Fluorescent and compact fluorescent lamps control gear

Saving the smart way
Focuses on saving energy and saving money (for initial and replacement markers).
Better light, better life Focuses on improving performance by achieving constant light output and longer lamp life
You can depend on Philips You can depend on Philips
Focuses on safety and reliability of the Philips brand.

Philips provide you the solution to upgrade in improving

 performance of your lighting systems.
Electronic control gear

Electronic ballasts offer numerous important benefits in comparison to traditional electromagnetic ballats:

The units are lighter in weight and relatively simple to install, requiring less wiring and fewer circuit components:
They bring altractive cost savings, like a reduction in energy consumption of around 25% a substantially extended lamp life and a marked lowering of maintenance costs;
They add to the overall lighting confort in a variety of ways: no lamp-end flickering occurs, an automatic safety switch turns off the circuit at the end of lamp life, smooth and rapid lame starting is
ensured, and no potentially dangerous stroboscopic effect can arise;
Flexibility is enhanced: installations with fluorescent lamps are dimmable, permitting adjustment of lighting levels to suit personal preferences and giving rise to additional savings on energy,
Extra safety is assured through overvoltage detection, a noticeably lower operating temperature and, in most types protected control of the mains voltage input.

Some fluorescent lamp types operate only on electronic control gear and, given the benefits of greater efficiency and comfort, others will follow. Further, specific ballasts are available to suit the application

involved:

HF-Regulator, for areas where regulation of lighting levels is required;
HF-Performer and EB -standard, where the operational demands, such as increased convenience, are greater than normal;
EB Economy, for situations where the lighting is switched on and off infrequently
Actiume is an automatic lighting control sstem with a difference.The system consists of a sensor snd controller unit built into the luminaire and is operated with the new Philips HF-Regulator II gear. It is the first true Plug and Play lighting control system on the market

In addition, a full program of lighting controls, both luminairebased and room-based, can be supplied (see separate chapter)

Electromagnetic control gear

Under this category fall the traditional, copper-iron control gear for fluorescent lamps, a field in which Philips Lighting has convincingy demonstrated its exper tise over the years

Such systems indude the essential components like the ballæt, starter and power-factor-correction capacitor. Different versions are available with either dow-switch or electronic starter, and with standard or low-watt-loss ballasts. According to the ratings aid down by the CELMA directive, ballats are allotted an Energ Efficiency Index (E®I) which is quoted against each product type. As the name sugpests, this index describes the ballast:A1 types are the most energ-efficient, A2 and A3 somewhat less so, with lowering efficiencies through the B1, B2 and C types.

The directive 2000/55/EC (OJEC L297-1 November 200) aims at reducing the energy consumption of ballats and towards more efficient ones The ballast, however, is only part of the energy consumption equation.The degree of energy efficiency of fluorescent lighting circuits depends upon the combination of ballast and lamp. As a consequence CELMA has found it necessary to develop a ballast dassification system based on this combination. The directive sets targets at what time low efficient ballads have to be phased-out. Class D ballas is already banned since May 21st. 2002. Class C will follow per Nov. 21 st. 2005.

The full range comprises control gear for almost every conceivable type of fluorescent lamp. Whatever the requirement, Philips Lighting can offer a suitable solution.

		Recommended electronic system for the best performance				Alternative electromagnetic system for good performance			
Commercial name	Technical lamp type	Ballast（1 lamp）	Ballast（2 lamps）	Ballast（3 lamps）	Ballast（4 lamps）	Ballast（1 lamp）	Starter	Ballast（2 lamps）	Starter
TLS 16 mmda	MASTRTLL HESYPE 8014 N	MS 1142302.200 HITPSP／S							
	T－5 Esertid 1aw	（ E 114TL520．320	MEE214TL 220.320						
			WS 21475220.240	mS 31475220.240	W． 41475 220．240				
		HFP 143 3575 HE	HFP 21435575 HEEI	HRP З414TLS HEEI	HFP З414TL HEEI				
		HFMR R 114SHTUMS							
		HFR 11475	HFR214TLS	HFR 3414TL5	HFR 3414TL				
		HFRDAU 11475	HFR DAULI24TS	hFr dal 341475					
					HFRT 414TLS				
TL5 16 mmda	MASTRTLL HESYer 802 21W	MEE121TL520．230							
	T－5Esertid 21w	WS 121715220240	\＃SS22175 220240						
		WS 121220.240 HhP							
		HFRR121T5	HFR221T5						
		HFRDAL 12175	HFR dall 22175						
TLS 16 remda	MASTRTIL HESMPE 3028 W	TEE 28875220.30	ME22875 220.330						
	T－5 Esantia 28 w	WS 12875520.240	WS 228715220240						
		HFP1 1435TLS HE	HFP 21435 2TIL HEEI						
		HFRR 12875	HFR22875						
		HFR DAU 12875	HFR DAUL2875						
		HFRT 288 TL5	HFRT 228T5						
		HFRTD 128.3575	HFRTD 228.3575						
TL5 16rmda	MASTRTLL HESMer 803 35W	M． 13575 200240	MS 23575220240						
		HFR 13575	HFR235TLS						
		HFR DAU 13575	HFR DAU 23575						
		HFRT 13575	HFRT 235TL5						
TLS 16 mmda	T5 HO Sper 80 990	HEP 199TLS ${ }^{\text {¢ }}$	HFP 2497 TL Ho घi						
		HFR 19975	HFR 29975						
		HFRDAU 19975	hFR DAL 29975						
		HFRT 19975	HFRT 24975						
		HFRTD 199TLS	HFRTD 299TLS						
TLS 16 rema	MASTRTIL HO Sper 8024 N	HFM RED 124SHTLTL							
		HFP 1243975 Ho	HFP 2243975 Ho						
			HFP 2243975 HO 日I						
		HFRR 124T5	HFR224TS						
		HFR DAU 12475	HFR DAUL2375						
TLS 16 mmda	T5 Ho sper 8039 N	HFPP 1243975 HO	HFP 22439715 HO						
			HFP 2243975 HO 日I						
		HFR 39975	HFR23975						
		HFRRAL 39975	HFR DAU 23975						
		HFRT 39975							
TL5 16 mmda	T5 Ho sper 8059 Na	HEP 154TLSHO	HFP $254 T$ TLHO EI						
		HRR 154TL5	HRR254TL						
		HFR DAL 15475	HFR DAU 25475						
		HFRT 15475	HFRRT 25475						
	MASTRTIL HO STPer 8088 N	HFRTD 154T5	HFRTD 25475						
TLS 16 rmda		HFP 180\％TLT HO EI	HFP 280075 HO \＃l						
		HFRTD 1807LSPL							
TL 260 mda	T－D Sper 8018 w	TS 118230202054	TES 18823024098			BTA 18N 220 C C SC	slo－®	BTA 30\％ 220 V C SC	2（－E）
	t－D Xtreme isw	セモЕ 1187L 220240	（EE218TL 220230			HTA ISW z2ov Col	sio－＠	BTA 30\％ 220 VCDI	2（－E）
	T－D Xta 18 W	WS 118 TLL 220240	\＃ P 218870220240	MS 3187T0 220.240	MS 418770220240		s1o－	BTA 3OW 220VVOCHIC SC	2（－E）
	T－D Do de lue Pro 18N／990	HFP 118 TL $220240 \mathrm{El}^{\text {a }}$	HFP 218TL 200240 ${ }^{\text {a }}$	HFP 3／418TD 20－200 日	HFP 3／418TD 20：200 日	BTA 18\％ $220 \mathrm{~V} / 60 \mathrm{HzCDI}$	slo－＠	BTA 3OW 220V600HC DI	2（－G）
		MSTD 11870220230				BTA 18W 230 VCSC	S10－＠	BTA 30w 230 VCSC	2（－E）
		HFM RED 118 SHTLTL				BIA IBW z3OV CDI	slo－＠	BTA 36N 230 CCDI	2（－G）
		HFP \＃18TL ${ }^{\text {a }}$	HFP 218TL 日	HFP 34187L E EI	HFP 34187L E	BTA 18N 2400 CSC	s10－E	BTA 30w $2400 \mathrm{C} S \mathrm{C}$	2（－E）
		HFR 118 D D	HFR 2187L	HFR За187L		BTA ASW 2400 CD D	s10－¢	BTA 306 240 C C DI	2（－E）
		HFR DAU 118TL	HFR DAU 218TL	HFR DAU 341875	HFR DAU 341875	BTA 180 L 220 V ESC	s（o－＠		2（－E）
				HFRT 34187TD	HFRT 3418TL	BTA 180 L 220 V 82 DI	sto－	BTA 300 220 V 82 DI	2（－E）
							$\stackrel{\text { slo－}}{\text { sion }}$	ETA 30N 220N／VOH2B2 SC	22（－G）
						BTA ISN 220 V B1 SC	sio－＠	BTA 30W 220 V B1 SC	22（－G）
						BTA 180 N 220 V 12 DI	sio－＠	BTA 30W 220 V 81 DI	2（－G）
						BTA 18 W 23OV E1 SC	S10－E	BTA 30w 230 V B1 SC	22－E）

Commercial name	Technical lamp type	Recommended electronic system for the best performance				Alternative electromagnetic system for good performance			
		Ballast（1 lamp）	Ballast（2 lamps）	Ballast（3 lamps）	Ballast（4 lamps）	Ballast（1 lamp）	Starter	Ballast（2 lamps）	Starter
						BTA 18W 230 V E1D1	S10－E	BTA 300 $2300 \mathrm{V10}$ DI	2（－G）
						BTA 180 C 2 20V Bi Sc	S10－E	BTA 30w 240 V B1 SC	2（－G）
						BTA 180 W 240 V B1 Di	S10－E	BTA 30w 240 V B1 DI	2（－G）
TL 26 rada	T－D Sper 80 R S 32W／840 SV／725								
TL 26 mma	t－D Sper 3080 w					bia sow z2ow Csc	S10－E		
						BIA 3ow zevicil	S10－E		
	T－D Food Pro 30W79					HAP 3ow zow csc	S10－E		
	T－D 90 de Lexe Pro 30w／930					BTA 3ow zew Cdi	S10－E		
						Bta 3ow zav Csc	S10－E		
						BIA 3OW Zave C DI	S10－E		
						BTA 30w 220 V b2 SC	S10－E		
						BTA 30w $220 \mathrm{~V} / 60 \mathrm{HzEPSC}$	Slo－E		
						BTA 30w 2 20N／60HzEDII	Slo－E		
TW 2 zrma	T－D Sper 8030 W	TEE 136TL 220220	TEE236TL 220240			BIA 3ON Z2OV CSC	S10－E		
	t－D Xtreme 30w		\＃S 236TL 220240			ETA 3OW Z2OV C DI	S10－E		
	T－D Xtas 3ow	HFP 136TL 220240日I	HFP 236TD 200240日1			BTA 30w $220 \mathrm{~V} / 60 \mathrm{HCSC}$	S10－E		
	T－D 90 De Luxe Pro 36w／930	MESED 136TV 220240	MSED 236\％L 220.240			BTA 30W $220 \mathrm{~V} / 60 \mathrm{HCCDI}$	S10－E		
	MASTRTL－D Refle 30w／865	HFP 136TL 日	HFP 236TD EI			BIA 3ON ZZOV CSC	S10－E		
		HFR 136T0 日	HFR 23670 日i			Bta 3ow zzow di	S10－E		
		HFRDAU 36 L	HFR DAU 236 TL			BTA 3OW 240VCSC	S10－E		
		HFRT 1367L	HFRT 236TL			BTA 30W zave C Di	Slo－E		
		HFRTD 3 ¢7L	HFRTD 236TL				S10－E		
						BTA 36\％ 220 V b2 di	S10－E		
							S10－E		
						BTA 30w $220 \mathrm{~V} / 60 \mathrm{~Hz}$ E2I	S10－E		
						BTA 30w 220 V B1 SC	S10－E		
						BTA 30W $2200 \mathrm{~V} 1 \mathrm{DI}^{\text {d }}$	S10－E		
						BTA 30w 230 V B1 SC	S10－E		
						ETA 36W 230 V B1 DI	S10－E		
						BTA 300 Z 240 V B1 SC	S10－E		
						BTA 360 2 200 Bid ${ }^{\text {d }}$	S10－E		
TL 26 rrma	T－D Sper 30580 N	WS 15870 20220				BIA S5W 220 C C SC	S10－E）		
	MAStretid Seara 58 N	HFP．158TL 220240 日1	HFP 258TL 200240日			BIA S8W z2ov C Di	S10－E		
	T－D Sper 80 HF 58 N		MSED 258TL 220－240			BTA 58w $220 \mathrm{~V} / 6 \mathrm{H} \mathrm{ZCSC}$	S10－E		
	t－D Xteren 5sw	HFP．188T0 日	HFP 288T0 EI			BTA 58w $220 \mathrm{~V} / 6 \mathrm{HzCDI}$	S10－E		
	T0－xta 58w	HFR 158TL 日i	HFR 2587L 日			BTA SSON Z3OV CsC	S10－E		
	T－D 90 Gratica Pro 58w／965	HFRDAU 158TL	HFR DAU 258 TL			Bta 5sw zzow di	S10－E		
	MASTRTL－D Refle 58W／／840	HFRT 1587L	HFRT 2587L			BIA SEW 240 C C SC	S10－E		
		HFRTD 158TL	HFRTD 258TL			BIA 58W 240 CCDI	S10－E		
						BTA S8W 220 V B2 SC	S10－E		
TLE	T－E22w	T．E 122TE 20－240				BIA 22W 220w csc	S10－E		
	T－ESYeres 3022 W					BIA 22W Z2OV CDI	Slo－E）		
							S10－E		
						BIA 2 W Z ZONCDI	S10－E		
						BIA 22W 240 C C SC	slo－E		
						BTA 22W 240 V C DI	S10－E		
						bTA 2 2\％ 2 zov besc	S10－E		
						BTA 22W 220V／60Hz 2 SC	Slo－E		
						BTA 22 W 220N／60HzE201	S10－E		
TLE	T－E 32W	（⿴囗十E 132TE220－240				BIA 32W z2ow csc	S10－E）		
	TL－ESper 3032 W					BIA 32W z2ow cil	S10－E		
						BTA 32W z3ov c sc	S10－E		
						Bta 32W z3ow Col	S10－E		
						BIA 32W 240 C C SC	S10－E		
						BIA 32W 240 V C DI	S10－E		
						BTA 32W 220 V B2 SC	S10－E		
						BTA 32W 220／V00Hz 2 SC	Slo－E		
						BTA 32W $220 \mathrm{~V} / 60 \mathrm{HzEODI}$	S10－E		
TLSC	TLC Stper 302 zw	HFPP 122－40TLSC	HFPP 222－4075C						
		HFR 12275 C							
		HF－R DAU 122TSC							

		Recommended electronic system for the best performance				Alternative electromagnetic sstem for good performance				
Commercial name	Technical lamp type	Ballat (1 lamp)	Ballast (2 lamps)	Ballast (3 lamps)	Ballast (4 lamps)	Ballast (1 lamp)	Starter	Ballast (2 lamps)	Starter	
${ }_{\text {TLSC }}$	TLSC Sper 30550	HEP. 155 TLSC								
		HFR $155 T$ TSC								
		HFR DAU $155 T$ TSC								
		HFRT 155TSC								
TLSC	TL5C Sper 80 gow									
		HFR $160715 C$								
		her dau 160TLSC								
		HFRT 1807LSC				BTA 18w 220 V C SC				
TL 38mma	TLRSzaw					S10-E	BTA 3ow 220 COS	2(-E)		
- trow							BTA ISW 220V C DI BTA ISW 22OV/EOHZC SC	S10-E	BTA 30w z2ov Col	2(-E)
						SIO-E		BTA 30w z2ovgriz SC	2(-G)	
							S10-E	BTA 3OW 220 V COHzC DI	sp(E)	
						BTA 38 W Z 3 OVCSC	S10-E	BTA 30w 230 CLSC	sp(E)	
						BTA 18w z30 C Di	S10-E	BTA 30w z3ov di	2(-E)	
						bTA ABW 240 V C SC	ST1-E)	BTA 30w 240 CNC	2(-E)	
						BTA 18W 240 CCDI	S10-E	ETA 3OW 2400 CDI	sp(E)	
						BTA 180\% 220 V br SC	S10-E	BTA 30w 220 V B2SC	2(-E)	
						BTA 18 W 2zover di	S10-E	BTA 30w 220 V B2 DI	2(-E)	
							S10-E	BTA 3ow z2ov/courzesc	2(-E)	
						BTA $18 \mathrm{~W} 220 \mathrm{~V} / 60 \mathrm{~Hz}$ B2 DI BTA 18 W 220V B1 SC	S10-E	BTA 3ow z2ovgralz 82 DI	se(E)	
							S10-E	BTA 30w 220 V B1 5 C	2(-E)	
						BTA ISN 220 V B1 DI	S10-E	BTA 30w $220 \mathrm{VB1DI}$	sp(E)	
						BTA 18N 230 V B1 SC	S10-E	BTA 30w 2300 Visc	2(-E)	
						BTA 180\% 230 ClIDI	S10-E	BTA 30w 230 NBIDI	2(-E)	
						BTA 180 W 2 20V Bi SC	S10-E	BTA 30w 240 V B1 SC	2(-E)	
						BTA ISW 2 20V E1 DI	S10-E	BTA 30w 240 V B1 DI	sp(-)	
TL 3 armdia	TRS 40 w					BTA 30W 220 NCDI	S10-E			
							510-E			
						BTA 30w $220 \mathrm{~V} / 6 \mathrm{HzCSC}$	S10-E			
						BTA 30W 2 2OVVGOHZ CDI	S10-E			
							S10-E			
							S10-E			
						BTA 30W 2400 CSCBTA 30w 240 CDI	S10-E			
							S10-E			
						BTA 30N 222 N V2 SC	S10-E			
						BTA 3ow 220 V E2dI	510-E			
							510-E			
							S10-E			
							S10-E			
							S10-E			
						BTA 30w 230 VEISC	S10-E			
						ETA SON 230 E12 DI	S10-E			
						BTA 36\% 2400 V B1 SC	S10-E			
TL38mmdia	T. PS 65w					BTA 36W 2 20V 12101	Slo-@			
						BTA 58w 220 V C SC BTA 58W 220 V C DI				
							Slo-E)SIO-E			
						BTA 58W 220V C DI BTA $58 \mathrm{~W} 220 \mathrm{~V} / 60 \mathrm{~Hz}$ C SC				
						BTA SOW 22OVICOHZC DI	S10-®			
						BTA S8w 230 VCsC	$\begin{aligned} & \text { Slo-E) } \\ & \text { SIO-E } \end{aligned}$			
						BTA SEW 2 OOV C SC	S10-E			
						BTA S5W 240 C C DI	S10-E			
						BTA 58w 2200 VasC	S10-E			
Miniture	T. Miri ipeatre SW/865 FASO	WS 109230240 L								
	tLMini sper 308 w/830	T⿴囗 1092302820 SH								
	T. Miriow/54									
		HFM RED 109 SH PL-SPLC								
Minidure	T. Miri isw	WS 114230240 SH								
		(TS1142302020LP								

Datit

Poduct description

The Philips ActiLume lighting control sytem consists of a small,
lightweight sensor and controller, designed for eay integrion into
luminares. ActiLume is a true Plug and Play solution for open plan (up to 9 luminaires) or cell offices (e.g 4 luminaires). It is used in a metter and stave luminaire concept, eesy to use and eesy to install. Specific
application brochures are available to hep specify and apply the system in an optimal way. Cormissioning is optional for other application modes than cell office or open plan. Using this method, functions can be changed without consequences for the electrical installaion.
Features and bnefits
Philips ActiLume is a DALI based lighting control system designed for maximum corfort and energy savings of up to 75% (in fully automatic mode and when used in combination with Philips HF on investment. on investment
ActiLume is a Plug \& Play system, therefore no spedific lighting
control training is needed. Moreover, the system is supported with control training is needed. Moreover, the system is supported with
simple, dedicated application and installation sheets. simple, dedicated application and installation sheets. sensors cone sytem consists out of three state-of-at miaiaure programmed modes.
The two most applied modes, cell or open plan offices, can be selected via a simple push on the service button.
The light sensor is sensitive for visible radiation (matching the human eye) providing automatic savings with daylight depending
regulation, without any visible discomfort for the regulation, without any visible discomfort for the user. The movement detector is very sensitive to human movements and is combined with extended delays
functionality in an office environment.
function and
rated sprindback switch to the controller by connecting a mains rated springback switch to the controller or by using an infraced overruled according to personal preferences.

- In addition Actilume offers the possibility to choose specific modes specially developed in line with new legislation, which makes the system very versatile for use.These modes can be recalled by using a simple mode selection tool IRT8098/00. -It is easy to change a specific application setting by selecting another mode on the advanced mode selection tool IRT8099/00. The ActiLume controller contains two DAL outputs.These outputs are pre programmed (factory setting) as a window and corridor row with a fixed light offset.
The system can control maximum nine ballasts and can be ment detectors, extension 8/00.
Factory light level setting is at 600 lux at a reflection factor of 0.3

Aplications

-The Actilume system is designed for all office applications, from open plan to cell offices, lobbies or toilets, and from corridor to small meeting rooms

Poduct ID
 Sencor LIR1653/00 Controler ICCli653
 Controller LCC1653/00

It offers specific comfort modes, e. for schools, light-lines and direct/indirect lighting concepts.
It even contains a specific confort mode combining maximum energy savinos and additional comfort based on a practical EN 12464 solution (mode 4,5 or 9).
reig dincontrol regimes

- Mode 1: Switching light off when the area is not occupied, saving maximum energy in a cell office situation.
Mode 2: Maintaining a (lower) light level when the area is not occupied, avoiding dark areas in an open plan office.
- Next to the modes the following functions can be changed independently: Power up behaviour (see manual IRT8099/00 Defaut light level (via the service button)
Backgound level (see manual IRT8099/00)

Elated eqipment
ActiLume movement detector, extension sensor LRM8118/00
Simple programming tool IRT8098/00

- Advanced mode selection tool IRT8099/00
- Two-key hand held transmitter IRT8010/00
and wall holder LRH8010/00
Two-key transmitter IRT8050/00
- 4 preset transmitter IRT8030/00

Hips qality

This applies optimum quality with respect to: System supplier
As manufacturer of lamps, electronic control gear and lighting control equipment, Philips ensures that, from the earliest development stage, optimum performance is maintained Philips lighting control
Philips ighting control equipment complies with all relevant international rules and regulations.

mpliances and approals

- $\mathrm{RF}=30 \mathrm{MHz}$:

Immunity:

- Safety:
- Quality standard:

Environmental standard:
CE marking
EN 55022 A
EN 61547 EN 61347-1 EN 613742-11 ISO 9001 15014001 enec

बchical data for installation

Mains operation
Rated mains voltage
With tolerances for safety. + +- 10% Tolerances for performance $+6 \% 8 \%$ Mains frequency
Input power (system)
Output power (system)

Untr of tlasts	Unbr of elension sensors
11	0
10	1

Gchical data for design and mounting in fitures Operating conditions

Rel. humidity
Tcase
Storage Conditions
Rel. humidity

Ensor Ba

Connection

Housing (casing)
Material
Glow wire test
Safety, basic insulation
$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ sensor and controller 20% to 85% no condensation $75{ }^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
10% to 95%

RJ-10 4-Pole
Fixed to LRI1653/00, 100 cm
cable

Polycarbonate UL94V-O

When placed at a height of 3 m
the following values are valid:
Infrared receiver
ight sensor

Movement detector
Passive Infra Red (PIR) - $4 \times 4 \mathrm{~m}$ (sensitive for small
movements)

- $6 \times 5 \mathrm{~m}$ (sensitive large
movements)

Maximum height PIR: 3.5 m
a). How to select the user mode (application)
The user mode can be toggled beans of a short push on service button (<3 seconds)

After key release the lamp will flash to indicate the selected user mode:
1 flash = User mode 1 (Cell
office application)
2 flashes $=$ User
2 flaches $=$ User mode 2 (Open plan office application)
More modes can be recalled by using IRT8099/00.
b. Adjust the factory set
reference light level
Pressing the service button (>3 seconds) until the lamp gives a light flach (wink) will start the automatic calibration procedure.

The light output of the luminaires connected to to 80% The light output of the to 80% The light output of the DAU 2 (corridor row) is to 100%

After 30 seconds the ActiLume controller is saving the actual light level as new reference light level (indicated by a second flash).
This 30 seconds time delay is required to have sufficient time stepladder.

Controller unit LCC1653/00
DAL Output

Manual control
Manual control

 2 the system is program med
as one channel. When enough a one channel. When enough
daylight enters the room the dayight enters the room the amount of artificial light will be
automatically reduced and the DAL_2 output (corridor row) is programmed with a light offset of 30%
In other modes (which can be recalled with IRT8099/00) ActiLume can use two channels depending the application functionaity. By connecting a main
springback switch to springback switch to
connection Ls (Line switched) connextion Ls (Line-switched)
dirming and switching orvoff will be possible according the Touch and Dim functionality. (Maximum 1 switch per
controller)
Switch to be mounted on the
ballazt. ballast.
It is also possible to use remote control IRT8010/00 IRT8030/00 or IRT8050/00, The IRT8030/00 or IRT8050/00.The IRT8030/00 needs to be pointed to the sensor.The
IRT8030/00 and IRT8050/00 IRT8030/00 and IRT8050/00 has a $x-Y-z$ beam direction
making it suitable for wall mounting and table top use.
$850^{\circ} \mathrm{C} / 5 \mathrm{~s}$
$\geq 1500 \mathrm{~V}$
Polycarbonate UL94V-O
The controller housing
contains snap-in pins for quick
fixation.
The diameter of the fixation
holes should be maximum
4.5 mm designed
for a metal thickness of
maximum 0.8 mm
The maximum distance
between the fixation holes is
78 mm

Connector type
Connection wiring is greatly simplified through use of WAGO 251
universal connector. Suitable for both automatic wiring (ALF and ADS)
and manual wiring

Wire cross-section
ADS manual connection
IDC connection
*Stranded wire
Strip length
$0.5 \mathrm{~mm}-0.75 \mathrm{~mm}^{2}(*)$

tilume Otles

Besides the two Plug and Play modes for cell office and open plan office，it is possible to recall 8 other application modes as mentioned inds of applications W th the ayster

IRT8099／00 specific modes can be selected．O nce selected，the mode can be stored and copied via a point and shoot method．The mode will be stored in a non－volatile memory．Even when the lurinaires are switched off for a longer period，stored parameters are kept．
(C)

gend

tence
Libht tasas on
(interana timer is activeded to
(interna timer is ati
dock dbence time)
sence
int dims down to a backgound level
lintemal timer is adivated to cock ab
ime) or surrounding ight at 100%
sence

When enough dadilitt is detected，the ligts will NOT be switched on automatically when someone enters the帾
 When enough dalicigh is detected（meaxured over
5 minutes），the ligts will automatically be switched off

```
->*圆
```

Gntroller Extension sensor for ActiLume to cover movement in open plan or

Etension sensor 10 light lines solution．

Snsor

Enple mode selection too

Simple mode selection tool for
Actilume（mode 1 and mode
2 selection）．
Light set point calibrator
Easy to Use．
Batteries are included．

1，

展
Mode selection tool for ActiLume luminaires．
Inexpensive tool to adjust light levels and to switch between functionality modes． Batteries are included．

Poduct description	mgh	achaing	EO
Controler LCCC165300	0.03 （per piece）	48	91022430
Sersor LR11653／00	0.03 （per piece）	48	91046230
Kt Controle \＆Sentror it1653／00	0.06 （per kit）	12	910483
Extersion sencor LRM8118／00	0.20	1	73078300
Simple mode selection tool 1 RT $8098 / 80$	0.08	1	730806
Advenced mode selection tool $1 \mathrm{Rr} \mathbf{8 0 9 9 9 0 0}$	022	1	518893

Product description	Weight (kg)	EOC
TRANSU IR POINT IRT801000	0.06	51799000
MOUNT IR POINT LRH801000	0.03	51797100
TRANSM IR 2KEY WAL IRTR050/00	0.12	51707000
TRANSM IRTRIOS IRT8030/00	0.22	51763600

Hand-held two-key transmitter IRT 8010/00
Hand-held two-key transmitter, for inffrared control of various lighting control sytems ActiLume can aso dim the lights (by pressing a button $>0.5 \mathrm{sec}$).The unit is supplied with batteries A wall holder is separately available

Wall holder LRH8010/00

Wall holder for the IRT8010/00 hand-held two-key transmitter.

Two-key infrared remote control IRT 8050/00

Two-key infrared remote control transmitter for wall mounting and table top use.The unit can be used in Actilume. The actual function of the two large keys can be selected with a dip switch in the battery compartment.A dip switch is also used to select the group address

Four-preset hand-held transmitter IRT 8030/00
Four-preset hand-held transmitter, suitable for infrared control of
Actilume applications. It has 4 keys for presets and one key for "all
off". Keys for individual control and preset programming are located
under a hinged cover at the bottom of the transmitter. The group address selector switch is contained in the battery compartment.The unit is supplied complete with wall holder and batteries.

6mpliances and approals

- RFI $<30 \mathrm{MHz}$	EN 55015*
- RFI $>30 \mathrm{MHz}$	EN 55022b
- Harmonics:	EN 61000-3-2
- Immunity:	EN 61547
- Safety.	EN 61347-2-3
- Performance:	EN 60929
- Vibration \& bump tests:	IEC 68-2-6
- Quality standard: 1509001	IEC 68-2
- Environmental tandard:	EN 14001
- Approval marks	ENEC, VDE-EMV

बchical data for installation

Mains operation

Aplications

Typical reas of application indude:

- DAL installations with daylight linking and/or movement detection (energy sacaing).
DAL installations with remote control systems (personal scene setting).

Eamples:

- Office buildings insurance companies, banks, government ministries
- Cellular , Open plan offices, corridors and lobbys
- Conference rooms, Lecture theatres.
- Department stores, shops, supermarkets and malls
- Hotels, restaurants and bars
- Cinemas, museums
- Hospitals,
- Schools
- Factories, workshops
- Airports, railway stations
lips qality
This applies optimum quality with respect to:
- System supplier

As manufacturers of lamps electronic control gear and lighting control equipment, Philips ensures that, from the earliest control equipment, Philips ensures that, from the earliest
development stage, optimum performance is maintained. International standards
Philips HF electronic regulating ballast's comply with a relevant international rules and requilaions.

Poduct description
Compact, lightweight high-frequency electronic regulating ballast using DAL (Digital Addressable Lighting Interface) protocol, for
PL-T and PL-C compact fluorescent lamps.
Features and bnefits
The lamp power can
he lamp power can be regulated down to 3\%

- Striation-free operation.

Quick programmed start: ficker-free warm start, ideal for areas
with a high svitching frequency (movement detection
applications), this enables the lamps to be switched on and off without reducing useful life.

- Up to 60% reduction in energy consumption can be achieved by using automatic lighting control systems
fiuctutions
All Philips HF
α-control This is a dator electronic ballat's are equipped with dent control of each electrode and, in doing so, takes care that: dent control of each electrode and, in doing so, takes care that: b. lamp burning is stable in every dimming
b. lamp burning is stable in every dimming position; and
energy saings, when dimming are maximised

EN 55015*
RFI $>30 \mathrm{MHz}$
Harmonics

- Immunity:
- Safety:
- Performance:

Quality standard: 1509001

- Environmental standard:

Approval marks:
EN 14001
ENEC. VDE-EMV
Mains operation
Rated mains woltage
with tolerances for sofety. + +/ 10%
tolerances for performance: $+6 \%-8 \%$
Mains frequency
Operaing frequency
Power factor

Smart power: with AC mains voltage fluctuations $220-240 V$
$198-264 V$ 202-254V $50 / 60 \mathrm{~Hz}$ $>42 \mathrm{kHz}$ 0.95 at 100% power
202-254V luminous flux varies by $\pm 2 \%$ max.

DC voltage operation (during emergency back-up) Required battery voltage for quaranteed ignition 198-254V DC Required battery voltage for burning lamps. Nominal light output is obtained at a voltage of 198-254V DC Normal light output is obtained at a voltage of $220 \mathrm{~V}-240 \mathrm{~V}$ ates.
. For continuous DC application, an external fuse should be used in the luminaire
. Continuous low DC voltages ($<$ 198V) can influence the lifetime of the ballost
Earth leakage current
$<0.5 \mathrm{~mA}$ per ballast
Maximum number of ballasts which can be connected to one Residual Current Detector of 30 mA

Overvoltage protection

Automatic restart after lamp replacement
or voltage dip
Insulation resistance test 500 V DC from Line/Neutral to Earth (not between Line and Neutral)
Note: Ensure that the neutral is reconnected again atter above mentioned test is carried out and before the installation is put in operation
amp wiring
The use of 500 V rated components and Wiring is advised for PL-T 32 W and 42 W types

Ignition time

$$
\text { Typical } 0.5 \text { sec. }
$$

Advised maximum cable capacity max. 30 pF: between two sets of for optimum performance and lamp wires (each set of lamp wires is connected to one electrode of the lamp) max. 75 pF: between one set of lamp wires (connected to one electrode of the lamp) and earth. Care has to be taken for symmetricad
wiring wiring

Alns current at

nersion tale for maxyantities of bllasts on ottar tyes of Miature Ircuit Beakr

ape	Elatiz cantityof blasts	
в	16A	100\%(see tade above)
в	10 A	63\%
c	16A	170\%
c	10A	104\%
L.	16A	108\%
4	10A	65\%
¢, u, ॥	16A	212\%
¢, ¢., ॥	10A	127\%
K.11	16A	254\%

[^0]
Control input
Digtal coded input signal according to
"Digtal Addressale Eighting Interface" protocol DAU
induding 16 presets, 64 addresses possibility.

Reationstip between lamp power and digital requation
Regulating level (lamp power)
3 to 100%
The control input complies with EN 60929 (Amendment 1, Annex E) and is compatible with Philips lighting control equipment

Sim command for full lamp power (100%) Dim command for min. lamp power (3\%)

Protected ageinst acidental mains voltage connection
Control input insulation, basic insulation
The ballasts that are thermally protected use a protective method of another type providing equivalent thermal protection.

chical data for design and mounting in fikures Temperatures
 Temperature range to ignite lamo with ignition aid n assured
 -
 Striation possible
 $>15^{\circ} \mathrm{C}$
 $<15^{\circ} \mathrm{C}$

ate:
Lifetime of a ballast depends on the temperature of the ballast. This means there is a relation between theTc point on the ballast and its lifetime. For more information regarding this subject consult the Philips Application guide to fluorescent lamp control gear.

Earthing Earthing of the HF ballast in a luminaire is necessary for EMC (electromacnetic compatibility)
Class II luminaires
This application is not advisable; only with extensive tests on luminaires can the correct operation be verified

Hum and noise level inaudible
Permitted humidity is tested according to IEC 928 par. 12 Note that no moisture or condensation may enter the ballast.

Connection wiring is greatly simplified through use of insert contacts earth connection can be made via housing or terminal block

tes:

1. Data is based on a mains supply with an impedance of $400 \mathrm{~m} \Omega$ (equal to 15 m cable of $2.5 \mathrm{~m}^{2}$ and another 20 m to the middle of the power distribution), under worst cose conditions. With an 10%, 2. Measurements will
subject to change the MCB but by the maximum electrical load of the lighting installation.
2. Note that the maximum number of ballasts is given when these are all switched on the same moment, i.e. by a wall switch.
3. Measurements were carried out on singlepole MCB's. For multi-pole MCB's it is advisable to reduce the number of ballasts by 20%
4. First digital requlating steps (DAL) are fixed at 3% light output
(dimming spedification) (dimming spedification).

Connection wiring is greatly simplified through use of insert contacts earth connection can be made via housing or terminal block

Ne crosssection:

Mains connector [O rangel $0.5 \mathrm{~mm}-1.5 \mathrm{~mm}^{2}$ Control connector [Blue] $0.5 \mathrm{~mm}-1.5 \mathrm{~mm}^{2}$ Lamp(s) connector [gray] $0.5 \mathrm{~mm}-1.5 \mathrm{~mm}^{2}$

Strip length

$$
7.5-8.5 \mathrm{~mm}
$$

$7.5-8.5 \mathrm{~mm}$

2-lamps

tes:

7. For optimum performance, note that wires from connection 1 and 2 should be kept short and equal in lengh
terminals 182 wit thort as possible: do not bunch wires from
 ires from terminals $3,4,5 \& 6$ with those from terminals $1,2,7 \& 8$ (2 -lamp ballats).
Typical capacitance 1 m wires dose together (spacing 0.5 mm) 46 pF Typical capacitance 0.5 m wires close together (spacing 0.5 mm) 23pF Ip-lg between lamp wires and ground
Typical capacitance 1 m wires close to ground (spacing 0.5 mm) 72pF Typical capacitance 0.5 m wires close to ground (spacing 0.5 mm) 38pF

Ellast	Pexe			Elipachg					
	Ellode	Mgb	-	Dnensions dume	ns olume	mbt	gross Ellode	EO	
				pcs	$\begin{gathered} \text { l xowh } \\ \mathrm{cm} \end{gathered}$				
HFR DAU 118 PL-T/C	871500929808		0.2	12	$22.0 \times 2.1 \times 88$	0.006	3.0	8711500929815	92880830
HFR DAU218 PL-T/C	8711500929884		0.2	12	$22.0 \times 21.1 \times 88$	0.006	30	871500929891	92884430
HFR DAU 126 PL-T/C	87150092882		0.2	12	$22.0 \times 21.1 \times 88$	0.006	3.0	871500929839	9288230
HFR DAU226 PLTTC	871550929907		0.2	12	$220 \times 21.1 \times 88$	0.006	3.0	871500929914	92990730
HFR DAU 132 PL-T	871500929846		0.2	12	$22.0 \times 21.1 \times 88$	0.006	3.0	8711500929853	92984630
HFFR DALI232 PL-T	871500929921		0.2	12	$220 \times 21.1 \times 88$	0.006	3.0	871500929938	92992130
HFR DAU 142 PL-T	871500929860		0.2	12	$22.0 \times 21.1 \times 88$	0.006	3.0	8711500929877	92986030
HFFR DALI 242 PL-T	8711500929945		0.2	12	$22.0 \times 21.1 \times 8.8$	0.006	3.0	871500929952	9299530

Emples
Office buildings: insurance companies, banks, government ministries - Cellular or open plan offices

Conference rooms, lecture theatres, corridors
Schools
Department stores, shops, supermerkets

- Hotels, restaurants and bars
- Cinemas, museums.

hips qality

This applies optimum quality with respect to:

- System supplier

As manufacturer of lamps, electronic control gear and lighting control equipment, Philips ensures that, from the earliest development stage, optimum performance is maintained.
International standards
Philips HF electronic regulaing ballosts comply with all relevant international rules and regulations.

ompliances and approals

RF $<30 \mathrm{MHz}$:
RFI>30 MHz:

- Harmonics:
- Safenty:
- Performence:
- Vibration \& bump tests.
- Quality standard:
- Environmental standard:
- Approval marks.
- Temp. dedared thermally protected:
- CE marking

achical data for installation

 Mains operationRated mains voltage
With tolerances for sofety. +1- 10% Tolerances for performance $+6 \% 8 \%$ Mains frequency

Smart power: with AC mains voltage fluctuations luminous flux varies by $\pm 2 \%$ max.

DC voltage operation (during emergency back-up) Required battery voltage for quaranteed ignition Required battery voltage for burning lamps Nominal light output is obtained at a voltage of

Notes
. For continuous DC application, an external fuse should be used in the luminaire.
2. Continuous low DC voltages ($<198 \mathrm{~V}$) can influence the lifetime of the ballast.

Earth leakage current
$<0.5 \mathrm{~mA}$ per ballast
Maximum number of ballasts which can be
connected to one Residual Current Detector
of 30 mA
30
vervoltage protection

Automatic restart after lamp replacement
or voltage dip
48 hrs at 320 V AC
2 hrs at 350 VAC

Ans current at

Elast	emp tpe	وof	Input
HFRTD 114 TL5	TL5 14W HE	1	
HF-RTD 214 TLS	TL5 14W HE	2	
HFRTD 3/414 TLS	TLS 14W HE	3	
HFRTD 3/414 TLS	TL5 14W HE	4	
hF-RTD 121 TLS	tL521w he	1	
HF-RTD 221 TLS	TL521w He	2	
HFRTD 128.35 TLS	TL5 28w He	1	0.33
HFRTD 228.35 TLS	TL5 28w He	2	0.269
HFRTD 128.35 TLS	TL5 35W HE	1	0.172
HFRTD 228.35 TLS	TLS 35W HE	2	0.336
HF-RTD 124 TLS	TL5 24w но	1	
HFRTD 224 TLS	тL5 24w но	2	
HF-RTD 3/424 TLS	TL5 24w но	3	
HFRTD 3/424 TLS	тL5 24w но	4	
hF-RTD 139 TLS	TL5 39w но	1	
HFRTD 239 TLS	TL5 39w но	2	
HFRTD 199 TLS	TL5 49w но	1	0240
HFRTD 249 TLS	TL5 49w но	2	0.449
HFRTD 154 TLS	TL54w но	1	0262
HFRTD 254 TLS	TL54, но	2	0.521
HFRTD 180 TLSPL-L	TL5 80w но	1	0381
HFRTD 280 TLSPL-L	TL5 80w но	2	

Aplications

Typical areas of application indude
DAU instalations with daylight linking and/or movement detection (for energy savings)
DAL installations with remote control systems (combining energy savings with comfort)
Instalations with emergency back-up, according to VDE 0108. system or personal light level adiustment is required

Poduct ID	,	B	c	D	
1 Lamps	360	350	${ }^{30}$	21	42
2 Lamps	360	350	30	21	42
2x80w	425	415	30	21	42
3/4 Lamps	360	350	39	21	42

	Qty of Lamps	Ballast	$\begin{aligned} & \text { Power } \\ & \text { Factor } \end{aligned}$	Max cable Cap ${ }^{1)}$ Lp-Lp/Lp-Lgnd PF	$\begin{array}{r} \text { Tr max } \\ \quad \propto \end{array}$	
TLSHE 14V	1	HFRTD 114 TS	-	-	-	
TLSHE 14W	2	HF-RTD 214 TLS	-	-	-	
TLSHE 14W	3	HF-RTD 3/414T5	-	-	-	
TLSHE14W	4	HFRTD 3/41475	-	-	-	
TLSHE2IW	1	HF-RTD 121 TLS	-	-	-	
TLSHE2IW	2	HF-RTD 221 TLS	-	-	-	
TLS HE 28W	1	HFRTD 128.35TLS	0.98	100/50	75	42.110
TLSHE28W		HF-RTD 228.35 TLS	0.98	5075	75	42.110
TLS HE 35W	1	HFRTD 128.35 TLS	0.99	100/50	75	42.110
TLSHESSW	2	HF-RTD 228.35 TL	0.99	50775	75	42.110
тL5 HO 24w	1	HFRTD 124 TLS	-	-	-	
тL5HO 24w	2	HFRTD 224 TS	-	-	-	
тL5 Ho 24w	3	HFRTD 3/424T5	-	-	-	
TL5HO 24w	4	HFRTD 3/424T5	-	-	-	
TL5 Ho 39w	1	hF-RTD 139 TLS	-	-	-	
ті5 HO 39 w	2	HFRTD 239 TL5	-	-	-	
тL5 Ho 49w	1	hF-RTD 199 TLS	0.98	100/50	75	42.110
тL5HO 49w	2	HFRTD 249 TLS	0.99	5075	75	42.110
тL5 HO 54w	1	HF-RTD 154TL	0.98	100/150	75	42.110
TLSHO 54w	2	HFRTD 254TL	0.99	5075	75	42.110
TL5 Ho 80w	1	HFRTD 1807LTPL-L	0.99	100/150	75	42.110
TL5 Ho 80w	2	HFRTD 2807TIPL-L	-	-	-	

Protected against accidental mains voltage
connection
Yes

Control input

Regulating level (lamp power)
The control input complies with EN 60929 (Amendment 1,Annex E) and is compatible
with Philips lighting control equipment
Standby power consumption $<350 \mathrm{mw}$

Control input insulation, basic insulation

Input power \backslash dimeed HF-REGULATORI
(DAL/Touch and Dim)
Option 1) DALI
Digtal coded input signal according to "Digtal Addressable Lighting interface" protocol, including 16 presets and 64 addresses possibility.

Option 2) Touch and Dim

A short push on the button represents the OVOff command. Personal ight levels can be stored in the internal memory by a firm longer push on the push button.
Failure proof (non volatile) memory ensures that the ballast dways remembers your setting when next time switched on or in case of power failure.

Maximum number of ballats connected in one circuit 32 Pcs (switched on by one or multiple switches)

Mains input signal
Ignore status, $<0.04 \mathrm{sec}$.

To avoid reaction on mains Spikes!
Short pust, between 0.04 sec. and 0.5 sec . Switch OnO If
Long push, between 0.5 sec . and 10 sec .
Reset push, $>10 \mathrm{sec}$.
he dim function will togge after each individual push. Except when the value is lower than 10% it will always dim up, and when the light output hicher than 70% it will always dim down to perform according humen perception.

Technical data for design and mounting in fixture

Temperatures

Temperature range to ignite lamp
with ignition aid
at a 70.100% dim input

$$
0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C}
$$

Stable lamp operation assured $\quad>15^{\circ} \mathrm{C}$ Striation posssible $\quad<10^{\circ} \mathrm{C}$

Max t case
$75^{\circ} \mathrm{C}$
The lifetime of a ballast depends on the temperature of the ballact. This means there is a relation between the TC point on the ballast and its fetime.The HF-Requlatorll ballas forTL5 applications has a specified lifetime of 50,000 hrs at a measured Tcsese of $75^{\circ} \mathrm{C}$.

Class II luminares
This application is not advisable; only with extensive tests on luminaires can the correct operation be verified

EMI precautions have to be taken
Ballat IP=23
In outdoor the luminaire has to be sufficiently IP rated
Permitted humidity is tested according to EN 61347-1 par 11 Note that no moisture or condensation may enter the ballast

For optimum ignition the TL5 lamps should be mounted at a meximum distance of 6 mm from a metal plate
The metal plate should be electrically connected to the ballast housing

Earthing of the HF ballast in a lumninare is necessary for EMC (electromagnetic compatibility

Humand noise leve

W iring diagrams

Connector type
Connection wiring is greatly simplified through use of WAGO 251 universal connector. Suitable for both automatic wiring (ALF and ADS) and manual wiring

ire cross-section

IDC connection
$0.5 \mathrm{~mm}-1.0 \mathrm{~mm}^{2}$
ADS manual connection
*Stranded wire
Strip length

Wiring tips

Earth connection to be made via housing or mains connector
Wiring inside fixture should be stright and as short as possible Lamp wires should not run parallel to mains or control wires to avoid EMC problems For optimal performance, note that:

- For one lamp ballasts wires 4 and 5 as short as possible, equal in length and a minimum of 50 mm from mains or dim wires Keep lamp wires 6 and 7 equal in length.
For two lamp ballasts wires 3,4 and 5 as short as possible, equal in length and a minimum of 50 mm from mains or dim wires Keep lamp wires 6 and 7 , and 1 and 2 equal in length.

Notes

Notes based on a mains supply with an impedance of $400 \mathrm{~m} \Omega$ (equad to 15 m cable of 2.5 mm and another 20 m to the middle of the power distribution), under worst case conditions. With an impedance of $800 \mathrm{~m} \Omega$ the number of ballasts can be increased by 10%
2. Measurements will be verified in real installations, therefore data are subject to change.
3. In some cases the maximum number of ballasts is not determined by the MCB, but by the maximum electrical load of the lighting installation.
4. Note that the maximum number of ballats is based on the assumption that these are all switched on at the same moment, i.e. by Mearrement
5. Measurements were carried out on singe pole MCB's For multi-pole MCB's it is recommended to reduce the number of ballasts by 20%
6. First digital regulating steps (DAL) are fixed at 1% light output (dimming specification).
. For optimum performance care has to be taken for symmetrical wiring. Minimal 6 mm distance from lamp to earth plane.

Electronics Dmming)

©lering and packiging data										
Elast	Pece			Bl packging	Densions	dume	mgh	Emode	EO	
						"v	cos			
			4	pcs		cm	m	\%		
HFRTD 128-35TL5	8711500908841		026	12		40.8820.8x7.6	0.0065	3.4	8711500908858	90884130
HFRTD 228.35 TLS	871500908865		029	12		$40.8820 .8 \times 7.6$	0.0065	38	871500908872	90886530
HFRTD 149 TLS	8711500908889		026	12		$40.8820 .8 \times 7.6$	0.0065	34	871500908896	90889930
HFRRTD 249 TLS	871500909596		0.31	12		$40.8820 .8 \times 7.6$	0.0065	4.0	871500909602	90959630
HFRTD $154 T$ LS	871500909619		027	12		40.8820 .877 .6	0.0065	35	871500909626	90961930
HFRRTD $2547 L$	871500909633		033	12		$40.8820 .8 \times 7.6$	0.0065	42	8715009095640	9096330
HFRTD 1807LIPLLL	871500909657		0.29	12		40.8820.887.6	0.0065	3.7	8711500909664	90965730

Electronics Dmming)

HF-Regulator Ell Touch and

 DALITL-D/PL-L
Poduct description

Flat, lightweight high-frequency electronic regulating ballast, using DAU (Digita Addressable Lighting Interface) or Touch and Dim push button protocol, for TL-D fluorescent lamps:The HF-Regulatorll ballałs incorporates the new Philips El technology offering full digita input (mains) and output (lamp) management.

Features and bnefits

- The lamp power can be regulated from 100% to 1%
- Fla ballast design, 21 mm high.
- Up to 75% reduction in energy consumption can be achieved by using automatic lighting control systems (e.g. Philips ActiLume luminaire-based system solutions).
Q uick programmed start: 0.5 sec, flicker-free warm start, preheating the lamp electrodes. This enables the lamps to be switched on and off without reducing useful life. Ideal for areas with a high switching frequencs,
- Digital control input according to the industry standard DAU (Digital Addressable Lighting Interface) combined with the Touch and Dim push button protocol.
Low energy consumption in standby 0.35 W due to the new E technology.
Com lamp wire flexibility thanks to the Parasitic Capacitance Compensation (longer lamp wiring possible up to 2 meter) fluctuations.
Unit is protected against excessive mains voltages, incorrect connections and incorrect lamp use
Striation-free operation, no stroboscopic effects
- Lamp starts al 1% (DAL 1.100% in 100 mb).
- Automatic stop circuit is activated within five seconds in case of lamp failure (sofety stop). Once the lamp has been replaced, the ballast resets automatically.
Equipped with connectors suitable for automatic wiring machines
The Philips HF-Requlatorll electronic ballosts are equipped with El-dim technology.This is a dedicated integrated dircuit that ensures aldirm ted . control of each electrode and in doing so, takes care indepen
that:
a lamp
a lamp life is unaffected by dirming position
b. lamp burning is stable in every dimming position; and
c. energy savings, when dimming are maximised.

Aplications

Typical areas of application indude

- DAL installations with daylight linking and/or movement detection (for energy savings)
DAL installations with remote control systems (combining energy savings with confort)
Inscalaions with emergency back-up, according to VDE 0108 Office applications were a simple and easy dimming system or personal light level adjustment is required.

Eamples
Office buildings: insurance companies, banks, government ministries - Cellular or open plan offices

Conference rooms, lecture theatres, corridors
Schools
Department stores, shops, supermarkets
Hotels, restaurants and bars
Cinemes, museums.

月ips qality

This applies optimum quality with respect to:

- System supplier

As manufacturer of lamps, electronic control gear and lighting control equipment, Philips ensures that, from the earliest development stage, optimum performance is maintained
International standards
Philips HF electronic regulating ballasts comply with all relevan international rules and regulations.

6mpliances and approals

RF $<30 \mathrm{MHz}$:
RFI>30 MHz:

- Harmonics:
- Safenty:

Performance:
Vibration \& bump tests:

- Quality standard:

Environmental standard:

- Approval marks.
- Temp. dedared thermaly protected

CE marking

ब̄chical data for installation

 Mains operationRated mains voltage
With tolerances for safety: +/- 10% olerances for performance $+6 \% 8 \%$ Mains frequency

EN 55015
EN 55022 A
EN 61000-3-2
EN 61547
EN 61347-2-3
EN 60929
EN 60068-2-6-FC
EN 60068-2-29-Eb
SO 9001
ENEC
ENEC
EMV-VDE
EMV-VDE
EN 61347-1
e

Smart power: with AC mains voltage fluctuations, luminous flux varies by $\pm 2 \%$ max.

DC voltage operation (during emergency back-up) Required battery voltage for quaranteed ignition Required batery voitage for guaranteed ignition
Required battery voltage for burning lamps Nominal light output is obtained at a voltage of

Notes

1. For continuous DC application, an external fuse should be used in the luminaire.
Continuous low DC voltages ($<198 \mathrm{~V}$) can influence the lifetime of the ballat.

Earth leakage current
$<0.5 \mathrm{~mA}$ per ballest
Maximum number of ballats which can be
connected to one Residual Current Detector
of 30 mA
30
Overvoltage protection
48 hrs at 320 V AC
2 hrs at 350 V AC
Automatic restart after lamp replacement
or voltage dip
Yes
Alns current at

slast	lmp tpe	gof	Input
		lmps	current
hferto 118 TL-D	t-D 18w	1	
HF-RTD 218 TL-D	t-D 18w	2	
HFRTD 3/418 TL-D	T-D 18w	3	
HFRTD 3/418 TL-D	t-D 18w	4	
HFRTD 136 TLD	t-D 36 w	1	0.17
HFRTD 236 TL-D	t-D 36 w	2	031
HFRTD 158 TL-D	t-D 58 w	1	0.250
HFRTD 258 TL-D	t-D 58 w	2	0.490
HFRTD $136 \mathrm{PL-L}$	PL-L 36w	1	
HFRTD $236 \mathrm{PL-L}$	PL-L 36W	2	
HFRTD 140 PL-L	PL-L 40w	1	
HFRTD $240 \mathrm{PL-L}$	PL-L 40w	2	
HFRTD $155 \mathrm{PL-L}$	PL-L 55w	1	
HFRTD 255 PL-L	PL-L 55w	2	
HFRTD 180 TLIPL-L	PL-L sow	1	0381

Electronics (Dimming)

HF-Regulator Ell Touch and DALITL-D/PL-L

Conversion table for max. quantities of ballasts on other types of Miniature Circuit Breakers

MCB Type		Relative quantity of ballasts
в	16 A	100\%/see tade on the left)
в	10 A	\%
c	164	170\%
c	10 A	104\%
L।	164	108
LI	108	65\%
¢.u.u	164	212\%
¢.u.u	104	127\%
K.II	164	254\%
K.11	10 A	154

Insulation resistance test 500 V DC from Line/Neutral to Earth (not between Line and Neutral) Note: Ensure that the Neutral is reconnected again after the above mentioned test is carried out and
before the installation is put into operation.

Ignition time
Typical 0.5 sec. quick warm start.

Lamps	$\begin{aligned} & \text { Qty of } \\ & \text { Lamps } \end{aligned}$	Ballast	$\begin{gathered} \text { System } \\ \text { Power* } \\ \text { w } \end{gathered}$	$\begin{gathered} \text { Lamp } \\ \text { Power* } \\ \mathrm{w} \end{gathered}$	$\begin{gathered} \text { Ballast } \\ \text { Lost } \\ \text { w } \end{gathered}$	Efficacy Im/W	$\begin{gathered} \text { Lumen } \\ \text { Nom.* } \\ \text { Im } \end{gathered}$	$\begin{gathered} \text { CELMA } \\ \text { class } \\ \text { EEI } \end{gathered}$
TL-D 18W	1	HF-RTD 118TL-D		-	-		1300	
TL-D 18w	2	HF-RTD 218TL-D	-	-	-	-	2600	
TL-D 18w	3	HFRRTD 3/418TL-D	-	-	-	-	3900	
TL-D 18w	4	HFRRD 3/418TL-D	-	-	-	-	5200	
TL-D 3ow	1	HF-RTD 136TL-D	37	32	5	100	3200	
TL-D 30w	2	HF-RTD 236TL-D	708	2332	68	100	6400	
TL-D 58w	1	HF-RTD 158TL-D	56.3	50	6.3	100	5000	
TL-D 58w	2	HF-RTD 258TL-D	1098	2250	9.8	100	10000	
PL-L 36w	1	HF-RTD 136 PL-L	-	-	-	-	2000	A 1
PL-L 36W	2	HFRTD 236 PL-L	-	-	-	-	5800	A_{1}
PL-L 40W	1	HF-RTD 140 PL-L	-	-	-	-	3500	${ }^{\text {A }}$
PL-L 40w	2	HFRTD 240 PL-L	-	-	-	-	7000	${ }^{\text {A }}$
PL-L 55w	1	HF-RTD 155 PL-L	-	-	-	-	4800	${ }^{\text {A }}$
PL-L 55w	2	HFRTD 255 PL-L	-	-	-	-	9600	A_{1}
PL-L 8ow	1	HFRTD 180TLTPL-L	87	802	6.8	75	6000	
PL-L 80W		HFERTD 280TLIPLL	-	-	-	-	12000	

elation between lamp pover and digital regiation

put power v dimeal HF-REGULATORII PLITTouch and Dim)

tion \mathbf{D}

Digtal coded input signal according to "Digital Addressable Lighting Interface" protocol, induding 16 presets and 64 addresses possibility.

stion puctrand Dn

A short push on the button represents the ONOff commend. Personal light levels can be stored in the internal memory by a firm longer push on the push button.
Failure proof (non volatile) memory ensures that the ballast always remembers your setting when next time switched on or in case of power failure.

Maximum number of ballasts connected in one circuit 32 Pcs (svitched on by one or multiple switches)

Mains input signal	Retractive push-to-make switch
- Ignore status, <0.04 sec.	To avoid reaction on mains spikes!
- Short push, between 0.04 sec . and 0.5 sec .	Switch Oroff
- Long push, between 0.5 sec . and 10 sec .	Dim Up/Down
- Reset push, >10 sec.	Set light to mid value (35\% output)

he dim function will togge atter each individual push. Except when the value is lower than 10% it will always dim up, and when the light output is higher than 70% it will always dim down to perform according human perception.

Gchical data for design and mounting in fixures

Temperatures

Temperature range to ignite lamp
at a 70.100% dim input
$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage temperature range $\quad-25^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
$\begin{array}{ll}\text { Stable lamp operation assured } & >15^{\circ} \mathrm{C} \\ \text { Striation possible } & <10^{\circ} \mathrm{C}\end{array}$
straion possibl
Max t case $75^{\circ} \mathrm{C}$

Lifetime of a ballast depends on the temperature of the ballast. This means there is a relation between the Tc point on the ballast and its iferime The HF-Reglatorll hallat for TIL 5 aplications has a secified lifetime of $50,000 \mathrm{hrs}$ at a measured Tcase of $75^{\circ} \mathrm{C}$.

Class II luminaires This application is not advisable; only with extensive tests on luminaires can the correct operation be verified

EMI precautions have to be taken
Ballast IP=23
In outdoor the luminaire has to be sufficiently IP rated
Permitted humidity is tested according to
EN 61347-1 par 11
no moisture or condensation may enter the ballast

For optimum ignition the TL-D lamps should be mounted 13 mm from a metal plate. The metal plate should be electrically connected to the ballast housing

For optimum ignition the PL-L lamps should be mounted 6 mm from a metal plate. The metal plate should be electrically connected to the ballast housing
Earthing of the HF ballast in a luminaire is necessary for EMC (electromegnetic compatibility)

Inaudible

Wing diagrams

Gnnector tye

Connection wiring is greatly simplified through use of WAGO 251 universal connector. Suitable for both automatic wiring (ALF and ADS) and menual wiring.

we crosssection
ADS manual connection
IDC connection
*Stranded wire
Strip length $0.5 \mathrm{~mm}-0.75 \mathrm{~mm}^{2}\left({ }^{*}\right)$ $8.0-9.0 \mathrm{~mm}$

Wing tips

Earth connection to be made via housing or mains connector Wiring inside fixture should be straight and as short as possible. Lamp wires should not run parallel to mains or control wires to avoid EMC File performee note that:
and 5 as short as possible, equal in length and a minimum of 50 mm from mains or dim wires Keep lamo wires 6 and 7 equal in length.
For two lamp ballasts wires 3,4 and 5 as short as possible, equal in length and a minimum of 50 mm from mains or dim wires keep lamp wires 6 and 7 , and 1 and 2 equal in length.
ates

1. Data based on a mains supply with an impedance of $400 \mathrm{~m} \Omega$ (equal to 15 m cable of 2.5 mm and another 20 m to the middle of the power distribution), under worst case conditions. With an impedance of $800 \mathrm{~m} \Omega$ the number of ballasts can be incressed by 10%
2. Measurements will be verified in real installations, therefore data are subject to change
. In some cases the maximum number of ballasts is not determined by he MCB, but by the maximum electrical load of the lighting installation
3. Note that the maximum number of ballasts is based on the assumption that these are all switched on at the same moment, i.e. by a wall switch.
4. Meesurements were carried out on singe pole MCB's. For multi-pole MCB's it is recommended to reduce the number of ballasts by 20%
. First digtal regulaing steps (DAL) are fixed at 1% light output (dirming specification).
5. For optimum performance care has to be taken for symmetrical wiring

Electronics Dmming)

HF-Regulator Ell Touch and
DALITL-D/PL-L

alering and packiging data

@lering and packging data

alering and packng data

6mpliances and approals

Poduct description

Compact, lightweight high-frequency electronic regulating ballat for TL-D (Krypton) fluorescent lamps.

Features and bnefits

- The lamp power can be regulated down to 3%
- Striation-free operation
- $1-10 \mathrm{~V}$ control input (European standard)
- Programmed start: flicker-free warm start, ideal for areas with a high switching frequency
- 50% longer lamp life than with conventional ballasts
- Up to 60% reduction in energy consumption can be achieved by using automatic lighting control system
All Philips HF-Regulator electronic ballats are equipped with α-control. This is a dedicated integrated dircuit that ensures independent control of each electrode and, in doing so, takes care that: a lamp life is unaffected by dimming position; b. lamp burning is stabler in every dimming position; and c. energy savings, when dimming are maximised.

Aplications

Typical areas of application indude:

- 1-10V installations with daylight linking and/or movement
detection (energy saving)
- 1-10V installations with remote control systems (comfort) - Installations with emergency
back-up, according to VDE 0108

Eamples

- Office buildings insurance companies, banks, govermment ministries
- Corridors
- Department stores, shops, supermarkets
- Hotels
- Hospitals
- Cinemas

lips qality

This implies optimum quality with respect to

- System supplier

As manufacturer of lamps, electronic control gear and lighting control equipment, Philips ensures that, from the earliest development stage, optimum performance is maintained International standards
Philips HF electronic regulating ballasts comply with all relevant international rules and regulations.

EN 55015 EN 55022 A EN 61000-3-2
EN 61547
EN 60929
IEC 68-2-6 FC
IEC 68-2-29Eb
1509001
EN 14001
ENEC

Dual fixture: mater stave operation not advisable
Advised meximum cable ca pacity for
optimum performance and max. 30 pF : between two sets of EMI suppression lamp wires (each set of lamp wires is connected to one electrode of the lamp max. 150 pF : between one set of lamp wires (connected to one electrode of the lamp) and earth

Automatic restart atter lamp yes for 1- and 2-lamp ballasts, replacement or voltage dip for 3-and 4 lamp ballasts, the mains power needs to be reset.
Insulation resistance test
soov DC from Line/Neutral to Earth not between Line and Neutral) oco: Ensurected again alter abovementioned est is carried at and before the installation is put in operation.
220-240V 198-264V 202-254V $>42 \mathrm{kHz}$ 0.95 at 100% power
,

Elast			Input current
			A
HFR 118TL-D			0.09
HFR 218TL-D			0.18
HFR 318t-D			0.27
HFRR 418TL-D			034
HFR 136TL-D			0.18
HFR 236TL-D			034
HFR 158TL-D			026
HFR 258TL-D			052
HFRR 136 PL-L			0.18
HFRR 136 PLLL			034
HFRR 140 PL-L			021
HF-R 240 PL-L			0.42
HFRR 155 PL-L			026
HFRR 255 PL-L			052
Inrustcurrent			
sllast	Myantityof bllasts per Miature Ircuit Bealkr \qquad		
HFR 118t-D	28	48	254/200 $\mu \mathrm{sec}$
HFRR218t-D	28	48	25A/200
HFR 318t-D	28	48	324/300 $/$ sec
HFR 418TL-D	12	20	32A/200 μ sec
HF-R 136TL-D28	28	48	25A/200 $/$ sec
HFRR236TL-D	28	48	254/300 $\mu \mathrm{sec}$
HFR 158TL-D	12	20	324/300 $/$ sec
HFR 258TL-D	12	20	32A/300 μ ece
HFR 136 PL-L	28	48	25A/200 $/$ sec
HFRR 236 PL-L	28	48	254/200 $/$ sec
HFRR 140 PL-L	12	20	324/300 $/$ sec
HFRR 240 PL-L	12	20	324/300 $/$ sec
HFRR 155 PL-L	12	20	324/300
HFRR 255 PL-L	12	20	324/300 $/$ sec

- RF $<30 \mathrm{MHz}$
- RF $>30 \mathrm{MHz}$
- Harmonics:
- Immunity:
- Sarety:
- Performance:
- Vibration \& bump tests:
- Quality standard:
- Environmental standard:
- Approval marks:
- CE marking

Mains operation
Rated mains voltage
with tolerances for safety. $+1-10 \%$ tolerances for performance: $+6 \%-8 \%$ Mains frequency
Power factor

Smart power: with AC mains voltage fluctuations, 202-254V luminous flux varies by $\pm 2 \%$ max.
DC voltage operation (during emergency back-up) Required battery voltage for guranteed ignition 198-254V DC Required battery voltage for burning lamps $176-254 \mathrm{~V}$ DC

otes:

1. For a continuous DC application, an external fuse should be used
2. For a continuous
in the luminare.
3. Continuous low DC voltages ($<198 \mathrm{~V}$) can influence the lifetime of the ballast.

Control input

Control voltage
Protected against acidental
mains voltage connection
Regulating level (lamp power)
The control input complies with EN 60929 ,
(Amendment 1,Annex E) and is
,h Philips lighting control equipment.

Ignition time
Earth leakage current
Maximum number of ballasts
which can be connected to one
Residual Current Detector of 30 mA
Overvoltage protection

1-10VDC
yes
3 to 100\%
<2 s
$<0.5 \mathrm{~mA}$ per ballast

30

48 hrs at 320 VAC 2 hrsat 350 VAC

We		of tlasts
в	16 A	100\%(see tale above)
в	10 A	63\%
c	16 A	170\%
c	10 A	104
L.	16 A	108\%
L,	10 A	65\%
G., .ı	16 A	212\%
G.U.ı	10 A	127\%
${ }_{\text {k.II }}$	16 A	254%
K.II	10 A	154\%

बchical data in relation to energysaing

bmp	$\begin{aligned} & \text { epf } \\ & \text { lamps } \end{aligned}$	Ellast	tem		bmp		Em		
			Ber*	Efficact	${ }_{\text {cor* }}$	Efficact	Lmen*	class	
			w	ImN		Imm	Im		EE1
TL-D 18	1	HFR 118TL-D	21	${ }^{2}$		16	81	1300	${ }^{\text {A }}$
TL-D 18	2	HFRR 218TLD	39	66		16	81	1300	${ }^{\text {A }}$
TL-D 18	3	HFR 3/418TL-D	65	60		16	81	1300	${ }^{\text {A }}$
TL-D 18	4	HFR 3/418TL-D	79	65		16	${ }^{81}$	1300	${ }^{\text {A }}$
TL-D 36	1	HFRR 136TLTD	38	84		32	100	3200	${ }^{\text {A }} 1$
TL-D 36	2	HFRR 236TL-D	74	87		32	100	3200	${ }^{\text {A }}$
TL-D 58	1	HFRR 158TL-D	56	89		50	100	5000	${ }^{\text {A }} 1$
TL-D 58	2	HFRR 258TLD	113	${ }^{8}$		50	100	5000	${ }^{\text {A }}$
PL-L 36	1	HFER 136 PL-L	38	76		32	91	2900	${ }^{\text {A }}$
PL-L 36	2	HFRR 236 PL-L	74	78		32	91	2900	${ }^{\text {A }}$
PL-L 40	1	HF-R 140 PL-L	47	74		40	88	3500	${ }^{\text {A }} 1$
PL-L 40	2	HFRR 240 PL-L	92	76		40	88	3500	A_{1}
PL-L 55	1	HFRR 155 PL-L	56	78		50	87	4350	${ }^{\text {A1 }}$
PL-L 55	2	HFRR 255 PL-L	113	π		50	87	4350	A1

बchical data for design and mounting Ablasts in fitires Temperatures

$$
\begin{array}{ll}
\begin{array}{ll}
\text { Temperature range to ignite lamp } \\
\text { with hagition aid } \\
\text { Stable lamo operation assured }
\end{array} & >15^{\circ} \text { to }+50^{\circ} \mathrm{C}
\end{array}
$$

$$
\text { Wtable lamp operation assured } \quad>15^{\circ} \mathrm{C}
$$

Max. tcase $=75^{\circ} \mathrm{C}^{* *}$
ote:
Lifetime of a ballast depends on the temperature of the ballast. This means there is a relation between the Tc point on the ballast and its
lifetime. For more information regrarding this subiect consult the Philips Application guide to fluorescent lamp control gear.

Class II luminaires this application is not advisable; only with extensive tests on luminaires can the correct operation be verified

Hum and noise level inaudible
Permitted humidity is tested according to IEC 928 par. 12. Note that no moisture or condensation may enter the ballast.
The connection wiring is greatly simplified through use of insert contacts, with push buttons. For $3 / 4$-lamp ballasts, the earth connection can be made via housing or terminal block.

We crosssection:	
On the mains side (mains/control voltage):	0.5-1.5 mm ${ }^{2}$
On the lamp side:	0.5-1.5 mm
trip length	9-10
Strip length: HF-R 3/418TL-D	7.5-8.5 mm

Damp circuits

Bamp circuits

otes:

1. Data is based on a mains supply with an impedance of $400 \mathrm{~m} \Omega$ (equal to 15 m cable of $2.5 \mathrm{~mm}^{2}$ and another 20 m to the middle of the power distribution), under worst case conditions. With an impedance of $800 \mathrm{~m} \Omega$ the number of ballasts can be incressed by
10\%
Measurements will be verified in real installations; therefore data are subject to change.
2. In some cases the maximum number of ballasts is not determined by the MCB but by the maximum electrical load of the lighting installation.
3. Note that the maximum number of ballasts is given when these are all switched on at the same moment, i.e. by a wall switch.
4. Meesurements were carried out on singlepole MCB's. For multi-pole MCB's it is advisable to reduce the number of ballats by 20%

elering and packng data

allast			Blpaching						
	Emode mill		-	Denesions	ns dume	lugh	gross Elode	EO	
					$1 \times$ xat				
		4		pcs.	cm	m ${ }^{\text {3 }}$!		
HFRR 118TL-D	8711500739681	035		10	$38 \times 21 \times 8$	0.006	3.7	8711500739698	73968130
HF-R 218TL-D	8711500740045	0.49		10	$48 \times 23 \times 8$	0.009	5.3	8711500740052	74004530
HFR 3/418TL-D	8711500747457	0.50		10	$48 \times 22 \times 85$	0.009	5.7	8711500747464	74755730
HFRR 136TL-D	8711500737994	0.35		10	$38 \times 21 \times 8$	0.006	3.7	871500737991	73798430
HFRR 236TL-D	8711500738790	0.49		10	$48 \times 23 \times 8$	0.009	5.3	8711500738806	73879030
HFR 158TL-D	8711500737908	035		10	$38 \times 21 \times 8$	0.006	3.7	8711500737915	73790830
HFRR 258TL-D	8711500738813	0.49		10	$48 \times 23 \times 8$	0.009	5.3	8711500738820	73881330
HFRR 136 PL-L	8711500737960	035		10	$38 \times 21 \times 8$	0.006	3.7	8711500737977	73796030
HFRR $236 \mathrm{PL-L}$	8711500738752	0.49		10	$48 \times 23 \times 8$	0.009	5.3	8711500738769	73875230
HFRR 140 PL-L	8711500737922	0.35		10	$38 \times 21 \times 8$	0.006	3.7	8711500737939	73792230
HF-R 240 PL-L	8711500738738	0.49		10	$48 \times 23 \times 8$	0.009	5.3	8711500738745	7387830
HFRR 155 PL-L	8711500737946	0.35		10	$38 \times 21 \times 8$	0.006	3.7	8711500737953	73794630
HFRR 255 PL-L	8711500738776	0.49		10	$48 \times 23 \times 8$	0.009	53	871500738783	73877630

HFRTLS $1-10 \mathrm{~V}$

Poduct description
Slim lightweight high-frequency electronic regulating ballat for T L5 fluorescent lamps.

Features and bnefits
-The lamo power can be requlated down to 3%

- Striation-free operation
- $1-10 \mathrm{~V}$ control input
(European standard)
Programmed start: flicker-free warm start, ideal for areas with a high switching frequency
- Up to 60% reduction in energy consumption can be achieved by
using automatic lighting control systems
All Philips HF -Regulator electronic ballasts are equipped with α-control.This is a dedicated integrated circuit that ensures independent control of each electrode and, in doing so, takes care that:
unaffected by dimming position
b. lamp burning is stabler in every dimming position; and c. energy savings, when dimming are maximised.

Aplications

Typical areas of application indude:

- 1-10V installdions with daylight linking and/or movement detection (energy saing)
- 1-10V installations with remote control sytems (confort)

Installaions with emergency
back-up, according to VDE 0108
Eamples

- Office buildingss insurance companies, bank, government ministries Corridors
th stores, shops, supermarkets
Hotels
- Cinemas

ips qaily

This implies optimum quality with respect to:
System supplier
As manufacturer of lamps, electronic control gear and lighting control equipment, Philips ensures that, from the earliest development trage, optimum performance is maintained International standards
Philips HF electronic requlating ballats comply with all relevant international rules and regulations.

©mpliances and approals

- RH < 30 MHz :
- RF < 30 MHz
- RF $>30 \mathrm{MHz}$
- Harmonics:
- Immunity:
- Sofety:
- Performance:
- Vibration \& bump tests:
- Quality standard:
- Environmental standard:
- Approval marks
- CE marking
बchical data for installation
Mains operation
Rated mains voltage
with tolerances for sofety: + /- 10%
tolerances for performance: $+6 \%-8 \%$
Mains frequency
Operating frequency
Power factor

EN 55015
EN 55022 A
EN 55022A
en 61000-3-2
EN 61000-3-2
EN 61347-2-3
EN 60929
IEC $68-2-6 \mathrm{FC}$
IEC $68-2-29 E \mathrm{E}$
EC 68-2-29Eb
EN 9001
ENEC VDE-EM

220-240V**
198-264V**
202-254V
$50 / 60 \mathrm{~Hz}$
$>42 \mathrm{KHz}$
$0.90^{*} ; 0.95$
0.90; 0.95 a
mor power: with AC mins voltage fluctuations, 202-254V luminous flux varies by $\pm 2 \%$ max.

C voltage operation (during emergency back-up)
Required battery voltage for guaranteed ignition $198-254 \mathrm{~V}$ DC Required battery voltage for burning lamps $176-254 \mathrm{~V}$ DC Nominal light output is obtained at a voltage of $220-240 \mathrm{~V}$ DC tes:
1.For a continuous DC application, an external fuse should be used in the luminaire.
2.Contimuous low DC voltage ($<198 \mathrm{~V}$) can influence lifetime of the ballast.
Control input
Control voltace
Control voltage
Protected aginst accidental mains voltage connection
Regulating level (lamp power) The control input complies with EN 60929, (Amendment 1, Annex E) and is compatible with Philips lighting control equipment.
Ignition time
Earth leakege current
Maximum number of ballats
which can be connected to one Residual Current Detector of 30 mA
Overvoltage protection
*Value for $1 \times 14 \mathrm{~W}$ and $1 \times 21 \mathrm{~W}$ typer
** Value for $1 \times 80 \mathrm{~W}$
30
48 hrs at 320 V AC
2 hrs at 350 V AC

Lame wiring for HF-R...TL'5
500 V rated components and wiring are required with HF-Regulator TLS
Ial fixure: meter saye operaion not adisable
Advised meximum cable capacaity for
optimum performance and
EMI suppression
max. 15 pF : between two sets of lamp wires (each set of lamp wires
is connected to one elecrode of the lamp max. 75 pF: between one set of lamp wires (connected to earth

Automatic restart after lamp replacement or voltage dip

Indion resistance tes for 3-and 4-lamp ballasts, the mains power needs to be reset.

500 V DC from Line/Neutral to Earth (not between Line and Neutral)
Note: Ensure that the neutral is reconnected again after
and before the installation is put into operation.

Alns C
Ellast

Ellast	Input current
	A
HFR 11475	0.09
HFRR214T5	0.15
HFR 31475	023
HFR 41475	029
HFR 121 TL	0.12
HFRR221T5	020
HFR 124 TL	12
HFRR224T5	024
HFRR 128 T5	0.16
HFRR 228 T5	028
HFR 135 T L5	0.19
HFRR 235 T L5	034
HFR 13975	0.19
HF-R 23975	038
HFR 19975	025
HFR 29975	0.48
HFR $154 T 5$	027
HFRR 254 TL5	051
HFR 18075	038

Inruscurrent				Gnersion tale for maxqantities of bllasts on othr tyes of Miature IEcuit Beakr			
Elast	Ayantityof bllasts per Miature ITcuit Beakr		Inruskurrent Alue time at tyical mains impedance				
			We	latie uantityof			
					blasts		
	tye En	\cdots			в	16A	100\%(see tale above)
HFR 114715	28	48		198/220 ${ }^{\text {¢ }}$	в	10A	63\%
HF-R 214TLS	28	48	254/200 15	c	16A	170\%	
HFR 314 TLS	28	48	254/200 ${ }^{\text {/ }}$	c	10A	104\%	
HFR 41475	28	48	25A/200 15	ᄂ.	16A	108\%	
HFR 121 TLS	28	48	198/220 H $^{\text {/ }}$	4	10 A	65\%	
HFR221TL5	28	48	25A/200 15	¢., U."	16A	212\%	
HFRR 124 TLS	28	48	198/220 $/$ 今	¢., U.ı	10 A	127\%	
HFR224TLS	28	48	254/200	K.11	16A	254\%	
HF-R 128 TL5	28	48	198/220 $/$ ¢	k.II	10 A	154\%	
HFRR228TL5	28	48	254/200 ${ }^{\text {H }}$				
HF-R 135 TLS	28	48	198/220				
HFR 235TLS	12	20	324/300 ${ }^{\text {/ }}$				
HF-R 13975	28	48	198/220 н				
HFR2397L	12	20	$32 \mathrm{~A} / 300$ H				
HFR 1497LS	28	48	198/220 ${ }^{\text {H }}$				
HFR 2499 LS	12	20	$32 \mathrm{~A} / 300$ H				
HFR 15475	28	48	198/220 ${ }^{\text {¢ }}$				
HFR254TL	12	20	$32 \mathrm{~A} / 300$ н				
HFR 1807 TL	12	20	32A/300 H				

बchical data for design and mounting A blasts in fitures Temperatures
Temperature range to ignite lamp $\quad+10^{\circ}$ to $+50^{\circ} \mathrm{C}$
with ignition aid
Stable lamp operation assured $\quad>15{ }^{\circ} \mathrm{C}$
Striation possible
$<15^{\circ} \mathrm{C}$
Max. tcase $=75^{\circ} \mathrm{C}^{* *}$
Dte:
Lietime of a balla\& depends on the temperature of the ballas. This means there is a relation between the Tc point on the ballat and its
ifetime. For more information regarding this subject consult the Philips Application guide to fluorescent lamp control gear.

Class il luminaires	this application is not advisable; only with extensive tests on luminaires can the correct operation be verified

Hum and noise level inaudible

.
Note that no moisture or condensation may enter the ballast.
The ballests that are thermally protected use a protective method of another type providing equivdent thermal protection.

otes:

1. Data is based on a mains supply with an impedance of 400Ω (equal to 15 m cable of $2.5 \mathrm{~mm}^{2}$ and another 20 m to the middle of he power distribution), under worst case conditions. With an impedance of 800Ω the number of ballasts can be increased by 10% Measurements will be verified in real installations; therefore data are subject to change.
. In some cases the maximum number of ballats is not determined by the MCB but by the maximum electrical load of the lighting 4. Note that

Note that the maximum number of ballosts is given when these are Mersured on at the same moment, i.e. by a wall switch.
5. Messurements were carried out on single pole MCB's For multi-pole MCB's it is advisable to reduce the number of ballosts by 20% . First digitd regulding steps are fixed at 3% light output (dimming specification).

Wining dagams

Connection wiring is greatly simplified through use of insert contacts: earth connection can be mede via housing or terminal block

ne crosssection:

$\begin{array}{ll}\text { On the mains side (mains/control voltage): } & 0.5-1.5 \mathrm{~mm}^{2} \\ \text { On the lamp side: } & 0.5-1.5 \mathrm{~mm}^{2} \\ \text { trip length } & 7.5-8.5 \mathrm{~mm}\end{array}$
©te:
For optimum performance, note that wires from connection 1 and 2 for singelamp versions, and from connections 3,4 and 5 for twin-lamp versions, and from connections 5 and 6 for triple/quad-lamp versions should be kept short and equal in length

©lering and packng data

description

Compact, lightweight, high-frequency electronic regulating ballast for PL-T and PL-C compact fluorescent lamps.

Features and bnefits

- The lamp power can be requlated down to 3% ($10-100 \%$ for HF R 257 PL-T).
Quick programmed start: 0.5 sec, flicker-free warm start,
preheating the lamp electrodes, This enables the lamps to be
switched on and off without reducing useful life. Ideal for areas with a high switching frequency.
1-10V control input (European standerd)
- Up to 50% longer lamp life than with corventional ballasts
- Up to 75% reduction in energy consumption can be achieved by using automatic lighting control systems
Smart power: constant light output independent of mains voltage fluctuations.
Unit is protected ageinst excessive mains voltages and incorrect connections.
Automatic stop circuit is activated within five seconds in case of lamp failure (saffety stop). O nce the lamp has been replaced, the ballast resets automatically.

All Philips HF-Regulator electronic ballasts are equipped with α-control.This is a dedicated integated dircuit that ensures
independent control of each electrode and, in doing so, takes care that
a. lamp life is unaffected by dimming position
b. lamp burning is stable in every dimming position; and
c. energy savings, when dimming are maximised.

Aplications

Typical areas of application indude:

- Installations with daylight linking and/or movement detection (for energy sawings)
- Installations with remote control systems (personal scene setting) - Installations with emergency back-up, according to VDE 0108.

Eamples:

- Office buildingss insurance companies, banks, government ministries
- Cellular offices, open plan offices, corridors and lobbies

Conference rooms, lecture theatres
Department stores, shops, supermarkets and malls

- Hotels, restaurants and bars
- Cinemas, m
- Schools.

lips qality

This applies optimum quality with respect to
System supplier
As manufacturers of lamps, electronic control gear and lighting control equipment, Philips ensures that, from the earliest and International standards
Philips HF electronic requlating ballasts comply with all relevant international rules and requlations.

6mpliances and approals

- $\mathrm{RF}=30 \mathrm{MHz}$

Harmonics

- Immunity.
- Safety.
- Performance:
- Vibration \& bump tests
- Quality standard:

Environmental standard:

- Approval marks
- Temp. dedared thermally protected
- CE marking
*Tested with ballat functional ground connected to earth.

chical data for installation

Mains operation	
Rated mains voltage	$220-240 \mathrm{~V}$
With tolerances for sfefty. +/-10\%	$198-264 \mathrm{~V}$
Tolerances for performance $+6 \% 8 \%$	202-254V
Mains frequency	$50 / 60 \mathrm{~Hz}$
Operating frequency	$>42 \mathrm{kHz}$
Power factor	0.95 む 100\%
Power factor HF-R 118 PL-T/C	0.90 む 100\%
Smart power: with $A C$ mains voltage fluctuations, Luminous flux varies by $+2 \%$ max.	202V-254V
DC voltage operation (during emergency badk-up)	
Required battery voltage for guranteed ignition	198V-254V
Required battery voltage for burning lamps	176V-254V
Nominal light output is obtained at a voltage	220V-240

Inrustcurrent

Notes
EN 55015*
AN 55022 B
N 61000-3-2
EN $61000-32$
EN 61547
EN 61347-2-3
EN $6092988-2-6-\mathrm{FC}$
EN 60068-2-29-Eb
150 9001
SO 1400
ENEC
VDE-gMV
EN 61347-1 \downarrow
Maxim um number of ballats which can be connected to one Residual Current Detector form

Overvoltage protection
8 hrs at 320 VAC 2 hrsat 350 VAC

Automatic restart atter lamp replacement
or voltage dip
yes

Alns current at ${ }_{\text {P }}$		
Ellast	bmp	Input current
	A	
HFRR 118 PL-T/C	PL-T/C 18w	0.09
HFR $218 \mathrm{PL-T/TC}$	PL-T/C 18w	0.17
HFR 126.42 PL-T/C	PL-T/C 26w	0.13
HFRR 126.42 PL -T/C	PL-T 32W	0.17
HFRR 126.42 PL -T/C	PL-T 42W	021
HFRR $226.42 \mathrm{PL-T/T}$	PL-T/C 26 W	025
HFR2 26.42 PLTT/	PL-T 32W	033
HFRR 226.42 PL-T/C	PL-T 42W	0.41
HFRR 157 PLT	PL-T 57W	027
HFRR 257 PLT	PL-T 57W	0.53

Electronics Dmming)

Insuldion resitance test Lamp wiring	500 V DC fro (not between Note: Ensure reconnected mentioned te the installaion The use of 50 wiring is adkis 57w types		
Ignition time	Typical 0.5 se	Relationship between lamp power and control voltage	
Advised maximum cable cepacity for optimum performance and EMI	Max. 30 pF: wires (each connected to	đchical data for design and mounting in fitures Temperatures	
Suppression		Temperature range to ignite lamp With ignition aid Stable lamp operation assured Striation possible Max t case	$\begin{aligned} & +10^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \\ & >15^{\circ} \mathrm{C} \\ & <15^{\circ} \mathrm{C} \\ & 75^{\circ} \mathrm{C} \end{aligned}$
Gntrol input Control voltage		Earthing	Earthing of the HF ballast in a luminare is necessary for EMC (electromagnetic compatibility)
Protected against accider connection	ins voltage	Class II luminares	This application is not advisable: only with extensive tests on
Regulding level (lamp po The control input compli (Amendment 1,Annex	He 60929 s compatible		luminares can the correct operation be verified

Igition time
Advised meximum cable apacity for optimum performence an
Suppression

Gintrol input
 Control voltage

500 VDC from Line/Neutral to Eath (not between Line and Neutral Noternected again ater the above mentioned test is carried out and before the installdion is put into operdion.

Protected ageinst accidental mains voltage connection

Regulaing level (lamp power)
The control input complies with $\boxminus \mathbf{N} 60929$ (Amendment 1,Annex E) and is compatible with Prilips lighting control equipment.

Insuldion resitance test Lamp wiring	500 V DC fro (not between Note: Ensure reconnected mentioned te the installaion The use of 50 wiring is adkis 57w types		
Ignition time	Typical 0.5 se	Relationship between lamp power and control voltage	
Advised maximum cable cepacity for optimum performance and EMI	Max. 30 pF: wires (each connected to	đchical data for design and mounting in fitures Temperatures	
Suppression		Temperature range to ignite lamp With ignition aid Stable lamp operation assured Striation possible Max t case	$\begin{aligned} & +10^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \\ & >15^{\circ} \mathrm{C} \\ & <15^{\circ} \mathrm{C} \\ & 75^{\circ} \mathrm{C} \end{aligned}$
Gntrol input Control voltage		Earthing	Earthing of the HF ballast in a luminare is necessary for EMC (electromagnetic compatibility)
Protected against accider connection	ins voltage	Class II luminares	This application is not advisable: only with extensive tests on
Regulding level (lamp po The control input compli (Amendment 1,Annex	He 60929 s compatible		luminares can the correct operation be verified

elationstip between lamp power and control voltage

Earthing Earthing of the HF ballast in a Iuminare is necessary for EMC (electromegnetic compatibility)

This applicaion is not advisable; only with extensive tests on uminaries con the corret eration be verified

Inaudible

Permitted humidity is tested according to EN 61347 par.11. Note that no moisture or condensation may enter the ballazt.

基 61347 par:11. Note that no

achical data in relation to energysaing

Electronics Dmming)

Connecting wiring is greatly simplified throuch ure of insert contacts

Wire cross section:		
Mains connector	[Orange]	$0.5 \mathrm{~mm}-1.5 \mathrm{~mm}^{2}$
Control connector	[Bliee]	$0.5 \mathrm{~mm}-1.5 \mathrm{~mm}^{2}$
Lamp(s) connector	[Gray]	$0.5 \mathrm{~mm}-1.5 \mathrm{~mm}^{2}$

$0.5 \mathrm{~mm}-1.5 \mathrm{~mm}^{2}$
$0.5 \mathrm{~mm}-1.5 \mathrm{~mm}^{2}$
,

1. For optimum performence, note that wires from connection 1 and 2 should be kept short and equal in length.
2. Keep lamp wiring as short as possible; do not bunch wires from terminals $1 \& 2$ with those from terminals $3 \& 4$ (1 -lamp ballasts), or wires from terminals $3,4,5 \& 6$ with those from terminals $1,2,7 \& 8$ (2-lamp ballats).
3. lp-lp between lamp wires

Typica capaditance 1 m wires close together (spacing 0.5 mm) 46 pF Typical capacitance 0.5 m wires dose together (spacing 0.5 mm) 23 pF Ip-lg between lamp wires and ground
Typical capacitance 1 m wires dose to ground (spacing 05 mm) 72 pF Typical capaitance 0.5 m wires dose to ground (spacing 0.5 mm) 38 pF 4. Data is based on a mans supply with an impedance of 400 m (equal to 15 m cable of $2.5 \mathrm{~mm}^{2}$ and another 20 m to the middle of the power distribution), under worst case conditions With an impedance of $800 \mathrm{~m} \Omega$ the number of ballasts can be incressed by 10%
5. Measurements will be verified in red installations, therefore data are subject to change.
6. In some cases the maximum number of ballasts is not determined by 6. In some crees by the maxim um electrical load of the lighting installation. 7. Note that the maximum number of ballasts is based on the assumption that these are all switched on the same moment, i.e. by a wall switch. MCB'

HF-RTouch and Dim

Product description
Slimline or Compact, lightweight high-frequency electronic regulating ballast, using a specific digital HF-Requlator Touch and Dim protocol. A dedicated range forTLS,TLSC and TLD fluorescent lamps.

Features and benefits

- Easy personal control, creating your personal lighting level at the touch of a button.
Simple installation diagram No control device required, ballast will work in combination with any standard retractive / push-to-make switch.
A short push represents the O NOIf command, and personal light level preference can be stored in the internal memory by a firm
longer push on the button. Failure proof (Non volatie) memory ensures that ballast alwas remembers your setting when next time switched on, or in case of power failure.
- Presets can be selected and adjusted between 3% and 100% light output by a long push.
- Quick programmed soft-start: 0.5 sec, fading to default (100\%) or fading to preset level.
- System reset/alignment by means of long push min 10 sec . Light will adjust to 35% value.
- Smart power: constant light independent of mains voltage fluctuations.

All Philips $H F$-Regulator electronic ballasts are equipped with α-control.This is a dedicated integrated dirait that ensures
independent control of each electrode and, in doing so, takes care that a lamp life is unaffected by dimming position
blamp burning is stable in every dimming position: and
c. energy savings, when dimming are maximised

Applications

ypical areas of application indude:
Office applications were a simple and easy to install dim system or personal light level adjustment is required.

Examples

- Cellular office, free floor standing luminaries.
- Open plan offices(up to 32 luminaires)

Small conference rooms, Lecture theatres
Hotels, restaurants
Medical consultancy rooms.

- Schools

Product ID	A1	A2	B1	B2	c1	D1
Linear						
1 Lamps	359	350	30		28	45
2 Lamps	425	415	30		28	45
3/4Lamps	425	415	39		28	42
Square						
1 Lamps	123	111	79	¢	33	45
2 Lamps	123	111	79	${ }^{6}$	33	45

Philips quality
This applies optimum quality with restal
As manufacturers of lamps electronic control gear and lighting control equipment, Philips ensures that, from the earliest development stage, optimum performance is maintined
International standards
Philips HF electronic requlating ballat's comply with a relevant international rules and regulations.
Compliance's and approvals

RF $<30 \mathrm{MHz}$: RFI>30 MHz:
 - RA>30 MHz: - Harmonics:
 Immunity:

- Safety:
- Performance:
- Vibration \& bump tests.
- Quality standard:

Environmental standard:

- Approval marks

Temp. dedared thermally protected

- CE marking

EN 55015** EN 55022 B EN 61000-3-2
 EN 61547-2
 EN 61347-2-3 EN 6092
 EN 60929
 IEC 68-2-6-FC IEC $68-2-29-E \mathrm{ED}$
 IEC 68-2-29-Eb ISO 9001
 ISO 9001
 ENEC,VDEEMMV,
 EN 61347-1

Mains current at $\mathbf{2 3 0 V}$

Ballast	Input current A
HFRT 414TL	029
HFRT 128tLS	0.15
HFRT 228TL5	028
HFRRT 135 TL	0.18
HFRT 235 TLS	034
HFRT 13975	020
HFRT 23975	039
HF-RT 14975	025
HFRT 249 TLS	0.47
HFRR 154TL	028
HFRT $254 T 5$	53
HFRT 122T5C	11
HFRT 1407t5C	020
HFRT 155TL5C	026
HFRT 1607LSC	0.28
HFRT 318t-D	0.27
HFRT 418tL-D	034
HFRR 136TL-D	0.18
HFRR 236TL-D	033
HFRT 158T-D	025
hert 25st-	0.49

thed with ballast findional gound comeded to earth
Technical data for installation
Mains operation

Rated mains voltage		$220-240 \mathrm{~V}$
With tolerances for safety:	$+/-10 \%$	$198-264 \mathrm{~V}$
Tolerances for performance	$+6 \% 8 \%$	$202-254 \mathrm{~V}$
Mains frequency		$50 / 60 \mathrm{~Hz}$
Operating frequency		$>42 \mathrm{kHz}$
Power factor		$0.95 \pm 100 \%$ po

ting frequenc
$202-254 \mathrm{~V}$
uminous flux varies by $\pm 2 \%$ max
DC voltage operation (during emergency back-up)
Required battery voltage for quaranteed ignition 198V-254V Required battery voltage for burning lamps $170 \mathrm{~V}-254 \mathrm{~V}$ Nominal light output is obtained at a voltage of $220 \mathrm{~V}-240 \mathrm{~V}$ Notes:

1. For continuous DC application an external fuse should be used in the luminaire
Continuous low DC voltages (<198V) can influence the lifetime of the ballast

Earth leakage current

Current Detector of 30 mA which can be connecter

Overvoltage protection
8 hirs at 320 VAC 2 hrs at 350 VAC 5 min. at 380 VAC

Lamp	$\begin{aligned} & \text { Qty. of } \\ & \text { Lamps } \end{aligned}$	Ballast	System Power* W	Efficacy* Im/w	$\begin{aligned} & \text { Lamp } \\ & \text { Power* } \\ & \mathrm{w} \\ & \hline \end{aligned}$	Efficacy* Im/N	NOMINAL Lumen Im $\left(25^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { CELMA } \\ \text { class } \\ \text { EEI } \end{gathered}$
TL5 HE 14W	4	HFRT 414TL-5	66	${ }^{81}$	14	96	1200	${ }^{\text {A }}$
TL5 He 28w	1	HFRT 128TL-5	32	90	28	104	2600	${ }^{\text {A }}$
TL5 HE 28w	2	HFRT 228TL-5	${ }^{63}$	92	28	104	2600	${ }^{\text {A }}$
TL5 He 35w	1	HFRT 135TL-5	39	93	35	104	3300	${ }^{\text {A }}$
тL' HE 35W	2	HFRT 235TL-5	76	96	35	104	3300	${ }^{\text {A }}$
тL5 He 39w	1	HFRT 139tL-5	43	${ }^{81}$	38	82	3100	${ }^{\text {A }}$
тL5 He 39w	2	HFRT 2397L-5	87	80	38	82	3100	A1
TLНе 49w	1	HFRT 199TL-5	55	${ }^{91}$	49	102	4300	${ }^{\text {A1 }}$
TL5 HE 49w	2	HFRT 249TL-5	107	93	49	102	4300	A1
тьне Saw	1	HFRT 154TL-5	62	81	54	93	4450	${ }^{\text {A }}$
TL5 He saw	2	HF-RT 254TL-5	121	83	54	93	4450	A1
tisc 22w	1	hFRT 122TLSC	27	67	22	82	1800	${ }^{\text {A }}$
TISC 40w	1	HFRT 2497LSC	46	72	40	${ }^{83}$	3300	A1
TISC 55w	1	hFRT 154TL5C	61	72	55	80	4400	${ }^{\text {A }}$
TISC 60 w	1	HFRT 254TLSC	66	82	60	90	5000	A1
TL-D 18w	3	HFRT 3/418TL	65	60	16	81	1300	A1
TL-D 18 W	4	HFRT 3/418TL	79	65	16	81	1300	A1
TL-D 36w	1	HFRT 136TLD	38	84	32	100	3200	A1
TL-D 36w	2	HFRT 236TLD	74	87	32	100	3200	A1
TL-D 58w	1	HFRT 158TL	56	89	50	100	5000	${ }^{\text {A1 }}$
TL-D SEW	2	HFRT 258 TLD	112	89	50	100	5000	A1

Connecting wiring is greatly simplified trough use of insert contacts, Wire cross-section:

Mains connector	[Orange]	$0.5 \mathrm{~mm}-1.5 \mathrm{~mm}^{2}$
Control connector	[Blue]	$0.5 \mathrm{~mm}-1.5 \mathrm{~mm}^{2}$
Lamp(s) connector	$[g \mathrm{ary}]$	$0.5 \mathrm{~mm}-1.5 \mathrm{~mm}^{2}$
Strip lengh	$7.5-8.5 \mathrm{~mm}$	

Wiring diagram 1 Phase installation

3 Phase installation

Ates:

1. Dat is baed on a mains supply with an impedance of 400 m (equal to 15 m cable of $2.5 \mathrm{~mm}^{2}$ and another 20 m to the middle of the power distribution), under worst cæe conditions With an impedance of 800 m ? the number of ballats can be incresed by 10%
Meesurements will be verified in red installaions, therefore data are subject to change
2. In some cases the meximum number of ballats is not determined by the

MCB but by the meximum electricd load of the lighting installdion
4. Note that the maxim um number of ballats is given when these are al
switched on the same moment, i.e. by a wall switch.

Ellast	Pece		Hipachg			mb				
	Eltode	ugh	9	Dnensions dume			gross	ERode	EO	
					$1 \times$ xh					
				pcs	cm	m		4		
HFRT 414TLS	8711500931689	0.44		10	$48.0 \times 2.0 \times 85$	0.009		4.	8711500931696	93168930
HFRT 128 TL	871500929266	${ }^{0}$		12	39.6x19.887.0	0.005		39	8711500929273	92926630
HFRT 288 TLS	871500929648	0.4		12	48.0x19887.0	0.007		53	8711500229655	92964830
HFRT 135 TL	871500929280	03		12	39.6x19.977.0	0.005		39	8711500922297	92928030
HFRT 235 TLS	871500929686	0.4		12	$48.0 \times 198 \times 7.0$	0.007		53	8711500929693	9296830
HFRT 139 TLS	871500929303	${ }^{0}$		12	$39.6 \times 198 \times 7.0$	0.005		3.9	8711500929310	92930330
HFRT 239 TLS	871500929754	0.4		12	$48.0 \times 198 \times 7.0$	0.007		53	8711500929747	9297530
HFRT 199TLS	871500929327	03		12	$39.6 \times 198 \times 7.0$	0.005		3.9	8711500929234	92932730
HFRT 249TLS	871500929785	0.4		12	48.0x99887.0	0.007		53	8711500929792	9297830
HFRT 15475	871500929341	03		12	39.6x99877.0	0.005		39	8711500929358	92934130
HFRT 25475	871500929761	0.4		12	48.0x99887.0	0.007		53	8711500929778	9296130
HFRT 122TL5C	871500934635	02		12	$22.0 \times 1.1 \times 88$	0.006		${ }^{3} 0$	8711500934659	93463530
HFRT 140TL5C	8711500934598	02		12	$22.0 \times 1.1 \times 88$	0.006		3.0	871500934611	93459830
HFRT 155TLTC	871500934574	02		12	$22.0 \times 1.1 \times 88$	0.006		${ }^{3} 0$	871500934581	93457430
HFRT 160TLSC	8711500939450	02		12	22.0x1.188.8	0.006		${ }^{3} \mathbf{0}$	8711500934567	93455030
HFRT 3/418TL-D	8711500929501	0.44		10	48.0220×85	0.009		4.	8711500929518	92950130
HFRT 136TL-D	8711500929389	03		12	39.6x19.847.0	0.005		3.9	8711500929396	92938930
HF-RT 236TL-D	871500929709	${ }_{0} 0$		12	48.0x19.877.0	0.007		53	8711500929716	92970930
HFRT 158t-D	8711500929402	03		12	39.6x19.847.0	0.005		3.9	8711500929419	9294230
HFRT 258TL-D	8711500929662	0.4		12	4800x19887.0	0.007		53	8711500927679	9296230

Product description
Slimline or Compact, lightweight high-frequency electronic regulating
Slimine or Compact, lightweight high-frequency electronic requlating
ballast, using a specific digital HF-Regulator Touch and Dim protocol. A dedicated range for PL-L, PL-T and PL-C fluorescent lamps.

Features and benefits

- Easy personal control, creating your personal lighting level at the touch of a button.
- Simple installation diagram No control device required, ballast will work in combination with any standard retractive / push-to-make switch.
A short push represents the OnOOff command, and personal light level preference can be stored in the internal memory by a firm longer push on the button.
- Failure proof (N on volatile) memory ensures that ballast always remembers your setting when next time switched on, or in case of power failure.
- Presets can be selected and adjusted between 3% and 100% light output by a long push.
- Quick programmed soff-start: 0.5 sec, fading to default (100\%) or fading to preset level.
- System reset/daignment by means of long push min 10 sec . Light will adjust to 35% value.
- Smart power: constant light independent of mains voltage fluctuations.

All Philips HF-Regulator electronic ballast's are equipped with α-control.This is a dedicated integrated dircuit that ensures
independent control of each electrode and, in doing so, takes care that a lamp life is unaffected by dimming position
blamp burning is stable in every dimming position: and
c. energy savings, when dimming are maximised

Applications

ypical areas of application indude:
Office applications were a simple and easy to install dim system or personal light level adjustment is required.

Examples:

- Cellular office, free floor standing luminaries.
- Open plan offices(up to 32 luminaires).

Small conference rooms, Lecture theatres
Hotels, restaurants
Medical consultancy rooms.

- Schools

F-RTouch and Dim

Electronics (Dimming)
HF-Regulator Touch and Dim (PL)

Philips quality
This applies optimum quality with respect to:

- System supplier

As manufacturers of lamps electronic control gear and lighting control equipment, Philips ensures that, from the earliest development stage, optimum performance is mantaine
International standards
requlating ballat's comply with a relevant international rules and regulations.
Compliance's and approvals
$-\mathrm{RF}<30 \mathrm{MHz}$ $\mathrm{RF}<30 \mathrm{MHz}$
RFl>30 MHz

EN 55015**

- RF $>30 \mathrm{MHz}$:
- Harmonics:

Immunity.

- Safety:

Performance:

- Quality standard:
- Environmental standard:
- Approval marks

Temp. dedared thermally protected
Mains current at 230V

- CE marking

Teted with ballat functional gound comected to earth
Technical data for installation
Mains operation

Rated mains voltage		$220-240 \mathrm{~V}$
With tolerances for sofety:	$+/-10 \%$	$198-264 \mathrm{~V}$
Tolerances for performance	$+6 \% 8 \%$	$202-254 \mathrm{~V}$
Mains frequency		$50 / 60 \mathrm{~Hz}$
Operating frequency		$>42 \mathrm{kHz}$

perating frequenc
Power factor
EN 61000-3-2
EN 61547
EN 61347-2-3
N 60929
IEC 68-2-6-FC
IEC 68-2-29
SN 14001
ENEC,VDE-GMV,

mart power: with AC mains voltage fluctuations, 202-254V Luminous flux varies by $\pm 2 \%$ max.
DC voltage operation (during emergency back-up)
Required battery voltage for quaranteed ignition 198V-254V Required battery voltage for burning lamps 170V-254V Nominal light output is obtained at a voltage of $220 \mathrm{~V}-240 \mathrm{~V}$ Notes:

1. For continuous DC application, an external fuse should be used in the luminaire
Continuous low DC voltages (<198V) can influence the lifetime of the ballast

Earth leakage current $\quad<0.5 \mathrm{~mA}$ per ballast
Maximum number of ballat's which can be connected to one Residual
Current Detector of 30 mA 30
Overvoltage protection
48 hrs at 320 VAC
2 hrs at 350 V AC 5 min. at 380 V AC
Automatic restart atter lamp
Automatic restart after lamp
eplacement or voltage dip

Inrush current			Conversion table for max. quatities of ballasts on other types of Miniature Circuit Breaker		
Ballast	Max.quartity ofballatper				
	Miniature Circuit ${ }^{\text {reaker }}$	1/2valuetimeat typical mainsimpedance	MCB Type		Relative quantity of ballasts
	Type B16A		в	164	100% spe tadeabove)
HFRT 118 PLTT/C	28	408/110 ${ }^{\text {¢ }}$	B	108	63\%
HFRT 218 PL-T/C	28	35/120 ${ }^{\text {¢ }}$	c	164	170\%
HFRT 126 PL-T/C	28	408/110 ${ }^{\text {¢ }}$	c	108	104\%
HFRT 226 PL-T/C	28	35A120 ${ }^{\text {¢ }}$	L	164	108\%
HF-RT 142 Pl-T	28	408/110 ${ }^{\text {¢ }}$	L.	108	65\%
HFRT 242 PL-T	12	45A/770 5	¢., ¢ı	164	212\%
HFRT 155 PL-L	12	32A/300 ${ }^{\text {S }}$	G.U.II	108	127\%
HFRT 255 PL-L	12	32A300 ${ }^{\text {S }}$	K.II	164	254\%
			k.1I	104	154\%

Insulation resistance 500 V DC from Line/N eutral to Earth
test (not between Line and Neutral)
Note: nnsure that the neutral is reconnected
again after above mentioned test is carried out and
before the installation is put in operation

Technical data for design and mounting in fixtures
Temperatures
Temperature range to ignite lamp* Temperature rang
With ignition aid
Sable lamp operation assured
Striation possible
Max t case
*velue fortD and PL-L $+5^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ before the installation is put in operation
Lamp wiring The use of 500 V rated components and Wiring is advised forTL-5 and PL-T 42W types
gnition time
Advised maximum max. 30 pF*: between two sets of lamp wires cable capacity
performance and
EMI Suppression (each set of lamp wires is connected to one one set of lamp wires (connected to one electrode of the lamp) and earth. Care has to be taken for
symmetrical wiring symmetrical wiring

Earthing Earthing of the HF ballast in a luminaire is necessary for EMC (electromagnetic compatibility) and perfect lamp ignition.
Class Ill luminaires This application is not advisable; only with extensive tests on luminaires can the correct operation be verified
Control input

Mains input signal	Retractive push-to- make switch
- Ignore status, < 0.04 sec.	To avoid reaction on mains spikes!
- Short push, between 0.04 sec and 0.5 sec.	Switch On $/$ Off
- Long push, between 0.5 sec and 10 sec .	Dim Up / Down - Reset push, $>10 \mathrm{sec}$.
	Set light to mid value (35\%output)

Permitted humidity is tested according to EN61347-1 clase 11 Note that no moisture or condensation may enter the ballast.

Lamp	Qty. of Lamps	Ballast	System Power* w	Efficacy* Imw	$\begin{aligned} & \text { Lamp } \\ & \text { Power* } \end{aligned}$ w	Efficacy* Imwn	NOMINAL Lumen Im $\left(25^{\circ} \mathrm{C}\right)$	$\begin{array}{r} \text { CELMA } \\ \text { class } \\ \text { EEI } \end{array}$
PL-C 18 W	1	HF-RT 118 PL-T/C	21	57	165	73	1200	${ }^{\text {A }}$
PL-T 18 W	1	HFRT 118 PL L-T/C	21	57	165	73	1200	A_{1}
PLC isw	2	HF-RT 218 PL-T/C	38	63	165	73	1200	A1
PL-T 18 W	2	HFRT 218 PL-T/C	38	63	165	73	1200	A^{1}
PL-C 26 W	1	HF-RT 126 PL-T/C	29	62	24	75	1800	${ }^{\text {A }}$
PL-T 26 W	1	HFRT 126 PL-T/C	29	62	24	75	1800	A1
PLCC 26 W	2	HF-RT 226 PL-T/C	54	67	24	75	1800	A1
PL-T 26 W	2	HFRT 226 PL-T/C	54	67	24	75	1800	A1
PL-T 42W	1	HF-RT 142 PL-T	50	63	43	74	3200	A1
PL-T 42W	2	HFRT 242 PL-T	96	67	43	74	3200	A1
PL-L 55W	1	HFRT 155 PL-L	56	78	50	87	4350	A1
PL-L 55W	2	HFRT 255 PL-L	112	78	50	87	4350	A1

[^1]

Electronics Dmming)

tes:
. Data is based on a mains supply with an impedance of $400 \mathrm{~m} \Omega$ (equal to 15 m cable of $2.5 \mathrm{~mm}^{2}$ and another 20 m to the middle of the power distribution), under worst case conditionsW With an impedance of 800 m
the number of ball ats can be incresed by 10% the number of ballats can be increxsed by 10% subject to change
3. In some ceses the meximum number of ballats is not determined by the MCB but by the maximum eectrica load of the lighting installaion.
4. Note that the maximum number of ballasts is given when these are al switched on the same moment, i.e. by a wall switch.
5. Mexarements were carried out on singe-pole MCB's For mult-pole MCB's it is advisable to reduce the number of ballats by 20%
6. 1 p -Ip between lamp wires

Typicd capacitance 1 m wires dose together (spacing 0.5 mm) 46pF Typical capaitance 0.5 m wires dose together (spacing 0.5 mm) 23pF Ip-lg between lamp wires and ground
Typical capacitance 1 m wires dose together (spacing 0.5 mm) 72pF
Typica capacitance 0.5 m wires dose together (spaing 05 mm) 38 pF

slast	Pexe		Hipachg						
	Entode	M	d		s dume	mbt	Ellode	EO	
				1 xah		gross			
		b		pcs	cm	m^{3}	5		
HFRT 118 PL-T/C	8711500930972	0.2		12	22002111.888	0.006	3.	8711500930989	93097230
HF-RT 218 PL LT/C	8711500930996	0.2		12	$22.0 \times 21.1 \times 8.8$	0.006	3.0	8711500931009	93099630
HFRT 126 PL-T/C	8711500931016	0.2		12	220021.1.88.8	0.006	3.0	8711500931023	93101630
HFRT 226 PL-T/C	8711500931030	0.2		12	220021.1.18.8	0.006	3.0	8711500931047	93103030
HFFRT 142 PL L-T	8711500931054	0.2		12	2200211.18.8	0.006	3.0	8711500931061	93105430
HFRT 242 PL-T	8711500931078	0.2		12	$22.0 \times 21.1 \times 8.8$	0.006	3.0	8711500931085	93107830
HFRT 155 PL-L	8711500929464	0.3		12	39.6x19887.0	0.005	3.9	8711500929471	9296430
HFRT 255 PL-L	871500922563	0.4		12	48.0x19887.0	0.007	5.3	8711500929570	929563

Electronics Dnming)

HF-Performer PL-L

Poduct description

Slim lightweight high-frequenc
electronic ballast for PL-L
fluorescent lamps, based on Ell technology.

Features and bnefits

Programmed start: warm start circuit preheating the lamp electrodes, this enables the lamps to be switched on and of without reducing useful life

- 50% longer lamp life than with corventional ballasts

Up to 25% reduction in energy consumption at constant luminous flux compared with conventional gear
dent of mains voltage fluctuations
Unit is protected against excessive mains voltages and incorred connections

- Automatic stop circuit is activated within five seconds in case of lamp failure (safety stop); once the lamp has been replaced, the ballat resets automatically
Equipped with connectors suitable for automatic wiring machines.

Aplications

Typical areas of application indude
Department stores, shops, supermarkets

- Suitable for use with infrared remote control systems
- Airports, railway sta
- Office buildings, for
 government ministries
Hospitd
- Industria premises
- Emergency installations with

VDE 0108 with reignition < 0.5 s.

mips qality

This assures optimum quality regarding:
System supplier
As manufacturers of lamps and electronic control gear, Philips ensures that, from the earliest development stage, optimum lamp/ballast perform
Philips HF electronic ballast complies with all relevant internationa rules and regulations.
empliances and approals
RF $<30 \mathrm{MHz}$
RF $>30 \mathrm{MHz}$

- RFI>30 MHz
- Immunity
- Safety
- Performance
- Vibration \& bump tests

N 55015
EN 55022 B N 61000-3-2 N 61547 EN 61347-2-3 IEC 68-2-6 FC IEC 68-2-29 Eb

Tchical datatall tyical alues at hnains

बchical date for installation
Mains operation
Rated mains voltage
With tolerances for performance: $+6 \% 8 \quad 220-240 \mathrm{~V}$ With tolerances for sofety Mains frequency
Operation frequency (typical)
Power factor正 $202-254 \mathrm{~V}$
$198-264 \mathrm{~V}$ $50 / 60 \mathrm{~Hz}$ $>42 \mathrm{kHz}$ $\rightarrow 0.96$

DC voltage operation during emergency back-up Required battery voltage for guaranteed ignition Required battery voltage for burning lamps 198-254V 176-254V Nominal light output is obtained at the DC voltage of 220-240V

otes:

1. For a continuous DC application, an external fuse should be used in the luminaire.
2. Continuous low DC voltages ($<198 \mathrm{~V}$) can influence the lifetime of the ballast

Earth leakege current	< 0,5 mA per ballast
Ignition time	<0.5 s
Constant light operation	In cree of mains voltage
	fluctuations within 202-254V,
	the luminous flux changes by a
	maximum of $\pm 2 \%$
Overvoltage protection	48 hrs at 320 V AC
	2 hrs at 350 V AC
Dual fixture; master-slave operation	Possible, in general a maximum of
	3 m of lamp wires between balla
	and lamp is allowed

3 m of lamp wires between ballast and lamp is allowed

Cable capacity

Automatic restart after lamo
replacement or voltage dip
eplacement or voltage dip
nsulation resistance test:

Max. 200 pF between lamp wires max. 200 pF between lamp wires and earth EMI precautions have to be taken oycles

500 V DC from both mains inputs to Earth (not between Line and Neutral)

Note: Ensure that the neutral is reconnected again after above mentioned test is carried out and before the installation is put into operation.

- Quality standard	1s0 9000-2000
- Environmental standard	ISO 14001
- Approval marks	ENEC-VDE-EMV
- CE marking	
- Temperature dedared thermally	
protected	

insulation resistance tect: 500 V DC from both

aths current at		
Elast	amp	Input current
HFPP P66PLLEA	PL-L 36W	0.16
HFPP 236 PL-Lel	PL-L 36 W	030
HFPP 140 PL-LEI	PL-L 40w	0.19
HFPP 240 PL-LEI	PL-L 40w	036
HFPP 155 PL-Lel	PL-L 55w	025
HFP 255 PL-L 日	PL-L 55w	0.49

Inruslaur Elast	Espantityof blast per Miature IEcuit Beakar	Inrusicurrent alue time at tpical mains impedance	
HFPP 136 Pl-LEII	28	48	188/250 ${ }^{\text {¢ }}$
HFPP 236 Pl-LEII	28	48	$18 \mathrm{~A} / 250 \mathrm{\mu s}$
HFPP 140 Pl-LEII	28	48	184/250 ${ }^{\text {us }}$
HEP 240 PL-LEI	12	20	$31 \mathrm{~A} / 350 \mathrm{\mu s}$
HFPP 155 Pl-LEI	28	48	188/250 н
HFP 255 Pl-LEEI	12	20	$31 \mathrm{~A} / 350 \mathrm{\mu s}$

\#pe	Elatie numbr of	
		dlasts
в	164	100\%(see tale dove)
в	108	6\%
c	10 A	104\%
LI	164	108\%
4	10 A	65\%
¢, u, ॥	164	212\%
¢, u, ॥	108	127\%
K.11	164	254\%
K.11	108	154\%

wining diagame

chical data for design and mounting F bllasts in fitures
 Temperature range to ignite lamp
 $-25^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
 with ignition aid

Max. Tcase $=75^{\circ} \mathrm{C}$
Lifetime of a ballast depends on the temperature of the ballast. This means there is a relation between the Tc point on the ballast and its etime.The HF-Performer II ballat for PL-L applications has a specified fetime of 50.000 hrs , with a maximum of 10% failures guaranteed, at a measured Tcase of $75^{\circ} \mathrm{C}$.
Hum and noise level
inaudible
Permitted hurridity is tested according to EN61347-1 par. 11 Note that no moisture or condensation may enter the ballast.
The ballats that are thermally protected use a protective method of another type providing equivalent thermal protection.

annector tpes:
 Wago universal connector. Suitable for both automatic wiring

Ning diagram Jamps:
Connector 4 can be connected, but this is not necessary

Ne crosssection

Lower connector
n the mains side $05-10 \mathrm{~m}^{2}$

Upper connector
On the mains side: $0.5 \mathrm{~mm}^{2}$ solid wire; $0.75 \mathrm{~mm}^{2}$ stranded wire On the lamp side: $0.5 \mathrm{~mm}^{2}$ solid wire; $0.75 \mathrm{~mm}^{2}$ stranded wire

rip length
 8-9 mm

1. Data is based on a main supply with an impedance of $400 \mathrm{~m} \Omega$ (equal to 15 m cable of 2.5 mm and another 20 m to the middle of the power distribution), under worst case conditions. With an impedance of $800 \mathrm{~m} \Omega$ the number of ballasts can be increased by 10%
2. Measurements will be verified in real installations; therefore data are subject to change
e maximum number of ballasts is not determined by the MCB but by the maximum electrical load of the lighting installation
. Note that the maximum number of ballats is given when these 5. Meezurements were carried out on singlepole MCB's. For multi-pol MCB's it is advisable to reduce the number of ballazs by 20% .The maximum number of ballosts wich can be connected to one Residual Current Detector of 30 mA is 30 .
elering and packng data

EII
poduct description
Slim lightweight high-frequency electronic ballast for TL-D fluorescent lamps, based on Ell technology.

Features and bnefits

Programmed start: warm start circait preheating the lamp electrodes, this enables the laps to be switched on and of without reducing useful life

- 50% longer lamp life than with corventional ballasts

Up to 25% reduction in energy consumption at constant luminous flux compared with conventional gear
Smert power: constant light independent of mains voltage flucturtion Unit is protected against excessive mains voltages and incorrect connections

- Automatic stop circuit is activated within five seconds in case of lamp failure (sofety stop); once the lamp has been replaced, the ballust resets automatically
Equipped with connectors suitable for automatic wiring machines

Aplications
Typical areas of application indude
Department stores, shops, supermarkets

- Suitable for use with infrared remote control system

Airports, railway stations
Outdoor lighting

- Office buildings, for example, insurance companies, banks government ministries
- Hospitals
- Hotels
- Emergency installations with VDE 0108 with reignition <0.5 s

liips qality

This assures optimum quality regarding
System supplier
As manufacturers of lamps and electronic control gear. Philips ensures that, from the earliest development stage, optimum
limporlat performance is maintained

- European standards

Philips HF electronic ballast complies with all relevant internationa rules and regulations.
ampliances and approals
$\mathrm{RF}<30 \mathrm{MHz}$
$\mathrm{RF}>30 \mathrm{MHz}$
Harmonics

- Immunity
- Safety
- Vibration \& bump tests
- Quality standard

Environmental standard
CE marking
Temperature declared thermally
protected
*HF-P 270TL-D EI

EN 55015
EN 55022 B* EN 61000-3-2 EN 61547
EN 61347-2-3 EN 61347-2-3
EN 60929 IEC 6092-2-6 Fc IEC 68-2-29 ED $1509000-2000$ 15014001

IEC61347-1
EN55022A ©

ump	$\begin{gathered} \text { of } \\ \text { lamps } \end{gathered}$	sllast	fem	bmp	allast	-	EEI	
			${ }_{w}$	${ }_{\text {ber }}$	bsses w	$\begin{gathered} \text { ump } \\ \text { umen } \end{gathered}$		
							Im	
TL-D 18w	1	HFPP 118TL-D EI	19	165	25		1350	A2
TL-D 18w	2	HFPP218TL-D EII	37	165	35		1350	A2
TL-D 18w	3	HFPP 3/48TL-D EI	54	165	45		1350	A2
TL-D 18w	4	HFP 3/418TL-D EI	70	16.0	55		1350	A2
TL-D 36W	1	HFPP 136TL-D EI	37	34.0	3.0		3350	A2
TL-D 36W	2	HFPP 236TL-D EII	70	33.	4.0		3350	A2
TL-D 58w	1	HFPP 158TL-D EI	56	515	4.5		5200	A2
TL-D 58w	2	HFPP 258TL-D EI	107	505	6.0		5200	A2
TL-D 7ow	1	HFPP 170tL-D EI	68	63.0	5.0		6200	A2
TL-D 7ow	2	HFPP 270t-D Ell	129	61.	8.0		6200	A2

बchical data for installation

Mains operation
Rated mains voltage
With tolerances for performance: $+6 \% 8$ With tolerances
Mains frequency
Operation frequency (typical)
Power factor

Automatic restart after lamp eplacement or voltage dip
220-240V 202-254V $198-264 \mathrm{~V}$
$50 / 60 \mathrm{~Hz}$ $50 / 60 \mathrm{~Hz}$
$>42 \mathrm{kHz}$ $>42 \mathrm{kHz}$ >0.96
nslation resitance tes
vesteded with a dip down to 30% with a duration of 10 mains aydes
soov DC from both mins inputs Earth (not between Line and Neutral)

Note: Ensure that the neutral is reconnected again after abovementioned lest is carried out and before the installation is put into operation

DC voltage operation during emergency back-up
equired battery voltage for guaranteed ignitio
Required battery voltage for burring lamps
198-254V
mina light output is obtained at the DC voltage of $276-254 \mathrm{~V}$

Notes

1. For a cont
2. Continuous low DC voltages ($<198 \mathrm{~V}$) can influence the lifetime of the ballast

Earth leakage current
Ignition time
Constant light operation

Overvoltage protection

Dual fixture; master-slave
operation

Cable capacity

$<0,5$ mA per ballast

 <0.5 sIn case of mains voltage fluctuations within 202-254V, the luminous flux changes by a meximum of 2\%

48 hrs at 320 VAC 2 hrs at 350 V AC
Possible, in general a maximum of 3 m of lamp wires between ballast and lamp is allowed

Max. 200 pF between lamp wires, max. 200 pF between lamp wires EMI precautions have to be taken

Ellast	erf	Input current
	lamps	mpat care
HFPP 118TL-D EI	1	0.09
HFPP 218TL-D EI	2	0.19
HFP 3/418T-D 日I	3	025
HFP. 3418T-D 日I	4	033
HFP 136TL-D EI	1	0.16
HFPP 236TL-D EI		031
HFPP 158TL-D EI	1	024
HFPP 258TL-D EI	2	0.48
HFPP 1700t-d EI	1	0.30
HFPP 270t-D Ell	2	059

Electronics

HF-Performer IITL-D

Electronics

Gchical data for design and mounting \mathbf{R} bllasts in

fitures

Temperatures

Temperature range to ignite lamp $-25^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ with ignition aid

Max. Tcase $=75^{\circ} \mathrm{C}$
Lifetime of a ballast depends on the temperature of the ballast.This means there is a relation between the Tc point on the ballast and its ifetime.The HF-Performer II ballast forTL-D applications has a specified lifetime of 50.000 hrs , with a maximum of 10% failures guaranteed, at a measured Tcase of $75^{\circ} \mathrm{C}$.
Hum and noise level inaudible
Permitted hurridity is tested according to EN61347-1 par. 11 . Note that no moisture or condensation may enter the ballast

The ballasts that are thermally protected use a protective method of another type providing equivalent thermal protection.

annector tpes:

Wago universal connector. Suitable for both automatic wiring (ALF and ADS) and manual wiring

he lengtk

For IL circaits keep wires to terminas 3 and 4 short For 2L circuits keep wires to terminals $1,2,6$ and 7 short For $3 \& 4$ L circuits keep wires to terminals $1,2,9$ and 10 short

Nng diagram Jamps:

Connector 4 can be connected, but this is not necessary

we crosssection:

Ower connector
On the lamp side: $0.5-1.0 \mathrm{~mm}^{2}$

Upper comector
On the mains side: $0.5 \mathrm{~mm}^{2}$ solid wire; $0.75 \mathrm{~mm}^{2}$ stranded wire On the lamp side: $0.5 \mathrm{~mm}^{2}$ solid wire; $0.75 \mathrm{~mm}^{2}$ stranded wire

rip length

$8-9 \mathrm{~mm}$

tes

Data is based on a main supply with an impedance of 400 m . (equal to 15 m cable of 2.5 mm and another 20 m to te middle of the power distribution), under worst case conditions With an impedance of 800 m : the number of ballasts can be increased by 10%
2. Measurements w
subject to change
some ceses the maximum number of ballats is not determined by the MCB but by the maximum electrica load of the lighting installation switched on a het same noment if ballast is given whe
switched on at het same moment, i.e. by a wall switch. 5. Mexsurements were carried out on singe-pole MCB's. For multi-pol
MCB's it is advisable to reduce the number of ballasts by 20% MCB's it is advisable to reduce the number of ballasts by 20% 6.The maximum number of ballosts wich can be connected to one

Electronics

HF-Performer PL-H

Product description
Compact, high power, lightweight, high-frequency electronic ballałt for Compat, high
PL-H lamps.

Features and benefits

- High light output compact fluorescent system

Programmed start: flicker-free warm start

- Constant light independent on mains fluctuations
- One multi-wattage ballast for three lamps ($60,85,120 \mathrm{~W}$)

Applications	
Typical areas of application indude:	
- Shopping centers	
- Public buildings	
- Industria environments	
- Transport buildings	
- Offices, indirect lighting	
Philips quality	
This implies optimum quality regarding:	
- System supplier	
As menufacturers of lamps and electronic control gear,	
Philips ensures that, from the earliest development stage, lamp/ballast performance is maintained	
- International standards	
Philips HF electronic ballasts comply with all relevant internatio rules and regulations.	
Compliances and approvals	
- RF < $<30 \mathrm{MHz}$	EN 55015*
- Harmonics	EN 61000-3-2
- Immunity	EN 61547
- Safety	EN 61347-2-3
- Performance	EN 60929-1E
- Vibration \& bump tests	IEC 68-2-6 FC IEC 68-2-29 Eb
- Quality standard	150 9000-2000
- Environmenta standard	ISO 14001
- Approval mark	ENEC-VDE-EM
- CE marking	
- Temperature declared thermally protected	IEC 61347-1

Technical data: (all typical values at Vmains = 230V

DC voltage operation (during emergency back-up)

Required battery voltage for guranteed ignition 198-254V DC Required battery voltage for burning lamps $176-254 \mathrm{~V}$ DC	Required batery voitage for burning lamps
Nominal light output is obtained at a voltage of	
$220-240 \mathrm{~V}$	

Notes

For a continuous DC application, an external fuse should be used in the luminare.
2. Continuous low DC voltages ($<198 \mathrm{~V}$) can influence the lifetime of the ballast.
constant light op
constant light operation
iccere of mains voltage fluctudions within $202-254 \mathrm{~V}$, the lumnous flux changes by a maximum of $\pm 2 \%$
Earth leacoge current
gnition time
Overvoltage protection
Overvoltage protection
8 hrsat 320 V AC

Dual fixture; mester-save
operation
utomatic restart atter lamp
eplacement or voltage dip yes tested with a dip down to 30% with a duration of 10 mains cydes
nsulaion resistance test 500 V DC from Line/Neutra to Eart (not between Line and Neutral) Note: Ensure that the Neutral is reconnected again after abovementioned test is carried out and before the in tallaion is put
into operation.

Mains current/ energy classification/ emergency operation

Ballast	Max. quantity of ballasts per Miniature Circuit Breaker type B 16A	

Corversion table for max. quantities of ball asts
on other types of Miniature C Circuit Breaker

MCB type		Relative number of ballasts
в	16A	100\%(see tale above)
в	10A	63\%
c	16A	170\%
c	10A	104\%
L.	16A	108
4.	10A	65\%
¢., .ı	16A	212\%
G.u.ul	10A	127\%
K.11	16A	254\%
K.11	10A	154\%

Electronics

liring dagams

बchical data for design and mounting R blasts in fitiures: Temperature range to ignite $-25^{\circ} \mathrm{C}$.. allowed maximum ballast lamp without ignition aid temperature

Max. Tcase $=75^{\circ} \mathrm{C}$
Lifetime of a ballast depends on the temperature of the ballast. This means there is a relation between the Tc point on the ballast and its ifetime.
The HF-Performer ballast for PL-H applications has a specified lifetime of 50.000 hrs , with a maximum of 10% failures guaranteed, at a messuredTcare of $75^{\circ} \mathrm{C}$.
This to enable acceptable lifetimes when the 120 W lamp is used in all kind of fixtures. For more information on this issue please consult the L-H OEM gride.

Class il luminaires EMI precautions have to be taken

Outdoor ballast IP=23. In outdoor the luminare has to be sufficiently IP rated
Permitted humidity is tested according to
EN 60928 par. 12. Note that no moisture
or condensation may enter the ballat.

tes

Data is based on a mains supply with an impedance of $400 \mathrm{~m} \Omega$
(equal to 15 m cable of $2.5 \mathrm{~mm}^{2}$ and another 20 m to the middle of the power distribution), under worst case conditions. With an impedance of $800 \mathrm{~m} \Omega$ the number of ballasts can be increased by 10\%
2. Measurements will be verified in real installations; therefore data are subject to change
3. In some cases the maximum number of ballasts is not determined by the MCB but by the maximum electrical load of the lighting installation.
4. Note that the maximum number of ballests is given when these are all switched on the same moment, i.e. by a wall switch.
5. Measurements were carried out on single pole MCB's. For multi-pol MCB's it is advisable to reduce the number of ball asts by 20%
6. The maximum number of ballasts which can be connected to one Residual Current Detector of 30 mA is 30 .

The ballasts that are thermally protected use a protective method of another type providing equivalent thermal protection.

We crosssection:	
On the mains side: On the lamp side:	$0.5-1.5 \mathrm{~mm}^{2}$
	$0.5-1.5 \mathrm{~mm}^{2}$
Erip length	$7.5-8.5 \mathrm{~mm}$

On the mains side:

Grip length
7.5-8.5 mm
@lering and packng data

Electronics

HF-Performer PL-L

Product description
Compact, lightweight, High Frequency electronic ballasts for PL-L compact fluorescent 18 W and 24 W lamps

Features and benefits

Programmed start: ficker-free, warm-start circuit
50% longer lamp life than with corventional ballasts conventiona ballasts

- Constant light independent of mains voltage fluctuations
- Protected against excessive mains voltages
- Automatic stop circuit (safety stop) is activated within 5 seconds in case of lamp failure; ballast resets automatically after lamp replacement

Applications
Idea for applications with high switching frequency, for example: Use with infriared remote control sytems (eg movement detection)
Department stores, shops, supermarkets, hotels, hosppitals, office buildings, industrial premises
Airports, railway stations
Outdoor lighting in general suitable for Class I applications Suitable for installations with emergency back-up according to VDE 0108-100 / EN 60598-2-22 with reignition <0.5 s

$\begin{array}{lllllll}\text { Product ID } & \text { A1 } & \text { A2 } & \text { B1 } & \text { B2 } & \text { C1 } & \text { D1 } \\ 1020 & 103 & 935 & 67 & 575 & 30 & 45\end{array}$ | 1 lamp | 103 | 935 | 67 | 575 | 30 | 45 |
| :--- | :--- | :--- | :--- | ---: | :--- | :--- |
| 2 lamps | 123 | 111 | 79 | 57 | 33 | 45 |

[^2]Electronics

Preferred selection

Product ID	Cable-Cap outputwires to earth [pF]	$\begin{aligned} & \text { Celma } \\ & \text { classification } \end{aligned}$	$\begin{aligned} & \text { Length } \\ & \mathrm{A} 1 \\ & {[\mathrm{~mm}]} \end{aligned}$	Automatic restart	$\begin{aligned} & \text { Weight } \\ & (\mathrm{kg}) \end{aligned}$	Fixing Hole Distance A2 Length $[\mathrm{mm}]$	CE declaration	Cable-Cap outputwires mutual [pF]	Battery voltage [V]	Number of Lamps $[x]$
HFFPerofome	100	A2	123.0	Yes	0.19	111.0	Yes	100	176-254	

HF BALLAST

Product description
Compact, lightweight, high-frequency electronic standard ballosts for TL5 Circular lamps.

Features and benefits

- Programmed start: ficker-free warm start, ideal for areas with high switching frequency
- Up to 50% longer lamp life than with conventional ballasts

Up to 25% reduction in energy consumption at constant luminous
flux compared with conventional gear
Smart power: constant light independent of mains voltage fluctuations

Applications
Typical areas of application indude

- Office buildings with, e.g executive and managers offices and conference / meeting rooms
- Shops and retail premises, e.g fashion / boutiques and local shops - Hospitality, including hotels / motels and restaurants
- Public buildings, e.g banks, galleries and museums.

Philips quality
This implies optimum quality regarding.

- System supplier

As manufacturers of lamps and electronic control gear, Philips ensures that, from the earliest development stage, optimum
lamp/ballast performance is maintained
International standards
Philips HF electronic ballasts comply with all relevant international rules and regulations.
Compliances and approvals

- Harmonics
- Safety
- Performance
- Vibration \& bump tests
- Quality standard
- Environmental standard

Approval mark
CE marking

- Temperature dedared thermally protected

EN 55015* EN 61000-3-2 EN 61547 EN 61347-2-3 IEC 68-2-6 FC IEC 68-2-29 Eb 150 9000-2000 SO 14001 ENECVDE-GMV

IEC 61347-1
Tested with ballast functional ground comnected to earth

Product ID	A1	A2	B1	B2	C1	D1
$122-40$	103	935	67	575	30	45
155	103	935	67	575	30	45
160	103	935	67	575	30	45
$222+40$	123	111	79	67	33	45

Technical data (all typical values at Vmains $=\mathbf{2 3 0}$ V)

Lamp	$\begin{gathered} \text { Qty, of } \\ \text { lamps } \end{gathered}$	Ballast	$\begin{array}{r} \text { System } \\ \text { power } \\ \mathrm{w} \end{array}$	$\begin{gathered} \text { Lamp } \\ \text { Power } \\ \mathrm{w} \end{gathered}$	$\begin{gathered} \text { Ballast } \\ \text { loses } \\ \mathrm{w} \end{gathered}$		EEI
TLSC 22w	1	HFPP 122-40T5C	25	22	3.0	1800	A2
Tisc 40 w	1	HFP. 122-40T5C	435	40	35	3300	A_{2}
TLSC 55w	1	HEPP 155TISC	60	55	5.0	4400	A2
TISC cow	1	HEPP 160TLSC	65	60	5.0	5400	A_{2}
TLSC 22+40w	2	HEP P 22+40T5C*	71	22+40	8.0	$1800+3300$	A2

Required battery voltage for guaranteed ignition 198-254V DC equired battery voltage for burning lamps 176-254V DC Nominal light output is obtained at a voltage of $220-240 \mathrm{~V}$ DC Notes:
For a continuous DC application, an external fuse should be used in the luminare.
2. Continuous low DC voltages ($<198 \mathrm{~V}$) can influence the lifetime of the ballast.
Smart power: constant light operation

Earth leakege arrent
gnition time
Overvoltage protection
utomatic restart atter lamp eplacement or voltage dip

Insuldion resistance test
in of m or within 202 -254 V chances by a movinumof $+2 \%$ $<0.5 \mathrm{~mA}$ per ballast <1.2 s 48 hrs at 320 V AC
2 hrs a 350 VAC
yes tested with a dip down to 30% with a duration of 10 mains cydes 500 V DC from Line/Neutral to Eart Note: Engure that the Neutra is reconnected again atter abovementioned test is carried out and before the installation is put into operaion.

Wining dagams

\section*{Gchical data for design and mounting F bllasts in

fitures

fitures

Temperature range to ignite $-15^{\circ} \mathrm{C}$.. allowed maximum ballast lamp without ignition aid temperature

Ignition aid
For optimum ignitionTL5 lamps should be mounted at a meximum distance of 6 mm from a metal plate. The meta plate should be electrically connected to the ballasts functional ground

Max. tcase $=75^{\circ} \mathrm{C}$ (except HF-P $222+40 \mathrm{TLSC}$)
Lifetime of a ballast depends on the temperature of the ballast. This means there is a relation between the Tc point on the ballast and its
iffetime. For more information recarding this stbiect consllt the Philips iffetime. For more information regarding this subject consult the Philips Application gide to furescent lamp control gear

Class il luminaires

EMI precautions have to be taken
Outdoor use
Ballast IP 20. In outdoor applications the luminaire has to be sufficiently IP rated. Permitted hurridity is tested according to EN 60928 par. 12. Note that no moisture or condensation may enter the ballast.

The ballasts that are thermally protected use a protective method of another type providing equivalent thermal protection.

We crosssection:

On the mains side: $0.5-1.5 \mathrm{~mm}$
On the lamp side: $0.5-1.5 \mathrm{~mm}^{2}$
Grip length 9 mm

otes
Data is based on a main supply with an impedance of 400 mQ : (equal to 15 m cable of $2,5 \mathrm{~mm}$ and another 20 m to te middle of the power distribution), under worst case conditions. With an needance of 800 mQ the number of ballazts can be increased by 10\%
subsurements will be verified in real installations, therefore data are to change.
.In some cases the maximum number of ballasts is not determined by , MCB but by the maximum electrical load of the lighting
4. Note that the maximum number of ballasts is given when these all switched on at het same moment, i.e. by a wall switch.
5. Measurements were carried out on single pole MCB's. For multi-pole MCB's it is advisable to reduce the number of ballasts by 20% The maximum number of ballasts wich can be connected to one Residual Current Detector of 30 mA is 30 .

©ering and packng data

Product description
Compact, lightweight, high-frequency electronic ballats for PL-T, PLC and $\mathrm{PL}-\mathrm{Q}$ compact fluorescent lamps

Features and benefits

- Programmed start: ficker-free warm start, ideal for areas with high
switching frequency
- up to 50% longer lamp life than with corventional ballasts

Up to 25% reduction in energy consumption at constant luminous flux compared with conventional gear
Smart power: constant light independent of mains voltage fluctuations

Applications

Typical areas of application indude

- Department stores, shops, supermarkets
- Installations with infrared remote control systems
- Airports, railway staions
- Office buildings of, for example, insurance companies, banks, government ministries
- Hospitals

Philips quality
This implies optimum quality regerding

- System supplier

As manuffacturers of lamps and electronic control gear,
Philips ensures that, from the earliest development stage, optimum lamp/ballast performance is maintained
International standards
Philips HF electronic ballasts comply with all relevant internationa rules and regulations.

Compliances and approvals

- RF $<30 \mathrm{MHz}$ EN 55015*
- Harmonics
- Immunity
- Vibration \& bump tests
- Quality standard
- Environmental standard
- Approval marks

CE marking
Temperature dedared thermally protected
EN 61000-3-2 EN 61000-3 EN 61347-2-3 EN 60929-1E IEC 68-2-6 FC IEC 68-2-29 Eb ISO 9000-2000 ISO 14001 ENEC-VDE-EMV

* Tested with ballast functional ground connected to earth

Technical data: (all typical values at Vmains=230V)

Lamp	$\begin{aligned} & \text { Qty. of } \\ & \text { lamps } \end{aligned}$	Ballast	$\begin{gathered} \text { System } \\ \text { power } \\ \text { w } \end{gathered}$	$\begin{gathered} \text { Lamp } \\ \text { Power } \\ \mathrm{w} \end{gathered}$	$\begin{gathered} \text { Ballast } \\ \text { loses } \\ \mathrm{w} \end{gathered}$		EEI
PLTT 13W	1	HEPP P13 PLTT/C	14	12.0	2.0	900	A3
PLT 13W	2	HFPP 213 PLTT/	28	12.0	4.0	900	${ }^{\text {A }}$
PLTT 18W	1	HFPP $118 \mathrm{PL-T/C}$	18	165	1.5	1200	A2
PLT 18 W	2	HFP. $218 \mathrm{PL-T/C}$	${ }^{38}$	165	3.0	1200	A2
PLT 26 W	1	HFPP $126.42 \mathrm{PL-T/C}$	26	24.0	20	1800	A^{2}
PLT 26 W	2	HEPP 226.42 PLTT/C	54	255	3.0	1800	A_{2}
PLT 32W	1	HFPP $126.42 \mathrm{PL-T/C}$	35	32.	3.0	2400	A^{2}
PLT 32 W	2	HEPP 226.42 PLTT/C	70	33.	4.0	2400	A_{2}
PLT 42W	1	HFPP 126.42 PLTT/C	46	43.0	3.0	3200	A^{2}
PLTT 42W	2	HFPP $226.42 \mathrm{PLTT/C}$	92	43.0	${ }_{6} 0$	3200	A2
PL-T 57w	1	HFP. $157 \mathrm{PL-T}$	62	57.0	5.0	4300	A2
PL-T 57w	2	HFPP $257 \mathrm{PL-T}$	121	56.0	9.0	4300	A2
PL-C 10 W	1	HFPP P13 PL-T/	12	95	2.0	600	A2
PLCC 10w	2	HFPP 213 PL-T/C	23	95	4.0	600	${ }^{\text {A2 }}$
PLCC 13 W	1	HFPP P13 PLTTC	14	12.0	2.0	900	${ }^{\text {a }}$
PL-C 13 W	2	HFPP 213 PL-T/	28	12.0	4.0	900	A ${ }^{\text {a }}$
PL-C 18w	1	HFPP 118 PL -T/	18	165	15	1200	$A^{\text {a }}$
PL-C 18 W	2	HFPP 218 PL-T/	${ }^{38}$	165	3.0	1200	A^{2}
PL-C 26W	1	HF-P $126.42 \mathrm{PL-T/C}$	26	24.0	2.0	1800	A^{2}
PL-C 26W	2	HFPP $226.42 \mathrm{PL-T/C}$	54	255	30	1800	A^{2}
PL-Q 38W	1	HFPP P138 PL-Q	${ }^{38}$	35.0	${ }_{3} .0$	2800	${ }^{\text {A2 }}$

Technical data: (all typical values at Vmains $=230 \mathrm{~V}$)

Ballast	Lamp	$\begin{aligned} & \text { Oty. of } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Power } \\ & \text { factor } \end{aligned}$	Max. cable cap ${ }^{1}$) $\mathrm{p}-\mathrm{P} / \mathrm{p} / \mathrm{p}$ gnd pF	$\begin{gathered} \mathrm{Tc} \\ { }^{\text {max }}{ }^{\circ} \mathrm{C} \end{gathered}$	$\begin{array}{r} \text { Oper }{ }^{\text {O }} \\ \text { Freq. } \mathrm{kHz} \end{array}$
HFPP 113 PLTT/C	PL-T 13W	1	0.96	12060	70	45
HFPP 213 PLTTC	PL-T 13W	2	0.97	12066	70	45
HFPP 118 PL-T/C	PL-T 18 w	1	0.93	120120	75	48
HFPP 218 PLTT/C	PL-T 18 W	2	0.96	6868	75	48
HFPP 126.42 PL-T/C	PL-T 26 W	1	0.95	$120 / 120$	75	48
HFPP 26-42 PL-T/C	PL-T 26 W	2	0.96	5050	so	48
HEP 126.42 PL-T/C	PL-T 32W	1	0.95	120120	75	48
HFPP 226 -2 PL-T	PL-T 32W	2	0.97	5950	so	48
HEP 126 -42 PL-T/C	PL-T 42W	1	0.95	120120	75	48
HEPP 226.42 PLT	PL-T 42W	2	0.98	5950	80	48
HFP. 157 PL-T	PL-T 57w	1	0.98	120660	70	45
HFPP 257 PL-T	PL-T 57W	2	09	5050	75	48
HFPP 113 PLTTC	PL-C 10w	1	0.96	120660	70	45
HEPP 213 PLTTC	PL-C 10w	2	0.95	120160	70	45
HFPP 113 PLTTC	PL-C 13W	1	0.96	12060	70	45
HFPP 213 PL-T/C	PL-C 13W	2	0.97	12066	70	45
HFPP 118 PL-T/C	PL-C 18w	1	0.93	120120	75	48
HFPP 218 PLTTC	PL-C 18w	2	0.96	${ }^{6868}$	75	48
HFPP 126.42 PL -T/C	PL-C 26w	1	0.95	120120	75	48
HFPP $226.42 \mathrm{PL-T/C}$	PL-C 26w	2	0.96	5050	${ }^{80}$	48
HFPP 138 PL-Q	PL-Q 38 w	1	0.98	13065	75	42
') 1 Plp = bedeen lamp wirs	Spical wire	pf/m	05 mm			

Electronics

ape	Elaie numbr of		
		bllasts	
в	16 A	10\%\% (see tale atove)	
в	10 A	63\%	
c	16 A	170\%	
c	10 A	104\%	
L.	16 A	108	
L.	10A	65\%	
G, u, \\|	16 A	212\%	
G, u, \\|	10A	127\%	
K.1I	16 A	254\%	
K.1I	10 A	154\%	

Wining diagams

Electronics

Electronics

बchical data for design and mounting Ft alasts in fitures: Temperature range to ignite $-15^{\circ} \mathrm{C}$..dlowed maximum ballast $\begin{array}{ll}\text { Temperature range to ignite } & -15^{\circ} \mathrm{C} \text {...alowe } \\ \text { lamp without ignition aid } & \text { temperature }\end{array}$

Max. Tcase $=$ see table
Lifetime of a ballast depends on the temperature of the ballast. This means there is a relation between the Tc point on the ballast and its ifetime.The HF-Performer ballast for PL-T/C applications have a specified lifetime of 50.000 hours, with a maximum of 10% failures guaraneed, at a measured maximumT case as given in the table on page 2.

Class II luminares
EMI precautions have to be taken
Outdoor use Ballat IP 20. In outdoor applications the lumnaire has to be sufficiently IP rated. luminare has to be sufficiently IP rated.
Permitted humidity is tested according to EN 00928 par 12 Note that n miture or ondensation mey enter the ballast

The ballasts that are thermally protected use a protective method of another type providing equivalent thermal protection.

Ne crosssection:
In the mains side:
$0.5-1.5 \mathrm{~mm}$
$0.5-1.5 \mathrm{~mm}$

Grip length $\quad 7.5-8.5 \mathrm{~mm}$

Etra features F ?

No LSN marking Mains can be connected in either way RFI >30 MHz: EN 55022 B

Elra features $\mathrm{Fr}{ }^{2}$?

Wiring
Connector 4 can be connected, but this is not necessary . Data is based on a mains supply with an impedance of $400 \mathrm{~m} \Omega$ (equal to 15 m cable of $2.5 \mathrm{~mm}^{\text {m }}$ and another 20 m to the middle of the power distribution), under worst case conditions. With an impedance of $800 \mathrm{~m} \Omega$ the number of ballasts can be increased by 10% 2. Meesurements will be verified in real installations, therefore data are subject to change
3. In some cases the maximum number of ballasts is not determined by the MCB but by the maximum electrical load of the lighting installation.
4. Note that the maximum number of ballasts is diven when these are all switched on the same moment, i.e. by a wall switch.
5. Measurements were carried out on single-pole MCB's. For multi-pole MCB's it is advisable to reduce the number of ballasts by 20% 6.The maximum number of ballats which can be connected to one Residual Current Detector of 30 mA is 30 .

Ellast	Tece		Blpachg						
	Eltode	ath	-	Denersions dume	s dume	Htb		EO	
				1 xuh					
		b		pcs	cm	m3	${ }_{\text {gross }}$ ERtode		
HFPP 113 PL-T/C	8711500799951	0.15		36	$21.5 \times 2.0 \times 21.5$	${ }_{0} 0.01$	5.5	8711500799468	74945130
HFPP 118 PLTT/C	8711500060280	0.13		12	22.12017x 8.8	0.01	1.8	8711500060774	06028030
HFP 138 PL -Q	8711500063656	0.12		36	$21.0 \times 2.5 \times 19.0$	0.01	44	8711500063694	06365630
HFPP126-42 PLTTC	8711500060310	0.13		12	22.120217x 8.8	0.01	1.8	8711500060198	06031030
HFP 213 PLTT/C	8711500799913	022		36	$22.4 \times 2.4 \times 220$	0.01	7.9	8711500794920	74941330
HEP 218 PLTT/C	8711500799680	0.19		36	$25.5 \times 245 \times 225$	0.01	6.8	8711500799697	74968030
HFPP 26-42 PL-T/C	8711500933997	0.22		12	25.5×45x 82	0.01	2.9	8711500002181	93399730
HEPP 157 PLT	8711500927804	0.15		36	$21.5 \times 2.0 \times 215$	0.01	5.5	8711500927811	92780430
HFP. 257 PL-T	8711500934017	023		12	25.5×45x 82	0.01	2.8	8711500934024	93401730

Foduct description
Flat, sim multi wattage, lightweight high-frequency electronic ballast forTL5 fluorescent lamps.

Features and bnefits
The combination HF-Performer and TL5 lamps offers opportunitie for miniaturisation and reduced cost of ownership, thanks to the high system efficacy
ing the lamp electrodes; this enables the lamps to be switched on and off without reducing useful life
Equipped with electrode heating cut-off circuit, ensuring optimal lamp operation with respect to lumen curve of lamp and reduction in sytem energy losses

- Smart power: constant light independent of mains voltage fluctuations Unit is protected against excessive mains voltages and incorrect connections
Automatic stop dircuit is activated within five seconds in case of lamp ailure (safety stop); once the lamp has been replaced, the Equipped with terminations ssitable for automatic wiring machines

Aplications

ypical areas of application indude

- Department stores, shops, supermerkets
- Airports, railway stations

Office buildings, for example, insurance companies, bank government ministries
Hospital

- Suitable for emergency installations with VDE 0108 with reignition <0.5 s
Suitable for use with infrared remote control sytems

lips qality

This implies optimum quality regerding
System supplier
As manufacturers
As manufacturers of lamps and electronic control gear, Philips ensures that, from the earliest development stage, optimum lamp/ballazt performance is maintained
International standards
rules and regulations.
6mpliances and approals

$\mathrm{RF}<30 \mathrm{MHz}$ $\mathrm{RF}>30 \mathrm{MHz}$

- Hamonics

Sferey

- Sefety
- Vibraion \&burp tests

Quality standard Exironmenta standard

- Approval mark
- CE marking

Temperature dedred themally protected

EN 55015
日N 55022A
EN 61000-3-2
EN 61547
EN 61347-2-3
EN 60929-1E
IEC 68-2-6 FC
IEC 68-2-29 日
150 9000-2000
150 14001
ENEC
VDE-GM

Note for update of informaion see cataogre on wuviligtingphlipscom

Gchical data for installation
Mains operation

Rated mains voltage	$220-240 \mathrm{~V}$
with tolerances for sofety. $\quad+/-10 \%$	$198-264 \mathrm{~V}$
tolerances for performance: $+6 \%-8$	$202-254 \mathrm{~V}$
Mains frequency	$50 / 60 \mathrm{~Hz}$
Operding frequency	See table

ck-up)
DC voltage operation (during emergency back-up) 108 254V DC $\begin{array}{ll}\text { Required battery voltage for guaranteed ignition } & 198-254 \mathrm{VCC} \\ \text { Required battery voltage for burning lamps } \\ 176-254 \mathrm{~V} \text { DC }\end{array}$ Nominal light output is obtained at a voltage of $220-240 \mathrm{~V}$ DC

tes:

1. For a continuous DC application, an external fuse should be used in
the luminaire. CD voltages ($<198 \mathrm{~V}$) can influence the lifetime of the ballast.

Earth leakege current
Igrition time
$<0.5 \mathrm{~mA}$ per ballat
<0.5 s
Smart power:
Smart power:
constant light operation
of mains voltage fluctuations within 202-254V, the luminous flux varies by a maximum of $\pm 2 \%$

Lamp wiring for HF-P 2.TLS Lamp wiring to both lamps must be inside one luminare: length of wires to lamp 1 must be same ($\pm 10 \%$) as lengh of wires to lamp 2 (wires to terminals 1 and 2 must be short and equal in lengh to wires 6 and 7 ; wires to terminals 3 and 4 must be lo 4 and 5): max. lenght of lamp wiring to equal to lenght of Iongest lamp (35 W / 49 W), plus normal length needed for assembly (in practice, max. 1.8 to 2 m). For HF-P 1 .TL5 it is advised to use 500 V rated components and wiring 500 V rated components and wiring are required with HF-P 2.TLS

Dual fixture;
mester-slave operation
Automaic restart ater
mp replacement or
voltage dip
Overvoltage protection

not advised

yestested with a dip down to 30% with a durdion of 10 mains cydes

48 hrat 320 VAC 2 hrat 350 VAC
Insuldion resistance test
500 VDC from Line/Neutral to Eart (not between Line and Neutral) reconnected again after abovementioned test is carried out and before the installation is put into operdion.
he ballets that are thermaly protected use a protective method of another spe providing equivient thermal protection.

Alns current /Emergencyoperation

Ellast		bmp		Input current	
HEPP 11435 TLS HE		TLS 14w			
HFP 21435 TLS HE		TLS 14w		${ }^{0.15}$	
HEPP 11435 TLS HE		TL521w		0.11	
HEP 21435 TLS HE		TL521w		0.20	
HEPP 14335 TLS HE		TL528w		0.15	
HEP 21435 TLS HE		TL5 28w		027	
HFPP 11435 TLS He		TL 35w		0.18	
HFP 21435 TLL He		TL5 35w		${ }^{034}$	
HFP $12435 \mathrm{TL5}$ но		tis 24w		0.12	
HFP 22435 TLS но		tis 2aw		023	
HFP $12435 \mathrm{TL5}$ но		TL 39w		0.20	
HFP $22435 \mathrm{TL5}$ HO		TLS 39w		${ }^{0.35}$	
HFP. 1497 LS Ho		TLS 49w		025	
HFP 2497 L5 HO		TL5 49w		${ }^{0.49}$	
HFP. 15475 HO		TL5 54w		027	
HFP P54TL5 HO		TL5 54w		054	
Inrustcurrent					
Ellast	Ayantityof bllasts per Miature ITcuit \qquad			$\begin{aligned} & \text { In ustrurrent } \\ & \text { mue time } \\ & \text { at tyical } \\ & \text { inains impedance } \end{aligned}$	
	treen	(a)			
HEP 11435 TL HE		28	48	24A/25015	
HFP 21435 TLS HE		15	20	31A30015	
HFP 12439 TL Ho		28	48	248/25015	
HFP 22439 TLS HO		15	20	314/300,	
HFP 1497 T5 HO		28	48	248/25015	
HFP 2497 TS HO		15	20	314,300\|	
HFP 15475 Ho		28	48	24A125015	
HFP P54T5 HO		15	20	31A/30015	

Gnersion tale for maxantities of blasts on otbr and

\%e		of tlats
в	16A	100\% (see tale above)
в	10A	63\%
c	10A	104\%
4	16 A	108\%
4	10 A	65\%
¢. U, ı	16 A	212\%
¢., .ı	10 A	127\%
K.1I	16 A	254\%
k.11	10A	154\%

Electronics

Technical data (all typical values at $\mathbf{V m a i n s}=\mathbf{2 3 0}$)

Lamp	$\begin{gathered} \text { Qty, of } \\ \text { lamps } \end{gathered}$	Ballast	$\begin{gathered} \text { System } \\ \text { power } \\ \mathrm{w} \end{gathered}$	$\begin{gathered} \text { Lamp } \\ \text { Power } \\ \mathrm{w} \end{gathered}$	$\begin{gathered} \text { Ballast } \\ \text { loseses } \\ \mathrm{w} \end{gathered}$		EEI
TLSE 14w	1	HFPP 11435 TIS HE	18	15	2.6	1200	A2
tL5 he 1aw	2	HEP 21435 TL5 HE	32	15	28	1200	A^{2}
tLS heziw	1	HFPP 14335 TL HE	25	22	2.9	1900	A2
tLL Heziw	2	HFPP 21435 TLS HE	46	21	3.6	1900	A2
TLS He z8w	1	HFPP $14335 \mathrm{TL5} \mathrm{HE}$	33	30	3.5	2600	A2
TLL He z8w	2	HFPP 21435 TLS HE	62	29	5.0	2600	A2
tı he 3sw	1	HFPP 14335 TL HE	40	36	34	3300	A2
тLL he 3sw	2	HEP 21435 TL5 HE	77	35	6.7	3300	A2
тьНо 24w	1	HFP 12439 TL но	28	24	4.0	1750	A2
тL5 Ho 24w	2	HEP 22439 TL5 HO	51	23	48	1750	A2
тьно з9w	1	HFPP 12439 TL5 HO	45	40	4.2	3100	A2
тьно з9w	2	HEP 22439 TL5 HO	83	39	5.9	3100	A2
тьно 49w	1	HFP. 1997 LS Ho	56	51	4.8	4300	A2
ті5 Ho 49w	2	HFP 249TL5 Ho	111	51	88	4300	A2
ть5 Ho 5aw	1	HFP. 15475 HO	61	55	6.0	4450	A2
ті5 но Saw	2	HFP 254TL5 HO	118	55	80	4450	A2

TTpical values for $/ 830$ calas at $25^{\circ} \mathrm{C}$ lamp ambiert temperaure

Ballast	Lamp	Qty. of lamps	Power factor	Max. cable cap ${ }^{1}$) lp-Ip/lp-gnd	$\begin{gathered} \text { To } \\ \text { ick } \\ \hline \end{gathered}$	
				pF	${ }^{\text {c }}$	
HEPP 1435 TLS HE	TLS he 14w	1	0.91	150/150	75	50
HFPP 21435 TLS HE	TLS heiaw	2	0.95	150/150	75	47
HEP 14 143TIS HE	tL hezzw	1	0.96	150/150	75	49
HFPP 21435 TLS HE	TLS Hezzw	2	0.97	150/150	75	47
HFPP 14335 TLS HE	TIL HE28\%	1	0.98	150/150	75	48
HEP 21435 TLS HE	TL5 HE28W	2	0.99	150/150	75	47
HEP 11435 TLS HE	TLS HE 35W	1	98	50/150	75	48
HFPP 21435 TLS HE	TIL He 35w	2	0.99	150/150	75	47
HFPP 12439 TL HO	тL5 Ho 24w	1	0.96	150/150	75	53
HFP. 22439 TL HO	тL5 Ho 24w	2	0.98	150/150	75	51
HFPP 12439 TLS HO	тL5 Ho 39w	1	0.99	150/150	75	46
HFPP 22439 TL5 HO	тL5 но 39w	2	0.99	150/150	75	45
HEP 149 T L HO	тL5 Ho 49w	1	0.99	150/150	75	45
HFP 2497L5 HO	TL5 Ho 49w	2	0.99	150/150	75	48
HEP 154TL Ho	tL5 Ho 5aw	1	0.99	150/150	75	52
HFP 254 TLS HO	TL5 Ho 5aw	2	0.99	150/150	75	53

On the HFP 2143575 HE ary combination of HE lamps can be beed (eg 14828; 35627- -dc)

1 lamp

Technical data for design and mounting HF ballasts in fixtures:
Temperature range to
ignite lamp with ignition aid

Max. tcase $=75^{\circ} \mathrm{C}$
Lifetime of a ballast depends on the temperature of the ballast. This means there is a relation between theTc point on the ballast and its lifetime. For more information regerding this subject consult the Philips Application guide to fluorescent lamp control gear.
Class II luminaires
EMI precautions have to be taken
Outdoor
gnition aid

Earthing

Hum and noise level
ballat $\mathrm{P}=23$. In outdoor the lumin has to be sufficiently IP rated 6028 par is tested according to EN 60928 par. 12. Note that no moisture or condensation may enter the
for optimumignition the TL5 lamps should be mounted at a maximum distance of 6 mm from a metal plate. The metal plate should be electrically connected to the ballast housing
earthing of the HF ballast in a luminaire s necessary for EMC (electromagnetic compatibility)

Permitted humidity is tested according to EN 60928 par. 12. Note that no moisture or condensation may enter the ballas.

The ballasts that are thermally protected use a protective method of another type providing equivalent thermal protection

Ordering and packing data

Ballast	1 Piece		Bulk packing					EоC
	EAN code	Weight	Qty.	Dimensions	Volume	Weight	EAN code	
				1xwxh		gross		
		kg	pcos.	cm	${ }^{3}$	kg		
HFPP 11435 TLS HE	8711500928559	0.25	12	40.8820.8x8.7	${ }^{0.0074}$	33	8711500928566	92855930
HEPP 14335 TL HE	8711500928634	031	12	462×20888.7	0.0090	4.0	8711500928641	92863430
HFPP 12439 T5 Ho	8711500928573	0.25	12	$40.820 .8 \times 8.7$	0.0074	33	8711500928550	92857330
HFP 2243975 HO	8711500928658	031	12	462×20888.7	0.0090	4.0	8711500928665	928683
HFP 1499 TS HO	8711500928597	0.25	12	$40.820 .8 \times 8.7$	0.0074	33	8711500928603	92859730
HFP 249TLS HO	8711500928672	031	12	$46.2 \times 20.8 \times 8.7$	${ }^{0.0090}$	4.0	8711500928689	9286723
HFP 15475 но	8711500928610	025	12	40.8820.888.7	${ }^{0.0074}$	3.3	8711500928627	92861030
HFP. 254 TL5 HO	8711500928696		12	$462 \times 20.8 \times 7$		4.0	8711500928702	9286963

EII

Poduct description
Flat，Slim，lightweight high－frequency electronic ballast for TL－5 fluorescent lamps，based on Ell technology．
Features and bnefits
The combination of HF－Performer and TL5 lamps offers opportunities for miniaturization and reduced cost of ownership，
thanks to the limited dimensions and the high sytem efficay Quick programmed stat． 0 ． preheating the lamp electrodec this enarffee warm start， preheating the lamp eiectrodes；this enables the lamps to be
switched on and off without －Switched on and off without reducing usefur life lamp oper rion with respect to lumen curve of the lamp and
reduction in sstem enery loses reduction in system energy losses
Smat power：constant light independent of mains voltage fluctuations Low energy consumption due to the use of Ell technology connections
Automatic stop circuit is activated within five seconds in case of lamp failure（Safety stop）；once the lamp has been replaced，the Equipped with terminations suitable for automatic wiring machines
Aplications
ypical areas of application include：
Department stores shops superm
Industrial premises
Airports，railway station
Office buildings，for
government ministries
Hospitals，
Hotels
－Sutitable for use with infrared remote control systems
Suitable for use with infrared remote control systems
Suitable for emergency installaions withVDE 0108 with Suitable for emergen
reignition $<0.5 \mathrm{~s}$
mips qality
This assures optimum quality regerding：
System supplier
As manufacturer of lamps electronic control gear and lighting control equipment，Philips ensures that，from the earliest development stage， optimumlamp／ballat performence is maintained．
International standards
Philips HF electronic regulating ballat＇s complies with all relevant
international rules and regultions international rules and reguldions．

6mpliances and approals	
－RFl $<30 \mathrm{MHz}$	EN 55015
RF $>30 \mathrm{MHz}$	EN 55022 b
－Harmonics	EN 61000－3－2
－Immunity	EN 61547
－Safety	EN 61347－2－3
－Performance	EN 60929
－Vibration \＆bump tests	IEC 600－68－2－6 FC IEC 600－68－2－29 Eb
－Quality standard	ISO 9000－2000
－Environmental standard	15014001
Approval marks	ENEC

Temperdure dedred thermally protected IEC 61347－1

bmp	©f bmps	Ellast	Stem Bar w	amp Oar w	Ellast bsses w	$\begin{aligned} & \text { amp } \\ & \text { umen } \end{aligned}$	class． EEI
						Im	
TL5 He 1aw	2	HFPP 21435 TLS HEEII	30	2×14	2	1200	
TLS He 1aw	3	HFP 3／414TL5 EI	47	3x14	5	1200	
TL5 He 1aw	4	HFPP3／14TL5 EII	62	4×14	6	1200	
TLSHE21W	2	HFPP 21435 TLS HE EII	46	2×21	4	1900	
TLS HE 21w	3	HFPP3414T5 EI	70	3×21	7	1900	
TLS HE 28W	2	HFP 21435 TLS HEEII	61	2×28	5	2600	
TLS HE 35W	2	HFPP 21435 TLS HEEI	76	2×35	6	3300	
тL5 Ho 24w	2	HFP 22439 TL5 HO 日I	49	2×22	4	1750	
тьно 24w	3	HFPP 3424TLIPL－LEEI	75	3×23	6	1750	
TL5 Ho 24w	4	HFP 3／424TLTPL－LEEI	100	4×23	6	1750	
PL－L24W	3	HFPP 3／4 24TLTPL－LEII	75	3×23	6	1800 （＊）	
PL－L 24W	4	HFPP 3／4 24TLTPL－LEI	98	4×3	6	1800 （＊）	
тьно з9\％	2	HFPP 24397L Ho 日i	${ }^{86}$	2839	8	3100	
TL5 Ho 49w	2	HFP．249TL Ho EI	109	2x49	10	4300	
тьно 5aw	2	HFPP 244 TLS Ho EI	120	2×5	11	4450	
тьно sow	1	HEPP 180TLIPL－LEEI	${ }^{88}$	1×80	8	6150	
ті5 но sow	2	HFP P880TLIPLLLEEI	172	2×80	12	6150	
PL-L sow	1	HEPP 180TLIPL－L EII	${ }^{88}$	1×80	8	6000 （＊）	

Thpicd vaues for 1830 a $255^{\circ} \mathrm{Clamp}$ ambient temperaure

PL－L vives re published a $25^{\circ} \mathrm{C}$ lamp anbiert tenperature

bmp	emps	Ellast	male cap	Per Freq
			Ippplpgnd	
			pF	＊
TLS He 1aw	2	HFP 21435 TLS HEEI	200／200	45
TLS He 1aw	3	HFP 3／414TL5 EI	$200 / 200$	27
TLS He 1aw	4	HFP 3／414TLS EI	2002200	27
TLS HE 2IW	2	HFP 21435 TLS HE EI	2007200	45
TLS He 2IW	3	HFP 3／414TL5 日	200／200	27
TLS HE 28W	2	HFP 21435 TL5 HE EI	2007200	45
TLS HE 35W	2	HFP 21435 TLS HE EI	200／200	45
TL5 Ho 2aw	2	HFPP 22439TL5 HO 日	2007200	53
тL5 HO 24 N	3	HFP 3／4 24TLTPL－LEI	150／150	45
ті5 но 24w	4	HFPP3／424TSTPL－LEI	150／150	45
Pl－L 24W	3	HFPP 3／4 24TLTPL－LEI	150／150	45
PL－L 24W	4	HFPP3／4 24TSTPL－LEI	150／150	45
т $ا$ H0 39w	2	HFPP22439TL Ho 日	2007200	45
тL5HO 49w	2	HFP 249TL Ho 日l	2007200	45
тL5 HO 54w	2	HFP P 24 TL5 Ho EI	$200 / 200$	45
ті5 Ho sow	1	HEPP 180TLIPL－LEE	150／150	45
тL5 Ho sow	2	HFPP 280TLIPL－LEE	150／150	45
Pl－L 80 W	1	HFPP 180TLIPL－LE	150／150	45
PL－L 80 W	2	HEP 2800TLIPLL－LEI	150／150	45

Ichical data for installation

Mains opertaion
Reted mains voltage
Tolerances for performance $+6 \% 8 \%$ With tolerances for safety：$+1-10 \%$ Mains frequency tower factor
DC voltage operation（during emergency back－up） Required battery voltage for guaranteed ignition Required battery voltage for burning lamps Nominal light output is obtained at a voltage of

Notes
For a continuous DC application，an external fuse should be used in the luminaire．

WC voltages（ $<198 \mathrm{~V}$ ）can influence the lifetime of E．bald
Earth leakege current＜0．5 mA per ballast
Ignition time
Constant light operation
0.5 sec ．

In crse of AC mains voltage fluctuations， within $202-254 \mathrm{~V}$ ，the luminous flux changes
by a maximum of $+2 \%$

Overvoltage protection		48 hrs at 320 V AC 2 hrs at 350 V AC		
Dual fixture：master－slave operation		Not advised		
Automatic restart after lamp replacement or voltage dip		Yes．tested with a dip down to 30% with a duration of 10 mains cydes		
Insulation resistance test		500 V DC from both mains inputs to earth （not between Line and Neutral） Note：Ensure that the neutral is reconnected again after above mentioned test is carried out and before the installation is put in operation		
Lamp wiring ${ }^{\text {a }}$		The use of 500 V rated components and wiring are required with HF－PGRFORMERTL5		
Alns current at $\mathbf{~ I ~}$ Inrustcurrent				
Ellast	bmp	${ }_{\text {copf }}$	tity Inrush	
			$\begin{gathered} \text { of blasts } \\ \text { per Miature } \\ \text { rcait } \\ \text { tpeatir } \end{gathered}$	current R alue time at tyical mains impedance
HFP 2143575 HEEI	TL5 He 14，		28	180／250 15
HFP 3／414TLEEI	T－5 HE 14N	\cdots	${ }^{28}$	180／250｜s
HFP 3／147TL EI	TL－5 He law	－ 4	${ }^{28}$	18／250 15
HEP P／414TL EI	TSHE2IW	3^{3}	${ }^{28}$	180／250｜s
HFP 2143575 HEEI	TLSE2IW	${ }^{2}$	${ }^{28}$	18／2750 ${ }^{\text {S }}$
HFP 2143575 HEEI	TL HE 28N	－ 2	28	184／250 ${ }^{\text {／5 }}$
HFP 2143575 HEEI	TL He 35w	2^{2}	28	184／250 ${ }^{\text {us }}$
HFPP 2243975 HO 日i	T5 Ho 2aw	N	15	31／1／30 ${ }^{\text {H }}$
HFP 3／24TLPP－LEII	TL524	3	12	31／1／30 ب5
HFP 3 4 24TLTPL－LEI	T524w	4	12	314／350 แ
HFP 3424TLPP－LEI	P－LL24W	3	12	314／350 н
HFP 3／4 24TLPPL－LEI	PL－L24W	4	12	314／350 แ
HFP 2243975 Ho 日i	ті5 ho 39w	v	15	31A／350 ${ }^{\text {S }}$
HFP 249 TL Ho в	тLНо 49w	v	15	31A／350 ${ }^{\text {S }}$
HFPP 254TLS HO EI	тL5 Hos 54 w	v	15	31／1／30［ 5
HEPP 1807TIPL－LEI	тьно sow	，	12	314／350 ${ }^{\text {L }}$
HFPP 2807LTPL－LEI	тьно sow	，	12	4004400
HEPP 1807TIPL－LEI	P－Lsow	1	12	314／350 ${ }^{\text {／}}$
HFPP 2807LTPL－LEI	PL－L 80 W	2	12	$400 / 400$ H

Wing diagrams

Alls currentat ${ }^{\text {I }}$ allast	bmp	©pf lamps	Input current	
HFP 21435 TLS Hegl	TLSE 14\％			0.14
HFP3／414 TLSEI	tL5 he iav			0.20
HEP3／414 TLE EI	tL He 14w			0.26
HFPP／414 TLS EI	TLS Heziw			0.30
HFPP 21435 TLS HEEI	TLS He 21 W			02
HFPP 21435 TLS HEEII	TLS HE 28\％			0.27
HFPP 21435 TLS HEEI	TLS He 35w			0.33
HFPP2 2439 TL5 Ho 日l	тL5 Ho 24w			0.22
HFP 3／424TLTPL－LEI	TL5 Ho 24w			033
HFP 3／4 24TLPL－LEI	tı5 HO 24 W			0.44
HFP 3／424TLPPL－LEI	PL－L 24W			0.33
HFP 3／424TLPPL－LEI	PL－L 24W			0.43
HFP 22439 TL5 Ho 日l	ті5 но з9w			0.39
HFPP 249TLS Ho вI	тL5 Ho 49w			0.49
HFPP 254 TIL Ho El	TL5 Ho 5aw			0.52
HFP 180 TITPL－L E	тьно sow			0.38
HFPP 280 TLIPL－LE	тьно sow			0.75
HFPP 180TLITPL－LEI	PL－L sow			0.38
HFPP 280TLIPPL－L E	PL－L sow			0.75

Gnersion tale for maquatities of blasts on otar tyes
 of Miature İcuit Beakr

\＃e	Elatie numbr of blasts	
в	164	100\％／spe table above）
в	108	63\％
c	164	170\％
c	10 A	109\％
L	164	108\％
L 1	108	65\％
¢．，u，	164	212\％
¢，u，u	108	127\％
k．11	164	254\％
k．11	10 A	154

बchical data for design and mounting A blasts in fitures Temperatures
Temperature rat

with ignition aid

Max $t_{\text {case }}$
$75^{\circ} \mathrm{C}$ Please note

Wiring diagam 4L

ne lengts

For optimal performance，note that following wires need to be kept short For one lamp ciraits keep wires to terminals 1 and 2 short
For two lamp circuits keep wires to terminals 1,26 nd 7 ， For triple and quad lamp diraits keep wires to terminds $1,2,13$ and 14 shor

Ne crosssection：

Lifetime of a ballast depends on the temperature of the ballat This means there is a relation between the Tc point on the ballast and its lifetime．This ballast range has a specified lifetime of 50.000 hrs，with a maximum of 10% failures guaranteed，at a measuredT case of $75^{\circ} \mathrm{C}$ ．For more information regarding this subject consult the Philips Application guide to fluorescent lamp control gear

Hum and noise level

inaudible

Permitted hurridity is tested according to EN 61347－1 par． 11. Note that no moisture or condensation may enter the ballast． he ballasts that are thermally protected use a protective method of Onnector tpe：
iring is geatly simplified through use of WAGO universal Connection wiring is greatly simplified through use of WAGO universal
connector．Suitable for both automatic wiring（ALF and ADS）and menual wiring earth connection can be made via the earth terminal on the mains wiring earth comnetion can be mede ia he ear
idend on the mains

With the HF－P $3 / 4$ lamp ballats $(14,24 \mathrm{~W})$ earth connection must be made via the housing

Double insert＂Io

$0.5 \mathrm{~mm}-1.0 \mathrm{~mm}^{2}$ connector Double insert＂lowe
$0.5 \mathrm{~mm}-1.0 \mathrm{~mm}$
Upper connector：
Mains \＆Control connector Double insert＂upper connector＂
Lamp（s）connector
0.5 mm － $0.755^{2} \mathrm{~m}^{2}$（＊）
Double insert＂lower c
（＊）Stranded wire
ates
Data is based on a mains supply with an impedance of 400 m ？ （equal to 15 m cable of $2.5 \mathrm{~mm}^{2}$ and another 20 m to the middle of the power distribution），under worst cose conditions．With an impedance of 800 ml the number of ballasts can be incressed by 10% subject to change
In some cases the maximum number of ballasts is not determined by 3．In some cases the maximum number of ballasts is not determined by
the MCB but by the maximum electrica load of the lighting instaldaion the MCB but by the maximum electrical load of the lighting installaion
4．Note that the maximum number of ballasts is given when these are Note that the maximum number of ballasts is given wh
all switched on the same moment，i．e．by a wall switch
all switched on the same moment，i．e．by a wall switch． MCB＇s it is advisable to reduce the number of ballasts by 20%
6．The maximum number of ballasts which can be connected to one
Residual Current Detector of 30 mA is 30 ．

Elast	Pexe		Blpackg								
	Enode		－	Dnensions dume		coss emode		EO			
	b			pcs	w						
			cm	m^{3}	H						
HFPP 21435 TLS HEEI	8711500910233	0.250			12	40．8820．8x． 7	0.0074		33	8711500910240	91023330
HFPP3／414TLS HEEI	8711500059840	0.265		12	$40,820.8 \times 8.7$	0.0074	3.5	8711500059857	05984030		
HFPP22439TL5 но 日i	871500910257	0.260		12	40，88208x8．7	0.0074	34	8711500910264	91025730		
HFPP3／424TLTPL－LEI	8711500907752	0.265		12	$40.8 \times 2.8 \times 8.7$	0.0074	3.5	8711500907769	9075230		
HEPP 249TLS Ho El	871500910271	0.270		12	$40.8 \times 208 \times 8.7$	0.0074	35	8711500910288	91027130		
HFPP 254TLL Ho EI	8711500910295	0.270		12	$40.8820 .8 \times 8.7$	0.0074	35	8711500910301	91022530		
HFPP 180TLTPL－L	8711500002398	0.260		12	40，8820．88．7 7	0.0074	34	871150000204	0029830		
HFP 280TLTPL－L	8711500060167	0.390		12	$46,8220.8 \times 8.7$	0.0084	5.0	8711500907561	06016730		

Ower connector
amp（s）connecto Double insert＂lower connector＂ 38915P1

Foduct description
Compact, lightweight, high-frequency electronic ballat forTL (8-13W), and compact fluorescent PL ($7-18 \mathrm{~W}$) lamps

Features and bnefit

The HF-MatchboxRED is a new generation of electronic energy-saing
ballats for systems up to 25 W . As well as saing energy, they enhance design freedom for the Orignal Equipment Manufacturer.

- Progammed statt: flicker-free, warm-start dircuit preheating $(0,8 \mathrm{~s})$ the lamp electrodes, this enables the lamps to be switched frequently without reducing useful life.
Up to 50% longer lamp life then with electromagnetic ballats - Energy savings of more than 25% (a equal luminous flux) compared with electromegnetic gear
Multi-lamp ballast: one type can be used to drive a singe lamp of PL-S 11 W lamp wan be connected to the or 13 W or a 113 PL-SIPL-C ballot 113 PL-SIPL-C ballat
weight compared to eletro ballas compat dimensions and low weight compared to electromagnetic ballats that this design replaces electromagnetic ballats

HF-MatchboxRED ballats can be supplied either as an encosed ballat or open printed dircuit board ready for building into a luminaire, in doing so ensuring optimum safely and lowest cost

Aplications

HF-MatchboxRED ballasts are designed for arees with high switching equency
pplicaion in indoor and outdoor stuxtion with movement/presence detection.

- Suitable for installations with emergency back-up, according to VDE 0108.
For luminares with protection dass I and II; dass I meta luminaires with earth connection require special measures for EMC compliance.
ips qulity
This implies optimum quality with regerd to:
This implies optim
As manufacturer of lamps and electronic control gear, Philips ensures that, from the earliest development stage, optimum lamp/ballot
performance is maintained
intermationa standards:
Philips electronic ballats comply with relevant intemational rules and regulaions

6mpliances and approals
RF < 30 MHz :

- Harmonics

Immuity.

बchical data in relation to energysaing

amp	Ellast tpe \&are	Energy efficiency index		$\begin{gathered} \text { ump } \\ \begin{array}{c} \text { poerr } \\ \mathrm{w} \end{array} \end{gathered}$	factor	lins bin	anip
						current mA	$\mathrm{mA}_{\mathrm{marrent}}$
tısw	HFMacthooxRED 109 SHISPTLPL-S	A2	9.1	7.3	0.63	62	159
TL 3\%	HF-MathboxRED 114SHISPTLTIS	A2	15.9	11.6	0.60	114	139
TL5 14w	HF-MathboxkED 114SHISPTLTLS	A2	16.2	129	0.60	116	151
PL-STw	HF-MachboxRED 109 SH/SPTUPL-S	A2	7.5	6.1	0.63	52	165
PL-Sgw	HF-MacthoxRED 109 SH/SPTUPL-S	A2	9.7	7.8	0.63	65	158
PL-S 11 w	HF-MachboxRED 113 SHISP PL-SPL-C	A2	12.9	11.1	0.63	89	164
PL-C Iow	HF-MacthoorRed 113 SH/SP PL-SPLCC	A2	102	89	0.60	73	163
PLCC 13 W	HF-MathboxRRD 113 SHISP PL-SPL-C	A ${ }^{\text {a }}$	14.0	123	0.63	96	161
PLCC ISW	HF-MachboxRED 118 SH/SP PL-C/PL-T	A2	178	162	0.62	125	211
PLTT I3W	HF-MathboxRRD 113 SHISP PL-SPL-C	A ${ }^{\text {a }}$	14.0	123	0.63	96	161
PLTT 18w	HF-MathboxRED 118 SH/SP PL-C/PLT	A2	198	172	0.63	137	216
TL-D 18w	HF-MathboxRED 124 SH/SPTLTLIPL-L	A2	17.4	14.5	0.59	128	276
Pl-L 18w	HF-MacthoxRED 124 SH/SPTLTLSPL-L	A2	164	13.7	0.59	122	274
PL-L 24W	HF-MathboxRED 124 SH/SPTLTISPL-L	A2	222	193	0.61	158	257
TL5 24w	HF-MacthoxRED 124 SH/SPTLTLSPL-L	A2	22.7	198	0.61	161	258
Tis Cz2w	HF-MathooxRED 124 SH/SPTLTILPPLL	A2	219	192	0.61	158	255

- Saferty

Performance

- Vibration \& bump tests
- Quality standard ISO 9000-2000 Environmenta standard:

- Approval marks

- CE marking

Temperature dedared thermally protected

EN 60928 EN 61347-2-3 EN 60929 IEC $68-2-29-$ E

15014001 ENEC kEMA
IEC 61347-1 *

ब्chical data for installation
Mains operation
Mains operation
Rated mains voltage
with toerences for sofety: + +- 10% tolerances for performance: $+6 \%-8 \%$ Operating frequen
externa fuse is required): and burning
Lifetime
At $t_{c} 65^{\circ} \mathrm{C}$ with 10% failures
Ignition time

194254V
230-240V 207-264V $212-254 \mathrm{~V}$ $50 / 60 \mathrm{~Hz}$ $<30 \mathrm{kHz}$
50.000 hrs 0.8 s

Overvoltage protection
Max $\mathrm{t}_{\text {case }}$
Lamp end-of-life detection/shut-off
Automatic restart after lamp replacement or voltage dip
However, stop circuit will be activated (to protect ballast) in case of rectifying lamp or broken gass, and manual restart is required

Cable capacity

Insulation resistance test

Epplyoptions

HF-MatchboxRED ballasts can be ordered either encased or as printed rcuit board.
Encased ballats are supplied fitted with plastic housings, and are either near or square in shape. Encased ballasts are delivered in cardboard cartons.

Printed dircuit boards (pcb's) have the same shape as the housings,
and are supplied in multiple boards. Multiple boards will be supplied in cardboard cartons.

A detailed 'Instructions for use' is induded in the packing of the printed dircuit boards.

iring dagam

chical data for design and mounting A bllasts in

位urestemperature range to ignite lamp
(ignition aid is not required)
Hum and noise level
-10 to $+40^{\circ} \mathrm{C}$
inaudible

Max. tcase $=15{ }^{\circ}$. means there is a relation between theTc point on the ballast and its iffetime. For more information regerding this subject consult the Philips Application guide to fluorescent lamp control gear.

The ballast that are thermally protected use a protective method of another type providing equivdent thermal protection.

๙or coding

-	Ansterminal color code
HF-Macthooxer 109	Orangeldackiorans
HFMathooxer 113	Orane/geyorange
HF-Mathooxeed 114	Orangebluetra
HFMathooxer 118	Orangeorangeora
HF-MathooxRED 124	Orangeredorang

Ne crosssection:

On the mains side: $0.5-1.5 \mathrm{~mm}$
On the lamp side: $0.5-1.5 \mathrm{~mm}$
Grip length

Me length
Distance between mains wires and lamp wires: $\quad>5 \mathrm{~cm}$
Keep wires to terminals 1 and 2 as short as possible ($<30 \mathrm{~cm}$) Keep wires to terminals 3 and 4 shorter than 150 cm

Poduct description
Compact, lightweight, high frequency electronic standard ballast for
fluorescent lamps
Features and bnefits
Warm preheat sart- fickerfree ideal for areas with hich switching frequencies

- Longer lamp life than with corventional gear

Up to 20% reduction in energy consumption at equal luminous
flux compared with conventional gear. flux compared with conventional gear.

Aplications

Typical areas of application indude
Office building

- Hospitals
- Retail supermarkets
- Industrial premises
- Airports, railway sta

Outdoor lighting.
In general suitable for dass 1 applications
Installations with infrared remote control systems

mips qality

This implies optimum quality regarding
As manuffacturers of lamps and electronic control gear, Philips
ensures that, from the earliest development stage, optimum
lamp/ballast performance is maintained
International standards Philips EB-S electronic ballasts comply with
all relevant international rules and reguldions
ompliances and approals
RF $<30 \mathrm{MHz}$
Immunity

- Safery

Vibration \& bump tests

- Quality standard
- Environmental standard
- CE marking
- CCC
- ASINZS

EE1=A2

बchical data for installation
Mains operation
Rated mains voltage
With tolerances for spfety $\quad+15 \%-20 \% \quad 220-240 \mathrm{~V}$
$\begin{array}{ll}\text { With tolerances for sfefery } \quad+15 \%-20 \% & 184-264 \mathrm{~V} \\ \text { With tolerances for performance }+6 \%-8 \% & 211-244 \mathrm{~V}\end{array}$
Tains frequency
Operating frequency
Power factor
$50 / 60 \mathrm{~Hz}$
$>42 \mathrm{kHz}$
0.96

Earth leakege current
$<0.5 \mathrm{~mA}$ per ballat
Ignition time <2 s
Duad fixture; mester-save possible, in general meximum 2 m lengh peration of lamp wires between ballast and lamp
mable capacity max. 150pF between lamp wires and earth EMI precautions have be taken

Automaic restart ater voltage dip
Insuldion resistance test 30% ed with a dip down lamp to 30% with a duration of 10 mains cycles
500 V DC from Line/ Neutral to Earth (not between Line and Neutral) Note: Engure that the neutral is reconnected again atter above mentioned test is carried out and before the installation is put into operation.

बchical data for design and mounting bllasts in fitures Temperatures
Temperature range to ignite lamp
with ignition aid
Maxt case
-15° to $50^{\circ} \mathrm{C}$
EN 61347-2-3
IEC 68-2-6 FC
IEC 68-2-29 Eb
ISO 9001
ISO 14001
Huma nose
Hend

Permitted hurridity is tested according to EN61347-2-3 par. 11. Note that no moisture or condensation may enter the ballast.

Connection wiring is greatly simplified by the use of insert contacts with ush buttons
ire cross-section:
On the mains side:
On the lamp side:
Strip lengh
$0.5 \mathrm{~mm}-1.5 \mathrm{~mm}^{2}$ $0.5 \mathrm{~mm}-1.5 \mathrm{~mm}^{2}$ 7.5-8.5mm

Elast	Input current
©.S 114715220240	0.08
\#. $521475220-240$	0.15
W. $531475220-240$	022
\#. $541475220-240$	028
W. 512175220.240	0.10
\#. $522175220-240$	020
W. $\mathbf{S 1 2 8 7 5} 5220.240$	0.15
W. $5228715220-240$	${ }^{030}$
W. 5135 T S220-240	0.18
523575 220-240	${ }^{036}$
Inrustcurrent	
Ellast	Mqantityof bllasts per Miature Ecuit Beakr
EB. 1144 T 220-240	165
W. 521475220.240	26.7
W. 5144 TL 220.240	18.
\#. 541475220240	265
W.S 122151520240	17.7
W. 222175220240	28.
W. 512875220240	19.0
W. 522875220240	28.0
W. 5135 T 5 220.240	
\#. 5235 T 5 220.240	

otes

Data is based on a mains supply with an impedance of $400 \mathrm{~m} \Omega$ (equal to 15 m cable of $2.5 \mathrm{~mm}^{2}$ and another 20 m to the middle of the power distribution), under worst case conditions. With an meedance of $800 \mathrm{~m} \Omega$ the number of ballasts can be increased by 10\%
verified in real installations; therefore data are
. In some coses the maximum number of ballasts is not determined by the MCB bu
4. Note that the maximum number of ballasts is given when these are all switched on the same moment, i.e. by a wall switch.
5. Meesurements were carried out on single-pole MCB's. For multi-pole MCB's it is advisable to reduce the number of ballats by 20%
The maximum number of ballats which can be connected to one Residual Current Detector of 30 mA is 30
7. Data is meesured with merlin jerin C45N/C10.

bmp	bmps	Elast	fem				Ellast		Wnos	
			Or	amp	Efficary	Umen*	bsses		diagram	
			w	w	ImN	Im		w		Fig.
TL5 14w	1	EBS 114TL 220.240	17.5	14.0		96	1350		35	1
TL5 14W	2	EBS 21475220240	335	14.0		96	1350		55	2
TL5 14w	3	EBS 314TL 220.240	48.0	14.0		96	1350		6	3
TL5 14W	4	EBS 41475220240	63.0	138		96	1350		7.6	4
TL521w	1	EBS 121 TLS 220.240	23.5	20.4		100	2100		3.1	1
TL521w	2	EBS 22175220.240	46.0	20.		100	2100		5	2
TL5 28w	1	EBS $128715220-240$	32.0	28.		104	2900		4	1
TL5 28w	2	ERS 228715220.240	64.0	280		104	2900		8	2
TL5 35w	1	EBS $135715220-240$	39.0	35.0		104	3650		4	1
T535w	2	EB. 233575220.240	78.0	35.0		104	3650		8.6	2

Fig 1751 Lamp

Fig 3753 Lamps
@ution:
After finishing system installation, please check carefully before you turn
the power on.
. Check whether lamp, ballast model and wiring are compatible
accoraing to Philips EB-Standard TLS datasheet.
. Balms hid to be grounded to the fixture via the input connectors GND pin.The GND pin can be identified by the earthing symbol marked on the ballast label, in no case shall the earthing resitance exceed 0.5Ω (according to IEC 60598-1 dause 7.2.3).
©lering and packng data

Electronics

[^3]

बchical data for installation

Poduct description
Compact，lightweight，highfrequency electronic standard ballat for
TD fluorescent lamps．
Features and bnefits
Rapid start；flicker－free warm start，ideal for areas with hich
ritchingriendies
－Longer lamp life than with conventional gear
Up to 20% reduction in energy consumption at equal luminous
flux compared with conventional gear． flux compared with conventional gear．

Aplications

Typical areas of application indude：
－Department stores，shops，supermarkets
－Installations with infrared remote control system
－A Airports，railway stations
In general suitable for dass 1 applications
Office buildings，for example，insurance companies，banks， government ministries
Hospitals
Hotels
－Industrial premises
mips qality
This implies optimum quality regarding
－System supplier
As manufacturers of lamps and electronic control gear，Philips ensures that，from the earliest development stage，optimum is maintained
International standards
Philips EB－S electronic ballasts comply with all relevant
international rules and regulations international rules and regulations．

mpliances and a	
RF $<30 \mathrm{MHz}$	EN 55015
Harmonics	EN 61000－3－2
Immunity	EN 61547
Safery	EN 60928
Performance	EN 60929
－Vibration \＆burmp tests	IEC 68－2－6 FC
Quality standard	ISO 9001
Environmental standard	15014001
－Approval marks －CE marking	PSB

Mains operation
With tolerances for ssfety $+15 \%-20 \% \quad 220-240 \mathrm{~V}$ with tolerances for performance $+6 \%-6 \%$ Mains frequency
Operding frequency
Power factor
Earth leakege current
$<0.5 \mathrm{~mA}$ per ballast
Ignition time <2 s
Over voltage protection
Dual fixture；mester－stave
operation
Cable capacity

Automatic restart ater
voltage dip
Insuldion resistance test
$<350 \mathrm{VAC}$
possible，in general meximum 2 m lengh of lamp wires between ballat and lamp
max．200pF between lamp wires and earth EMI precautions have be taken YesTested with a dip down to 30% restested with a dip down to 30%
with a duration of 10 mains cydes 500 V DC from Line／Neutral to Earth （not between Line and Neutral） Note：Ensure that the neutral is reconnected again after above mentioned test is carried out and before the installdion is put into operation．

hical data for design and mounting blasts in fieures

Temperatures
Temperature range to
ignite lamp with ignition aid
Maxt case
oo to $50^{\circ} \mathrm{C}$
um and noise leve
Permitted humidity is tested according to EN60928 par． 12. Note that no moisture or condensation may enter the ballast
Connection wiring is greatly simplified by the uee of insert contacts with push buttons
Wire cross－section：
On the mains side：
On the lamp side：
$0.5-1.5 \mathrm{~mm}$
Strip lengh：
9－10rm

ns current at	
Elast	Input current
Br．118TL 220－240	
EBS218TL 220－240	0.1
	027
Br S 418 TL 2202020	033
＊⿴囗 232 TLD 220.240	030
EBS 136TL 220－240	0.18
	032
EBS 336TL 220－240	
EB．158TL 220－240	
BR． 2588 LL 220.240	
Inrustcurrent	
slast	manatitof
	tlasts per
	Miature Pruit
	Hear
	－
EB． 118 TL 220－240	
ExS218TL 220－240	
\＃®． 318 TL 220－240	
Br 418 TL 220240	
BrS 136 TL 220240	
\＃⿴囗十S236TL 220－240	
\＃⿴囗十S 336TL 220－240	
W．158TL 220－240	

ates

1．Data is based on a mains supply with an impedance of $400 \mathrm{~m} \Omega$ （equal to 15 m cable of $2.5 \mathrm{~mm}^{2}$ and another 20 m to the middle of the power distribution），under worst case conditions．With an impedance of 800 ml the number of ballats can be increased 10\％
2．Measurements will be verified in real installations；therefore data are subject to change
3．In some cases the meximum number of ballasts is not determined by the MCB but by the maximum electrical load of the lighting instalation．
4．Note that the maximum number of ballasts is given when these are all switched on the same moment，i．e．by a wall switch．
5．Measurements were carried out on singepole MCB＇s．For multi－pol MCB＇s it is advisable to reduce the number of ballats by 20%
The meximum number of ballats which can be connected to one Residual Current Detector of 30 mA is 30
7．Data is meesured with merlin jerin C45N／C10．

Fig 3

Fig 5
achical data in relation to energysaing

bmp	op emps	:llast	tem	bmp					Elast		Wng		
			ar	*		Efficacy		umen*			diagram		
			w		w	ImN		Im		w		Fig.	
TL 18w	1	EB. 118 TLL 220.240	20		16		81		1300		4		
TL 18w	2	EBS 218 TLD 220.240	37		16		81		1300		5		
TL 18w	3	EB.S 318TLD 220.240	62		16		81		1300		14		
TL 18w	4	EBS 418 TLD 220.240	75		16		${ }^{81}$		1300		11		
Tம 32W	2	EB.S 232TLD 220.240	64		28		110		3080		8		
TL 30w	1	EBS 136 TLD 220.240	37		32		100		3200		5		
Tம 3ow	2	EB.S 236TLD 220.240	73		32		100		3200		9		
TL 30w	3	EBS 336TL 220.240	108		32		100		3200		12		
Tம 58w	1	EB.S 158TL 220.240	56		50		100		5000		6		
TLL 58w	2	EB.S 258 TL 220.240	112		50		100		5000		12		
PL 18w	1	EB.S 118TL 220.240	20		16		76		1220		4		
PL 18w	2	EBS 218TL 220.240	37		16		76		1220		5		
PL 36W	1	EB.S 136TL 220-240	37		32		90		2880		5		
PL 36w	2	EB.S $236710220-240$	${ }^{73}$		32		90		2880		9		
PL 55w	1	EB.S 158TL 220.240	56		50		90		4500		6		
PL 55w	2	EBS 258 TL 220.240	112		50		90		4500		12		

Typical valus for /830 and /840 colas

Ellast	$\begin{gathered} \text { ©lering } \\ \text { numbr } \end{gathered}$	Higle unit	erion pading			malet unit
		aly	9	Dnensions	mgh	Stonpes
		net		1 xuh	gross	
		t	pcs	cm	\%	
EB. 118TL 220-240	9137100204.	023	10	$288 \times 21 \times 7.6$	25	75/70
EBS218TL 220.240	9137100205.	023	10	$28.8 \times 21 \times 7.6$	25	75/50
EBS 318TL 220-240	9137100206.	028	10	$288 \times 21 \times 7.6$	3.0	75/50
EB. 418 TL 220.240	9137100212.	0.25	10	$288 \times 21 \times 7.6$	2.7	75750
EB-532TLD 220.240	9137100294.	023	10	$288 \times 21 \times 7.6$	3.	75/50
EB. 13671 L 220.240	9137100207.	023	10	$288 \times 21 \times 7.6$	25	75/50
EB-5 236 TL 220.240	9137100208.	0.25	10	$288 \times 21 \times 7.6$	2.7	75/50
EB. 336TL 220.240	9137100209.	028	10	$288 \times 21 \times 7.6$	3.0	75/50
EBS 158TL 220-240	9137100210.	0.23	10	$288 \times 21 \times 7.6$	25	75/50
EBS 258TL 220-240	9137100211.	0.23	10	$288 \times 21 \times 7.6$	3.0	75/750

Electronics

Product description
Compact, lightweight, high-frequency electronic ballast for PL-T, PL-C compacted fluorescent lamps.
Features and benefits

- The combination of EB-Standard and PL-T/PL-C lamps offers opportunities for miniaturization and rediced cost of ownership, Programmed timited dimensions and the high system efficarcy. Programmed start: ficker-free warm start, preheating the lamp electrodes, this enables the lamps to be switched on and off without reducing useful life.
Equipped with electrode he
n cut-off circuit, ensuring optimal reduction in syith respect to lumen curve of the lamp and reduction in system energy losses
Automatic stop circuit is activated within five seconds in case of lamp failure (safety stop); once the lamp has been replaced, the ballad resets automatically.
Up to 20% reduction in energy consumption at constant luminous flux compared with conventional gear.
Low energy consumption due to the use of Ell technology Smart power: constant light independent of mains voltage
Applications
Typical areas of application include:
- Department stores, shops, supermarkets government ministries
Hotels
Hotels
Airport
Airports, railway stations
Philips quality
um quality regarding:
As manufacturers of lamps, electronic control gear and lighting control equipment, Philips ensures that, from the earliest development stage, optimum lamp/ballast performance is maintained
Philips EB-S electronic ballasts comply with all relevant international rules and regulations.

$\begin{array}{ll}\text { - RF < } 30 \mathrm{MHz} & \text { EN } 55015 \text { (IEC) * } \\ \text { - Harmonics } & \text { EN } 61000-3-2 \text { (IEC) }\end{array}$
EN 61000-3-2 (IEC)
- Sarety EN 61547 (IEC)
- Performance tests
- Vibration \& bump tests EN 60068-2-6 FC (IEC
- Quality standard
- Approval marks
- Approval marks EN 60068-2-29 Eb (IEC)
ISO 9001 ISO 9001
ISO 14001
SO 14001
ENEC
KEMA
AS/NZS
- CE marking
*ested with ballast functional ground connected to earth

$\begin{array}{lllllll}\text { Procuct ID } & \text { A1 } & \text { A2 } & \text { B1 } & \text { B2 } & \text { C1 } & \text { D1 }\end{array}$

 $\begin{array}{llllrll}11331128126 \text { PTL/C } & 104 & 935 & 68 & 575 & 30 & 4.0 \\ 213213226 \text { PLT/C } & 123 & 111 & 79 & 7 & 33 & 42\end{array}$| Lamp | $\begin{gathered} \text { Qty, of } \\ \text { lamps } \end{gathered}$ | Ballast | System | Lamp | $\begin{gathered} \text { Ballast } \\ \text { Loses } \\ \text { w } \end{gathered}$ | NOMINALLamp Lumen Lm | EEI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Power w | Power | | | |
| | | | | w | | | |
| | | | | | | | |
| PL-T 13W | 1 | W.S 113 PTT/C | 145 | 125 | 2.0 | 900 | Аз |
| PL-T 13W | 2 | W.S213 PTIC | 28 | 125 | 3.0 | 900 | A2 |
| PL-T 18w | 1 | W.S 118 PTT/C | 19 | 165 | 25 | 1200 | A2 |
| PLTT 18w | 2 | W.S 218 PLT/C | 38 | 16.5 | 5 | 1200 | A2 |
| PL-T 36W | 1 | W.S 126 PTT/C | 27 | 24 | 3 | 1800 | A2 |
| PL-T 36W | 2 | B.S 226 PTITC | 54 | 24 | 6 | 1800 | A2 |
| PLCC 13W | 1 | Brs 113 PLT/C | 145 | 125 | 20 | 900 | ${ }_{\text {A }}$ |
| PL-C 13W | 2 | mes213 PLTC | 28 | 12.5 | 3.0 | 900 | A2 |
| PL-C 18w | 1 | mes 118 PTT/C | 19 | 165 | 25 | 1200 | A2 |
| PLCC 18w | 2 | EBS 218 PTITC | 38 | 16.5 | 5 | 1200 | A2 |
| PLCC 36 W | 1 | EBS 126 PTITC | 27 | 24 | 3 | 1800 | A2 |
| PLC 36w | 2 | EB. 5226 PTIT | 54 | 24 | 6 | 1800 | A2 |
| Ballast | - | Lamp | Qty. oflamps | Power | $\begin{gathered} \text { Max. cable cap') } \\ \text { Ip-1pip-gnd } \\ \text { pF } \end{gathered}$ | Tc | $\begin{array}{r} \text { Oper} \left.{ }^{2}\right) \\ \text { Freq. } \mathrm{kHz} \end{array}$ |
| | | | | factor | | max | |
| | | | | | | ${ }^{\text {c }}$ | |
| EBS 113 PUC | | PL-T 13W | 1 | 0.95 | 12060 | 65 | 45 |
| E.S. 213 PuC | | PL-T isw | 2 | 0.95 | 60060 | 65 | 45 |
| EB. 118 PUC | | PL-T 18W | 1 | 0.95 | 12060 | 65 | 45 |
| E.S 218 PuC | | PL-T 18W | 2 | 0.95 | 6060 | 65 | 45 |
| EB. 126 PUC | | PL-T 26W | 1 | 0.95 | 12060 | 65 | 45 |
| E.S 526 PUC | | PL-T 26W | 2 | 0.95 | 6060 | 65 | 45 |
| | | | | | | | |
| EBS 113 PLC | | PL-C 13W | 1 | 0.95 | 120060 | 65 | 45 |
| EBS 213 PUC | | pl-c isw | 2 | 0.95 | ${ }^{6060}$ | 65 | 45 |
| EBS 118 PLC | | PLCC 18w | 1 | 0.95 | 120/60 | 65 | 45 |
| EBS 218 PUC | | PL-C 18w | 2 | 0.95 | ${ }^{6060}$ | 65 | 45 |
| EB. 126 PLC | | PL-C 26W | 1 | 0.95 | 120/60 | 65 | 45 |
| mes 226 PLC | | PL-C 26W | 2 | 0.95 | 60/60 | 65 | 45 |
| $1 \mathrm{pl\mid l}=\mathrm{l}$ betweer | | Tpical wir | pfim | ive 0.5 m | | | |

Electronics

EB-Standard PLT/PLC
Electronics

1. Data is based on a main supply with an impedance of 400 me (equal to 15 m cable of $2.5 \mathrm{~mm}^{2}$ and another 20 m to te middle of the power mismul inder worstaser 10%
will be verified in real installations, therefore data are subject to change
the MCB but by the maximum electrical load of the lighting
2. Note that the maximum number of ballasts is given when these
3. Measurements were carried out on singlepole MCB's For multi-pole MCB's it is advisable to reduce the number of ballasts by 20%

chical data for design and mounting F bllasts in

fitures

Temperature range to ignite lamp $0^{\circ}-50^{\circ} \mathrm{C}$
with ignition aid
Max. tcase
$65^{\circ} \mathrm{C}$
Lifetime of a ballast depends on the temperature of the ballast. This means there is a relation between the Tc point on the ballast and its lifetime.The EB-Standard ballast for PL-T/C applications has a specified ifetime of 50,000 hrs, with a maximum of 10% failures guaranteed, at a measuredT-case of $65^{\circ} \mathrm{C}$

Hum and noise level

inaudible

Permitted humidity is tested according to EN61347-1 par. 11 . Note that no moisture or condensation may enter the ballat
The ballasts that are thermally protected use a protective method of another type providing equivalent thermal protection

Wining diagam 2 L

NC): : not cometed
onnector tpes:
Connection wiring is greatly specified by the use of insert contacts with push buttons

Ne crosssection:

1 -lamp circuit, keep $1 \& 2$ lead wires short
2 -lamp circuit, keep $1,2,3 \& 5$ lead wires short
ne mans side: 0.5-1.5 mm
On the lamp side: $0.5-1.5 \mathrm{~mm}$
Strip length: $7.5-8.5 \mathrm{~mm}$
te:
For optimal performance, please ensure correct earthing and wiring before power on.

[^4]
（
Mips qality
This implies optimum quadity with regard to：
System supplier：
As manufacturer
As manufacturer of lamps and electronic control gear，Philips ensures that，from the earliest development stage，optimum lamp／ballast performance is maintained
International standards Philips electronic ballasts comply with relevant international rules and regulations
©mpliances and approals

RFI＜ 30 MHz	EN 55015
－Harmonics	EN 61000－3－2
－Immunity	EN 61547
－Safety	EN 61347－2－3
－Quality standard	ISO 9001
－Environmental standard	ISO 14001

Qulity standard
－CE marking

EN 55015
EN $61000-3-2$
EN 61000－3－2
ISO 9001
ISO 14001

BB．S Square（PCB）

bmp	Ellast tpe Gare	Inear	$\begin{gathered} \text { tem } \\ \begin{array}{c} \text { poorr } \\ \mathrm{w} \end{array} \end{gathered}$	$\begin{gathered} \text { amp } \\ \text { poer } \\ \text { w } \end{gathered}$	factor	us		mp
							${ }_{\mathrm{mA}}^{\text {current }}$	mA
tı 4w	\＃．S 105TLPISSH／SP	W．S 105TLPLSLHIP	62	45		0.6	40	210
to ow	EB．109TLPPLSSH／SP	WB． 109 TLPLSLHIP	83	6.6		0.6	65	215
tısw	EB．1097LPILSHHSP	WB．109TLPLSLHIP	10.0	82		0.6	70	200
TL 13 w	EB．114TUTLSPLSH／SP	EBS 114 TLTLIPL LHILP	15.0	13.0		0.6	105	175
TL low	W． 5114 TUTLIPLS SHISP	Ex．114TLTLIPL LHIP	11.0	89		0.6	90	220
TL 18w	\＃． 124TUTLITLS SHISP $^{\text {S }}$	Ex．124TLTLIPL LHIP	17.4	15.0		0.6	125	280
TLS 14W He	ExS 114 TUTLIPLS SH／SP	®®S 114TLTLIPL LHLP	154	135		0.6	110	175
tis 2iw he	－	EB． 121 TIL LHIP	222	195		0.6	160	165
TLSC 22w но	EBS 124TUTITPLSHHSP	Ex．124TUTLIPL LHIP	21.5	192		0.6	150	230
тL5 24w но	ExS 124TLILSPL SHISP	\＃®．124TUTLIPL HHLP	20.8	18.7		0.6	145	235
PLS 5 w	EB． 105 TLPPLS SH／SP	EBS 105TLPISLHIP	6.8	52		0.6	45	210
PLSTW	ExS 109TLPPLS SHISP	Ex． 109 TLPILSHIP	89	7.0		0.6	65	215
PLSow	EB．109TLPPLS SH／SP	EBS 109TLPLSLHIP	10.0	83		0.6	70	200
PLS 11w	mes 114TUILSPL SHISP	\＃x． 114 TUTLIPL LHLP	14.0	12.3		0.6	100	200
PLC Iow	EBS 114TUTLIPL SHISP	セ⿴囗 114 TLTLTPL LHLP	12.0	10.0		0.6	90	220
PLC İw	ExS 114TUTLIPL SHISP	セ⿴囗 114 TLTLTPL HLIP	14.6	12.8		0.6	105	185
PLC 18w	E．S 1188 PLCIPTL SH／SP	－	182	15.8		0.6	135	220
PLT 18w	E．S 1188 PLC／PTL SH／SP	－	19.4	172		0.6	140	215
PL 18w		\＃B． 124 LLTLIPL LHLP	20.2	18.0		0.6	140	245
PL24W	\＃． 5124 TUTLIPL LSHISP	EB． 124 TLTLIPL LHLP	16.4	14.0		0.6	120	200

Electronics

Gchical data for installation
Mains operation
Rated mains voltage
Tolerances for performance:
Mains frequency
Operation frequency
C voltage operation during emergency back-up (external fuse is equired)

Required battery voltage for guaranteed ignition Required battery voltage for burning lamps
<0.5 s
Over voltage protection up to 264 V $75^{\circ} \mathrm{C}$ yes no: manual restat required

to be advised

not relevant
-10 to $+40^{\circ} \mathrm{C}$
inaudible
onnection wiring is greatly simplified by the use of insert contads Wire cross-section:
On the mains side:
On the mains side:
On the lamp side:
Strip lengh:
istance between mains wires and
amp wires
Length of lamp wires:
Keep wires to terminals 1 and 2
Keep wires to terminals 3 and 4 shorter than
$0.5-1.5 \mathrm{~mm}^{2}$
8-9mm
$>5 \mathrm{~cm}$
($<30 \mathrm{~cm}$)
150 cm

Golyoptions

B-Standard Micropower ballats can be ordered either encased or as printed circuit board.

Encased ballasts are supplied fitted with platic housings, and are either linear or square in shape. Encased ballasts are delivered in cardboard cartons.

Printed Circuit Boards (PCB's) have the same shape as the housings, and are supplied in multiple boards. Multiple boards will be supplied in cardboard cartons.
A detailed 'Instructions for use' is included in the package of the printed arcuit boards

The ballats that are thermally protected use a protective method of another type providing equivdent thermal protection.

Æoring coding

-	Itins terminal color code
Er-Standard Micropower 105	orangelbacklorange
Ex-Standard micopower 109	anceluedorane
B. TANDARD Micropower 114	orange/feyorane
Ex-Standard Micopower 118	orangeloraneorane
EB-Standard Micopower 121	orangeloragetorane
Ex-Standard Micopower 124	orangeselolow/ra
to failitate physial idestrifation d	

medar teminial is coloed accading to the

@lering and packng data

Ellast	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline \text { olerg } \\ \text { numbr } \end{array}$	Bigle unit	arton packng			slet unit
		ath	9	Dnensions	ath	
		net		1 xuh	Whensons ly gre	
		b	pcs	cm	${ }^{5}$	atonocs
Ex. 1052200240 UH	9137100268.	0.490	50	$23.0 \times 16.0 \times 13.0$	25	200/1000
EB. 1052200240 SH	9137100269.	0.337	50	$21.5 \times 175 \times 13.0$	24	200/10000
EBS 1052200240 LP	9137100270.	0.023	50	$20.0 \times 173 \times 123$	1.3	200/10000
EB. 1052200240 Sp	9137100271.	0.022	50	$20.0 \times 173 \times 123$	1.3	200/10000
EBS 1092220240 L H	9137100272.	0.041	50	$23.0 \times 16.0 \times 13.0$	25	200/10000
EB. 1092200240 SH	9137100273.	0.039	50	$215 \times 175 \times 13.0$	24	200/10000
EBS 1092200240 LP	9137100274.	0.024	50	$20.0 \times 173 \times 123$	14	200/10000
EB. 1092200240 Sp	9137100275.	0.023	50	$20.0 \times 173 \times 123$	1.3	200/10000
EBS 1142200240 L	9137100276.	0.045	50	$23.0 \times 160 \times 13.0$	25	200/10000
EBS $1142220-240$ SH	9137100271.	0.388	50	$21.5 \times 175 \times 13.0$	24	200/1000
EBS 1142200240 LP	9137100278.	0.023	50	$20.0 \times 173 \times 12.3$	1.3	200/1000
EBS 1142200240 SP	9137100279.	0.023	50	$20.0 \times 173 \times 123$	1.3	200/10000
EBS $1182200-240$ SH	9137100280.	0.039	50	$21.5 \times 175 \times 13.0$	24	200/1000
EBS $1182220-240$ Sp	9137100281.	0.024	50	$20.0 \times 173 \times 123$	1.4	200/1000
EBS $1212200-240$ LH	9137100286.	0.042	50	$23.0 \times 16.0 \times 13.0$	2.6	200/10000
EBS 1212202020 LP	9137100288.	0.024	50	$20.0 \times 173 \times 123$	14	200/10000
EBS $124220240 \mathrm{LH}^{\text {L }}$	9137100282.	0.042	50	$23.0 \times 160 \times 13.0$	2.6	200/10000
EBS 1242202020 SH	9137100283.	0.040	50	$21.5 \times 175 \times 13.0$	25	200/10000
EBS $124220240 \mathrm{LP}^{\text {P }}$	9137100284.	0.025	50	$20.0 \times 173 \times 123$	14	200/10000
EBS 1242200240 SP	9137100285.	0.025	50	$20.0 \times 173 \times 123$	1.3	200/10000

Electronics

EB-EconomyTLD

Product description
Product description
Compact, lightweight, highrequency electronic standard ballast for Compact, lightweight, highfrequency electronic standard ballost for
TLD fluorescent lamps, ideal for applicalions with low switching frequency.
Features and benefits

- Flicker-free rapid start, ideal for areas with low switching frequency (maximum 3 times a day)
Up to 20% reduction in energy consumption at equal luminous flux compared with conventional gear.

Applications
Department stores, shops, supermarkets with long lamp burning
hours

- Industrial premises with long lamp burning hours
- Railway stations
- Railway sta
- Corridors
- Outdoor lighting in general suitable for dass 1 applications

Philips quality
This assures optimum quality regarding.

- System supplier

As manufacturers of lamps and electronic control gear, Philips
ensures that, from the earliest development stage, optimum lamp/ballast performance is maintained

ompliances and	
- RF $<30 \mathrm{MHz}$	EN 55015
- Harmonics	EN 61000-3-2
- Safety	EN 61347-2-3
- Vibration \& bump tests	IEC 68-2-6 FC
	IEC 68-2-29 Eb
- Quality standard	150 9001
- Environmental standard	15014001

[^5]

Fig B

\square

Electronics

Technical data in relation to energy saving

Lamp	$\begin{aligned} & \text { Qty. of } \\ & \text { Lamps } \end{aligned}$	Ballast	System	Lamp			$\begin{gathered} \text { Ballast } \\ \text { Losses } \\ \text { w } \end{gathered}$	Wiringdiagram Fig.
			Power	Power	Efficacy	Lumen*		
			w	w	Im/w	Im		
T0 18w	1	\#BE 118TL 220.230	19	16	80	1280	3	1
T0 18w	2	\#BE 218TL 220.230	38	16	80	1280	6	2
T0 36w	3	Bre 136TLD 220.230	37	32	100	3200	5	1
T0 30w	4	¢BE 236TLD 220-230	72	32	100	3200	8	

Technical data for installation
Mains operation
Rated mains voltage
ith tolerances for safety
With tolerances for performance
peration frequenc
Power factor
Earth leakege current
Ignition time
over voltage protection
Dual fixture: mester-stave operation

Cable capacity

Insuldion resistance test
ac redart atter lamp replacement res

Permitted huridity is tested according to EN61347-2-3 par. 11. Note that no moisture or condensation may enter the ballast.

Connection wiring is greatly simplified by the use of insert contacts with

Wire cross section:	$0.5-1.5 \mathrm{~mm}^{2}$
On the mains side:	$0.5-1.5 \mathrm{~mm}^{2}$
On the lamp side:	$9-10 \mathrm{~mm}$

tes

1. Data is based on a mains supply with an impedance of $400 \mathrm{~m} \Omega$
(equal to 15 m cable of $2.5 \mathrm{~mm}^{2}$ and another 20 m to the middle of the power distribution), under worst case conditions. With an impedance of $800 \mathrm{~m} \Omega$ the number of ballasts can be increased by 10\%
2. Measurements will be verified in real installations, therefore data are subject to change
. In some cases the maximum number of ballests is not determined by the MCB but by the maximum electrical load of the lighting installation.
3. Note that the maximum number of ballasts is given when these are all switched on the same moment, i.e. by a wall switch.
. Measurements were carried out on single-pole MCB's. For multi-pol
MCB's it is advisable to reduce the number of ballasts by 20%
The maximum number of ballats which can be connected to one
Data is meared with morlin jerin C45N/C10

ution:

 Atter finishin e power on.1. Check whether lamp, ballast model and wiring are compatible according to Philips EB-Economy TLD datasheet
. Be sure the ground terminal of ballast are connected with metal luminaries or batten and earthed.

 BE 228 TL5

Foduct description
Poduct description

Features and lenefits
The combination of EB-Economy and TL5 lamps offers
opportunities for miniaidurization and reduced cost of ounship,
thanks to the limited dimensions and the high sytem efficag
Low energy consumptimensions and the high system efficacy
Ficker-free start, ideal for arees with low switching frequency - Ficker-free start, ideal for
(maximum 3 times a day)

Aplications
Typical areas of application indude

- Small shops
- Small office
lips qality
This assures optimum quality regarding:
- System supplier

As manufacturers of lamps and electronic control gear, Philips ensures that, from the earliest development stage, optimum lamp/ballast performance is maintained

Gmpliances and approuls

- RFI $<30 \mathrm{MHz}$
- Harmonics
- Vibration \& bump tests
- Quality standard
- Environmental standard
- CCC

EN 55015
EN 61000-3-2
EN 61347-2-3
IEC 68-2-6 FC
IEC $68-29$ Eb
ISO 9001
ISO 9001
ISO 1400
(cc)

Poduct ID	1	R	w	H
114	187	175	22	22
214	276	266	30	285
121	187	175	22	22
128	211	201	30	285
228	276	266	30	28.

ote

1. Data is based on a mains supply with an impedance of $400 \mathrm{~m} \Omega$ (equal to 15 m cable of $2.5 \mathrm{~mm}^{2}$ and another 20 m to the middle of the power distribution), under worst case conditions. With an impedance of 800 m 亿 the number of ballasts can be increased by 10\%
2. Measurements will be verified in real installations; therefore data are subject to change
3. In some cases the maximum number of ballosts is not determined by the MCB but by the maximum electrical load of the lighting installation.
4. Note that the maximum number of ballasts is given when these are all switched on the same moment, i.e. by a wall switch.
5. Meesurements were carried out on single-pole MCB's. For multi-pole MCB's it is advisable to reduce the number of ballasts by 20%
Data is measured with merlin jerin C45N/C10.

Ordering and packing data

Ballast	Ordering number	Single unit	Carton packing			Pallet unit Carton/pcs
		Weight	Qty.	Dimensions Ixwxh cm	Weight	
		net			gross	
		kg	pcs		kg	
ExE 1147L5 220-230	9137100632.	0.11	50	$20.3 \times 20.0 \times 13.0$	5.9	200/10000
EBE 21475220230	9137100633.	0.13	20	$354 \times 324 \times 7.9$	3.1	54/1080
EBE 121 TL $220-230$	9137100634.	0.11	50	$203 \times 20.0 \times 13.0$	5.9	200/1000
EBE 1287L5 220-230	9137100635.	0.20	20	$324 \times 288 \times 7.9$	43	72/1440
EBE 228715220.230	9137100636.	0.13	20	$35.4 \times 324 \times 7.9$	3.1	$54 / 1080$

Electronics

EB-EconomyTLE

Product description
Compact, lightweight, highfrequency electronic standard ballast forTLE TL5 fluorescent lamps, for applications with low switching frequenco.

[^6]Features and ber

- Ficker-free rapid start, ideal for areas with low switching frequenc
- Flicker-free rapid start, ideal for areas with low switching freque
(maximum 3 times a day)
Up to 20% reduction in energy consumption at equal luminous
flux compared with conventional gear.
Applications
Typical areas of application indude:
- Department stores, shops, supermarkets with long lamp burning
hours
- Industrial premises with long lamp burning hours
- Kitchens
- Batrooms
- Outdoor lighting in general suitable for dass 1 applications

Philips quality
This assures optimum quality regarding.

- System supplier

As manuffacturers of lamps and electronic control gear, Philips ensures that, from the earliest development stage, optimum lamp/ballast performance is maintained
Compliances and approvals - $\mathrm{RF}<30 \mathrm{MHz}$

- Harmonics
- Safety
- Vibration
- Quality standard - Environmental standard - CCC marking

EN 55015
EN $61000-3$
EN $61347-2$
EN $61000-3-2$
EN $61347-2-3$
IEC $68-2-6 \mathrm{FC}$
IEC 68-2-6 FC
IEC $88-2-29$ Eb IEC $68-2-29 \mathrm{~Eb}$ ISO 14001

Technical data in relation to energy saving

Lamp	Qty. of	Ballast		Lamp			$\begin{gathered} \text { Ballast } \\ \text { Losses } \\ \mathrm{w} \end{gathered}$	WiringdiagramFig.
	Lamps			Power	Efficacy	Lumen*		
				w	Im/w	Im		
				220V/230V		2200/230V		
TLE 22W	1	ExE 122TLE 220-230	2324	2021	50	1000/1050	3	1
Te 32w	1	\#BE 132TLE 220.230	35/37	30132	52	1500/1660	5	1

Mains current at 220V
Technical data for installation
Mains operation
Rated mains voltage
With tolerances for safety $+15 \%-20 \%$
Mains frequency
Operation frequency
Power factor
Earth ledage current
Ignition time
Over voltoge protection
Dual fixture mester-stave operation

Cable capacity

Automaic restart ater lamp lamp replacement

Insuldion resistance test
$\rightarrow 05$ A per bas
$<0.5 \mathrm{~mA}$ per ballast

48 hrs at 270 VAC
possible, in general meximu 2 m length of lamp wires between ballast and lamp
max. 150pF between lamp wires and earth
yes

500 V DC from Line/Neutra to Earth (not between Line and Neutra)
is reconneted athe neutr above mentioned test is carried out and before the installation is put into operation.

176 - 264V 216-244V $50 / 60 \mathrm{~Hz}$ $>42 \mathrm{KHz}$ 0.95 ballast AC mp wires and lamp

Hum and noise level
inaudible
Permitted humidity is tested according to EN 61347-2-3 par. 11. Note that no moisture or condensation may enter the ballast.

Connection wiring is greatly simplified by the use of insert contacts with push buttons
Wire cross-section:
On the mains side:
on the lamp side:
$0.5-1.5 \mathrm{~mm}$
$0.5-1.5 \mathrm{~mm}^{2}$

Strip lengh:
9-10mm

Electronics

otes

1. Data is based on a mains supply with an impedance of $400 \mathrm{~m} \Omega$
(equal to 15 m cable of $2.5 \mathrm{~mm}^{2}$ and another 20 m to the middle of the power distribution), under worst case conditions. With an impedance of 800 m ? the number of ballats can be increased by 10%
2. Measurements will be verified in real installations, therefore data are subject to change
3. In some cases the maximum number of ballasts is not determined by the MCB but by the maximum electrical load of the lighting installation.
4. Note that the maximum number of ballasts is given when these are all switched on the same moment, i.e. by a wall switch.
5. Meazurements were carried out on single-pole MCB's. For multi-pole

MCB's it is advisable to reduce the number of ballasts by 20%
6. The maximum number of ballasts which can be connected to one
6. The maximum number of ballats which can
Residual Current Detector of 30 mA is 30 .
7. Data is measured with merlin jerin C45N/C10.
©elering and packng data

Ellast	$\begin{gathered} \text { Olering } \\ \text { number } \end{gathered}$	Bigle unit	arton packing			allet unit
		ang	¢	mensions		
		net		$1 \times$ wh	gross	
		\%	pcs	cm	4	artonpes
MBE 122TLE 220.230	9137100608.	022	20	$265 \times 265 \times 73$	4.7	120/2000
B-E 132TLE220-230	9137100609.	0.22	20	$265 \times 265 \times 73$	4.7	120/2400

Qution:

Atter finishing system installation, plesse check carefully before you turn the power on.

1. Check whether lamp, ballast model and wiring are compatible according to Philips $E B-E c o n o m y ~ d a t a s h e e t . ~$
2. Be sure the ground terminal of ballast are connected with metal luminaries or batten and earthed.

Electronics

Product description

- All "BTA" ballasts to be applied in circuits forTL,TLD,TLE,TLU fluorescent lamps and operating on nominal mains supply as

Features and benefits

- Reliable electrical and mechanical performance
- Quick and easy wirin
- Quick and easy wiring conditions
Features
- Complies with IEC61347-2-8 / IEC921

Complies Tw marking $130^{\circ} \mathrm{C}$ (average life time of 10 years of continuous - Tw marking

- Double insert and screw contacts for solid core wire 0.5-1.Omm strip lengh $+1-8 \mathrm{~mm}$ i insulation diameter max. 2.6 mm Embossed mounting plate for noise reduction

Applications

Department stores, shops, supermarkets

- Department
- Industry

Philips quality
This implies optimum quality regerding:
As menufacturers of lamps and control gear, Philips ensures that, from the earliest development stage, optimum lamp/ballest performance is maintaine
Philips BTA electromagnetic ballasts comply with all relevant
international rules and requilations.

Product ID	A1	A2	B1	C1	Fig
18w	155	140	39	28	A
22W	155	140	39	28	A
30w	155	140	39	28	A
32W	155	140	39	28	A
30W	155	140	39	28	A
58w	195	180	39	28	B

Technical data

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lamp \& \[
\begin{aligned}
\& \text { Qty } \\
\& \text { of } \\
\& \text { lamps }
\end{aligned}
\] \& Ballast \& \begin{tabular}{l}
Watt \\
loss \\
W
\end{tabular} \& Input
power \& \& \[
\begin{aligned}
\& \text { Power } \\
\& \text { factor }
\end{aligned}
\] \& Capacitor

μ MFN \& | Wiring diagram |
| :--- |
| Fig. | \& Starter type \& tw

¢ \&

\hline \multirow[t]{16}{*}{TL 18W\%tL zow} \& 1 \& BTA 18 W 220V C SC \& 8.8 \& 268288 \& 354 \& >0.85 \& $4.0 \pm 10 \%$ 250V \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 18 W 220V C DI \& 8.8 \& 2682888 \& 354 \& -0.85 \& $4.0 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 18 W 220V/60Hz SC \& 8 \& 2628 \& 352 \& >0.85 \& $35 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 18W 220VI60HC CII \& 8 \& 2678 \& 352 \& -0.85 \& $35 \pm 10 \%$ 250V \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 18 W 230V C sc \& 9 \& $27 / 29$ \& 361 \& -0.85 \& $4.0 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 18 W 230V C DI \& 9 \& 2772 \& 361 \& -0.85 \& $4.0 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 18 W 240 VC SC \& 93 \& 2731293 \& 361 \& -0.85 \& $4.0 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 18 W 240 VCDI \& 93 \& 2731293 \& 361 \& -0.85 \& $4.0 \pm 10 \%$ 250V \& 1 \& S10-E) \& 130 \&

\hline \& 2 \& BTA 36W 2zov c sc \& 88 \& 44.8 \& 402 \& >0.85 \& $4.0 \pm 10 \%$ 250V \& 2 \& S2(-E) \& 130 \&

\hline \& 2 \& BTA 36W 2zov C DI \& 88 \& 44.8 \& 402 \& -0.85 \& $4.0 \pm 10 \%$ 250V \& 2 \& S2(-E) \& 130 \&

\hline \& 2 \& BTA 36W 220V/60Hz SC \& 83 \& 443 \& 410 \& >0.85 \& $32 \pm 10 \%$ 250V \& 2 \& S2(-E) \& 130 \&

\hline \& 2 \& BTA 30w 220V160HC DI \& 83 \& 443 \& 410 \& -0.85 \& $32 \pm 10 \%$ 250V \& 2 \& S2(-E) \& 130 \&

\hline \& 2 \& BTA 36W 230 C C SC \& 9 \& 45 \& 412 \& -0.85 \& $4.0 \pm 10 \%$ 250V \& 2 \& S2(-E) \& 130 \&

\hline \& 2 \& BTA 36W zzov C di \& 9 \& 45 \& 412 \& -0.85 \& $4.0 \pm 10 \%$ 250V \& 2 \& S2(-E) \& 130 \&

\hline \& 2 \& BTA 36W 240 V C SC \& 92 \& 45.2 \& 412 \& -0.85 \& $4.0 \pm 10 \%$ 250V \& 2 \& S2(-E) \& 130 \&

\hline \& 2 \& BTA 36W 2avV C DI \& 92 \& 452 \& 412 \& -0.85 \& $4.0 \pm 10 \%$ 250V \& 2 \& s2(-E) \& 130 \&

\hline \multirow[t]{6}{*}{T0 sow} \& 1 \& BTA 30w 2220 C C SC \& 7.8 \& 37.8 \& 350 \& -0.85 \& $35 \pm 10 \%$ 250V \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 30W 220V C DI \& 7.8 \& 378 \& 350 \& -0.85 \& $35 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 30W 230 C C SC \& 8.1 \& 38.1 \& 350 \& -0.85 \& $3.0 \pm 10 \%$ 250V \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 30W 230 C C DI \& 8.1 \& 38.1 \& 350 \& -0.85 \& $3.0 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 30W 2400 V C SC \& 8.4 \& 38.4 \& 350 \& -0.85 \& $3.0 \pm 10 \%$ 250V \& 1 \& S10-E \& 130 \&

\hline \& 1 \& BTA 30W 240 V C DI \& 84 \& 384 \& 350 \& -0.85 \& $3.0 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& S10-E) \& 130 \&

\hline \multirow[t]{8}{*}{TL 36wtl 4ow} \& 1 \& BTA 36W 220V C SC \& 8.8 \& 4484888 \& 402 \& -0.85 \& $4.0 \pm 10 \%$ 250V \& 1 \& S10-E \& 130 \&

\hline \& 1 \& BTA 36W 220V C DI \& 8.8 \& 44.8488 \& 402 \& -0.85 \& $40 \pm \pm 10 \% 250 \mathrm{~V}$ \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 36W 220V/60Hz SC \& 83 \& 443/483 \& 410 \& -0.85 \& $32 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 30W 220V/60HC DI \& 83 \& $443 / 483$ \& 410 \& -0.85 \& $32 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 36W 230 C C SC \& 9 \& 45/49 \& 412 \& -0.85 \& $4.0 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 36W 230 C C DI \& 9 \& $45 / 49$ \& 412 \& -0.85 \& $40 \pm \pm 0 \% 250 \mathrm{~V}$ \& 1 \& Slo-E) \& 130 \&

\hline \& 1 \& BTA 36W 240 V C SC \& 92 \& 452/492 \& 412 \& -0.85 \& $4.0 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 36W 240 V C DI \& 92 \& 452/492 \& 412 \& -0.85 \& $40 \pm \pm 0 \% 250 \mathrm{~V}$ \& 1 \& S10-E) \& 130 \&

\hline \multirow[t]{8}{*}{TL 58w/L 6sw} \& 1 \& BTA 58w 220 V C SC \& 12 \& 7077 \& 624 \& -0.85 \& $6.0 \pm 10 \%$ 250V \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 58W 220V C DI \& 12 \& 7077 \& 624 \& -0.85 \& $6.0 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& Slo-E) \& 130 \&

\hline \& 1 \& BTA 58W 220V/60Hz S SC \& 112 \& 692762 \& 624 \& -0.85 \& $55 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 58W 220VI60HC DI \& 112 \& 692762 \& 624 \& -0.85 \& $55 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 58w 230 C C SC \& 13 \& 7178 \& 624 \& -0.85 \& $6.0 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 58w 230 C C DI \& 13 \& 7178 \& 624 \& -0.85 \& $6.0 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 58w 240 V C SC \& 132 \& 712782 \& 624 \& -0.85 \& $6.0 \pm 10 \%$ 250V \& 1 \& S10-E) \& 130 \&

\hline \& 1 \& BTA 58W 240 VCDI \& 132 \& $712 / 782$ \& ${ }^{62}$ \& -0.85 \& $60 \pm \pm 10 \% 250 \mathrm{~V}$ \& 1 \& S10-E) \& 130 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{\begin{tabular}{l}
Technical data \\
2. Standard range for TL andTLD
\end{tabular}} \\
\hline Lamp \& \[
\begin{aligned}
\& \text { Qty } \\
\& \text { of } \\
\& \text { lamps }
\end{aligned}
\] \& Ballast \& \begin{tabular}{l}
Watt \\
loss \\
W
\end{tabular} \& \[
\begin{array}{r}
\begin{array}{c}
\text { Input } \\
\text { power }
\end{array} \\
\text { w }
\end{array}
\] \& \[
\begin{array}{r}
\text { Mains } \\
\text { current } \\
\text { during } \\
\text { operation } \\
m A
\end{array}
\] \& \[
\begin{aligned}
\& \text { Power } \\
\& \text { factor }
\end{aligned}
\] \& Capacitor

HFN \& \& $$
\begin{aligned}
& \text { Starter } \\
& \text { type }
\end{aligned}
$$ \& tw \& st

c

\hline \multirow[t]{22}{*}{TL 18w/L 200} \& 1 \& BTA 18W 220 V B2 SC \& 78 \& 258278 \& 361 \& >0.85 \& $45 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& sio-E) \& 130 \& 55

\hline \& 1 \& BTA 18W 220 V B2 DI \& 7.8 \& 25.8278 \& 361 \& >0.85 \& 4.410% 250V \& 1 \& sto(-E) \& 130 \& 55

\hline \& 1 \& BTA 18W $220 \mathrm{~V} / 60 \mathrm{~Hz} \mathrm{ES} \mathrm{SC}$ \& 8 \& 2672 \& 361 \& >0.85 \& $35 \pm 10 \%$ 250V \& 1 \& slo-E) \& 130 \& 65

\hline \& 1 \& BTA 18W $220 \mathrm{~V} / 60 \mathrm{~Hz} 82 \mathrm{DI}$ \& 8 \& 2678 \& 355 \& >0.85 \& $35 \pm 10 \%$ 250V \& 1 \& Slo(E) \& 130 \& 65

\hline \& 1 \& BTA 18 W 230V 22 SC \& 82 \& 262 \& 355 \& >0.85 \& 4.0 $\pm 10 \%$ 250V \& 1 \& sto(-) \& 130 \& 55

\hline \& 1 \& BTA 18\% 230 V B2 DI \& 82 \& 262 \& 355 \& -0.85 \& 4.0 $\pm 10 \%$ 250 \& 1 \& sto-E) \& 130 \& 55

\hline \& 1 \& BTA 18W 2 20VV b2 SC \& 8.6 \& 26.6 \& 355 \& >0.85 \& 4.0 $\pm 10 \%$ 250V \& 1 \& slo-E) \& 130 \& 55

\hline \& 1 \& BTA 18W 2400 V B2 DI \& 8.6 \& 26.6 \& 355 \& >0.85 \& 4.0 $\pm 10 \%$ 250V \& 1 \& Slo(-E) \& 130 \& 55

\hline \& 1 \& BTA ISW 220 V B1 SC \& 5.4 \& 23.4254 \& 361 \& >0.85 \& $45 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& S10(E) \& 130 \& 30

\hline \& 1 \& BTA 18W 2200 V Bid ${ }^{\text {d }}$ \& 5.4 \& 23,425.4 \& 361 \& >0.85 \& $45 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& Slo(-E) \& 130 \& 30

\hline \& 1 \& BTA 180 W 230 V Bi SC \& 53 \& 233253 \& 361 \& >0.85 \& 4.0 $\pm 10 \%$ 250V \& 1 \& sto(-) \& 130 \& 30

\hline \& 1 \& BTA 18W 230 V B1 DI \& 53 \& 233/253 \& 361 \& -0.85 \& 4.0 $\pm 10 \%$ 250V \& 1 \& sto-E) \& 130 \& 30

\hline \& 1 \& BTA 18W 240 V Bi SC \& 5.4 \& 23,425.4 \& 361 \& >0.85 \& 4.0 $\pm 10 \%$ 250V \& 1 \& sto-E) \& 130 \& зо

\hline \& 1 \& BTA 182 W 240 VBLD DI \& 54 \& 23.425 .4 \& 361 \& -0.85 \& 4.0 $\pm 10 \%$ 250V \& 1 \& sto-E) \& 130 \& 30

\hline \& 2 \& BTA 36W 220 V b2 SC \& 8 \& 44 \& 412 \& >0.85 \& 4.0 $\pm 10 \%$ 250V \& 2 \& 2(-E) \& 130 \& 55

\hline \& 2 \& BTA 30w 220 V B2 DI \& 8 \& 44 \& 412 \& -0.85 \& 4.0 $\pm 10 \%$ 250V \& 2 \& se(E) \& 130 \& 55

\hline \& 2 \& BTA 36W 220V/60Hz 8250 \& 8 \& 44 \& 412 \& >0.85 \& $32 \pm 10 \% 250 \mathrm{~V}$ \& 2 \& s2(-E) \& 130 \& 65

\hline \& 2 \& BTA 36W $220 \mathrm{~V} / 60 \mathrm{~Hz} 82 \mathrm{DI}$ \& 8 \& 44 \& 412 \& >0.85 \& $32 \pm 10 \% 250 \mathrm{~V}$ \& 2 \& s2(-E) \& 130 \& 65

\hline \& 2 \& BTA 30w 230 V b2 SC \& 82 \& 44.2 \& 407 \& >0.85 \& 4.0 $\pm 10 \%$ 250V \& 2 \& S2(-E) \& 130 \& 55

\hline \& 2 \& BTA 36W 230 V b2dI \& 82 \& 442 \& 407 \& >0.85 \& 4.0 $\pm 10 \%$ 250V \& 2 \& S(-E) \& 130 \& 55

\hline \& 2 \& BTA 36W 2 20V B2 SC \& 85 \& 44.5 \& 412 \& >0.85 \& 4.0 $\pm 10 \%$ 250V \& 2 \& S2(-E) \& 130 \& 55

\hline \& 2 \& BTA 36W 2400 bz DI \& 85 \& 44.5 \& 412 \& >0.85 \& 4.0 $\pm 10 \%$ 250V \& 2 \& S(-E) \& 130 \& 55

\hline \multirow[t]{3}{*}{TL 30w} \& 1 \& BTA 30W 220 V B2 SC \& 7 \& 37 \& 350 \& >0.85 \& $35 \pm 10 \%$ 250 \& 1 \& Sto(E) \& 130 \& 50

\hline \& 1 \& BTA 30W 220V/60Hz 225 SC \& 7.4 \& 37.4 \& 350 \& >0.85 \& 3. $\pm 10 \%$ 250V \& 1 \& Sto(E) \& 130 \& 60

\hline \& 1 \& BTA 30W $220 \mathrm{~V} / 60 \mathrm{~Hz} 82 \mathrm{DI}$ \& 7.4 \& 37.4 \& 350 \& >0.85 \& 3. 010% 250V \& 1 \& Sto(E) \& 130 \& 60

\hline \multirow[t]{14}{*}{TL 36wrt cow} \& 1 \& BTA 36W 220 V B2 SC \& 8 \& 44/48 \& 412 \& >0.85 \& 4.0 $\pm 10 \%$ 250V \& 1 \& Sto(E) \& 130 \& 55

\hline \& 1 \& BTA 30w 220 V B2 di \& 8 \& $44 / 48$ \& 412 \& >0.85 \& 4.0 $\pm 10 \%$ 250V \& 1 \& sto(E) \& 130 \& 55

\hline \& 1 \& BTA 36W 220V/60Hz 22 SC \& 8 \& $44 / 48$ \& 412 \& >0.85 \& $32 \pm 10 \%$ 250V \& 1 \& sto-E) \& 130 \& 65

\hline \& 1 \& BTA 36W 220V/60Hz 22 DI \& 8 \& $44 / 48$ \& 412 \& >0.85 \& $32 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& sto(-) \& 130 \& 65

\hline \& 1 \& BTA 30w 230 V B2 SC \& 82 \& 44.2 \& 407 \& >0.85 \& 4.0 $\pm 10 \%$ 250V \& 1 \& sto-E) \& 130 \& 55

\hline \& 1 \& bTA 36W 230 Cb bid \& 82 \& 44.2 \& 407 \& >0.85 \& 4.0 $\pm 10 \%$ 250V \& 1 \& Sto(E) \& 130 \& 55

\hline \& 1 \& BTA 30w 2400 b2 SC \& 8.5 \& 445 \& 412 \& >0.85 \& $4.0 \pm 10 \%$ 250V \& 1 \& sto(-) \& 130 \& 55

\hline \& 1 \& BTA 36W 240V 82 DI \& 85 \& 445 \& 412 \& >0.85 \& 4.0 $\pm 10 \%$ 250V \& 1 \& s10(E) \& 130 \& 55

\hline \& 1 \& BTA 36W 220 V B1 SC \& 53 \& 413/453 \& 412 \& >0.85 \& $45 \pm 10 \%$ 250V \& 1 \& sto-E) \& 130 \& 30

\hline \& 1 \& BTA 36W 220 V B1 DI \& 53 \& 413/453 \& 412 \& >0.85 \& $45 \pm 10 \%$ 250V \& 1 \& sio-E) \& 130 \& 30

\hline \& 1 \& BTA 30w 230 V B1 SC \& 5.35 \& 41.35/4535 \& 412 \& >0.85 \& 4.0 $\pm 10 \%$ 250V \& 1 \& sio-E) \& 130 \& 30

\hline \& 1 \& BTA 36W 2300 bid di \& 535 \& 41.35/4535 \& 412 \& >0.85 \& 4.0 $\pm 10 \%$ 250V \& 1 \& S10-E) \& 130 \& 30

\hline \& 1 \& BTA 30w 240 VBPIC \& 5.45 \& 41,45/4,45 \& 412 \& >0.85 \& 4.0 $\pm 10 \%$ 250V \& 1 \& sso-E) \& 130 \& 30

\hline \& 1 \& BTA 36W 2400 bid di \& 55 \& 415/455 \& 412 \& >0.85 \& 4.0 $\pm 10 \%$ 250V \& 1 \& sto-E) \& 130 \& 30

\hline \multirow[t]{5}{*}{TL 58w/L 65w} \& 1 \& BTA 58w 220 V B2 SC \& 11.2 \& $692 / 62$ \& 630 \& -0.85 \& 6.0 010% 250V \& 1 \& STo-E) \& 130 \& 55

\hline \& 1 \& BTA 58W 230 V B2 SC \& 10.4 \& 684 \& 640 \& >0.85 \& 6.0 010% 250V \& 1 \& sto-E) \& 130 \& 55

\hline \& 1 \& BTA 58w 230 V b2 DI \& 10.4 \& 684 \& 640 \& -0.85 \& 6.0 010% 250V \& 1 \& sto-E) \& 130 \& 55

\hline \& 1 \& BTA 58w 2400 b2 SC \& 10.8 \& 688 \& 640 \& >0.85 \& 6.0 010% 250V \& 1 \& sto-E) \& 130 \& 55

\hline \& 1 \& BTA 58W 240V B2 DI \& 10.8 \& 688 \& 640 \& -0.85 \& 6.0 010% 250V \& 1 \& S10(E) \& 130 \& 55

\hline
\end{tabular}

Fig 1
Fig 2

Technical data

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lamp \& \begin{tabular}{l}
Qty \\
of lamps
\end{tabular} \& Ballast \& Watt loss w \& \begin{tabular}{l}
Input
power \\
w
\end{tabular} \& \& Power factor \& Capacitor

μ MFN \& | Wiring diagram |
| :--- |
| Fig. | \& Starter type \& tw

¢ \& st
${ }^{\text {c }}$

\hline \multirow[t]{9}{*}{TEE22W} \& 1 \& BTA 22W 220V c sc \& 9 \& 31 \& 383 \& >0.85 \& 4.0 $\pm 10 \% 250 \mathrm{~V}$ \& 3 \& s10-E) \& 130 \& 65

\hline \& 1 \& BTA 22W 220V C DI \& 9 \& 31 \& 383 \& -0.85 \& $4.0 \pm 10 \% 250 \mathrm{~V}$ \& 3 \& S10-E) \& 130 \& 65

\hline \& 1 \& BTA 22W 230 C C SC \& 92 \& 31.2 \& 383 \& >0.85 \& $4.5 \pm 10 \% 250 \mathrm{~V}$ \& 3 \& Slo-E) \& 130 \& 65

\hline \& 1 \& BTA 22W 230 C C DI \& 9.2 \& 31.2 \& 383 \& -0.85 \& $45 \pm 10 \% 250 \mathrm{~V}$ \& 3 \& S10-E) \& 130 \& 65

\hline \& 1 \& BTA 22W 240V C SC \& 9.5 \& 31.5 \& 383 \& >0.85 \& $4 . \pm \pm 10 \% 250 \mathrm{~V}$ \& 3 \& Slo-E) \& 130 \& ${ }^{65}$

\hline \& 1 \& BTA 22W 240 V C DI \& 9.5 \& 315 \& 383 \& >0.85 \& $45 \pm 10 \% 250 \mathrm{~V}$ \& 3 \& S10-E) \& 130 \& 65

\hline \& 1 \& BTA 22W 220 V B2 SC \& 8.7 \& 30.7 \& 383 \& >0.85 \& $45 \pm 10 \% 250 \mathrm{~V}$ \& 3 \& S10-E) \& 130 \& 60

\hline \& 1 \& BTA 22W 220V/60Hz 22 SC \& 83 \& 303 \& 383 \& >0.85 \& $35 \pm 10 \% 250 \mathrm{~V}$ \& 3 \& S10-E) \& 130 \& ${ }^{65}$

\hline \& 1 \& BTA $22 \mathrm{~W} 220 \mathrm{~V} / 60 \mathrm{~Hz} 82 \mathrm{DI}$ \& 83 \& 303 \& 383 \& >0.85 \& $35 \pm 10 \% 250 \mathrm{~V}$ \& ${ }^{3}$ \& Sto- \& 130 \& 65

\hline \multirow[t]{9}{*}{TLE 32W} \& 1 \& BTA 32W 2220 C C SC \& 9.5 \& 415 \& 426 \& -0.85 \& $45 \pm 10 \% 250 \mathrm{~V}$ \& 3 \& S10-E) \& 130 \& ${ }^{65}$

\hline \& 1 \& BTA 32W 220V C DI \& 9.5 \& 45 \& 426 \& >0.85 \& $45 \pm 10 \% 250 \mathrm{~V}$ \& ${ }^{3}$ \& S10-E) \& 130 \& ${ }^{65}$

\hline \& 1 \& BTA 32W 230 C C SC \& 10 \& 42 \& 426 \& >0.85 \& $4.0 \pm 10 \% 250 \mathrm{~V}$ \& 3 \& S10-E) \& 130 \& 70

\hline \& 1 \& BTA 32W 230V C di \& 10 \& 42 \& 426 \& -0.85 \& $4.0 \pm 10 \% 250 \mathrm{~V}$ \& 3 \& S10-E) \& 130 \& 70

\hline \& 1 \& BTA 32W 240 V C SC \& 10 \& 42 \& 426 \& >0.85 \& $4.0 \pm 10 \% 250 \mathrm{~V}$ \& 3 \& S10-E) \& 130 \& 70

\hline \& 1 \& BTA 32W 240 V C DI \& 10 \& 42 \& 426 \& >0.85 \& $4.0 \pm 10 \% 250 \mathrm{~V}$ \& 3 \& S10-E) \& 130 \& 70

\hline \& 1 \& BTA 32W 220 V B2 SC \& 9 \& ${ }^{41}$ \& 430 \& >0.85 \& $4.0 \pm 10 \% 250 \mathrm{~V}$ \& 3 \& S10-E) \& 130 \& 65

\hline \& 1 \& BTA 32W 220V/60Hz 22 SC \& 8.6 \& 40.6 \& 430 \& >0.85 \& $4.0 \pm 10 \% 250 \mathrm{~V}$ \& 3 \& S10-E) \& 130 \& 65

\hline \& 1 \& BTA $32 \mathrm{~W} 220 \mathrm{~V} / 60 \mathrm{~Hz} 22 \mathrm{DI}$ \& 8.6 \& 40.6 \& 430 \& -0.85 \& $4.0 \pm 10 \% 250 \mathrm{~V}$ \& 3 \& S10-E) \& 130 \& 65

\hline
\end{tabular}

1) In accordance with IEC921 tw indicates the maximum permissible temperature of the windings.
2) Temperature measurements (average values) in accordance with IEC921.
3) Temperature marking $t w / \Delta t$ in accordance with IEC921.
4) obtain HPF circuit $(\cos \phi \geqslant 0.85)$ by means of a paralle capacitor across the main.

Capacitor tolerance $\pm 10 \%$

©lering and packng data Fandard and range for End \mathbf{D}						
Elast	$\begin{gathered} \text { Olering } \\ \text { numbr } \end{gathered}$	4th	Epachg			allet unit
		net	9	Denesions	ast	
				1 xuh	gross	
		\%	pcs	cm	4	ertonspes
BTA 18W 220 C SC	913710197.	0.46	32	$323 \times 16.0 \times 13.1$	152	541728
BTA 18W 220 C C DI	913710198.	0.46	32	$323 \times 16.0 \times 13.1$	1522	541728
BTA 18W $2220 / 600 \mathrm{~Hz} \mathrm{C} \mathrm{SC}$	913710183.	0.446	32	$32 \times 16.0 \times 13.1$	1457	541728
BTA 18W $222 \mathrm{OV} / 6 \mathrm{HzC} \mathrm{C} \mathrm{DI}$	9137101855.	0.446	32	$32 \times 16.0 \times 13.1$	1457	541728
BTA 18W 230 C C SC	9137101117.	05	32	$32 \times 16.0 \times 13.1$	1633	541728
BTA 18W 230 CCDI	9137101121.	05	32	$32 \times 16.0 \times 13.1$	1633	541728
BTA 18W 240 V C SC	9137101119.	05	32	$323 \times 16.0 \times 13.1$	1633	541728
BTA 18W 240V C DI	9137101123.	05	32	$32 \times 16.0 \times 13.1$	1633	541728
BTA 36W 220 C SC	913710195.	0.465	32	$32 \times 16.0 \times 13.1$	15.22	547178
BTA 36W 220 C DI	913710196.	0.465	32	$323 \times 16.0 \times 13.1$	15.22	547178
BTA 36W $2220 / 160 \mathrm{HzC} \mathrm{SC}$	913710184.	0.442	32	$323 \times 16.0 \times 13.1$	1457	541728
BTA 36W $2220 \mathrm{~V} / 60 \mathrm{HzCDI}$	9137101186.	0.442	32	$323 \times 16.0 \times 13.1$	1457	541728
BTA 30W 230 C C SC	9137101118.	0.51	32	$32 \times 16.0 \times 13.1$	1633	541728
BTA 36W 233 VCDI	9137101122.	051	32	$323 \times 16.0 \times 13.1$	1633	541728
BTA 36W 240 V C SC	913710120.	051	32	$323 \times 16.0 \times 13.1$	1633	541728
BTA 36W 240 V C DI	913710124.	051	32	$323 \times 16.0 \times 13.1$	1633	541728
BTA 30w z20v C SC	9137101755.	0.48	32	$323 \times 16.0 \times 13.1$	1633	541728
BTA 3OW 220 V C DI	9137101776.	0.48	32	$323 \times 16.0 \times 13.1$	1633	541728
BTA 30w 230 C C SC	913710179.	05	32	$323 \times 160 \times 13.1$	1633	541728
BTA 3OW 233 VCDI	9137101880.	05	32	$32 \times 16.0 \times 13.1$	1633	541728
BTA 30W 240 V C SC	9137101881.	05	32	$323 \times 16.0 \times 13.1$	1633	541728
BTA 30W 240 VCDI	913710182.	05	32	$323 \times 16.0 \times 13.1$	1633	541728
BTA 58w 220 C C SC	9137101887.	0.78	24	$24.0 \times 19.5 \times 125$	1986	40960
BTA 58W 220 C C DI	9137101188.	0.78	24	$24.0 \times 19.5 \times 125$	1986	40960
BTA 58W $2220 / 600 \mathrm{~Hz} \mathrm{C} \mathrm{SC}$	9137101199.	0.72	24	$24.0 \times 19.5 \times 12.5$	17.7	40960
BTA 58W $2220 / 600 \mathrm{HzCD}$	9137101190.	0.72	24	$24.0 \times 19.5 \times 125$	17.7	40960
BTA 58W 230 C C SC	913710191.	0.857	24	$24.0 \times 19.5 \times 12.5$	2094	409960
BTA 58W 230 C C DI	913710192.	0.857	24	$24.0 \times 19.5 \times 125$	20.94	40960
BTA 58W 240 V C SC	913710193.	0.857	24	$24.0 \times 19.5 \times 125$	2094	40960
BTA 58W 2400 C C DI	913710194.	0.857	24	$24.0 \times 19.5 \times 125$	2094	401960
BTA 18W 220V B2 SC	9137101100.	0.542	32	$323 \times 16.0 \times 13.1$	17.75	541728
BTA 18W 2220 V B2 DI	9137101212.	0.542	32	$323 \times 16.0 \times 13.1$	17.75	541728
BTA 18W $220 \mathrm{O} / 60 \mathrm{OHz} \mathrm{B2SC}$	9137101133.	0.491	32	$32 \times 16.0 \times 13.1$	1612	541728
BTA 18\% 220V/60Hz 22 DI	9137101115.	0.491	32	$32 \times 16.0 \times 13.1$	16.12	541728
BTA 180 W 230 V b2 SC	9137101236.	057	32	$323 \times 16.0 \times 13.1$	185	541728
BTA 18W 230 V b2 DI	9137101242.	057	32	$323 \times 16.0 \times 13.1$	185	541728
BTA 180 W 240 V b2 SC	9137101237.	057	32	$323 \times 16.0 \times 13.1$	185	541728
BTA 180 W 240 V B2 DI	9137101243.	057	32	$323 \times 16.0 \times 13.1$	185	541728
BTA 18W 220 V B1 SC	913710159.	0.911	24	$24.0 \times 19.5 \times 12.5$	2223	401960
BTA 18W 220 V Bi DI	9137101167.	0.911	24	$24.0 \times 19.5 \times 125$	2223	40960
BTA 18W 230 Cl B1 SC	913710163.	0.911	24	$24.0 \times 19.5 \times 12.5$	2223	40960
BTA 18W 230 Cl Bi di	913710171.	0.911	24	$24.0 \times 19.5 \times 125$	2223	40960
BTA 18W 240 V B1 SC	913710165.	0.911	24	$24.0 \times 19.5 \times 12.5$	2223	40960
BTA 18 W 240 V B1 DI	9137101733.	0.911	24	$24.0 \times 19.5 \times 125$	2223	40960
BTA 30W 220 V B2 SC	913710101.	0.542	32	$35.7 \times 18.2 \times 13.6$	17.75	541728
	913710177.	0.491	32	$35.7 \times 182 \times 13.6$	16.12	541728
BTA 30w $220 \mathrm{O} / 60 \mathrm{OHz} \mathrm{B2}$ DI	9137101788.	0.491	32	$35.7 \times 18.2 \times 13.6$	16.12	541728
BTA 36W 2220 V B2 SC	913710102.	0.542	32	$35.7 \times 182 \times 13.6$	17.75	541728
BTA 36W 220 V B2 di	9137101213.	0.542	32	$35.7 \times 18.2 \times 13.6$	17.75	541728
BTA 30w $220 \mathrm{~V} / 60 \mathrm{OHz} \mathrm{B2SC}$	9137101114.	0.491	32	$35.7 \times 18.2 \times 13.6$	16.12	541728
BTA 36W 220V/60Hz 22 DI	913710116.	0.491	32	$35.7 \times 18.2 \times 13.6$	16.12	541728
BTA 30w 230 V b2 SC	9137101238.	0.597	32	$35.7 \times 18.2 \times 13.6$	19.36	541728
BTA 36W 230V b2 di	9137101244.	0.597	32	$35.7 \times 18.2 \times 13.6$	1936	541728
BTA 36W 240 V B2 SC	9137101239.	0.597	32	$35.7 \times 18.2 \times 13.6$	19.36	541728
BTA 36W 240 V B2 DI	9137101245.	0.597	32	$35.7 \times 18.2 \times 13.6$	1936	541728

alast	alering numbr	digh	Eppackg			sllet unit
		net	a	Dnensions	mb	
				$1 \times$ wh	gross	artonspes
			pcs	cm	4	
BTA 30w 220 V B1 SC	913710160.	0.911	24	$24.0 \times 195 \times 12.5$	2223	40960
BTA 30w 220 V B1 DI	913710168.	0.911	24	$24.0 \times 195 \times 12.5$	2223	40960
BTA 30w 230 V B1 SC	913710164.	0.911	24	$24.0 \times 195 \times 12.5$	2223	40960
BTA 3OW 230 V B1 DI	913710172.	0.911	24	$24.0 \times 195 \times 12.5$	2223	40960
BTA 30w 240 V B1 SC	913710166.	0.911	24	$24.0 \times 195 \times 12.5$	2223	40960
BTA 30w 240 V B1 DI	913710174.	0.911	24	$24.0 \times 195 \times 12.5$	2223	40960
BTA 58W 220 V B2 SC	913710103.	0.225	24	$24.0 \times 195 \times 125$	2259	40960
BTA S5W 230 V B2 SC	9137101240.	0.93	24	$24.0 \times 195 \times 12.5$	2258	40960
BTA 58W 230 V B2 DI	9137101246.	0.93	24	$24.0 \times 195 \times 125$	2258	40960
BTA SEW 240 V B2 SC	9137101241.	0.94	24	$24.0 \times 195 \times 12.5$	2258	40960
BTA 58w 240 V B2 DI	9137101247.	0.94	24	$24.0 \times 195 \times 125$	2258	40960

©lering and packng data

Ellast	$\begin{aligned} & \text { Clering } \\ & \text { numbr } \end{aligned}$	${ }_{\text {ligh }}$	Epackg			silet unit
			$\begin{aligned} & \text { qcs } \\ & \text { pcs } \end{aligned}$	Dnensions I wh cm	mgh gross !	
						Gritonspes
bTA 22W 2zov c sc	913710125.	0.48	32	$323 \times 16.0 \times 13.1$	16.12	12384
BTA 22W 220V C di	9137101277.	0.48	32	$323 \times 160 \times 13.1$	16.12	12/384
BTA 22W 230 C C SC	913710133.	0.5	32	$323 \times 16.0 \times 13.1$	1633	12/384
BTA 22W 230 C C DI	913710135.	0.5	32	$323 \times 16.0 \times 13.1$	1633	12/384
BTA 22W 240 V C SC	913710137.	0.5	32	$323 \times 160 \times 13.1$	1633	12/384
BTA 22W 240 V C DI	9137101399	0.5	32	$323 \times 16.0 \times 13.1$	1633	12/384
BTA 22W 220 V B2 SC	913710104.	0.53	32	$323 \times 16.0 \times 13.1$	17.75	12/384
BTA 22W 220V/60Hz B2 SC	913710129.	0.47	32	$32 \times 160 \times 13.1$	16.12	$12 / 384$
BTA $22 \mathrm{~W} 220 \mathrm{~V} / 60 \mathrm{~Hz}$ B2 DI	913710131.	0.47	32	$323 \times 160 \times 13.1$	16.12	12/384
BTA 32W 220 CO C S	913710126.	0.48	32	$32 \times 160 \times 13.1$	16.12	$12 / 384$
BTA 32W 220V C di	913710128.	0.48	32	$323 \times 160 \times 13.1$	16.12	12/384
BTA 32W 230 C C SC	913710134.	0.51	32	$32 \times 160 \times 13.1$	16.33	$12 / 384$
BTA 32W 230 C C DI	913710136.	0.51	32	$323 \times 160 \times 13.1$	16.33	12334
BTA 32W 2 20V C SC	913710138.	0.51	32	$323 \times 16.0 \times 13.1$	1633	127384
BTA 32W 2400 V C DI	913710140.	0.51	32	$323 \times 160 \times 13.1$	1633	12334
BTA 32W 220 V b2 SC	913710105.	0.53	32	$323 \times 16.0 \times 13.1$	17.75	12/384
BTA 32W 220V/60Hz e2 SC	913710130.	0.48	32	$323 \times 160 \times 13.1$	16.12	12/384
BTA $32 \mathrm{~W} 220 \mathrm{~V} / 6 \mathrm{~Hz} \mathrm{Bz}$ DI	913710132.	0.48	32	$323 \times 160 \times 13.1$	16.12	12/384

Installation aption 1

Fig B

这

[^7]Electromagnetic
BPL EM ballasts for Compact fluorescent lamps

Technical data

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lamp \& \begin{tabular}{l}
Qty \\
of lamps
\end{tabular} \& Ballast \& \begin{tabular}{l}
Watt \\
loss \\
w
\end{tabular} \& \(\substack{\text { Input } \\ \text { power }}\)
w \& \& Power factor \& Capacitor

$\mu \mathrm{FN}$ \& | Wiring diagram |
| :--- |
| Fig. | \& tw

¢ \&

\hline PL-S 7w/ww/11w \& 1 \& BPL SW 220 V b2 SCIDI \& 4.7 \& 11.7133.715.7 \& 1601770150 \& >0.85 \& 20 $\pm 10 \%$ 250V \& 1 \& 130 \&

\hline PL-STw \& 2 \& BPL OW 220 V B2 SCIDI \& 4.7 \& 18.7 \& 140 \& -0.85 \& $20 \pm \pm 0 \% 250 \mathrm{~V}$ \& 2 \& 130 \& 55

\hline PL-C 13W \& 1 \& BPL 13W 220 V B2 SC/DI \& 4 \& 17 \& 165 \& -0.85 \& $1.6 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& 130 \&

\hline PL-STW/Gw \& 2 \& BPL 13W 220 V B2 SC/D1 \& 4 \& 1822 \& 140178 \& -0.85 \& $1.6 \pm 10 \% 250 \mathrm{~V}$ \& 2 \& 130 \&

\hline PL-C $13 W$ \& 1 \& BPL I3W 220 V B1 SC \& 4 \& 17 \& 165 \& >0.85 \& $1.6 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& 130 \&

\hline PL-S 7 W/9w \& 2 \& BPL 13W 220 V B1 SC \& 4 \& 1822 \& 1401770 \& -0.85 \& $1.6 \pm 10 \% 250 \mathrm{~V}$ \& 2 \& 130 \&

\hline PLCC isw \& 1 \& BPL 18W 220 V B2 $5 \mathrm{Cl} / \mathrm{D} 1$ \& 5.3 \& 233 \& 212 \& >0.85 \& $20 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& 130 \&

\hline PL-C 18w \& 1 \& BPL 18W 220 V B1 SC \& 53 \& 233 \& 212 \& -0.85 \& $20 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& 130 \&

\hline PLCC 26w \& 1 \& BPL 26W 220 V B2 $2 \mathrm{Cl} / \mathrm{DI}$ \& 6.4 \& 324 \& 310 \& >0.85 \& $3.0 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& 130 \& 5

\hline PL-STW/9W/11w \& 1 \& BPL SW 220V/60Hz $\mathrm{B2} 5 \mathrm{SC}$ \& 45 \& 115/135/155 \& 1601770150 \& -0.85 \& $20 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& 130 \&

\hline PL-S TW \& 2 \& BPL SW 220V160Hz $\mathrm{B2}$ SC \& 45 \& 185 \& 140 \& >0.85 \& $20 \pm \pm 0 \% 250 \mathrm{~V}$ \& 2 \& 130 \&

\hline PL-C 13W \& 1 \& BPL 13W 220V/60Hz 22 SC \& 3.8 \& 168 \& 165 \& >0.85 \& $14 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& 130 \&

\hline PL-S 7 W/GW \& 2 \& BPL 13W 220V/60Hz $225 C$ \& 3.8 \& 17.821 .8 \& 140170 \& 0.85 \& $14 \pm 10 \% 250 \mathrm{~V}$ \& 2 \& 130 \&

\hline PL-C I3W \& 1 \& BPL 13W $220 \mathrm{~V} / 60 \mathrm{~Hz} 115 \mathrm{SC}$ \& ${ }^{3.8}$ \& 168 \& 165 \& -0.85 \& $1.4 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& 130 \&

\hline PL-S TW/9w \& 2 \& BPL 13W 220V/60Hz 115 \& 3.8 \& 17.821 .8 \& 140170 \& >0.85 \& $1.4 \pm 10 \% 250 \mathrm{~V}$ \& 2 \& 130 \&

\hline PL-C 18w \& 1 \& BPL 18W 220V/60Hz $225 C$ \& 53 \& 23 \& 212 \& -0.85 \& $20 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& 130 \&

\hline PL-C 18w \& 1 \& BPL 18W 220V/60Hz 115 \& 53 \& ${ }^{23}$ \& 212 \& >0.85 \& $20 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& 130 \&

\hline PL-STW/9W/11w \& 1 \& BPL SW 230 V b2 SCIDI \& 5.1 \& 12.1/41/1/6.1 \& 160/170150 \& -0.85 \& 20 $\pm 10 \%$ 250V \& 1 \& 130 \&

\hline PL-STW \& 2 \& BPL OW 230 V B2 SCIDI \& 5.1 \& 191 \& 140 \& >0.85 \& $20 \pm 10 \% 250 \mathrm{~V}$ \& 2 \& 130 \&

\hline PL-C 13W \& 1 \& BPL 13 W 230V 82 SC \& 4.1 \& 17.1 \& 165 \& -0.85 \& $1.6 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& 130 \&

\hline PL-STW/9w \& 2 \& BPL 13W 230 V B2 SC \& 4.1 \& 18.1/22.1 \& 140170 \& -0.85 \& $1.6 \pm 10 \% 250 \mathrm{~V}$ \& 2 \& 130 \&

\hline PL-C 13W \& 1 \& BPL 13W 230 V B1 SC \& 4.1 \& 17.1 \& 165 \& -0.85 \& $1.6 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& 130 \&

\hline PL-STW/gw \& 2 \& BPL 13W 230 V B1 SC \& 4.1 \& 18.1/22.1 \& 140170 \& >0.85 \& $1.6 \pm 10 \% 250 \mathrm{~V}$ \& 2 \& 130 \&

\hline PLCC ISW \& 1 \& BPL 18W 230 V B2 SC/DI \& 5.4 \& 234 \& 212 \& -0.85 \& $20 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& 130 \&

\hline PL-C 18\% \& 1 \& BPL 18W 230 V B1 SC/DI \& 5.4 \& 23.4 \& 212 \& >0.85 \& $20 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& 130 \&

\hline PL-C 20w \& 1 \& BPL 26W 230 V B2 SCIDI \& 6.9 \& 32.9 \& 308 \& >0.85 \& $3.0 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& 130 \&

\hline PL-S TW/PW/11w \& 1 \& BPL SW 240 V B2 SC \& 52 \& 122/142/162 \& 1601770150 \& -0.85 \& 20 $\pm 10 \% 250 \mathrm{v}$ \& 1 \& 130 \&

\hline PL-STw \& 2 \& BPL SW 2400 B 8 SC \& 52 \& 192 \& 140 \& >0.85 \& $20 \pm \pm 0 \% 250 \mathrm{~V}$ \& 2 \& 130 \&

\hline PL-C 13W \& 1 \& BPL 13W 240 V B2 SC \& 4.4 \& 17.4 \& 165 \& -0.85 \& $1.6 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& 130 \&

\hline PL-S 7w/gw \& 2 \& BPL 13W 240 V B2 SC \& 44 \& 184722.4 \& 140170 \& >0.85 \& $1.6 \pm 10 \% 250 \mathrm{~V}$ \& 2 \& 130 \&

\hline PL-C 13W \& 1 \& BPL 13 W 240 V B1 SC \& 4.4 \& 17.4 \& 165 \& -0.85 \& $1.6 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& 130 \&

\hline PL-S 7 W/Gw \& 2 \& BPL 13W 240 V B1 SC \& 44 \& 184224 \& 140170 \& >0.85 \& $1.6 \pm 10 \% 250 \mathrm{~V}$ \& 2 \& 130 \&

\hline PL-C 18W \& 1 \& BPL 18W 240 V B2 SC \& 5.8 \& 238 \& 212 \& >0.85 \& $20 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& 130 \&

\hline PL-C 18w \& 1 \& BPL 18W 240 V B1 SC \& 5.8 \& 23.8 \& 212 \& >0.85 \& $20 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& 130 \&

\hline PL-C 26W \& 1 \& BPL 26 W 240V B2 SC/DI \& 7.3 \& 333 \& 310 \& -0.85 \& $3.0 \pm 10 \% 250 \mathrm{~V}$ \& 1 \& 130 \&

\hline
\end{tabular}

In accordance with IEC921 tw indicates the maximum permissible temperature of the windings
2) Temperature measurements (average values) in accordance with IEC921.
3) Temperature marking tw/ tt in accordance with IEC921.
4) To obtain HPF dircuit ($\cos \phi \geqslant 0.85$) by means of a parallel capacitor across the main.

Capacitor tolerance $\pm 10 \%$

[^0]: * Tested with ballat functional ground connected to earth

[^1]: Connecting wiring is greatly simplified trough use of insert contacts, Wire cross-section:

 | Mains connector | [Orange] | $0.5 \mathrm{~mm}-1.5 \mathrm{~mm}^{2}$ |
 | :--- | :--- | :--- |
 | Control connector | [Blue] | $0.5 \mathrm{~mm}-1.5 \mathrm{~mm}^{2}$ |
 | Lamp(s) connector | [gray] | $0.5 \mathrm{~mm}-1.5 \mathrm{~mm}^{2}$ |

 Control connector [Biue] Strip length $\quad 75-85 \mathrm{~mm}$

[^2]: 6.76

[^3]: 5.104

 6．104 Fuoresent and compad fubrescent lamps control gear Lamps and Ger

[^4]: 6．112 Fiwrescent ind compat flurescent lamps control gear Lanps and Gear

[^5]: 6.116

 Flurescent and compat fluresecent lamps control gear Lamps and Gear

[^6]: 6.122

 Fuorescent and compat fluresecent lamps control gear Lamps and Gea

[^7]: 6.132 Fluorescent and compact fluoreseent larpss control gear Lamps and Gear

