Novartis; 3054 Cornwallis Rd; Research Triangle Park NC 27709-2257; 919-541-8686; 919-541-8557 (fax)

Nel. P. M.; Dept of Genetics; Univ of The Witwatersrand; P.O. WITS; Transvaal 2050; SOUTH AFRICA; 011-716-2154; 011-716-8030 (fax)

Nelsen, Terry C; USDA-ARS; 1815 N. University; Peoria IL 61604

Nelson, Jennifer; UC Berkeley; Plant Biology Dept; 111 Koshland Hall; Berkeley CA 94720-3102; 510-642-7085; 510-642-4995 (fax); inelson@nature.berkeley.edu

Nelson, Kellie; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave, Box 1004; Johnston IA 50131-1004; 515-270-4370; 515-270-2608 (fax); nelsonks@phibred.com

Nelson, Oliver E.; Department of Genetics; 445 Henry Hall; University of Wisconsin; Madison WI 53706; 608-265-4636; 608-262-2976 (fax); oenelson@facstaff.wisc.edu

Nelson, Timothy; Department of Biology; PO Box 208104; Yale University; New Haven CT 06520-8104; 203-432-3860; 203-432-5632 (fax); TIMOTHY.NELSON@YALE.edu

Nemeth, Janos; Cereal Research Non-Profit Co.; Also Kikoto sor 9; Szeged; HUNGARY; 62-54-555; 62-54-588 (fax)

Neuffer, Gerald; 109 Curtis Hall; University of Missouri; Columbia MO 65211; 573-449-0672; 573-884-7850 (fax); Gneuffer@aol.com

Newman, T. S.; Wyffels Hybrids, Inc; P.O. Box 246; Atkinson IL 61235; 309-936-7833; 309-936-7930 (fax)

Newman, Thomas C; MSU-DOE Plant Res Lab; Plant Biology Bldg; East Lansing MI 48824-1312; 517-353-0854; 517-353-9168 (fax); newmant@pilot.msu.edu

Newton, Kathleen; Dept Biol Sci; University of Missouri; Columbia MO 65211; 573-882-4049; NewtonK@missouri.edu

Nguyen, Henry T.; Dept of Plant & Soil Science; Plant Molecular Genetics Lab; Texas Tech University; Lubbock TX 79409-2122; 806-742-1622; 806-742-2888 (fax); henry.nguyen@ttu.edu

Nguyen, Thanh-Tuyen; North Carolina State Univ; Dept Botany; Box 7612; Raleigh NC 27695; 919-515-7166; 919-515-3436 (fax); tuyen_nguyen@ncsu.edu

Nielsen, Kirsten; Box 7612; Dept Botany; North Carolina State Univ; Raleigh NC 27695-7612; 919-515-3570; 919-515-3436 (fax); knielse@unity.ncsu.edu Nieto-Sotelo, Jorge; Univ Nacl Autonoma Mexico; Inst Biotechnol, Dept Plant Mol Biol; Apdo Postal 510-3; Cuernavaca 62250, Morelos; MEXICO;

jorge@ibt.unam.mx

Nikolau, Basil; Dept. Biochem. & Biophys.; Iowa State Univ.; Ames IA 50010; 515-294-9423; dimmas@iastate.edu

Nirunsuksiri, Wilas; DowAgro Sciences; 9330 Zionsville Rd; Indianapolis IN 46268; 317-337-5977; 317-337-5989 (fax)

Nishimura, Asuka; BioScience Ctr; Nagoya Univ; Chikusa; Nagoya 464-8601; JAPAN; 81-52-789-5225; 81-52-789-5226 (fax)

Nkwetta, Amingwo Michael: Inst Agric Res Devel: PO Box 25 Ekona; Southwest Province; Buea; REPUBLIC OF CAMEROON; 00237 35 43 71; 00237 31 99

25 (fax); bazorf2@yahoo.com

Noble, Stephen; Dept of Corn Breeding; Pioneer Hi-Bred Int'l Inc; P.O. Box 385; Johnston IA 50131-0385; 515-270-3318; 515-270-4314 (fax); Stephen.Noble@Pioneer.com

Norton, Robert A.; USDA, ARS, NCAUR Mycotoxin R.U.; 1815 N. University; Peoria IL 61604; 309-681-6251; 309-671-7814 (fax)

Nowell, David C; Pannar (Pty) Ltd; PO Box 19; Greytown 3500; SOUTH AFRICA; 27-334-31131; 27-334-71208 (fax)

Nunberg, Andrew; Monsanto; 800 N Lindbergh Blvd; St. Louis MO 63167; 314-694-5421; 314-694-3914 (fax); andrew.n.nunberg@monsanto.com

O'Kennedy, MM; CSIR; Food Sci & Technol; POB 395; ZA 0001 Pretoria; SOUTH AFRICA; 27-12-841-2911; 27-12-841-2185 (fax)

O'Sullivan, Donal; IACR-Long Ashton Res Stn; Univ Bristol, Long Ashton; Bristol BS18 9AF; UNITED KINGDOM; 44-1275-549329; 44-1275-394281 (fax) Ober, Eric; 1-87 Agriculture Bldg.; University of Missouri; Columbia MO 65211; 573-882-6832; 573-882-1469 (fax)

Odland, Wade; 411 Borlaug Hall; 1991 Buford Circle; Univ Minnesota; St. Paul MN 55108; 612-625-6223; 612-625-1268 (fax); odla0014@tc.umn.edu

Ogbeide, Okafor Diamond; N01B Jalan Wawasan; 4/1 Bandar Baru; Ampang; Kuala Lumpur 68000; MALAYSIA; 601-628-49078; 603-427-05090 (fax); DOgbeide@yahoo.com

Ogle, Charles W.; P.O. Box 484; Sugar Grove IL 60554; 312-466-4742

Ohta, Y.; Kasuga 2-5-1-301; Tsukuba 305; JAPAN

Okagaki, Ronald; Univ Minnesota; Dept Agron Plant Genet; 411 Borlaug Hall, 1991 Buford Circle; St. Paul MN 55108; 612-625-8756; 612-625-1268 (fax); okaga002@tc.umn.edu

Okuno, Kazutoshi; National Inst of Agrobiol Resources; 2-1-2 Kannondai; Tsukuba; Ibaraki 305; JAPAN; 81-298-38-7458; 81-298-38-7408 (fax)

Oldroyd, Giles; UC Berkeley; Plant Biology Dept; 111 Koshland Hall; Berkeley CA 94720-3102

Olhoft, Paula; Dept Agron & Plant Genetics; 1991 Buford Circle; 411 Borlaug Hall, Univ of Minnesota; St. Paul MN 55113; 612-625-9258; 612-625-1268 (fax) Olsen, Karin; Univ Norway; As N-1432; NORWAY; 47 64949489; odd-arne.olsen@ikb.nlh.no

Olsen, Mike; Wilson Genetics, LLC; 14088 Hwy 44; PO Box 44; Harlan IA 51537; 712-755-3841; 712-755-5261 (fax); mike.olsen@syngenta.com

Olsen, Odd-Arne; Pioneer Hi-Bred Intl Inc; Johnston IA 50131; odd-arne.olsen@pioneer.com

Ono, Akemi; Stanford Univ; Biol Sci; Stanford CA 94305-5020; 650-723-2609; 650-725-8221 (fax); ake@leland.stanford.edu

Openshaw, Steve; Syngenta; 317 330th St; Stanton MN 55018-4308; 507-663-7696; 507-645-7519 (fax); steve.openshaw@syngenta.com

Oro, Rosalinda; Univ Guelph; Crop Sci Bldg Rm316; Guelph; Ontario N1G 2W1; CANADA; 519-824-4120 ext 3396; 519-763-8933 (fax); roro@uoguelph.ca Orr, Alan R.; Department of Biology; University of Northern Iowa; Cedar Falls IA 50614; 319/277-4381; 319/273-2893 (fax); ORR@UNI.EDU

Osmont, Karen; Univ California, Berkeley; Dept Plant Microbial Biol; 111 Koshland Hall; Berkeley CA 94720; 510-642-7085; 510-642-4995 (fax); ksosmont@nature.berkeley.edu

Osterlund, Mark; Univ Georgia; 156 Riverbend Res Bldg; Athens GA 30602; 706-583-0168; 706-583-0160 (fax)

Osterman, John C.; School of Life Sciences; University of Nebraska-Lincoln; Lincoln NE 68588; 402-472-5129; 402-472-2083 (fax); josterman@unl.edu

Ostrander, Brad; National Starch and Chemical; Plant Genetics Group; 5648 W. 73rd Street; Indianapolis IN 46278; 317-295-4124; 317-295-4121 (fax); brad.ostrander@nstarch.com

Ouzunova, Milena; KWS Saat AG; Grimsehlstr 31; Einbeck; GERMANY; 49-5561-311-352; 49-5561-311-337 (fax); M.Ouzunova@KWS.de

Owusu, E. Owusuwaa; 2082 Cordley Hall; Oregon State Univ; Corvallis OR 97331-2902; 541-737-3308; 541-737-3573 (fax)

Padilla, Chris; UC San Diego; Dept of Biology, 0116; La Jolla CA 92093-7108

Padmanahban, Veera; Pioneer Hi-Bred Intl; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131

Paez, Alix V.; Genetic Enterprises Int'l; 6165 Crabapple Lane; Johnston IA 50131; 515-278-1170; 515-276-9360 (fax); paezgei@worldnet.att.net

Page, Brent; Univ of Missouri; 117 Tucker Hall; Columbia MO 65211; 573-882-4871; 573-882-0123 (fax)

Pages, Montserrat; CSIC Dept Genet Mol; Jordi Girona Salgado 18-26; 08034 Barcelona; SPAIN; 34-93-4006131; 34-3-2045904 (fax); mptgmm@cid.csic.es

Paiva, E; EMBRAPA/CNPMS; Caixa Postal 151; 35701-970 Sete Lagoas-MG; BRAZIL; 31-779-1179; 31-779-1088 (fax); edilson@cnpms.embrapa.br Palaisa, Kelly; Univ Delaware; Dept Plant Soil Sci; Newark DE 19717; 302-831-2531; 302-831-0605 (fax)

Palmer, K. E.; Dept. of Microbiology; University of Cape Town; Private Bag; Rondebosch 7700; SOUTH AFRICA; 21-650-3269; 21-650-4320 (fax)

Palmer, Reid; USDA-ARS-CICGR; Iowa State University; Agronomy Department, Room G301; Ames IA 50011; 515-294-7378; 515-294-2299 (fax); rpalmer@iastate.edu

Panavas, Tadas; Univ Massachusetts; Dept Biology; Amherst MA 01003; 413-545-9622; 413-545-3243 (fax); panavas@bio.umass.edu

Pantuso, Francisco; Universidad nacional de Luján; Mejoramiento Vegetal; Departamento de Tecnología; Rutas 5 y 7 (6700) Lujan; Buenos Aires; ARGENTINA; pantuso@mail.unlu.edu.ar

Pareddy, Dayakar R.; DowElanco; R&D Building, 306/B-1; 9330 Zionsville Road; Indianapolis IN 46268; (317)337-3646; 317-337-3228 (fax)

Park, Wonkeun; Waksman Inst; Rutgers, The State Univ NJ; Hoes Ln; Piscataway NJ 08855; 732-445-2307; 732-445-5735 (fax); wpark@waksman.rutgers.edu

Park, Woong June; Lehrstuhl fuer Genetik; Technische Universitaet Muenchen; Am Hochanger 8; D-85350 Freising-Weihenstephan; GERMANY; 49-8161-71-5644/5648; 49-8161-71-5636 (fax); park.woong@wzw.tum.de

Park, Yong-Jin; Purdue Univ; Biology Hanson Rm 339; West Lafayette IN 47907; 765-496-1768; ypark@bilbo.bio.purdue.edu

Parlov, Dragomir; Inst Breeding & Prod Field Crops; Marulicev trg 5; 41000 Zagreb; YUGOSLAVIA; 041-750-311; 41-750-523 (fax)

Parrott, Wayne; 3111 Plant Sci; Univ Georgia; Athens GA 30602; 706-542-0928; 706-542-0914 (fax); wparrott@uga.edu

Partas, E. C.; Maize and Sorghum Res. Inst.; Pashcani; Criuleni; 278336 Moldova; MOLDOVA

Parveez, Ahmad; Genetic Transformation Lab; Palm Oil Res Inst Malaysia; P.O. Box 10620; 50720 Kuala Lumpur; MALAYSIA; 603-8259155x2834/3531; 603-8259446 (fax)

Paszkowski, Uta; Botanical Institute; Univ of Basel, Hebelstr. 1; Basel CH-4056; SWITZERLAND; 41-61-267-2332; 41-61-267-2330 (fax)

Pataky, Jerald K.; Crop Science, Turner Hall; 1102 S. Goodwin Ave; University of Illinois; Urbana IL 61801; 217-333-6606; 217-244-1230 (fax); jpataky@uiuc.edu

Paterson, Andrew H.; University of Georgia; Rm 162, Riverbend Research Center; 110 Riverbend Road; Athens GA 30602; 706-583-0162/0161; 706-583-0160 (fax); paterson@uga.edu

Patil, M. S.; Agric. Research Station; Gulburua 585101; INDIA; 21120; 091-08472-21120 (fax)

Paul, Anna-Lisa; Dept Horticultural Sciences; 1255 Fifield Hall; Univ Florida; Gainesville FL 32611; 352-392-4711x313; 352-392-6479 (fax); ALP@NERVM.NERDC.UFL.EDU

Pawlowski, Wojtek; Cande Lab; 345 LSA; Univ California; Berkeley CA 94720-3200; 510-643-8277; 510-643-6791 (fax); wpawlows@nature.berkeley.edu Peacock, Jim; Division of Plant Industry; CSIRO; Canberra ACT 2601; AUSTRALIA; 062-465250

Pei, Deqing; Iowa State Univ; Dept Plant Pathol; Ames IA 50011-1020; 515-296-9326; 515-294-9420 (fax); dpei@iastate.edu

Pen, Sietse; Glenn Maize France SARL; 'Les Clarines'; Rte Chapelle de Rousse; 64290 Gan; FRANCE; 0033 5 59 21 57 57; 0033 5 59 21 57 57 (fax)

Peng, Jinzhi; State Science & Tech. Commission; China Natl. Ctr. Biotech. Development; 54 Sanlihe Road; Beijing; CHINA

Peng, Jiging; Univ Delaware; 530 S College Rd; Newark DE 19717; 302-831-0854; 302-831-0605 (fax); jpeng@udel.edu

Penning, Bryan; Univ Missouri; 205 Curtis Hall; Columbia MO 65211-7020; 573-882-7818; 573-884-7850 (fax); bwp8cf@mizzou.edu

Penzes, Eva A.; Dept Molec Cell Biol; 345 LSA; UC Berkeley; Berkeley CA 94720-0001; 510-643-8277; 510-643-6791 (fax)

Pereira de Souza, Anete; CBMEG/UNICAMP; Caixa Postal 6109; CEP 13083-970; Campinas SP; BRAZIL; 55-19-239-8351; 55-19-239-7030 (fax)

Perez, Pascual; Univ Des Cezeaux - Biogemma; 24 Avenue des Landais; 63130 Aubiere; FRANCE; (33) 673 42 7970; (33) 673 42 7981 (fax); pascual.perez@biogemma.com

Perotti, Enrico; Lisboa 27; Apdo. Postal 6-641; CIMMYT; 06600 Mexico; MEXICO; 525-804-2004; 525-726-7567 (fax); eperotti@cimmyt.mx

Peschke, Virginia M.; Plant Sciences, GG6A, Monsanto Co.; 700 Chesterfield Village Parkway N; St. Louis MO 63198; (636)737-6939; (636)737-6189 (fax); virginia.m.peschke@monsanto.com

Peter, Job; P.O. BOX 50187; Maamon; Baghdad; IRAQ

Petersen, William; Monsanto-Agracetus; 8520 University Green; Middleton WI 53562; william.l.petersen@monsanto.com

Peterson, Peter A.; Dept of Agronomy; Iowa State University; Ames IA 50011; 515-294-9652; 515-294-2299 (fax); pap@iastate.edu

Peterson, Thomas A.; Dept. of Zoology & Genetics; 2206 Molecular Biology; Iowa State Univ.; Ames IA 50011; 515-294-6345; 515-294-6755 (fax); thomasp@iastate.edu

Pham, Hiep; Cargill Seed Research; P.O. Box 774; Grinnell IA 50112; (515)236-4911; (515)236-3607 (fax)

Phelps-Durr, Tara; Tucker Hall; University of Missouri; Columbia MO 65211; 573-449-4871; 573-882-0123 (fax); tlp1d2@mizzou.edu

Phillips, Ronald; Agronomy & PI Genetics; 411 Borlaug Hall; University of Minnesota; St. Paul MN 55108; 612-625-1213; 612-625-1268 (fax); Phill005@maroon.tc.umn.edu

Phinney, Bernard O.; Dept. of Biology; 405 Hilgard Avenue; UCLA; Los Angeles CA 90024-1606; (310)825-3177; (310)825-3177 (fax); bop@ucla.edu

Pieris, Shayani; Iowa State Univ; 1212 Agronomy; Ames IA 50011; 515-294-0837; 515-294-3163 (fax); shayani@iastate.edu

Pilu, Roberto; Univ di Milano; Via Celoria 2; 20133 Milan; ITALY

Pixley, Kevin V; PO Box MP 163; Mount Pleasant; Harare; ZIMBABWE; 263-4-301807; 263-4-301327 (fax); k.pixley@cgnet.com

Plehn, Steve J.; Cargill Hybrid Seeds; P.O. Box 762; Mt. Vernon IN 47620; (812)838-5218; (812)838-8864 (fax)

Plesset, Judith; Plant and Microbial Development; National Science Foundation; 4201 Wilson Boulevard; Arlington VA 22230; (703) 306-1417; jplesset@nsf.gov

Podolskaya, Anna P.; N. I. Vavilov All Union Inst Plant Industry; 44 Herzen Street; 190000, St. Petersburg; RUSSIA; 311-99-45; 311-8762 (fax)

Poethig, R. Scott; Biology Department; Leidy Labs, Univ Penn; Philadelphia PA 19104-6018; 215-898-8915; 215-898-8780 (fax); SPOETHIG@SAS.UPENN.EDU

Poggio, Lidia; Inst Fitotecnico de Santa Catalina (UNLP); C.C.4 (1836) Llavallol; Buenos Aires; ARGENTINA

Polacco, Mary; 203 Curtis Hall; University of Missouri; Columbia MO 65211; 573-884-7873; 573-884-7850 (fax); polaccom@missouri.edu

Pollacsek, M.; Station Amelior PI-INRA; 63039 Clermont Ferrand; FRANCE; 73-62-43-01; 73-62-44-53 (fax)

Pollak, Linda; USDA-ARS; Dept. Agronomy; Iowa State Univ.; Ames IA 50011; 515-294-7831; 515-294-9359 (fax); Impollak@iastate.edu

Pollmer, W. G.; Universitat Hohenheim; Egilolfstr. 25; D-70599 Stuttgart; GERMANY; 49-711-4586315; 49-711-4569008 (fax)

Poneleit, Charles G.; Agronomy; University of Kentucky; Lexington KY 40546-0091; 606-257-4934; 606-258-1952 (fax); AGR021@UKCC.UKY.EDU

Ponelies, Norbert; Institut fur Pflanzenzuchtung; Universitat Hohenheim; Fruwirthshr 21; D70599 Stuttgart; GERMANY; 49 (711) 459 2341; 49 (711) 459 2342 (fax)

Pooma, Wilailak; Ohio State Univ; 218A Rightmire Hall; 1060 Carmack Rd; Columbus OH 43210; 614-688-4954; 614-292-5379 (fax); pooma.1@osu.edu Pratt, Richard C.; Dept. Hort. & Crop Science; OSU/OARDC; 1680 Madison Avenue; Wooster OH 44691; 330-263-3972; 330-263-3887 (fax); pratt.3@osu.edu

Prest, Thomas J.; Syngenta Seeds; 1001 Montana St; Glidden IA 51443; 712-659-3691; 712-659-3693 (fax); Tom.Prest@syngenta.com

Presting, Gernot; Clemson Univ; Genomics Inst; 100 Jordan Hall; Clemson SC 29634; 864-656-4633; 864-656-4293 (fax)

Presting, Ortrun; DuPont; 10700 Justin Drive; Urbandale IA 50322; 515-251-3029; 515-251-3040 (fax)

Prigge, Michael; Institute Molec Biol; Univ of Oregon; Eugene OR 97403

Pring, Daryl R.; Dept of Plant Pathology; 1453 Fifield Hall; University of Florida; Gainesville FL 32611; 352-392-3638; 352-392-6532 (fax); drpg@gnv.ifas.ufl.edu

Prioli, Laudenir M.; Depto. Genetica; IB/CBMEG, Univ Estad Campinas; CP 6109; Campinas 13083-970; BRAZIL; 55-192-397030; 55-192-394717 (fax) Prioul, Jean-Louis; IBP Bat 630; Universite de Paris-Sud; 91405 Orsay Cedex; FRANCE; 33169336473; 33169336424 (fax); prioul@ibp.u-psud.fr

Pruitt, Jennifer; Monsanto; 800 N Lindbergh Blvd B2SF; St. Louis MO 63167; 314-694-3481; 314-694-1080 (fax); jennifer.l.pruitt@monsanto.com

Pryor, Tony; Plant Industry CSIRO; PO Box 1600; Canberra ACT 2601; AUSTRALIA; 61-02-6246 5494; 61-02-6246 5000 (fax); tony.pryor@pi.csiro.au Puigdomenech, Pedro: Centro de Investigacion y Desarrollo: c/ Girona Salgado, 18-26: 08034 Barcelona: SPAIN: 34-3-400-61-29: 34-3-204-59-04 (fax): pprgmp@cid.csic.es

Purugganan, Michael; Dept of Genetics; Box 7614; NC State University; Raleigh NC 27695-7614; michaelp@unity.ncsu.edu

Qin, Lu; Institute of Genetics and Crop Breeding; Fuzhou 0591; CHINA

Qin, Minmin; USDA-ARS-PGEC; 800 Buchanan Street; Albany CA 94710

Qin, Tai-chen; 6-403, villga NO2 of Su Long; Dept Agron Jiangsu Agricollege; East Road of Wen-hui; Yangzhou Jiangsu; CHINA

Qiu, Fang; Iowa State Univ; B420 Agronomy Hall; Ames IA 50011; 515-294-1659; 515-294-2299 (fax); fqiu@iastate.edu

Qiu, Lijuan; G403 Agronomy Hall; Iowa State Univ; Ames IA 50011

Qu, F; Institute of Genetics; Lab No. 801; Beijing 100101; CHINA

Qualset, Calvin O.; Genetic Resources Cons Program; Univ of California; 1 Shields Ave; Davis CA 95616-8602; 530-754-8502; 530-754-8505 (fax); cogualset@ucdavis.edu

- Quarrie, Steve; 54, Sycamore Avenue,; Wymondham,; Norfolk NR18 0HX; UNITED KINGDOM; 44-(0)1953-602065; 44-(0)1953-602065 (fax); pekic@eunet.yu; steve.quarrie@appleonline.net
- Quayle, Tom; The American University; 113 Sharia Kasr El-Aini; 11511 Cairo; EGYPT; quayle@aucegypt.edu

Quebedeaux, Bruno; Dept Nat Res Sci & Landsc Arch; Plant Sci Bldg 2130; University of Maryland; College Park MD 20742; 301-405-4336; 301-314-9308 (fax); BQ1@umail.umd.edu

Queijo, Marcelo; 499-A Plant & Soil Sci Bldg; Michigan State Univ; East Lansing MI 48824; 517-355-6883; 517-353-5174 (fax)

Qun Hui, Lin; Fujian Agricultural College; Dept. of Agronomy; Jingshian, Fuzhou; Fujian 350002; CHINA

Rabinowicz, Pablo; Cold Spring Harbor Lab; 1 Bungtown Rd; Cold Spring Harbor NY 11724; 516-367-8836; 516-367-8369 (fax); rabinowi@cshl.org

Raboy, Victor; USDA-ARS-NSGGRF; PO Box 307; Aberdeen ID 83210; 208-397-4162; 208-397-4165 (fax); vraboy@uidaho.edu

Rabson, Robert; Div. of Energy Bioscience; Office of Basic Energy Sci; U.S. Dept of Energy, ER-17 GTN; Washington DC 20545; 301-903-2873; 301-903-1003 (fax)

Racchi, Milvia L.; Genetics Unit; Univ of Florence; Via San Bonaventura 13; 50145 Firenze; ITALY; 55-573201; 55-580341 (fax); gene agr@cesit1.unifi.it Radwanski, Elaine; Carthage College; Biology Dept; 2001 Alferd Park Drive; Kenosha WI 53140; 414-551-5865; 414-551-6208 (fax); elaine1@carthage.edu Rafalski, Antoni; DuPont Agric Biotechnol; Delaware Technol Park, Suite 200; 1 Innovation Way, PO Box 6104; Newark DE 19714-6104; 302-631-2612; 302-631-2607 (fax); J-Antoni.Rafalski@usa.dupont.com

Ragot, Michel; Syngenta; 12, Chemin de l'Hobit; F-31790 Saint-Sauveur; FRANCE; 33(0)562799902; 33(0)562799996 (fax); michel.ragot@syngenta.com Raikhel, Natasha; NV Raikhel; Michigan State Univ; DOE Plant Res Lab; East Lansing MI 48824; NRaikhel@pilot.msu.edu

Raizada, Manish; Dept. of Plant Agriculture; University of Guelph; Crop Science Building Room 316; Guelph, Ontario; CANADA N1G 2W1; 519 824-4120x3396; 519 763-8933 (fax); raizada@uoguelph.ca

Ramakrishna, Wusirika; Purdue Univ; Dept Biology; H339 Hansen; West Lafayette IN 47907; 765-494-4919; 765-496-1496 (fax); wusirika@purdue.edu Rao, P. N.; Dept of Botany; Andhra University; Visakhapatnam 530003; INDIA; 54871 ext 390

Rapp, William; Department of Biology; Univ. of Missouri-St. Louis; 8001 Natural Bridge Rd.; St. Louis MO 63121-4499; 314-553-6225; 314-553-6233 (fax); swdrapp@umslvma.umsl.edu

Ratnakaya, Swarnamala; 250 W Bedford Park Blvd; Lehman College; Bronx NY 10468; 718-960-4994; 718-960-8236 (fax); swarnama@hotmail.com Rauh, Bradley; North Carolina State Univ; 2523 Gardner Hall; Raleigh NC 27695; 919-513-2821; 919-515-3355 (fax); blrauh@unity.ncsu.edu

Rausch, Thomas; Univ Heidelberg; Botanisches Institut, INF 360; D-69120 Heidelberg; GERMANY; trausch@mail.bot.uni-heidelberg.de

Ravanello, Monica; Monsanto; 1920 Fifth St; Davis CA 95616; 530-792-2249; 530-792-2453 (fax); monica.p.ravanello@monsanto.com

Rayburn, A. Lane; Crop Sci, 320 ERML; 1201 W. Gregory; Univ of Illinois; Urbana IL 61801; (217)333-4777; (217)333-9817 (fax); arayburn@uiuc.edu Reardon, Ellen; Waksman Institute; Piscataway NJ 08855-0759; 732-445-3512; 732-445-5735 (fax); reardon@mbcl.rutgers.edu

Reddy, Arjula; School of Life Sci; Univ of Hyderabad; Hyderabad-500 046; INDIA; 0091-40-3010265,3033123; 0091-40-3010120 (fax); arjulsl@uohyd.ernet.in

Reddy, Gurjal; Department of Genetics; Osmania University; Hyderabad-500007; INDIA; 868951 Ext. 375; 91-0842-868087 (fax)

Reddy, Vaka; Univ Georgia; Dept Genetics/Botany; Athens GA 30602; 706-542-1857; 706-542-3910 (fax) Redinbaugh, Margaret; USDA-ARS; OARDC; Dept Plant Pathology; Wooster OH 44691; 330-263-3965; 330-263-3841 (fax); redinbaugh.2@osu.edu

Register, James; Pioneer HI Bred Int Inc; Trait & Technol Dev, Johnston, IA 50131 USA; Johnston IA 50131; REGISTERJC@phibred.com

Reid, L. M.; Eastern Cereal & Oilseed Res Centre; Agriculture and Agri-Food Canada; Bldg 121 Central Experimental Farm; Ottawa, Ontario K1A 0C6; CANADA; 613-759-1619; 613-952-9295 (fax); reidl@em.agr.ca Reinders, Jon; Syngenta; 317 330th St; Northfield MN 55018; 507-663-7672; 507-645-7519 (fax); jon.reinders@syngenta.com

Reiser, Leonore; Dept Plant Biol; 260 Panama; Stanford CA 94305; 650-325-1521; Ireiser@acoma.stanford.edu

Reiter, Karen; Monsanto; 4179 114th St; Urbandale IA 50322; 515-331-6206; 515-331-6240 (fax)

Reiter, Robert; Monsanto; 3302 SE Convenience Blvd; Ankeny IA 50021; 515-963-4211; 515-963-4242 (fax); Robert.S.Reiter@monsanto.com

Remington, David; Genetics Box 7614; North Carolina State Univ; Raleigh NC 27695-7614; 919-513-2821; 919-515-3355 (fax)

Ren, Nan; Gilmer Hall; Biology Department; University of Virginia; Charlottesville VA 22903; nr4g@faraday.clas.virginia.edu

Ren, Ruihua; Dow AgroSciences LLC; 9330 Zionsville Rd; Indianapolis IN 46268; 317-337-5994; 317-337-5989 (fax) Renk, Bryan; Wisconsin Alumni Research Foundation; PO Box 7365; Madison WI 53707-7365; 608-263-2828; 608-263-1064 (fax); bryarenk@facstaff.wisc.edu

- Retief, Dries; Dept of Genetics, J. S. Marais Bldg; Univ of Stellenbosch; Stellenbosch 7600; SOUTH AFRICA; 027-21-9380262; 027-21-9380460 (fax); aretief@mrc.ac.za
- Rhee, Seung; Carnegie Institution of Washington; 290 Panama St.; Stanford CA 94305
- Rhee, Yong; Univ Wisconsin-Madison; Dept Agronomy; 1575 Linden Drive; Madison WI 53706; 608-262-3660; 608-262-5217 (fax); yrhee@students.wisc.edu
- Rhodes, Carol; 219 Bay Tree Rd.; San Carlos CA 94070-3816; 650-598-9469; 650-598-9469 (fax); carolrhodes@hotmail.com
- Ribaut, Jean-Marcel; CIMMYT; Apdo. Postal 6-641; 06600 Mexico D.F.; MEXICO; 595 219 00; 595 219 87 (fax); j.ribaut@CGIAR.org
- Rice, Doug; Pioneer Hi-Bred Internat Inc; 7300 NW 62nd Ave; PO Box 22; Johnston IA 50131-1004
- Richter, Todd E.; Plant Path. Dept.; Throckmorton Hall: Manhattan KS 66506; (913)532-6176; (913)532-5692 (fax)
- Ridley, Susan; Biochem Gene Expression; National Science Foundation; 4201 Wilson Blvd; Arlington VA 22230; (703) 306-1441; sridley@nsf.gov
- Riera-Lizarazu, Oscar; Dept Crop & Soil Sci: Oregon State Univ; Corvallis OR 97331-3002; 541-737-5879; 541-737-1589 (fax); oscar.riera@orst.edu
- Rinehart, Chuck; Univ of Idaho; Dept Biol Sci, 229 Gibb Hall; Moscow ID 83844-3051
- Rinehart, Tim; Univ Idaho; Biological Sciences; Moscow ID 83844-3051; 208-885-2550; 208-885-7905 (fax); rine9558@uidaho.edu
- Rines, Howard; Agronomy & Plant Genetics; 411 Borlaug Hall, 1991 Buford Circle; Univ Minnesota; St. Paul MN 55108; 612-625-5220; 612-625-5058 (fax); rines001@tc.umn.edu
- Ripoll, Pierre-Jean; Rhone-Poulenc/IACR Long Ashton; Dept Agric Sci; Univ Bristol, Long Ashton; Bristol BS41 9AF; UNITED KINGDOM; 00-44-11275-392181; 00-44-1275-394281 (fax)
- Ritter, Matt; Univ California-San Diego; Dept Biology 0116; 9500 Gilman Dr; San Diego CA 92093-0116; 619-534-2514; mritter@biomail.ucsd.edu
- Riviere, Jean-Michel; Limagrain Genetics Grand Cult SA; P.O. Box 2; ZA Les Pains; Les Alleuds 49320; FRANCE; 33 2 41 53 04 29 (fax)
- Rivin, Carol; Dept. of Botany; Cordley 2082; Oregon State University; Corvallis OR 97331-2902; 541-737-5281; rivinc@cgrb.orst.edu
- Robbins Jr., W. A.; P.O. Box 158; Ag. Alumni Seed Imp. Assn.; Romney IN 47981; 317-538-3145; 317-538-3600 (fax) Roberts, Jean L.; Dow Agrosciences Discovery Research; 9330 Zionsville Road; Indianapolis IN 46268; 317-337-3126; 317-337-3228 (fax); ilroberts@dowagro.com
- Roberts, Justin; Dept Biochemistry; University of California; Riverside CA 92521; jkmr@ucrac1.ucr.edu
- Robertson, Donald S.; 1707 Woodhaven Circle; Ames IA 50010-4198; 515-232-2892; DONRRR@aol.com
- Robison, Glenn; DeKalb Plant Genetics; 3100 Sycamore Road; DeKalb IL 60115; 815-758-9531; 815-758-4106 (fax)
- Rocheford, Torbert R.; Crop Sci, W221 Turner Hall; University of Illinois; 1102 S. Goodwin Av.; Urbana IL 61801; 217-244-3388; 217-333-9817 (fax); trochefo@uiuc.edu
- Rocky, Sally; USDA, NRICGP; 901 D. Street, SW, Room 323; Washington DC 20250
- Rogers, Suzanne; Salem-Teikyo University; Salem WV 26426-0520
- Rogowsky, Peter; RCAP; ENS-Lyon; 46 Allee d'Italie; F-69364 Lyon cedex 07; FRANCE; 33-472-72-86-07; 33-4-72-72-86-00 (fax); progowsk@ens-lyon.fr Romero-Severson, Jeanne; Purdue University; Dept For & Nat Res, & Dept Agron; Room 206C WSLR; 1159 Forestry Bldg.; West Lafayette IN 47907-1159; 765-496-6801; 765-496-2422 (fax); romeros@fnr.purdue.edu
- Ronelus, Wedoaud; Lehman College, CUNY; Dept Biol Sci; Bronx NY 10468; 718-960-8643; 718-960-8236 (fax); G83LC@CUNYVM.CUNY.EDU
- Rood, Tracy; Pioneer Hi-Bred Internat Inc; 7300 NW 62nd Ave.; PO Box 1004; Johnston IA 50131-1004
- Rooney, Lloyd W.; Soil & Crop Sciences Dept; 429B Heep Center; Texas A&M Univ; College Station TX 77843-2474; 979-845-2910; 979-845-0456 (fax); lrooney@tamu.edu
- Rosato, S. Caprice; 1220 Oak Villa Road; Dallas OR 97338; 541-750-8750 (fax); rosatoc@ucs.orst.edu
- Rosichan, Jeffrey; Novartis Seeds, Inc.; Research Center; 317 330th St.; Stanton MN 55018-4308; 507-663-7642; 507-645-7519 (fax)
- Rosielle, A.; Monsanto-International Assignment; Mail Stop 5045; 800 N Lindbergh; St. Louis MO 63167
- Ross, Andrew; Iowa State Univ; 1203 Agronomy Hall; Ames IA 50011; 515-294-6868; AJRoss@corn2.agron.iastate.edu
- Rossini, Laura; Univ of Oxford; Dept Plant Sci, South Parks Rd; Oxford OX1 3RB; UNITED KINGDOM; 44-1865-275030; 44-1865-275147 (fax); laura.rossini@plant-sciences.oxford.ac.uk
- Rotarenco, Valera; Institute of Genetics; Padurii 20; Chisinau 2002; MOLDOVA; rotarenco_v@scientist.com
- Roth, Brad; University of Illinois at Urbana-Champaign; Office of Technology Management; 319 Ceramics Building, MC-243; 105 South Goodwin Avenue; Urbana IL 61801; 217-265-5530; 217-333-7862; bradroth@uiuc.edu
- Rothstein, Steven; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131-0552; 515-334-4487; 515-334-4778 (fax)
- Rouan, Dominique; Plant Genetic Systems; Plateaustraat 22; Ghent 9000; BELGIUM; 32-92358402; 32-92240694 (fax); domni@pgsgent.be
- Rout, Jyoti; Monsanto Company; Agracetus Campus; 8520 University Green; Middleton WI 53562; 608-821-3465; 608-836-9710 (fax)
- Roux, Christophe: Univ Toulouse: Pole de Biotech Veg: UMR 5546 BP18 Castanet; Tolosan 31326; FRANCE; 33 562 193 504; 33 562 193 502 (fax); roux@smcv.ups-tlse.fr
- Roy, Laura; Biology Dept 0116; Univ California; La Jolla CA 92093-0116; 858-822-2558; 858-534-7108 (fax); Iroy@biomail.ucsd.edu
- Royo, Joaquin; Univ de Alcala; Biologia Celular y Genetica; Campus Universitario; ES-28871 Madrid; SPAIN; 34 91 8854758; 31 91 8854799 (fax); joaguin.royo@uah.es
- Rubenstein, Irwin; 1838 Parliament Rd; Leucadia CA 92024-1030
- Rudenko, George; Stanford Univ; Bio Sci; Stanford CA 94305-5020; 650-723-2609; 650-725-8221 (fax); rudenko@leland.stanford.edu
- Ruesch, Kim; 3800 SW 34th St. Apt J82; Gainesville FL 32608; 352-336-2803; klr@gnv.ifas.ufl.edu
- Ruff, Thomas G.; Monsanto-Ceregen; 800 N Lindbergh Blvd; N2SA; St. Louis MO 63198; 314-694-8865; 314-694-1671 (fax); thomas.g.ruff@monsanto.com Running, Mark; USDA/PGEC; 800 Buchanan St; Albany CA 94710; 510-559-5922; 510-559-5648 (fax); mrunning@uclink.berkeley.edu
- Rupe, Mary: Pioneer Hi-Bred Internati; 7250 NW 62nd Ave: PO Box 552; Johnston IA 50131; 515-270-5991; 515-334-4778 (fax)
- Russell, Doug; Monsanto-Agracetus; 8520 University Green; Middleton WI 53562; 608-821-3443; 608-836-9710 (fax); douglas.a.russell@monsanto.com Russell, Kelly; Institute of Molec Biol; University of Oregon; Eugene OR 97403
- Russell, Ken; Univ of Nebraska; Dept of Agronomy; PO Box 830915; Lincoln NE 68583; 402-472-1562; 402-472-7904 (fax); KRUSSELL3@unl.edu
- Saab, Imad; Pioneer Hi-Bred International, Inc.; 7301 NW 62nd Ave.; Johnston IA 50131; 800-247-6803 ext. 2124; imad.saab@pioneer.com
- Sabelli, Paolo: University of Arizona: Dept. of Plant Sciences: 303 Forbes Building: P.O. Box 210036; Tucson AZ 85721-0036; (520) 621-9154; (520) 621-3692 (fax); psabelli@ag.arizona.edu
- Sachan, JKS; Division of Genetics; I.A.R.I.; New Delhi-110012; INDIA; 91-011-5783077; 91-011-5752006 (fax)
- Sachs, Marty; USDA/ARS; S108 Turner Hall; 1102 S. Goodwin Ave; Urbana IL 61801; (217)244-0864/333-9743lab; (217)333-6064 (fax); msachs@uiuc.edu
- Sadder, Monther; 350/2 Inst Plant Breed; Univ Hohenheim; D-70593 Stuttgart; GERMANY; 4594429; 4593005 (fax); sadderm@uni-hohenheim.de Saedler, Heinz; Max-Planck Inst Zuchtungsf; Carl-von Linne-Weg 10; D 50829 Koln; GERMANY; 221-5062-100; 221-5062-113 (fax) Saghai Maroof, MA; CSES Department; VPI & SU; Blacksburg VA 24061; 540-231-9791; 540-231-3431 (fax); SMAROOF@VT.EDU Sakulsingharoj, Chotipa; 1650 NE Valley Rd #A4; Washington State Univ; Pullman WA 99163; 509-332-5187; chotipas@wsunix.wsu.edu
- Salamini, Francesco; Max Planck Inst Zuchtungsf; Abt Pflanzenz Ertragsphysiol; D-50829 Koln; GERMANY; 49-221-5062400; 0049-221-5062413 (fax)

Salamone, Peter; 369 Clark Hall; Washington State Univ; Pullman WA 99164; 509-335-1047; 509-335-7643 (fax); petes@mail.wsu.edu

Salerno, Juan C.; PJE. San Sebastian 439; 1405 Buenos Aires; ARGENTINA; 54-1-15-949-3685; 54-1-450-0805/1876 (fax); jcsalerno@ciudad.com.ar Salvador, Ricardo J.; Iowa State University; Dept. of Agronomy; 1126 Agronomy Hall; Ames IA 50011-1010; 515-294-9595; 515-294-8146 (fax); RJSALVAD@IASTATE.EDU

San Miguel, Phillip; HANS 339; Dept. of Biological Sciences; Purdue University; West Lafayette IN 47907; 765-494-4919; 765-496-1496 (fax); pmiquel@bilbo.bio.purdue.edu

Sanchez de Jimenez, Estela; UNAM, Facultad de Quimica; Edificio B; Ciudad Universitaria; Mexico City 04510, DF; MEXICO; estelas@servidor.dgsca.unam.mx

Sanchez-Villeda, Hector; 210 Curtis Hall Univ of Missouri; Columbia MO 65211-7020; 573-884-3439; 573-884-7850 (fax); sanchezvilledah@missouri.edu

Sangtong, Varaporn; Iowa State Univ; Agronomy Hall, Rm 1401; Ames IA 50011-1010; 515-294-0837; varaporn@iastate.edu Santos, MA; Dept Genetica Molecular; Centro Invest Desarrollo; Gorge Girona 18-24; 08034 Barcelona; SPAIN; 34-3-4006100; 34-3-2045904 (fax)

Saparno, Audrey; Bldg 21 CE Farm; 960 Carling Ave; Agriculture & Agri-Food Canada; Ottawa, ONT K1A 0C6; CANADA; 613-759-1551; 613-759-6566 (fax); saparnoa@em.agr.ca

Saraiva, Luiz S.; Genetica Dept Biol Geral; Univ Fed Vicosa; Vicosa Minas Gerais 36571-000 Brazil; ssaraiva@mail.ufv.br

Sari-Gorla, Mirella; Univ Milan; Dept Genet & Microbiol; Via Celoria 26; I-20133 Milan; ITALY; mirella.sarigorla@unimi.it

Sarkar, Kumud R.; 77B, Ekta Apartments; Block A-2/B; Paschim Vihar; New Delhi 110 063; INDIA; kurasar@del3.vsnl.net.in

Sasaki, Takuji; Rice Genome Research Program; STAFF Institute, 446-1, Ippaizuka; Kamiyokoba, Tsukuba; Ibaraki 305-0854; JAPAN; 81-248-38-7441; 81-248-38-7468 (fax); tsasaki@nias.affrc.go.jp

Sasinowski, Maciek; 110 Liberty Dr; Suite 104; Clemson SC 29631; 864-654-8850; maciek@incogen.com

Satarova, Tatjana N; Dzerzhinskaya st., 14; Institute of Grain Farm; Dniepropetrovsk 49027; UKRAINE; biochem@dsma.dp.ua

Sato, Yutaka; PGEC; 800 Buchanan St; Albany CA 94710; 510-559-5922; 510-559-5678 (fax); yutakas@uclink4.berkeley.edu Sauer, Matt; Plant Sci Inst; Univ Pennsylvania; Philadelphia PA 19104; 215-898-8916; 215-898-8780 (fax); gmsauer2@sas.upenn.edu

Savidan, Yves H.; International Relations Officer; Agropolis; Ave Agropolis; 34394 Montpellier Cedex 5; FRANCE; 33 (0) 467047569; 33 (0) 467047569 (fax); savidan@agropolis.fr

Sawers, Ruairidh; Univ Oxford; Dept Plant Sci; South Parks Rd; Oxford OX1 3RB; UNITED KINGDOM

Scandalios, John; Dept. of Genetics; North Carolina State Univ.; Box 7614; Raleigh NC 27695-7614; (919)515-7079; (919)515-3355 (fax); jgs@unity.ncsu.edu

Scanlon, Mike; Botany Dept; Univ Georgia; 3609 Plant Sciences; Athens GA 30602; 706-542-7516; 706-542-1805 (fax): mjscanlo@dogwood.botany.uga.edu

Scarpella, Enrico; Inst Molec Biol; Clusius Lab; PO Box 9505; 2300 RA Leiden; NETHERLANDS; 31-71-5274837; 31-71-5274999 (fax); scarpella@rulbim.leidenuniv.nl

Schafer, Christine; Lehrstuhl fur Genetik; Technische Univ Munchen; Lichtenbergstrasse 4; Garching 85747; GERMANY; 28912930; 28912932 (fax)

Scheffler, Brian E.; USDA-ARS-NPURU; Natl Ctr Devel Nat Prod: PO Box 8048; University MS 38677; 662-915-1548; 662-915-1035 (fax); brians@olemiss.edu

Schiefelbein, John W.; 4085 Natural Science Bldg.; University of Michigan; Ann Arbor MI 48109; 313-764-3579; 313-747-0884 (fax); schiefel@umich.edu Schmidt, Robert J.; Univ of California-San Diego; Dept of Biology 0116; 9500 Gilman Dr; San Diego CA 92093-0116; 619-534-1636; 619-534-7108 (fax); rschmidt@ucsd.edu

Schmitt, Laura; Univ Wisconsin; 1575 Linden Dr; Madison WI 53706; 608-263-5809; 608-262-5217 (fax); Ischmitt@facstaff.wisc.edu

Schnable, Patrick; Dept of Agronomy; G405 Agronomy Hall; Iowa State Univ; Ames IA 50011; 515-294-0975; 515-292-2299 (fax); Schnable@iastate.edu Schneeberger, Richard G.; CERES, INC; 3007 Malibu Canyon Road; Malibu CA 90265; 310-317-8924; 310-317-8998 (fax); rschnee@ceres-inc.com

Schneerman, Martha C.; University of Illinois; Department of Crop Sciences; 389 ERML, MC 051; 1201 W. Gregory Dr.; Urbana IL 61801; 217-244-6146; schneerm@uiuc.edu

Schnicker, Bruce: Cornnuts; 1000 S. Edgewood Ave.; P.O. Box 830; Urbana OH 43078; 513-652-1321; 513-653-3675 (fax)

Scholl, Randy; Arabidopsis Biol Resource Center; Ohio State; 1735 Neil Ave.; Columbus OH 43210; 614-292-0603; 614-292-0603 (fax); scholl.1@osu.edu

Schramke, Mary; Bio-Rad Laboratories, Life Sciences Group; 2000 Alfred Nobel Drive; Hercules CA 94547; 510-741-6717; 510-741-1051 (fax)

Schreiber, Daniela; Univ Hamburg; Ohnhorstrasse 18; D-22609 Hamburg; GERMANY; dschreiber@botanik.uni-hamburg.de

Schroeck, Geoff; Univ Wisconsin-Madison; 1575 Linden Dr; Madison WI 53706

Schroeder, Steve; Univ Missouri; 209 Curtis Hall; Columbia MO 65211; 573-882-8214; 573-884-7850 (fax); schroedersg@missouri.edu

Schulman, Alan H.; Univ Helsinki; Institute of Biotechnology; P.O. Box 56, Viikinkaari 9; 00014 Helsinki; FINLAND; 358-0-708-59366; 358-0-708-59422 (fax)

Schultes, Neil: Dept Biochem & Genetics; Conn Agric Exper Sta; 123 Huntington St; New Haven CT 06511; 203-789-6912; 203-789-7232 (fax) Schultz, Jennifer; Univ Illinois; 311 ERML; 1201 W Gregory; Urbana IL 60181; 217-333-1967; 217-333-4777 (fax)

Schultz, Linda; Curtis Hall; Univ Missouri; Columbia MO 65211; schultzl@missouri.edu

Schultz, Pam; Univ Minnesota; 220 Biological Sci; 1445 Gortner Ave; St. Paul MN 55110; 612-625-5241; 612-625-1738 (fax); schul073@gold.tc.umn.edu

Schwartz, Drew; Biology Dept; Indiana University; Bloomington IN 47405; 812-855-6060; 812-855-6705 (fax); Schwartz@bio.indiana.edu

Scott, Cheryl; Univ Minnesota; 220 Biol Sci; 1445 Gortner Ave; St. Paul MN 55108; 612-625-5241; 612-625-1738 (fax); scot0136@tc.umn.edu Scott, Lu Ann; Dept Biol Sci; University of Idaho; Moscow ID 83844-3051; Iscott@uidaho.edu

Scott, Paul; 1407 Agronomy; USDA-ARS; Iowa State University; Ames IA 50011; 515-294-7825; 515-294-9359 (fax); pscott@iastate.edu

Seay, Nick, Quarles & Brady; PO Box 2113; 1 S Pinckney St; Madison WI 53701; 608-283-2484; 608-251-9166 (fax); njs@quarles.com

Segal, Gregorio; Waksman Institute; State Univ of NJ; 190 Frelinguysen Rd; Piscataway NJ 08854-8020; 732-445-3801; 732-445-5735 (fax); segal@waksman.rutgers.edu

Selinger, David; Pioneer Hi Bred International; 7250 NW 62nd Ave.; P.O. Box 552; Johnston IA 50131; 515-254-2646); 515-334-4778 (fax); David.Selinger@Pioneer.com

Selzer, Gerald; Research Resources; National Science Foundation Room 615; 4201 Wilson Blvd.; Arlington VA 22230; (703)306-1469; gselzer@nsf.gov Senior, Lynn; Syngenta; 3054 Cornwallis Rd; Research Triangle Park NC 27709; 919-597-3041; 919-541-8585 (fax); lynn.senior@syngenta.com

Seo, Beom-Seok; 2154 Molec Biol Bldg; Iowa State Univ; Dept Biochem, Biophys & Mol Biol; Ames IA 50011; 515-294-8202; 515-294-0453 (fax)

Setter, Tim L.; Department of Soil Crop and Atm. Sci.; 519 Bradfield Hall; Cornell University; Ithaca NY 14853; 607-255-1701; 607-255-2644 (fax); tls1@Cornell.edu

Settles, Mark; University of Florida; Horticultural Sciences Department; 1301 Fifield Hall; PO Box 110690; Gainesville FL 32611; 352-392-7571; 352-392-5653 (fax); amsettles@mail.ifas.ufl.edu

Sevilla P., Ricardo; Programa de Maiz; Univ Nacional Agraria; Aptdo 456, La Molina; Lima; PERU; 51-14 495647; 51-14 495670 (fax) Shadley, Jeff and Gwen Krill-; 7018 Chestnut St.; Milwaukee WI 53213-2742

Shamina, Zlata: Academy of Sciences; K. A. Timiryazev Inst. Plant Phys.; Botanicheskaya 35; 127276 Moscow; RUSSIA

Shands, Henry L.; USDA-ARS; 1111 S. Mason Street; Fort Collins CO 80521-4500; 970-495-3200; 970-221-1427 (fax); hshands@ars.usda.gov Shang, Jin; Lynx Therapeutics; 25861 Industrial Blvd; Hayward CA 64545; 510-670-9436; 510-670-9302 (fax); jshang@lynxgen.com

Shao, Qi-Quan; Academia Sinica; Genetics Institute 917 Bldg.; Datun Road, Andingmen Wai; Beijing 100101; CHINA

Sharopova, Natalya; 220 Biological Science; Univ of Minnesota; St Paul MN 55108; 612-624-9230/1771; sharo002@tc.umn.edu

Sharp, Peter; Plant Breeding Institute; University of Sydney; Cobbitty Road; Cobbitty NSW 2570; AUSTRALIA; 61-46-512-600; 61-46-512-578 (fax); pbic00@angis.su.oz.au

Sharp, RE; 1-87 Agriculture; University of Missouri; Dept of Agronomy; Columbia MO 65211; 573-882-1841; sharpr@missouri.edu

Shaver, Donald L; Western Corn Genetics Co.; 20250 Palou Dr.; Salinas CA 93908; 831-455-1492; 831-455-0467 (fax)

Shaw, Janine; Univ of Florida; P.O. Box 110690; Gainesville FL 32611; 352-392-1928 x314; 352-392-6479 (fax); jshaw@gnv.ifas.ufl.edu

Shcherbak, Victor; Krasnodar Res Inst Agric; c/o Zeneca Moscow; Bolshoi Strochenovski Pereulok; Moscow 113054; RUSSIA; 7-503-2306111; 7-503 - 2306119 (fax)

Sheen, Jen; Dept. of Molecular Biology; Wellman 11, MGH; Boston MA 02114; 617-726-5916; 617-726-6893 (fax); sheen@frodo.mgh.harvard.edu

Shen, Binzhang; Waksman Institute; Rutgers Univ; 190 Frelinghuysen Rd; Piscataway NJ 08854; 732-445-2307; 732-445-5735 (fax); bzshen@eden.rutgers.edu; bzshen@waksman.rutgers.edu

Shen, Daleng; Fudan University; Inst. of Genetics; Shanghai 200433; CHINA

Shen, Jennie; P.O. Box 80402, E402/4255; DuPont Co.; Wilmington DE 19880-0402; (302)695-1246; (302)695-4296 (fax); jennie.b.shen@usa.dupont.com Shen, Yu-Wei; Zhejiang Agricultural University; Institute of Nuclear-Agric. Science; Hangzhou; Zhejiang 310029; CHINA

Shen, Zong-Tan; Zhejiang Agricultural University; Dept. of Agronomy; Hangzhou; Zejiang 310029; CHINA

Sheridan, William; Biology Department; Univ of North Dakota; PO Box 9019 Univ Station; Grand Forks ND 58202-9109; 701-777-4479 or -4705; 701-777-2623 (fax); bill sheridan@und.nodak.edu

Shi, Liang; Novartis Agric Discovery Inst; 3115 Merryfield Row, Ste 100; San Diego CA 92121; 858-812-1025; 858-812-1097 (fax); liang.shi@nadii.novartis.com

Shiga, Toshio; Sakata Seed Corp; Plant Bio Center, SAKATA SEED Corp; 358 Uchikoshi Sodegaura; Chiba 299-02; JAPAN; 438-75-2369

Shigemori, I; Chusin Agr. Exp. Stn.; Sooga Shiojiri; Nagano 399-64; JAPAN; shige@chushin-exp.pref.nagano.jp

Shiobara, Fumio; One Bungtown Rd; PO Box 100; Cold Spring Harbor Lab; Cold Spring Harbor NY 11724; 516-367-8827; 516-367-8369 (fax)

Short, Kent E.; Carnia Seed (Pty) Ltd.; P.O. Box 7424; Petit 1512; SOUTH AFRICA; (011)965-1905; (011)965-1906 (fax)

Shotwell, Mark A; Dept of Biology; 123 Vincent Science Hall; Slippery Rock Univ; Slippery Rock PA 16057-1326; 724-738-2476; 724-738-4782 (fax); mark.shotwell@sru.edu

Shu, Guoping; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave; Johnston IA 50131-1004; 515-253-5733; shugg@phibred.com

Shunk, Rene; National Corn Growers Assoc.; 1000 Executive Parkway, #105; St. Louis MO 63141-6397; 314-275-9915x106; 314-275-7061 (fax); shunk@ncga.com

Sickau, Diane; B426 Agronomy Hall; Iowa State University; Ames IA 50011; dmsickau@iastate.edu

Siddiqui, Khushnood A.; Int Assoc for Promotion of New; Genetical Approaches to Crop Imp; 387 Talpur Colony; Tandojam Sind; PAKISTAN; 92 2233-5759; 92 2233-5728 (fax)

Sidorenko, Lyudmila; 303 Forbes Hall; Department of Plant Sciences; University of Arizona; Tucson AZ 85721; 520-621-8964; lyudmila@ag.arizona.edu

Silverthorne, Jane; Plant Genome Research Program; Room 615; National Science Foundation; 4201 Wilson Boulevard; Arlington VA 22230; 703-292-8470; 703-292-9062 (fax); jsilvert@nsf.gov

Simcox, Kevin; Pioneer Hi-Bred Intl Inc.; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131-1004; 515-270-4178; 515-270-3444 (fax); Kevin.Simcox@pioneer.com

Simmons, Kay; USDA/ARS, Nat Program Staff (Grain Crops); Room 4-2230; George Washington Carver Bldg; 5601 Sunnyside Ave; Beltsville MD 20705-5139; 301-504-5560 (phone); 301-504-6191 (fax); kws@ars.usda.gov

Sims, Lynne E.; Trait & Technology Development; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave/P.O. Box 1004; Johnston IA 50131-1732; 515-270-3652; 515-270-3367 (fax); SIMSL@PHIBRED.com

Singletary, George; Pioneer Hi-Bred Internatl; 7300 NW 62nd Avenue; PO Box 1004; Johnston IA 50131-1004; 515-270-5994; 515-254-2619 (fax); singletarygw@phibred.com

Sinha, Neelima; Section of Plant Biology; Division of Biological Sciences; University of California; Davis CA 95616; 530-754-8441; 530-752-5410 (fax); NRSINHA@UCDAVIS.EDU

Sinibaldi, Ralph; 1780 Acacio Ct.; Fremont CA 94536; 510-794-6410

Sisco, Paul; The American Chestnut Foundation; 85 Stoney Hill Court; Asheville NC 28804; (828) 771-2092; paul@acf.org

Skendzic, Elizabeth; Uinv Wisconsin, Parkside; Biol Sci; 900 Wood Rd, PO Box 2000; Kenosha WI 53141-2000; 414-595-2459; 414-595-2056 (fax); skendzic@uwp.edu

Skibbe, David; Iowa State Univ; B420 Agronomy; Ames IA 50010; 515-294-1659; 515-294-2299 (fax); skibbe@iastate.edu

Sleper, David A.; Agronomy Dept; 210 Waters Hall; University of Missouri; Columbia MO 65211; 573-882-7320; 573-882-1467 (fax); sleperd@missouri.edu

Slotkin, Richard Keith; Univ California; Plant Microbial Biol; 111 Koshland Hall MC-310; Berkeley CA 94720; 510-642-8058; 510-642-4995 (fax); slotkin@UClink.berkeley.edu

Smith, Alan; Univ Wisconsin; 1575 Linden Dr; Madison WI 53706; 608-262-6521; 608-262-5217 (fax); alansmith@students.wisc.edu

Smith, Alan G.; Dept Horticultural Science; 356 Alderman Hall, Univ. of MN; 1970 Folwell Av.; St Paul MN 55108; 612-624-9290; alan@molbio.cbs.umn.edu Smith, Angela; Lehman College, CUNY; Biological Sci; Bronx NY 10468

Smith, Howie; Pioneer Hi-Bred International; 7300 NW 62nd Ave.; P.O. Box 1004; Johnston IA 50131-1004; 515-270-3539; 515-270-4312 (fax); SMITHO@Phibred.com

Smith, James D.; PO Box 2132; Department Soil & Crop Sci; Texas A & M University; College Station TX 77843; 979-845-8276

Smith, Jaya; 209 Johnson Hall; PO Box 646420; Washington State Univ; Pullman WA 99164-6420; 509-335-7570; 509-335-8674 (fax); jdsmith@mail.wsu.edu

Smith, Laurie G.; Biology Dept 0116; U. C. San Diego; 9500 Gilman Drive; La Jolla CA 92093-0116; 858-822-2531/2558; 858-534-7108 (fax); Ismith@biomail.ucsd.edu

Smith, Margaret E.; Cornell Univ; 252 Emerson Hall; Dept of Plant Breeding; Ithaca NY 14853; 607-255-1654; 607-255-6683 (fax); mes25@cornell.edu Smith, Stan; HCR 67; PO Box 20; Soutland MO 65567; 573-765-5149

Smith, Steve; Pioneer Hi-Bred Internati; P.O. Box 1004; Johnston IA 50131-9410; 515-270-3353; 515-270-4312 (fax); SMITHS@PHIBRED.COM

Snape, John W.; JI Centre; Norwich Research Park; Colney Lane; Norwich NR4 7UH; UNITED KINGDOM; 44-1603-450000; 44-1603-4502241 (fax);

john.snape@bbsrc.ac.uk Sobral, Bruno; Bioinformatics Institute; Virginia Tech; Fralin Biotechnology Center; West Campus Drive; Blacksburg VA 24061-0106; 540-231-9808; 540-

231-9882 (fax); sobral@vt.edu

Soderlund, Carol; E420 EDWARDS HALL; Clemson University; Clemson SC 29634; 864-656-4529; 864-656-4293 (fax); cari@cs.clemson.edu

Sokolov, Victor A.; Institute of Cytology and Genetics; Russian Academy of Sciences; Lavrentjev str., 10; Novosibirsk 630090; RUSSIA; 383-2-33-34-71; 383-2-33-12-78 (fax); sokolov@ghost.bionet.nsc.ru

Somers, David A.; Dept Agron & Plant Genet; University of Minnesota; 1991 Upper Buford Cir.; St. Paul MN 55108; 612-625-5769; 612-625-1268 (fax); somers@biosci.cbs.umn.edu

Somerville, Chris; Plant Biology Dept; Carnegie Institution; 290 Panama St; Stanford CA 94305; 650-325-1521x203; 650-325-6857 (fax); crs@andrew.stanford.edu

Song, Rentao; Rutgers, The State Univ; Waksman Institute; 190 Frelinghuysen Rd; Piscataway NJ 08854-8020; 732-445-3801; 732-445-5735 (fax); song@mbcl.rutgers.edu

Song, Xiangfu; China National Rice Research Institute; 171 Tiyuchang Road; Hangzhou 310006; CHINA

Song, Yunchun; Life Science College; Wuhan University; Wuhan 430072 P.R.O.; CHINA; (027)7822712-4505; 7813833 (fax)

Sowinski, Steve; 1 Innovation Way; Delaware Technology Park Suite #200; Newark DE 19711; (302)631-2661; Stephen.G.Sowinski@usa.dupont.com

Spangler, Russ; Harvard Univ Herbaria; 22 Divinity Ave; Cambridge MA 02138; 617-496-1566; 617-495-9484 (fax); spangler@oeb.harvard.edu

Springer, Nathan; Univ Wisconsin; Moore Hall; 1575 Linden Dr, Rm 373; Madison WI 53706; 608-262-6621; spri0049@tc.umn.edu

Springer, Patricia; Univ of California; Dept Bot and Plant Sci; Riverside CA 92521; 909-787-5785/4549; 909-787-4437 (fax); patricia.springer@ucr.edu

Srinivasan, Ganesan; CIMMYT Maize Program; Lisboa 27, Aptdo Postal 6-641; 06600 Mexico, D. F.; MEXICO; 52-5-726-9091 Ext. 1116; 52-5-726-7558/59 (fax); GSRINIVASAN@CIMMYT.MX

St. Clair, Grace; Pioneer Hi-Bred Internat Inc; Trait & Technology Dept; 7300 NW 62nd Ave, PO Box 1004; Johnston IA 50131-1004

Stack, Stephen; Department of Biology; Colorado State University; Fort Collins CO 80523-1878; 970-491-6802; 970-491-0649 (fax); sstack@lamar.colostate.edu

Staebell, Mark S: Pioneer Hi-Bred Internat Inc; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131-1004; 515-253-2148; 515-254-2619 (fax)

Stahl, Karolin; Lehrstuhl fur Genetik; Technische Univ Munchen; Lichtenbergstrasse 4; Garching 95747; GERMANY; 28912930; 28912932 (fax); karolin.stahl@bio.tum.de

Staiger, Chris; Dept. of Biological Sciences; Purdue University; 321A Hansen Bldg.; West Lafayette IN 47907; 765-496-1769; 765-496-1496 (fax); CSTAIGER@BILBO.BIO.PURDUE.EDU

Stam, Maike; Dept Plant Sciences; Univ of Arizona; 303 Forbes Bldg; Tucson AZ 85721; 520-621-8964; 520-621-7186 (fax); mstam@ag.arizona.edu

Stapleton, Ann E.; Dept Biological Sciences; Univ North Carolina Wilmington; 601 South College Road; Wilmington NC 28403; (910) 962-7267; (910) 962-4066 (fax); stapletona@uncwil.edu

Start, Mary Ann; Syngenta; 317 330th St; Stanton MN 55018; 507-663-7656; 507-645-7519 (fax); maryann.start@syngenta.com

Start, William; DeKalb Genetics; 62 Maritime Drive; Mystic CT 06355; 860-572-5223; 860-572-5240 (fax)

Steffensen, D. M.; 506 Morrill Hall, Cell Biol; 505 S. Goodwin Ave; University of Illinois; Urbana IL 61801; 217-333-3087; 217-244-1648 (fax)

Stenehjem, Shannon; Pioneer Hi-Bred Internatl; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131

Stern, David B.; Boyce Thompson Inst. Plant Res. Inc.; Tower Road; Ithaca NY 14853-1801; (607)254-1306; (607)254-1242 (fax); ds28@cornell.edu

Stinard, Philip; USDA/ARS; S123 Turner Hall; 1102 S. Goodwin Ave.; Urbana IL 61801-4798; (217)333-6631; (217)333-6064 (fax); pstinard@uiuc.edu

Stone, Bethany; Univ Missouri; Agronomy; 1-87 Agriculture; Columbia MO 65203; 573-882-6320; 573-882-1469 (fax); budell@mail.orion.org

Stuber, Charles W.; Dept of Genetics; North Carolina State Univ Box 7614; 3513 Gardner Hall; Raleigh NC 27695-7614; 919-515-5834; 919-515-3355 (fax); cstuber@ncsu.edu

Styles, E. D.; Biology; Univ of Victoria, PO Box 3020; Victoria BC V8W 3N5; CANADA; 250-477-4337; styles@uvic.ca

Subbaiah, Chalivendra; Monsanto Chesterfield,; Mail Zone AA3I,; 700 Chesterfield Village Parkway; Chesterfield MO 63198; 636-737-6390; 636-737-6759 (fax); schalivendra@hotmail.com

Sullivan, Hillary; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave, Box 1004; Johnston IA 50131-1004; 512-270-4369; 515-253-3367 (fax); sullivanhr@phibred.com

Sullivan, Sue; Garst Seed Co.; PO Box 8; Kunia HI 96759; 808-688-1477; 808-688-1479 (fax)

Sullivan, Tom; Laboratory of Genetics; 445 Henry Mall; University of Wisconsin; Madison WI 53706; 608-262-4934; 608-262-2976 (fax); tdsulliv@facstaff.wisc.edu

Sun, Chongrong; Fudan University; Dept. of Biochem.; Handan Road 220; Shanghai 200433; CHINA

Sun, Qing; Kansas State Univ; Dept Plant Pathol; Throckmorton Hall; Manhattan KS 66506-5502; 913-532-2328; 913-532-5692 (fax); sun@plantpath.ksu.edu

Sundaresan, V.; Institute of Molecular Agrobiology; 1 Research Link; The National Univ of Singapore; Singapore 117604; SINGAPORE; 8727000; 8727007 (fax); director@ima.org.sg

Sundberg, Marshall D.; Div Biol Sciences; Emporia State Univ; 1200 Commercial St; Emporia KS 66801; 316-341-5605; 316-341-6055 (fax); sundberm@esumail.emporia.edu

Sung, Tong Ming; Dept of Agronomy; Beijing Agric Univ; 912 Research Building; Beijing 100094; CHINA; 86-010-62891851; 010-62891055 (fax); gyymz@public.cau.edu.cn

Suprasanna, P.; Plant Biotechnology Division; Bhabha Atomic Research Centre; Trombay, Bombay 400 085; INDIA; 91-22-556-3060x2571/3276; 91-22-556-0750 (fax)

Suresh, Jayanti; Dept. of Agronomy; 513 Borlaug Hall; 1991 Buford Cr.; St. Paul MN 55108; (612)625-1208

Surridge, Christopher; MacMillan Publishers; Porters South; 4-6 Crinan St; N19XW London; UNITED KINGDOM; 44-020-7843-4566; 44-020-7843-4596 (fax); c.surridge@nature.com

Suttie, Janet; CIBA; PO Box 12257; 3054 Cornwallis Rd; Research Triangle Park NC 27709-2257

Suzuki, Masaharu; 2234 Fifield Hall; Hort Sci Dept; Univ Florida; Gainesville FL 32611; 352-392-1928; 352-392-6479 (fax); masaharu@gnv.ifas.ufl.edu

Swiecicki, W.K.; Polish Academy of Sciences; Institute of Plant Genetics; ul. Strzeszynska 34; 60-479 Poznan; POLAND; 48-61-8233-511; 48-61-8233-671 (fax); wswi@igr.poznan.pl

Sylvester, Anne W.; Botany Dept; PO Box 3165; Univ of Wyoming; Laramie WY 82071-3165; 307-766-6378; 307-766-2851 (fax); annesyl@uwyo.edu

Szalma, Stephen; 302 Curtis Hall: Univ Missouri; Columbia MO 65211; 573-882-2033; sjs220@mizzou.edu

Szick, Kathy; Bot Plant Sci; UC Riverside; Riverside CA 92521

Tadmor, Yaakov; Agricultural Research Organization,; Volcani Center,; P.O.B. 6; Bet-Dagan 50250 Israel; +972-4-9539548; +972-4-9836936 (fax); tadmor_k@netvision.net.il

Tagliani, Laura; Pioneer Hi-Bred Internat Inc; PO Box 1004; Johnston IA 50131-1004; 515-270-4188; 515-270-3367 (fax)

Taguchi-Shiobara, Fumio; Dept of Biochemistry; National Inst Agrobiol Sci; Tsukuba, Ibaraki 305-8602; JAPAN; 81-298-38-8388; 81-298-38-8397 (fax); fstagu@affrc.go.jp

Taillardat, Alain; SES Seeds, Mulsans, 41500; Loire-et-cher 41; FRANCE

Tan, C. C. (Jia Zheng); Fudan University; Inst. of Genet.; Shanghai 20043; CHINA

Tan, Yifang; Botany Dept; The University of HongKong; Pokfulam Road; HongKong; CHINA

Tanurdzic, Milos; Purdue Univ; HANS311; West Lafayette IN 47907; 765-496-1496; 765-496-1496 (fax); milos@purdue.edu

Tao, Quanzhou; 320 Yue-Yang Road; Shanghai 200031; CHINA; 86-21-4374430; 86-21-4378357 (fax)

Taramino, Graziana; Depart Genet Biol Microrg; Univ of Milan; Via Celoria 26; I-20133 Milano; ITALY

Tatout, Christopher; Biogemma; 24 Avenue des Landais; Aubiere 63170; FRANCE; 33-4-73-42-79-73; 33-4-73-42-79-81 (fax); christophe.tatout@biogemma.com

Tausta, Susan; Dept of MB&B; 205 Hall-Atwater Labs/Lawn Ave; Wesleyan Univ; Middletown CT 06459; 860-685-3373

Taylor, Brian H.; Dept of Biology; Texas A&M Univ; College Station TX 77843-3258; 979-845-7754; 979-845-2891 (fax)

Taylor, Loverine P.; Genetics & Cell Biology; 301 Science Hall; Washington State University; Pullman WA 99164-4234; 509-335-3612; 509-335-8690 (fax); Itaylor@wsu.edu

Taylor, W. C.; CSIRO; Division of Plant Industry; G.P.O. Box 1600; Canberra ACT 2601; AUSTRALIA; (61-6)246-5223; (61-6)246-5000 (fax); bt@pican.pi.csiro.au

Techen, Natascha; Univ Hamburg; Inst Allgemeine Botanik; Ohnhorststrasse 18; D-22609 Hamburg; GERMANY; 49 40 822 82382; 49 40 822 82503 (fax) Tenbarge, FL; Cerestar USA; 1100 Indianapolis Blvd; Hammond IN 46320; 219-473-2267; 219-473-6607 (fax)

Tenborg, Robin; Pioneer Hi-Bred Intl, Inc; 733 NW 62nd Ave; Johnston IA 50131-1004; 515-270-5951; 515-253-2149 (fax)

Theodoris, George; Plant Biol Dept; 111 Koshland Hall; Univ California; Berkeley CA 94720-3102; 510-642-7085; 510-642-4995 (fax); gtheo@nature.berkeley.edu

Thomas, Bruce; MCB 1 Shields Ave; Univ California; Davis CA 95616; 530-752-0269; 530-752-1185 (fax); brthomas@ucdavis.edu

Thomas, Howard; IGER Cell Biology Dept; Plas Gogerddan; Aberystwyth; Dyfed SY23 3EB; WALES; sid.thomas@bbsrc.ac.uk

Thomas, Steve; Natl Renewable Energy Lab; 1617 Cole Blvd; Golden CO 80401; 303-384-7775; 303-384-7752 (fax); steven_thomas@nrel.gov

Thompson, Richard; INRA-URGAP Legume Unit; BP 86510; 21065 DIJON; FRANCE; 33-380-693-141; 33-380-693-263 (fax); thompson@epoisses.inra.fr Thompson, Teresa; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave; Dock B Building 33; Johnston IA 50131-1004; 515-270-4305; 515-270-3444 (fax); thompsonta@phibred.com

Thompson, William F.; North Carolina State Univ; PO Box 7612; Raleigh NC 27695; 919-515-7164; 919-515-3436 (fax); WFTB@ncsu.edu Thornsberry, Jeffry; Dept Genetics; Rm 2523 Gardner Hall; North Carolina State Univ; Raleigh NC 27695; 919-513-2831; 801-729-2170 (fax); jthornsb@unity.ncsu.edu

Thornton, Kay; Pioneer Hi-Bred Intl; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131; 515-270-5953; 515-270-3367 (fax); thorntkayd@phibred.com Tierney, Mary L.; Marsh Life Sciences Bldg.; University of Vermont; Burlington VT 05405-0086; 802-656-0434; mtierney@moose.uvm.edu

Tiffany, Doug; Corn Research; Pioneer Hi-Bred, Int.; Rt. 8, Box 113A; Mankato MN 56001; (507)625-3252; (507)625-6446 (fax); TIFFANYD@PHIBRED.COM

Tikhonov, Alexander; CuraGen Corporation; 555 Long Wharf Drive, 13th Fl.; New Haven CT 06511; 203-974-6330; 203-401-3351 (fax); atik1@yahoo.com. Till, Bradley; Inst Molec Biol; Univ of Oregon; Eugene OR 97403; 541-346-2546; 541-346-5891 (fax); btill@morel.uoregon.edu

Till, Sarah; Pioneer Hi-Bred Intl; 7300 NW 62nd Ave; PO Box 552; Johnston IA 50131; 515-270-5951; 515-270-3367 (fax); tillsara@phibred.com

Timmermans, Marja; Cold Spring Harbor Lab; 1 Bungtown Rd; Cold Spring Harbor NY 11724; 516-367-8835/6818; 516-367-8369 (fax); timmerma@cshl.org

Ting, Yu-Chen; Biology, Boston College; Chestnut Hill 67; Boston MA 02167; 617-552-2736; 617-552-2011 (fax); tingy@bc.edu Tingey, Scott V.; Du Pont Company; DTP Suite 200, PO Box 6104; 1 Innovation Way; Newark DE 19714-6104; 302-631-2602; Scott.V.Tingey@usa.dupont.com

Tochtrop, Cindy; Magruder Hall; Truman State Univ; Kirksville MO 63501; 660-785-4083; 660-785-4045 (fax)

Tomas, Adriana; Pioneer Hi-Bred International; 7300 NW 62d Ave; PO Box 1004; Johnston IA 50131-1004; 515-253-2116; 515-253-2149 (fax)

Tomes, Dwight T.; Agronomic Traits Gene Expression; Box 552; Johnston IA 50131-0052; 515-270-3746; 515-334-4778 (fax); tomesd@phibred.com

Tomkins, Jeff; Clemson Univ Genom Inst; Room 100 Jordan Hall; Clemson SC 29634-5708; 864-656-6419/6422; 864-656-3443 (fax); jtmkns@clemson.edu Tonelli, Chiara; University of Milan; Dept. of Genetics & Microbiology; Via Celoria 26; Milano 20133; ITALY; 39-02-26605210; 39-02-2664551 (fax); chiara.tonelli@unimi.it

Torrecillas, Marcelo; Dept Prod Animal Fac Cienc Agr; Ruta 4, Km2 (1836); Llavallol; ARGENTINA; 54 11 4282 6263; agrarias@unlz.edu.ar

Tracy, William; Department of Agronomy; 1575 Linden Drive; University of Wisconsin; Madison WI 53706; 608-262-2587; 608-262-5217 (fax); wftracy@facstaff.wisc.edu

Tremaine, Mary; Monsanto/Agracetus; Agracetus Campus; 8520 University Green; Middleton WI 53562; 608-821-3446; 608-836-9710 (fax); mary.t.tremaine@monsanto.com

Trimnell, Mary; 7301 NW 62nd Ave; Pioneer Hi-Bred International; PO Box 85; Johnston IA 50131-0085; 515-270-3297; 515-270-3667 (fax); mary.trimnell@pioneer.com

Troyer, A. Forrest; Corn Breeder; 611 Joanne Ln; DeKalb IL 60115-1862; 815-758-4375; 630-801-2345 (fax); atroyer@uiuc.edu

Tsai, Charles; Dept Bot; Natl Taiwan Univ; Taipei 10764; TAIWAN

Tsiantis, Miltos; Univ Oxford; Dept Plant Sci; South Parks Rd; Oxford OX1 3RB; UNITED KINGDOM; 44-1865-275074 (fax); miltos.tsiantis@plantsciences.ox.ac.uk

Tu, Zeng-Ping; Guangdong Acad. of Agric. Sciences; Rice Research Institute; Wushan, Guangzhou; Guangdong 510640; CHINA

Tuberosa, Roberto; Universita di Bologna; Dipartimento di Agronomia; Via Filippo Re, 6-8; Bologna I-40126; ITALY

Tuerck, Jutta; Advanced Technol (cambridge) Ltd; 210 Science Park; Cambridge CB4 0WA; UNITED KINGDOM; 44-1223-420 284; 44-1223-423 448 (fax); atc.biotech@dial.pipex.com

Tuttle, Ann Marie; CIBA-Geigy Corp; PO Box 12257; Research Triangle Park NC 27709-2257

Tyers, Randall; Plant Biol Dept; 111 Koshland Hall; UC Berkeley; Berkeley CA 94720-3102; 510-642-7948; 510-642-4995 (fax); tyersome@nature.berkeley.edu

Tyrnov, Valery; Genetics Dept; 83 Astrakhanskaya Str; Saratov State University; Saratov 410026; RUSSIA; (845-2)240446 (fax)

Uhr, David V.; Northrup King Co.; 340 Southside Drive; Henderson KY 42420; (502)827-5787; (502)827-5703 (fax)

Ujile, Katsuhiro; HOKUREN Naganuma Res. Stn.; Minami-2, Higashi-9; Naganuma-Cho, Yuubari-Gun; Hokkaido 069-1316; JAPAN; 01238-8-3330; 01238-8-3200 (fax)

Ulrich, James; Cargill; 2600 W. Galena Blvd; Aurora IL 60506; 630-801-2324; 630-801-2345 (fax)

Ulrich, Valentin; P.O. Box 451; Morgantown WV 26506; 304-292-5262

Unger-Wallace, Erica; Pioneer Hi-Bred Internatl; 7300 NW 62nd Ave, Box 1004; Johnston IA 50131-1004; 515-270-3437; 515-270-3367 (fax); ungerer@phibred.com

Valdez, Gregorio; Lehman College CUNY; Biology Dept c/o Elli Wurtzel; 250 Bedford Park Blvd West; Bronx NY 10468

Vales, M. Isabel; 107 Crop Sci Bldg; Univ Oregon; Corvallis OR 97331; 541-737-3539; 541-737-1589 (fax); isabel.vales@orst.edu

Vallejos, Eduardo; Univ Florida; 1143 Fifield Hall; Gainesville FL 32611; 352-392-1928; 352-392-6479 (fax)

Vallejos, Ruben H.; CEFOBI; Univ Nac de Rosario; Suipacha 531; 2000 Rosario; ARGENTINA; 54-41-371955; 54-41-370044 (fax)

van Eldik, Gerben; Technology Discovery; Aventis CropScience N.V.; J. Plateaustraat 22; 9000 Gent; BELGIUM; 32 (9) 2358416; 32 (9) 2240694 (fax); gerben.vaneldik@aventis.com

van Haaren, Mark; Keygene NV; Argo Business Park; Wageningen 6700 AE; NETHERLANDS; 31.317.424121; 31.317.424939 (fax); Mark.Van -Haaren@KEYGENE.com

Van Montagu, M.; Lab Genetics; K L Ledeganckstr 35; B-9000 Gent; BELGIUM; 32-9-264.51.70; 32-9-264.53.49 (fax); mamon@gengenp.rug.ac.be

van Nocker, Steve; Dept Horticulture; 390 Plant Soil Sci Bldg; Michigan State Univ; E Lansing MI 48824; 517-432-7133/7134; 517-432-3490 (fax); vannocke@pilot.msu.edu

Van Schaik, N.; Dept Genetics/U Witwatersrand; PO Wits 2050; SOUTH AFRICA; (011) 716-2125; 27-11-403-1733 (fax)

Van Staden, Derick: PANNAR; PO Box 3250; Greytown; 3250 Natal; SOUTH AfRICA; 27 0 33 4131131; 27 0 33 4171208 (fax); research@pannar.co.za

van Wijk, Rik; KEYGENE N.V; P.O. Box 216; 6700 AE Wageningen; NETHERLANDS; Tel. (+31) 317 46 68 66; Fax. (+31) 317 42 49 39; rik.vanwijk@keygene.com

Vanderslice, Olin L.; Vanderslice Enterprises; Lake Viking, 106 Mooney Drive; Gallatin MO 64640-6340; 660-663-2946

Vantoai, Tara T.; USDA-ARS-MWA; 590 Woody Hayes Dr; Columbus OH 43210; 614-292-9806; 614-292-9448 (fax); vantoai.1@osu.edu

Varagona, Rita; Monsanto Co.; O2B; 800 N. Lindbergh Blvd.; St. Louis MO 63167; 314-694-2007; 314-694-7729 (fax); RITA.J.VARAGONA@Monsanto.com

Vasal, SK; CIMMYT; PO Box 9-188; Bangkok 10900; THAILAND; 5794858,5790577,9405789; 662-5614057 (fax); BANGKOK@CIMMYT.MX

- Vasil, Indra K.; Laboratory of Plant Cell & Molecular Biol; 1143 Fifield Hall; University of Florida; Gainesville FL 32611; 352-392-1193; 352-392-9366 (fax); ikv@gnv.ifas.ufl.edu
- Vaske, David; Pioneer Hi-Bred Intl; 7300 NW 62nd Ave; Johnston IA 50131; 515-334-4640; 515-270-3367 (fax)

Vazquez-Ramos, JM; UNAM; Facultad de Quimica Edificio B; Ciudad Universitaria; Mexico City 04510, DF; MEXICO; jorman@servidor.dgsca.unam.mx

Vega, Claudia; ITUZAINGO 5497 DPTO 4; MAR DEL PLATA 7600; ARGENTINA; 0223-4736146; clavega@mdp.edu.ar

Veillet, Stanislas; Cargill, Lab Biotech Veg; PO Box 17; Centre de Boissay; Etavipes; FRANCE; 332-3790 4126

Veit, Bruce; Dept Biol and Biotech; Massey Univ; Private Bag 11222; Palmerston North; NEW ZEALAND; B.Veit@massey.ac.nz

Veldboom, Lance; PO Box 839; Holden's Foundation Seeds, L.L.C.; Williamsburg IA 52361; 319-668-1100; 319-668-2453 (fax)

Verde, Luis Abel; Iowa State Univ; 1010 Agronomy Hall; Ames IA 50011; 515-294-5755; 515-294-3163 (fax); ryaverde@iastate.edu

Vergne, Phillippe; RCAP; ENS-Lyon; 46 Allee d'Italie; 69364 Lyon cedex 07; FRANCE; 33/72-72-86-08; 33/72 72 86 00 (fax); Philippe.Vergne@ens-lyon.fr

Vermerris, Wilfred; Depts Agronomy Agr & Biol Eng; 1150 Lilly Hall; Purdue University; West Lafayette IN 47907-1150; 765-496-2645; 765-496-2926 (fax); vermerris@purdue.edu

Viccini, Lyderson; Dept Biol; Univ Fed Juiz de Fora; Campus Universitario; 36036-330 Juiz de Fora-MG; BRAZIL; 032-231-1998 (fax)

Vidakovic, Mirceta; Maize Research Institute; Slobodana Bajica 1; 11080 Zemun; Belgrade; YUGOSLAVIA; 381-11-617434; 381-11-197890 (fax); dielovac@eunet.yu

Vincent, Leszek; Curtis Hall; University of Missouri; Columbia MO 65211-7020; 573-882-2674; 573-884-7850 (fax); leszek@missouri.edu

Violic, Alejandro D.; Vital Apoquindo 180; Santiago (Las Condes); CHILE; (562)229-0685; (562)735-5892 (fax)

Viorica, Urechean; Agricultural Research Station; cod 1100; Sos. Balcesti, Nr. 14; Simnic - Craiova; ROMANIA; simnic36@hotmail.com

Viotti, Angelo; Ist Biosintesi Vegetali; Via Bassini 15; 20133 Milano; ITALY; 39 2 706.001.70/309.85; 39 2 2362946 (fax)

Vivek, Bindiganavile; CIMMYT; Lisboa 27, Apdo. Postal 6-641; Mexico 06600 D.F.; MEXICO; 52 595 551 58

Vliegenthart, Alblert; Keygene NV; PO Box 216; 6700 AE Wageningen; NETHERLANDS; 31 317 46 6866; 31 317 42 4939 (fax)

Vodkin, Lila Ott; 384 ERML, Dept Crop Sci; Univ Illinois; 1201 W. Gregory; Urbana IL 61801; 217-244-6147; 217-333-9817 (fax); I-vodkin@uiuc.edu Voelker, Rodger; Inst Molec Biol; Univ of Oregon; Eugene OR 97403

Vogel, Julie; Dupont Co.; PO Box 80402; Wilmington DE 19880-0402; 302-695-6947; 302-695-7361 (fax); julie.m.vogel@usa.dupont.com

Vollbrecht, Erik; Cold Spring Harbor Lab; 1 Bungtown Rd; PO Box 100; Cold Spring Harbor NY 11724; 516-367-8836; 516-367-8369 (fax); vollbrec@cshl.org

Von Wettstein, D.; Dept Crop Soil Sci, Genet Cell Biol; Washington State Univ; Pullman WA 99164-6420; 509-335-3635; 509-335-8674 (fax); diter@wsu.edu

Voyles, Dale; DeKalb Genetics; 62 Maritime Dr; Mystic CT 19355; 860-572-5229; 860-572-5240 (fax); dvoyles@dekalb.com

Voytas, D.; Dept. of Botany; Iowa State University; Ames IA 50011; voytas@iastate.edu

Vuylsteke, Marnik; Aventis CropScience N.V.; Breeding & Product Devel Sta; Nazarethsesteenweg 77; B-9800 Astene (Dienze); BELGIUM; 32 (0) 9 381 84 59; 32 (0) 9 380 16 62 (fax)

Waines, J. Giles; Dept of Botany/Plant Sciences; University of California; Riverside CA 92521; 909-787-3706; 909-787-4437 (fax)

Walbot, Virginia; Dept Biol Sci; 385 Serra Mall; Stanford Univ; Stanford CA 94305-5020; 650-723-2227; 650-725-8221 (fax); walbot@stanford.edu

Walden, David; Dept of Plant Sciences; Univ of Western Ontario; London N6A 5B7; CANADA; 519-661-3103; 519-661-3935 (fax); dwalden@julian.uwo.ca Walker, Elsbeth L.: Biology Dept; Morrill Science Center; Univ of Mass, Amherst; Amherst MA 01003; 413-545-0861; 413-545-3243 (fax); ewalker@bio.umass.edu

Walker, John; Biol Sci; 308 Tucker Hall; Univ of Missouri; Columbia MO 65211; 573-882-3583; 573-882-0123 (fax); walkeri@missouri.edu

Walker, Nigel; Plant Biol Dept; 111 Koshland Hall; UC Berkeley; Berkeley CA 94720-3102; 510-642-8058; 510-642-4995 (fax); nigel@nature.berkeley.edu Walsh, Justine; Plant Biology Dept; 111 Koshland Hall; UC Berkeley; Berkeley; CA 94720-3102; 510-642-8058; 510-642-8058; 510-642-4995 (fax); justice@nature.berkeley.edu

Walton, Jonathan; DOE Plant Research Lab; Michigan State University; East Lansing MI 48824; 517-353-4885; 517-353-9168 (fax); walton@msu.edu Walton, Mark; LInkage Genetics; 2411 South 1070 West; Suite B; Salt Lake City UT 84119; 435-975-1188; 435-975-1244 (fax)

- Wan, Yuechun; Monsanto Agricultural Group; 700 N Chesterfield Pkwy GG4H; St. Louis MO 63198; 314-537-6734; yuechun.wan@monsanto.com
- Wang, Andrew S.; Novartis Seeds Inc; 317 330th Street; Stanton MN 55018-4308; 507-663-7658; 507-645-7519 (fax); andy.wang@seeds.novartis.com

Wang, Bin; Academia Sinica; Institute of Genetics; Beijing 100101; CHINA; 8610-64870491; 8610-64873428 (fax); bwang@ss10.igtp.ac.cn Wang, Bing-Bing; Iowa State Univ; 2128 Molec Biol Bldg; Ames IA 50011; 515-294-3136; 515-294-0345 (fax); icewater@iastate.edu

- Wang, Fu-De; Dalian Inst Biotechnology; Liaoning Acad Agricultural Sci; Lingshui Road, Dalian; Liaoning 116023; CHINA
- Wang, Guo-Ying; B420 Agronomy Hall; Iowa State Univ; Ames IA 50011; 515-294-1659
- Wang, Hongyu; Pioneer Hi-Bred Intl; 7300 NW 62nd Ave; Johnston IA 50131
- Wang, Lizhen; Dow AgroSciences; 9330 Zionsville Rd; Indianapolis IN 46268; 317-337-5915; 317-337-5989 (fax); Ilwang@dowagro.com

Wang, Qinnan; National Natural Science Foundation; Dept. of Life Science; Beijing 100083; CHINA

Wang, Ronglin; Syngenta Agric Discovery Inst; 3115 Merryfield Row; San Diego CA 92121; 858-812-1021; 858-812-1097 (fax); ronglin.wang@syngenta.com

Wang, Wen Chang; Novartis; 3054 Cornwallis Rd; Research Triangle Park NC 27709; 919-541-8580; 919-541-8585 (fax); wen.wang@nabri.novartis.com

- Wang, Xuelu; 303 Forbes Hall; Univ Arizona; Tucson AZ 85712; 520-621-9154; 520-621-3692 (fax)
- Wang, Xun; RNA Dynamics; Novartis Agr Discovery Inst; 3115 Merryfield Row, Suite 100; San Diego CA 92121-1125; Phone:; (858) 812-1053; Fax: (858) 812-1097; xun.wang@nadii.novartis.com
- Wang, Ya-hui; Academia Sinica; Inst. of Cell Biol.; 320 Yo-Yang Road; Shanghai 200031; CHINA
- Wang, Yibin; 2288 Molecular Biology Bldg; Iowa State Univ; Ames IA 50011; 515-294-2922; 515-294-0345 (fax); ybwang@iastate.edu
- Wang, Yuwen; Pioneer Hi-Bred Internati; 7300 NW 62nd Ave; Johnston IA 50131; 515-248-9482; 515-270-3367 (fax); Wangyuwe@phibred.com
- Wang, ZeLi; Corn Genetics & Breeding Res Lab; Shandong Agricultural Univ; Taian; Shandong 271018; CHINA; (0538)8242657-8402; (0538)8221652 (fax); zlwilx@public.taptt.sd.cn
- Wanous, Michael; Dept of Biology; Augustana College; 2001 S. Summit Ave; Sioux Falls SD 57197; 605-336-4712; 605-336-4718 (fax); wanous@inst.augie.edu

Wardzala, Ellen; 2801 W Bancroft St; Univ Toledo; Toledo OH 43606; 419-530-1538; 419-530-7737 (fax); wardzala@wcnet.org

Warner, Todd; Novartis Seeds Inc; 317 330th St; Stanton MN 55018-4308

Warren, Jana; Pioneer Hi-Bred Internat Inc; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131-1004; 515-270-4390; 515-270-4312 (fax); warrenjl@phibred.com

Wasserman, Bruce; Food Science Dept; Rutgers Univ; New Brunswick NJ 08903-0231; 908-932-9611 x220 phone; 908-932-6776 (fax)

- Weaver, Sam; Quaker Oats Company; 617 West Main St.; Barrington IL 60010-4113; 847-304-2050; 708-304-2166 (fax); 847-304-2062 (fax); 847-304-2049 (fax)
- Webb, Craig; Dept Plant Pathol; 4024 Throckmorton Plant Sci Ctr; Kansas State Univ; Manhattan KS 66506-5502; 913-532-2328; 913-532-5692 (fax); webbcr@plantpath.pp.ksu.edu
- Weber, David; Illinois State Univ; 4120 Biological Sciences; Normal IL 61790-4120; 309-438-2685; 309-438-3722 (fax); dfweber@ilstu.edu

Weber, Gerd; Institut fur Pflanzenzuchtung; Universitat Hohenheim; Fruwirthshr. 21; D 70599 Stuttgart; GERMANY; 49 (711)459 2341; 49 (711)459 2343 (fax); weberg@uni-hohenheim.de

- Weck, Edward A.; 901 College; Northfield MN 55057; 507-663-1244
- Weil, Cliff; Dept. of Agronomy; 1150 Lilly Hall; Purdue University; West Lafayette IN 47907-1150; 765-496-1917; 765-496-2926 (fax); cweil@purdue.edu Wen, Lan-Ying; Univ Florida; P.O. Box 110690; Gainesville FL 32611; 352-392-1928 ext 318; 352-392-6479 (fax); lanying@grove.ufl.edu

Wen, Tsui-Jung; B422 Agronomy Hall; Iowa State University; Ames IA 50011; 515-294-3541; 515-294-2299 (fax); TJWEN@IASTATE.EDU

Wendel, Jonathan F.; Department of Botany; Bessey Hall; Iowa State University; Ames IA 50011; 515-294-7172; 515-294-1337 (fax); jfw@iastate.edu Wenxiong, Lin; Fujian Agricultural College; Dept. of Agronomy; Jingshan, Fuzhou; Fujian 350002; CHINA

- Werr, Wolfgang; Institut Fur Entwicklungsbiologie; Universitat zu Koln; Gyrhofstr 17; 50931 Koln 41; GERMANY; 49 221 470 2619; 49 221 470 5164 (fax); wwerr@biolan.uni-koeln.de
- Wessler, Sue; University of Georgia; Dept of Genetics; Life Sciences Bldg; Athens GA 30602; 706-542-1870; 706-542-3910 (fax); sue@dogwood.botany.uga.edu

West, Darla; 253 Mellon Hall; Duquesne Univ; Dept Biol Sci; Pittsburgh PA 15282; 412-396-4356; 412-396-5907 (fax)

West, Dennis R.; Dept Plant and Soil Sci; Univ of Tennessee; Knoxville TN 37901-1071; 423-974-8826; 423-974-7997 (fax); DWEST3@UTK.EDU

- Westhoff, Peter; Ins. Ent. Mol. Bio. Pflanzen; Heinrich-Heine-Univ Dusseldorf; D-40225 Dusseldorf; GERMANY; 49-211-81-12338; 49-211-81-14871 (fax); West@Uni-Duesseldorf.de
- Whalen, Richard; Dept of Biology; South Dakota State Univ; Brookings SD 57007; 605-688-4553; 605-688-6677 (fax); Richard_Whalen@sdstate.edu Whitt, Sherry; North Carolina State Univ; 2523 Gardner Hall; Raleigh NC 27695; 919-513-2821; 919-515-3355 (fax); srwhitt@unity.ncsu.edu Whitwood, W.; Seneca hybrids/SVS; 5271 Flat Street; Hall NY 14463; 716-526-5879; 716-526-5350 (fax)
- Wick, Sue; University of Minnesota; Dept. Plant Biology; 220 BioSciences Center; 1445 Gortner Ave.; St Paul MN 5518-1095; 612-625-4718; 612-625-1738 (fax); swick@biosci.cbs.umn
- Widholm, Jack M.; Crop Sciences; Univ of Illinois; ERML, 1201 W. Gregory; Urbana IL 61801; 217-333-9462; 217-333-4777 (fax); Widholm@UIUC.EDU Widstrom, Neil W.; Coastal Plain Exp Sta; PO Box 748; Tifton GA 31793; 912-387-2341; 912-387-2321 (fax); nwidstro@tifton.cpes.peachnet.edu Wiedemeier, Allison; Biol Sci; Tucker Hall; Univ of Missouri; Columbia MO 65211; 573-884-6755; WiedemeierA@missouri.edu
- Wienand, Udo; Inst. Allge. Bot.; Univ Hamburg; Pflanzen, AMP I, Ohnhorststrasse 18; D-22609 Hamburg; GERMANY; (49)40 428 16 501; (49)40 428 16 503 (fax); wienand@botanik.uni-hamburg.de
- Wierzba, Michael; Univ Arizona; 303 Forbes Hall; Tucson AZ 85721; 520-621-9154; wierzba@u.arizona.edu
- Wilkes, H. Garrison; Biology De[t; Univ of Mass/Boston; 100 Morrissey Blvd; Boston MA 02125-3393; 617-287-6600; 617-287-6650 (fax)
- Willcox, Martha; CIMMYT; Apartado Postal 6-641; Mexico, D.F. 06600; MEXICO; 52(5)726-9091 ext.1128; 52(5)726-7559 (fax)
- Williams, Alan; Univ California-Riverside; Botany & Plant Sciences Dept; Riverside CA 92521; 909-787-6376; 909-787-4437 (fax)

Williams, Mark; DuPont de Nemours & Co Agric Biotech; Stine-Haskell Res Cent 210N/253; 1090 Elkton Rd; Newark DE 19714-0030; 302-366-5102; 302-451-4832 (fax); mark.e.williams@usa.dupont.com

Williams, Pascale; Inst Molec Biol; 1370 Franklin Ave; Univ Oregon; Eugene OR 97403; 541-346-2546; 541-346-5891 (fax); pascale@molbio.uoregon.edu Williams, Robert E.; PO Box 294; Pittsfield IL 62363; 217-285-2530

Williams, Rosalind; Plant Biology Dept; 111 Koshland Hall; UC Berkeley; Berkeley CA 94720

Williams, W. Paul; USDA-ARS-CHPRRU; Box 9555; Miss. State MS 39762; 601-325-2735; 601-325-8441 (fax); pwilliams@dorman.msstate.edu

Willman, Mark R.; ConAgra Grocery Products Companies; 463 U.S. Hwy. 30 East; Valparaiso IN 46383; 219-464-9602x233; 219-462-6293 (fax); mwillman@cagpc.com

Willmot, David; USDA-ARS; 301 Curtis Hall; University of Missouri; Columbia MO 65211-7020; 573-884-9165; 573-884-7850 (fax); WillmotD@missouri.edu Wilson, Larissa; Dept Genetics; Rm2523 Gardner Hall; North Carolina State Univ; Raleigh NC 27695; 919-513-2821; 919-515-3355 (fax)

Wilson, William; Pioneer Hi-Bred International; Windfall Research Center; Windfall IN 46076; Phone: 765-945-8217; WILSONWA@phibred.com

Wineland, Robin; Pioneer Hi-Bred Internati; 7300 NW 62nd Ave; Johnston IA 50131; 515-270-5951; 515-253-2149 (fax); winelandra@phibred.com

Wing, Rod; Clemson Univ. Genomics Inst.; 100 Jordan Hall; Clemson University; Clemson SC 29634-5727; 864-656-7288/7650; 864-656-4293 (fax); rwing@clemson.edu

Wingen, Luzie; Max-Planck-Inst Zuechtungsf; Abteilung Molek Pflanzengenetik; AG Theissen, Carl-von-Linne-Weg 10; Koeln D-50829; GERMANY; 49-221-5062-121; wingen@mpiz-koeln.mpg.de

Winter-Vann, Ann Marie; CIBA Ag Biotech; PO Box 12257; Research Triangle Park NC 27709-2257

- Wise, Roger; USDA-ARS, 351 Bessey Hall; Dept. Plant Pathology; Iowa State Univ.; Ames IA 50011-1020; 515-294-9756; 515-294-9420 (fax); rpwise@iastate.edu
- Wittich, Peter; Keygene NV; PO Box 216; 6700 AE Wageningen; NETHERLANDS; 31 317 46 6866; 31 317 42 4939 (fax)
- Wolfe, Kenneth; Dept. of Genetics; University of Dublin; Trinity College; Dublin 2; IRELAND; 353-1-608-1253; 353-1-679-8558 (fax); khwolfe@tcd.ie Wong, Jeffrey; Univ Illinois; 1102 S Goodwin Ave, W-221; Urbana IL 61801; 217-244-3388; 217-333-9817 (fax); jcwong@students.uiuc.edu
- Woo, Claudine; 2667 Parker St; Berkeley CA 94704

Woodman, Wendy; Dept. of Agronomy; Iowa State Univ.; Ames IA 50011; 515-294-3635; 515-294-3163 (fax); wlwoodma@iastate.edu

Woodruff, Dorde; 6366 Cobblerock Lane; Salt Lake City UT 84121-2304; 435-277-5526

Woody, Laura; 271 Quail Run; Roswell GA 30076

- Wrobel, Russell; Dept Veg Crops; University of California-Davis; Davis CA 95616; rlwrobel@ucdavis.edu
- Wu, Fan; Pioneer Hi-Bred Intl; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131; 515-270-4369; 515-270-3367 (fax); wufan@phibred.com

Wu, Minsheng; Rutgers Univ; 190 Frelinghuysen Rd; Piscataway NJ 08854; 732-445-2307; 732-445-5735 (fax); huihua@mbcl.rutgers.edu

- Wu, Yujia: Inst Biol Chem; Washington State Univ: Pullman WA 99164: 509-335-1047; 509-335-7643 (fax): yujia@wsunix.wsu.edu
- Wu, Yunshun; Pioneer Hi-Bred Internati; 7250 NW 62nd Ave; Johnston IA 50131; 515-270-5991; 515-334-4778 (fax)
- Wurtzel, Eleanore; Dept Biol Sci; Davis Hall, Lehman College; City Univ New York; Bronx NY 10468; 718-960-4994, -8643; 718-960-8236 (fax); etwlc@cunyvm.cuny.edu
- Xia, Yiji; B420 Agronomy Hall; Iowa State Univ; Ames IA 50011

- Xia, Zhen-Ao; Academia Sinica; Shanghai Inst. of Plant Physiol.; 300 Fonglin Road; Shanghai 200433; CHINA
- Xiao, Yongli; 2288 Molecular Biology Bldg; Iowa State University; Ames IA 50011; 515-294-3277; 515-294-0345 (fax); yxiao@iastate.edu
- Xie, Chongqing; Pioneer Hi-Bred Intl; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131; 515-270-3618; 515-253-2478 (fax); XieChon@phibred.com
- Xie, You-Ju; College of Biology; China Agricultural University; Beijing 100094; CHINA; 86 (10) 62631895; 0086-1-2582332 (fax); daimin@public3.bta.net.cn
- Xiong, Chenmin; China National Rice Research Institute; Ti Yu Chang Road 171; Hangzhou; Zhejiang 310006; CHINA
- Xu, Wenwei; Texas A&M Univ; Agric Res and Ext Center; Route 3, Box 219; Lubbock TX 79401; 806-746-6101; 806-746-6528 (fax); we-xu@tamu.edu
- Xu, Xiaojie; B420 Agronomy Hall; Iowa State Univ; Ames IA 50011
- Xu, Yue; Univ Massachusetts; Biol Dept; Amherst MA 01003
- Xu, Yun-Bi; Zhejiang Agricultural University; Dept. of Agronomy; Hangzhou; Zhejiang 310029; CHINA
- Xu, Zeng-Fu; Zhongsan Univ.; Biotechnology Res. Center; 135 West Xingang Road, Guangzhou; Guangdong 510275; CHINA Xu, Zhennan; Rutgers Univ; Waksman Inst; 190 Frelinghuysen Rd; Piscataway NJ 08854; 732-445-2307; 732-445-5735 (fax); zhennan@waksman.rutgers.edu
- Xu, Zhi-Hong; Shanghai Inst. of Plant Physiol.; 300 Fenglin road; Shanghai 200032; CHINA Yaklin, Paul; Pioneer Hi-Bred Internat Inc; Trait & Technol Devel; 7300 NW 62nd Ave, PO Box 1004; Johnston IA 50131-1004
- Yamada, Minoru; Mina mi-nakazuma 367-13; Tsukuba, 305-0065; JAPAN; yammy@mail1.accsnet.ne.jp

Yamada, Takafumi; Tokyo Inst Technol; Fac Biosci & Biotechnol; Dept Biol Sci, Midori Ku; Yokohama, Kanagawa 226; JAPAN; tyamada@bio.titech.ac.jp Yamaguchi, Judy: Plant Gene Expression Center: USDA-ARS: 800 Buchanan St; Albany CA 94710

- Yamamoto, Kimiko; Rice Genome Res Program, STAFF Inst; 446-1, Ippaizuka, Kamiyokoba; Ippaizuka, Tsukuba-shi; Ibaraki-ken 305; JAPAN; yamamoto@staff.or.jp
- Yamasaki, Masamori; Plant Breeding Lab; Agriculture Fac, Kyushu Univ; 6-10-1 Hakozaki; Higoshku, Fukuoka; JAPAN; 81-92-642-2822; yamasakm@agr.kyushu-u.ac.jp
- Yan, Xianghe: Waksman Institute: Rutgers Univ: Piscataway NJ 08854; 732-445-2307; 732-445-5735 (fax); yan@aesop.rutgers.edu
- Yandeau, Marna; Iowa State Univ; 2102 Molecular Biol Bldg; Ames IA 50011; 515-294-6797; 515-294-0453 (fax); myandeau@iastate.edu
- Yang, Hong; Chinese Academy of Agric. Sciences; Biotech. Research Centre; Beijing 100081; CHINA
- Yang, Jin Shui; Fudan University; Institute of Genetics; Shanghai 200433; CHINA
- Yang, Louis Xiaokun; Monsanto Seeds; 1203A Airport Road; Ames IA 50010; 515-956-3071; 515-232-0255 (fax); LOUIS.X.YANG@stl.monsanto.com
- Yang, Manli; Univ Toledo; 2801 W Bancroft St; Biol Sci; Toledo OH 43606; 419-530-1538; 419-530-7737 (fax); yangmanli@yahoo.com.cn
- Yang, Ren-Cui; Fujian Agricultural College; Heterosis Utilization Lab.; Chinmen, Fuzhou; Fujian 350002; CHINA
- Yang, Yingzhen; Lehman College, CUNY; Biological Sci; Bronx NY 10468
- Yang, Yuesheng; South China Agricultural University; Experimental Center; Guangzhou; Guangdong 510642; CHINA
- Yano, Masahiro; Rice Genome Research Program; Nat. Inst. Agrobiol. Resources; 2-1-2, Kannondai; Tsukuba, Ibaraki 305; JAPAN; 81-298-38-7441,2199; 81-298-38-7468,2302 (fax); myano@abr.affrc.go.jp Yao, Hong; Iowa State Univ; B420 Agronomy; Ames IA 50011; 515-294-1659; 515-294-2299 (fax); hyao@iastate.edu
- Yasui, Hideshi; Plant Breeding Lab; Agriculture Faculty, Kyushu Univ; Higoshi-ku, Fukuoka; JAPAN; 81-92-642-2821; 81-92-642-2822/2804 (fax); hyasui@agr.kyushu-u.ac.jp
- Yasumura, Yuki; Univ Oxford; Dept Plant Sci; South Parks Rd; 0X1 3RB Oxford; UNITED KINGDOM; 44 1865 275030; yuki.yasumura@queens.ox.ac.uk

Yatou, Osamu; Lab Rice Genet Resources; Dept Rice Research; Hokuriku Agric Exp Stn; 1-2-1 Inada, Joetsu-shi, Niigata-ken 943-01; JAPAN; 81-255-26-3304; 81-255-24-8578 (fax); yatou@inada.affrc.go.jp

- Ye, Ke-Nan; Zhongsan University; Biotechnology Research Centre; Guangzhou 510642; CHINA Ye, Sheng-Yu; Shanghai Inst. of Biochem.; 320 Yue Yang Road; Shanghai 200031; CHINA
- Yim, Young-Sun; Univ Missouri; 1-87 Agric Bldg; Columbia MO 65211; 573-882-9228; 573-882-1469 (fax); yimy@missouri.edu
- Yingling, Richard; DeKalb Genetics; 62 Maritime Dr; Mystic CT 06355; 860-572-5209; 860-572-5240 (fax)
- Yoder, John; Dept of Vegetable Crops; Univ of California, Davis; Davis CA 95616; 916-752-1741; 916-752-9659 (fax); JIYODER@UCDAVIS.EDU
- Yong, Gao; Liaoning Academy of Agric. Sciences; Rice Research Institute; Sujiatun; Shenyang 110101; CHINA
- You, Chong-biao; Chinese Academy of Agric. Sciences; IAAE, Dept. of Biotechnology; P.O. Box 5109; Beijing 100094; CHINA
- Young, Todd; Biochemistry Dept; ÚC Riverside; Riverside CA 92521-0129; 909-787-3580; 909-787-4437 (fax); teyoung@citrus.ucr.edu
- Yu, Di-qiu; Zhongsan(Sun Yat-Sen)University; Biotechnology Research Center; Guangzhou; Guangdong 510275; CHINA Yu, Hongguo; Univ Georgia; Botany Dept; 4610 Miller Plant Sci Bldg; Athens GA 30602-7071; 706-542-1010; 706-542-1805 (fax); hgyu@arches.uga.edu
- Yu, Jia; Dept. Biological Science; Lehman College; 250 Bedford Park Blvd. West; Bronx NY 10468; 212-960-4994; 212-960-8236 (fax)
- Yu, JianHua; Univ Idaho; Dept Biol Sci; Moscow ID 83844-3051; 208-885-2550; 208-85-7905 (fax)
- Yu, Li; China National Rice Research Institute; Library; Tiyuchang Road No. 171, Hangzhou; Zhejiang 310006; CHINA
- Yuan, Yinan; Purdue Univ; Biology Hanson Rm 339; West Lafayette IN 47907; 765-494-0373; 765-496-1496 (fax); yyuan@bilbo.bio.purdue.edu
- Yue, Yong Gang; Eli Lilly & Co.; Bioinformatics, MC625; Lilly Corporate Center; Indianapolis IN 46285-0444; 317-276-5766; ygyue@mail.com
- Zavalishina, Alexandra; Genetics Dept; Saratov State University; 83, Astrakhanskaya St.; 410026, Saratov; RUSSIA; 845-2-240446 (fax); ZavalishinaAN@info.sgu.ru
- Zehr, Brent; Maharashtra Hyb Seeds Co; Rehsam Bhavan, 4th Floor; 78, Veer Nariman Road; Mumbai 400020; INDIA; bzehr@lsrc.mahyco.com
- Zeng, Mengqian; Institute of Genetics; Academia Sinica; 3 Datun Rd.; 100101 Beijing; CHINA; 64857495; 64854896 (fax); zengmengqian@yahoo.com.cn Zhang, Chaoying; Purdue Univ; 335 Hanson; Biology; West Lafayette IN 47907; 765-496-2506; 765-496-1496 (fax); czhang@bilbo.bio.purdue.edu
- Zhang, Deyu; Jiangsu Academy of Agricultural Sci.; Inst. of Genet. and Physiol.; Nanjing 210014; CHINA Zhang, Fan; Monsanto U4C; 800 North Lindbergh; St. Louis MO 63167; 314-694-8415; 314-694-8275 (fax); fan.zhang@monsanto.com
- Zhang, Feng; Iowa State Univ; 2288 Molec Biol Bldg; Ames IA 50011; 515-294-3277; ZhangF@iastate.edu
- Zhang, Gui-Quang; South China Agricultural University; Dept. of Agronomy; Guangzhou 510642; CHINA
- Zhang, Hong; Celera AgGen; 1756 Picasso Ave; Davis CA 95616; 530-297-3061; 530-297-3027 (fax); hong.zhang@davis.celera.com
- Zhang, Jianbo; 2288 Molecular Biology Building; Iowa State University; Ames IA 50011; (515)294-2922; (515)294-0345 (fax); jzhang@iastate.edu Zhang, Qiang; Dekalb Genetics/Monsanto; 62 Maritime Dr; Mystic CT 06255; 860-572-5275; 860-572-5282 (fax); qzhang@dekalb.com
- Zhang, Qifa; Huazhong Agricultural University; Nat Key Lab Crop Genet Imp; Wuhan 430070; CHINA; 86-27-87393392; 86-27-87393392 (fax); qifazh@public.wh.hb.cn
- Zhang, Xiaoyu; Univ Georgia; Dept Botany; Athens GA 30602; 706-542-1857; 706-542-3910 (fax); xiaoyu@dogwood.botany.uga.edu
- Zhang, Yuan; 2182 Molec Biol Bldg; Iowa State Univ; Ames IA 50011; 515-294-0337; yyzhang@iastate.edu
- Zhao, Qiquan; Zhejiang Agricultural University; Dept. of Tea Science; Hangzhou; Zhejiang 32100; CHINA
- Zhao, Suling; Pioneer Hi-Bred Internati; 7300 NW 62nd Ave, Box 1004; Johnston IA 50131-1004; 515-253-2146; 515-254-2608 (fax) Zhao, Zuo-Yu; Trait and Technology Development; Pioneer Hi-Bred Int'l; 7300 NW 62nd Ave.; P.O. Box 1004; Johnston IA 50131-1004; 515-270-3644; 515 -270-3444 (fax); zuo-yu.zhao@pioneer.com

Zhen, Zhu; Academia Sinica; Institute of Genetics; Beijing 100101; CHINA Zheng, Kangle; China National Rice Research Institute; 171 Ti Yu Chang Road; Hangzhou 310006; CHINA

- Zhong, Cathy; Botany Dept; 2502 Miller Plant Sci Bldg; Univ Georgia; Athens GA 30602; 706-542-1010; 706-542-1805 (fax); zhong@dogwood.botany.uga.edu
- Zhong, Zhen-Ping; Fujian Agricultural College; Dept. of Agronomy; Fuzhou; Fujian 350002; CHINA
- Zhou, Hongsheng; Xiang Fan Chia Ta; Agric Devel Co Ltd; No.1, Airport Rd; Zhangwan Town, Xiangyang; Hubei 441104; CHINA; (86)-710-2819000; (86) -710-2819001 (fax); hszhou@yahoo.com
- Zhou, Kaida; Sichuan Agricultural University; Rice Research Institute; Yaan; Sichuan 625014; CHINA
- Zhou, Zhaolan; Chinese Academy of Sciences; Institute of Genetics; Group 601; Beijing 100101; CHINA
- Zhu, Li-Hong; Nanjing Agric University; Dept Agronomy; Nanjing; Jiangsu 210095; CHINA
- Zhu, Li-huang; Academia Sinica; Institute of Genetics; Datun Road, Andingmen Wai; Beijing 100101; CHINA; 86-10-62033491; 86-10-64913428 (fax); lhzhu@genetics.ac.cn
- Zhu, Xiaoyang; Inst Crop Germplasm Resources; Chinese Academy of Agric Sci; 30 Bai Shi Qiao Road; Beijing, 100081; CHINA; 86-10-62186647; 86-10-62174142 (fax)

Zhu, Ying-Guo; Wuhan University; Genetics Dept; Wuchang; Hubei 430072; CHINA; 27-7822712-4560; 27-7812661 (fax)

- Zhu, Z. P.; Shanghai Inst. of Plant Physiol.; 300 Fengling Road; Shanghai 200032; CHINA
- Ziegle, Janet; Applied Business Systems; 850 Lincoln Center Dr; Foster City CA 94404
- Zimmer, Elizabeth; Lab of Molecular Systematics MRC 534; Support Ctr. Nat'l Museum Nat. History; Smithsonian Inst; Washington DC 20560; 301-238-3444x106; 301-238-3059 (fax); zimmer@onyx.si.edu

Zimmerman, Shane; Univ Illinois; S-123 Turner Hall; 1102 S Goodwin Ave; Urbana IL 61801-4798; 217-333-6631; 217-333-6064 (fax); sazimmer@uiuc.edu

Maize Genetics Cooperation • Stock Center

USDA/ARS/MWA - Soybean/Maize Germplasm, Pathology & Genetics Research Unit

&

University of Illinois at Urbana/Champaign - Department of Crop Sciences

S-123 Turner Hall 1102 South Goodwin Avenue Urbana, IL 61801-4798 (217) 333-6631 [phone] (217) 333-6064 [fax] maize@uiuc.edu [internet] http://www.uiuc.edu/ph/www/maize [URL]

3,797 seed samples have been supplied in response to 306 requests, for 2001. Of these, a total of 67 requests were received from 18 foreign countries. Approximately 90% of our requests were received by electronic mail or through our order form on the World Wide Web.

We received a collection of the 94 IBM (B73 Mo17 intermated population) recombinant inbred lines from Mike Lee, and other families in that population from Georgia Davis. We received enough quality-tested seeds of each line to distribute immediately.

We have listed more stocks to our 'Phenotype Only' category of stocks. These are stocks that have been donated to the COOP over the years, and have been classified according to their mutant phenotype only. For the most part, these stocks have not as yet been allele tested, nor has their gene been located to a chromosome arm. While we expect that most of these will represent new alleles of known loci, some will represent unique, as yet undescribed loci. Over the past few years, some mutants in this class have been mapped and/or allele tested and where appropriate, the now characterized mutant stock was added to our main catalog. We are now listing all of these mutants to give cooperators that are interested in specific traits, easier access to these mutants.

Approximately 9.1 acres of nursery were grown this summer at the Crop Sciences Research & Education Center located at the University of Illinois. Cooler than normal weather inhibited germination and seedling emergence in our second nursery planting, but overall growing conditions were excellent. With additional water supplied by irrigation, we obtained good increases of most stocks grown this year.

Special plantings were made of several categories of stocks:

1. In the 'Phenotype Only' collection is a series of stocks donated to the COOP by Dr. Gerry Neuffer upon his retirement. Of the approximately 3000 stocks originally reported we have now been able to list as available approximately 800 of these. This also includes about 50 new mutants found during our summer growouts.

2. Plantings were also made from donated stocks from the collections of Don Auger (translocated Ac lines), Jack Beckett (B-A translocation lines), Ben and Frances Burr (rd4, various transposon-induced mutants), Ed Coe (various genetic stocks), Greg Doyle (inversions), Guiseppe Gavazzi (*lil1* and *Sn1* alleles), Scott Hulbert (*Rp* alleles), Jerry Kermicle (extensive collection of Brink's *R1* alleles), Gaylon Krim of the NCRPIS (shrunken kernel mutant), Don McCarty (*vp14*), Oliver Nelson (*bronze1* alleles and other mutants in his collection), Yong-Bao Pan (*ba3* and *Mn::Uq*), Tom Peterson (*Ufo1*), Mike Scanlon (*ns1 ns2*), Bill Sheridan (*dek* mutants and A- translocations), J. Torné (salt tolerant line), Bill Tracy (*bilateral coleoptile* mutant), and others. We expect to receive additional accessions of stocks from maize geneticists within the upcoming year.

3. We conducted allelism tests of several categories of mutants with similar phenotype or chromosome location. We found additional alleles of *japonica1*, *pink scutellum1*, *yellow endosperm1*, *yellow endosperm8*, and *albescent1*. In this manner, we hope to move stocks from our vast collection of unplaced uncharacterized mutants and integrate them into the main collection.

4. We conducted linkage tests of several mutants that had been placed to chromosome arm using B-A translocations or *waxy*-marked A-A translocations. More precise locations were determined for *inhibitor of r1* and *inhibitor of r2*.

5. Two acres were devoted to the propagation of the large collection of cytological variants, including A-A translocation stocks and inversions. In this collection is a series of *waxy1*-marked translocations that are used for mapping unplaced mutants. Over the years, pedigree and classification problems arose during the propagation of these stocks. We were able to sort through the problem ones, and we can now supply good sources proven by linkage tests to include the correct translocated chromosomes. Many additional translocation stocks were tested this last year. Results of these tests will be reported in the next issue of the Maize Genetics Cooperation Newsletter.

6. Stocks produced from the NSF project "Maize Gene Discovery, Sequencing and Phenotypic Analysis" (see: http://zmdb.iastate.edu/) were grown this summer. Approximately 30% of these represented plants that originally had to be outcrossed, and needed to be selfed to analyze for mutant segregation. The remaining 70% were seed increases that were planted from those families that originally yielded poorly. These increases help to maintain adequate seed stock to fill future requests. Additionally, we grew 3,000 families of this material to screen for new adult plant mutant traits (see below). We have received an extensive collection of transposed *Ac* lines from Hugo Dooner and a collection of miniature kernel mutants from Rob Martienssen's Maize Targeted Mutagenesis project. These latter two collections will be increased and made available in future years.

We continue to grow a winter nursery of 0.5 acres at the Illinois Crop Improvement Association's facilities in Juana Díaz, Puerto Rico. We had an excellent winter crop last year, and all indications are that the crop will perform well this year as well. We plan to continue growing our winter nurseries at this location.

Philip continued his work on characterizing modifiers and inhibitors of certain *R1* alleles, inhibitors of *Bn1* alleles, and the inheritance and expression of the duplicate factor pairs *brn1 brn2* and *su3 su4*. He is also testing and pedigree searching problematic stocks and mutants that have been reported to have anomalous inheritance patterns, such as the "cytoplasmic glossy" *cgl1*.

Janet continues with linkage testing and propagation of translocation stocks. She has finished setting up an internal database for the 'Phenotype Only' category of stocks beyond those in the Neuffer collection. Of the original approximately 1600 stocks in the collection, 1200 have been recovered and are now listed on our web page as available for distribution. Over the past years ~140 mutants in this class have been allele tested and moved to our main collection of characterized stocks. This collection continues to grow with accessions from maize cooperators and with new mutations we identify each year in our summer growouts.

The NSF project "Maize Gene Discovery, Sequencing and Phenotypic Analysis" has, to date, generated 11,894 stocks that have been sent to the Stock Center. All of these stocks were screened for ear and kernel mutants at the Stock Center; families with ample seed supplies had two samples removed for additional trait screening. The first sample from each family was sent to UC Berkeley for seedling mutant screening. From the second sample, 3,000 families of the most genetically active grids were planted and screened (by us, other project members and colleagues in the Maize Genetics community) at the University of Illinois for adult plant mutant traits. This was an organized mutant hunt and was very successful in the discovery of novel adult plant mutants. We plan to organize another mutant hunt next summer. The remaining seed generated by this project was placed into cold storage to fulfill requests. Results from the mutant screenings can be found at the ZmDB: Phenotype Database (http://zmfmdb.zool.iastate.edu/). Shane's future work will involve increasing stocks as necessary to maintain seed supply for requests and continue scoring these stocks for kernel and adult plant mutant traits.

Due to a slow down in international airmail service, we have started shipping overseas requests via FedEx. With the prospect of the the US Postal Service irradiating all packages, we will soon need to fill domestic requests via FedEx, as well.

Marty Sachs	Philip Stinard	Janet Day Jackson
Director	Curator	Senior Research Specialist

Shane Zimmerman Research Specialist

CATALOG OF STOCKS

CHROMOSOME 1 MARKER

101A sr1 zb4 p1-ww 101B sr1 P1-wr 101C sr1 p1-ww 101D sr1 P1-rr 101F sr1 ts2 P1-rr 102A Ws4-N1589 102D Blh1-N1593 102F ms28 102G zb3 102H hcf6-N228B 1021 hcf7-N1029D 103D vp5 103DA vp5-DR3076 103DB vp5-86GN4 103DC vp5-86GN3 103DD vp5-86GN6 103DE vp5-86GN11 103DF vp5-Mumm-1 103DG vp5-N81 103E zb4 ms17 p1-ww 104A Ts3 104F ms*-6034 104G ms*-6044 105A zb4 p1-ww 105B zb4 P1-wr 105C zb4 p1-ww br1 105E ms17 P1-wr 105F ms17 p1-ww 106B ts2 P1-rr 106C Glb1-0 106D Glb1-0; Glb2-0 107A P1-cr 107B P1-rr 107C P1-rw 107D P1-cw 107E P1-mm 107F P1-vv::Ac 107G P1-or 107H p1-ww 109A gs1-Pl228173 109B gs1-PI262495 109C gs1-PI267181 109D P1-rr ad1 bm2 109E P1-wr br1 f1 110A P1-wr an1 Kn1 bm2 110D P1-wr an1 bm2 110E P1-wr ad1 bm2 110F P1-wr br1 Vg1 110H P1-wr br1 f1 bm2 110K P1-wr br1 111B hcf3-N846B 111C hcf3-N1242B 111D hcf44-N1278B 111F Les20-N2457 111G rs2 111H Les5-N1449 112B p1-ww br1 f1 bm2 112E as1 112H p1-ww br1 112l p1-ww br1 gs1 bm2 113B rd1 113BA rd1-Wasnok 113C br1 f1 113E br1 f1 Kn1 113K hm1; hm2 113L Hm1; hm2 114C br1 bm2 114D Vg1 114E Vg1; su1

114F br2 hm1; Hm2 114G br2 hm1; hm2 115C v22-8983 115CA v22-055-4 115E bz2-mVW2::Mu1 115F bz2-mVW4::MuDR 115J bz2-m::Ds; A1 A2 C1 C2 Pr1 R1 116A bz2-m::Ds; A1 A2 Ac C1 C2 Pr1 R1 116C an1 bm2 116D def(an1..bz2)-6923; A1 A2 Bz1 C1 C2 Pr1 R1 116G an1 116GA an1-93W1189 116l bz2 gs1 bm2 Ts6; A1 A2 Bz1 C1 C2 R1 117A br2 117D tb1 117DA tb1-8963 117E Kn1 118B Kn1 bm2 118C lw1 118CA lw1-3108 118CB lw1-6474 118J Adh1-3F1124r53 118K Adh1-1S5657; Adh2-33 118L Adh1-3F1124::Mu3 118M Adh1-3F1124r17 118N Adh1-IL14H; su1 1180 Adh1-Cm 118P Adh1-FCm 118Q Adh1-Ct 119A Adh1-1S; Adh2-1P 119B vp8 119C gs1 119D gs1 bm2 119E Ts6 119F bm2 119H Adh1-FkF(gamma)25; Adh2-Ν 119J Adh1-Fm335::Ds1 119K Adh1-Fm335RV1 119L Adh1-2F11::Ds2 119M Adh1-1F725 120A id1 120B nec2-8147 120C ms9 120CA ms9-6032 120CB ms9-6037 120CC ms9-6042 120D ms12 120E v22-055-4 bm2 120F Mpl1-Sisco 120G Mpl1-Freeling 121A ms14 121AA ms14-6005 121B br2-mi8043 121C D8 121D lls1 121DA IIs1-N501B 121E ty*-8446 121G ct2 121GA ct2-rd3 124A v*-5688 124B j*-5828 124C w*-8345 124CA w*-013-3 124CB w*-8245 124D v*-5588 124E w*-018-3

124F w*-4791 124G w*-6577 124H w*-8054 1241 v*-032-3 124J v*-8943 125A Les2-N845A 125B Mpl1-Jenkins 125C hcf13-N1097B 125D hcf41-N1275C 125E hcf50-N1481 125F hcf2-N506C 125G hcf31-N1268B 126A bz2 gs1 bm2; A1 A2 Bz1 C1 C2 R1 126B id1-N2286A 126C dek1-N928A 126D dek1-N971 126E dek32-N1322A 126F o13 126H P1-vv::Ac bz2-m::Ds 1261 P1-vv::Ac 126J P1-ww-1112 126K P1-ovov-1114 126L P1-rr-4B2 126M P1-vv-5145 126N dek1-N1348 1260 dek1-N1394 126P dek1-N1401 127A bz2 zb7-N101 bm2 127B dek1-N792 127C dek2-N1315A 127D dek22-N1113A 127E f1 127F Msc1-N791A 127G Tlr1-N1590 1271 gt1 128A ij2-N8 128B 116-N515 128C |17-N544 128D pg15-N340B 128E pg16-N219 128G pv2-N521A 128H spc2-N262A 129A w18-N495A 129AA w18-571C 129B wlu5-N266A 129C zb7-N101 129D emp1-R 129E ptd1-MS1568 129F dek*-MS2115 129G dek*-MS6214 130A o10-N1356 130B cp3-N888A 130BA cp3-N888A; mn4-N888C 130C id1-NA972 130D dek1-PB388 130E dek1-DR1129 130F ht4 6502A P1-ww-4Co63 6502C P1-ovov-CFS-29 6502D P1-rr(11)-CFS-33 6502E P1-rr(10)-CFS-36 6502F P1-rr(4-5)-CFS-47 6502G P1-rr(9)-CFS-53 6502l P1-rr(8-9)-CFS-75 6502K P1-vv-CFS-96 6502L P1-vv-CFS-110 6502M P1-vv-CFS-116 6502N P1-ovov-CFS-124 65020 P1-vv-CFS-138 6502P P1-rr(7)-CFS-140

6502Q P1-vv-CFS-155 6502R P1-o-grained-red-CFS-167 6502S P1-r pale(8)-CFS-181 6502T P1-rr(9)-CFS-186 6502U P1-vv-CFS-226 6502V P1-vv-CFS-245 6502W P1-vv-CFS-246 6502X P1-vv-CFS-249 6502Y P1-vv-CFS-252 6502Z P1-vv-CFS-255 6502ZA P1-vv-CFS-256 6502ZB P1-vv-CFS-259 6503A P1-rr(11)-CFS-272 6503B P1-vv-CFS-273 6503C P1-vv-CFS-278 6503D P1-vv-CFS-279 6503E P1-vv-CFS-281 6503F P1-vv-CFS-282 6503G P1-vv-CFS-283 6503H P1-vv-CFS-284 6503l P1-r pale(5)-CFS-285 6503J P1-vv-CFS-286 (Brazil) 6503K P1-mm-CFS-286 6503L P1-mm-CFS-287 6503M P1-mm-CFS-289 6503N P1-mm-CFS-290 6503O P1-mm-CFS-291 6503P P1-mm-CFS-292 6503R P1-mm-CFS-294 6503S P1-mm-CFS-297 6503T P1-mm-CFS-301 6503U P1-rw(9)-CFS-302 6503V P1-rr(11)-CFS-303 6503W P1-rr(10)-CFS-305 6503X P1-rr(10)-CFS-315 6503ZA P1-rr(2)-CFS-319 6503ZB P1-rr(8)-CFS-320 6503ZC P1-rr(7)-CFS-321 6504A P1-rw(8)-CFS-324 6504B P1-rw(6-7)-CFS-325 6504C P1-rr(9)-CFS-327 6504D P1-rw(7)-CFS-330 6504E P1-rw(9)-CFS-332 6504F P1-rw(8)-CFS-334 6504G P1-o-grained-red-CFS-335 6504H P1-rw(5-6)-CFS-336 6504I P1-rw(7-9)-CFS-342 6504J P1-rr(5)-CFS-345 6504K P1-rw(7)-CFS-350 6504L P1-rr-CFS-360 6504M P1-rw(5)-CFS-369 6504N P1-ww(1)-CFS-376 65040 P1-vv-CFS-497 6504Q P1-rr(11)-CFS-548 **CHROMOSOME 2 MARKER** 201A mrl1-IHO 201B hcf106-Mum1::Mu1; hcf106c

201B hcf106-Mum1::Mu1; hcf106c 201C hcf106-Mum2::Mu1; hcf106c 201D hcf106-Mum3::Mu1; hcf106c 201F ws3 lg1 gl2 b1 201G sm2-Brawn180 201H sm2-Brawn189 201J sm2-Brawn190 201J sm2-Brawn191 201K sm2-Brawn188 202A lg1-Pl200299 202B lg1-Pl262493 202C lg1-32TaiTaSarga 202C lg1-32TaiTaSarga

202E lg1-64-4 202F fl1-08 202G lg1-56-3037-5 203B al1 203BA al1-Brawn 203BB al1-y3 203C al1-1998-2 203D al1 lg1 203G al1-y3 gl2 204A al1-lty3 204B hcf1-N490B 205A al1 lg1 gl2 205B lg1 205C lg1 gl2 205G al1 gl2 B1 206A lg1 gl2 B1 206C D10-N2428 206D Wrp1-NA1163 206E oro2 207A w3-y11 208B lg1 gl2 B1 sk1 208C lg1 gl2 B1 sk1 v4 208D lg1 gl2 B1 v4 208E lg1 gl2 b1 208H gl2-Salamini 209A gl11-N352A 209E lg1 gl2 b1 sk1 2091 gl2-Parker's Flint 210E gl2-3050-3 210F gl2-Pl200291 210G gl2-Pl239114 210H gl2-Pl251009 2101 gl2-Pl251885 210J gl2-Pl251930 210K gl2-Pl262474 210L gl2-Pl262493 210N gl2-N718 2100 gl2-N239 211A lg1 gl2 b1 fl1 211H gl2 wt1 212B lg1 gl2 b1 fl1 v4 212D lg1 gl2 b1 v4 213B lg1 gl2 wt1 213F lg1 B1-v::Bg Ch1 213H lg1 gl2 B1-v::Bg 214A wt1-Pl251939 214B lg1 b1 gs2 214C d5 214D gl11 B1 214E B1 ts1 214J sk1 214L lg1 gl2 mn1 215A gl14 215B gl11 215C wt1 215CA wt1-N472A 215CB wt1-N666B 215CC wt1-N178C 215CD wt1-N136A 215D mn1 215E fl1 215EA fl1-o4 215G fl1 v4 215H wt1 gl14 216A fl1 v4 Ch1 216D fl1 w3 216E fl1 v4 w3 216G fl1 v4 w3 Ch1 217A ts1 217B v4 217G v4 Ch1 217H ba2 v4 217I Les10-NA607 217J Les11-N1438

217K Les15-N2007 217L Les18-N2441 217M Les19-N2450 217N cpc1-N2284B 218A w3 218C w3 Ch1 218D Ht1-GE440 218DA Ht1-Ladyfinger 218DB Ht1 218E ba2 218G B1-Peru; A1 A2 C1 C2 r1-r 218GA B1-Peru; A1 A2 C1 C2 R1-r 218H w3-8686 218I w3-86GN12 218J w3-Kermicle-1 219A B1-Peru; A1 A2 C1 C2 r1-g 219B b1; A1 A2 C1 C2 r1-g 219C Ch1 219D Ht1 Ch1 219F B1-Peru; A1 A2 C1 C2 bz2 r1-219G B1-Bolivia-706B; A1 A2 C1 C2 r1-g 219H B1-Bolivia; A1 A2 C1 C2 Pl1-Rhoades Pr1 r1-g 219I B1-I; A1 A2 C1 C2 PI1-Rhoades r1-r 219J B1-I; A1 A2 C1 C2 PI1-Rhoades r1-g 219K B1-S; R1-g pl1-McClintock 219L B1-S; R1-r pl1-McClintock 220A Les1-N843 220B ws3 lg1 gl2; Alien Addition T2-Tripsacum 220D hcf15-N1253A 220F os1 221A gs2 221AA gs2-0229 221C wlv1-N1860 Ch1 221G wlv1-N1860 224B v*-5537 224H whp1; A1 A2 C1 R1 c2 gl1 in1 2241 ws3-7752 224J ijmos*-7335 224K glnec*-8495 224L ws3-8949 224M ws3-8991 224N ws3-8945 226A ws3-N2357 226B b1-m1::Ds1; A1 A2 C1 C2 r1-226C b1-md2::Ds1; A1 A2 C1 C2 r1-g 226D b1-Pm5; A1 A2 C1 C2 r1-g 226E b1-Perum216; A1 A2 C1 C2 r1-g 227A dek3-N1289 227B dek4-N1024A 227C dek16-N1414 227D dek23-N1428 227E Les4-N1375 2271 nec4-N516B 227K et2-2352 227L et2-91g6290-26 228A 118-N1940 228B spt1-N464 228C ws3-N453A 228CA ws3-N605A 228E B1-Bh 228F ms33-6019 228G ms33-6024 228H ms33-6029 2281 ms33-6038 228J ms33-6041

229A rf3 Ch1 229B v24-N424 229BA v24-N576A 229BB v24-N588A 229BC v24-N350 229C w3 rf3 Ch1 229E emp2-MS1047 229F dek*-MS1365 229G dek*-MS4160 229H dek*-MS2159 229J dek*-PIE **CHROMOSOME 3 MARKER** 301A cr1 301B bif2-N2354 301C spc3-N553C 301D Wi2-N1540 301E rd4 301F ns1-R; ns2-R 302A d1-6016 302AA d1-N446 302AB d1-N339 302B d1 rt1 302E d1-tall 303A d1 rt1 Lg3-O 303F g2 303FĂ g2-pg14::l 303FB g2-v19 303FD g2-56-3040-14 303FE g2-59-2097 303FF g2-94-1478 303G g2 d1 304A d1 ys3 304F d1 Lg3-O ys3 304G Lg3-O Rg1 304l d1 h1 305A d1 Lg3-O 305D d1 Rg1 305K d1 cl1; Clm1-4 306A Rp3-A 306F ref1-MS1185 307A Sdw2-N1991 307C pm1 308B d1 ts4 308E ra2 308F ra2 Rg1 308G ra2-D 309A a1-m3::Ds Sh2 309B a1-m1-5718::dSpm 309C a1-m1-5719A1::dSpm 309D a1-m1-5719A1::dSpm; Mod Pr1 309E a1 Sh2; Spm-w 309F a1-m2-8417::dSpm 309G a1-m2(os)-o1 309H a1-m2-7991A-o2 3091 a1-m2-7995::dSpm 309J a1-m2-7977B::dSpm 309K a1-m2-8012A-p1 309L a1 Sh2; Spm-s 309M a1-m1-5719A1::dSpm sh2 309N a1-m2-7995B 309O a1-m1-5996-4::dSpm 309P a1-m1-5719A1::dSpm; Spm-i 309Q a1-m5::Spm-w; Spm-s 309S a1-m2-8411A::Spm-w Sh2 309T a1-m2-7981B6::Spm-w 309U a1-m2-8409::Spm-i 309V a1-m5::Spm-w Sh2 309W a1-m2-8011::Spm-w Sh2 309X a1 Sh2; Spm-w-8745 309Y a1 Sh2; Spm-i 309Z a1-m1-5720-o2

310C ra2 lg2 310D Cg1 311A cl1 311AA cl1-N2 311B cl1; Clm1-2 311BA cl1-7716; Clm1-2 311C cl1; Clm1-3 311D cl1-p; Clm1-4 311E rt1 311F ys3 311G Lg3-O ys3 312A Les14-N2004 312B Les17-N2345 312D Lg3-O 312G brn1-R 312H g2 brn1-R 312l brn1-R cr1 312J brn1-R ra2 lg2 312K brn1-Nelson 312L brn1-3071 312M ms23 313A gl6 313AA gl6-gl7 313AB gl6-N672B 313D ms3 313DA ms3-6008 313DB ms3-6009 313DC ms3-6043 313DD ms3-6020 314A gl6 lg2 A1; A2 C1 C2 R1 314C gl6 lg2 a1-m et1; A2 C1 C2 Dt1 R1 314F Rg1 gl6 lg2 314G gl6 lg2 315B Rg1 gl6 315C Rg1 315D A1-b(P415); A2 C1 C2 R1 315I A1-m2(os)-p1 315J A1-m2(os)-r2 315K a1-m2-7991A-o1 315L a1-m2-7991A-p2 315M a1-m2-7991A-p3 315N a1-m2-7991A-p4 315O a1-m2-7991A-p4b 315P a1-m2-7991A-p5 315Q a1-m2-8010A-o2 315R A1-m3-r1a sh2-m1::Ds 315S a1-m5-o1 315T a1-m5-o2 315U A1-m5-r1 315V A1-m5-r4 315W A1-m5-r5 316A ts4 316B a1-N796 316C dek5-N1339A 316D a1-mt2 316E a1-mt3 316F a1-mt4 316G a1-mt5 316H a1-mt6 316l a1-mt7 316J a1-mt8 316K a1-mt11 316L a1-mt13 316M a1-mt15 316N a1-mt16 316O a1-mt18 316P a1-mt19 317F gl6 ts4 lg2 317I a1-m1-5996-4m::dSpm; Spm 317J a1-m2::Spm-s; Spm-w 317K a1-m2-7991A::Spm-s 317L a1-m2-8004::dSpm 317M a1-m2-8010A::Spm-s

317N a1-m2-8011::Spm-w 317O a1-m2-8012A 317P a1-m2-8147 317Q a1-m2-8167::dSpm 317R a1-m2-8414C 317S a1-m2-8549C 317T a1-m5::Spm-w Sh2 317U a1-m5::Spm-w sh2-1 317W a1-m1-5720::Spm 317X a1-m1-6078::dSpm 317Y a1-m2-8409-2 317Z A1 def-1260 318A ig1 318B ba1 318C y10-7748 318D hcf19-N1257A 318E sh2-N391B 318EA sh2-N2307 318F sh2-N2340 318G na1 318H vp1-Mc 318l y10-8624 319A lg2 A1-b(P415) et1; A2 C1 C2 Dt1 R1 319C lg2 a1-m et1; A2 C1 C2 R1 dt1 319D lg2 a1-m et1; A2 C1 C2 Dt1 R1 319F lg2 a1-st et1; A2 C1 C2 Dt1 R1 319G lg2 a1-st et1; dt1 320A lg2 320B lg2-PI184281 320C lg2 na1 320D lg2-podcorn 320E et1 320F A1 sh2; A2 C1 C2 R1 b1 pl1 320K sh2-94-1001-11 320L sh2-94-1001-58 320M sh2-94-1001-1003 320N a3-Styles; B1-b Pl1-Rhoades r1-g 3200 a3-Styles; B1-b PI1-Rhoades R1-nj 321A A1-d31; A2 C1 C2 R1 321B lg2 a1; A2 C1 C2 R1 dt1 321C lg2 A1-b(P415) et1; A2 C1 C2 R1 dt1 321D a1-m4::Ds; A2 C1 C2 R1 321E a1-rUq; A2 C1 C2 R1 321F a1-Mum1; A2 C1 C2 R1 321H a1-Mum3; A2 C1 C2 R1 3211 a1-Mum4; A2 C1 C2 R1 321J a1-Mum5; A2 C1 C2 R1 321K a1-rUq; Uq1 321L a1-rUq(flow); Uq1 322A A1-d31 sh2; A2 C1 C2 R1 dt1 322B A1-d31 sh2; A2 C1 C2 Dt1 R1 322C A1-Mum3-Rev; A2 C1 C2 R1 322F a1-m; A2 C1 R1 b1 dt1 pl1 322I et1-24 322J et1-27 322K et1-34 322L et1-2162 322M et1-2320 322N et1-2424 3220 et1-2457 322P et1-3191 322Q et1-3328 322R et1-5079 322S et1-84-6013 322T et1-88g-9733 322U et1-43 323A a1-m; A2 C1 C2 Dt1 R1

323D a1-m sh2; A2 C1 C2 Dt1 R1 323E a1-m et1; A2 C1 C2 Dt1 R1 323G a1-m1::rDt (Neuffer); A2 C1 C2 Dt1 R1 323H a1-st; A2 C1 C2 Mrh R1 dt1 323I a1-m1::rDt (Neuffer); A2 C1 C2 R1 dt1 324A a1-st; A2 C1 C2 Dt1 R1 324B a1-st sh2; A2 C1 C2 Dt1 R1 324E a1-st et1; A2 C1 C2 Dt1 R1 324G a1-st; A2 C1 C2 R1 dt1 324H a1 et1; A2 C1 C2 R1 dt1 324I a1-st et1; A2 C1 C2 R1 dt1 324J A2; C1 C2 R1 a1-sh2-del-Robertson 324K a1-Mus1; A2 C1 C2 R1 324L a1-Mus2; A2 C1 C2 R1 324M a1-Mus3 324N a1-Mus4 325A a1-p et1; A2 C1 C2 R1 dt1 325B a1-p et1; A2 B1 C1 C2 Dt1 PI1 R1 325C a1-x1; A2 C1 C2 R1 325D a1-x3; A2 C1 C2 R1 325E A1 ga7; A2 C1 C2 R1 325G a3 325I a1-p; A2 C1 C2 Dt1 R1 325J a1-p; A2 C1 C2 Pr1 R1 dt1 325K a1-m3::Ds sh2-m1::Ds; A2 Ac C1 C2 R1 326A sh2-Elmore 326AA sh2-Garwood 326AB sh2-60-156 326B vp1 326BA vp1-Mum3 326BC vp1-86N6 326BD vp1-86GN14 326BE vp1-86GN18 326BF vp1-86GN19 326BG vp1-Mum2 326BH vp1-Mum1::Mu 326C Rp3 326D te1-1 326DA te1-Forester 326DB te1-Grogan 329A v*-9003 329B v*-8623 329C w21-022-15 329D yd2 329E w*-8336 329F yg*-W23 329G w*-062-3 329H v*-8609 329HA v*-8959 3291 pg2 329K yel*-8630 329L yel*-5787 330A h1 330G a1-mrh; A2 C1 C2 Mrh R1 330H A1-b(P415) Ring 3; A2 C1 C2 R1 330I a1-Mum2; A2 C1 C2 MuDR R1 330J a1-Mum2; A2 C1 C2 R1 330K a1 sh2; A2 C1 C2 R1 dt1 330L a1-mrh; A2 C1 C2 R1 332B dek5-N874A 332C dek24-N1283 332D Wrk1-N1020 332F gl19-N169 332G dek6-N627D 332H dek17-N330D 332I Lxm1-N1600 332M Spc1-N1376 332N wlu1-N28

332S Mv1 333A dek5-25 333AA dek5-MS33 333B te1-Galinat 333C dek5-Briggs-1998-1 **CHROMOSOME 4 MARKER** 401A Rp4-A 401AB Rp4-B 401C Ga1 su1 401D Ga1-S 401E Ga1-S; y1 4011 ga1 su1 401J Ga1-M 401K Ga1-S su1 402A st1 402D Ts5 402E ms30-6028 402F hcf23-N1261A 403A Ts5 fl2 403B Ts5 su1 403C su1-F37 403D su1-PI228183 404A su3-5081; su4-5081 404B su3-89-1303-18; su4-89-1303-18 404C su3-94-4079-6; su4-94-4079-6 404D su3-85-3113-11; su4-85-3113-11 404E su3-87-2340-36; su4-87-2340-36 405B la1-Pl239110 405BB la1-Funk:2232 405BC la1-N2020 405BD la1-N2276B 405BE la1-PI184284 405D la1-R su1 gl3 405G la1-R su1 gl4 406C fl2 406CA fl2-DR9234 406D fl2 su1 407D su1 407DA su1-N86 407DB su1-N2316 407DC su1-BKG489-13 407DD su1-Pl 407DE su1-R2412 407DF su1-N896A 407DG su1-N1161A 407DH su1-N2313 407DI su1-N2314 407DJ su1-N959 407DK su1-N1968 407DL su1-N1994 407E su1-am 407F su1-am; du1 408B bm3-Burnham su1 408C su1 zb6 408E bm3-91598-3 408J su1 ra3 408K su1; se1 408L su1 zb6 Tu1 409A su1-st 409B su1-66 409C su1-P 409D su1-5051 409F su1-28510 409G su1-28511 409H su1-28512 409l su1-28513 409J su1-28515 409K su1-28516 409L su1-28517

409M su1-28518 409N su1-28519 409O su1-28520 409P su1-30394 409Q su1-30397 409R su1-30398 409S su1-30399 409T su1-30400 409U su1-30401 409V su1-Bn2 410D su1 zb6 gl3 410E su1-A3 410F su1-4582::Mu1 410G su1-8064 410H su1-2401 410l su1-3837 410J su1-7110 410K su1-2857 410L su1-2859 410M su1-90-1101.1 410N su1-83-3383-4 4100 su1-87-2046-27 410P su1-85-3217-10 410Q su1-84-5167-6 410R su1-84-5267-18 410S su1-85-3436-29 411A su1-8908 411B su1 gl4 o1 411F gl7 su1 v17 412C su1 gl3 412G su1 gl4 Tu1 413A su1 o1 413B su1 gl4 413D su1 C2-ldf1(Active-1); A1 A2 C1 R1 413F su1 de*-414E 413G v23 Su1 gl3; bm*-COOP 414A bt2 414AA bt2-Williams 414AB bt2-60-158 414AC bt2-9626 414AD bt2-5288 414B gl4 414BA gl4-Stadler 414BB gl4-gl16 414BD gl4-N525A 414C gl4 o1 414E de*-414E 415A j2 415B 01-N1243 415C o1-N1478A 415D bt2-8132 416A Tu1-A158 416B Tu1-I(1st) 416C Tu1-l(2nd) 416D Tu1-d 416E Tu1-md 416F Tu1 gl3 417B v8 417C gl3 417D o1 gl3 417E gl3-N531 418A gl3 dp1 418B c2; A1 A2 C1 R1 418D C2-Idf1(Active-1); A1 A2 C1 R1 418E dp1 418F o1 418G v17 419A v23-8914 419E gl7 419F Dt6 gl3 C2; A2 C1 R1 a1-m 419G Dt6 C2; A2 C1 R1 a1-m

419H c2-m1::Spm; A1 A2 C1 R1

419I c2-m2::dSpm c2-m3::Mpi1 419J c2-Mum1 419K c2-m2::dSpm; Spm-s 419L c2-m881058Y::IRMA; En Mod wx1-m8::Spm-I8 419M c2-m3::Mpi1 420A su1 Dt4 C2; A2 C1 R1 a1-m 420C nec*-rd 420CA nec*-016-15 420D yel*-8957 420F dp*-4301-43 420G w*-9005 420H Dt4 C2; A2 C1 R1 a1-m 424C gl3-64-4 424D gl3-56-3120-2 424E gl3-56-3129-27 424F gl3-60-2555 424G gl3-Pl183683 424H gl3-Pl251928 4241 gl3-Pl251938 424J gl3-Pl254858 424K gl3-Pl267180 424L gl3-Pl267219 424M gl3-Pl311517 424N gl3-15 426A GI5 Su1; gl20 426B gl3-Pl251941 426D cp2-N1324A 427A cp2-o12 427AA cp2-N211C 427AB cp2-N1875A 427AC cp2-MS2608 427AD cp2-N912 427B dek25-N1167A 427C Ysk1-N844 427D orp1-N1186A; orp2-N1186B 427E dek8-N1156 427F dek10-N1176A 427G Ms41-N1995 427H dek31-N1130 427I Sos1-ref 428A gl5 Su1; gl20 428C nec5-N642 428D spt2-N1269A 428E wt2-N10 428F lw4; Lw3 428G bx1 428H gl5 su1; gl20 428L dsc1-MS2058 **CHROMOSOME 5 MARKER**

501A am1 a2; A1 C1 C2 R1 501B lu1 501D ms13 501E gl17 501F gl17-N260B 501G gl17 a2; A1 C1 C2 R1 5011 am1 502B A2 ps1-Sprague pr1; A1 C1 C2 R1 502C D9-N2319 502D A2 bm1 pr1; A1 C1 C2 R1 502E Ms42-N2082 502F NI2-N1445 502G A2 Bt1 ga10 502H hcf21-N1259A 503A A2 bm1 pr1 ys1; A1 C1 C2 R1 503B hcf43-N1277B 503C a2-mu1::Mu1 503D a2-mu2 503E a2-mu3::Mu3 504A A2 bt1 pr1; A1 C1 C2 R1 504C A2 bm1 pr1 zb1; A1 C1 C2 R1

504E A2 bt1; A1 C1 C2 R1 505B A2 pr1 ys1; A1 C1 C2 R1 505C A2 bt1 pr1 ga*-Rhoades; A1 C1 C2 R1 505D pr1-N1515A 505E pr1-N1527A 506A A2 v3 pr1; A1 C1 C2 R1 506B A2 pr1; A1 C1 C2 R1 506C A2 pr1 v2; A1 C1 C2 R1 506D na2 A2 pr1; A1 C1 C2 R1 506F A2 pr1 v12; A1 C1 C2 R1 506L A2 br3 pr1; A1 C1 C2 R1 507A a2; A1 C1 C2 R1 507AA a2-Mus2; A1 C1 C2 R1 507AB a2-Mus3; A1 C1 C2 R1 507AC a2-Mus1; A1 C1 C2 R1 507F a2 bm1 bt1 ga*-Rhoades; A1 C1 C2 R1 507G a2 bm1 bt1; A1 C1 C2 R1 507H A2 bv1 pr1; A1 C1 C2 R1 507l a2-m4::Ds; wx1-m7::Ac7 508A a2 bm1 bt1 pr1; A1 C1 C2 R1 508C a2 bm1 bt1 bv1 pr1; A1 C1 C2 R1 508F a2 bm1 pr1 ys1; A1 C1 C2 R1 508H a2-Mum1 5081 a2-Mum2 508J a2-Mum3 508K a2-Mum4 508L bv1 pr1 509G a2-m1::dSpm Bt1 509H a2-m1(II)::dSpm(class II) 5091 pr1-m1 509J pr1-m2 509K a2-m1(ps) 509L a2-m1::dŚpm; Spm-s 509M a2-m5::dSpm 509N A2-m1(os)-r1 510A a2 bm1 pr1 v2; A1 C1 C2 R1 510D a2 pr1 gl8; A1 C1 C2 R1 510E a2 ae1 pr1 gl8; A1 C1 C2 R1 510G a2 bm1 pr1 eg1; A1 C1 C2 R1 511C a2 bt1 pr1; A1 C1 C2 R1 511F a2 bt1 Pr1 ga*-Rhoades; A1 C1 C2 R1 511H a2 bt1; A1 C1 C2 R1 512C a2 bt1 pr1 ga*-Rhoades; A1 C1 C2 R1 512D vp2-N1136B 512E Wi4-N2445A 512F pb4 512G gl8-N166A 512H v13 512l lw2-vp12 513A a2 pr1; A1 C1 C2 R1 513C a2 pr1 v2; A1 C1 C2 R1 513D A2 pr1 sh4; A1 C1 C2 R1 513E a2 pr1 v12; A1 C1 C2 R1 514A a2 bm1 pr1; A1 C1 C2 R1 514B ae1-PS1 514C ae1-PS2 514D ae1-PS3 514E ae1-PS4 514F ae1-PS5 514G ae1-PS6 514H ae1-PS7 514l ae1-PS8 514J ae1-PS9 514K ae1-PS10 514L ae1-PS11 514M Ae1-5180-r4 514N bt1-m1::dSpm 5140 bt1-m2 514P bt1-m3::dSpm

514Q bt1-m4::Ds 514R Bt1-m1-r1 515A vp2 515AA vp2-DR5180 515AB a2 vp2-green mosaic; A1 C1 C2 R1 515C ps1-Sprague 515CA ps1-8776 515CB ps1-881565-2M 515CC ps1-N80 515CD ps1-8205 515D bm1 515E bt1-N1992 515F bt1-N2308 515G bt1-N2309 516B bt1-R 516BA bt1-Elmore 516BB bt1-C103 516BC bt1-Singleton 516BD bt1-sh3 516BE bt1-sh5 516BF bt1-Eldridge 516BH bt1-6-783-7 516BI bt1-Vineyard 516BJ bt1-T 516BK bt1-W187R 516BL bt1-3040 516BM bt1-N797A 516C ms5 516D td1 ae1 516DA td1-Nickerson 516G A2 bm1 pr1 yg1; A1 C1 C2 R1 517A v3 517AB v3-8982 517B ae1 517BA ae1-EMS 517BB ae1-PS12 517BC ae1-PS13 517BD ae1-PS14 517BE ae1-PS15 517BF ae1-PS16 517BH ae1-Elmore 517E ae1 pr1 gl8 518A sh4 518AA sh4-Rhoades 518AB sh4-o9 518B gl8-Salamini 518BA gl8-R 518BB gl8-6:COOP 518BC gl8-6:Salamini 518BD gl8-10:COOP 518BE gl8-Pl180167 518C na2 518D lw2 519AA ys1-W23 519AB ys1-5344 519AC ys1-N755A 519AD ys1-74-1924-1 519B eg1 519C v2 519D yg1 519E A2 pr1 yg1; A1 C1 C2 R1 519F A2 pr1 gl8; A1 C1 C2 R1 519H zb1 519l zb1-2 520A hcf38-N1273 520B v12 520C br3 520F A2 Dap1; A1 C1 C2 R1 520G A2 pr1 Dap1; A1 C1 C2 R1 520H Dap1-2 5201 ae1-1979-7 520J ae1-MOEWS 520K ae1-1981-MuT

521A nec3-N409 521B Nec*-3-9c 521C nec*-8624 521D nec*-5-9(5614) 521E nec*-7476 521F nec*-6853 521G nec*-7281 521H nec*-8376 5211 v*-6373 521J yg*-8951 521K lw3; lw4 521L w*-021-7 521N Inec*-5931 521NA Inec*-8549 521P lw3; Lw4 524A v*-PI267226 524B les*-3F-3330 527A dek18-N931A 527B dek9-N1365 527C dek26-N1331 527D dek27-N1380A 527E grt1-N1308B 527F nec7-N756B 527G dek33-N1299 527H Msc2-N1124B 5271 ppg1-N199 527J nec6-N493 528A Hsf1-N1595 528B wgs1-N206B 528C anl1-N1634 528CA anl1-330C 528E prg1-MS8186 528F ren1-MS807 528H dek*-MS2146 528I dek*-MS1182 529A anl1-N1643 529B anl1-N1645 529C anl1-N1671 529D anl1-N1685 529E anl1-N1691 529F anl1-N1673 **CHROMOSOME 6 MARKER** 601C rgd1 v1 601D rgd1-N372B 601F po1-ms6 y1 pl1 601H rhm1 rgd1 y1 6011 rhm1 y1 111 601J Wsm1 Mdm1; Wsm2 Wsm3 601K wsm1 mdm1; wsm2 wsm3 601L Mdm1 y1 602A po1-ms6 wi1 y1 602C y1 602D rhm1 Y1 602H y1-N2236 602J y1-w-mut 602K y1-gbl 602L y1-pb1 602M y1-8549 602N y1-Caspar 602O y1-0317 602P y1-129E 603A y1 110 603AA y1 110-1359 603B y1 111-4120 603C y1 l12-4920 603D w15-8896 y1 603H mn3-1184 y1 604D v1 l15-Brawn1 604F y1 si1-mssi 604FA y1 si1-ts8 604FB y1 si1-Sam

604H y1 ms1

604HA v1 ms1-Robertson 6041 Y1 ms1 604IA ms1-6050 605A wi1 y1 605C y1 pg11; Wx1 pg12 605E wi1 Y1 Pl1 605F wi1 Y1 pl1 605G I3 605H pg11-M14; pg12-KYS 605l pg11-Oh43; pg12-KYS 606A Y1 pg11-4484; Wx1 pg12-4484 606AA pg11-8925; pg12-8925 606AB pg11-48-040-8; pg12-48-040-8 606AC pg11-8563; pg12-8563 606AD pg11-8322; pg12-8322 606B y1 pg11; pg12 wx1 606C Y1 pg11; pg12 wx1 606E y1 pl1 606F y1 PI1 606l y1 pg11 su2; Wx1 pg12 607A y1 Pl1-Bh1; A1 A2 C2 R1 c1 sh1 wx1 607C y1 su2 607E y1 pl1 su2 v7 607H y1 Pl1-Bh1; A1 A2 C2 R1 Wx1 c1 sh1 607I y1 PI1-Bh1; A1 A2 C2 R1 c1 sh1 skb1 wx1 607J sm1-Brawn168 607K sm1-Brawn178 607L sm1-Brawn184 608A gs3-N268 608C sbd1-N2292 608D Les13-N2003 608F y1 pl1 w1 608G Y1 111 608H y1-m1301::dSpm 6081 Rp8-A 608J Rp8-B 609D Y1 su2 609DA Y1 su2-89-1273 609DB su2-PS1 609DC su2-PS2 609DD su2-1979-5 609DE su2-87-2279-12 609DF su2-1981 609DG su2-1982 609DH su2-0203 609DI su2-PI193430 609DJ su2-1979-1 609F ms1-Albertsen 610B Dt2 Pl1; A2 C1 C2 R1 a1-m 610F Y1 pl1 su2 v7 610G hcf34-N1269C 610H Y1 Dt2 pl1; A2 C1 C2 R1 a1m 610I hcf36-N1271B 610J hcf48-N1282C 610K hcf26-N1263C 610L hcf323 610M hcf5-N510C 611A Pl1 sm1; P1-rr 611D Pt1 611E Y1 pl1 w1 611EA w1-7366 6111 sm1 tan1-py1; P1-rr 611K Y1 Pl1 w1 611L w1; l1 611M afd1 611N sr4-N65A 6110 o14-N924 612A w14

612B po1 612BA po1-ms6 612C I*-4923 612D oro1 612DA oro1-6474 612l tan1-py1 612J w14-8657 612K w14-8050 612L w14-6853 612M w14-025-12 612N w14-1-7(4302-31) 6120 yel*-1-7(4302-31) 613A 2NOR y1; A1 C1 C2 R1 a2 bm1 pr1 v2 wx1 613D vms*-8522 613F w14-8613 613I tus*-5267 613J gm*-6372 613L w*-8954 613M yel*-039-13 613N yel*-7285 613O I*-4-6(4447) 613P yel*-8631 613T pg11-6656; pg12-6656 627A dek28-N1307A 627B dek19-N1296A 627C vp*-5111 627G dek*-MS1104; I*-1104

CHROMOSOME 7 MARKER

701B In1-D 701D o2 701E o2-Mum1 701F Hs1 702A o2 v5 702B o2 v5 ra1-Ref gl1 702I In1-Brawn 703A o2 v5 gl1 703B De*-B30 703C o2-m(r); Bg 703D o2 ra1-Ref gl1 703E o2-R; Bg 703F o2-m12::Spm 703G o2-m2::Ds: Ac 703H o2-m5::Ac 703J Rs1-O 703JA Rs1-1025::Mu6/7 703K Rs1-Z 704B o2 ra1-Ref gl1 sl1 704C o2-NA696 704D o2-NA697 704E gl1-m8 704F ms22-6036 704H o2-orange 704l gl1-Pl267186 705A o2 gl1 705B o2 gl1 sl1 705D o2 bd1 706A o2 sl1 706B vp9-Bot100 707A v8 v5 gl1 707B in1; A1 A2 C1 C2 R1 pr1 707C in1 gl1; A1 A2 C1 C2 R1 pr1 707D v5 707E vp9-R 707EA vp9-3111 707EB vp9-86GN9 707EC vp9-86GN15 707F y8 gl1 707G in1 gl1; A1 A2 C1 C2 Pr1 R1 708A ra1-Ref 708AA ra1-PI262495 708AB ra1-PI184279

708AC ra1-PI239103 708AD ra1-Pl267181 708AE ra1-PI267184 708AF ra1-63-3359 708B bd1-N2355 708C o15-N1117 708D y8-lty2 709A gl1 709AA gl1-56-3013-20 709AB gl1-56-3122-7 709AC gl1-Pl183644 709AD gl1-Pl218043 709AE gl1-Pl251652 709AF gl1-Pl257507 709AG gl1-Istra 709AH gl1-BMS 709AI gl1-7L 709AJ gl1-9:COOP 709AK gl1-N212 709AL gl1-N269 709AM gl1-N345B 709C gl1-m 710A gl1 Tp1 710B gl1 mn2 710E o5 gl1 710l gl1 Bn1 710J gl1-N271 710K gl1-dy 710L gl1-Pl218038 711A Tp1 711B ij1-ref::Ds 711C ij1-60-2454-20 711G ts*-br 712A ms7 712AA ms7-6007 712B ms7 gl1 713A Bn1 713E Bn1 bd1 713H Bn1 ij1 7131 bd1 Pn1 714A Pn1 714B o5 714BA 05-PS3038 714BB 05-N76B 714BC 05-N874B 714C o5-N1241 714D va1 715A Dt3; A2 C1 C2 R1 a1-m 715C gl1 Dt3; A2 C1 C2 R1 a1-m 716A v*-8647 716B yel*-7748 716C dlf1-N2389A 716D dlf1-N2461 716F Les9-N2008 727A dek11-N788 727B wlu2-N543A 727D v27-N590A 727DA v27-N53B 727DB v27-N413C 727E gl1-cgl 727F Rs4-N1606 727G Rs1-O o2 v5 ra1-Ref gl1 727H ms34-6004 7271 ms34-6010 727J ms34-6013 727K ms34-6014 728A Px3-6 728B ptd2-MS3193 728C mn2-cp1 728D sh6-8601 728E sh6-N1295 728F ren2-NS326 728G dek*-MS2082 728H dek*-MS5153

CHROMOSOME 8 MARKER

801A gl18-g 801B v16 8011 yel*-024-5 801K v16 ms8 802A rgh1-N1285 802B emp3-N1386A 802C Ht2 802G ms43 802H gl18-Pl262473 8021 gl18-Pl262490 803A ms8 803B nec1-025-4 803D gl18-g ms8 803F nec1-7748 803G nec1-6697 804A v21-A552 804B dp*-8925 804C tb*-poey1013 805A fl3 805C gl18-g v21-A552 805E el1 805G ms8 j1 808A ct1 808B La4-O 808C Htn1 810A v16 j1; l1 810B j1 810C j1-JSM 827A dek20-N1392A 827B dek29-N1387A 827C Bif1-N1440 827CA Bif1-N2001 827D Sdw1-N1592 827E Clt1-N985 827F pro1-N1058 827G pro1-N1121A 827H pro1-N1528 8271 pro1-N1533 827J wlu3-N203A 827K pro1 827L pro1-Tracy 828A ats1 828C pro1-N1154A 828D pro1-NA342 828E pro1-N1530 **CHROMOSOME 9 MARKER** 901B yg2 C1 sh1 bz1; A1 A2 C2 R1 901C yg2 C1 sh1 bz1 wx1; A1 A2 C2 R1 901E yg2 C1 bz1 wx1; A1 A2 C2 R1 901H yg2 C1 Bz1; A1 A2 C2 R1 902A yg2 c1 sh1 bz1 wx1; A1 A2 C2 R1 902B yg2 c1 sh1 wx1; A1 A2 C2 R1 902C yg2 c1 sh1 wx1 gl15-Hayes; A1 A2 C2 R1 902D yg2 c1 sh1 Bz1 wx1 gl15 K9Ss; A1 A2 C2 R1 902E C1 sh1 Bz1-McC1; A1 A2 C2 R1 902G C1 sh1 bz1 wx1; A1 A2 C2 R1

902F bz1-m13::dSpm 902G C1 sh1 bz1 wx1; A1 A2 C Spm 902H bz1-m13::dSpm; Spm 902I bz1-m13CS1 902J bz1-m13CS3 902K bz1-m13CS4 902L bz1-m13CS5 902M bz1-m13CS5

902N bz1-m13CS7

903A C1 sh1 bz1; A1 A2 C2 R1 903B C1 sh1 bz1 wx1; A1 A2 C2 R1 903D C1-I sh1 bz1 wx1; A1 A2 C2 R1 903E bz1-m13CS8 903F bz1-m13CS10 903G bz1-m13CS11 903H bz1-m13CS12 904B C1 sh1; A1 A2 C2 R1 904C C1 sh1 wx1; A1 A2 C2 R1 904D C1 wx1 ar1; A1 A2 C2 R1 904F C1 sh1 bz1 gl15 bm4; A1 A2 C2 R1 904G rgo1-Sarkar 905A C1 sh1 wx1 K9S-I; A1 A2 C2 R1 905C C1 bz1 Wx1; A1 A2 C2 R1 905D C1 sh1 wx1 K9S-I; A1 A2 C2 K10-I R1 905G C1 bz1 wx1; A1 A2 C2 R1 905H c1 sh1 wx1; A1 A2 C2 R1scm2 b1 9051 ms45-6040 906A C1 wx1; A1 A2 C2 Dsl Pr1 R1 v 1 906B C1 wx1; A1 A2 C2 DsI R1 Y1 pr1 906C C1-I Wx1; A1 A2 C2 DsI R1 906D C1-I; A1 A2 C2 R1 906G C1-I Sh1 Bz1 Wx1; Dsl 906H C1 Sh1 bz1 wx1; Ac 907A C1 wx1; A1 A2 C2 R1 907E C1-I wx1; A1 A2 C2 R1 y1 907G c1-p; A1 A2 B1-b C2 R1 pl1 907H c1-n; A1 A2 C2 R1 b1 pl1 907I C1-S wx1; A1 A2 C2 R1 908A C1 wx1 da1 ar1; A1 A2 C2 R1 908B C1 wx1 v1; A1 A2 C2 R1 908D C1 wx1 gl15; A1 A2 C2 R1 908F C1 wx1 da1; A1 A2 C2 R1 908G c1-mt13 909A C1 wx1 Bf1-ref; A1 A2 C2 R1 909B c1 bz1 wx1; A1 A2 C2 R1 909C c1 sh1 bz1 wx1; A1 A2 C2 R1 909D c1 sh1 wx1; A1 A2 C2 R1 909E c1 sh1 wx1 v1; A1 A2 C2 R1 909F c1 sh1 wx1 gl15; A1 A2 C2 R1 909G hcf42-N1276B 910B c1 sh1 wx1 gl15 Bf1-ref; A1 A2 C2 R1 910D c1; A1 A2 C2 R1 910G C1 sh1-bz1-x2 Wx1; A1 A2 C2 R1 910H C1 sh1-bz1-x3; A1 A2 C2 R1 910l sh1-bb1981 bz1-m4::Ds 910IA sh1-bb1981 bz1-m4::Ds; Ac 910L yg2-str 911A c1 wx1; A1 A2 C2 R1 911B c1 wx1 v1; A1 A2 C2 R1 911C c1 wx1 gl15-Hayes; A1 A2 C2 R1 911D Fas1 911E sem1-1364 911F def(Bf1..bm4)044-4 912A sh1 912AA sh1-1746 912AB sh1-9026-11 912AC sh1-3-6(6349) 912AD sh1-60-155 912AE sh1-EMS 912AF sh1-4020 912AG sh1-9552 912AH sh1-9626 912Al sh1-3017

912AJ sh1-6 912B sh1 wx1 v1 912E lo2 912H lo2 wx1 913C sh1 I7 913D sh1 l6 913E baf1 913F yg2-Mum1 913G yg2-Mum2 913H yg2-Mum3 913I yg2-Mum4 913J yg2-Mum5 913K yg2-Mum6 913L yg2-Mum7 913M yg2-Mum8 913N yg2-Mum9 9130 yg2-DR83-106-3 913P yg2-DR83-106-5 914A wx1 d3-COOP 914B dek12-N1054 914K Wc1-ly; Y1 914L bz1-Mus1 914M bz1-Mus2 914N bz1-Mus3 9140 bz1-Mus5 914P bz1-Mus6 914Q bz1-Mus7 914R bz1-Mus10 915A wx1 915B wx1-a 915C w11 915D wx1-N1050A 915F wx1-N1240A 916A wx1 v1 916B wx1 v1-JRL 916C wx1 bk2 916E wx1 v1 gl15 916G Trn1-N1597 916H v31-N828 916l d3-8201 917A wx1 Bf1-ref 917C v1 917D ms2 917DA ms2-6002 917DB ms2-6012 917E gl15-Sprague 917EA gl15-Lambert 917EB gl15-KEW 917F d3-COOP 917FA d3-d2 917FB d3-015-12 917FC d3-072-7 917FD d3-8054 917FF d3-d2-Harberd 917FG d3-d2-Phillips 917FH d3-N660B 918A gl15 Bf1-ref 918B gl15 bm4 918C bk2 Wc1 918D Wc1 918F Wx1 Bf1-ref 918G Wc1 Bf1-ref bm4 918GA Wc1-Wh Bf1-ref bm4 918K bk2 v30 918L wx1 Wc1 919A bm4 919B Bf1-ref bm4 919C I6 919D I7 919G l6: l1 919I Bf1-DR-046-1 919J bz1-Mum9; MuDR 919K bz1-Mum4::Mu1 919L bz1-Mum1

919M bz1-Mum2 919N bz1-Mum3 9190 bz1-Mum5 919P bz1-Mum6 919Q bz1-Mum7 919R bz1-Mum8 919S bz1-Mum9 919T bz1-Mum10 919U bz1-Mum11 919V bz1-Mum12 919W bz1-Mum15 919X bz1-Mum16 919Y bz1-Mum18 920A yel*-034-16 920B w*-4889 920C w*-8889 920E w*-8950 920F w*-9000 920G Tp3L-9SRhoades 920L ygzb*-5588 920M wnl*-034-5 920N pyd1 923A wx1-a 923B wx1-B 923C wx1-B1 923D wx1-B2::TouristA 923E wx1-B3::Ac 923F wx1-B4::Ds2 923G wx1-B6 923H wx1-B7 9231 wx1-B8 923J wx1-BL2 923K wx1-BL3 923L wx1-C 923M wx1-C1 923N wx1-C2 9230 wx1-C3 923P wx1-C4 923Q wx1-C31 923R wx1-C34 923S wx1-F 923T wx1-90 923U wx1-H 923V wx1-H21 923W wx1-l 923X wx1-J 923Y wx1-M 923Z wx1-m1::Ds 923ZA wx1-m6R 923ZB wx1-m6NR 923ZC wx1-m8::Spm-I8 923ZD wx1-P60 923ZE wx1-R 923ZF wx1-Stonor 924A Wd1 wd1 C1 C1-I Ring 9S; A1 A2 C2 R1 924B C1-I Ring 9S; A1 A2 C2 R1 924C yg2 924D wd1 924E wd1 C1 sh1 bz1 924F C1 Sh1 sh1 Bz1 bz1 wx1 tiny fragment 9 924G Č1-I Bz1; Ac Dsl 924H c1 sh1 bz1 wx1; Ac 925A bz1-m1::Ds wx1-m9::Ac 925B wx1-m9::Ac 925C bz1-m2::Ac 925D Wx1-m9r1 925E bz1-m2(DII)::Ds wx1-m6::Ds 925F C1 sh1 bz1 wx1-m8::Spm-I8 925H bz1-m2(DI)::Ds wx1; R1-sc 9251 c1-m2::Ds Wx1; Ac 925J c1-m858::dSpm wx1 925K c1-m1::Ds

926A sh1-m5933::Ds 926B Sh1-r3(5933) 926C Sh1-r6(5933) 926D Sh1-r7(5933) 926E Sh1-r8(5933) 926F Sh1-r9(5933) 926G Sh1-r10(5933) 926H Sh1-r11(5933) 9261 sh1-m6233::Ds 926J Sh1-r1(6233) 926K Sh1-r2(6233) 926L C1-I sh1-m6258::Ds 926M Sh1-m6258-r1 926N Sh1-r6795-1 9260 bz1-m5::Ac 926P Bz1-wm::Ds1 926Q Bz1-m1-p 926R Bz1-m2-r1 926S Bz1-m2(DII)-r1 926T Bz1-m2(DII)-r2 926U Bz1-m2(DII)-r3 926V sh1-bb1981 Bz1-m4-p1 926W sh1-bb1981 Bz1-m4-r6851 926X sh1-bb1981 Bz1-m4-r7840B 926Y sh1-bb1981 Bz1-m4-r8332 926Z Bz1-m5-p1 926ZA Bz1-m5-r1 926ZB Bz1-m5-r2 927A dek12-N873 927B dek13-N744 927C dek30-N1391 927D Les8-N2005 927E Zb8-N1443 927H C1 Dt7; A2 C2 R1 a1-r 927I G6-N1585 927K Rld1-N1990 927L Rld1-N1441 928A yg2-N27 928AA yg2-N585 928AB yg2-N697 928AC yg2-N610 928B wlu4-N41A 928C ms20 928G c1-m5::Spm wx1-m8::Spm-18; A1 A2 C2 R1 928H wx1-m7::Ac7 928I C1 bz1-mut::rMut; A1 A2 Bz2 C2 Mut R1 928J C1 bz1-(r)d; A1 A2 C2 R1 928K C1 Sh1 bz1-s; A1 A2 C2 Mut R1 928L ms45-6006 928M ms35-6011 928N ms35-6018 9280 ms*-6021 928P ms*-6022 928Q ms35-6027 928R ms35-6031 928S ms*-6046 928T ms*-6047 929E Dp9 930A wx1-Mum1 930B wx1-Mum2 930C wx1-Mum3 930D wx1-Mum4 930E wx1-Mum5::Mu 930F wx1-Mum6 930G wx1-Mum7 930H wx1-Mum8 9301 wx1-Mum9 930J wx1-Mum10 930K wx1-Mum11 930L wx1-Mus16 930M wx1-Mus181

931F Wx1-m9-r3 931G Wx1-m9-r4 931H wd1-Mus1 9311 wd1-Mus2 931J wd1-Mus3 931K wd1-Mus4 931L wd1-Mus5 931M wd1-Mus6 **CHROMOSOME 10 MARKER** X01A ov1-Anderson X01AA oy1-yg X01AB oy1-8923 X01B oy1 R1; A1 A2 C1 C2 X01C oy1 bf2 X01E ov1 bf2 R1; A1 A2 C1 C2 X02C oy1 zn1 R1; A1 A2 C1 C2 X02E oy1 du1 r1; A1 A2 C1 C2 X02G oy1 zn1 X02H Oy1-N1459 X02I Oy1-N1538 X02J Oy1-N1583 X02K Oy1-N1588 X02L Oy1-N1989 X03A sr3 X03B Og1 X03D Og1 R1; A1 A2 C1 C2 X03E oy1 y9 X03F Inr1-Ref X03G Ufo1 X04A Og1 du1 R1; A1 A2 C1 C2 X04B ms11 X04BA ms11-6051 X04D bf2 X04DA bf2-N185A X04E du1-8501 X04F du1-8802 X05A Og*-0376 X05B Gs4-N1439 X05E bf2 sr2 X05G bf2 g1 R1-r; A1 A2 C1 C2 X06A bf2 r1 sr2; A1 A2 C1 C2 X06C nl1 q1 R1; A1 A2 C1 C2 X06F bf2 R1 sr2; A1 A2 C1 C2 X07A nl1 g1 r1; A1 A2 C1 C2 X07C y9 X07CA y9-y12 X07D nl1 X08A vp10 X08B vp10-86GN5 X08C vp10-TX8552 X08F li1 X08FA li1-IL90-243Tco X09B li1 g1 R1; A1 A2 C1 C2 X09EA g1-g4 X09EB g1-56-3005-24 X09EC g1-1-7(X-55-16) X09ED g1-68-609-13 X09EE g1-ws2 X09EF g1-PI262473 X09F ms10 X09FA ms10-6001 X09FB ms10-6035 X09G li1 g1 r1; A1 A2 C1 C2 X10A du1 X10AA du1-PS1 X10AB du1-PS2

930N wx1-Mus215

931A Wx1-m5::Ds

931B wx1-m6::Ds

931C wx1-m6-o1

931D Wx1-m7-i1

931E Wx1-m8-r10

X10AC du1-PS3 X10AD du1-PS6 X10AE du1-PS4 X10AF du1-PS5 X10AG du1-8801 X10AH du1-84-5350-31 X10D du1 g1 r1; A1 A2 C1 C2 X10F zn1 X10FA zn1-N25 X10G du1 v18 X11A zn1 g1 X11D Tp2 g1 r1; A1 A2 C1 C2 X11E g1 R1 sr2; A1 A2 C1 C2 X11F g1 r1; A1 A2 C1 C2 X11H zn1 R1-r; A1 A2 C1 C2 X11I Tp2 g1 sr2 X12A g1 r1 sr2; A1 A2 C1 C2 X12C g1 R1-g sr2; A1 A2 C1 C2 X12E g1 R1; A1 A2 C1 C2 X13D g1 r1-r sr2; A1 A2 C1 C2 X13E g1 r1-ch; A1 A2 C1 C2 wx1 X13G R1-p X13H R1-b X14A r1-r lsr1-Ej; A1 A2 C1 C2 X14E r1; A1 A2 C1 C2 wx1 X14F v18 r1; A1 A2 C1 C2 X14I r1-sc:m3::Ds X14J R1-nj::Ac X14K r1-Del902 X14L r1-g; A1 A2 C1 C2 X15B I1 r1 sr2; A1 A2 C1 C2 X15C R1-g; A1 A2 C1 C2 X15D r1-ch; A1 A2 C1 C2 X15F Isr1 R1-g Sr2 X15G isr1 r1-g sr2 X15H isr1 R1-r:PI302369 X15HA isr1 R1-r:Pl302369 sr2 X15I isr1 R1-nj Mst1 X16B r1 K10-I; A1 A2 C1 C2 X16C R1-ch; A1 A2 C1 C2 Pl1 X16CA R1-ch X16D r1 sr2; A1 A2 C1 C2 X16E r1 K10-II; A1 A2 C1 C2 X16F R1 K10-II; A1 A2 C1 C2 X17B r1-r; A1 A2 C1 C2 X17C R1-mb; A1 A2 C1 C2 X17D R1-nj; A1 A2 C1 C2 X17E R1-r; A1 A2 C1 C2 X18A R1-lsk; A1 A2 C1 C2 X18B R1-sk:nc-2; A1 A2 C1 C2 X18C R1-st; A1 A2 C1 C2 X18D R1-sk; A1 A2 C1 C2 X18E R1-st Mst1 X18G R1-scm2; A1 A2 C1 C2 bz2 X18H R1-nj; A1 A2 C1 C2 bz2 X18I r1; A1 A2 C1 C2 X19A R1-sc:124 X19B w2 X19BA w2-Burnham X19BB w2-2221 X19C |1 w2 X19D o7 X19E R1-r Lc1-Ecuador; b1 X19F r1 w2 X19G r1-n19 Lc1; b1 X19H r1-g:e Lc1; b1 X20B |1 X20C v18 X20I R1-d:Arapaho X20J R1-d:Catspaw X24A cm1 X24B lep*-8691 X24C v*-8574 X25A R1-scm2; A2 C1 C2 a1-st

X25B R1-scm2; A1 A2 C1 c2 X25C R1-sc:122; A1 A2 C1 C2 pr1 X25D R1-scm2; A1 C1 C2 a2 X25E R1-scm2; A1 A2 C2 c1 X26A r1-X1 / R1; A1 A2 C1 C2 X26B R1-scm2; A1 A2 C1 C2 X26C R1-sc:122; A1 A2 C1 C2 X26D R1-sc:5691; A1 A2 C1 C2 X26E R1-scm2; A1 A2 C1 C2 pr1 wx1 X26F R1-scm2; A1 A2 C1 C2 In1-D X26G R1-scm2; A1 A2 C1 c2m2::dSpm X26H R1-scm2; A1 A2 C1 C2 wx1 X27A dek14-N1435 X27B dek15-N1427A X27C w2-N1330 X27D Les6-N1451 X27E gl21-N478B; gl22-N478C X27F Vsr1-N1446 X27G Ov1-N700 X27H orp2-N1186B; orp1-N1186A X27I 119-N425 X27J 113-N59A X27K v29-N418 X27L Les12-N1453 X28B R1-scm2; a1-m1::rDt (Neuffer) X28C R1-nj:Cudu; A1 A2 C1 C2 X28D Vsr*-N716 X28E Les3 X28F cr4-6143 X28G R1-nj:Chase; A1 A2 C1 C2 X28I R1-scm2; A2 C1 C2 a1-m1-5719::dSpm X28J R1-scm2; A1 A2 C1 C2 bz1 X29A ren3-MS1339 X29B dek*-MS2181 X29C cr4-N590C X29D cr4-N647 X29E cr4-N411 X35A Rp1-A X35B Rp1-B X35C Rp1-C X35D Rp1-D X35E Rp1-J X35F Rp1-K X35G Rp1-M X35H Rp1-Kr3 X35I Rp1-Kr4 X35J Rp1-Kr1J92 X35K Rp1-Kr1J6 X35L Rp1-G X35M Rp5 X35N Rp1-D Rp1-J X35O Rp1-C Rp1-J X35P Rp1-F Rp1-J X35Q Rp1-C Rp1-F Rp1-J X35R Rp1-G Rp1-I X35S Rp1-F Rp1-G Rp1-J X35T Rp1-D Rp1-G Rp1-J X35U Rp5 Rp1-D X35V Rp5 Rp1-G X35W Rp5 Rp1-C Rp1-G Rp1-J UNPLACED GENES U140A aph1 U140AA Aph1 U140C I4 U140G ms22 U140H ms24

U140I zn2-94-234

U240A Les7-N1461

U240D o11 U240E zn2 U240F zn2-PI251887 U240G zn2-Pl236997 U240H zn2-Pl239110 U240I zn2-56-3012-10 U340D ws1-COOP ws2-COOP U340DA ws1-Pawnee ws2-Pawnee U340H oro4 U340I Mei1-mei025 U440B gl13 U440C hcf49-N1480 U440D ub1-76C U440E frz1 U440F mg1-Sprague U540A dv1 U540B dy1 U640A dsy1-Doyle U640B dsy1-Russian U640C pam1 U640D pam2 U640E ada1 U640F atn1 Adh1-1S5657 U740A abs1-PI254851 U740C Ity1 U740F pi1 pi2 U740G Fbr1-N1602 U740H ad2-N2356A U740I ba3 U740K Rp7 U840A csp1-NA1173 U840B blc1-Tracy U840D Les21-N1442 U840F agt1 U840G Wi3-N1614 U840H nld1-N2346 U8401 Mc1 U840J hcf16 U940A Ht3 U940B dsv2 U940D hcf11-N1250A U940E hcf17 U940F hcf73 U940G Glb2-0 U940C v25-N17 **MULTIPLE GENES** M141A A1 A2 B1 C1 C2 Pl1 Pr1 R1-M141AA A1 A2 B1 C1 C2 PI1-Rhoades Pr1 R1-g M141B A1 A2 B1 C1 C2 pl1 Pr1 R1-M14ŽA A1 A2 b1 C1 C2 pl1 R1-r M142B a1 A2 b1 C1 C2 pl1 R1-r M142C A1 a2 b1 C1 C2 pl1 R1-r M142D A1 A2 b1 bz1 C1 C2 pl1 R1-M142E A1 A2 b1 bz2 C1 C2 pl1 R1-r M142F A1 A2 b1 c1-p C2 pl1 R1-r M142G A1 A2 b1 C1-I C2 pl1 R1-r M142H A1 A2 b1 C1 c2 pl1 R1-r M142I A1 A2 b1 C1 C2-ldfm pl1 R1-r M142J A1 A2 b1 C1 C2ldf1(Active-1) pl1 R1-r M142K A1 A2 b1 C1 C2 pl1 pr1 R1-r M142L A1 A2 b1 C1 C2 gl1 in1 pl1 R1-r M142M A1 A2 b1 C1 C2 In1-D pl1 R1-r M142N A1 a2 bt1 C1 C2 pr1 R1 M1420 C1 sh1 bz1 wx1; A1 A2 C2

R1-r M142P c1 sh1 wx1; A1 A2 C2 R1-r M142Q yg2 c1 sh1 wx1; A1 A2 C2 R1-g M142R A1 A2 C1-I C2 R1-r wx1 M142S su1 c2; A1 A2 C1 R1-r M142T A1 A2 b1 C1 C2 pl1 r1-g M142U A1 A2 b1 C1 C2 pl1 r1-r M142V A1 A2 C1 C2 R1-ni M142W A1 A2 C1 C2 R1-st M142X A1 A2 b1 C1 C2 Pl1 r1-g M142Y A1 A2 B1 C1 C2 Pl1 r1-g M142Z a1-st A2 b1 C1 C2 pl1 R1scm2 M142ZA A1 a2 b1 C1 C2 pl1 R1scm2 M142ZB b1 bz1 C1 pl1 R1-scm2 sh1 M142ZC A1 A2 b1 bz2 C1 C2 pl1 R1-scm2 M142ZD A1 A2 b1 c1-n C2 pl1 R1scm2 M142ZE A1 A2 b1 c1-p C2 pl1 R1scm2 M241A A1 A2 B1 C1 C2 Pl1 Pr1 r1-M241C A1 A2 B1 C1 C2 Pl1 Pr1 R1-M241D A1 A2 b1 C1 C2 PI1-Rhoades r1-g M242A A1 A2 b1 C1 c2 pl1 R1scm2 M242B A1 A2 b1 C1 C2 pl1 pr1 R1scm2 M242C in1 gl1; A1 A2 b1 C1 C2 pl1 R1-scm2 M242D a1 sh2; A2 b1 C1 C2 pl1 R1scm2 M242E c1 sh1 wx1; A1 A2 b1 C2 pl1 R1-scm2 M242F su1 c2; A1 A2 b1 C1 pl1 R1scm2 M242G A1 A2 b1 C1 C2 pl1 R1scm2 M242H A1 A2 b1 C1 C2 pl1 r1-g M242I A1 A2 b1 C1 C2 pl1 r1-r M340A A1 A2 B1 c1 C2 pl1 Pr1 R1-M340B A1 A2 B1 c1 C2 Pl1 Pr1 R1-M340C A1 A2 b1 c1 C2 pl1 Pr1 R1-M341B A1 A2 B1 C1 C2 pl1 Pr1 R1-M341C A1 A2 b1 C1 C2 Pl1 Pr1 R1-M341CA A1 A2 b1 C1 C2 Pl1-Rhoades Pr1 R1-r M341D A1 A2 B1 c1 C2 Pl1 Pr1 R1-M341F A1 A2 b1 C1 C2 pl1 Pr1 R1-r M441B A1 A2 B1 C1 C2 pl1 Pr1 R1r wx1 M441D A1 A2 B1 C1 C2 Pl1 Pr1 r1-r M441F A1 A2 b1 C1 C2 pl1 Pr1 R1g wx1 M541B A1 A2 b1 C1 C2 pl1 Pr1 R1 -M541F a1 A2 C1 C2 R1-nj M541G A1 a2 C1 C2 R1-nj M541H A1 A2 c1 C2 B1-ni M5411 A1 A2 C1-I C2 R1-nj M541J A1 A2 C1 c2 R1-nj M541K A1 A2 C1 C2-Idf1(Active-1) R1-nj

M541L A1 A2 bz1 C1 C2 Pr1 R1-nj M541M A1 A2 Bz1 C1 C2 pr1 R1-nj M541N A1 A2 C1 C2 gl1 in1 R1-nj M5410 A1 A2 C1 C2 In1-D R1-nj M541P ae1 wx1 M641C A1 A2 b1 C1 C2 pl1 Pr1 R1-r wx1 M641D A1 A2 C1 C2 Pr1 r1 wx1 y1 M641E A1 A2 C1 C2 r1-g wx1 y1 M641F r1-g y1; A1 A2 C1 C2 M741A A1 A2 b1 C1 C2 pl1 Pr1 r1-g wx1 M741B Stock 6; A1 A2 B1 C1 C2 PI1 R1-r M741C Stock 6; A1 A2 B1 C1 C2 pl1 R1-r M741F Stock 6; A1 A2 C1 C2 pl1 R1-g v1 M741G Stock 6; A1 A2 C1-I C2 pl1 R1-g wx1 y1 M741H Stock 6; A1 A2 B1 C1 C2 Pl1 R1-nj M7411 Stock 6; A1 A2 C1 C2 R1 M841A A1 A2 C1 C2 pr1 R1 su1 M841B f1 wx1 M841C v4 wx1 M841D v2 wx1 M841F A1 A2 bz2 C1 C2 R1-scm2 wx1 M841G A1 A2 C1 c2 R1-scm2 wx1 M841H gl6 wx1 M8411 su1 wx1 M841J v16 wx1 M841K gl4 wx1 M841L gl2 lg1 wx1 M941A Ă1 Ă2 c1 C2 Pr1 R1 wx1 y1 M941B Mangelsdorf's tester; a1 bm2 g1 gl1 j1 lg1 pr1 su1 wx1 M941BA Mangelsdorf's tester + R1-nj M941C a1 Dt1 gl2 lg1 wt1 M941D gl1 wx1 v1 M941E ğl8-R wx1 y1 M941F sm1; wx1 MX40A A1 A2 C1 C2 P1-vv::Ac r1sc:m3::Ds MX40B A1 A2 Ac2 bz2-m::Ds C1 C2 R1 MX40C A1 A2 C1 C2 r1-sc:m3::Ds Ac8168-9 MX40D P1-vv::Ac r1 MX41A A1 A2 C1 C2 gl1 pr1 R1 wx1 y1 MX41B A1 A2 C1 C2 gl1 pr1 R1 su1 wx1 y1 MX41C a1 a2 bz1 bz2 c1 c2 pr1 r1 wx1 y1 MX41D a1 A2 C1 C2 gl1 pr1 R1 su1 wx1 y1 MX41E a1-m1-n::dSpm A2 C1 C2 R1 wx1-m8::Spm-I8 **B-CHROMOSOME** B542A Black Mexican Sweet; B chromosomes present B542B Black Mexican Sweet; B chromosomes absent TRISOMIC 123A trisomic 1 223A trisomic 2

- 328A trisomic 3 422A trisomic 4 523A trisomic 5 615A trisomic 6 718A trisomic 7 807A trisomic 8 922A trisomic 9 X23A trisomic 10 TETRAPLOID N102A Autotetraploid; A1 A2 B1 C1 C2 Pl1 Pr1 R1 N102D Autotetraploid; A1 A2 C1 C2 R1 N102E Autotetraploid; B chromosomes present N102EA Autotetraploid; B chromosomes present
- N102F Autotetraploid; A1 a2 C1 C2 R1 N103A Autotetraploid; P1-rr N103B Autotetraploid; P1-vv::Ac N103C Autotetraploid; P1-ww N103D Autotetraploid; P1-wr N103E Autotetraploid; P1-mm N104A Autotetraploid; su1 N104B Autotetraploid; A1 A2 C1 C2 pr1 R1 N105B Autotetraploid; wx1 y1 N105D Autotetraploid; A1 a2 bt1 C1 C2 R1 N105E Autotetraploid; bt1 N106C Autotetraploid; wx1 N107B Autotetraploid; W23

N107B Autotetraploid; W23 N107C Autotetraploid; Synthetic B N107D Autotetraploid; N6

CYTOPLASMIC STERILE/RESTORER

C736A R213 (N); mito-N Rf1 rf2 C736AB R213 (T) Sterile; cms-T Rf1 rf2 C736B Ky21 (N); mito-N Rf1 Rf2 Rf3 RfC C736C B37 (N); mito-N rf1 Rf2 rf3 rfC C736CA B37 (T) Sterile; cms-T rf1 Rf2 C736CB B37 (T) Restored; cms-T Rf1 Rf2 C736E Tr (N); mito-N Rf3 rfC rfT C736F W23 (N); mito-N rf1 Rf2 rf3 RfC C736FA W23 (N); mito-N rf1 Rf2 rf3 RfC C736G B73 (N); mito-N rf1 Rf2 rf3 rfC C736H L317 (N); mito-N rf3 RfC rfT C836A Wf9 (T) Sterile; cms-T rf1 rf2 C836B Wf9 (N); mito-N rf1 rf2 rf3 rfC C836C Wf9 (T) Restored; cms-T Rf1 Rf2 rf3 rfC C836D Wf9 (S) Sterile; cms-S rf1 rf2 rf3 rfC C836E Mo17 (T) Sterile; cms-T rf1 Rf2 rf3 rfC C836F Mo17 (N); mito-N rf1 Rf2 rf3 rfC C836G Mo17 (C) Sterile; cms-C rf1

C836G Mo17 (C) Sterile; cms-C rf1 Rf2 rf3 rfC C836H Mo17 (S) Sterile; cms-S rf1 Rf2 rf3 rfC C936D K55 (N); mito-N Rf1 Rf2 rf3 RfC C936DA K55 (N); mito-N Rf1 Rf2 rf3 RfC C936F N6 (N); mito-N rf1 Rf2 rf3 RfC C936FA N6 (N); mito-N rf1 Rf2 rf3 RfC C936G N6 (T) Sterile; cms-T rf1 Rf2 C936H N6 (T) Restored; cms-T Rf1 Rf₂ C936I SK2 (N); mito-N rf1 Rf2 rf3 rfC C936J SK2 (T) Sterile; cms-T rf1 Rf2 C936K SK2 (T) Restored; cms-T Rf1 Rf2 C936M 38-11 (N); mito-N rf1 Rf2 rf3 rfC CX36A N6 (C) Restored; cms-C rf1 Rf2 rf3 RfC CX36B N6 (S) Sterile; cms-S rf1 Rf2 rf3 RfC CX36C B37 (C) Sterile; cms-C rf1 Rf2 rf3 rfC CX36D B37 (S) Sterile; cms-S rf1 Rf2 rf3 rfC

CYTOPLASMIC TRAIT

C337A NCS2 C337B NCS3

TOOLKIT

Kindiger's ig1 Maintainer T0318AB cms-L; ig1 R1-nj T0318AC cms-MY; ig1 R1-nj T0318AD cms-ME; ig1 R1-nj T0318AE cms-S; ig1 R1-nj T0318AF cms-SD; ig1 R1-nj T0318AG cms-VG; ig1 R1-nj T0318AH cms-CA; ig1 R1-nj T0318AI cms-C; ig1 R1-nj T0318AJ cms-Q; iq1 R1-nj T0940A Hi-II Parent A (for producing embryogenic callus cultures) T0940B Hi-II Parent B (for producing embryogenic callus cultures) T0940C Hi-II A x B (for producing embryogenic callus cultures) T0940D KYS (for chromosome observations in pachytene microsporocytes) T0940E Mu off; a1-Mum2 A2 C1 C2 R1 T3302A Inv1m; P1-vv::Ac bz2m::Ds T3302C T1-2b; P1-vv::Ac bz2m::Ds T3302D T1-2(036-7); P1-vv::Ac bz2-m::Ds T3302E T1-2c; P1-vv::Ac bz2m::Ds T3302F T1-3(5883); P1-vv::Ac bz2-m::Ds T3302G T1-3k; P1-vv::Ac bz2m::Ds T3302H T1-3(5597); P1-vv::Ac

bz2-m::Ds T3302I T1-3(5982); P1-vv::Ac bz2-m::Ds T3302J T1-4i; P1-vv::Ac bz2-m::Ds T3302K T1-4(064-20); P1-vv::Ac bz2-m::Ds T3302L T1-4(4308); P1-vv::Ac bz2-m::Ds T3302M T1-4(8602); P1-vv::Ac bz2-m::Ds T3302N T1-4b; P1-vv::Ac bz2m::Ds T3302O T1-5(5525); P1-vv::Ac bz2-m::Ds T3303A T1-5(6899); P1-vv::Ac bz2-m::Ds T3303B T1-5b; P1-vv::Ac bz2m::Ds T3303C T1-5(4613); P1-vv::Ac bz2-m::Ds T3303D T1-5(5045); P1-vv::Ac bz2-m::Ds T3303E T1-5(043-15); P1-vv::Ac bz2-m::Ds T3303F T1-5(5512); P1-vv::Ac bz2-m::Ds T3303G P1-vv::Ac; T1-6(5495) (6S.80; 1.S.25) bz2-m::Ds T3303H P1-vv::Ac; T1-6e (6L.21; 1.S.37) bz2-m::Ds T3303I T1-6(028-13); P1-vv::Ac bz2-m::Ds T3303J T1-6(7352); P1-vv::Ac bz2-m::Ds T3303K T1-6(7097); P1-vv::Ac bz2-m::Ds T3303L T1-7(4405); P1-vv::Ac bz2-m::Ds T3303M T1-7i; P1-vv::Ac bz2m::Ds T3303N T1-7(4837); P1-vv::Ac bz2-m::Ds T3303O T1-7(010-12); P1-vv::Ac bz2-m::Ds T3304A T1-8(6591); P1-vv::Ac bz2-m::Ds T3304B T1-8(4685); P1-vv::Ac bz2-m::Ds T3304C T1-8(4307-4); P1-vv::Ac bz2-m::Ds T3304D T1-9(7535); P1-vv::Ac bz2-m::Ds T3304E T1-9(8302); P1-vv::Ac bz2-m::Ds T3304F T1-9(6762); P1-vv::Ac bz2-m::Ds T3304G T1-10g; P1-vv::Ac bz2m::Ds T3304H T1-10f; P1-vv::Ac bz2m::Ds T3304I bz2-m::Ds T3304J Inv1m; P1-vv::Ac r1sc:m3::Ds T3304K Inv1a; P1-vv::Ac r1sc:m3::Ds T3304M T1-2c; P1-vv::Ac r1sc:m3::Ds T3305A T1-3(5597); P1-vv::Ac r1sc:m3::Ds T3305B T1-4i; P1-vv::Ac r1sc:m3::Ds T3305C T1-4(064-20); P1-vv::Ac r1-sc:m3::Ds T3305F T1-4b; P1-vv::Ac r1-

sc:m3::Ds T3305H T1-5(6899); P1-vv::Ac r1sc:m3::Ds T3305J T1-5(4613); P1-vv::Ac r1sc:m3::Ds T3305M T1-6(5495); P1-vv::Ac r1sc:m3::Ds T3305N T1-6e; P1-vv::Ac r1sc:m3::Ds T3305O T1-6(028-13); P1-vv::Ac r1-sc:m3::Ds T3306C T1-7(4444); P1-vv::Ac r1sc:m3::Ds T3306D T1-7(4405); P1-vv::Ac r1sc:m3::Ds T3306H T1-8(6591); P1-vv::Ac r1sc:m3::Ds T3306L T1-9(8302); P1-vv::Ac r1sc:m3::Ds T3306M T1-9(6762); P1-vv::Ac r1sc:m3::Ds T3306N T1-10g; P1-vv::Ac r1sc:m3::Ds T3307A Ac8178-2S T3307D Ac8163-3S T3307F Ac8183-3 T3308A Ac8200-4S T3308B Ac6076-5L T3308D Ac8175-5S T3308E Ac8193-5S T3308F Ac8179-5L T3308G Ac8181-5L T3308H Ac8186-5L T3309A Ac8196-5L T3309B Ac6062-6L T3309C Ac6063-6 T3309D Ac8172-6L T3309E Ac8184-6 T3310A Ac8161-7 T3310B Ac8173-7L T3310D Ac8190-7 T3310E Ac8194-7 T3310F Ac8185-7L T3311A Ac8162-8 T3311B Ac8182-8L T3311D Ac6059-10S T3311F Ac8180-10 T3312A Ds-1S1 P1-vv::Ac Dek1 T3312B Ds-1S2 P1-vv::Ac Dek1 T3312C Ds-1S3 P1-vv::Ac Dek1 T3312D Ds-1S4 P1-vv::Ac Dek1 T3312E Ds-1L1 P1-vv::Ac Bz2 T3312F Ds-1L3 Bz2; Ac T3312G Ds-2S1 B1-Peru; P1-vv::Ac T3312I Ds-2S3 B1-Peru; P1-vv::Ac T3312J Ds-2S4; P1-vv::Ac T3312L Ds-3L1 A1 Sh2; P1-vv::Ac T3312M Ds-3L2 A1 Sh2; P1-vv::Ac T3312O Ds-4L1 C2; P1-vv::Ac T3312P Ds-4L3 C2; P1-vv::Ac T3312Q Ds-4L4 C2; P1-vv::Ac T3312S Ds-4L6 C2; P1-vv::Ac T3312T Ds-4L7 C2; P1-vv::Ac T3312U Ds-5L1 A2 Pr1 Bt1; P1vv::Ac T3312V Ds-5S1 A2 Pr1 Bt1; P1vv::Ac T3312W Ds-5S2 A2 Pr1 Bt1; P1vv::Ac T3312Y Ds-9S1 C1-I wx1; Ac T3312Z Ds-10L2 R1-sc; P1-vv::Ac

B-A TRANSLOCATIONS (BASIC

SET) 122A TB-1La 122B TB-1Sb 222A TB-1Sb-2L4464 222B TB-3La-2S6270 327A TB-3La 327B TB-3Sb 421A TB-4Sa 423E TB-4Lf 522A TB-5La 522C TB-5Sc 614B TB-6Sa 614C TB-6Lc 717A TB-7Lb 719A TB-7Sc 809A TB-8Lc 922B TB-9Lc Wc1 922D TB-9Sd X21B TB-10L19 X22A TB-10Sc **B-A TRANSLOCATIONS (OTHERS)** 122C TB1-Lc 126G TB-1Sb P1-vv::Ac bz2-m::Ds A1 A2 Bz1 C1 C2 R1 2211 TB-2Sa B1-Peru 221J TB-2Sb 225A TB-3La-2L7285 225B TB-1Sb-2Lc 320P TB-1La-3Le 320Q TB-5La-3L(1) 320R TB-5La-3L(2) 320S TB-5La-3L(3) 327C TB-3Lc 327D TB-3Ld 329Z T3-B(La); T3-B(Sb) 331A TB-1La-3L5267 331B TB-1La-3L4759-3 331C TB-1La-3L5242 331E TB-3Lf 331F TB-3Lg 331G TB-3Lh 331H TB-3Li 3311 TB-3Lj 331J TB-3Lk 331K TB-3LI 331L TB-3Lm 420B TB-9Sb-4L6504 4201 TB-9Sb-4L6222 421B TB-1La-4L4692 421C TB-7Lb-4L4698 423A TB-4Lb 423B TB-4Lc 423C TB-4Ld 423D TB-4Le 423F TB-1Sb-2L4464-4f 425A TB-4Sg 425B TB-4Lh 425C TB-4Li 4281 Dt6 TB-4Sa 522B TB-5Lb 522D TB-5Ld 528D TB-1La-5S8041 614A TB-6Lb 627E TB-6Lc Dt2; A2 C1 C2 R1 a1 -720A TB-7Lb Dt3; a1-m1::rDt (Neuffer)

806A TB-8La

806B TB-8Lb

921A TB-9La

921B TB-9Sb 921C TB-9Lc 922C TB-9Sb C1-I 929A IsoB9-9 isochromosome Type 1 929B IsoB9-9 isochromosome Type 2 929C T9-B(La); T9-B(Sb) 929D IsoB9-9 isochromosome (original) 929F T9-B (La + Sb) 929G TB-9Sb; T9-8(4453) 929H TB-9Sb; T9-3(6722) 9291 TB-9Sb-1866 929J TB-9Sb-1852 929K TB-9Sb-2150 929L TB-9Sb-14 929M TB-9Sb-2010 TX40D TB-1Sb P1-vv::Ac r1sc:m3::Ds TX40E TB-3La a1-m Dt1 TX40F TB-8Lc Ac2 bz2-m::Ds TX40G TB-9Sd a1-m Dt1 TX40H TB-9Lc Ac8168-9 r1sc:m3::Ds TX40I TB-10L18 P1-vv::Ac r1sc:m3::Ds X21A TB-10La X21C TB-10Ld X22B T1La-B-10L18 X22C TB-10Lb X30A TB-10L1 X30B TB-10L2 X30C TB-10L3 X30D TB-10L4 X30E TB-10L5 X30F TB-10L6 X30G TB-10L7 X31A TB-10L8 X31B TB-10L9 X31C TB-10L10 X31D TB-10L11 X31E TB-10L12 X31G TB-10L14 X31H TB-10L15 X311 TB-10L16 X31J TB-10L17 X32A TB-10L18 X32C TB-10L20 X32D TB-10L21 X32E TB-10L22 X32F TB-10L23 X32G TB-10L24 X32H TB-10L25 X32I TB-10L26 X32J TB-10L27 X32K TB-10L28 X33A TB-10L29 X33B TB-10L30 X33C TB-10L31 X33D TB-10L32 X33E TB-10L33 X33F TB-10L34 X33G TB-10L35 X33H TB-10L36 X34A TB-10L37 X34B TB-10L38 INVERSION

I143A Inv1a (1.S.30; 1.L.50) I143B Inv1c (1.S.30; 1.L.01) I143C Inv1d (1.L.55; 1.L.92) I143D Inv1k (1.L.46; 1.L.82) I243A Inv2b (2S.06; 2L.05) I243B Inv2h (2L.13; 2L.51) 1444A Inv2a (2S.70; 2L.80) 1343A Inv3a (3L.38; 3L.95) I343B Inv3b (3L.21; 3L.70) 1343C Inv3c (3L.05; 3L.95) I343D Inv3(8582) (3S.55; 3L.82) 1443A Inv4b (4S.10; 4L.12) 1443B Inv4c (4S.89; 4L.62) 1443C Inv4a (4L.30; 4L.90) 1443D Inv4d (4L.40; 4L.96) 1443E Inv4f (4L.17; 4L.63) I543A Inv4e (4L.16; 4L.81) 1543B Inv5a (5S.05; 5L.72) I743A Inv5(8623) (5S.67; 5L.69) 1743B Inv6d (6S.70; 6L.33) I743C Inv6(3712) (6S.76; 6L.63) 1743D Inv6a (6S.76; 6L.63) 1843A Inv6e (6S.80; 6L.32) 1943A Inv7f (7L.17; 7L.61) 1943B Inv7(8540) (7L.12; 7L.92) 1943C Inv7(3717) (7S.32; 7L.30) 1943E Inv7a (7L.05; 7L.95) IX43A Inv8a (8S.30; 8L.15) 1344A Inv9a (9S.70; 9L.90) IX43B Inv9b (9S.05; 9L.87)

RECIPROCAL TRANSLOCATIONS (wx1 AND Wx1 MARKED)

wx01A T1-9c (9L.22; 1.S.48); wx1 wx01B T1-9(5622) (9L.12; 1.L.10); wx1 wx02A T1-9(4995) (9S.20; 1.L.19); wx1 wx02AA T1-9(4995) (9S.20; 1.L.19); wx1 wx03A T1-9(8389) (9L.13; 1.L.74); wx1 wx04A T2-9c (9S.33; 2S.49); wx1 wx05A T2-9b (9L.22; 2S.18); wx1 wx06A T2-9d (9L.27; 2L.83); wx1 wx07A T3-9(8447) (9L.14; 3S.44); wx1 wx08A T3-9c (9L.12; 3L.09); wx1 wx09A T3-9(8562) (9L.22; 3L.65); wx1 wx10A T4-9e (9L.26; 4S.53); wx1 wx11A T4-9g (9L.27; 4S.27); wx1 wx12A T4-9(5657) (9S.25; 4L.33); wx1 wx13A T4-9b (9L.29; 4L.90); wx1 wx14A T5-9c (9L.10; 5S.07); wx1 wx14B T5-9(022-11) (9L.27; 5S.30); wx1 wx15A T5-9(4817) (9S.07; 5L.06); wx1 wx16A T5-9d (9L.10; 5L.14); wx1 wx17A T5-9a (9S.17; 5L.69); wx1 wx18A T6-9(4778) (9L.30; 6S.80); wx1 wx19A T6-9a (9L.40; 6S.79); wx1 wx19B T6-9e (9L.24; 6L.18); wx1 wx20A T6-9b (9S.37; 6L.10); wx1 v 1 wx21A T6-9(4505) (9ctr.00; 6L.13); wx1 wx22A T7-9(4363) (9ctr.00; 7ctr.00); wx1 wx23A T7-9a (9S.07; 7L.63); wx1 wx24A T8-9d (9S.16; 8L.09); wx1 wx25A T8-9(6673) (9S.31; 8L.35); wx1

wx26B T9-10(059-10) (9S.31;

10L.53); wx1 wx27A T9-10b (9S.13; 10S.40); wx1 Wx30A T1-9c (9L.22; 1.S.48); Wx1 Wx30B T1-9(4995) (9S.20; 1.L.19); Wx1 Wx30C T1-9(8389) (9L.13; 1.L.74); Wx1 Wx31A T2-9c (9S.33; 2S.49); Wx1 Wx31B T2-9b (9L.22; 2S.18); Wx1 Wx31C T2-9d (9L.27; 2L.83); Wx1 Wx32A T3-9(8447) (9L.14; 3S.44); Wx1 Wx32B T3-9(8562) (9L.22; 3L.65); Wx1 Wx32C T3-9c (9L.12; 3L.09); Wx1 Wx33A T4-9e (9L.26; 4S.53); Wx1 Wx33B T4-9(5657) (9S.25; 4L.33); Wx1 Wx33C T4-9g (9L.27; 4S.27); Wx1 Wx34A T5-9c (9L.10; 5S.07); Wx1 Wx34B T5-9(4817) (9S.07; 5L.06); Wx1 Wx34C T4-9b (9L.29; 4L.90); Wx1 Wx35A T5-9(8386) (9S.13; 5L.87); Wx1 Wx35B T5-9a (9S.17; 5L.69); Wx1 Wx35C T5-9d (9L.10; 5L.14); Wx1 Wx36A T6-9(4778) (9L.30; 6S.80); Wx1 Wx37A T6-9(8768) (9S.61; 6L.89); Wx1 Wx37B T7-9(4363) (9ctr.00; 7ctr.00); Wx1 Wx37C T6-9(4505) (9ctr.00; 6L.13); Ŵx1 Wx38A T7-9a (9S.07; 7L.63); Wx1 Wx38B T8-9d (9S.16; 8L.09); Wx1 Wx38C T8-9(6673) (9S.31; 8L.35); Wx1 Wx39A T9-10(8630) (9S.28; 10L.37); Wx1 Wx39B T9-10b (9S.13; 10S.40); Wx1 PHENOTYPE ONLY Kernel Mutants blotched aleurone Bh*-86-1381-1 Bh-Tu*-Mumm brittle endosperm bt*-011-11 bt*-1979-14 bt*-1979-16 bt*-1982 bt*-4380 bt*-4539 bt*-4973 bt*-60-151 bt*-8101 bt*-8102 bt*-83-84-3541-1 bt*-84-4 bt*-84-5

bt*-84-5091-9

bt*-84-5257-1

bt*-85-3096-6

bt*-85-3098-15

bt*-85-3099-16

bt*-85-3372-27

bt*-84-6

bt*-87-2132-39 bt*-87-2297-1 bt*-87-88-2630-28 bt*-88-3177-14 bt*-88-3177-2 bt*-88-3177-7 bt*-8804 bt*-8805 bt*-89-1265-18 bt*-90286 bt*-A4109 bt*-Briggs-1998-1 bt*-F-15 bt*-F-23 bt*-F-31 bt*-F-34 bt*-F-36 bt*-F-8 bt*-F10 bt*-Panzio bt*-PetersonResHy bt*-PI200197 bt*-PI251887 bt-gm*-84-5045-39 bt-gm*-85-3017-24 bt-sh*-PI251930 brown endosperm brn*-1981-1 brn*-1981-2 brn*-1981-3 brn*-1981-4 brn*-84-23 brn-bt*-81-F-24 brown kernel lt-brn-sml*-86-1302-37 bnk*-N747B brown pericarp bp*-Coates bp*-Lima100 bp*-Lima94 bp*-PI183639 collapsed endosperm cp*-N1076A cp*-N1078B cp*-N1092A cp*-N1104B cp*-N1275A cp*-N1294 cp*-N1311C cp*-N1313 cp*-N1319A cp*-N1338 cp*-N1369 cp*-N1379A cp*-N1385 cp*-N1393A cp*-N1399A cp*-N1430 cp*-N1436A cp*-N2356B cp*-N524E cp*-N628 cp*-N863A cp*-N886 cp*-N918A cp*-N937A cp*-N968A cp*-N991

colored plumule Pu*-1976-RYDCO

....

colorless aleurone cl*-85-86-3559-1 cl*-86-1478-16 cl*-N1345A cl*-N1346A cl*-N720E cl*-N795 cl*-N801 cl*-N818A cl-crown-pale-base*-85-86-3558-23 r*-86-1590-6

colorless floury

clf*-N2425B

crumpled kernel

crp*-N1429A crp*-N2207 dnj*-N1534

defective crown

dcr*-N1053A dcr*-N1176B dcr*-N1233A dcr*-N1409 dcr*-N871A dcr*-N925A **defective kernel** de*-1276 de*-17

de*-1276 de*-17 De*-1976-RYDCO de*-2080 de*-2192 de*-2424 de*-2915 de*-2919 de*-3188 de*-4309 de*-5044Hagie de*-85-86-3567-35 de*-8505 de*-8507 de*-8508 de*-86-1472-6 de*-8808 de*-8809 de*-8810 de*-8811 de*-8818 de*-N1002A de*-N1007A de*-N1057B de*-N1122A de*-N1136A de*-N1162 de*-N1166 de*-N1177A de*-N1196 de*-N1310B de*-N1336B de*-N1345B de*-N1390A de*-N1400 de*-N1420 de*-N232B de*-N260D de*-N279B de*-N296C de*-N307D de*-N400A

de*-N408D de*-N513B de*-N528C de*-N540A de*-N573A de*-N660C de*-N674A de*-N748B de*-N760B de*-N877A de*-N891A de*-N902A de*-N903 de*-N929 de*-N932 de*-N970A de*-N979A de-sml*-8813 de-sml*-8814 de-sml*-8815 de-sml*-8816 de-sml*-8817 def*-8101 def*-8102 def*-8103 def*-8104 def*-8105 def*-8106 def*-8107 def*-8108 def*-8109 def*-8110 def*-8111 def*-8112 def*-8113 def*-8114 def*-8116 def*-8118 def*-8119 def*-8120 def*-8121 def*-8122 def*-8123 def*-8125 def*-8126 def*-8127 def*-8128 def*-8130 def*-8131 def*-8132 def*-8134 def*-8136 def*-8137 def*-8138 def*-8201 def*-84-22 def*-84-28 def*-84-29 def*-84-30 def*-84-31 def*-84-37 def*-84-40 def*-84-41 def*-84-45 def*-84-48 def*-84-49 def*-84-53 def*-84-54 def*-84-58 def*-84-60 dek*-1979-32 dek*-1981-1 dek*-74-0060-4 dek*-84-14

dek*-86-1496-35 dek*-8902 dek*-8903 dek*-8904 dek*-99-6273-1 dek*-F-16 dek*-PS602 wrinkled-de*-86-1473-5 wrinkled-gm*-86-1582-32 dented kernel dnt*-N1185A dnt*-N1326 dnt*-N884A dilute aleurone dil*-N452D dil*-N524C dil*-N743A discolored kernel dsc*-N1084 dsc*-N749 pig*-84-5080-18 pig*-86-1178-6 pig-gm*-1979-51 pig-gm*-1979-52 pig-gm*-1979-9 pig-gm*-1981-A pig-gm*-1981-B pig-gm*-1982-3 pig-gm*-5020-14 pig-gm*-84-5078-10 pig-gm*-86-1200-3 pig-gm*-87-2275-15 pig-gm*-87-2305-22 pig-gm*-Briggs 1998-1 pig-gm*-Briggs 1998-2 pig-gm*-PI251930 ptd-dek*-1976-RYDCO , ptd-dek*-1981 ptd-dsc*-87-2490-22 sml-pig-gm*-88-89-3554-44 dull endosperm du*-Sprague etched endosperm et*-3130 et*-3576 et*-5191 et*-6-9321-1 et*-73-766-1 et*-8-M-4 et*-84-5266-26 et*-84-5270-40 et*-85-86-3518-21 et*-86-1493-6 et*-8616 et*-87-2349-13 et*-88-89-3525-22 et*-88-89-3554-33 et*-89-90-1547-19 et*-89-90-1548-13 et*-Mu1767 et*-Mu2349 et-mutable*-87-2519-31 et*-N1078A0 et*-N1361 et*-N164B et*-N185B et*-N357C et*-N403A

et*-N489A

et*-N509A et*-N514A et*-N516C et*-N518B et*-N561B et*-N571A et*-N586A et*-N615A et*-N617 et*-N629F et*-N643A et*-N670A et*-N680C et*-N701A et*-N702A et*-N723A et*-N724D et*-N745 et*-N76D et*-N789 et*-N798A et*-N818B et*-N837A et*-N861 et*-N864A et*-N868A Et*-N876A et*-N953A et*-N965 et*-Osturana et-de*-88-89-3526-8 et-gm*-86-1475-34 et-gm*-86-87-1742-38 et-gm*-87-2502-19 granular-o*-84-5274-30 sml-et*-85-3522-29 su-sh-et*-98-1887-1 flint kernel flint*-87-2126-22 floury endosperm fl*-67-412 fl*-78-513 fl*-83-3386-19 fl*-84-44 fl*-8515 fl*-Mojo fl*-N1145A fl*-N1163 fl*-N1208A fl*-N1287 fl*-N1308A fl*-N1333B fl*-N1426 fl*-N7B-65-1294 fl*-N872A fl*-shoepeg fl*-sucaxo fl-cap*-1981 fl-cap*-66-519-1 fl-de*-8905 sml-fl-cap*-1981 germless brn-gm*-85-3315-6 brn-gm*-85-86-3587-46 brn-gm*-85-86-3595-3 brn-gm*-86-1161-5 emb*-85-3100-32 emb*-85-3378-8 gm*-1387

gm*-1979-11

gm*-1979-53

gm*-5234 gm*-6372 gm*-84-5087-4 gm*-8510 gm*-86-1011-2 gm*-86-1013-4 gm*-86-1097-3 gm*-86-1335-1 gm*-86-1591-7 gm*-86-87-1742-18 gm*-87-2456-9 gm*-N1303 gm*-N1311B gm*-N1312 gm*-N1319B gm*-N1390C gm*-N198C gm*-N869A gm*-N928B o-gm*-84-44 o-gm*-98-5733-1 pr-gm*-86-1109-1 sh-gm*-84-5045-32 sh-gm*-88-3082-4 sml-o-gm*-86-1323-4 sml-dsc-gm*-95W-240 w-o-gm*-85-3135-4 w-o-gm*-86-1349-1 w-o-gm*-88-3270-10 y-gm*-85-3288-28 glassy endosperm ae*-6921 ae*-84-7 ae*-92-1365-3 ae*-96-1449-1 ae*-Briggs 1998-1 ae*-Mu32 lemon white lw*-1979-45 lw*-1979-46 lw*-1981 lw*-1981-10 lw*-1998-1 lw*-73-2548 lw*-82-1 lw*-85-3076-28 lw*-85-3252-5 lw*-86-87-1828-7 lw*-88-3177-2 lw*-89-90-3609-5 lw*-87-2407-36 lw*-B73 lw-y-pg*-1998-4 lw-y-pg*-Funk-81-5 lw-y-pg*-Pl200303 pale-y*-83-84-3549-13 pale-y*-84-5082-33 pale-y*-84-5167-48 pale-y*-84-5288-19 pale-y*-85-3005-22 pale-y*-85-3006-30 pale-y*-85-3007-40 pale-y*-85-3010-40 pale-y*-85-3016-15 pale-y*-85-3017-31 pale-y*-85-3065-25 pale-y*-85-3069-6 pale-y*-85-3087-29 pale-y*-85-3377-2 pale-y*-86-1155-3 pale-y*-88-89-3551-35 pale-y*-89-1313-3
pale-y*-89-90-1525-23 pale-y*-90-3220-1 pale-y*-90-3220-26 w*-N677 w*-N70 wh*-BMS-Rhoades y-pg*-1981-17 y-pg*-84-5275-14 y-pg*-85-3042-7 y-pg*-85-3044-34 y-pg*-85-3078-41 y-pg*-85-3562-31 y-pg*-85-86-3533-9 y-pg*-86-1151-7 y-pg*-86-87-1723-27 y-pg*-87-2160-16 marbled aleurone Dap*-3 dap*-86-8126-2 Dap*-89-3177.0 Dap*-89-3177.5 Dap*-89-3178.3 Marbled*-Sprague miniature kernel de*-N663C mn*-1981-51 Mn*-866248U mn*-87-2215-17 mn*-87-2346-20 mn*-87-2347-36 mn*-87-2422-14 mn*-88-3177-2 mn*-88-89-3509-40 mn*-88-89-3564-25 mn*-N1536 Mn*-N273C mn*-N378C mn*-PI239110 mn*-PI245132 sml-k*-97-4784-1 mosaic aleurone color msc*-N593A mottled aleurone Mt*-2313 Mt*-65-2238 Mt*-N1343A Mt*-Sprague multiple aleurone layer Mal*-Galinat Mal*-Nelson Mal*-PI515052 opaque endosperm lrg-o-crown*-89-1275-17 o*-1979-54 o*-1981-11-Fox-19 o*-1981-3-Fox-7 o*-1981-5-Fox-9 o*-1981-6-Fox-10 o*-1981-8-Fox-15 o*-1982 o*-1982-2-Fox-13 o*-2-Fox-6 o*-3015 o*-73-798-1 o*-76GH-76 o*-8129 o*-82:288-1 o*-83-84-3549-39

o*-84-5025-15 o*-84-5025-17 o*-84-5025-8 o*-84-5044-35 o*-84-5091-13 o*-84-5094-4 o*-84-5095-23 o*-84-5117-16 o*-84-5261-37 o*-84-5270-40 o*-84-5282-27 o*-84-5295-13 o*-84-5321-28 o*-84-5324-29 o*-84-8a o*-85-3084-8 o*-85-3088-3 0*-85-3335-35 o*-86-87-1767-10 o*-87-2285-33 o*-87-2350-2 o*-88-89-3550-27 o*-97-4784-6 o*-Briggs-1998-1 o*-BS20-Fox-3 o*-Fox-12 o*-N1008A o*-N1037A o*-N1039 o*-N1046 o*-N1065A o*-N1074A o*-N1119A o*-N1189A o*-N1195A o*-N1218 o*-N1228 o*-N1244A o*-N1245 o*-N1298 o*-N1301 o*-N1310A o*-N1320A o*-N1355 o*-N1358 o*-N1422 o*-N436C o*-N696A o*-N829C o*-N870 o*-N885A o*-N895 o*-N899 o*-N906A o*-N908 o*-N915 o*-N930 o*-N938A o*-N969A o*-N973 o*-N989 o*-N995A o*-N996 o*-PI195245 o*-PI200285 o-de*-1981-9-Fox-18 o-dek*-6 o-dek*-87-2279-12 o-gm*-83-3398-6 o-gm*-84-33 o-sh*-86-1297-2 o-sh*-F1979-19 os*-2162 pro*-Mu1

sh-o*-87-2455-7 sml-o*-87-88-2692-5 sml-o*-PI195243 pale aleurone pa*-N893A pa*-N917A pale-Cl*-86-1476-14 pale-CI*-LGC65 pale-Cl-gm*-84-5251-1 pale aleurone, with pigmented sectors pa-Cl*-m-86-1474-39 pa-Cl*-m-86-1478-4 pa-Cl*-m-87-2224-33 pale crown pa-crown*-85-86-3558-23 pale yellow endosperm lw*-8509 lw*-8513 lw*-8514 pale-endo*-73-3 pale-endo*-73-4004 pale-y*-83-3382-16 pale-y*-83-3382-18 pale-y*-83-84-3548-25 pale-y*-84-5103-16 pale-y*-85-3016-30 pale-y*-85-3036-38 pale-y*-85-3134-46 pale-y*-85-3374-13 pale-y*-85-3511-18 pale-y*-86-1155-2 pale-y*-87-2339-10 pale-y*-87-2350-2 pale-y*-87-2350-25 pale-Y*-87-2422-14 pale-y*-87-88-2679-1 pale-y-gm*-Rsssc-77-110 pale-y-o*-84-5288-2 pale-y-o*-86-1296-27 v*-84-5272-12 y*-84-5288-1 y*-85-3041-2 v*-85-3087-12 y*-85-3125-7 pitted kernel ptd*-N1425A ptd*-N660E ptd*-N738B ptd*-N855A ptd*-N901A ptd*-N923 purple pericarp PI*-CFS-69 red aleurone pr*-N707A pr*-N850 red pericarp r*-ch-Burbank-CFS-80 r*-ch-PI213730 red silk scar red-silk-scar*-MTC rough kernel rgh*-N1060

rgh*-N799A rgh*-N802 rgh*-N882 shrunken kernel pale-y-su-sh*-88-3133-28 sh*-1979-10 sh*-1981-14 sh*-1982-2 sh*-2927-Mumm sh*-2928-Mumm sh*-83-3328-24 sh*-84-3 sh*-84-5248-20 sh*-84-5317-44 sh*-85-3045-7 sh*-85-3104-27 sh*-85-3112-20 sh*-85-3375-38 sh*-8502 sh*-8503 sh*-8506 sh*-8511 sh*-8517 sh*-86-1565-17 sh*-87-2045-25 sh*-87-2045-6 sh*-87-2050-1 sh*-87-2050-3 sh*-87-2213-19 sh*-87-2215-12 sh*-87-2355-29 sh*-87-2406-3 sh*-87-2496-21 sh*-88-89-3540-1 sh*-8806 sh*-8807 sh*-8906 sh*-8907 sh*-97P-29-5 sh*-F-11 sh*-F-2 sh*-F-25 sh*-KERR sh*-N1105B sh*-N1320B sh*-N1341 sh*-N1366 sh*-N1519B sh*-N1969 sh*-N208C sh*-N252B sh*-N399A sh*-N627A sh*-N689 sh*-N741 sh*-N742 sh*-N750 sh*-N785A sh*-N819 sh*-N849 Sh*-N881A sh*-N887A sh*-N911 sh*-N961 sh*-PI596356 sh*-RJL sh-bt*-85-3392-31 sh-crown*-Briggs-1998-1 sh-de*-6607 sh-de*-RSSSC-117 sh-fl*-9180 sh-fl*-9392

rgh*-N1524

sh-o*-87-2410-24 sh-wx*-F-18 su-sh*-F-5

small kernel smk*-N1003 smk*-N1057A smk*-N1168A smk*-N1203 smk*-N1529 smk*-N215D smk*-N320 smk*-N433A Smk*-N845B smk*-N890A smk*-N942 smk*-N994A spotted aleurone cl-mut*-85-86-3564-1 cl-mut*-97-4782-9 cl-mut*-99-2170 coarse-mutable*-86-1417-7 Dt*-a; a1-m Dt*-b; a1-m Dt*-c; a1-m Dt*-d; a1-m Dt*-e; a1-m Dt*-f; a1-m Dt*-g; a1-m Dt*-h; a1-m Dt*-i; a1-m fine mut*-86-1283-45 spk*-N551A spk*-N600Ce spk*-N687A

sugary kernel

su*-1979-8 su*-83-3383-21 su*-84-5350-2 su*-85-3133-32 su*-8504 su*-8803 su*-89-1279-14 su*-L874261 su*-N1040 su*-N236C su*-N748A su*-N817 su-sh*-F-22

viviparous kernel

pale-vp*-87-2286-1 pale-vp*-87-2286-18 pale-vp*-87-2286-2 pale-vp*-87-2286-25 pale-vp*-87-2286-3 pale-y*-84-5027-22 pale-y*-84-5032-21 pale-y-vp*-83-3100-31 pale-y-vp*-83-3124-33 pale-y-vp*-84-5266-5 pale-y-vp*-85-3140-15 pale-y-vp*-85-3240-5 pale-y-vp*-85-3267-6 pale-y-vp*-85-3267-9 pale-y-vp*-85-3385-34 pale-y-vp*-86-1316-27 pale-y-vp*-88-3177-14 ps*-85-3288-28 ps*-85-3492-36 ps*-85-86-3567-1 ps*-86-1105-2

ps*-86-1352-4 ps*-86-1499-3 ps*-86-87-1742-18 ps*-89-90-1588-37 ps*-90-3222-27 ps*-90-91-8549-7 ps*-96-5032-6 ps*-98-5691-5 ps*-99-2157-1 ps*-Mu85-3061-21 ps*-Mu86-1105-1 vp(ps)*-86-1449-3 vp(ps)*-86-1565-17 vp*-0118 vp*-0315 vp*-2-8c vp*-2000PR-1 vp*-73-30173 vp*-8101 vp*-8104 vp*-8106 vp*-8107 vp*-8108 vp*-8109 vp*-8110 vp*-8111 vp*-8112 vp*-8113 vp*-8114 vp*-8115 vp*-8116 vp*-8117 vp*-8201 vp*-8203 vp*-8204 vp*-8208 vp*-8209 vp*-8210 vp*-8211 vp*-84-5079-29 vp*-84-5279-29 vp*-84-5315-29 vp*-8418 vp*-8420 vp*-85-3011-11 vp*-85-3017-9 vp*-85-3040-29 vp*-85-3042-7 vp*-85-3099-16 vp*-85-3135-4 vp*-85-3182-6 vp*-85-3250-1 vp*-85-3339-25 vp*-85-3422-13 vp*-85-86-3567-20 vp*-86-1109-1 vp*-86-1407-15 vp*-86-1573-27 vp*-87-2146-18 vp*-87-2213-19 vp*-87-2224-3 vp*-87-2274-37 vp*-87-2299-1 vp*-87-2339-1 vp*-88-89-3555-1 vp*-88-89-8625-5 vp*-89-1181-8 vp*-89-1279-14 vp*-89-90-1561-18 vp*-93-1017-2 vp*-95-2086-1 vp*-Funk-8101 vp*-N702C vp*-PI183642

vp*-PI185847 vp*-Pl200204 vp*-Pl254854 vp*-PI430482 vp-de*-87-2406-23 vp-Y*-86-1267-31 vp-Y*-86-1361-7 w-vp*-84-5020-4 w-vp*-85-3014-6 w-vp*-85-3304-13 w-vp*-91-1859-8 w-vp*-91-2544-7 w-vp*-92-1408-1 y-vp*-0730 y-vp*-1982-1 y-vp*-1982-2 y-vp*-2062-Coop y-vp*-60-153 y-vp*-6961 y-vp*-73-2656 y-vp*-80-6118 y-vp*-81-5 y-vp*-8102 y-vp*-8103 y-vp*-8105 y-vp*-8206 y-vp*-8207 y-vp*-83-1A ý-vp*-83-3101-36 y-vp*-8336 y-vp*-84-13 y-vp*-8419 y-vp*-85-3572-30 y-vp*-8512 Y-vp*-87-2339-10 y-vp*-87-2340-36 y-vp*-8701 y-vp*-88-89-3563-33 y-vp*-88-89-3613-25 y-vp*-99-2226-1 waxy endosperm wx*-0208 wx*-98-1406-6 wx*-N66C white cap kernel Wc*-1982-1 Wc*-Funk-81-22 Wc*-Funk-81-23 wc*-87-2307-1 Wc*-DC wc*-N1349 white endosperm y*-1981 y*-1981-14 y*-1981-18 y*-1982-3 ý*-73-2 y*-73-2262-1 v*-73-2262-2 y*-73-2394 y*-73-324-1 v*-73-4035 y*-73-426 v*-84-8b y*-87-2201-3 y*-Funk-81-12 ý*-Funk-81-13 y*-Funk-81-2 y*-Funk-81-20 y*-Funk-81-9

y*-Sprague

wrinkled kernel wr*-N1389A wr*-N156C wr*-N612A Seedling Mutants aberrant seedling abbt*-N399B abbt*-N454C abbt*-N594B abbt*-N595B abbt*-N712B adherent leaf ad*-87-2285-18 ad*-N111 ad*-N194 ad*-N1958 ad*-N253 ad*-N273B ad*-N316 ad*-N377B ad*-N512B ad*-N551B ad*-N556D ad*-N582 ad*-N605B ad*-N640 ad*-N664 ad*-N682B ad*-N877B ad*-N984B albino seedling nlw*-85-3357-17 peach-albino-mutable*-87-2209-30 peach-albino*-N1983B w*-002-12 w*-005-19 w*-009-6 w*-010-4 w*-011-11 w*-017-14-A w*-017-14-B w*-020-9 w*-034-16 w*-037-14 w*-039-15 w*-2065 w*-2246 w*-3858 w*-4670 w*-4873 w*-5201 w*-5255 w*-5267 w*-56-3003-12 w*-5602 w*-5622 w*-5787 w*-5863 w*-6293 w*-6504 w*-6575 w*-7165 w*-7219 w*-7281 w*-74-1674-1 w*-78-297-3 w*-8105W

y*-syn-DOCI

y*-Williams-60-154

w*-8201
W [*] -84-5205-46
W -84-5222-30
W -00-0009-11 W* 95 2552 25
w*_85_3559_30
w*_8529
w*-8549
w*-8569
w*-86-1078-6
w*-86-1265-30
w*-86-2222-5
w*-8630
w*-8635
w*-8637
w*-8670
w*-87-2215-8
w*-8925
w*-8963
w*-8970
w*-8977
w*-8992
w*-9235
w*-B-75
w*-BYD
w*-Canario Hembrilla Enano
w*-Fino
w*-MontenegrinFlint
w*-N103
W^-N109
W [*] -N115
W - N I 26A
W [*] -N137D w* N14E
W -IN143 w* N147D
W - N 147D w* N167
w*-N176
W -IN170
w*_N178A
w*-N178A w*-N1834
w*-N178A w*-N1834 w*-N1839
w*-N178A w*-N1834 w*-N1839 w*-N1854
w*-N178A w*-N1834 w*-N1839 w*-N1854 w*-N1865
w*-N178A w*-N1834 w*-N1839 w*-N1854 w*-N1865 w*-N1890
w*-N178A w*-N1834 w*-N1839 w*-N1854 w*-N1865 w*-N1890 w*-N1909
w*-N178A w*-N1834 w*-N1839 w*-N1854 w*-N1865 w*-N1890 w*-N1909 w*-N191
w*-N178A w*-N1834 w*-N1839 w*-N1854 w*-N1865 w*-N1890 w*-N1909 w*-N191 w*-N1915
<pre>w*-N178A w*-N1834 w*-N1839 w*-N1854 w*-N1865 w*-N1890 w*-N1909 w*-N191 w*-N1915 w*-N1915 w*-N192</pre>
<pre>w*-N178A w*-N1834 w*-N1834 w*-N1854 w*-N1865 w*-N1865 w*-N1890 w*-N1909 w*-N191 w*-N1915 w*-N1915 w*-N192 w*-N21A</pre>
<pre>w*-N178A w*-N1834 w*-N1839 w*-N1854 w*-N1865 w*-N1800 w*-N1909 w*-N191 w*-N1915 w*-N1915 w*-N192 w*-N21A w*-N22</pre>
<pre>w*-N178A w*-N1834 w*-N1839 w*-N1854 w*-N1865 w*-N1800 w*-N1909 w*-N191 w*-N1915 w*-N1915 w*-N192 w*-N21A w*-N22 w*-N220</pre>
<pre>w*-N178A w*-N1834 w*-N1834 w*-N1854 w*-N1865 w*-N1800 w*-N1909 w*-N191 w*-N1915 w*-N192 w*-N192 w*-N21A w*-N22 w*-N220 w*-N23</pre>
<pre>w*-N178A w*-N1834 w*-N1839 w*-N1854 w*-N1865 w*-N1800 w*-N1909 w*-N191 w*-N1915 w*-N1915 w*-N192 w*-N21A w*-N22 w*-N220 w*-N23 w*-N24</pre>
<pre>w*-N178A w*-N1834 w*-N1839 w*-N1854 w*-N1865 w*-N1800 w*-N1909 w*-N191 w*-N1915 w*-N1915 w*-N192 w*-N21A w*-N22 w*-N220 w*-N23 w*-N23 w*-N24 w*-N278A</pre>
<pre>w*-N178A w*-N1834 w*-N1839 w*-N1854 w*-N1865 w*-N1890 w*-N1909 w*-N1911 w*-N1915 w*-N1915 w*-N192 w*-N21A w*-N22 w*-N220 w*-N23 w*-N23 w*-N24 w*-N278A w*-N278A w*-N285</pre>
<pre>w*-N178A w*-N1834 w*-N1839 w*-N1854 w*-N1865 w*-N1800 w*-N1909 w*-N1911 w*-N1915 w*-N1915 w*-N192 w*-N21A w*-N22 w*-N220 w*-N23 w*-N23 w*-N24 w*-N278A w*-N285 w*-N304A</pre>
<pre>w*-N178A w*-N1834 w*-N1834 w*-N1854 w*-N1865 w*-N1890 w*-N1909 w*-N1909 w*-N1915 w*-N1915 w*-N192 w*-N220 w*-N220 w*-N220 w*-N23 w*-N24 w*-N24 w*-N24 w*-N278A w*-N285 w*-N304A w*-N318</pre>
<pre>w*-N178A w*-N1834 w*-N1834 w*-N1854 w*-N1865 w*-N1890 w*-N1909 w*-N191 w*-N1915 w*-N192 w*-N21A w*-N22 w*-N220 w*-N23 w*-N24 w*-N24 w*-N278A w*-N24 w*-N278A w*-N318 w*-N318 w*-N318 w*-N324</pre>
<pre>w*-N178A w*-N1834 w*-N1834 w*-N1839 w*-N1854 w*-N1865 w*-N1890 w*-N1909 w*-N191 w*-N1915 w*-N192 w*-N21A w*-N22 w*-N220 w*-N23 w*-N24 w*-N24 w*-N278A w*-N24 w*-N278A w*-N318 w*-N318 w*-N318 w*-N344 w*-</pre>
<pre>w*-N178A w*-N1834 w*-N1834 w*-N1839 w*-N1854 w*-N1865 w*-N1890 w*-N1909 w*-N191 w*-N1915 w*-N192 w*-N21A w*-N22 w*-N22 w*-N22 w*-N23 w*-N24 w*-N278A w*-N24 w*-N278A w*-N318 w*-N318 w*-N332 w*-N346A w*-N346A w*-N346A</pre>
<pre>w*-N178A w*-N1834 w*-N1834 w*-N1839 w*-N1854 w*-N1865 w*-N1890 w*-N1909 w*-N191 w*-N1915 w*-N192 w*-N21A w*-N22 w*-N22 w*-N22 w*-N23 w*-N24 w*-N278A w*-N24 w*-N278A w*-N318 w*-N318 w*-N335 w*-N346A w*-N355 w*-N346 w*-N355 w*-N355 w*-N346 w*-N355 w*-N346 w*-N355 w*-N346 w*-N355 w*-N346 w*-N355 w*-N346 w*-N46 w*-N46</pre>
<pre>w*-N178A w*-N1834 w*-N1834 w*-N1854 w*-N1855 w*-N1890 w*-N1909 w*-N191 w*-N1915 w*-N192 w*-N21A w*-N22 w*-N22 w*-N22 w*-N23 w*-N24 w*-N278A w*-N24 w*-N278A w*-N318 w*-N318 w*-N318 w*-N335 w*-N346A w*-N355 w*-N364 w*-N364</pre>
<pre>w*-N178A w*-N1834 w*-N1839 w*-N1854 w*-N1865 w*-N1800 w*-N1909 w*-N191 w*-N1915 w*-N192 w*-N192 w*-N21A w*-N220 w*-N23 w*-N24 w*-N278A w*-N24 w*-N278A w*-N304A w*-N318 w*-N335 w*-N346A w*-N355 w*-N364 w*-N367B w* 1004</pre>
<pre>w*-N178A w*-N1834 w*-N1834 w*-N1854 w*-N1865 w*-N1865 w*-N1909 w*-N191 w*-N1915 w*-N192 w*-N21A w*-N22 w*-N220 w*-N23 w*-N24 w*-N23 w*-N24 w*-N278A w*-N24 w*-N318 w*-N335 w*-N346A w*-N355 w*-N364 w*-N364 w*-N365</pre>
<pre>w*-N178A w*-N1834 w*-N1839 w*-N1854 w*-N1865 w*-N1800 w*-N1909 w*-N191 w*-N1915 w*-N191 w*-N1915 w*-N192 w*-N22 w*-N220 w*-N220 w*-N23 w*-N24 w*-N278A w*-N278A w*-N318 w*-N318 w*-N318 w*-N318 w*-N318 w*-N325 w*-N346A w*-N355 w*-N364 w*-N367B w*-N404 w*-N405A w*-N405A</pre>
<pre>w*-N178A w*-N1834 w*-N1834 w*-N1854 w*-N1865 w*-N1809 w*-N1909 w*-N1911 w*-N1915 w*-N191 w*-N21A w*-N22 w*-N220 w*-N23 w*-N23 w*-N23 w*-N24 w*-N285 w*-N304A w*-N318 w*-N325 w*-N355 w*-N364 w*-N355 w*-N364 w*-N404 w*-N405A w*-N403B w*-N404</pre>
<pre>w*-N178A w*-N1834 w*-N1834 w*-N1854 w*-N1865 w*-N1800 w*-N1909 w*-N191 w*-N1915 w*-N192 w*-N21A w*-N22 w*-N220 w*-N23 w*-N23 w*-N24 w*-N23 w*-N24 w*-N285 w*-N304A w*-N318 w*-N325 w*-N346A w*-N355 w*-N364 w*-N367B w*-N404 w*-N413B w*-N42</pre>
<pre>w*-N178A w*-N1834 w*-N1834 w*-N1839 w*-N1854 w*-N1865 w*-N1890 w*-N1909 w*-N191 w*-N1915 w*-N192 w*-N22 w*-N220 w*-N23 w*-N23 w*-N24 w*-N24 w*-N24 w*-N24 w*-N346 w*-N355 w*-N346A w*-N355 w*-N364 w*-N367B w*-N404 w*-N408 w*-N428B w*-N428B w*-N428B w*-N430B</pre>
<pre>w*-N178A w*-N1834 w*-N1834 w*-N1839 w*-N1854 w*-N1865 w*-N1800 w*-N1909 w*-N191 w*-N1915 w*-N192 w*-N220 w*-N22 w*-N220 w*-N23 w*-N24 w*-N24 w*-N24 w*-N24 w*-N24 w*-N346 w*-N355 w*-N346A w*-N355 w*-N364 w*-N364 w*-N364 w*-N404 w*-N405A w*-N428 w*-N428 w*-N436A</pre>
<pre>w*-N178A w*-N1834 w*-N1834 w*-N1839 w*-N1854 w*-N1865 w*-N1890 w*-N1909 w*-N191 w*-N1915 w*-N192 w*-N21A w*-N22 w*-N22 w*-N23 w*-N24 w*-N24 w*-N24 w*-N24 w*-N24 w*-N318 w*-N34A w*-N318 w*-N355 w*-N364 w*-N364 w*-N365 w*-N404 w*-N405A w*-N405A w*-N404 w*-N405A w*-N436A w*-N436A w*-N436A</pre>
<pre>w*-N178A w*-N1834 w*-N1839 w*-N1854 w*-N1865 w*-N1865 w*-N1909 w*-N191 w*-N191 w*-N191 w*-N191 w*-N22 w*-N21A w*-N220 w*-N23 w*-N24 w*-N220 w*-N23 w*-N24 w*-N285 w*-N304A w*-N318 w*-N332 w*-N335 w*-N346A w*-N355 w*-N364 w*-N365 w*-N404 w*-N405A w*-N4</pre>
<pre>w*-N178A w*-N1834 w*-N1839 w*-N1865 w*-N1865 w*-N1800 w*-N1909 w*-N191 w*-N191 w*-N191 w*-N191 w*-N192 w*-N22 w*-N220 w*-N220 w*-N23 w*-N24 w*-N24 w*-N278A w*-N24 w*-N278A w*-N346A w*-N335 w*-N346A w*-N355 w*-N364 w*-N355 w*-N364 w*-N355 w*-N404 w*-N405A w*-N428 w*-N428 w*-N438 w*-N448 w*-N448 w*-N448 w*-N448 w*-N448 w*-N448 w*-N448 w*-N448 w*-N448 w*</pre>

w*-8129

<pre>w*-N509B w*-N516A w*-N524A w*-N524A w*-N536A w*-N536A w*-N536A w*-N540B w*-N563A w*-N563A w*-N569B w*-N563A w*-N569B w*-N574 w*-N58 w*-N58 w*-N621B w*-N621B w*-N621B w*-N621B w*-N621B w*-N622B w*-N622B w*-N622B w*-N622A w*-N704 w*-N704 w*-N704 w*-N727A w*-N729A w*-N727A w*-N729A w*-N210543 w*-P1213747 w*-P1228176 w*-P1228176 w*-P1239103 w*-P1239103 w*-P1239103 w*-P1251099 w*-P1267179 w*-P1267179 w*-P1267179 w*-P1267179 w*-Singleton-16 w*-Singleton-16 w*-Singleton-22</pre>
w*-PI267179 w*-PI267204 w* Singlaton 16
w*-Singleton-16 w*-Singleton-22 w*-Singleton-24
w*-Singleton-25 w*-Singleton-31
w -rama w*-wh-mut wh*-053-4
wh*-2083 wh*-89-578-6
bilateral coleoptile blc*-N743C
blue flourescence-leaves bf*-99-2070-8
clasping leaf clsp*-87-2320-9 clsp*-88-89-3522-1

w*-N5

distorted dst*-N444A	Ιι *
ectopic coleoptile	* *
ect*-N641B	* *
flecked leaf	!*
flk*-N527A	*
flk*-N564B	* *
flk*-N630B	 *
flk*-N653A	* *
glossy leaf	 *
gl*-1-3(5476) gl*-218-1	* *
gl*-32TaiTaiTaSarga	*
gl*-4339 gl*-5201	* *
gl*-5249	!*
g *-56-3023-6 g *-56-3023-9	* *
gl*-56-3036-7	!*
g *-6 a *-60-2484-8	* *
gl*-63-2440-8	!*
gl^-85-3095-12 gl*-8654	^ *
g *-87-2215-8	* *
gi -87-2215-30 gi*-87-2278-34	 *
gl*-88-3142-4	* *
gi -97P-201-5 gi*-Bizika	 *
gl*-gl12 gl* LGC 117	* *
gl*-LGC-27	*
gl*-Loesch gl*-Manglesdorf	* *
gl*-Moritsa	*
gl*-N168 gl*-N203C	* *
gl*-N356	*
gl*-N546C gl*-N616A	* *
gl*-N656A	*
g *-N681A al*-N696E	* *
gl*-Pl184286	!*
gi^-Pi200203 gi*-Pi228177	^ *
gl*-Pl232974	* *
gi - Pi239101 gi*-Pi239110	 *
gl*-Pl251885	* *
gi - P1251933 gi*-P1262474	 *
gl*-Pl262476	* *
gl*-Pl262500	*
gl*-Pl267203 gl*-Pl267209	* *
gl*-Pl267212	*
gl-nec*-N516D al*-STI	* *
	*
gravity non-responsive primary root agt*-N491C	* *
~g	*
high chlorophyll fluorescence hcf*-88-3005-3	* *
	*

uteus yellow seedling *-009-6 *-017-3 -025-4 -062-3 -2215 -2673 -4356 -4545 -4871 -5-9b[X-7-39] -549-1 Derived Flint -56-3003-12 -570-2 Cincantin *-5783-straw -62-489-2 -6474 -6923 6973 -7165 -7281 -73-563 -77-564-2 -7748 -8321 -8376 -84-5205-13 -84-5225-33 -8495 -85-3215-2 -85-3225-4 -85-3457-40 -85-3513-1 -85-3541-20 -86-1112-1 -86-1354-9 -8613 -8634 -88-89-3555-13 -89-90-1552-10 -8966 -8970 '-d-8694 *-leng *-LGC-43 *-Moritza (Bulgaria) '-N104 '-N113 '-N119 '-N124B '-N129 '-N137B '-N140 '-N171A '-N175 '-N1806B '-N1838 '-N1878 '-N188A '-N1908 '-N1920 '-N195 '-N209 '-N218 '-N231 '-N251 '-N31 -N336 '-N347 '-N368B '-N392A '-N416A '-N438A I*-N496B

I*-N52 I*-N606 I*-N612B I*-N62 I*-N691A I*-N703 I*-N730 I*-P1183642 I*-P1183643 I*-P1193433 I*-P1193433 I*-P1193435 I*-P1193436 I*-P1193436 I*-P1193436 I*-P1213737 I*-P1213737 I*-P1213737 I*-P1213737 I*-P123838 I*-P1239110 I*-P1239110 I*-P1239110 I*-P1254854 I*-P1254854 I*-P1254854 I*-P1254854 I*-P1254856 I*-P1267215 I*-P1267215 I*-P1267215 I*-P1267226 I*-Rumanian Flint I*-Tama I-nec*-2001-519 I*-y wx 6-9b pyg*-N761 y-I*-85-3234-6 y-I*-8910 Briggs yd*-87-2278-34 yel*-5344 yel*-8721 yel*-8793 yg*-8962
orobanche oro*-6577 oro*-69-9291-8 oro*-84-5080-15 oro*-85-3087-3 oro*-85-3106-41 oro*-85-3113-11 oro*-88-3237-31 oro*-88-89-3550-32
pale green seedling pas*-90-3222-13 pg*-2142 pg*-6619 pg*-6372 pg*-69-5079-2 pg*-6923 pg*-7122 pg*-8129 pg*-8412 pg*-8412 pg*-8911 pg*-8959 pg*-6859 pg*-Caspar pg*-Fino pg*-N102 pg*-N12 pg*-N12 pg*-N12 pg*-N128C pg*-N127 pg*-N1389B pg*-N146A pg*-N147A pg*-N150A

pa*-N155A	
ng* N156B	
Pg^-N1604	
pa*-N161	
ng*-N181	
pg 11101	
pg -111821	
pg*-N1822A	
ng*-N1866	
pg"-N1881	
pa*-N1885	
ng*-N1983	
pg -111300	
pg=-N213	
pa*-N215B	
ng*_N222	
py -11222	
pg*-N2/2C	
pa*-N296A	
ng*-N338A	
pg -10000A	
pg^-N346B	
pa*-N349	
ng* N25	
pg -1100	
pg*-N357B	
pa*-N36A	
na*-N261A	
Py -11301A	
pg*-N362A	
pa*-N375B	
ng* N070	
pg -143/9	
pg*-N380	
ng*-N381	
Pg 11001	
pg -1\384B	
pg*-N40	
ng*-N408C	
pg 11+000	
pg"-N417A	
pg*-N421	
ng*-N429B	
pg -11423D	
pg"-11445	
pa*-N45A	
ng*-N/152C	
pg -114520	
pg^-N459	
pa*-N46	
ng*-N/169	
pg -11409	
pg*-N481	
pa*-N506A	
pg 110001	
pg -11507A	
pg*-N511	
pa*-N514B	
pg 116112	
pg -115246	
pg*-N526C	
pa*-N550	
ng* NEECD	
ha -inoopp	
pg*-N558A	
pa*-N570C	
ng*_N50P	
Pg -11030	
pg^-N590B	
pg*-N596B	
ng*_N507P	
Pg -1109/D	
pa*-N600A	
1.0	
pg*-N603	
pg*-N603	
pg*-N603 pg*-N615B	
pg*-N603 pg*-N615B pg*-N618	
pg*-N603 pg*-N615B pg*-N618 pg*-N619	
pg*-N603 pg*-N615B pg*-N618 pg*-N619	
pg*-N603 pg*-N615B pg*-N618 pg*-N619 pg*-N638	
pg*-N603 pg*-N615B pg*-N618 pg*-N619 pg*-N638 pg*-N639	
pg*-N603 pg*-N615B pg*-N618 pg*-N619 pg*-N638 pg*-N639 pg*-N641	
pg*-N603 pg*-N615B pg*-N618 pg*-N619 pg*-N638 pg*-N639 pg*-N641	
pg*-N603 pg*-N615B pg*-N618 pg*-N619 pg*-N638 pg*-N639 pg*-N639 pg*-N641 pg*-N660A	
pg*-N603 pg*-N615B pg*-N618 pg*-N619 pg*-N638 pg*-N639 pg*-N661 pg*-N660A pg*-N663B	
pg*-N603 pg*-N615B pg*-N618 pg*-N619 pg*-N639 pg*-N639 pg*-N641 pg*-N663B pg*-N663B pg*-N663B	
pg*-N603 pg*-N615B pg*-N618 pg*-N619 pg*-N638 pg*-N639 pg*-N641 pg*-N660A pg*-N663B pg*-N673A	
pg*-N603 pg*-N615B pg*-N618 pg*-N619 pg*-N638 pg*-N639 pg*-N660A pg*-N660A pg*-N663B pg*-N663A	
pg*-N603 pg*-N615B pg*-N618 pg*-N619 pg*-N638 pg*-N639 pg*-N641 pg*-N663A pg*-N663B pg*-N673A pg*-N683A pg*-N688B	
pg*-N603 pg*-N615B pg*-N618 pg*-N619 pg*-N638 pg*-N638 pg*-N660A pg*-N660A pg*-N663B pg*-N673A pg*-N683A pg*-N686B pg*-N701B	
pg*-N603 pg*-N615B pg*-N618 pg*-N619 pg*-N638 pg*-N639 pg*-N660A pg*-N660A pg*-N663B pg*-N663B pg*-N663A pg*-N683A pg*-N686B pg*-N701B	
pg*-N603 pg*-N615B pg*-N618 pg*-N618 pg*-N638 pg*-N639 pg*-N641 pg*-N663B pg*-N663B pg*-N673A pg*-N683A pg*-N686B pg*-N701B pg*-N719C	
pg*-N603 pg*-N615B pg*-N618 pg*-N619 pg*-N638 pg*-N639 pg*-N641 pg*-N660A pg*-N663B pg*-N673A pg*-N683A pg*-N688B pg*-N701B pg*-N719C pg*-N71A	
pg*-N603 pg*-N615B pg*-N618 pg*-N619 pg*-N638 pg*-N639 pg*-N660A pg*-N660A pg*-N663B pg*-N663B pg*-N663A pg*-N686B pg*-N718 pg*-N719C pg*-N71A pg*-N724B	
pg*-N603 pg*-N615B pg*-N618 pg*-N618 pg*-N638 pg*-N639 pg*-N6638 pg*-N6638 pg*-N673A pg*-N673A pg*-N688A pg*-N688B pg*-N671B pg*-N719C pg*-N714 pg*-N724B	

pg*-N76A

pg*-N816A pg*-N855C pg*-N884B pg*-N896B pg*-P1183648 pg*-P1183648 pg*-P1251930 pg*-P1262473 pg*-P1262495 pg*-P1267162 pg*-P126715 pg-nec*-RJL-6527
pale pale green seedling ppg*-N1474B ppg*-N1963 ppg*-N393B ppg*-N406A ppg*-N427A ppg*-N427A ppg*-N458B ppg*-N458B ppg*-N881B
piebald leaf pb*-2-7-4400 pb*-87-2442-5 pb*-N1386C
ragged seedling rgd*-N203E rgd*-N2290C rgd*-N261B rgd*-N378B
red seedling leaf red-leaf*-86-1569-7
small seedling d*-N155B d*-N230A d*-N254 d*-N266B d*-N293B d*-N408A d*-N429A d*-N526B smp*-N1956 smp*-N1956 smp*-N279A smp*-N630C smp*-N751B sms*-N1964 sms*-N1971 sms*-N204B sms*-N252A sms*-N252A sms*-N311C sms*-N369B sms*-N566 sms*-N570B sms*-N560 sms*-N680B
translucent leaf trans-leaf*-56-3122-7 trans-leaf*-68F-958 trans-leaf*-78-314 trans-leaf*-79-6533 trans-leaf*-PI228176
tube leaf fused-leaves*-N36B fused-leaves*-N835B fused-leaves*-P1228170

virescent seedling l*-N184 pg*-N39 v*-002-17 v*-007-18 v*-022-17 v*-025-4 v*-037-5 v*-1-2(5376) v*-1-9(5622) v*-2-9(5257) v*-388-Sprague v*-4308 v*-4698 v*-5-10(5355) v*-5287 v*-5413 v*-5575 v*-56-3012-10 v*-5828 v*-60-151 v*-60-2397-15 v*-65-1433 v*-7230 v*-7281 v*-7312 v*-74-1690-1 v*-74-1873-1 v*-74-1948-1 v*-77-549-2 v*-8070 v*-8129 v*-8201 v*-8339 v*-8522 v*-8613 v*-8654 v*-8743 v*-8806 v*-8957 v*-8958 v*-9026 v*-Funk-84-13 v*-Funk-84-9 v*-leng v*-LGC-111 v*-LGC-142 v*-LGC-98 v*-N1007B v*-N110 v*-N114A v*-N116 v*-N125 v*-N128 v*-N1268A v*-N131 v*-N133 v*-N134 v*-N135A v*-N153A v*-N158 v*-N16 v*-N179 v*-N1806A v*-N183A v*-N1836 v*-N187 v*-N1886 v*-N19 v*-N1912 v*-N1966 v*-N201 v*-N206A v*-N2260

v*-N229
v*-N243
v*-N246
v*-N26
v*-N260C
v*-N280
v - N289 v*-N29
v*-N298
v*-N303
v*-N330B
V [*] -N34 v*-N341
v*-N352B
v*-N358C
v*-N376
v*-N3/8A
v*-N398A
v*-N400B
v*-N41B
v*-N422B
v -N447B v*-N463
v*-N467
v*-N470A
v*-N473B
v*-N499
v -IN50 v*-N517
v*-N526A
v*-N529B
v*-N53A
V*-N54A
v*-N55
v*-N560
v*-N587A
v*-N620
v*-N64A
v*-N655A
v*-N65B
v*-N660D
v*-N6674B
v*-N678B
v*-N69A
v*-N698B
v*-N/10B
v*-N728
v*-N735
v*-N748C
v*-N75
v"-N//9A v*-N7B
v*-N806C
v*-N826
v*-N829A
v*-N84B
v"-IN840 v*-N878P
v*-N891C
v*-N947C
v*-N956C
v*-N972B
v ⁻ -pp-3019-16
v*-PI180231
v*-PI183640
v*-PI183648

WI -N575A WI*-N60 WI*-N636 WI*-N636 WI*-N646 WI*-N648 WI*-N648 WI*-N663A WI*-N698A WI*-N698A WI*-N709B WI*-N720B WI*-N758A WI*-N998C
white margins whm*-N1462 whm*-N1465B
white striped seedling ij-mos*-8624 j*-N793 stk*-N359B str*-2104-4 EBP str*-2116-1 EBP str*-5120B-Teo str*-6-10-4307 str*-78-314-4 str*-78-314-5 str*-78-314-5 str*-78-314-5 str*-84-5222-7 str*-84-5222-7 str*-86-1494-27 str*-P1262495 str-et*-P1184276 wst*-N173B wst*-N190A wst*-N66B
white tipped leaf wt*-N308 wt*-N432A wt*-N580B wt*-N650A
yellow green leaf pastel*-1-6-5495 pyg*-N1266A pyg*-N223 pyg*-N321 yg*-0130 yg*-4369 yg*-5-8(5575) yg*-56-3021-18 yg*-6697 yg*-6697 yg*-68-1429 yg*-6853 yg*-74-1827-1 yg*-77-585 yg*-8105 yg*-8105 yg*-8105 yg*-8622 yg*-8631 yg*-8632 yg*-8632 yg*-8632 yg*-8644 yg*-8642 yg*-8644 yg*-87444 yg*-87444 yg*-87444 yg*-87444 yg*-87444 yg*-87444 yg*-87444 yg*-874444 yg*-874444 yg*-8744444 yg*-87444444444444444444444444444444444444

wl*-N554A wl*-N567 yg*-N2246 Yg*-N2294 yg*-N38A yg*-N37 yg*-N706B yg*-N72 yg*-PI180231 yg*-PI228174 yg*-Pl239114 yg*-Pl267206 yg*-PI267224 yg*-Singleton-127 yg*-Singleton-23 yg -Singleton-23 yg*-Singleton-30 yg-nec*-95-5320-7 yg-nec*-Singleton-29 Yg-str*-Mu zebra striped seedling zb*-89-3137-5 zb-gl*-2187 **Plant Mutants** absence of leaf blade bladeless*-87-2406-23 adherent tassel ad*-N613B

albescent al*-1479 al*-84-5020-32 al*-PI245132 wh top*-Bauman barren stalk

```
ba*-1447
ba*-68-679-8
ba*-74-304-12
ba*-74-369-2
ba*-Pl200290
ba*-Pl218135
ba*-Pl239105
ba*-Pl251885
ba-ub*-94-4712
bleached leaf
Blh*-N1455
blh*-N2302B
blh*-N2359
Blh*-N2421
Bh*-SF98-12
```

```
blotched leaf
bl*-N1278A
bl*-N43
red leaf blotch*-Pl213779
yel-spl*-N152
```

brachytic plant br*-2180 br*-78-136KEW br*-Brawn219-221 br*-Brawn230 br*-Brawn230 br*-Brawn235-237 br*-Brawn259-260 br*-Brawn261-262 br*-Brawn267-268 br*-Brawn269-271 br*-Brawn272-273

br*-Brawn274-275 br*-OSIJEK-Yugoslavia br*-PI228171 br*-PI239105 br*-Singleton-8 br*-Singleton1969-252 td*-PI262476 brevis plant bv*-N2283 brittle stalk bk*-N888D brown midrib bm*-PI228174 bm*-PI251009 bm*-PI251893 bm*-PI251930 bm*-PI262480 bm*-PI262485 bm*-PI267186 burned leaf les*-Funk-4 les*-PI262474 chromosome breaking Chrom-breaking*-Mu colored leaf lc*-PI239110 crinkled leaf cr*-97P-111 cr*-98-1698 crossbanded leaf cb*-N1620A Cb*-N2290B cb*-N696D cb*-N719A defective tassel Tp*-54-55-Jos Tp*-PI213734 Tp*-Pk41-Jos Tp*-T8-Jos Tp*-Tenn61 dwarf plant d*-018-3 d*-119 d*-136-220 d*-1821 d*-2108 d*-2201 d*-2447-8 d*-3-eared-JC d*-3047 d*-5312 d*-56-3037-23 d*-60-2428 d*-64-4156-1 d*-74-1701-5 d*-75-6071-1 d*-76-1304-9 d*-76-2186 d*-78-282-3 d*-78-286-1 d*-78-286-5 d*-85-3081-33 d*-87-2198-36 d*-gl11

d*-Brawn254-258 d*-MarovacWhiteDent d*-N1352B d*-N1883 d*-N1895 d*-N197A d*-N203D d*-N2295 d*-N282 d*-N299B d*-N403B d*-N454A d*-N518A d*-N549B d*-N604 d*-N629B d*-N699B d*-N994B d*-PI180231 d*-PI183644 d*-PI184286 d*-PI213769 d*-PI228169 d*-PI228171 d*-PI239110 d*-PI245132 d*-PI251652 d*-PI251656 d*-PI251885 d*-PI254854 d*-PI262495 d*-PI267219 d*-rosette d*-shlf-9-436-1 d*-su d*-su2 d*-Teo d*-ts1 erect leaf dge*-N2410 faded leaf fd*-N1938 gritty leaf gtl*-N2297 green striped leaf gs*-98-5700-5 gs*-N359A gs*-N484A knotted husks mwp*-Nelson lazy plant la*-N2333B lesion les*-2119 les*-74-1873-9 les*-ats Les*-N1378 les*-N2290A Les*-N2420 Les*-N502C liguleless Lg*-64-36 lg*-PI228170 male sterile

Ms*-2471

ms*-6015 ms*-6025 ms*-6026 ms*-6033 ms*-6039 ms*-6045 ms*-6048 ms*-6049 ms*-6052 ms*-6053 ms*-6054 ms*-6055 ms*-6057 ms*-6058 ms*-6059 ms*-6060 ms*-6061 ms*-6062 ms*-6064 ms*-6065 ms*-6066 ms*-N2415 Ms*-N2474 ms*-N2484 ms*-N352C ms*-N45B ms*-PI217219 ms-si*-355 many tillers tlr*-N2243 nana plant na*-N1519D narrow leaf nl*-5688 nl*-N232A nl*-N410B nl*-N462B nl*-N622B nl*-N625 nl*-N727B nl*-N732A nl*-PI245132 stf*-N601 stk*-N363 necrotic leaf II*-N248A II*-N417D nec*-011-7 nec*-017-3 nec*-4871 nec*-4889 nec*-5588 early nec*-5619 nec*-5876 nec*-77-549-2 nec*-77-574-1 nec*-8624 nec*-8737 nec*-fraz nec*-N1119B nec*-N1185B nec*-N1487 nec*-N193 nec*-N200B nec*-N215F nec*-N283B nec*-N419 nec*-N430A nec*-N465 nec*-N468

nec*-N510A nec*-N541B nec*-N545B nec*-N559 nec*-N562 nec*-N581 nec*-N596C nec*-N599A nec*-N650D nec*-N666A nec*-N712C nec*-N814 nec*-PI228174 nec*-PI267184 nec*-Vasco nec-pg*-PI239116 shootless*-99-677-6 oil yellow plant oy*-N2360A pale green plant pg*-56-3012-10 pg*-8321 pg*-Hy2 Nob 7-5 pg*-LGC-61 patched leaf ptc*-N238A ptc*-N444B ptc*-N611 ptc*-N904B pigmy plant py*-N656B py*-N714 ramosa ra*-412E ra*-4889 rolled leaf rld*-N1405B rld*-N1525 RId*-N2465 rld*-N556C small plant d*-N1074C d*-N137C d*-N149 d*-N164A d*-N188B D*-N2023 d*-N208B d*-N210 d*-N262C d*-N287B d*-N305 d*-N328 d*-N394 d*-N524D d*-N528B d*-N553D d*-N707B D*-N987B smp*-N121 smp*-N135B smp*-N153B smp*-N156A smp*-N183B smp*-N1954 smp*-N272A

nec*-N490A

stk*-N351 stk*-N368A stk*-N584A stk*-N587D stk*-N589 stk*-N670B stk*-N769C stk*-N777B stk*-N812B stk*-N835A stk*-N925B

striate leaf Sr*-N2430 sr*-N675B

stubby plant stb*-N938C

tassel seed

ts*-0174 ts*-69-Alex-MO17 ts*-Anderson Ts*-N1374 ts*-N2409 ts*-P1251881 ts*-P1267209 ts*-Sprague

tasselless tls*-Funk

tls*-Va35

tiny plant

ty*-N215A ty*-N236B ty*-N326C ty*-N702B

torn leaf Trn*-N2438

white sheath ws*-N1979 ws*-N537D

white stripe leaf ij*-N504A

li*-PI262476 str*-PI262474 wst*-N1877 wst*-N248B wst*-N413A wst*-N548 wst*-N564A wst*-N696B yellow stripe leaf gs*-68-1354 ys*-1479 ys*-5-8(5575) ys*-67-2403 ys*-68-1354 ys*-8912 ys*-N326A vs*-PI228180 ys*-PI262172 ys*-PI262475 vs*-whorled zebra necrotic leaf zn*-8637 zn*-N230B zn*-N342A zn*-N354A zn*-N372A zn*-N451 zn*-N571D Ear Mutants distichous ear distichous*-68-1227 distorted segregation off-ratio*-85-3255-6

off-ratio*-86-1155-1

wx-off-ratio*-86-1110-4

papyrescent glumes en*-Sprague

polytypic ear pt*-McClintock pt*-Mu pt*-N868B

reduced pollen fertility

ga*-0188 ga*-0213 ga*-0648 ga*-3615 ga*-91-5197-2 ga*-94-764 Ga*-Yugoslavia

silky si*-0443 si*-0503 si*-8104 si*-N1967A

tunicate Tu*-5090B

unpaired rows up*-Shirer

143

VI. MAIZE GENOME DATABASE www.agron.missouri.edu

Overview

MaizeDB contains over 650,000 records, many with one or more links to an external data repository for primary data source. These links now total some 570,000; and we do not count sites mirrored with GenBank, EMBL and DDBJ. We are greatly indebted to the maize community for making their data available, in particular Dr Marty Sachs of the Maize Genetics Cooperation Stock Center for continued data entry and updates of new genetic stocks.

Other data providers this year:

- DuPont 10,600 Unigenes, aka Cornsensus sequences, based on public with proprietary sequences. These have been entered into the HTC division of GenBank.
- Incyte Genomics BAC anchor information and Overgo primers designed from the Cornsensus sequences;
- ZmDB and TIGR public EST assemblies;
- Gramene BLAT mappings of the Cornsensus sequences to rice;
- Dr. Cari Soderlund the FPC computation of contigs, entered into MaizeDB as external database links for BACs and anchoring markers;
- Dr. Marilyn Warburton of CIMMYT SSR polymorphism;
- Dr. Jeanne Romero-Severson SSR polymorphism;
- Dr. Mike McMullen of the Maize Mapping Project SSR data, complete with screening images;
- Dr. Georgia Davis, of the Maize Mapping Project IBM map coordinates, data, screening images; new set of CORE markers to define the bin edges on the IBM;
- Dr. Dave Selinger, of ChromDB registry of chromatin gene family names;
- GenBank and SwissProt for email updates of new maize sequences.

Other data acquisition:

We completed bibliographic entry of references back to 1888, with the aid of bibliographies of J. Cunningham in 1948 (for 1888-1916) and 1941 (for 1917-1936). MNL on-line is now retrospective to 1977. Literature citations within MaizeDB are over 100,000, for some 38,000 references.

Genetic Maps

The high resolution IBM map is now entered and includes 1700 loci, complete with probe information, many with links to BAC contigs (WWW FPC). The map is displayed at <u>www.maizemap.org</u>, complete with probe data and links to the evolving physical map. Other sites that display genetic maps extracted from MaizeDB include:

- the NCBI, in collaboration with Drs. Brian Smith-White and Tatiana Tatusov; <u>www.ncbi.nlm.nih.gov/cgi-bin/Entrez/map_search?</u> <u>chr=mays.inf;</u>
- (2) CUGI, in collaboration with Drs. Cari Soderlund and Rod Wing, www.genome.clemson.edu/projects/maize/fpc/WebChrom/;
- (3) Gramene, in collaboration with Drs. Doreen Ware and Lincoln Stein, www.gramene.org.

Map-based strategies, and their caveats for finding BAC clones of interest are described under the sidebar at BACS/YACS, or at <u>www.agron.missouri.edu/bacs.html</u>. Strategies rely on the above resources and also (1) the Mapped Sequence Locator, <u>www.maizemap.org/cgi-bin/zmMSL.cgi</u>, where a BLAST search returns map coordinates and links out various data repositories; (2) various BAC and Probe Lookups based on map coordinates. The basic strategy is to find markers on BACs for your sequence of interest, or which are closely linked.

Coming Soon

Genetic Map Integration

Over the years, some 12,526 loci have been placed to chromosome arm or better. Most mapping experiments have less than 20% overlap of markers; see the MaizeDB report, MNL 71 1997, www.agron.missouri.edu/mnl/71/maizedb71.html. Because of the high numbers of markers, and maps involved, it is difficult to represent all on a single page or 10, as was the custom for MNL. For this reason one of the main syntheses of MaizeDB has been the bins maps. Thus while the IBM represents 1700 loci, there are an additional 8016 loci that have been placed to a single bin, many with better resolution than represented by the bin. Map based cloning will be supported by a higher resolution integration which we will be presenting on-line this summer, a map at a time, using the IBM map as the frame and supplying the methods of integration. All supporting data and the original maps will be maintained and accessible from the cMAP comparative map display (button in center of MaizeDB home-page).

CIMMYT mirror

We are collaborating with CIMMYT in establishing a mirror site for MaizeDB at CIMMYT that will further enhance access and data acquisition, with CIMMYT storing data directly in validation-readied tables. Anticipated data flow includes polymorphisms and trait studies. Funding for the mirror has been provided directly to CIMMYT by the USDA-ARS.

> Submitted May 1, 2002 Ed Coe and Mary Polacco

VII. SYMBOL INDEX

A1 60	ga1 v 65	Ms42 39	T4-9b 66
a2 60	Ga1-S 65	ms45 38	T4-9g 63
Ac 75 81 83 124	Ga1-s v	ms47 38 39	T6-9b 68
al1 124	gl1 65	ms48 38	T6-9e 66
b1 84	gl1-c 65	ms49 39	TB-10L3 62
ba1 45	gl2 14 65 66 68	ms50 39	TB-10L5 62
ba2 45	gl3 65	Mu 6778189	TB-10L7 62
ba3 124	gl4 63 65 68	MuDR 6	TB-10L8 62
Bg-hf 54	gl5 65	MuDR(p1) 6	TB-10L10 62
Bg-rbg 54	gl6 65 66 68	MuK 6	TB-10L13 61 62
blc1 124	gl7 65	na2 22	TB-10L14 62
bm2 14 65 67	gl8 65	Ned1 75	TB-10L16 61
Bn1 125	gl11 65	ns1 124	TB-10L18 62
bngl1012 38	gl15 65	ns2 124	TB-10L20 61
bngl1056 39	gl17 65	o1 vi	TB-10L25 62
bngl1065 39	gl20 65	o2 vi 2 14 54	TB-10L28 62
bngl1071 39	Ht1 53	o2-hf 54	TB-10L29 62
bngl1074 38	Ht2 53	o2-m(r) 54	TB-10L31 62
bngl1079 37 38 39	Ht3 53	orp1 84	TB-10L32 61 62
bngl1159 38	Htm1 53	p1 13 75	TB-10L34 61 62
bngl1655 37 38 39	HtN 53	pb4 14	TB-10L35 62
bnlg1346 73	I 75	phi445613 39	TB-10L36 61
bnlg1621b 9	inr1 63 124	phi015 39	TB-10L37 62
bnlg1711 73	inr2 124	phi022 9	TB-10L38 61 62
bnlg1724 9	j1 124	phi050 38 39	tb1 45 84
bnlg2307 73	lg1 14 66 68	phi058 73	tb2 84
brn1 64 125	lg3 88	phi059 37 38	tbp2 84
brn1-Nelson 64	lil1 124	phi062 38	Uto1 124
brn1-R 64	lpa241 46	phi070 39	umc34 7
brn2 64 125	mfie1 84	phi090 39	umc1069 9
brn2-Nelson 64	mfie2 84	phi121 39	umc10/2 /3
brn2-R 64	midiMu 90	phi96342 39	umc1122 9
bt1 v	miniMu 90	php200/25 84	umc1221 9
Dt2 V	Mn::Uq 124	pi1 84	umc1225 /3
DX1 85	ms ⁻ -6011 37	pr1 60	umc1230 9
bx2 85	ms ⁻⁶⁰³⁹ 38	ps1 124	umc1252 9
DX3 84	ms ⁻⁶⁰⁴⁹ 38	ri 40 63 84	UMC1357 9
DX5 85	MS [®] -6055 39	RI 60 124	umc1395 9
DZI VI 50 83 124	ms -Bear/ 3/	HI-5 03	UMC1416 9
DZI-9 00 hz1 m12 56	mo* EA09 39	104 124 Recoucil Mu 90	umo1904_0
DZ1-1113 30 hz1 m12:002 56	1115 - EA09A 39	Rescueiviu 69	umo1042 0
bz1 m12:000 56	1115 - FA92 39	DIA 73	umc1945 9
bz1-m13:CS64_56	ms*-NEMS 30	Rn 19/	uwo1170
bz1-m14 56	$mc^*-TG02\Lambda$ 30	np 124 m 1 8/	vn1/ 19/
bz1-m1/DIL 56	me1 20	rp1 04 rp5 8/	$w_{r}m7(\Delta c)$ 83
c1 40 84	ms2 38	rp6 84	wx1 v 15 63 65 67 83
C1 60	ms8 39	Rnd3 4	124
c2 66	ms8-FA92 39	rnn9 84	Wy1 94
cm2 14	ms10 38	sh1 v 19 49	v1 14 60 66 68 124
cal1 65 125	ms11 38 39	sh2 v	V1 60
ch1 65 67	ms11-NEMS 39	sh4 v	v8 124
cla 11	Ms21 39	Sht1 53	7m-Byv 41
csu4a 7	ms23 37 38	Sn1 124	Zm112 18
d8 87	ms24 37 38 39	Spm 75	ZmRBR 4
dek 124	ms25_38	sr1 14	ZmRBR1 4
Ds 75.83	ms27_38_39	sul v	ZmRpd3_4
dSpm 56 75	ms29 38 39	su3 63 125	ZmBpd3L 4
du1 v 63	ms29-TG92A 39	su4 64 125	
dzr1 85	ms31_38_39	T1-9(8389) 65 67	
En 75	ms33-EA89A 39	T2-9c 66 68	
fl1 vi	ms33-GC89A 39	T2-9d 65 67	
fl2 vi	ms35 37 38 39	T3-9(8447) 66 68	
g1 63	ms36 38	T4-9(5657) 68	
•		· · · · ·	

VIII. AUTHOR INDEX (* identifies articles authored in this Newsletter)

Ahern, K 81* Akimova, GP 35* Akula, C 75* 92 Albertsen, MC 37* 38* 39* Allen. G 75* Allis, CD 4 Amor, Y 20 Ananiev, EV 62 Anderson, EG 70 Anderson, LK 30* Antonio, B 79 Araki, H 72 Armhold, G 83* Arnason, JT 52* Arumuganathan, K 70 Arziev, AS 36* Ashlock, D 76* Assabgui 52 Atkinson, R 92 Auger, D 124 Barkan, A 81' Barker, G 77* Barry, BD 30 Bass, HW 62* Batygina, TB 22 Beavis, WD 94 Becker, H 18 Beckett, J 124 Bell, AA 52 Bell, C 94 Bender, J 92 Bennett, ST 72 Bennetzen, JL 83* 93* Berger 18 Bergstrom, D 92 Bergvinson, D 30 33 52 Bernatené, EA 42* Bertolini, M 5* Bhat, NK 36 Bian, Y 72* Bily, AC 52* Birchler, JA 1* 58 77* 78 Bliandur, OV 15* Bohn, M 34 Bohner, S 4 Bommert, P 19* Borsboom, O 51 Bouchard, RA 69* 70 Boutilier, K 52 Bradley, DJ 52 Brendel, V 75* 88* 90 Brice, RE 80 Briggs, SP 40* Brink, RA v 124 Brown, WV 51 Brutnell, T 81^{*} Buckler, E 86* Burr, B v* 78 124 Burr, F 124 Burson, BL 50 Buss, J 69*

Busso, C 94 Butler, E 92 Bylich, VG 13* Candau, R 18 Cande, WZ 62 Cao. H 92 Carvalho, CR 69* Ceballos, H 53 Chalyk, ST 11 13* 16 Chandler, VL 88* 91* 92* Chang, MS 32 Chase, S11 Chaudhuri, S 85 Chebotar, OD 11 Chen, J 78 Chen, M 78* Chen, R 72* Chen, WC 73* Cheng, PC 8* 22* 24* 26* 27* 28* 29* Cheng, WY 22* 24* 26* 27* 28* 29* Cheng, Y-M 61* 62* Chernousova, NM 21* Chernov, AA 13* Ching, A 47* 49 Chitto, A 5* Cho, Ý 89 Chomet, P 81* Chu, SW 8* Clifton, SW 79* Coe, E 78* 124 Collins, GB 21 Comai, L 78 Comas, C 42* Cone, K 78* 92 Conrad, L 81* Conti, S 7 Corcuera, VR 42* 44* Corlateanu, LB 17* Courtney, E 92 Cowperthwaite 83 Danilova, SA 47* Davies, WJ 7 Davis, G 72 78* 80 124 de Carvalho, CR 41* Dean, DC 4 Delcour, JA 80 Dellaporta, S 81 Demerec. M v Denk, W 8 Devos, KM 84 94 Devholos, MK 93 Dille, JE 70 do Lago, AP 83* Doebley, JF 54* 55 70 84 86* Doerge, R 78 Dolgikh, Yul 47* Domann, FE 36 Dondo Gosic, S 3* Dooner, HK v* 55 83*

Dowd, PF 40* Doyle, GG 124 Dresselhaus, T 18* Drinic Mladenovic, S 3* Dubcovsky, J 94 Dun. D 72* Duvick, JP 40* Eder, J 30* Edwards, D 77* Edwards, KJ 77* Elster, R 19 Elumalai, R 92* Emberton, J 83* 94 Emery, WHP 51 Farmer, P 81* Farguharson, LI 51 Fauron, C 79* Fedoroff, N vi Fernandes, J 89 Forster, K 4 Fox. TW 37* 38* 39* Frame, B 75 Freeling, M 6* 88* Fry, SC 52 Fu, H 56 Fu, Y 76* Fuks, G 83* Fukui, K 70 Gadag, RN 49* Galbraith, DW 88* 92* 93 Ganea, Al 17* Garcia, AAF 9* García, MD 45* Gardiner, J 78* Gaut, BS 83 86* Gavazzi, G 46* 124 Gchachu, M 92* Gelvin, S 75* 92 Genovesi, AD 21 Gill, BS 70 Gonzalez, G 42* Goodman, MM 86* Goping, IS 70 Gordon 76 Götze, S 30* Grabber, JH 52 Gracen, VE 53 Gray, MW 36 Green, P 49 Greyson, RI 70 Grimmer, M 77' Grogan, CO 2 Gu. MG 70 Guo, L 76* Guru, R 92 Gustafson, JP 70 Guthrie, E 92 Gutterson, NI 3 Hake, S 75* 88* Hallauer, AR 30 Han, YH 70* Hankins, M 92

Hannah, C v* Hanson, M 81* Harbour, JW 4 Hardeman, K 81* Harper, LC 62 Hartings, H 5* Hartung, W 7 Haun, W 92 Hazen, SP 80* Hedin, PA 80 Heslop-Harrison, JS 72 Hesselbach, K 92 Holland, N 80 House, LA v Hu, YM 73* Huang, Y 36 Hudon, M 32, 33 Hudson, RR 6 Hulbert, S 124 Hurkman, MM 45* Ikeda, MI 36 Ikhim, YG 15* Iltis, HH 70 Ishida, Y 47 Jackson, D 75* Jackson, JD 64 65* 67* 125* Jakobsen, HB 51 James, MG vi Jatimliansky, JR 45* Ji, HQ 73* Ji, LY 73* Jiang, J 70 Jones, DF v Jones, HG 7 Jorgensen, R 92 Kaeppler, H 75* 92 Kagoshima, H 37 Kamps, TL 55' Kang, HG 41 Kato, A 78 Katyshev, AI 36* Keegstra, K 80 Kellogg, E 75* Kermicle, J 124 Kerschen, A 92 Khatypova, IV 50* Kibardin, AV 47' Kim, HY 56 Kirichenko , KA 36* Kleffe, J 90 Klein, P 79 Klein, T 92 Kleinhofs, A 94 Kobzev, VF 36* Kolesnichenko, AV 34* Konstantinov, K 3* Konstantinov, YM 36* Koterniak, VV 54* Koumbaris, G 62* Kowalewski, S 1 Kravchenko, AN 15* Kravchenko, OA 15*

Kravtchenko, AY 50* Kreps, R 33 Kresovich, S 86* Krim, G 124 Krivov, NV 14* Krysan, PJ 91 Kulikowski, C 83* Kumar, A 49* Kynast, RG 62 88* Laborda, PR 9* Lai, J 83' Laikova, L 50 Lander, E 49 Landi, P 7* Lanzanova, C 4* Larkins, B 88* Lashermes, P 11 Lauter, N 54* Law, JR 5 Lawrence, R 92 Lebjko, S 81* Leblanc, O 50 Lee, GJ 69 Lee, M 75* 76* 124 Leighton, PA 84 Leonard, KJ 53 Lewis, P 81* Li, DY 70* Li, LJ 70* 72 Li, WH 5 Li, ZY 70* Liang, GH 70 Lin, B-Y 61* 62* Lin, BL 8* Linton, E 83* Lisch, D 6* Liu, F 76* Liu, S 78 Liu, ZH 73* Llaca, V 85 Locatelli, S 4* Loesh, P 2 Luo, M 84 Luzova, GB 35* Lvapkova, NS 47* Lysikov, VN 15* 17* Ma, J 83* 94 Maas, C 20 Maclosky, G 16 Magg, T 33 Magni, A 46* Maluszynska, J 72 Marsh, WA 40* Martens, H 51 Martienssen, R 75* 78 125 Martinant, JP 81 Martinez-Ferez, IM 55 Maslobrod, SN 16* 17* Matsuoka 86 McCallum, CM 91 McCarty, D 124 McCormick, S 18*

McKee, J 51 McKinney, EC 91 McMullen, M 78* McNellis, TW 91 Melchinger, AE 30 33 Mertz, E vi Messing, J 83* 94 Meyers, BC 83 Mihailov ME 11* 13* Mihm, JA 30 Miller, JD 52 Molina, M del C 45* 70 Montanelli, C 54 Moreno, M 81 Morrison, IM 80 Motto, M 4* 5* Mount, D 92 Muchnik, I 83* Müller, A 92 Muse, S 86* Myers, AM vi Naidin, C 59* Napoli, C 92 Naranio, CA 42* 70 Naumova, TN 50* Nechaeva, LV 35* Nei. M 5 Nelson, OE v 64 124 Neuffer, MG 124 Newton, K 79* Nguyen, T 75* Nielsen E 46* Nocito, FF 46* Nyren, P 47 O'Connell, V 92 Oberley, LW 36 Odland, WE 88* Oaden, M 94 Okagaki, RJ 55* 56 88* Oliveira, KM 9* Orth, K 40 Osborn, T 78 Osipova, ES 47* Ostrovskiy, VV 11 Otoni, WC 69* Packer 36 Pan, Y-B 124 Pandey, R 92 Papst, C 30* Park, Y-J 83* 94 Pasupuleti, CV 72 Paterniani, MEAGZ 9* Paterson, A 77* 78* Patterson, E 37 38 Payak 49 Pekic, S 7 Pen 46 Peterson, T 75* Petrov, DF 50 Pett. V 69* Phillips, RL 88* Philogène, BJR 52* Pien, S 20 Pierson, E 92* Pikaard, C 92 Pilu. R 46*

Piper, T 39 Plant Chromatin Consortium 91* Pobezhimova, T 34 Poggio, L 42* Pointillart 46 Polacco, M 1* 78* Prioul, JL 7 Qin, T 72* Qiu, F 76* Quarrie, SA 7 Rafalski, A 47* Raikhel, N 80 Raizada, MN 90 Ramakrishna, W 83* 84 94 Regnault-Roger, C 52* Reid. LM 52* 53* Reimers 41 Ren, N 72 Renfro 49 Rhoades, MM 84 Richards, AJ 51 Richards, E 92 Richmond, TA 80 Riehl, M 18' Rines, HW 88* Robbins, WA 53 Robertson, D 90 Rocci, B 92 Rocheford, T 75* Rohlf 49 Romanova, IM 17* Ronaghi, M 47 Rossi, V 4* Rostoks, N 94 Rotarenco, VA 11* 13* 16* Rusanovskaya, EG 14* Russell, WA 33 Russell, CD 88* Russell, K 76* Sachs, M 88* 90 125* Salvi, S 7* Sanchez-Villeda, H 78* Sandahl, GA 403 Sandoval, MC 44* Sandoval, R 92 Sang, Y 70 Sanguineti, MC 7* SanMiguel, P 56 83* 94 Saraiva, LS 69* Sasaki, T 79 Satarova, TN 21* Saxena, SC 49* Scanlon, M 124 Schena, M 92 Schiefelbein, JW 56 Schleicher, L 34 Schmidt, B 88* Schmidt, R 75* Schmitt, L 92 Schnable, PS 76* Schulz, B 33 Scott, MP 2* Scott-Craig, JS 80*

Selinger, D 92 Sen 36 Shabala, SN 17 Sharopova, N 78 Shen, B 83 Sheridan, W 124 Shiloff, B 94 Shinozaki, DM 27* Shotwell, MA 60* Sidorenko, L 92 Simmons, CR 40* Singleton, WR 14 Slotkin, RK 6* Smith, A 92 Smith, L 88* Smith, M 53* Smith, NA 91 Sneath 49 Sobral, B 94 Soderlund, C 78* Sokal 49 Sokolov, VA 50* Sokolova, MG 35* Somerville, CR 80 Song, R 83* Song, YC 70* Song, YC 70, 85 Souza, AP 9* Spena, A 4 Sprague, GF 65 Springer, N 92 Stack, SM 30* Stec. A 55 88* Stefanelli, S 7* Stefani, T 38 Stern, D 81* Stinard, P 63* 64* 65* 67* 125 Stockinger, EJ 18 Strahl, BD 4 Subota, IY 36* Suggs, EG 53 Sulima 16 Sullivan, TD 55* Sun, CK 8* Sun, Y 36 Syvanen, AC 47 Tajima, F 6 Tang, JH 73* Tanyolac, B 83* Tarasenko, VI 36* Tenaillon, M 87 Thomas, SM 72 Thompson, RD 18* Thompson, W 75* Thornsberry, J 87 Thorogood, D 52 Ting, YC 11* Titov, YV 17 Torne, J 124 Tossberg, JT 40* Tracy, WF 45* 124 Tran, L 11* Tretiakov, NN 17 Trimnell, MR 37* 38* 39*

Tromp, J 51 Tsacoumangos, AM 69* Tuberosa, R 7* 8 Tyrnov, VS 16 Urechean, V 58* 59* Usuka, J 90 Vargas-Lagunes, I 92 Vaughan, HE 72 Verderio, A 5* Viccini, LF 41* Vierling, E 69 Vigouroux 86 Vinkx, CJA 80 Voinikov, VK 34* Vos, P 5 Vuylsteke, M 80 Walbot, V 75* 88* 93 Walden, DB 22* 24* 26* 27* 28* 29* 70 Walser, M 34 Walton, JD 80* Wang, K 75* Wang, S-J 75* Wang, ZL 57* Warren, HL 53 Weir, B 86* Wen, TJ 76* Werr, W 19* Wesley, SV 80 91 West, DP 37 Whalen, RH 40 Wilensky, S 92 Wilkerson, C 80 Wilkes, HG 70 Wilkins, PW 52 Wilson, I 77* Wing, R 78* Wulan, T 92 Xing, L 90 Xiong, ZY 70* Xu, M 72* Xu, X 55 Yan, L 94 Yang 40 Yang, T 2* Yang, Z 70 Young 52 Yuan, Y 94 Zabirova, E 16 Zaia, HA 88* Zavalishna, A 16 Zeng, M 2* Zeng, Q 92 Zhang, FX 72 Zhang, J 75* Zhang, S 40 Zhang, Y 57* Zhao, X 92 Zhu, X 53* Zimmerman, S 65* 67* 125* Zykova, VV 34*

This newsletter shares current research on genetics, cytogenetics, molecular biology, and genomics of maize. Information is shared by Cooperators with the understanding that it will not be used in publications without their specific consent.

Send your notes for the 2003 Maize Genetics Cooperation Newsletter now, anytime before January 1. Your MNL Notes will go on the Web <u>verbatim</u> promptly, and will be prepared for printing in the annual issue. Be concise, not formal, but include specific data, tables, observations and methods. Check MaizeDB for the most current information on submission of notes. <u>Send your notes as attachments or as the text of an email</u> addressed to Newsletter@chaco.agron.missouri.edu (we will acknowledge receipt, and will contact you further if necessary). If email is not feasible, please mail a double-spaced, letter-quality copy of your note, preferably with a disk containing the electronic version. Please follow the simple style used in this issue (city /institution title /--authors; tab paragraphs; give citations <u>with authors' initials</u> --e.g., Maizer, BA et al., J Hered 35:35, 1995, or supply a bibliography). Figures, charts and tables should be compact and camera-ready, and supplied in electronic form (jpg or gif) if possible. To separate columns in tables, please <u>tab</u> instead of using spaces, to ensure quality tabulations on the web. Your MNL Notes will go on the Web <u>verbatim</u> promptly, and will be prepared for printing in the annual issue. Mailing address:

Mary Polacco 203 Curtis Hall University of Missouri Columbia, MO 65211-7020

SEND YOUR ITEMS ANYTIME; NOW IS YOUR BEST TIME

MNL 50:157

MNL 51ff. on line

MaizeDB - http://www.agron.missouri.edu

Author and Name Indexes (and see MaizeDB) Nos. 3 through 43 Nos. 44 through 50 Nos. 51 to date

Symbol Indexes (and see MaizeDB) Nos. 12 through 35

Nos. 36 through 53 Nos. 54 to date

Stock Catalogs

Rules of Nomenclature (1995)

Cytogenetic Working Maps Gene List Clone List Working Linkage Maps Plastid Genetic Map Mitochondrial Genetic Maps Annual in each issue

Appendix to MNL 44, 1970 (copies available)

Appendix to MNL 36, 1962 (copies available) MNL 53:153 Annual in each issue

Each issue and MaizeDB

MNL69:182 and MaizeDB (1996 update)

MNL 52:129-145; 59:159; 60:149 and **MaizeDB** MNL69:191; 70:99 and **MaizeDB** MNL 65:106; 65:145; 69:232 and **MaizeDB** MNL69:191; 70:118; 72:118 and **MaizeDB** MNL 69:268 and **MaizeDB** MNL 70:133 and **MaizeDB**

Cooperators (that means you) need the Stock Center.

The Stock Center needs Cooperators (this means you) to:

- (1) Send stocks of new factors you report in this Newsletter or in publications, and stocks of new combinations, to the collection.
- (2) Inform the Stock Center on your experience with materials received from the collection.
- (3) Acknowledge the source, and advice or help you received, when you publish.

MaizeDB needs Cooperators (this means you) to:

(1) Look up "your favorite gene or expression" in **MaizeDB** (see section V in this Newsletter) and send refinements and updates to polaccom@missouri.edu, coee@missouri.edu, or db_request@chaco.agron.missouri.edu.

(2) Compile and provide mapping data in full, including the ordered array of map scores for molecular markers or counts by phenotypic classes; recombination percentage and standard error.

(3) Provide probe or primer information per http://www.agron.missouri.edu/cgi-bin/sybgw_mdb/mdb3/Probe/query; fingerprint data and fragment sizes are significantly useful to colleagues.

May you find a Unique corn in MM!