

EXTRAOCULAR MOTILITY

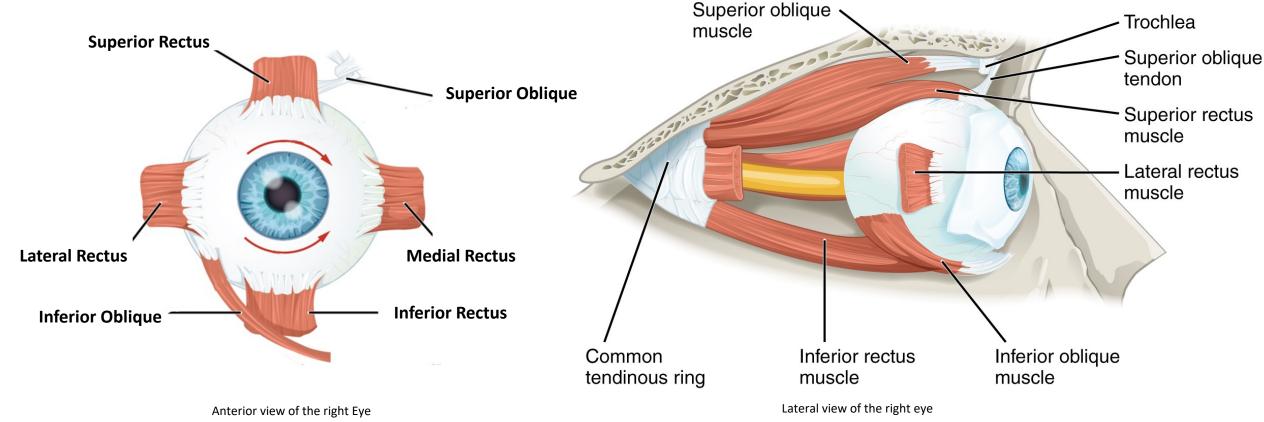
ALLIED OPHTHALMIC TRAINING PROGRAM

VINCENT TANG | KIEUYEN LUU MEDICAL STUDENTS | UNIVERSITY OF CALIFORNIA, DAVIS

SOPHIA FANG, MD, MS PEDIATRIC OPHTHALMOLOGIST | CHILD EYE CARE ASSOCIATES GLOBAL OUTREACH FELLOW 2019-2020 | MORAN EYE CENTER

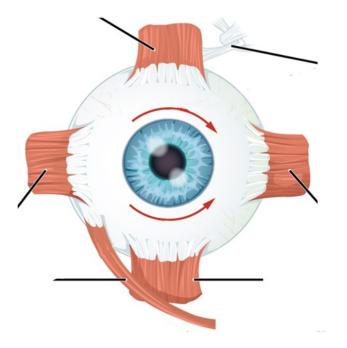
LEARNING OBJECTIVES

After this learning module, you will be able to answer the following questions:


- 1. What are the extraocular muscles (EOMs) of the eye?
- 2. Which nerves innervate the EOMs?
- 3. What are the actions of the EOMs?
- 4. How are the extraocular movements of both eyes coordinated?
- 5. What are the 6 cardinal positions of gaze?
- 6. How do you evaluate and document extraocular motility?
- 7. What signs and symptoms can be caused by abnormalities in extraocular motility?
- 8. What extraocular motility abnormalities can occur from head or facial trauma?
- 9. What is the most common cranial nerve palsy that affects the eyes?

WHAT ARE THE EXTRAOCULAR MUSCLES (EOMS)?

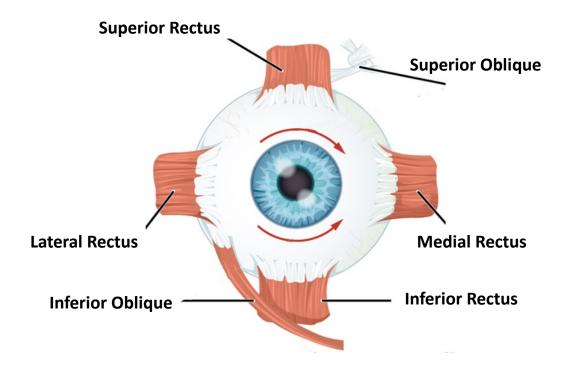
Extraocular muscles are muscles that are attached to the outside of each globe (eyeball) that move and rotate the eye to help us see in different directions.



There are 6 EOMs on each eye that control eye movement.

6 EOMs x 2 Eyes = 12 EOMs that work together to help each person see in all directions!

RIGHT EYE

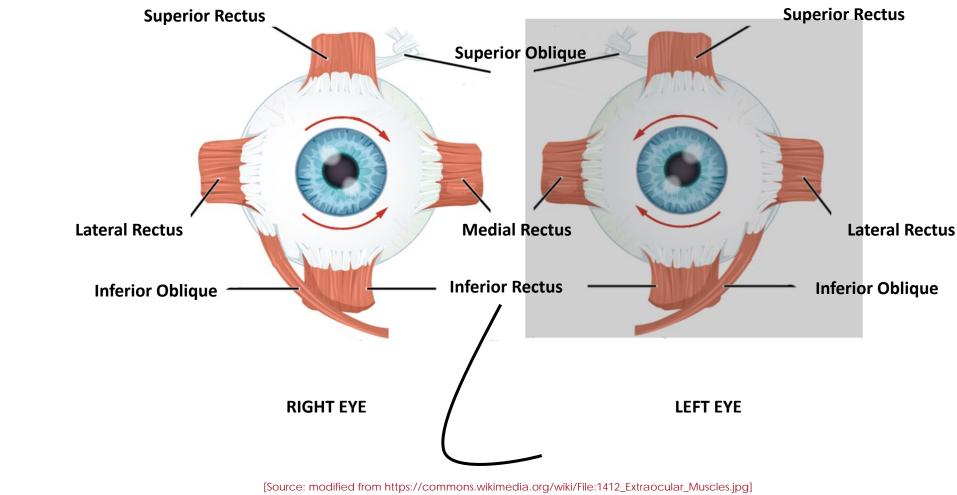


[Source: modified from https://commons.wikimedia.org/wiki/File:1412 Extraocular Muscles.jpg]

There are 6 EOMs on each eye that control eye movement.

6 EOMs x 2 Eyes = 12 EOMs that work together to help each person see in all directions!

RIGHT EYE



[Source: modified from https://commons.wikimedia.org/wiki/File:1412 Extraocular Muscles.jpg]

There are 6 EOMs on each eye that control eye movement.

6 EOMs x 2 Eyes = 12 EOMs that work together to help each person see in all directions!

TEST YOUR KNOWLEDGE!

The extraocular muscles are all innervated by one nerve.

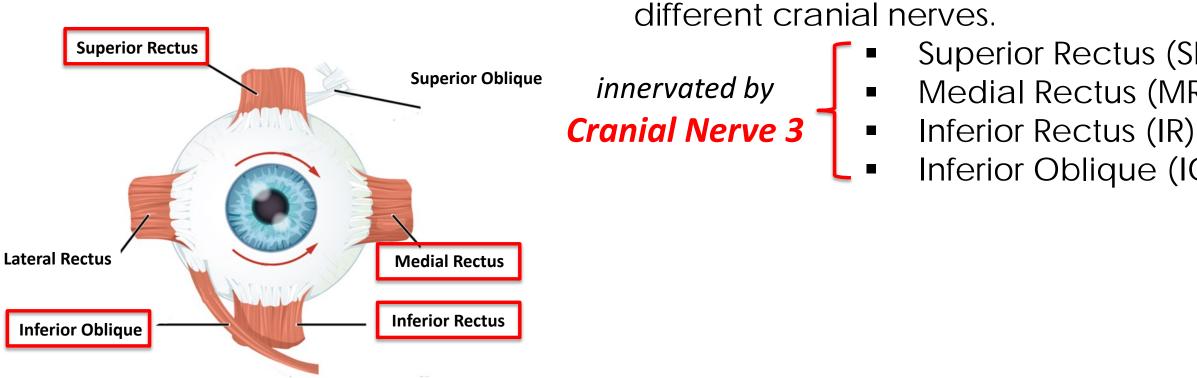
True or False?

TEST YOUR KNOWLEDGE!

The extraocular muscles are all innervated by one nerve.

True or False?

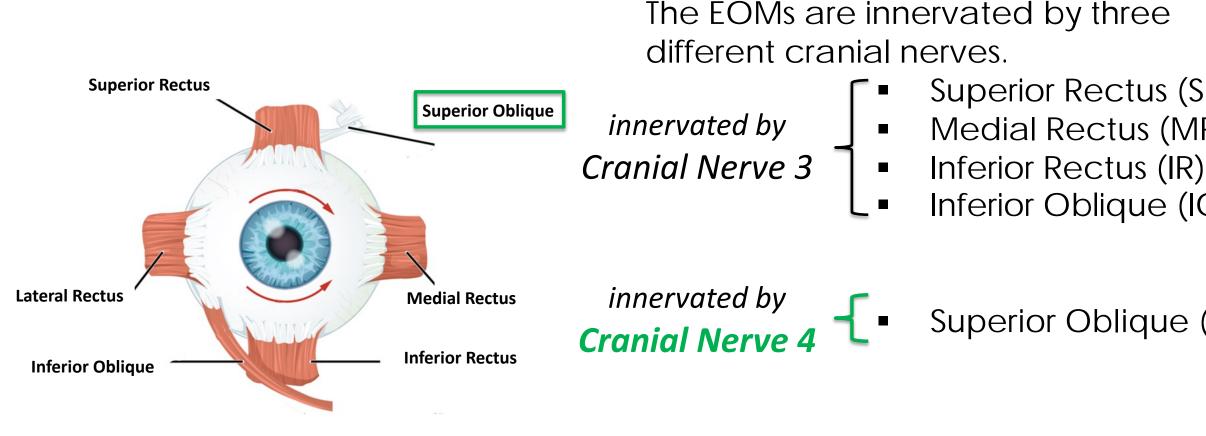
different cranial nerves.


Superior Rectus Superior Oblique Lateral Rectus **Medial Rectus Inferior Rectus Inferior Oblique**

RIGHT EYE

The EOMs are innervated by three

RIGHT EYE

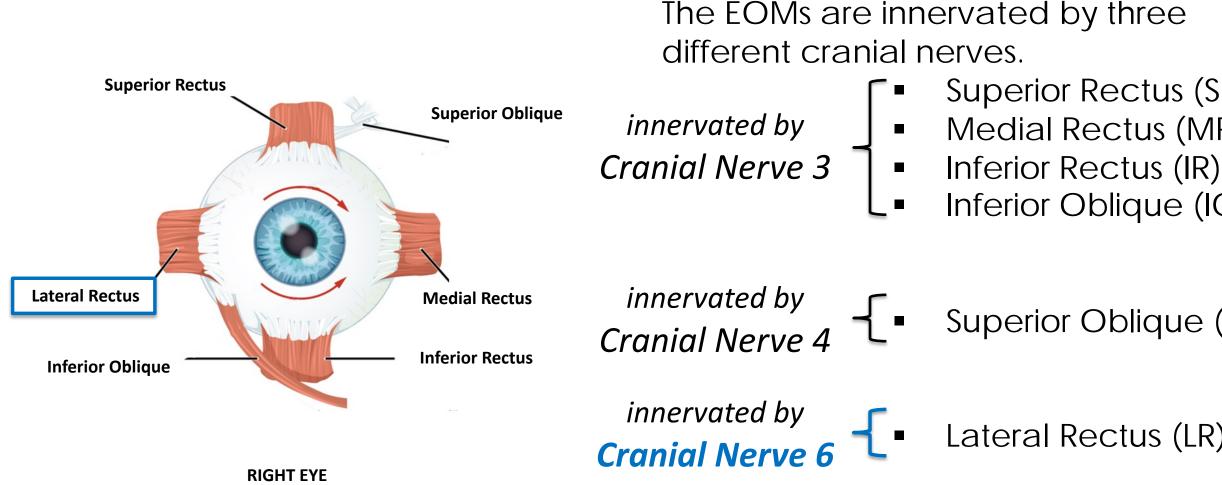


[Source: modified from https://commons.wikimedia.org/wiki/File:1412_Extraocular_Muscles.jpg]

The EOMs are innervated by three

Superior Rectus (SR) Medial Rectus (MR) Inferior Oblique (IO)

RIGHT EYE



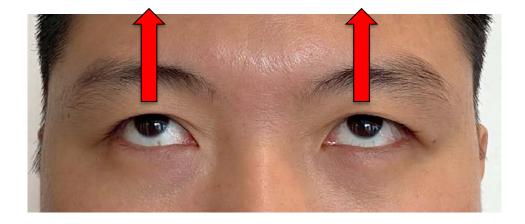
[Source: modified from https://commons.wikimedia.org/wiki/File:1412 Extraocular Muscles.jpg]

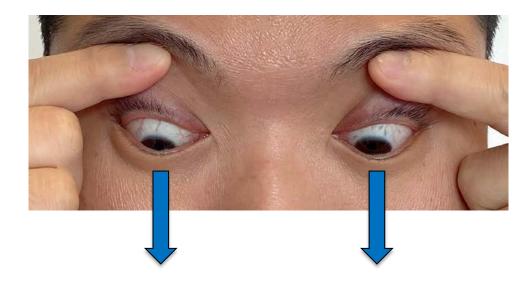
Superior Rectus (SR) Medial Rectus (MR) Inferior Oblique (IO)

Superior Oblique (SO)

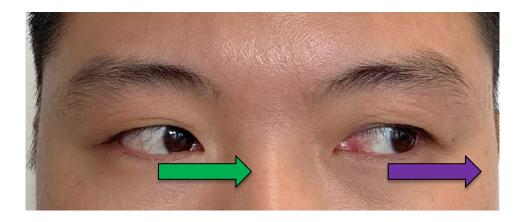
[Source: modified from https://commons.wikimedia.org/wiki/File:1412 Extraocular Muscles.jpg]

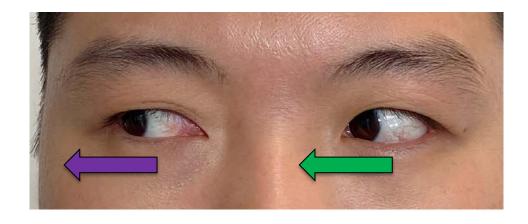
- Superior Rectus (SR) Medial Rectus (MR) Inferior Oblique (IO)
- Superior Oblique (SO)
- Lateral Rectus (LR)



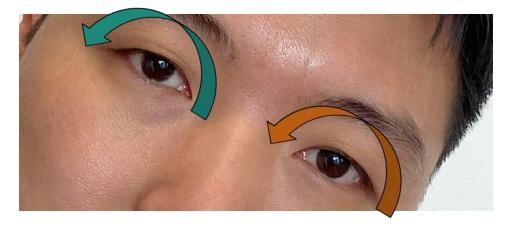

- Elevation: an upward movement of the eye
- <u>Depression</u>: a downward movement of the eye
- Adduction: an inward/medial movement of the eye (towards the nose)
- Abduction: an outward/lateral movement of the eye (towards the ear)
- Incyclotorsion/Intorsion: an inward (nasal) rotation of the eye
- Excyclotorsion/Extorsion: an outward (temporal) rotation of the eye

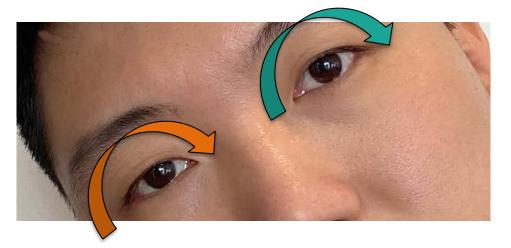
- Elevation: an upward movement of the eye
- <u>Depression</u>: a downward movement of the eye
- Adduction: an inward/medial movement of the eye (towards the nose)
- Abduction: an outward/lateral movement of the eye (towards the ear)
- Incyclotorsion/Intorsion: an inward (nasal) rotation of the eye
- Excyclotorsion/Extorsion: an outward (temporal) rotation of the eye





- Elevation: an upward movement of the eye
- <u>Depression</u>: a downward movement of the eye
- Adduction: an inward/medial movement of the eye (towards the nose)
- Abduction: an outward/lateral movement of the eye (towards the ear)
- Incyclotorsion/Intorsion: an inward (nasal) rotation of the eye
- Excyclotorsion/Extorsion: an outward (temporal) rotation of the eye



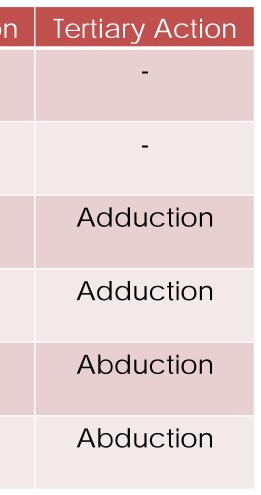


- Elevation: an upward movement of the eye
- <u>Depression</u>: a downward movement of the eye
- Adduction: an inward/medial movement of the eye (towards the nose)
- Abduction: an outward/lateral movement of the eye (towards the ear)

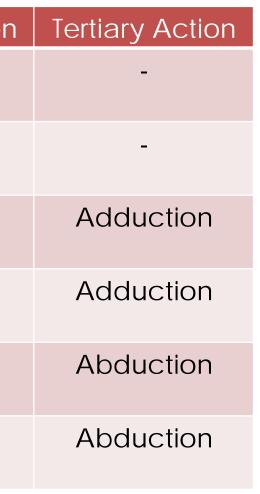
- Incyclotorsion/Intorsion: an inward (nasal) rotation of the eye
- Excyclotorsion/Extorsion: an outward (temporal) rotation of the eye

[Source: Sophia Fang, MD]

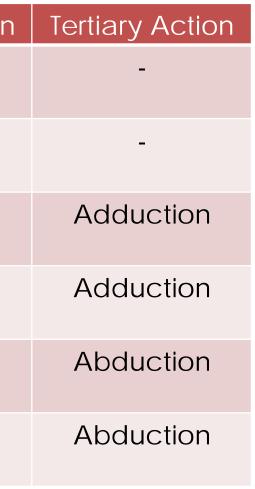
When we tilt (or rotate) our head to one side, our eyes need to rotate in the opposite direction to keep the world we see upright!


While some extraocular muscles have only one action, others have multiple actions, which can be classified into primary, secondary, and tertiary functions.

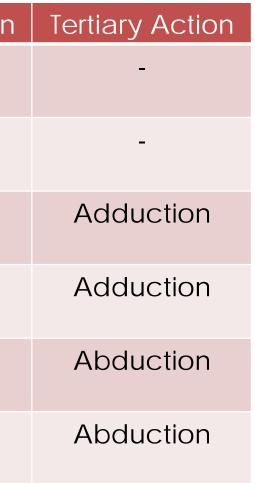
Extraocular Muscle	Primary Action	Secondary Action
Medial Rectus (MR)	Adduction	-
Lateral Rectus (LR)	Abduction	-
Superior Rectus (SR)	Elevation	Incyclotorsion
Inferior Rectus (IR)	Depression	Excyclotorsion
Superior Oblique (SO)	Incyclotorsion	Depression
Inferior Oblique (IO)	Excyclotorsion	Elevation



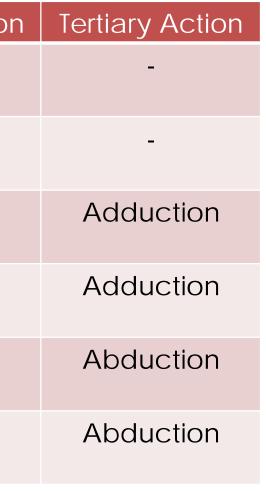
	Extraocular Muscle	Primary Action	Secondary Actior
	Medial Rectus (MR)	Adduction	-
Observation 1: the medial and	Lateral Rectus (LR)	Abduction	-
lateral rectus muscles only have one primary action.	Superior Rectus (SR)	Elevation	Incyclotorsion
	Inferior Rectus (IR)	Depression	Excyclotorsion
	Superior Oblique (SO)	Incyclotorsion	Depression
	Inferior Oblique (IO)	Excyclotorsion	Elevation



	Extraocular Muscle	Primary Action	Secondary Action
	Medial Rectus (MR)	A <u>d</u> duction	-
Observation 2: the medial rectus	Lateral Rectus (LR)	Abduction	-
muscle is the primary adductor	Superior Rectus (SR)	Elevation	Incyclotorsion
(inward/medial movement of the eye towards the	Inferior Rectus (IR)	Depression	Excyclotorsion
nose)	Superior Oblique (SO)	Incyclotorsion	Depression
	Inferior Oblique (IO)	Excyclotorsion	Elevation



	Extraocular Muscle	Primary Action	Secondary Action
	Medial Rectus (MR)	Adduction	-
	Lateral Rectus (LR)	A <u>b</u> duction	-
Observation 3: the lateral rectus is the	Superior Rectus (SR)	Elevation	Incyclotorsion
primary a <u>b</u> ductor (outward/lateral movement of the	Inferior Rectus (IR)	Depression	Excyclotorsion
eye towards the ear)	Superior Oblique (SO)	Incyclotorsion	Depression
	Inferior Oblique (IO)	Excyclotorsion	Elevation



Observation 4: there are two muscles responsible for elevating the eye/moving the eye upward.

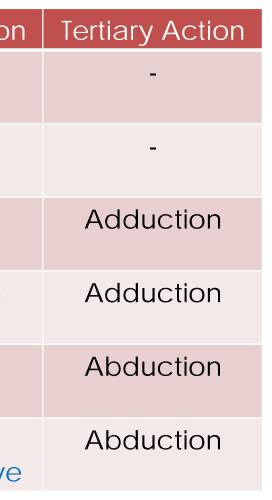
	Extraocular Muscle	Primary Action	Secondary Actio
	Medial Rectus (MR)	Adduction	-
	Lateral Rectus (LR)	Abduction	-
	Superior Rectus (SR)	Elevation	Incyclotorsion
	Inferior Rectus (IR)	Depression	Excyclotorsion
	Superior Oblique (SO)	Incyclotorsion	Depression
•	Inferior Oblique (IO)	Excyclotorsion	Elevation



Observation 4: there are two muscles responsible for elevating the eye/moving the eye upward.

Superior Rectus is responsible for elevating the eye when the eye is abducted.

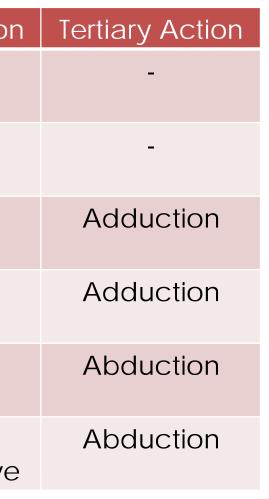
Extraocular Muscle	Primary Action	Secondary Actior
Medial Rectus (MR)	Adduction	-
Lateral Rectus (LR)	Abduction	-
Superior Rectus (SR)	Elevation of a <u>b</u> ducted eye	Incyclotorsion
Inferior Rectus (IR)	Depression	Excyclotorsion
Superior Oblique (SO)	Incyclotorsion	Depression
Inferior Oblique (IO)	Excyclotorsion	Elevation


Observation 4: there are two muscles responsible for elevating the eye/moving the eye upward.

Superior Rectus is responsible for elevating the eye when the eye is abducted.

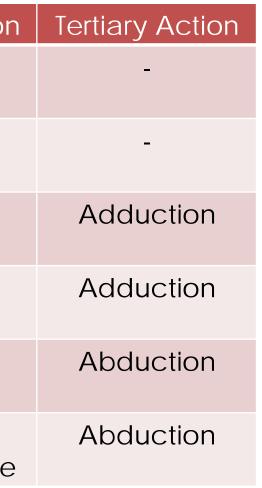
Inferior Oblique is responsible for elevating the eye when the eye is adducted.

Extraocular Muscle	Primary Action	Secondary Action
Medial Rectus (MR)	Adduction	-
Lateral Rectus (LR)	Abduction	-
Superior Rectus (SR)	Elevation of a <u>b</u> ducted eye	Incyclotorsion
Inferior Rectus (IR)	Depression	Excyclotorsion
Superior Oblique (SO)	Incyclotorsion	Depression
Inferior Oblique (IO)	Excyclotorsion	Elevation of a <u>d</u> ducted eye



Observation 5: there are two muscles responsible for depressing the eye/moving the eye downward.

Extraocular Muscle	Primary Action	Secondary Action
Medial Rectus (MR)	Adduction	-
Lateral Rectus (LR)	Abduction	-
Superior Rectus (SR)	Elevation of a <u>b</u> ducted eye	Incyclotorsion
Inferior Rectus (IR)	Depression	Excyclotorsion
Superior Oblique (SO)	Incyclotorsion	Depression
Inferior Oblique (IO)	Excyclotorsion	Elevation of a <u>d</u> ducted eye



Observation 5: there are two muscles responsible for depressing the eye/moving the eye downward.

Inferior Rectus is responsible for depressing the eye when the eye is abducted.

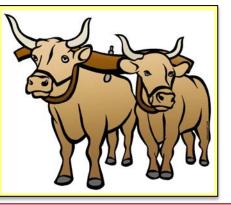
	Extraocular Muscle	Primary Action	Secondary Actior
	Medial Rectus (MR)	Adduction	-
	Lateral Rectus (LR)	Abduction	-
	Superior Rectus (SR)	Elevation of a <u>b</u> ducted eye	Incyclotorsion
	Inferior Rectus (IR)	Depression of a <u>b</u> ducted eye	Excyclotorsion
	Superior Oblique (SO)	Incyclotorsion	Depression
	Inferior Oblique (IO)	Excyclotorsion	Elevation of a <u>d</u> ducted eye

Observation 5: there are two muscles responsible for depressing the eye/moving the eye downward.

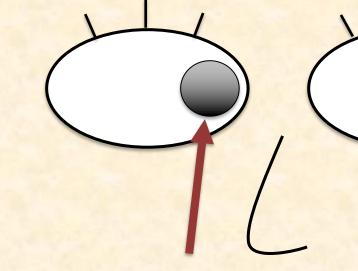
Inferior Rectus is responsible for depressing the eye when the eye is abducted.

Superior Oblique is responsible for depressing the eye when the eye is adducted.

Extraocular Muscle	Primary Action	Secondary Action	Tertiary Action
Medial Rectus (MR)	Adduction	-	-
Lateral Rectus (LR)	Abduction	-	-
Superior Rectus (SR)	Elevation of a <u>b</u> ducted eye	Incyclotorsion	Adduction
Inferior Rectus (IR)	Depression of a <u>b</u> ducted eye	Excyclotorsion	Adduction
Superior Oblique (SO)	Incyclotorsion	Depression of a <u>d</u> ducted eye	Abduction
Inferior Oblique (IO)	Excyclotorsion	Elevation of a <u>d</u> ducted eye	Abduction



COORDINATING EYE MOVEMENTS


- The EOMs of the two eyes must work in a coordinated fashion in order to move the two eyes in the same direction.
- The pair of muscles (one in each eye) used to move the eyes into a particular direction are referred to as "yoked muscles."

like the wooden beam used between a pair of oxen to enable them to pull a load together

Example of yoked muscles:

In order for this person to look to the left: The medial rectus on the right eye needs to be activated, along with the lateral rectus of the left eye.

Right Eye (OD): Medial rectus moves the right eye nasally (adduction)

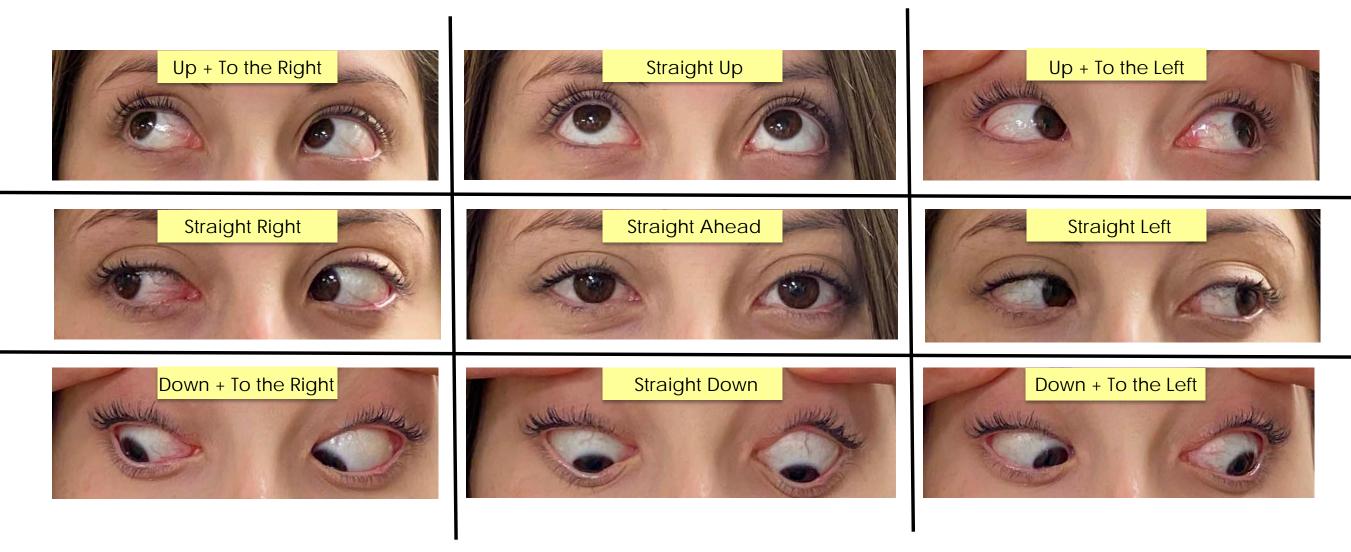
These muscles are thus "yoked" together.

Left Eye (OS): Lateral rectus moves the left eye temporally (abduction)

THERE ARE 9 DIRECTIONS OF GAZE **OR GAZE POSITIONS**

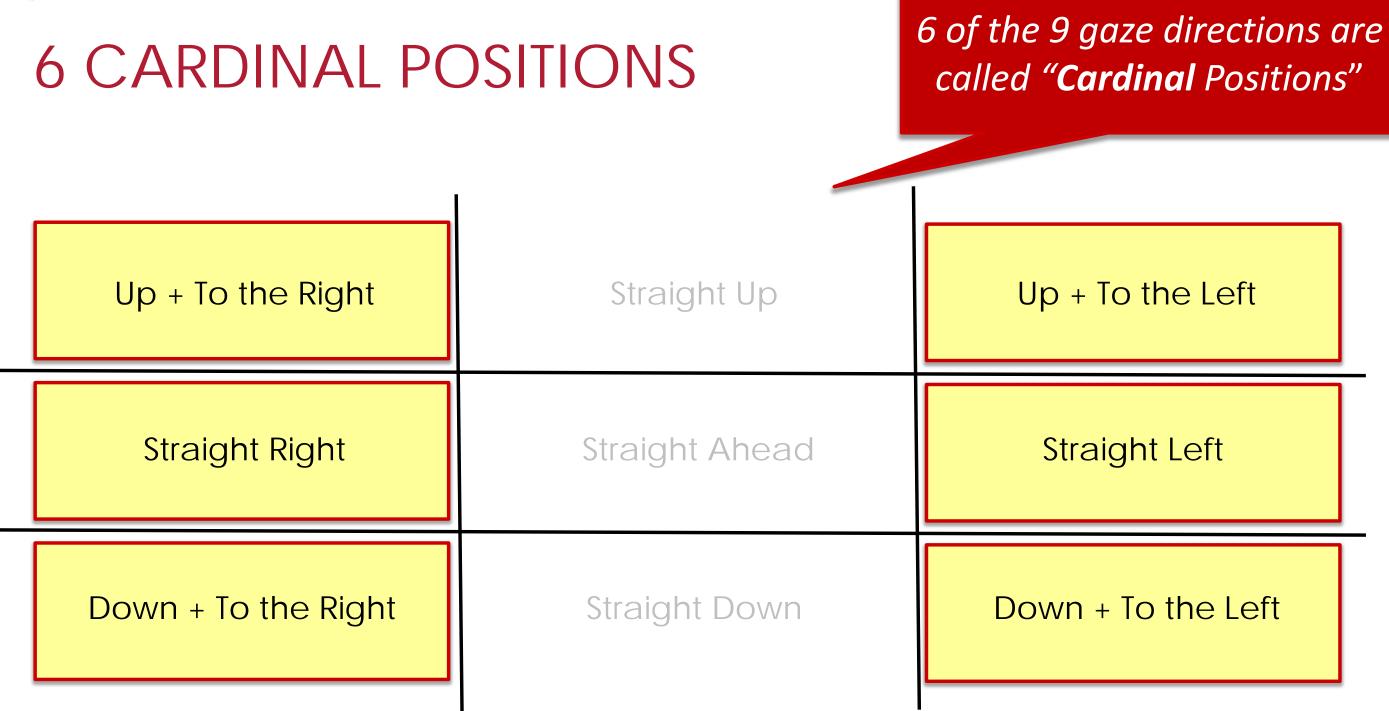
THERE ARE 9 DIRECTIONS OF GAZE **OR GAZE POSITIONS**

Up + To the Right	Straight Up	Up + 1
Straight Right	Straight Ahead	Stra
Down + To the Right	Straight Down	Down +


To the Left

aight Left

+ To the Left


THERE ARE 9 DIRECTIONS OF GAZE **OR GAZE POSITIONS**

[Source: Sophia Fang, MD]

6 CARDINAL POSITIONS

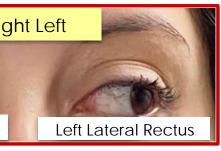
Cardinal positions are special because in these positions, there is ONE muscle of EACH eye primarily responsible for moving that eye INTO that position (forming pairs of yoked muscles!)

Up + To the Right	Straight Up	Up + Tc
Straight Right	Straight Ahead	Straig
Down + To the Right	Straight Down	Down +

o the Left

ght Left

To the Left


6 CARDINAL POSITIONS with their corresponding yoked muscles

Up + To the Right Right Superior Rectus	Straight Up	Up + To Right Inferior Oblique
Straight Right Right Lateral Rectus Left Medial Rectus	Straight Ahead	Straig Right Medial Rectus
Down + To the Right Bight Inferior Rectus	Straight Down	Down + To Right Superior Oblique

[Source: Sophia Fang, MD]

TESTING EXTRAOCULAR MOTILITY

How to Perform the "H" Test: Tests the 6 cardinal positions

- Ask the patient to sit upright. 1.
- 2. Position yourself at eye level with the patient.
- 3. Use a small object such as the tip of your finger or the tip of a penlight held about 1 foot in front of the patient.
- 4. Ask the patient, with both eyes open and their head held still, to look at the object and follow it as you trace an "H" pattern in front of them.
- 5. The "H" that you trace should help you evaluate the full extent to which the patient can move their eyes into each of the cardinal positions.

Remember, ALL 9 gaze positions should be tested: In addition to the H test, you should also test straight up and down gaze positions.

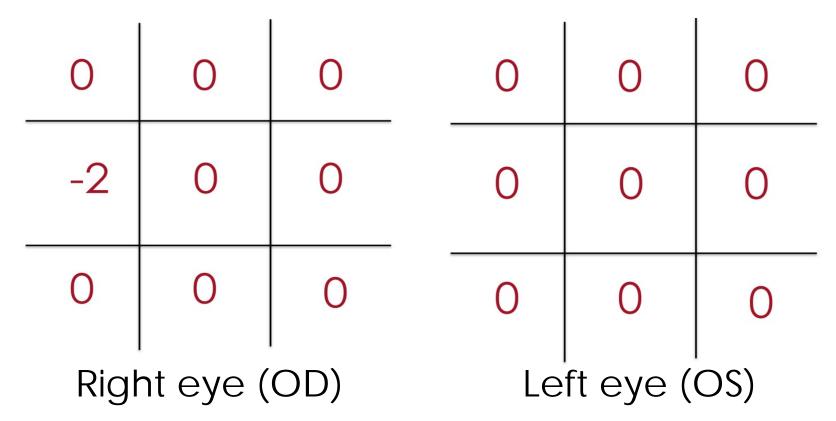
WHAT TO LOOK FOR WHEN EVALUATING EXTRAOCULAR MOTILITY

- Whether both eyes can move together in all gaze directions (see next slide). 1.
- Whether the patient is able to move their eyes to the full extent/excursion possible 2. (that they are able to "bury the white" of the sclera)
- Whether the movements are smooth. 3.
- Whether there is any nystagmus (involuntary rhythmic "shaking" of the eyes) 4.

Remember to also test straight up and down movements!

[Source: Video Courtesy of KieuYen Luu, MS4 and Vincent Tang, MS4]

HOW TO DOCUMENT EXTRAOCULAR MOTILITY

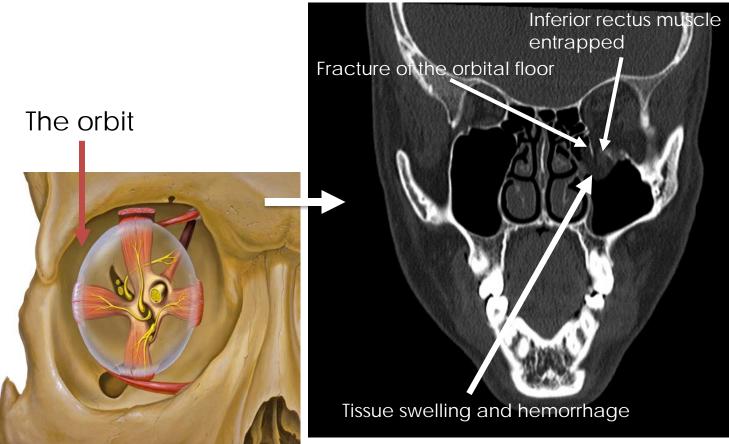

- Extraocular movement can be classified as either Normal or Abnormal
- If motility is abnormal, extraocular movement can be more than normal ("overaction") or less than normal ("underaction" or "deficit")
- One way of grading this is on a 9-point scale, ranging from -4 to +4
 - 0 = normal, full movement
 - -1 = 25% deficit of movement
 - -2 = 50% deficit of movement
 - -3 = 75% deficit of movement
 - -4 = no movement of the eye past midline
- Positive values represent same equivalent percentages of excess movement

EXAMPLE OF HOW TO DOCUMENT

You can document extraocular motility using a diagram representing the 9 gaze positions and primary gaze

The "-2" in the right eye at the position above indicates a 50% reduction in the ۲ expected normal extent of abduction

WHY IS ASSESSING EXTRAOCULAR MOTILITY **IMPORTANT?**


- Abnormal motility can be a sign of a neurologic condition such as a ۲ stroke, trauma, or multiple sclerosis.
- A patient with abnormalities in extraocular motility may or may not ulletbe symptomatic.
 - Symptoms, when present, can include:
 - Diplopia (double vision) ٠
 - Deficits in depth perception
 - Nausea/Vomiting
 - Eye pain
 - Headache
 - Asthenopia (eye strain)
 - Blurry vision

ABNORMAL MOTILITY: EOM ENTRAPMENT

- The eye and its EOMs are surrounded by a bony orbit.
- Fractures of these orbital bones from • trauma can lead to swelling, hemorrhage, and EOM entrapment which can restrict movement and cut off their blood supply!
 - These cases require immediate surgery!
- Symptoms can include pain, diplopia, nausea, and slowed heart rate (bradycardia) due to nerve involvement

CT SCAN HEAD

ABNORMAL MOTILITY: CRANIAL NERVE 6 PALSY

1. When the patient is asked to look to her left, the right eye appears to move normally.

Left gaze: no deviation

2. When the patient looks straight, the right eye is turned in (esotropia)

Primary position: right esotropia

Right gaze: left esotropia

- Esotropia is a form of ocular misalignment where there is an inward turn of one or both eyes.
- Cranial nerve 6 palsy is most commonly caused from ischemic diseases such as diabetes and hypertension
- Recall that cranial nerve 6 innervates the lateral rectus (LR), which is responsible for abduction (lateral movement) of the eye.
- Patients with cranial nerve 6 palsy can present with diplopia and esotropia.

[Source: https://morancore.utah.edu/cranial-nerve-vi-palsies/]

3. When the patient is asked to look to her right, notice how the right eye is unable to abduct past midline

SUMMARY

- Assessing extraocular motility is an important part of the eye examination.
- This can be done with the "H" test in addition to testing straight up and down.
- Motility abnormalities can lead to symptoms such as diplopia, problems with depth perception, nausea, vomiting, eye pain, headache, asthenopia, photophobia, and blurry vision.
- Motility abnormalities can be a sign of EOM entrapment, vascular disease, or neurological disease, which requires careful ophthalmic evaluation, and possibly urgent systemic workup.

REFERENCES

- Bradford, Cynthia A. Basic Ophthalmology. San Francisco, CA: American Academy of 1. Ophthalmology, 2004.
- Jacobson DM, Broste SK. Early progression of ophthalmoplegia in patients with 2. ischemic oculomotor nerve palsies. Arch Ophthalmol. 1995; 113(12): 1535–1537.
- Trobe JD . Managing oculomotor nerve palsy. Arch Ophthalmol. 1998; 116(6): 798. 3.
- Prasad S, Volpe NJ. Paralytic Strabismus: Third, Fourth, and Sixth Nerve Palsy. Neurologic 4. Clinics. 2010;28(3):803-833. doi:10.1016/j.ncl.2010.04.001.Aziz K, Friedman DS. Tonometers—which one should I use? Eye. 2018;32(5):931-937. doi:10.1038/s41433-018-0040-4
- 5. Tamhankar MA, Biousse V, Ying G-S, et al. Isolated third, fourth, and sixth cranial nerve palsies from presumed microvascular versus other causes: a prospective study. Ophthalmology. 2013;120(11):2264-2269. doi:10.1016/j.ophtha.2013.04.009.
- Rowe FJ. Clinical Orthoptics. John Wiley & Sons; 2012. 6.
- Farris BK, ed. The Basics of Neuro-Ophthalmology. Mosby Year Book; 1991. 7.

