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introduction

“Science is a graveyard of grand principles that fail in
the end to explain the real world.”

Fred Guterl: “Searching for Clues to Calamity” [68]
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1. Introduction

After more than 50 years of extensive study, we are still far away from a
thorough understanding of the underlying neurocircuitry and the engineering
principles of vision. The identification and classification of the neural inven-
tory of the retina, the light sensitive organ in the eye, has advanced rapidly in
the last years; some go as far as to say that it is “nearing completion” [110].
Many questions related to the visual cortex, however, remain unanswered.
The visual cortex is part of the central nervous system, the brain. The difficul-
ties in understanding the behavior of the brain on a microscopic level emerge
from the huge number of elements and the massive interconnectivity of its
constituents. About 8.6 · 1011 neurons, interconnected by an estimated num-
ber of 1015 synapses process the information streaming continuously into the
human mind [72]. Vision as one of the most basic senses has been predestined
to scientific study, not only because sensory inputs can be easily provided
but because the visual cortex is small compared to the rest of the brain. In
many respects it might serve as a model system to advance the scientific un-
derstanding of the engineering principles of the brain. About 50 years ago
David Hubel and Torsten Wiesel observed that cortical neurons are orienta-
tion selective and that the visual cortex of many animals is structured into
maps of similar response properties, most prominently, maps of orientation
preference (OPMs). Although firstly described 50 years ago, the underlying
engineering principles of OPMs are still not well understood. The topic of
this thesis is the analytic and numeric study of a model for OPM emergence
recently proposed, using an interference effect of retinal ganglion cell (RGC)
mosaics to drive OPM formation. This model is a novelty because it rejects
cortical self-organization as pivotal for OPM formation and substitutes an
experience-independent mechanism in the retino-thalamic pathway. Conse-
quently, should this model hold, the importance of intra-cortical organization
might have been substantially overestimated. In this thesis, we analyze the
statistical and geometrical properties of retinal ganglion cell mosaics, cortical
orientation preference maps and their interaction. We rely on both, exact
results and Monte-Carlo simulations for the comparison of model properties
with experimental data.
The first chapter of this thesis contains a detailed introduction which is in-
tended to give the reader the necessary background information to understand
the findings of chapters two and three. The first part summarizes the history
of neuroscience briefly. It illustrates where the field stands and which chal-
lenges remain to contextualize this thesis’ findings. The second part describes
the visual system. It summarizes physiological and neuroscientific facts and
experimental evidence which we build on in the following chapters to interpret
our findings. In the second chapter of this thesis, we describe the model
for OPM emergence. We solve it analytically and analyze perturbative effects
using numerical tools. Our findings challenge the model which we try to im-
prove subsequently. In the third chapter, we introduce a slightly modified
approach which has certain advantages over the original model. However, we

2



still find model predictions which are distinct from experimental results. The
conclusions summarize the results of the chapters two and three, give a per-
spective on the interpretation of this thesis’ findings and comment on future
work to do.
This thesis presents a series of arguments which lead to the conclusion that this
newly proposed model is insufficient to understand the emergence of OPMs.
Consequently, experience-dependent and self-organizing processes are essen-
tial for OPM formation. Despite the model’s flaws, it is reasonable to assume
that an external retino-thalamic bias has an influence on OPM formation.
Thus, the next logical step is the integration of an external bias into self-
organization models. It might well be that this (presumably noisy) bias is
essential to account for some of the properties of the spatial layout of OPMs.
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fundamentals

“By [the brain], in an especial manner, we acquire
wisdom and knowledge, and see and hear and know
[...]. But by the same organ we become mad and
delirious and fears and terrors assail us. All these
things we endure from the brain when it is not
healthy. [...]. In these ways I am of the opinion that
the brain exercises the greatest power in the man.”

Hippocrates: “On the Sacred Disease” [74]
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2. Fundamentals

2.1 a brief history of neuroscience

The oldest archeological record of cranial surgery dates back to the 6th millen-
nium BC. A hole was drilled into a human skull, laying open the brain. Heal-
ing indicates a substantial period of time for which the “patient” survived [3].
Due to missing written records, it is difficult to say why these trephinations
have been performed. Despite a great deal of speculations as to the reasons, a
comparison with native african communities allows to guess potential motives.
The most prominent ones are therapeutic in the sense of removing bone frag-
ments after a fracture and to cure headaches, epilepsy and mental disorders
by allowing evil spirits to escape [3, 58]. It should be noted that similar pro-
cedures have been performed in medieval Europe as the removal of the Stone
of Madness in Hieronymus Bosch’s painting reminds us. After this brief side
note regarding the history of cranial surgery, we begin the history of neuro-
science in the time of the ancient civilizations where written records allow us
to trace the advancements made.
The first preserved record containing an anatomic description of the brain is
in the “Edwin Smith Papyrus” from around 1550 BC which is a surgical text
containing medical procedures and treatments for various conditions [157].
Despite their rich medical knowledge, physicians of ancient Egypt considered
the heart to be the seat of mind, perception and memory. Their knowledge
regarding anatomy originated in religious tradition and no clear line can be
drawn between priests, magicians and physicians. Cutting open the body,
dissecting organs and finally mummifying the dead did not only create a vast
knowledge of the human frame but served one greater goal: achieving immor-
tality. This specifically religious component, interfering with a scientific study
of the body, stands in contrast with the relatively modern modus operandi of
ancient Greek philosophers and physicians. In this part of the world, driven by
curiosity rather than religiousness, two philosophical schools challenged each
other: Hippocrates taught that the brain is the location of the human mind
[74]. On the other side there is one of Hippocrates’ contemporaries, Aristotle.
In his view, the heart is the seat of intellect. The reason for this opinion,
beside others, is that the heart is connected to all parts of the body; it is
essential to life and the last organ to stop working before death [67]. Despite
disagreement on anatomical details, both agreed that it is the bodily fluids
which contain sensations and which generate mental states; with the brain ei-
ther as center of the sensations, or as radiator for cooling of blood, overheated
by the heart. Greek physicians as Herophilos and Erasistratus systematically
performed human dissections and are considered early pioneers of the scientific
method [14, Chapter 15]. Their experimental knowledge laid the foundation
of the philosophical dispute on the nature of the mental phenomena. Sadly,
most of their knowledge regarding physiology and anatomy has been lost.
Major parts of what we know about them is quoted in Galenus’ work, a Ro-
man physician who lived around 150 AD [46]. Advancing previous theories,
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2.1. A Brief History of Neuroscience

he tried to combine the notion of the brain being the seat of mind with the
doctrine of vital fluids. He described cavities, filled with cerebral liquid in
the brain. Today we call these cavities ventricles. His observation fit the pre-
vailing theory that the body operates according to a balance of vital fluids.
The sensations were thought of a movement of liquids to the brain via nerves.
Consequently, he predicted that nerves are in fact hollow tubes, just like blood
vessels which transport the vital fluids to the cavities of the brain. He claimed
to have observed this nervous cavity, however, further study became increas-
ingly difficult. The introduction of Christianity made it impossible to continue
the systematic study of anatomy and to test the prediction of hollow nerve
fibers [142]. The transition back to a religious paradigm stopped the empirical
and scientific inquiry for the sake of sanctity and Galenus’ theory was not
challenged. His theory was philosophically advanced and christianized by Al-
bertus Magnus, a philosopher and Doctor of the Church who assigned mental
functions to the cranial ventricles [107, 108]. Remarkably, Galenus’ teachings
should prevail the next thousand years until the early modern ages.
With the upcoming Renaissance, dissections of animals as well as human
corpses became possible again and outstanding figures as Leonardo da Vinci
[136] and Andreas Vesalius [169] worked on detailed anatomic studies (both
around 1500 until 1550). Their experimental approach advanced the knowl-
edge of the brain rapidly, finally allowing the experimental test of Galenus’
theory. Around 1550, Andreas Vesalius remarked that he could not find any
cavity in a nerve.

“I am unable to differentiate nerves by the cavity within them as I
have never seen such a cavity or channel, even in the optic nerve.”
Andreas Vesalius: “On the Fabric of the Human Body” [169, p.
165]

Yet, it could have been that the cavities are just very small; and so Vesalius’
findings were not considered evidence enough. About one hundred years later,
the Dutch scientist Antonie van Leeuwenhoek found that even using his newly
constructed first light microscope, he cannot find a cavity inside the nerves.
In a paper published in the philosophical transactions of the royal society, he
writes

“Having acquainted Dr. Schravesande, that I could not perceive no
cavity in the Optic Nerve, he told me, that Galen had on a clear
sunshiny day seen a hollowness therein, encouraging me to view
that Nerve again with more attention [...]. These holes or cavities
being in the dried Nerve, I am of the same opinion still (as I was
before) that the nerve or fibers are made up of soft fluid globules.”
A. van Leeuwenhoek: “Microscopical Observations of Mr. Leewen-
hoeck, concerning the Optic Nerve” [102]
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2. Fundamentals

With the advancements of microscopy after van Leeuwenhoek, Felice Fontana
studied individual nerve fibers and is said to be the first scientist to describe
the axon of a nerve cell as a distinct feature in 1781 [65]. Despite all experi-
mental evidence, philosophers continued to advance the theory of hydraulically
controlled mechanics and the fluid-mechanical theory of the brain function,
specifically Rene Descartes [59].
The artificial generation of electrostatic charge using the newly invented influ-
ence machine, constructed by Francis Hauksbee in 1706, allowed Luigi Galvani
in the second half of the 18th century to show that muscles twitch when nerves
are stimulated electrically [137, 168]. With the end of the 18th century, the
nervous system had been completely dissected and described macroscopically.
Combined with the observations of the electrical nature of the brain, the fluid-
mechanical model which prevailed for about 1800 years was finally abandoned.
Following the dawn of modern science, advancements have been made rapidly.
In 1839 Theodor Schwann presented the cellular theory that all tissue is made
of microscopic cells [52, 112, 149, 170], although the notion of cells is said
[92] to date back to the 17th century [75]. However, to confirm this theory,
advanced coloring techniques and microscopy were necessary. In particular
the nervous system has been thought of as a network of different cells fused
together like blood vessels of the circulatory system. This notion is quoted as
Joseph von Gerlach’s idea in a review from 2007 [41, 61]. It is of course very
appealing since it offers a simple explanation as to the transport of informa-
tion across the cellular network. Advancements in staining techniques made
by Camillo Golgi, in particular Golgi’s famous method of silver impregna-
tion introduced in 1872 [64] as described by [112] allowed to show that nerve
cells are in fact individual units. This discovery follows from Cajal’s work
[23] as described in the same review. Building upon this discovery, the term
”synapse” was introduced by Arthur Sherrington and Michael Foster to name
the contact between individual nerve cells [57]. For their discoveries, Santi-
ago Ramón y Cajal and Camillo Golgi were awarded the 1906 Nobel Prize in
Medicine or Physiology ”in recognition of their work on the structure of the
nervous system”.
New technologies using electricity made it possible to analyze the electrical
activity of nerve cells. In the middle of the 19th century, Carlo Matteucci
showed that biological tissue generates electricity. Trying to verify these find-
ings, Emil du Bois Reymond discovered the action potential in 1848 [15] and
Hermann von Helmholtz measured the conduction velocity of action potentials
on a frog nerve fiber [70, 71]. Nernst’s work on ion movements [122] allowed
him and Bernstein [9, 123] to develop an early model for action potentials by
ion currents across the plasma membrane. With the invention of the oscillo-
scope briefly after the first World War, Joseph Erlanger and Hermann Gasser
measured the exact shape of an action potential in 1922. Both have been
awarded the Nobel Prize in 1944. In the following years, action potentials
have been found and studied in various species. Scientists thought that they
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2.2. The Visual System

are generated by an ion gradient across the cellular membrane, however, no
concrete model was available. This notion goes back to work of Julius Bern-
stein and Hermann Helmholtz as we saw. Finally, Hodgkin and Huxley built
an effective model of action potential generation by voltage dependent ionic
conductivity within the cellular membrane. This model allowed them to de-
scribe the shape of the action potential measured in a giant squid axon. Both
Hodkin and Huxley have been awarded the Nobel Prize in 1963. The under-
lying physiological reasons were described by Neher and Sakman using the
newly invented Patch-Clamp technique. Modern technologies and the knowl-
edge of the electric nature and the cellular inventory of nervous tissue allowed
a new field of study, the systematic analysis of the brain’s working principles.
Using simple tools as pointy electrodes, David Hubel and Torsten Wiesel an-
alyzed the mammalian visual system: presenting a visual stimulus allowed to
measure the electrical response of nerve cells. Thus, for the first time, sci-
entists observed the brain processing information. For their ground breaking
work on the visual system both have been awarded the Nobel Prize in 1981.
In the next section on the structure of the visual system, most of the findings
presented are results of their research or directly related to their work. Today,
we have reached a state of knowledge which allows to reconstruct speech from
human auditory cortex activity [135] and to reconstruct vision from visual
cortex activity [125] but despite the remarkable advancements in the last hun-
dred years, many questions remain unanswered.
Since this thesis focuses on the visual system, we stop our brief review of the
history of neuroscience here and continue to describe the layout of this par-
ticular sensory system. Following the next section, we present the question
addressed in this thesis.

2.2 the visual system

The visual system is the most intensively studied sensory system in mammals.
The fundamental visual system consists of three major parts. Firstly, there is
the eye with an embedded light sensitive organ, the retina. Nerve fibers origi-
nating in the retina project to a region in the thalamus, the lateral geniculate
nucleus. From there, axons project to the primary visual cortex. In the pri-
mary visual cortex, the received information is processed in a way we discuss
later. We focus on the properties of this information processing. In the next
three sections, we describe each instance of the visual pathway.

The Eye & the Retina

The first element of the visual pathway is the eye. A sketch is shown in
Fig. 2.1A. It is a simple imaging system with variational focal length and
variational aperture. Incoming light is imaged upside-down onto an organ spe-
cialized in light detection: the retina. In the retina, rod and cone cells convert
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2. Fundamentals
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Figure 2.1: A A saggital cut through the eye and the retina. B The cellular
inventory of the primate retina. Light enters from below. C Neuro circuitry
of the retina. Cone one hyperpolarizes a horizontal cell. The hyperpolarized
horizontal cell depolarizes cone two. Thus, a light stimulus on cone one is in-
hibitory for the shown ON center bipolar cell and inhibitory for the connected
RGC (not shown). The insets show the intracellular potential. D Receptive
field of an ON ganglion cell. A illumination pattern (left) creates a certain
spike train in the ganglion cells (right). The bar corresponds to the time span
where a stimulus is presented. The figures are copied and adapted from [89]
and [54].

a light stimulus to an electric signal. Rods, cones and the subsequent layers of
the mammalian retina are shown in Fig. 2.1B. Rods are extremely sensitive
for white light, yet with a small temporal resolution. One photosensitive pig-
ment is responsible for an achromatic response. The rods’ black-white vision
with high sensitivity is what allows light perception at night. There are about
20 times more rods than cones. Cones are less light sensitive, have a high
temporal resolution and are responsible for day vision. They are equipped
with different photopigments, thus capable of distinguishing colors. Three
different pigments in cones allow us to sample from three different primary
colors. Rod and cone cells do not generate action potentials. The voltage
across the membrane increases in response to light. The pixel-information
in rod and cone cells is subsequently processed by three types of neurons,
horizontal cells, bipolar cells and amacrine cells, before it is processed and
communicated to the brain by retinal ganglion cells (RGCs). Bipolar cells
sample directly from rods and cones. The increase in cellular potential in
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2.2. The Visual System

cones causes a decrease in glutamate release to the bipolar cells. There are
two types of bipolar cells, depending on their ion channel inventory. One type
is hyperpolarized, the other type is depolarized by glutamate. Therefore there
are bipolar cells activated by light (ON center bipolar cells) and bipolar cells
activated by a lack of light (OFF center bipolar cells). As rods and cones,
bipolar cells do not generate action potentials. Retinal ganglion cells sample
from bipolar cells and generate action potentials. RGCs project directly to
the brain.
As RGCs collect information from many rods and cones, their receptive field
is no longer dot-like. The receptive field is the region on the surface of the
retina which is stimulus sensitive. The microcircuitry responsible for the gan-
glion cell’s receptive fields is shown in Fig. 2.1C. The response of cone 1 to
illumination is inverted by the horizontal cell. Subsequently, the horizontal
cell depolarizes cone 2. Therefore a stimulation of cone 1 is inhibitory for
cone 2. The circuitry generates a very characteristic receptive field. Ganglion
cells respond with a high firing rate to a spot of light in a central region sur-
rounded by a dark annulus (ON center) or vice versa: a dark spot in the center
surrounded by a bright annulus (OFF center). Note that a uniform illumi-
nation does not generate activity. This so called center-surround structure is
illustrated in Fig. 2.1D. The left section shows an ON center cell, the right
section an illumination and the corresponding spike train. A central illumina-
tion increases the firing rate, an illumination in the surround decreases it. In
the center of the retina, the typical size of the receptive field’s central region
is a few minutes of arc for the primate retina. At the periphery of the retina,
the typical size increases to 3 to 5 degrees [89].
In general there are three types of retinal ganglion cells in the primate retina,
distinguished by their receptive fields: parasol cells (10%), midget cells (80%)
and small bistratified cells (10%). Both parasol and midget cells have a center
surround receptive field, although the receptive field of parasol cells is much
larger. Bistratified RGCs have no surround region and react to an overall
change in luminosity. As rods and cones are interconnected by horizontal
cells, retinal ganglion cells are interconnected by amacrine cells. There are
about 30 different types of amacrine cells which are highly specialized. For
example, the dopaminergic amacrine cells adjust the retina’s responsiveness
under bright and dim light [110]. Most of the retina can be considered a black-
box because there are no projections from the brain to the retina. In this
thesis, we therefore assume the retina to deliver exclusively center-surround
input into the brain. The situation for primates presented here [54] is very
similar for the cat although the nomenclature is different [156, 164]. What is
called a midget cell in the primate retina is called a X-cell in the cat retina.
Accordingly a parasol cell is called a Y-cell [40, p. 54]. X-cells have a small
linearly summing receptive field, Y-cells have a larger and non-linear recep-
tive field [110]. Midget and parasol cells are distinguished according to the
shape of their receptive fields, as are X- and Y-cells. However, the cells are
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2. Fundamentals
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Figure 2.2: A Section of the beta cell mosaic of a cat. This is the mosaic which,
among others, is used in the second half of this thesis [172]. B Receptive field
mosaic of a primate retina. Shown are contours of 1.3σ to Gaussian fits [54].
C Receptive field mosaic of a rat [5]. D The mosaic of dendritic trees of
neurobiotin labeled midget cells in a human retina [36].

also distinguished histologically/morphologically. What is called a Y-cell in
electrophysiology is an alpha cell in morphology, similarly X-cells are called
beta cells [110, 162]. Note, however, that ON and OFF cells are neither histo-
logically nor structurally distinguishable. To distinguish between an ON and
an OFF center ganglion cell, usually electrophysiology is employed.
For this thesis we focus on RGCs and their mosaics. There is plenty of infor-
mation available for different species as humans [36, 37], rabbits [44], rats [5,
147] and cats [172, 174, 175]. Examples for different ganglion cell mosaics is
given in the following figures. Fig. 2.2A shows the beta cell mosaic of a cat.
This figure shows the somata positions [172]. Fig. 2.2B shows the receptive
field mosaic of a primate. This figure does not show the ganglion cells’ so-
mata but a contour of 1.3σ to a Gaussian fit to the receptive fields, measured
with an electrode array [54]. We refer to this figure as receptive field mosaic.
Fig. 2.2C shows the receptive field mosaic of a rat. As with primates and
cats, there are different types of receptive fields [5]. Fig. 2.2D shows a human
inner midget cell mosaic. Indicated are dendritic trees of cells, labeled with
neurobiotin. Inner midget cells are considered to be ON type RGCs although
this is not certain without an electrophysiological measurement [36]. A com-
mon model for the shape of a receptive field’s center is a Gaussian as we have
seen in Fig. 2.2. A model for the entire receptive field, taking the surround
into account, is the difference of two Gaussians [42, 49, 145, 183]. This model
is quite successful, however, on a fine scale receptive fields are not as regular
[60]. A complete cat’s alpha cell mosaic is shown in Fig. 4.1 in chapter 4.2.
The ganglion cell’s axons form the optic nerve. The two optic nerves meet in
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2.2. The Visual System
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Figure 2.3: A Three cuts through a nissl stained adult macaca mulatta brain.
Data from brainmaps.org [115]. (a) A coronal cut. The inset shows the posi-
tion of the LGN. The magnified region is shown below. The characteristic 6
layers are numbered. The scale bars correspond to 0.5 cm and 0.5 mm respec-
tively. (b) Same figure as (a) of a transverse cut through the brain. (c) Same
figure as (a) and (b) of a saggital cut through the brain. B Autoradiograph
of a monkey LGN. Label injected into right eye [83]. C Position of the LGN
in the visual pathway [89].

the optic chiasm where the nasal sides of the image are interchanged. The op-
tic tract projects to the thalamus, in particular the lateral geniculate nucleus
(LGN). This is the first region of the brain where retinal input arrives.

13



2. Fundamentals

The LGN

The nissl stained lateral geniculate nucleus, a region of the thalamus, of a
macaque monkey is shown in Fig. 2.3A (a)-(c). It shows coronal (a),
transversal (b) and saggital (c) cuts through the brain. The location of
one of the two LGNs is indicated by the red box and magnified below. Nissl’s
technique is a nucleic acid staining method, labeling specifically a neuron’s
soma. Thus, it is a good labeling technique for the cell-body rich gray matter
and the LGN. The characteristic six layer structure (layer one to layer six) of
the LGN is illustrated in the magnified images.
The neurons of the LGN are connected with axons of retinal ganglion cells.
This connection can be measured by injecting radioactive nutrients into an
eye which are absorbed by the RGCs and transported along the axon to the
LGN. The autoradiograph of a monkey LGN after application of tritiated pro-
line and tritiated fucosein is shown in Fig. 2.3B. The radioactive marker has
been injected in one eye only. The stripe structure shows prominent ocular
dominance layers in the LGN [83]. Using similar techniques, it turns out that
parasol cells are connected the cells of the magnocellular pathway and midget
cells are connected to cells of the parvocellular pathway, two distinct parallel
pathways to the visual cortex1. The six histologically distinct layers of the
LGN are organized in four layers of the parvocellular pathway and two layers
of the magnocellular pathway. The organization of the LGN’s neural layers is
schematically shown in Fig. 2.3C [89].
Neurons of the magnocellular pathway are not color sensitive, however, re-
spond to a low luminance contrast. P-cells are color sensitive and require a
great luminance contrast and high spacial frequency. A loss of P-cells leads
to a complete loss of color vision. A third type is the keniocellular pathway
to which bistratified retinal ganglion cells are connected. Their receptive field
is very large in comparison to magnocellular and parvocellular neurons. LGN
neurons have the same center-surround receptive fields as retinal neurons.
This similarity is the main reason for modeling the LGN as relay station. It is
remarkable to note that only about 10%-20% of the synaptic connections to
LGN neurons originate in the retina. The vast majority originate in different
regions of the brain, including feedback from the brain stem and the cortex.
In this sense the function of the LGN is not clear at all [89]. Axons leaving
the LGN follow the optic radiation to primary visual cortex.

The Visual Cortex

The cortex is the outermost layer of the mammalian brain. For the major
part, it is composed of cell bodies and unmyelinated fibers. It is synonymously

1Alternatively, geniculate neurons of the parvocellular pathway are called P-cells. Neu-
rons of the magnocellular pathway are called M-cells.
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Figure 2.4: A Neuroanatomy of the visual cortex. (a) Transverse cut through
a nissl stained M. Mulatta brain. The position of the visual cortex is indi-
cated and magnified. The gray/white matter composition is clearly visible.
Images are copied from brainmaps.org [115]. (b) Semischematic drawing of a
nissl stained human visual cortex with indicated layers [22]. B Circuitry in
the cortex. (a) LGN projects to primary visual cortex. Shown is a rapid
Golgi stained cat geniculate afferent [103]. (b) Horseradish Peroxidase la-
beled pyramidal cell in the macaque primary visual cortex [113]. C Schematic
illustration of the cortex. (a) Parvocellular, magnocellular and intralaminar
neurons of LGN project to different layers of V1. (b) Neural inventory of the
cortex. Pyramidal cells can project to different regions of the brain. Spiny
and smooth stellate cells are local. Smooth ones are inhibitory. Spiny stellate
and pyramidal cells are excitatory [89].

called gray matter in contrast to the myelinated nerve fibers connecting dis-
tant regions of the brain, called white matter which make out major parts of
the brain’s interior. The high cellular density makes the cortex stand out in
a Nissl stain as shown in Fig. 2.4A (a). The image shows a transverse cut
through a Macaque monkey’s brain. The red box shows the position of the
primary visual cortex. In the magnified image of the red box shown above,
the cortex appears as purple substance. Corresponding to the two cerebral
hemispheres, mammals have two visual cortices on both occipital lobes. The
visual cortex consists of the primary visual cortex or striate cortex, also called
V1 and extrastriate visual cortical areas, named as V2, V3 . . . V5. The pri-
mary visual cortex is about 1 mm thick (see figure) and consists of several
distinct layers of tissue. A common numbering scheme is the one developed
by Brodman [21]. In this scheme, there are six layers of cortical tissue, shown
in the sketch in Fig. 2.4A (b) [22]. The first outermost layer is a dense layer,
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2. Fundamentals

almost without cellular bodies, formed from axons and dendrites of layer II to
V pyramidal cells. A small number of inputs from the parvocellular pathway
arrives here. Layers II and III contain somata and dendrites of pyramidal
cells. Layer II receives relatively little LGN input and is sparsely connected to
layer IV in contrast to layer III which is heavily interconnected with layer IV.
Layer IVA does not contain any pyramidal cells which distinguishes it from
layer III. Layer IVB has a low cell density, followed by Layer IVC with a high
cell density. Layer IVC is important for conveying information of the visual
pathways and is subdivided into IVCα and IVCβ. Layer IVCα is the layer
the magnocellular pathway projects to; IVCβ is the layer for the parvocellular
pathway. The is substantial feedback from layer IVCα to layer IVB. Layer V
neurons project primarily to layers III and I. Layer VI sends axons to IVCβ
and some back to the LGN. Layer VI also receives direct input from the LGN
[100]. The layer boundaries are not strict. They should rather be considered
as an over-the-thumb mesoscopic neuroanatomic structure. Furthermore, this
numbering scheme is not the only one in the scientific community. Several al-
ternatives have been proposed [22]. We follow this numbering scheme because
it is the most common one [89].
Despite the massive feedback from the visual cortex to the LGN, analyzing
thalamic projections gives a hint as to the information flow. In general, the
LGN projects to the middle layers whereas feedback fibers originate in the
upper and lower layers. Fig. 2.4B (a) shows a LGN projection into the cor-
tex in a cat’s brain. This projection terminates in layer IV. Fig. 2.4B (b)
shows a layer III pyramidal cell with its horizontal connections, labeled by the
injection of horseradish peroxidase. It forms synaptic connections to cells in
the vicinity and to more distant cells. Such experiments allow to analyze the
circuitry of the visual cortex.
As explained above and shown in Fig. 2.4C (a), M- and P-cells of the two
major visual pathways project to different layers [89]. The neural inventory of
the visual cortex is morphologically complex, however there are two primary
types of neurons: inhibitory interneurons and excitatory neurons. Pyramidal
cells are excitatory and can contact distant regions in the brain. They are
usually larger than the highly localized interneurons. Stellate neurons can
be excitatory or inhibitory and are highly localized. This is illustrated in
Fig. 2.4C (b). Cells of the primary visual cortex have substantially different
receptive fields, compared to thalamic or retinal neurons. Cortical recep-
tive fields are elongated with specific ON and OFF regions [141] as shown
in Fig. 2.5A (b). The corresponding data is measured by insertion of an
electrode into the cortical tissue while simultaneously presenting a stimulus
Fig. 2.5A (a). Elongated receptive fields are orientation selective. Present-
ing a grating stimulus of different orientations evokes different responses, see
Fig. 2.5B. Plotting the total firing rate of a cortical neuron as a function of
the stimulus orientation gives a tuning curve, as shown in Fig. 2.5C. The
drawn line is a Gaussian fit to the measured response.
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Figure 2.5: A Sketch of the visual systems. (a) The three stations of the
visual pathway: Eye, LGN and V1 [89]. (b) Retinal and geniculate receptive
fields have a center-surround structure. Cortical receptive field are elongated
with distinct subregions [141]. B A bar stimulus in different orientations (left)
evokes different responses in a cortical neuron (right) [82]. C The measured
firing rate of a cortical neuron as function of the orientation of a stimulus
(dots); drawn is a Gaussian fit of width σ = 15◦ [40]. D An object (left)
creates an excitation in the visual cortex (right), measured as autoradiogram
with labeled glucose [163]. E A linear sum of center-surround receptive fields
of LGN neurons has the shape of a cortical receptive field [80].

A second important feature of cortical neurons is that they mirror retinal in-
puts topographically. This is called retinotopy. Fig. 2.5D shows a stimulus
presented to a monkey and Fig. 2.5C the cortical response to that stimulus,
measured with an autoradiograph, obtained by metabolization of radioactive
glucose [163]. The pattern is distorted by cortical magnification, however, there
is a one-to-one correspondence between a point in visual space and a point on
the cortex. The cortical magnification is usually expressed in millimeters on
the cortex per degree visual angle. This value varies roughly by a factor of 100
between regions of the cortex, connected with the fovea or peripheral parts of
the retina [38, 109]. The response properties of cortical neurons in different
layers are similar. In this sense, the cortex is a two dimensional sheet.
An early proposal to model cortical receptive fields is by linear summation
of geniculate projections. Adding several center-surround receptive fields at
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Figure 2.6: A Orientation preference measured with an electrode tangentially
penetrating a monkey visual cortex [12]. B A map of orientation preference
measured with optical methods in a monkey [12]. C Magnification of a topo-
logical defect: the singularity is well defined on a single cell level. This mea-
surement has been done with two-photon microscopy in the cat visual cortex.
Scale is 100 µm [130]. Note that this is not an actual inset of B but illustrates
the celllular structure of a pinwheel. D As with orientation, the surface of
the cortex is subdivided into maps of preferred spatial frequency and ocular
dominance. E Orientation preference of neurons in rat primary visual cor-
tex measured with two-photon microscopy. There is no map-like organization
[129].

different points in visual space generates an elongated structure as shown in
Fig. 2.5E. Combining this idea with retinotopy implies, that the local orien-
tation preference is determined by the ganglion cell mosaic. Discussing this
question is the focus of this thesis.

2.3 orientation maps

As already explained, the response properties of neurons perpendicular to the
cortex’ surface are similar. Their orientation preferences match. Tangentially,
the preferred orientation changes [12, 80, 82]. This is shown in Fig. 2.6A.
Following these early electrode penetration experiments, new optical methods
allowed to image maps of preferred orientations. Briefly, a grating is presented
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2.3. Orientation Maps

to the test object. Neurons of this orientation preference become active. This
activation is visible in optical absorption imaging. Taking several pictures
of the visual cortex for different grating orientations allows to draw a map
of preferred orientation without penetration of the cortex [12]. These experi-
ments revealed a remarkable structure of the visual cortex. An example for a
primate visual cortex is shown in Fig. 2.6B. An orientation preference map
as the one shown has topological singularities, so called pinwheels, embedded.
Experimentally observed pinwheels have all possible orientations represented
once around the pinwheel center. If the orientation preference changes clock-
wise, we call it a pinwheel of positive sign. If the change is counter-clockwise,
we call it a pinwheel of negative sign. Pinwheels where orientations are rep-
resented more than once are not experimentally observed. These singularities
exist down to a cellular level. Fig. 2.6C shows an image obtained with two-
photon microscopy and calcium imaging from cat V1. Each dot is a cell soma.
The color corresponds to the preferred orientation. The surface of the visual
cortex does not only show orientation preference. Neurons also have preferred
spatial frequencies and ocular dominance. This is illustrated in Fig. 2.6D.
It turns out that orientation preference maps (OPMs) exist in a variety of
mammals as in different species of monkeys, cats, ferrets, sheep, tree shrews
and humans [13, 25–27, 77, 96, 130, 165]. Fig. 2.6E shows an image of a rat’s
visual cortex, imaged with the same technique as Fig. 2.6C. The neurons in
this image have a preferred orientation, but no large scale order is visible! In
fact, rats lack orientation maps [62, 129, 134]. The pattern observed on rat
visual cortex is called a salt-and-pepper pattern. The same observation has
been made with rabbits [121] and squirrels [167]. As a matter of fact, many
rodents lack orientation maps and until today the reason is not clear.
Orientation preference maps of the galago, the tree shrew and the ferret are
shown in Fig. 2.7A. The pinwheel density per cortex area as function of the
hypercolumn size is shown in Fig. 2.7B. As a rule of thumb, the smaller the
animal, the higher the number of pinwheels per mm2 although this is not a
necessity [98]. A hypercolumn is defined as a region of size Λ2. This is a nat-
ural choice because orientation preference maps are aperiodic with a typical
scale, defined as Λ. Consequently, their power spectrum is isotropic with a
characteristic frequency. This is shown for the power spectrum of a cat’s OPM
in Fig. 2.7C. After normalization of the pinwheel density with this typical
scale, it turns out that this density is the same for all four species considered
here. This is shown in Fig. 2.7D. In fact, after normalization many universal
properties show up. Fig. 2.7E shows the pinwheel distance distribution be-
tween nearest neighbors (a) and nearest neighbors of same and opposite sign
(b). Not only are the local statistics universal - also non-local statistics have
similar properties. This is illustrated in Fig. 2.7F. Fig. 2.7F (a) shows the
pinwheel density measured in circles of different radii. Fig. 2.7F (b) shows
the standard deviation of this number for various circle radii. The powerlaw
found is universal.
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Figure 2.7: A Orientation preference maps in galago, tree shrew and ferret
are similar [96]. B Shown is the number of pinwheels per surface area on the
visual cortex [96]. C The power spectrum of an OPM is isotropic with typical
frequency. This frequency sets a natural periodicity scale of the maps [127].
D Pinwheel density normalized with the typical scale of the maps. The line
indicates 3.14, the average over different species [98]. It should be noted that
there is substantial scatter among different individuals. E Normalized with
the typical scale, OPMs have universal properties regarding (a) the pinwheel
nearest neighbor distribution and (b) the pinwheel neighbor distribution of
same and opposite sign [96]. F Similarly OPMs have common non-local prop-
erties. (a) Shown is the pinwheel density measured in circles of different
radius. As the radius increases, the pinwheel density approaches 3.14. (b)
The standard deviation of the curve in (a) is universal [96].

These observations show a remarkable universality of OPMs in different species;
a universality of which the properties are difficult to create [96]. On the other
side there are rodents with no obvious large scale structure as to orientation
preference of cortical neurons. This dichotomy is not well understood.

2.4 structure of this thesis

The next chapter discusses the idea that OPMs emerge from well structured
retinal ganglion cell mosaics. This notion, which is built on ideas from the
late 1980s received a lot of attention recently because it does not require intra-
cortical interaction to form OPMs. In this chapter, we discuss the idea that
hexagonal retinal ganglion cell mosaics create orientation preference maps by
a Moiré-Interference effect, mapped into the cortex by retinotopy.
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2.4. Structure of this Thesis

After analytically calculating a cortical cell’s receptive field and its amplitude
spectrum, we show how to extract preferred orientation and preferred spatial
frequency, thereby improving a previous method. We compare the distribu-
tion of preferred spatial frequencies with experimental data and show that
preferred spatial frequency is not determined by the distance between ON
and OFF ganglion cells. Following the description of single cells’ properties,
we calculate the corresponding OPM. We describe the OPM, its amplitude
spectrum and the pinwheel density analytically and quantitatively. We con-
firm our exact findings numerically and include a quantitative description of
the effects of positional noise on a lattice-like RGC mosaic. In summary, this
chapter presents a number of findings which challenge the Moiré-Interference
model.
In the second chapter, we try to overcome the encountered challenges by mod-
ification of the original model. We present a new type of pairwise interacting
point process which we use to reverse engineer ganglion cell mosaics from re-
alistic OPMs. We obtain aperiodic mosaics which resemble those observed
regarding the nearest neighbor distribution. These mosaics are not hexago-
nal, yet they create OPMs. In these model maps, we find a strong angular
correlation of ON/OFF ganglion cell pairs. We compare the model prediction
with X-cell mosaics of the cat. In published mosaics available to us, we cannot
find a trace of angular correlation.
There are two major findings presented in this thesis. First, the spatial layout
of OPMs generated from hexagonal ganglion cell mosaics in a linear feed-
forward model does not have the same properties as the layout of experimen-
tally observed maps. Second, ganglion cell mosaics do not have the neces-
sary spatial statistics to generate OPMs. This leads to the conclusion that
experience-dependent and self-organizing processes are essential for OPM for-
mation.
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hexagonal rgc mosaics and opms

“From man or angel the great Architect did wisely to
conceal, and not divulge his secrets to be scanned by
them who ought rather admire; or if they list to try
conjecture, he his fabric of the heavens left to their
disputes, perhaps to move his laughter at their quaint
opinions wide hereafter, when they come to model
heaven calculate the stars, how they will wield the
mighty frame, how build, unbuild, contrive to save
appearances, how gird the sphere with centric and
eccentric scribbled o’er, and epicycle, orb in orb.”

John Milton: “Paradise Lost” [118]
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3. Hexagonal RGC mosaics and OPMs

3.1 introduction

The tangential organization regarding orientation preference of neurons of the
primary visual cortex (V1) has originally been observed 50 years ago [80, 81].
More recently, optical imaging technologies revealed a map-like organization
of orientation preference [12, 13, 66, 84, 165, 178] with topological defects (pin-
wheels) embedded on a cellular level [130]. OPMs are aperiodic with a typical
scale [116, 127] and show an intriguing structure across different species with
remarkably universal properties [96, 98, 117]. This universality indicates an
underlying engineering principle which is still unclear. OPMs have been mod-
eled using different approaches [39, 47, 50, 51, 90, 93, 101, 104–106, 128, 139,
140, 152, 158, 159, 180] of which most rely on some sort of self-organization.
However there is experimental evidence indicating that there are experience
independent mechanisms which influence the formation of OPMs. Orientation
selectivity in visual cortical neurons can be observed as soon as kittens open
their eyes [81]. Organization into OPMs develops independently from visual
input [24, 32, 33] and is remarkably static [25, 63]. This implies the influence
of an external mechanism fed into the cortex as firstly noticed by Soodak [153,
154]. After silencing the cortex, visual cortical neurons remain orientation se-
lective. The preferred orientation correlates with the orientation predicted by
the thalamic afferents [26]. The same holds for the unsilenced cortex, yet the
correlation is not as strong [87]. One can interpret these findings as afferents of
which the connections’ strength is determined by Hebbian learning to match a
cortically self-organized map. Nevertheless, this reflects an interplay between
afferents and a self-organized structure of the cortex. Note that this is not the
only reported interplay between OPMs and features on the retina [1].
Retinal ganglion cells (RGCs), specific neurons in the retina collecting vi-
sual information [54, 110, 171] communicate this information to the brain.
The ganglion cells’ receptive fields (RFs) have a very distinct center-surround
structure [49, 78, 145]. So called ON cells respond strongest to an illumination
of a central spot surrounded by a dark annulus and for OFF cells vice versa.
The RGC’s axons form the optical nerve and contact neurons in the lateral
geniculate nucleus (LGN). The associated thalamic receptive fields resemble
retinal receptive fields [141]. Cortical neurons receiving thalamic input show
orientation selectivity. This selectivity is associated with an asymmetric recep-
tive field, usually an elongated structure with an ON and an OFF subregion
[79, 80]. This feature distinguishes cortical cell receptive fields (RFs) from the
receptive fields of ganglion cells in the retina and geniculate receptive fields in
the LGN. An early approach to construct a V1 neuron’s RF is by linear sum-
mation of thalamic receptive fields [79, 80]. V1 neurons have corresponding
positions on the retina defined by retinotopic maps [38, 45, 163]. The combi-
nation of both ideas implies that orientation preference is influenced, if not
determined by the RGC mosaic [26, 80, 153, 154]. Studies on the ganglion
cell mosaic (for the cat e.g. [174]) allowed its simulation [48, 143, 186] and
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subsequently the calculation of orientation maps defined by retinal input [131,
132, 143, 144].
The Soodak-Ringach model [131, 132, 143, 144] building on previous ideas
[79, 80, 153, 154] models OPMs as Moiré-Pattern of hexagonal ON and OFF
RGC mosaics [4, 124]. Early studies showed how cortical receptive fields and
orientation preference emerge by stochastic wiring of thalamic inputs [143].
Applying this idea to the entire cortex lead to the qualitative calculation of
maps of orientation preference, anisotropy, spatial frequency and metabolic
activity [144]. More recent publications by Paik et al. [131, 132] aim for quan-
titative results, making specific predictions. The first prediction is that OPMs
have hexagonal symmetry. This hexagonal structure could be found in tree
shrew, ferret and cat data [132], however, the techniques applied to analyze
experimental data have recently been questioned [97]. The second prediction
is a different angle representation and a specific distance-distribution between
pinwheels of clockwise and counter-clockwise sense [131]. The non-uniform an-
gle representation around pinwheels has been found in tree shrew maps. The
distance-distributions reported are compared to the same tree shrew maps and
found consistent, however, there is no comparison to the rich data set already
available [96].
This chapter gives a systematic, quantitative and reproducible understand-
ing of receptive fields and OPMs from an interference effect of hexagonal ON
and OFF ganglion cell mosaics. We calculate cortical receptive fields exactly
and show how they correspond to Gabor-Wavelets. The analytic expression
for receptive fields allows to fit experimentally observed receptive fields and
to estimate model parameters. We present a new approach in identifying a
preferred stimulus, improving the previous method [144]. The effect of lattice
noise on an OPM in the linear feed-forward model are far from understood.
Neither is it clear if and how the interference model can reproduce the uni-
versal properties of OPMs found in different species [96, 98]. We address both
question by calculating OPMs, their power spectra and the pinwheel-density
analytically. We show that the pinwheel-density in OPMs resulting from the
Moiré-Interference is ρ = 2

√
3 ≈ 3.48 and, hence, is too large to fit obser-

vations in different species. We express OPMs as phase of a complex field,
written in terms of plane waves [158, 159]. For increasing noise on the gan-
glion cell mosaic, we show that the peaks of the Moiré-Modes are absorbed
into a background with a Gaussian amplitude spectrum. We show that the
hexagonal OPM predicted by the Soodak-Ringach is identical to the solution
of a self-organization model, previously postulated to described joint pattern
formation of ocular dominance and OPMs. To calculate pinwheel-distance
distributions [131], one needs to estimate the typical scale of a map. We
discuss the difficulties of applying the established wavelet-method [94, 95] of
estimating the typical scale of a Soodak-Ringach OPM.
After a mathematical description of the Soodak-Ringach model, we firstly
calculate receptive fields and their properties. Next, we calculate their power
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3. Hexagonal RGC mosaics and OPMs

spectra and show how to extract preferred stimuli. The exact result allows us
to analyze previous methods [143, 144] and to improve them. We compare our
findings regarding preferred spatial frequency with literature values [20] and
find that the model predicts a distribution too narrow to fit this data. In the
next section we turn our attention towards OPMs and their properties. We
calculate OPMs and their power spectra for a noise free mosaic exactly. This
noise-free OPM can be written as the phase of a complex field z(x) composed
of 6 plane waves. Next, we calculate OPMs created by noisy mosaics. We
describe their spectra and show that it is very difficult to create aperiodic
OPMs with a typical scale as experimentally observed [76, 116, 127]. Finally,
we find that OPMs generated by the Soodak-Ringach model show a charac-
teristic anisotropic angle representation. There is experimental evidence for
an overrepresentation of orientation preference for cardinal angles [31] and
further evidence for visual experimence promoting an isotropic angle cover-
age [30]. However, there is no evidence for the type of orientation preference
anisotropy that the Soodak-Ringach model predicts.

3.2 results

The Model and Receptive Fields

Fig. 3.1A illustrates the model described here. RGCs are monosynaptically
connected to LGN cells. The LGN neurons mirror the ganglion cell mosaic
and the ganglion cell’s receptive fields. Neurons of primary visual cortex
merge the receptive fields of several LGN neurons thus expressing receptive
fields with an orientation preference. Different neurons across layer IV of
the visual cortex sample from different LGN neurons. They have different
receptive fields and thus different orientation preference. Specifically, sampling
from a hexagonal mosaic of ON and OFF RGCs, as shown in Fig. 3.1B,
creates a cortical receptive field (Fig. 3.1C) of which the preferred orientation
changes periodically across the visual cortex (Fig. 3.1D). The left hand side
of Fig. 3.1D shows the orientation preference of all cortical neurons, whereas
the right hand side shows the low pass filtered orientation preference map.
Receptive fields (Fig. 3.1C) and orientation maps (Fig. 3.1D) are calculated
analytically. We now go step by step through this calculation.
The linear-non-linear model is a common method of calculating the response,
i.e. firing rate of a cell, corresponding to a certain stimulus [53, 69]. It consists
of two parts, firstly a linear filter acting on the stimulus and secondly, a static
non-linearity. The linear filter applied by neurons of primary visual cortex is
what we call the receptive field (RF). Subsequently the response S is calculated
by taking the inner product of the receptive field exposed to a stimulus, in
this case an illumination across the retina L(x) so that S =

∫
d2x RF(x) L(x).

Since S can become negative, it is filtered with the static non-linearity N , e.g.
it is half-wave rectified [69] or filtered with a sigmoidal function to yield the
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Figure 3.1: A Sketch of the early visual pathway as assumed in the model.
Each LGN neuron receives input from only 1 RGC, and topography is main-
tained. A visual cortical neuron (green) receives input from several LGN cells
with weights denoted as w1, w2, . . . . Different cortical neurons of layer IV
(drawn in black) have different receptive fields, creating an OPM across the
visual cortex indicated as color. The inset illustrates the synaptic weights for
different LGN neurons connected to a V1 neuron encoded as size. Arrows show
three important LGN/retinal inputs for this neuron, corresponding schemati-
cally to the three RGCs and thalamic neurons shown. Diamond-shaped RGC
projections have synaptic weights < 10−12 (see C). B Moiré-Interference be-
tween a hexagonal ON (white dots) and OFF (black dots) RGC lattice with
relative orientation ∆α and lattice constants r and r′ respectively (black bars).
The red dot in the center of the green square indicates the receptive field center
of a cortical neuron. ↗
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3. Hexagonal RGC mosaics and OPMs

firing rate ν = N(S). We neglect the non-linearity assuming that it does not
change orientation and spatial frequency preference [143, 144]. The common
model for a ganglion cell’s receptive field is the difference of two Gaussians
[49]. For simplicity and as originally proposed in [143], we model their receptive
field (GRF) using a single Gaussian function of uniform width σr, localized at
the ganglion cell’s receptive field center xj

GRFj(x) = ± exp

(
−(xj − x)2

2σ2
r

)
. (3.1)

A plus or minus sign in front of the ganglion cell’s receptive field, GRF, in-
dicates an ON respectively OFF center cell. Adding several receptive fields
with positive synaptic weights wj

RFy(x) =
∑
j

wj(y)GRFj(x) (3.2)

yields the cortical receptive field (RF) of a V1 neuron with receptive field
center at y sampling from several ganglion cells in a linear approximation
[80]. This is indicated in Fig. 3.1A. The synaptic weights are chosen to be
Gaussian with scale σs.

wj(y) = exp

(
−(xj − y)2

2σ2
s

)
where xj is the center of a retinal receptive field and y is the center of the
cortical receptive field. Thus, the synaptic weights decay rapidly over distance.
This is indicated as inset in Fig. 3.1A. As a starting point, we assume that ON
and OFF center cells are localized on a perfectly hexagonal grid L, Fig. 3.1B,

Figure 3.1: C Receptive field of the V1 neuron with receptive field center
shown in B and synaptic weights shown in the inset in A. Red hues indicate
ON subregions and blue regions indicate OFF subregions. White and black
dots mark ON and OFF cell positions. The receptive field corresponds to the
green box in B and the inset in A. The center of the receptive field is indicated
as a red dot. Dashed black lines show spacing and orientation of the preferred
stimulus. The V1 neuron is most responsive to a grating with wavelength
λpref. Solid black lines indicate the construction of the preferred angle ϑpref

of the neuron. D The orientation preference of all V1 neurons encoded as
color. V1 neurons are aligned on a squared lattice sampling from the retina as
indicated in B and C. Right hand side: the low frequency contributions of the
OPM (see text for details). The arrow indicates the position of a V1 neuron
similar to the one in C.
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with different lattice constants r and r′,

L =

((
1
0

)
k +

1

2

(
1√
3

)
l

)
f ∀ k, l ∈ Z,

where f = r, r′ is the lattice constant. Later, we include Gaussian noise
applied to each lattice point [132, 143], but for now we use the unperturbed
lattice. Note that for σs on the order of the lattice spacing, each cortical cell
samples form a very small number of ganglion cells. Thus, well tuned cortical
cells have a receptive field dominated by a small number of ON- and OFF-
RGC (see Fig. 3.1C).
Every hexagonal lattice can be written as sum L = L1 +L2 of two rectangular
lattices with orthogonal base vectors by separating even and odd numbers in l
and shifting the l-sum so that the x-component is 0. Here, the two rectangular
lattices are

L1 =

((
1
0

)
k +

(
0√
3

)
l

)
f ∀ k, l ∈ Z,

L2 =

((
1
0

)
k +

(
0√
3

)
l +

1

2

(
1√
3

))
f ∀ k, l ∈ Z.

We additionally rotate the lattice vectors of L by

Ω(α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
. (3.3)

The ON mosaic is rotated with an angle α, the OFF lattice with an angle
α′. The difference between the angles is ∆α as shown in Fig. 3.1B. As a
consequence of writing the hexagonal lattice as sum of independent rectangular
lattices, the sum (Eqn. (3.2)) for the ON and for the OFF-sublattice factorizes
into two independent sum which can be evaluated exactly. The result for a
single sub-lattice (either ON or OFF) is

R
ON/OFF
α,r,y (x) = T (Θ3 (b eφ, τ) Θ3 (b er, ξ) + Θ4 (b eφ, τ) Θ4 (b er, ξ)) (3.4)

where

b =
xσ2

s + yσ2
r

σ2
s + σ2

r

er = −π
r

(
cos(α)
sin(α)

)
eφ = − π√

3r

(
− sin(α)
cos(α)

)
τ = e

− 2π2σ2rσ
2
s

3r2(σ2r+σ
2
s )

ξ = e
− 2π2σ2rσ

2
s

r2(σ2r+σ
2
s )

T =
2πσ2

rσ
2
s√

3r2(σ2
r + σ2

s)
exp

(
− (x− y)2

2(σ2
s + σ2

r )

)
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3. Hexagonal RGC mosaics and OPMs

and Θ3 and Θ4 are the third and fourth Jacobi theta functions [176]. For
details and the derivation of Eqn. (3.4), see Materials and Methods. ON/OFF
indicates that this is the result for one sublattice of lattice constant r, oriented
in an angle α, sampling from a receptive field center y. The full receptive field
is generated from the ON and OFF sublattice linearly superposed

RFy(x) = RON
α,r,y(x)−ROFF

α′,r′,y(x) (3.5)

where α and r are the angle and the lattice of the ON lattice and α′ and r′ are
the angle and the lattice constant of the OFF lattice. Fig. 3.1C shows a plot
of Eqn. (3.5). The parameters used for this plot are given in the Materials
and Methods section.
The receptive field calculated here resembles a typical simple cell receptive
field with a size of about 1◦ [88, 111]. Eqn. (3.5) allows to fit experimentally
observed receptive fields to estimate receptive field size σr, the scale of the
synaptic connections σs and the properties of the lattice L. In the following
section, we extract the values of preferred angle ϑpref and preferred spatial
frequency λpref as shown in Fig. 3.1C from the receptive field. This is the
underpinnings of analyzing OPMs. As we have shown earlier, this calculation
gives us an exact result for the linear operator. We assume for the following
sections that the non-linearity does not influence preferred angle and spatial
frequency; We comment on this issue in more detail below.

Tuning Curves and Power Spectra of Receptive Fields

The receptive field is a function in visual space so that S =
∫

d2x RF(x) L(x)
is the response of a cell associated with an illumination pattern L(x) onto the
receptive field. The response for a wave-like illumination, ignoring the phase of
the wave, can be calculated by using a plane wave L(x) = exp(−ikx) and sub-
sequently taking the absolute value squared |S|2. The absolute value squared
is phase independent and solely a function of the properties of the wave-vector
k. Since this is the Fourier transform, we give the Fourier spectrum of the
receptive field a new symbol,

Ry(k) =
1

2π

∫
d2x RFy(x)e−ikx. (3.6)

We refer to the absolute value |Ry(k)| as amplitude spectrum. This is the
response to a grating with wave vector k = (k cos(ϑ), k cos(ϑ)), where ϑ is the
orientation and k is the spatial frequency. Ignoring the phase of the stimulus,
a tuning curve for a specific spatial frequency k corresponds to the absolute
value of the Fourier transform,

TC(ϑ, k) = |Ry(k cos(ϑ), k sin(ϑ))|. (3.7)

We can calculate the Fourier transform of Eqn. (3.5) by transforming Eqn. (3.1)
and subsequently carrying out the sum for the two rectangular lattices L1 and
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3.2. Results

L2 as above. Interchanging sum and integral is valid because the Gaussian
sums are uniformly convergent. The result is

R(k)
ON/OFF
α,r,y = U (Θ3(ceφ, ν)Θ3(cer, ζ) + Θ4(ceφ, ν)Θ4(cer, ζ)) (3.8)

where

U =
2πσ2

rσ
2
s√

3r2
exp

(
−iky − 1

2
k2
(
σ2
s + σ2

r

))
c = (y − iσ2

sk)

ν = exp

(
−2π2σ2

s

3r2

)
ζ = exp

(
−2π2σ2

s

r2

)
.

This result is valid for one sublattice of lattice constant r, oriented in an angle
α. The Fourier spectrum of the full receptive field consists of the ON and
OFF sublattice spectra linearly superposed

Ry(k) = R(k)ON
α,r,y −R(k)OFF

α′,r′,y . (3.9)

For details of the derivation of Eqn. (3.8) and a discussion of Eqns. (3.5)
and (3.9) for different parameters σr and σs, see Materials and Methods.
Fig. 3.2A shows a normalized amplitude spectrum with parameters as in
Fig. 3.1C. Fig. 3.2B shows the corresponding tuning curves for different
spatial frequencies, normalized to their maximum values for comparison.
To extract the preferred spatial frequency kpref = 2π/λpref and the preferred
angle ϑpref one can follow the proposal by [144] and calculate a complex num-
ber µ

µ =

∫
d2k |Ry(k)| · e2i arg(k)|k|∫

d2k |Ry(k)|
=

=

∫∞
0 dk

∫ 2π
0 dϑ k2|Ry(k cos(ϑ), k sin(ϑ))|e2iϑ∫∞

0 dk
∫ 2π

0 dϑ k|Ry(k cos(ϑ), k sin(ϑ))|

(3.10)

so that kpref = |µ| and ϑpref = arg(µ)/2. Next, we define a measure for a tuning
curve’s orientation selectivity, called orientation selectivity index (OSI). One
such measure is the circular variance [20, 160, 182], generalized for a continuous
tuning curve [144]

OSI(k) =

∣∣∣∫ 2π
0 dϑTC(ϑ, k)e2iϑ

∣∣∣∫ 2π
0 dϑTC(ϑ, k)

, (3.11)

where the tuning curves are defined by Eqn. (3.7). The preferred spatial
frequency kpref calculated by kpref = |µ| gives the brown tuning curve in
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3. Hexagonal RGC mosaics and OPMs

Method kpref [mm−1] kpref [◦/deg] OSI

|µ| 4.8 1.1 0.15
argmax{k} (|R(k)|) 12.7 2.9 0.26

argmax{k} (OSI(k)) 17.8 4.1 0.27

Table 3.1: Comparison of kpref obtained from the three methods for the re-
ceptive field shown in Fig. 3.1C and Fig. 3.2A. The corresponding OSI
(Eqn. (3.11)) is also calculated.

Fig. 3.2C and an orientation selectivity indicated in Fig. 3.2D as brown
line. The |µ| −method is derived from the measure of orientation selectivity
(Eqn. 3.11) to estimate the position of the center-of-mass of the peaks of the
receptive field: by doubling the phase of the vector k, the function is wrapped
around the origin (see Figs. 3.3F and 3.3G). Calculating integral (3.10) gives
the center-of-mass of the function shown in Fig. 3.3G. For reasons given be-
low, we compare the performance of this method with two different methods.
The first method is finding the maximum of the amplitude spectrum

kpref = argmax{k} (|R(k)|) .

The second method is optimizing the orientation selectivity

kpref = argmax{k} (OSI(k)) .

The results for these three methods are shown in Fig. 3.2A, 3.2C and 3.2D
as brown, yellow and purple curves. To compare the numerical values, all
three results are given in Tab. 3.1. For the parameters used and details of
the conversion from µm−1 to ◦/deg, see Materials and Methods or the follow-
ing chapter. We use the maximum method to find kpref instead of the original
proposal for the following reasons. First, experiments use the greatest response
to identify the preferred spatial frequency [20, 86, 119]. Following the same
method makes our results comparable to data (see Fig. 3.2F). Furthermore, it
is a natural choice to use the maximum-response of a cortical neuron to quan-
tify the optimal stimulus, analogously as it is done for the preferred angle.
Second, the Soodak-Ringach method systematically underestimates the pre-
ferred spatial frequency (Fig. 3.2C and Tab. 3.1). Calculating kpref with the
new method yields better tuned cells. Third, a greater orientation-selectivity
is equivalent to finding sharper tuning curves which follows the paradigm
’sharper is better’ (e.g. [155] although this method is disputed[150]). Fourth,
as opposed to the other methods monotonic non-linearities being applied to
|R| to calculate a neurons firing rate do not change the position of the max-
imum. This is consistent with typical non-linearities like half-squaring and
over-rectification [69]. Finally, the preferred spatial frequency from the maxi-
mum of the receptive field and the frequency for greatest orientation selectivity
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Figure 3.2: A Power spectrum of a V1 neuron’s receptive field calculated with
Eqn. (3.9). The absolute value |R| is shown as gray scale. The circles indicate
different spatial frequencies as shown on the right. The yellow, the brown
and the pink circle are defined by three different methods of calculating the
preferred spatial frequency. ↗
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3. Hexagonal RGC mosaics and OPMs

give very similar results, however, finding the maximum of the receptive field
is analytically and numerically easily feasible. Note that calculating ϑpref is
very robust since the TC peaks are localized at the same position for different
spatial frequencies (Fig. 3.2B). Thus, changing the definition of the preferred
spatial frequency does not change the outcome of previous studies regarding
the preferred angle ϑpref.
Using the maximum method, we continue to calculate ϑpref and kpref. With
Eqn. (3.9) we find for the absolute value squared of the receptive field

|R(k)|2 ∝ exp
(
−k2(σ2

s + σ2
r )
)
·

·

∣∣∣∣∣∣∣Θα,r
3 Θα,r

3 + Θα,r
4 Θα,r

4 −Θα′,r′

3 Θα′,r′

3 −Θα′,r′

4 Θα′,r′

4︸ ︷︷ ︸
G(k)

∣∣∣∣∣∣∣
2

using the abbreviation Θα,r
i Θα,r

i = Θi(ceφ(α, r), τ)Θi(cer(α, r), ζ). The |R(k)|2
function is composed of an anisotropic part (the elliptic functions) and a Gaus-
sian envelope. To calculate ϑpref and kpref, we expand the anisotropic part
|G(k)|2 to quadratic order

|R(k)|2 ≈ exp
(
−k2(σ2

s + σ2
r )
)(
|G0|2 +

1

2

(
k1 k2

)
H0

(
k1

k2

))
(3.12)

Figure 3.2: B The (normalized) TCs corresponding to the circles in A. C The
TCs corresponding to the brown, the yellow and the pink circle in arbitrary
units. D Orientation selectivity calculated from Eqn. (3.11) and the ampli-
tude spectrum in A as function of frequency. The brown, the yellow and the
pink line correspond to the three preferred spatial frequency candidates in
Tab. 3.1. E The distribution of preferred spatial frequencies (calculated with
the maximum method ). The greatest possible preferred spatial frequency
(Eqn. (3.14)) is indicated by the purple line. The blue histogram shows data
of all cortical cells, whereas the red one is filtered for cells with orientation
selectivity greater 0.25. F Same figure as E shown in units of cycles/degree.
This allows the comparison with experimental data [20] (shown in green). G
Preferred spatial frequency for different V1 neurons as a function of the reti-
nal receptive field size σr. The colors correspond to different positions on the
retina from where the V1 neurons sample. The insets show receptive fields
for σr = 70 µm. The three positions on top (red, pink and green) indicate
a sequence with increasing ON/OFF RGC distance. All three positions are
indicated by the arrows in the second inset. Black and white dots show OFF
and ON RGCs. The colors indicate ON and OFF subregion. The purple curve
illustrates a V1 neuron with a very asymmetric receptive field and the blue
curve one with a very symmetric receptive field.
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where H0 is the Hessian at the origin and G0 = G(k = 0). As a consequence
of the k → −k symmetry of |G(k)|, there are no even terms in the Tay-
lor expansion of |G(k)|2. Note that this approximation is a very good one.
The k-dependent argument of the elliptic functions for biologically reasonable
parameters is ce ≈ |k|σ2

s/r ≈ 10−2 (see Eqn. (3.8)). For a numerical com-
parison of the full function |R(k)|2 and the approximation with an expanded
anisotropic part, see Materials and Methods.
The Hessian

H0 =

 ∂2|G|2
∂k21

∂2|G|2
∂k1 ∂k2

∂2|G|2
∂k2 ∂k1

∂2|G|2
∂k22

 ≡ (a b
b c

)

is composed of derivatives of the elliptic functions. To calculate the preferred
orientation, we use that

h(θ) =
(
cos(θ) sin(θ)

)
H0

(
cos(θ)
sin(θ)

)
gives the second directional derivative in the direction of (cos(θ), sin(θ)). Car-
rying out this product gives

h(θ) = a cos(θ)2 + 2b cos(θ) sin(θ) + c sin(θ)2.

The preferred angle can be found as the maximum of h(θ),

ϑpref = atan

(√
(a− c)2 + 4b2 − a+ c

2b

)
. (3.13)

After identification of the preferred angle, we can calculate the second deriva-
tive in the direction of steepest curvature

λ =
(
cos(ϑpref) sin(ϑpref)

)
H0

(
cos(ϑpref)
sin(ϑpref)

)
and calculate the maximum of the power spectrum in this direction

o(k) = exp
(
−k2(σ2

s + σ2
r )
)(
|G0|2 +

k2

2
λ

)
,

which we find at

kpref =

√
1

σ2
s + σ2

r

− 2|G0|2
λ

≤

√
1

σ2
s + σ2

r

. (3.14)

Since λ > 0 (k = 0 is a local minimum), Eqn. (3.14) gives a cut-off spatial

frequency of kcrit =
√

1
σ2
s+σ2

r
. Fig. 3.2E and Fig. 3.2F show histograms of
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3. Hexagonal RGC mosaics and OPMs

the preferred spatial frequency kpref calculated numerically for various RGC
mosaics (see Materials and Methods). Taking only well tuned cells (applying
the orientation selectivity cutoff at OSI > 0.25 reported in the literature [132,
144]) results in the red histogram, using all cortical cells yields the blue one.
Both histograms are localized at smaller frequencies k < kcrit than the cutoff
as we expect. Reexpressing the spatial frequency measured in µm−1 in cycles
per degree (see Materials and Methods) on the retina allows us to compare
the results with experimental data [20] (green histogram in Fig. 3.2F). We
find that the range of preferred spatial frequencies predicted by the model
are substantially more narrow than the ones experimentally observed. This is
consistent with the idea that retinal input delivers a blueprint upon which cor-
tical signal processing is built. The correlation of highly orientation selective
cells and high preferred spatial frequencies is what shifts the red histogram
towards the cut-off (firstly observed numerically by [144]). The empirical val-
ues shown in green [20] have been measured at eccentricities between 1◦ and
6◦. The cortical magnification in this region changes between 1 mmdeg and
5 mmdeg [38]. The receptive field center size is ≈ 0.04 deg and scatters be-
tween 0.01 deg and 0.08deg for P-cells [35]. The model might do better by
incorporating the change in cortical magnification and RGC properties. This
is, however, difficult to combine with the notion of a hexagonal and crystalline
RGC mosaic because the cellular density changes substantially as well.
Now that we understand how to calculate preferred spatial frequency, we dis-
cuss the possibility of calculating maps of preferred spatial frequency. Eqn. (3.14)
implies that the preferred spatial frequency is only determined by the param-
eter ϡ = 2|G0|2/λ. This parameter can be understood as follows: the ratio
between the DC component1 of the amplitude spectrum and the curvature of
the amplitude spectrum is largest for a cortical neuron with a single dominant
domain (either ON or OFF) in its receptive field, because in this case the DC
component is great whereas the curvature is small. For well-tuned cortical
cells with a dipole receptive field, G0 = 0, wherefore they have large preferred
spatial frequencies. In this sense it is neither the lattice geometry nor the
distance between ON and OFF RGCs, which determines the preferred spa-
tial frequency but only the properties of the receptive field. These properties
are determined by eccentricity [35] and thus, the preferred spatial frequency
should decrease substantially for larger eccentricity. On the other hand, maps
of preferred spatial frequency are isotropic across the cortex (despite local
fluctuations) [85, 86] and thus eccentricity independent. The observation that
the receptive field properties are essential for spatial frequency preference is
quantified in Fig. 3.2G. The preferred spatial frequency of the red, pink and
green receptive field is almost the same for a wide range of receptive field
sizes σr, although the distance between the pair of cells is decreasing from

1Direct current, the zero-frequency contribution of a signal, i.e. the amplitude spectrum
component at the origin.
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left to right. The insets show the cortical cell receptive fields. The arrows
indicate the position of the green and the red colored cortical cell’s receptive
field center. The purple curve shows the influence of asymmetry of the dipole
(in this case the OFF cell is more dominant). As we expect, the preferred
spatial frequency is systematically smaller. The preferred spatial frequency
k → 0, because for greater σr, the OFF subregion cancels the response of the
ON cell and thus the cortical cell is only selective for k = 0. This happens if

1

σ2
s + σ2

r

= ϡ.

To give an example, this occurs at σr = 113.7 µm for the purple curve (note
that ϡ is not a function of σr). The colored dots in Fig. 3.2G are numeri-
cally calculated positions of the maximum of |R(k)|2. The drawn lines show
Eqn. (3.14) with values of ϡ given in Tab. 3.2. For a comparison of the max-
imum of |R(k)|2 and Eqn. (3.14), the relative error between dots and curve at
σr = 70 µm is calculated and given in Tab. 3.2. This is also the value for the
receptive field size σr for which the insets have been calculated. We chose this
particular value because this is the one used throughout this thesis. Again,
this comparison shows the validity of the approximation of the non-isotropic
term. The sequence of receptive fields and their power spectra for different
σr shown as blue dots are explicitly shown in Materials and Methods (see
Fig. 3.9).
We conclude that spatial frequency preference depends only weakly on the
distance between RGC cells, from which a V1 cell samples and is mainly
determined by the parameters chosen. As a consequence, well tuned cells
have a similar preferred spatial frequency whereas poorly tuned cells have a
very small one. Selecting cells with a high orientation selectivity makes their
preferred spatial frequencies uniform. The Soodak-Ringach model’s predic-
tion for preferred spatial frequency maps, after filtering for cells with great
orientation selectivity, is thus that it should be very uniform, positively cor-
related with orientation selectivity and eccentricity dependent. This is in line
with previous numerical simulations [144]. OSI-filtered receptive fields in the
Soodak-Ringach model cover a range of factor ≈ 2 without the effects of ec-
centricity. Experimental observations, however, show that preferred spatial
frequencies cover about one order of magnitude, independent of eccentricity
[20, 85, 86]. Following this analysis of tuning curves and the properties of
receptive fields, we continue to calculate orientation preference maps.

Orientation Preference Maps from noise-free RGC mosaics

In the previous calculation we have already obtained an equation (Eqn. (3.13))
to calculate an OPM. A plot of this equation is shown in Fig. 3.3B. The
corresponding ON/OFF cell mosaic is shown in Fig. 3.3A. An intriguing
structure is visible with domains of different orientation preference. A small
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Color ϡ/10−6µm−2 Error

purple 75.0 3.4%
red 1.75 2.5%

green 0.853 7.2%
magenta 0.361 1.2%

blue 0.000382 0.23%

Table 3.2: Values for the parameter ϡ for the 5 curves in Fig. 3.2G. Addition-
ally, the relative difference between the dots (numerically calculated maxima
of |R|2) and the drawn line (Eqn. (3.14) ) for σr = 70 µm is calculated.

section is magnified in the inset of Fig. 3.3B. The small subregions are not
an effect of poorly tuned cells but rather a natural outcome of the Moiré-
Interference process. Fig. 3.3C, Fig. 3.3D and Fig. 3.3E show cortical
cell receptive fields associated with three points on the OPM. The receptive
fields illustrate how rapidly orientation preference changes across the map.
We calculate (see below) the slowly varying contributions to the OPM across
the surface of the cortex: the slowly-varying (or low-frequency) contributions
for the map in Fig. 3.3B are shown in Fig. 3.3H. The circular distance
between both maps is shown in Fig. 3.3J. This is to illustrate that the small
subregions show orthogonal orientation preference in respect to their vicinity.

The procedure of the Soodak-Ringach model is that after filtering cortical
cells for those with high orientation selectivity, the orientation preference of the
resulting group of cells is smoothed with a Gaussian to generate a continuous
orientation preference map [144]. A Gaussian smoothing corresponds to a low-
pass filtering of the amplitude spectrum. Thus, to calculate the smoothed
OPM of the Soodak-Ringach model we need to identify the low-frequency
contributions of the map shown in Fig. 3.3B.
Eqn. (3.9) can be rewritten as a sum by expanding the Jacobi theta functions
[176] to

|Ry(k)|2 =
∑
i

(
Ci exp

(
− 1

2σ2
(k− ai)

2

)
+ Ci exp

(
− 1

2σ2
(k + ai)

2

))
(3.15)

for some Ci and ai (for details see Materials and Methods). This sum is
an infinite sum of pairs of Gaussians. The width of the Gaussians is σ =√

2(σ2
r + σ2

s)
−1

and independent of the index i. Every single pair of the sum
corresponds to the amplitude spectrum of a Gabor patch with wave vector ai
and width (in real space) σ̃ =

√
2(σ2

r + σ2
s). Thus, Soodak-Ringach receptive

fields can be written as infinite sums of Gabor patches. The preferred ori-
entation of the infinite sum of Gabor patches is the direction where one can
find the center of mass of the Gaussians. We apply this analogously to the
calculation of preferred orientation with Eqn. (3.10). Note that this equation
may not be a good choice of finding the preferred spatial frequency, however,
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it works well for the almost frequency independent preferred angle. The am-
plitude spectrum of a single Gabor patch is a pair of Gaussians symmetrically
arranged around the origin. Due to the π-symmetry, the two peaks are located
at angles ϑ and π + ϑ. Thus, to calculate the direction towards the center of
mass of the peak, one can double the phase and calculate the center-of-mass
of the resulting function. Therefore, by calculating the complex number

µ =
∑
i

Ci|ai| exp(2i arg(ai)) (3.16)

we can find the preferred orientation as arg(µ)/2. Here arg(a) is the angle
of the vector a relative to the x-axis. This idea is illustrated in Fig. 3.3F,
where a amplitude spectrum of a receptive field is shown. Fig. 3.3G shows
the same amplitude spectrum after both peaks have been overlaid using the
π-periodicity, i.e.

|Ry(k cos(φ), k sin(φ))| → |Ry(k cos(2φ), k sin(2φ))|. (3.17)

Again, this approach is technically the same as Eqn. (3.10). Calculating kpref

with this method yields too small results because the center-of-mass of the
wrapped amplitude spectrum in Fig. 3.3G is substantially smaller than the
peak of the function. However, the calculated preferred angle can be consid-
ered to be reliable.
The considerate reader might want to have a look at chapter Materials and
Methods to confirm that Eqn. (3.16) is an expression for µ in terms of a

Figure 3.3: A A section of a ganglion cell mosaic. ON and OFF RGCs are
shown as white and black dots. The inset shows a magnified region of the
mosaic in which the center of three V1 neurons’ receptive fields lie (brown,
green and blue). B The OPM created from the mosaic in A. The inset is a
magnified region of the OPM with three circles corresponding to the three
neurons in A. C-E The RFs corresponding to neurons encoded in brown (C),
green (D) and blue (E). Dots indicate ON and OFF RGCs, colored dots
indicate the center of the receptive field. The coloring scheme shows ON and
OFF subregions. F Power spectrum of a receptive field where the absolute
value is encoded as gray scale. The preferred spatial frequency is indicated by
the blue arrow, the preferred direction by ϑpref and the green line. G Same
amplitude spectrum plotted with doubled phase. The maximum is now at
2ϑpref, indicated by the green line. The preferred spatial frequency is still on
the circle indicated by the blue arrow. H The low-frequency contributions of
the map shown in B. J Circular distance between the B and H shown as gray
scale. Note the dark color of the small subdomains, indicating an orthogonal
orientation preference of the subdomains in comparison to their vicinity.
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m n o p ki |k| Phase

1 1 1 1 2((er − e′r) + (eφ − e′φ)) kc −1
2

(
1 + i

√
3
)
ϕ0

-1 -1 -1 -1 −2((er − e′r) + (eφ − e′φ)) kc −1
2

(
1 + i

√
3
)
ϕ0

1 -1 1 -1 2((er − e′r)− (eφ − e′φ)) kc −1
2

(
1− i

√
3
)
ϕ0

-1 1 -1 1 −2((er − e′r)− (eφ − e′φ)) kc −1
2

(
1− i

√
3
)
ϕ0

0 2 0 2 4(eφ − e′φ) kc ϕ0

0 -2 0 -2 −4(eφ − e′φ) kc ϕ0

2 0 2 0 4(er − e′r)
√

3kc -

-2 0 -2 0 −4(er − e′r)
√

3kc -

Table 3.3: The low-frequency contributions of the OPM. The sum is evaluated
over indices m,n, o, p. The vectors ki are the corresponding wave vectors and
|ki| their absolute values. Phase indicates the phase of the coefficients.

Fourier series in y. The low frequency contributions of this Fourier series are
contained in a sum, explicitly

µlf(y) =
∑

m,n,o,p

f(m,n, o, p) exp(2iy(neφ +mer − oe′r − pe′φ)), (3.18)

with coefficients f(m,n, o, p) and four indices. The index lf in µlf indicates,
that we neglect high frequency contributions. By calculating the first terms
of Eqn. (3.18) we can find the low frequency contributions of the orientation
map. After evaluating the sum we end up with the contributions shown in
Tab. 3.3. The low frequency contribution to the OPM is composed of 6
modes with the same frequency

kc =
4π√
3rr′

√
r2 + r′2 − 2rr′ cos(α− α′), (3.19)

and a fixed phase-relation. The common phase

ϕ0 =
ei(α+α′)

(
eiα

′
r + eiαr′

)
eiαr + eiα′r′

is associated with an overall rotation of the map. All 6 modes have the same
amplitude. The next modes with smaller amplitude have the frequency

√
3kc.

Defining a complex field z(y) composed of a sum of 6 plane waves with wave-
vectors ki and the phase relation in Tab. 3.3

z(y) =
∑
i

exp(ikiy),

allows us to write the OPM created by the Soodak-Ringach model as the phase
of this complex field

ϑpref(y) =
1

2
arg (z(y)) . (3.20)
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3. Hexagonal RGC mosaics and OPMs

This specific pinwheel crystal, called a Braitenberg Pinwheel Crystal by Reichl
et al. [19, 139, 140], can be created exclusively by means of self-organization.
Braitenberg suggested (relying solely on electrode penetration data) to model
OPMs as crystals with orientation preference being radially arranged around
centers which are regularly arranged. Reichl et al. studied the interaction
of ocular dominance and orientation preference in a self-organization model
and found several different Braitenberg Crystals. The OPM predicted by the
Soodak-Ringach model corresponds to a crystal discussed in their work [139].
The equation for the typical wavelength of the OPM (Eqn. (3.19)) can be
transformed by introduction of a new parameter β and defining

r′ → (1 + β)r

so that the typical wavelength becomes

Λc ≡
2π

kc
=

√
3

2
· S · r, (3.21)

using the scaling-factor S which is the distance between two vertices of the
Moiré-Pattern in units of r [4, 11, 124]

S =
1 + β√

β2 + 2(1− cos(∆α))(1 + β)
.

The explanation for the factor
√

3
2 is that S × r is the distance between two

vertices of the Moiré-Interference pattern whereas the typical wavelength is
associated with the peaks in reciprocal space. A derivation of this factor is
given in the Materials and Methods section. It turns out that the typical scale
is the distance between the straight edges of a hexagon unit cell. The difference
between both is illustrated in Fig. 3.4C and Fig. 3.4E. Our results for the
periodicity of the Moiré-Pattern and its orientation, following from an analysis
of receptive fields, is identical to results derived from Fourier arguments [4]
and geometrical arguments [124] for two superposed hexagonal lattices.
The identification of the pinwheel-crystal allows us to calculate the pinwheel
density of the OPM analytically. There are n = 4 pinwheels per unit cells
(shown in Fig. 3.4C): one, where each orientation is represented twice. This
pinwheel is located in the center of the cell. Each of the six corners carries
1/3 of a pinwheel where each orientation is represented once. The pinwheel
density in this hexagon is n = 4 · area−1. The hexagonal unit cell has an area

A = 3
√

3
2

(
S×r

2

)2
where 1

2S × r is the side length/radius of the hexagon. To
calculate the pinwheel density ρ, we have to rewrite the density to the number
of pinwheels per characteristic scale Λ2

c . The characteristic scale is calculated
in Eqn. (3.21). Therefore Λ2

c = 3
4(S × r)2 and

ρ = n · A
Λ2
c

= n
3
√

3
8 (S × r)2

3
4(S × r)2

= n

√
3

2
≈ 3.46.
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3.2. Results

This is the same result found by Reichl et al. [139]. At this point we have
shown how receptive fields correspond to Gabor patches, we have calculated
the amplitude spectrum of an OPM, its typical frequency and the pinwheel-
density.
To conclude this section we compare our findings to numerical simulations.
This is done in Fig. 3.4. On the left hand side, Fig. 3.4A shows the full map
of orientation preference calculated analytically. On the right hand side, it
shows the orientation preference of all cortical cells calculated numerically (for
details, see Materials and Methods). Eqn. (3.13) gives the same result as the
simulation. Fig. 3.4B shows the amplitude spectrum of the full orientation
map. Many high frequency contributions are visible. Below the two figures,
we compare directly analytics and numerics. On the right hand side of the
figure, we follow the Soodak-Ringach model numerically [132, 144]: cortical
cells are filtered for OSI > 0.25 (Fig. 3.4E left) and subsequently smoothed
(Fig. 3.4E right). The inset shows a magnified region of OSI-filtered neurons.
The amplitude spectrum of this numerically calculated map is shown below
(Fig. 3.4F). These findings are compared with the analytics on the left hand
side of the figure. The low-frequency contributions as calculated above are
shown in Fig. 3.4C and the corresponding amplitude spectrum from the
6 Moiré-Modes is shown in Fig. 3.4D. The cross-like shape of the peaks
in Fig. 3.4F is a numeric artifact. Calculating the amplitude spectrum of
Fig. 3.4C numerically, we find the same shape (shown in Fig. 3.4D). The
amplitude spectrum of Eqn. (3.20) is composed of 6 delta-like peaks.
The faint peaks at greater frequencies in Fig. 3.4F are localized at

√
3kc as we

have seen analytically in Tab. 3.3. However, their amplitude is substantially
smaller due to the low-pass Gaussian smoothing. The very characteristic
pinwheels of winding number 2 are not stable as experimentally observed and
split into two pinwheels [132]. Although they are topologically stable (see
the theory of planar spins [114]), structurally they are not. High strength
phase singularities (where each orientation is represented multiple times) or
dislocations in solutions of the wave equation unfold upon perturbation to
phase singularities where each orientation is represented once [43].

OPMs from noisy hexagonal RGC mosaics

So far we have studied the idealized situation of noise-free RGC mosaics. After
going through the analytic solution to the Soodak-Ringach model, we have
checked that numerics and analytics are consistent. Following this test, we
proceed to analyze the effect of Gaussian noise on the lattice because adding
noise is a necessity to create realistic RGC mosaics and realistic OPMs [131,
132]. The effect of Gaussian noise of standard deviation σ = η ·r being applied
to the ganglion cell mosaic is studied in Fig. 3.5. The parameter r is the lattice
constant and η is the noise level. Fig. 3.5A shows two OPMs calculated
numerically with the Soodak-Ringach model for noisy mosaics. Fig. 3.5B
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OSI >0.25 SmoothedLow Frequency Contributions
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0 1

cΛ
cΛ

Sxr

Figure 3.4: A The full OPM of the Soodak-Ringach model. The exact result
(left) is almost identical to the numerics (right). B Power spectrum cor-
responding to the exact OPM in A. Note the high frequency contributions.
Between C-D and E-F: the vertical dashed line separates numerics from an-
alytics. C The low frequency contributions of the map in A calculated using
Eqn. (3.20). Λc indicates the typical wavelength in the map. The dashed
hexagon shows the unit cell used to calculate the pinwheel density. S × r is
the distance between two double pinwheels/vertices of the Moiré-Pattern.↗
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3.2. Results

shows the full map (left) and the map filtered for cells with an OSI > 0.25
(right). What we find are regions around each dipole, similar to voronoi
polygons, in which the orientation preference is dominated by this dipole.
In addition, we find a substantial scatter of orientation preference. This is
dicussed in more detail below. Fig. 3.5C shows the spectra of the full OPM
and the smoothed map. For a noise-level of η = 0.12 (Fig. 3.5A top), the
map is still dominated by the Moiré-Modes. For a noise-level of η = 0.5
(Fig. 3.5A bottom), the amplitude spectrum (Fig. 3.5C bottom) does not
show any indication of the Moiré-Modes. Both maps have been calculated with
a physiologically reasonable scaling-factor of S = 8.2 [132]. For more details
see Materials and Methods. To study the orientation maps, we calculate their
marginal amplitude spectrum

f(k) =

∫ 2π

0
dϑ |R(k cos(ϑ), k sin(ϑ))|.

The result is shown in Fig. 3.5D and 3.5E. The red and yellow lines indicate
the analytic results for the two most prominent low-frequency contributions
(see Tab. 3.3). To show that the analytic results hold for increasing noise,
we show a magnification of the relevant part of the amplitude spectrum in
Fig. 3.5F and Fig. 3.5G. The peak of the Moiré-Mode does not shift, only
its amplitude is decreasing as noise is increasing. The difference between the
unsmoothed and the smoothed map is the low-pass filtering with the Gaus-
sian kernel. The white-noise amplitude spectrum of the OPM for large noise
is transformed into an OPM with a Gaussian amplitude spectrum. The am-
plitude spectrum becomes white with increasing noise because the angular
correlation between neighboring dipoles is lost: the position of an RGC’s
neighbor is random rather than defined by a Moiré-Effect.
Noise on a lattice can be understood as convolution of the noise-free lattice
points with the noise probability distribution. Therefore we expect the ex-
pected value of an OPM amplitude spectrum from noisy mosaics to be the
same as the noise-free ones multiplied with the amplitude spectrum of the

Figure 3.4: D The amplitude spectrum of the low frequency contributions in
C where power is encoded as gray scale. The gray dashed circle is the critical
circle at kc = 2π/Λc. The black arrows indicate the theoretical position of the
six peaks. This amplitude spectrum is calculated numerically to show that
the cross-like shape of the points is a numeric artifact. E The entire OPM
is filtered for cells with OSI > 0.25 (left) and subsequently smoothed (right).
The inset shows a magnified region of the OSI-filtered OPM. The hexagon
shows a similar unit cell to the one in C. F The amplitude spectrum of the
numerically calculated map, shown in E (right).
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Figure 3.5: A Numerically calculated OPMs with noise η = 0.12 (top) and η =
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which generate the plots in A for noise η = 0.12 and η = 0.5. Insets show
magnified regions. C The power spectra of the maps in A and B. Shown is,
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spectrum of the processed map (A).↗
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3.2. Results

noise probability distribution. This is the reason why there are no peaks at√
3kc visible for η = 0.12 in the spectra in Fig. 3.5A. Consequently, we can

quantify how the Moiré-Modes vanish with noise: the vertices of the Moiré-
Pattern experience noise of σM ≈ S × η × r, where S is the distance between
two vertices of the Moire-Pattern in units of the lattice constant, η is the noise
in units of the lattice constant and r is the lattice constant. For a derivation of
this estimation, see Materials and Methods. Therefore peaks in the amplitude
spectrum at position kc decrease in height as

h(η) = α exp

(
1

2
k2
cσM (η)2

)
(3.22)

which is the Fourier transform of the probability distribution of Gaussian
noise, α is a fit-parameter and kc is the position of the Moiré-Peak. This equa-
tion is plotted in Fig. 3.5H together with the peak heights from Fig. 3.5E.
We see that the peak diminishes in amplitude as predicted by Eqn. (3.22)
until at some point it is absorbed in the underlying Gaussian amplitude spec-
trum. The observation that the Moiré-Peaks decrease in height the same time
as an exponential background increases, challenges the established method of
estimating the typical wavelength in OPMs as we discuss below.
A different property of Soodak-Ringach OPMs is the non-uniform represen-
tation of angles. Binning of the cortical cells’ preferred angle yields the his-
togram in Fig. 3.5I. There are 3 distinct peaks visible with a distance of 60◦

in between. The absolute position of the peaks, however, is not fixed. Rotat-
ing the entire OPM shifts this histogram circularly. The non-uniform angle
representation can be quantified by calculating the squared deviation from a
uniform distribution. This is done in Fig. 3.5H. The phenomenon is visible
for a wide range of η and common for many types of pinwheel crystals [139,
140].
Following this analysis of the properties of OPMs generated by noisy mosaics,
we continue to study the efficiency of the standard method in estimating the
typical wavelength of the OPM. In Fig. 3.6A, we show an OPM generated
with noise of η = 0.12 for a scaling factor of S = 8.2 with obvious hexagonal

Figure 3.5: D The marginal power spectra of full OPMs (B left) for different
noise levels as function of k. Noise is indicated as color, corresponding to the
colorbar bottom-right. The red line shows the exact kc, the yellow line

√
3kc.

E The same as D for the processed map (A). F A magnified view of E. G A
magnified view of D. H The height of the peak at kc in E as function of noise.
The blue dots are measured from D, the red curve is Eqn. (3.22). I Fraction
of neurons selective for ϑ. Var indicates the deviation from uniformity. J The
mean of the squared deviation from uniformity as function of noise.
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Figure 3.6: A An OPM calculated for η = 0.12. B The result of a wavelet-
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the wavelength in units of Λc = 2π/kc. See text for details. C-E The wavelet
coefficients Ψ of a the wavelet estimation, Eqn. (3.24) at the blue (C), red (D)
and green (E) position as function of the wavelet’s periodicity Λ measured in
units of Λc. The purple line shows the position of the Moiré-Peak.
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structure. The local scale estimation using a wavelet-analysis is described in
the Materials and Methods section and in detail elsewhere [94, 95]. The typ-
ical scale Λlocal(y) as function of the coordinate y on the OPM found by the
wavelet-analysis (Fig. 3.6B) has major regions where it identifies Λc correctly
(green dot in Fig. 3.6B), but also a region where it fails to deliver a correct
value. It finds values too high (blue dot in Fig. 3.6B) and regions where the
wavelength is so close to the upper edge of a reasonable choice of wavelengths,
that we neglect the result (red dot in Fig. 3.6B). This is a property of the
wavelet analysis. If the maximum wavelet coefficient is obtained at the edge
of the reasonable region, as in Fig. 3.6D, the wavelength is set to zero.
To estimate the typical scale, we calculate the wavelet coefficients Ψ for com-
plex Morlet wavelets with periodicity Λ. The wavelet coefficients are shown
in Fig. 3.6C, Fig. 3.6D and Fig. 3.6E as function of Λ, measured in units
of Λc. The scale is determined by that value Λ which has the greatest wavelet
coefficient. The typical wavelength Λlocal(y) for the OPM jumps between the
low-frequency contribution of the exponential background (the structure at
large Λ) and the Moiré-Mode, which is clearly visible in all three figures. The
position of the Moiré-Mode is indicated by the purple line at Λ/Λc = 1. We
find that using a wavelet-estimation, either the Moiré-Mode is identified or the
estimated typical scale is very large. For details of this analysis, see Materials
and Methods.
After estimating the typical wavelength with the wavelet analysis, we can
analyze model OPMs following the procedure for the analysis of experimen-
tally observed maps [96]. The results for Soodak-Ringach maps are shown
in Fig. 3.7. Fig. 3.7A shows the nearest neighbor distance distribution of
pinwheels independent of topological charge. The axes show the distance be-
tween nearest neighbors and the noise level. Color encodes the (normalized)
fraction of pinwheels at this distance. The plots in Fig. 3.7B-C show the dis-
tance distribution for pinwheels with equal and opposite topological charge.
For the noise free case, the distance between pinwheels of both equal and
opposite charge is 1/

√
3 which can be derived from the hexagonal unit cell,

shown in Fig. 3.4C. This value is indicated as white line. The horizontal
lines shown η = 0.12, the value claimed to created OPMs with realistic spatial
statistics. The three pinwheel distance distributions for η = 0.12 are shown
in Fig. 3.7D. (a) shows the charge independent distance distribution and
(b) the distribution for equal and opposite sign. The drawn lines show the
experimentally observed distributions (see Fig. 2.7). Fig. 3.7E (a) shows
the typical scale estimated using the wavelet analysis in comparison to the
exact wavelength Λ0 from the Moiré-Effect. The red dots show the values
which saturate due to the limited maximum wavelength the numerical tool
can detect. The blue dots are reliable. This figure shows that, as expected,
the wavelength increases substantially with increasing noise. Accordingly the
pinwheel density increases. This is shown in Fig. 3.7E (b). The increasing
wavelength is the reason that the mean pinwheel distances, shown in A-C,
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3. Hexagonal RGC mosaics and OPMs

approaches zero. Fig. 3.7F (a) shows the pinwheel density calculated for
circles of increasing area measured in units of hypercolumns. The green line is
our exact result, the red line shows π, which corresponds to the experimentally
observed value. This curve has been calculated for η = 0.02 for which the typ-
ical wavelength can be estimated reliably. Fig. 3.7F (b) shows the standard
deviation of the data shown in (a) for three different noise levels. The data for
η = 0.02 shows the typical oscillations and the scaling for a pinwheel crystal
[96]. For increasing noise, the exponent changes towards the exponent for a
2D Poisson process, however, the large typical scale Λ associated with high
noise levels makes these curves not very reliable. It is worth noting that first,
for weak noise the pinwheel distance distributions, Fig. 3.7A and Fig. 3.7B,
are bimodal. The reason are the structurally unstable double pinwheels [43]
which decay into two neighboring pinwheels of equal charge. Accordingly, the
distance distribution for pinwheels of opposite sign, Fig. 3.7C, is not bimodal.
Second, the pinwheel density is stable ρ = 2

√
3 as long as the wavelength is

identified correctly. This is the case for η ≤ 0.14, including the noise level
with best fit to the RGC data around η = 0.12. For larger noise levels, the
pinwheel density diverges because the typical scale Λc diverges.

3.3 discussion and conclusion

We have analyzed the Soodak-Ringach model from an analytic perspective.
We found exact expressions for receptive fields and their power spectra. These
results might be used to fit experimental data to measure the parameters of
the model. After calculating receptive fields and their power spectra exactly,
we described a method to extract optimal stimuli, which in this case refers
to preferred angle and preferred spatial frequency. Instead of the previous
method [143, 144] we use the maximum of the amplitude spectrum. Following
this approach, we can compare the results with experimental data from M.
fascicularis [20]. We found that the preferred spatial frequencies in the model
cover a region too narrow compared to the data. This is not a surprising
finding, considering experimental evidence that there are ≈ 10 ON and ≈ 12
OFF cells connected to a single cortical neuron which allows a wide range of
possible preferred spatial frequencies [87]. The average preferred spatial fre-
quency [20] of 3.7cyc/deg is very close to the cutoff which we observe. This
indicates that the size of the ganglion cell’s receptive field is smaller than esti-
mated [132]. Furthermore, we have shown that the preferred spatial frequency
is basically independent of the lattice. It is constrained by the choice of the
receptive field size, the scale of synaptic connections and the shape of the
receptive field, however, the distance between RGCs plays only a minor roll.
Especially after filtering cells with high orientation selectivity, it is difficult
to explain the wide range of preferred spatial frequencies observed [85, 86].
Both, experimental findings and this study challenge the dipole approxima-
tion of only two RGC to be prominent enough to dominate the structure of a
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Figure 3.7: A statistical analysis using the wavelet tool for wavelength es-
timation of model maps. A Pinwheel distance distribution independent of
topological charge. B Pinwheel distance distribution for pinwheels of equal
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Pinwheel distance distributions for η = 0.12. The drawn lines show empirically
observed curves [96]. E (a) The typical scale compared to the Moiré-Scale Λ0

as function of noise. E (b) The pinwheel density as function of noise. Error
bars show the standard deviation of 100 independent maps. Red dots show
regions for which the wavelet tool is not reliable. F (a) Pinwheel density in
circles of increasing radius for η = 0.02. F (b) The standard deviation of
curves as in (a) for different noise levels.
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cortical cell’s receptive field [132].
Next, we calculated OPMs and their power spectra for a noise free mosaic.
We found a complicated microarchitecture of subdomains with substantial ori-
entation scatter as compared to their vicinity. These subdomains consist of
well-tuned cells (something which is actually visible in previous studies [132]).
However these subdomains have neither been found in penetration experi-
ments [73, 80], nor in high resolution optical imaging experiments [130]. The
absence of these features makes intra-cortical interaction a necessity.
We showed that after smoothing of the OPM, thereby removing the high
frequency contributions (and the subdomains), the resulting Soodak-Ringach
OPM can be written as the phase of a complex field z(x) composed of 6 plane
waves. The same OPM is also created by self-organization models using an
interplay between ocular dominance and orientation preference [139, 140] so
that hexagonal structure in an OPM [132] is not clear evidence for a Moiré-
Interference effect. The model OPM’s pinwheel density of ρ = 3.48 is too
high and the pinwheel distance statistics are inconsistent with experimental
data [96, 98, 117]. Next, we found that noise on the lattice does not transform
the peaks of the Moiré-Modes into a ring. Noise decreases the amplitude of
the Moiré-Peaks, in this sense interpolating smoothly between the pinwheel-
crystal and an OPM with a Gaussian amplitude spectrum. Observed power
spectra of OPMs, however, are isotropic with a typical frequency [116, 127].
We also found that the OPMs predicted by the Soodak-Ringach model do
not have uniform angle representation. This non-uniformity is very strong,
however experimentally, there is no evidence for it [30, 31].
Can these problems be overcome by an interference effect of a different RGC
mosaic? The most realistic alternative is a mosaic generated with a pairwise
interacting point process (PIPP) [48]. The amplitude spectrum of an OPM
generated from a PIPP mosaic is white due to the intrinsic absence of angular
correlations between ON and OFF center cells. After smoothing, the ampli-
tude spectrum corresponds to the smoothing function and thus maps from
PIPP-mosaics processed with the Soodak-Ringach method give OPMs with
a Gaussian amplitude spectrum [76, 144]. Thus, these mosaics alone are not
able to reproduce the features of OPMs observed experimentally. Therefore, in
chapter 4, we propose a new type of PIPP to generate aperiodic mosaics which
create OPMs. This method might overcome the severe problems discovered
here.
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3.4 materials and methods

Figure details

All evaluations of the elliptic functions have been done with Wolfram Mathe-
matica 8.0.1 on a 64 bit Linux. Numerical simulations have been carried out
with a C++ program. Details for both are given below. The plots for the
different figures have been calculated as follows:
Figure 3.1: The ganglion cell mosaic, Fig. 3.1B, and the receptive field in
Fig. 3.1C has been calculated with the following parameters: r = 170 µm
and α = 0◦ for ON and r′ = 170 µm and α′ = 13◦ for the OFF cell mosaic.
The angle between both lattices is arbitrary and just for illustration, the lat-
tice constant is chosen to be physiologically reasonable [132, 144]. The size
of the receptive field is chosen to be σr = 70 µm and the width of synaptic
connection σs = 20 µm. Both are physiologically reasonable [132]. There is no
offset between both lattices. The center of the cortical cell receptive field is at
y = (300 µm, 121 µm). Shown is Eqn. (3.5). To express the receptive field in
units of degree visual angle instead of µm on the retina we convert the units
using the geometrically determined ratio of 4.9 ◦/mm at 40◦ eccentricity in
the human retina as an approximation for the Macaque eye [37]. (The value
4.4 ◦/mm for the cat’s eye is very similar [7, 10], allowing the same type of
analysis for [143, 144]). The inset in Fig. 3.1A is the same receptive field
as Fig. 3.1C, however, the RGC size is determined by the logarithm of the
synaptic weight. The OPMs in Fig. 3.1D have been calculated with the same
parameters as Figs. 3.1C and 3.1D, using Eqn. (3.13) and (3.20) respec-
tively.
Figure 3.2: The amplitude spectrum (A) and the tuning curves (B-D)
are calculated for the same parameters as Fig. 3.1C. The OSI (D) is cal-
culated numerically with Mathematica from Eqn. (3.8) using the amplitude
spectrum shown in A. The histograms in E are calculated numerically with
values similar to Fig. 3.1: since this histogram is compared to data, we
decreased the twist between both RGC mosaics to 7◦. This generates a scal-
ing factor of S = 8.2 which is in the middle of the physiologically observed
range [132]. To calculate the histograms numerically, we implemented the
full Soodak-Ringach model for noisy lattices in C++ using the GNU scien-
tific library. The Code has been compiled with GCC version 4.3.4 on Linux
2.6.32. The simulations have been carried out on two cluster computers
Skadi and Frigg. Frigg is equipped with Intel(R) Xeon(R) X5355 CPUs at
2.66GHz, using 32GB RAM. Skadi is using Intel(R) Xeon(R) E5440 CPUs
at 2.83GHz, running with 32GB RAM, too. The conversion to degree visual
angle was done with the ratio of 4.26 ◦/ mm since the experimental values
[20] have been measured at 1◦ − 6◦ eccentricity in the macaque eye, corre-
sponding to an eccentricity of 0.68 mm. The dots in G show the maxima
of |R|2, calculated from Eqn. (3.9) with Mathematica. The parameters for
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the receptive fields are the same as for Fig. 3.1. The centers of the recep-
tive fields are located at y = (420 µm, 420 µm) (red), y = (250 µm, 401 µm)
(magenta), y = (100 µm, 384 µm) (green), y = (250 µm, 185 µm) (blue) and
y = (420 µm, 417 µm) (purple) for α′ = 13 ◦.
Figure 3.3: Parameters for the plots are the same as for the two figures
above: r = 170 µm, α = 0◦ for ON and r′ = 170 µm and α′ = 7◦ for the OFF
ganglion cell mosaic, corresponding to a scaling factor of S = 8.2. The size
of the receptive field is chosen to be σr = 70 µm and the width of synaptic
connection σs = 20 µm. The OPM, Fig. 3.3B, shows Eqn. (3.13) calculated
with Mathematica and plotted with Matlab. The three receptive fields are lo-
cated at y = (1150 µm, 0 µm) (red), y = (1100 µm,−78 µm) (green) and y =
(1160 µm,−150 µm) (blue). Fig. 3.3F shows the amplitude spectrum of the
receptive field shown in Fig. 3.2. Fig. 3.3G shows the same amplitude spec-
trum plotted in polar coordinates with doubled angle (Eqn. (3.17)). Fig. 3.3B
has been calculated with Mathematica using Eqn. (3.13) for the square re-
gion between [−1500 mm, 1500 mm], in 1024 px × 1024 px. Fig. 3.3H is a
plot of Eqn. (3.20) in the same region with the same parameters. The same
[−1500 mm, 1500 mm] section is shown for the lattices. Fig. 3.3J shows the
cyclic distance between B and H calculated with Matlab.
Figure 3.4: OPMs (shown are sections of size 4Λc × 4Λc) are calculated
with the same parameters as in Fig. 3.3 (r = 170 µm, α = 0◦ for ON and
r′ = 170 µm and α′ = 7◦ for the OFF ganglion cell mosaic). The power spec-
tra are calculated numerically with a Fast-Fourier-Transform (embedded in
Matlab) and normalized so that the maximum value is 1. The plotrange is
[−2Λ−1

c , 2Λ−1
c ]. Analytic results (left column) are obtained from Eqn. (3.13)

and Eqn. (3.20). Filtered (OSI > 0.25) OPMs, calculated numerically (right
column) are smoothed with a Gaussian of width σ = kc, corresponding to a
width of 5.2 · 10−3 µm−1 or σ = 190 µm in real space (this is similar to the
values stated in the literature: “For visualization, a smooth continuous version
of the map is obtained by diffusion of orientations with a Gaussian window
of 140 µm in cortical space” [132]). For this simulation, cortical neurons are
aligned in a square lattice with lattice constant 6.5 µm. This is extremely
dense, however, it allows to resolve fine features in the power spectra. The en-
tire maps of which Fig. 3.4C and 3.4E are a section have a size of 22×22Λ2

c .
The choice of 440Λ2

c is arbitrary. With the parameters given, Λc = 1200 µm
(from Eqn. (3.21)) so that the OPM corresponds to 26500 µm×26500 µm. The
OPM (from which Fig. 3.4A right is a section) is generated from 4096×4096
cortical neurons aligned in a square lattice. The full OPM (Fig. 3.4A right)
is filtered and smoothed with Matlab to get Fig. 3.4E right.
Figure 3.5: The parameters for the numerics are the same as for Fig. 3.4.
This is, 4096× 4096 cortical neurons generate 22Λc × 22Λc maps with scaling
factor S = 8.2. To each RGC mosaic, Gaussian noise of standard deviation
σ = η × r is added. Full OPMs, Fig. 3.5B, are calculated with the C++
program. These OPMs are filtered for cortical cells with orientation selectiv-
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ity index OSI > 0.25 and smoothed with a Gaussian of width σ = 190 µm
with Matlab to get the OPMs (A). power spectra (C) and marginal power
spectra (D-G) are calculated with Matlab. The maxima of the peak (H) in
the marginal spectrum is calculated with Matlab. The maps, Figs. 3.5A
and 3.5B, show 4Λc × 4Λc sections, where Λc = 1200 µm is the theoretical
value defined by Eqn. (3.21). Thus, the window size is noise-independent.
Fig. 3.5I is a histogram of all cortical neuron’s angle preference, calculated
with Matlab. The curve for every noise level shows data of 20 independent
22Λc × 22Λc maps combined.
Figure 3.6: Fig. 3.6A shows a map of the original size calculated (22×22Λ2

c).
Fig 3.5A for η = 0.12 is a section of this map, bottom right. Details of the
wavelet-transform and the calculation of the wavelet-coefficients are given be-
low. The numerical evaluation of the wavelet analysis was done with Matlab.

Derivation of Eqn. (3.4)

To carry out the sum in Eqn. (3.2), we write the lattice vectors as

xj = n s +m t + u

where n,m ∈ Z and where s and t are the base vectors of the lattice. If
s · t 6= 0, this sum cannot be evaluated. However, by rewriting the lattice into
two lattices with orthogonal base vectors (this is what we accomplish with
L → L1 + L2), we can avoid this problem. With orthogonal base vectors, we
have to evaluate sums of the form

∑
m

exp


(

(y − u)t

σ2
s

+
(x− u)t

σ2
r

)
︸ ︷︷ ︸

b

m−
(

t2

2σ2
r

+
t2

2σ2
s

)
︸ ︷︷ ︸

a

m2

 ,

Or schematically, ∑
m

exp(am2 + bm)

for some a and b. This sum can be evaluated by firstly, completing the square

∑
m

exp(am2 + bm) =
∑
m

exp

(
− b

2

4a

)
exp

(
a

(
m+

b

2a

)2
)

and secondly by application of a transformation equation [8]

∞∑
m=−∞

e−a(m+c)2 =

√
π

a

∞∑
m=−∞

e−
π2

a
m2+2πimc,
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where c = b/(2a). Finally, the result is written to match the sum representa-
tion of the Jacobi theta function (this is the definition which is embedded in
Mathematica. Other definitions are summarized in Whittaker and Watson’s
book p. 487 [179]).

∑
m

exp(am2 + bm) =
∑
m

exp

(
− b

2

4a

)
exp

(
a

(
m+

b

2a

)2
)

=

√
π

−a
exp

(
− b

2

4a

)∑
m

e
π2

a
m2+πim b

a

= e−
b2

4a

√
π

−a
Θ3

(
bπ

2a
, e

π2

a

)
The same result (after rewriting L → L1+L2) can be calculated with Wolfram
Mathematica.

Derivation of Eqn. (3.9)

As explained in the text, we start with the Fourier spectrum of the receptive
field

1

2π

∫
d2xe−ikx exp

(
−(x− xj)

2

2σ2
r

)
= exp

(
−ikxj −

1

2
k2σ2

r

)
σ2
r .

From there, the calculation follows the same procedure as the sum above.

The Validity of the Quadratic Approximation

To test the validity of the quadratic approximation, we have calculated a rep-
resentation of power spectra, shown left hand side of Fig. 3.8, with Eqn. (3.9).
The same power spectra with quadratic approximation to the anisotropic term,
Eqn. (3.12), are shown on the right hand side of Fig. 3.8. The parameters to
calculate the power-spectra are summarized in Tab. 3.4. Besides the estima-
tion given in the text, this illustrates the validity of the quadratic approxima-
tion: It works well for dipole shaped power spectra, however, fails to deliver
reasonable values for multimodal receptive fields as shown in Fig. 3.8A, case
b. This price is acceptable since it is generally difficult to define a preferred
stimulus kpref, ϑpref for this kind of receptive fields.

Exploring the Solutions of Eqn. (3.5) and Eqn. (3.9)

How do receptive fields, Eqn. (3.5), and their power spectra, Eqn. (3.9), change
upon a different choice of parameters σr and σs? This is shown in Fig. 3.9.
For all subplots, the center of the cortical receptive field (indicated by the red
dot) is fixed. The left two columns, Fig. 3.9A show how increasing σs acts on
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Figure 3.8: Comparison between the full power spectra, Eqn. (3.9), and the
quadratic approximation, Eqn. (3.12). A Shown are 6 power spectra, labeled
a-f. The red dots mark the approximate position of the amplitude spectrum’s
maximum using the quadratic approximation. B Shown are 6 power spectra
where the anisotropic part has been expanded to quadratic order. The red
dots are at the same position as in A. Note that although the overall-shape of
the power spectra differs, the estimation for the maximum is very good. This
holds except for the non-dipole shaped amplitude spectrum (b).

the receptive field (left) and the amplitude spectrum (right). For very small σs,
a cortical cell samples from the closest RGC. This generates a receptive field
with a single dominant subregion, in this case OFF-like (a). The associated
amplitude spectrum has a very strong DC component. This receptive field
responds to a constant illumination. With increasing σs, more retinal receptive
fields contribute to the cortical receptive field. Beginning with the two nearest
neighbors to the center of the cortical cell’s receptive field with a dipole-shaped
amplitude spectrum (b), the receptive fields increase in complexity until so
many RGC contribute that the hexagonal structure of ON and OFF mosaic
are clearly visible (f). Cortical receptive fields including several RGCs with
Gaussian weights are very complex. It is not straight-forward to come up
with a good definition of preferred orientation because tuning curves (d-f)
become multimodal. The right two columns, Fig. 3.9B show how decreasing
σr acts on receptive fields. Decreasing σr creates smaller and smaller receptive
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Figure 3.9: Illustration how receptive fields change upon variation of σr and
σs. A A sequence of 6 figures (a-f) is shown. From a to f, the value of σs is
increasing as summarized in Table 3.5. The left sequence of figures shows the
receptive field, the right sequence shows the amplitude spectrum. B The same
sequence as in A is shown, however, this time σs is fixed and σr is decreasing
towards f.
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Plot x y α r α′ r′ σr σs ϑpref kpref

a 250 185 0 170 13◦ 170 70 20 -0.9338 0.0137
b 300 220 0 170 13◦ 170 70 20 0.6347 0.0133
c 300 215 0 170 13◦ 170 70 20 0.6346 0.0131
d 300 120 0 170 13◦ 170 70 20 -0.7477 0.0137
e 0 750 0 170 13◦ 170 70 20 -0.7199 0.0113
f 650 150 0 170 13◦ 170 70 20 0.0848 0

Table 3.4: Parameters for the example power spectra and the quadratic ap-
proximation, shown in Fig. 3.8. The point y = (x, y) is the coordinate.
The preferred stimulus ϑpref and kpref are derived from the maximum of the
quadratic approximation. The point (kpref cos(ϑpref), kpref sin(ϑpref)) is indi-
cated as red dot in Fig. 3.8. Width is given in µm, angle in degree, spatial
frequency in µm−1.

fields. These small receptive fields have increasing preferred spatial frequencies
(Figs. a-c). If σr decreases beyond a threshold σr ≈ d/2 where d is the
distance between two RGCs, the cortical cell’s receptive field responds to
higher harmonics of the stimulus (Figs. d-e). This is easy to understand for
point-like ON and OFF center cells. If two of these cells are positioned in a
distance d, they respond to frequencies as soon as the condition

kpref =

(
n+

1

2

)
· 2π

d
for n ∈ {0, 1, 2, . . . }

is fulfilled. This effect creates the complicated power spectra observed in (e-
f).
Of course, a wide range of these values is not physiologically reasonable, how-
ever, we gain an understanding of how cortical receptive fields look like in the
Soodak-Ringach model. The parameters for the plot in Fig. 3.9 are given
in Tab. 3.5. It should be noted that connections between several RGCs to
generate typical cortical receptive field with distinct ON and OFF subregions
[141] cannot be realized with with the Soodak-Ringach model.

From Eqn. (3.9) to Eqn. (3.18)

Firstly, we rewrite Eqn. (3.9) as sum by expanding the theta functions,

R(k)sα,r =
2πσ2

rσ
2
s√

3r2
e−ikye−

1
2
k2(σ2

r+σ2
s)·

·
∑
m,n

e−
2π2σ2s
3r2

n2

e−
2π2σ2s
r2

m2 (
1 + (−1)m+n

)
e2inceφ+2imcer .
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Fig. x y α r α′ r′ σr σs ϑpref kpref

A (a) 650 150 0 170 13◦ 170 70 20 0.08477 0
A (b) 650 150 0 170 13◦ 170 70 50 0.07811 0.008787
A (c) 650 150 0 170 13◦ 170 70 70 0.07736 0.009323
A (d) 650 150 0 170 13◦ 170 70 100 0.07735 0.007968
A (e) 650 150 0 170 13◦ 170 70 200 - -
A (f) 650 150 0 170 13◦ 170 70 500 - -

B (a) 250 185 0 170 13◦ 170 200 20 -0.9338 0.004975
B (b) 250 185 0 170 13◦ 170 100 20 -0.9338 0.009806
B (c) 250 185 0 170 13◦ 170 70 20 -0.9338 0.01374
B (d) 250 185 0 170 13◦ 170 20 20 -0.9338 0.03536
B (e) 250 185 0 170 13◦ 170 10 20 -0.9338 0.04472
B (f) 250 185 0 170 13◦ 170 4 20 -0.9338 0.049029

Table 3.5: Parameters for the plots in Fig. 3.9. The point y = (x, y) is
the coordinate. The preferred stimulus ϑpref and kpref are calculated using
the quadratic approximation. The dash indicates that the algorithm did not
converge: for those spectra, the DC component is almost zero and so is the
curvature. Width is given in µm, angle in degree, spatial frequency in µm−1.

Since e−iky is a phase which disappears as soon as the absolute value is taken,
we neglect it from now. Next, we complete the square using
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to obtain
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To calculate the absolute value of this expression, we multiply by the complex
conjugate to get the following expression
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mnop
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The indices m,n, o, p run over both, negative and positive values, subsequently
adding pairs of Gaussians. Re denotes real part. This expression corresponds
to Eqn. (3.15). Note that the low-frequency contributions are part of the sum
with the E coefficients, because this is where both, Kr,α and Kr′,α′ appear.
Using the definition of G, these coefficients can be written as

Eα,r,α′,r′(m,n, o, p) ∝ exp(iy(2neφ + 2mer − 2oe′r − 2pe′φ))

which is what we need. The low-frequency contributions (the part of the sum
with the E-coefficients) to µ are thus

µlf(y) =
∑

m,n,o,p

Eα,r,α′,r′(m,n, o, p,y)

∣∣∣∣Kα,r(m,n) + Kα′,r′(o, p)

2

∣∣∣∣ ·
· exp

(
2i arg

(
Kα,r(m,n) + Kα′,r′(o, p)

2

))
=

∑
m,n,o,p

exp(2iy(neφ +mer − oe′r − pe′φ)) · f(m,n, o, p)

which is Eqn. (3.18). f is defined so that it contains all coefficients.

Derivation of the Factor between Moiré-Pattern Lattice Constant and the
Typical Scale

The lattice constant of the Moiré-Interference pattern is f = S × r. In the
following lines we show that the peaks of the reciprocal lattice are located at
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4π√
3f

. We follow an approach from crystallography [99].

The primitive translation vectors of a hexagonal lattice are

a1 =

1
0
0

 f a2 =

 1√
3

0

 f

2
a3 =

0
0
1

 f (3.23)

with f as lattice constant. a3 is chosen arbitrarily to expand the lattice to
three dimensions. The absolute values of the three primitive vectors of the
reciprocal lattice [99]

b1 = 2π
a2 × a3

a1(a2 × a3)

b2 = 2π
a3 × a1

a1(a2 × a3)

b3 = 2π
a1 × a2

a1(a2 × a3)

are thus

|b1| = |b2| =
4π√
3f

and |b3| = 2π
f . The reciprocal lattice is also a hexagonal lattice, however,

rotated by 30◦ in respect to the original lattice.

An Approximation of the Standard Deviation of the Moiré-Pattern
Perturbation

In this section, we estimate the standard deviation of the Moiré-Vertex shift
if both lattices L1 and L2 are subject to Gaussian noise of standard deviation
σ. For simplicity, we assume both lattices to have the same lattice constant
r so that σ = ηr. This is illustrated in Fig. 3.10. One standard deviation
for the lattice points is indicated by the gray shaded areas. The rhombic
intersection of both is the region in which we expect the vertex of the Moiré-
Pattern to shift. Firstly we notice that this area is not isotropic. The vertex
can move with the approximate standard deviation σ1 along the long diagonal
whereas movement along the short one is not as prominent with standard
deviation σ2. Although we expect the likelihood for a single vertex shift to
be anisotropic, we sould keep in mind that there are many Moiré-Vertices
of different orientation, even within a single row/column. This justifies the
notion of a common typical shift σM which we now estimate. From simple
geometry, we note that σ = k sin(∆α), σ1 = k

√
2(1− cos(180◦ −∆α) and
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Figure 3.10: The construction for the standard deviation of each Moiré-
Pattern vertex. L1 and L2 show a single row of RGCs of each lattice. RGCs
are indicated as green and purple dots. The gray shaded region is the area in
which the RGCs are shifted due to noise of amplitude σ. ∆α is the relative
rotation between both lattices. The point A is the noise-free vertex of the
Moiré-Pattern. With noise, the vertex moves anisotropically with approxi-
mate standard deviations σ1 and σ2.

σ2 = k
√

2(1− cos(∆α). This can be rewritten to

σ1 = σ

√
2

1− cos (∆α)
= 2Sσ

σ2 = σ

√
2

1 + cos (∆α)
≈ σ.

In the last step, we used that ∆α is small. Next, we present two different
methods of estimating σM . Assuming the vertex is subject to Gaussian noise,
we can calculate the typical shift

〈r〉 =

∫
dx

∫
dy G(σ1, x)G(σ2, y)

√
x2 + y2

where G(σ, x) is a Gaussian distribution around mean µ = 0 of width σ.
Evaluating the integral above can be done with Mathematica. The result is

〈r〉 =

√
8

π
SσE

(
1− 1

4S2

)
≈
√

8

π
Sσ

where E(x) is the complete elliptic integral of the second kind. Since S is
large, we expand the elliptic integral E(1−x) = 1− 1

4x+ . . . to leading order.
This is done in the last step. Since the typical shift obeys

〈r〉 =

∫
dx

∫
dy G(σ, x)G(σ, y)

√
x2 + y2 = σ

√
π

2
,
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we can estimate the typical perturbation of the Moiré-Pattern as

σM =

√
2

π
〈r〉 =

4

π
Sσ ≈ Sσ.

A second, very simple method is taking the average of both deviations

σM =
1

2
(σ1 + σ2) ≈ Sσ,

again assuming large S. On first glance, it seems strange to take the average
of two standard deviations. In our case it is reasonable, because some of the
vertices in a single row/column are shifted with σ1, some are shifted with σ2.
This qualifies the average as a typical shift. Both rather crude estimations
yield similar results which we use to derive Eqn. (3.22). Considering the
simplicity of this derivation, it is remarkable how well Eqn. (3.22) describes
the data. We cannot help but wonder if there might be a better way of
estimating σM .

Wavelet Analysis

To estimate the typical scale of an OPM, we firstly transform the OPM
ϑpref(y) to a complex field z(y) = exp(2iϑpref(y)). Next, we calculate wavelet-
coefficients defined by

Ψ(y,Λ) =

∫
dϕ

π

∣∣∣∣∫ d2x z(x) · φy(x,Λ, ϕ)

∣∣∣∣ (3.24)

where y is the position, ϕ the orientation and Λ the scale of the wavelet
φy(x,Λ, ϕ). We are only interested in the typical wavelength of the OPM:
therefore we average over the wavelet orientations ϕ. We use complex Morlet
wavelets composed of a Gaussian envelope and a plane wave

φ(x) =
1

σ
exp

(
− x2

2σ2

)
· exp(ikφx)

and

φy(x,Λ, ϕ) = φ(Ω−1(ϕ)(y − x)).

The matrix Ω(ϕ) is the two-dimensional rotation matrix (Eqn. (3.3)). Ap-
plying the inverse rotation matrix to the argument y − x is equivalent to
rotate the wavelet by an angle ϕ. After fixing Λ, the parameters of the Morlet
wavelet are chosen as

kφ =
2π

Λ

(
1
0

)
σ =

7Λ

2π
.
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The factor 7 in the width of the wavelet is chosen as in the literature [96]. The
wavelet analysis has been done numerically with Λ equally spaced between
0.2Λc and 4.5Λc in steps of 0.2Λc. If the identified local wavelength exceeds
4.1Λc, the result is neglected. The orientation average was carried out with
16 equally spaced orientations.
The wavelet-coefficients for fixed position y as function of Λ are shown in
Fig. 3.6C-3.6E. Fig. 3.6 shows the wavelength with the greatest wavelet
coefficient

Λ0(y) = argmaxΛ (Ψ(y,Λ))

calculated for every position y. To increase the resolution of the wavelength
estimation, we included a second wavelength estimation around the result of
the first coarse wavelet estimation Λ0. The second wavelet analysis runs from
−0.2 to 0.2 around the previous result Λ0 in steps of ∆Λ = 0.02. The result
gives the value for Λlocal(y).

Details for the C++ Code

The results presented here have been calculated with a C++ program in which
the Soodak-Ringach model was implemented. This program was written for
this thesis and is of the following structure. The class ”rfanalyzer” contains
all the necessary routines. Furthermore, two example files are given: One
to calculate the properties of a single neuron, ”calculate single neuron.cpp”,
and one to calculate a map of these properties ”calculate map.cpp”. In the
following lines, we describe this program and its performance in comparison
to the exact results.
The class “rfanalyzer” firstly generates a noisy hexagonal lattice. This lat-
tice is stored on the hard drive as a list of point coordinates. It generates
two files, one for the ON and one for the OFF sublattice. These lattices are
used to calculate receptive fields. Secondly, a neuron’s receptive field is cal-
culated by summation of RGC receptive fields. This cortical receptive field
is stored as a matrix. The size of this matrix is determined by the parame-
ters scale and points. scale is measured in µm. A square of this side-length,
from −scale/2 to scale/2, is the region in which the RF is calculated. This
square is sampled into a grid of size points2. The matrix with points×points
entries is the form in which the RF is stored and processed. This matrix
is Fourier transformed using the GNU scientific library. Next, a search is
performed for the entire transformed matrix for the entry with greatest ab-
solute value. Eqn. (3.10) is implemented by an element wise multiplication.
The spatial frequency with greatest orientation selectivity is estimated by
finding the greatest OSI, Eqn. (3.11), calculated for a list of the spatial fre-
quencies, equally binned between 0 and 2 × kcrit (see Eqn. (3.14)) in steps
of 0.001 × 2π/scale ≈ 0.0000013 µm−1. All integrals are carried out as sums
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3. Hexagonal RGC mosaics and OPMs

of matrix entries. Increasing the number of matrix entries or an interpo-
lation would make the results more precise, however, slows down the code
substantially. We use the given version of the code as a reasonable compro-
mise between speed and precision. Following the identification of the preferred
spatial frequency, orientation selectivity for all three options are calculated.
Alternatively to the circular variance, we implemented a second measure of
orientation selectivity

OSIc =
TC(ϑpref)− TC(ϑpref + π/2)

TC(ϑpref) + TC(ϑpref + π/2)
. (3.25)

Tab. 3.6 shows a comparison between numerically calculated values (for the
case η = 0) and exact ones, calculated with Mathematica. Again, we find
that this C++ program is a good trade-off between numerical precision and
speed. Since all cortical neurons are independent, this program can easily be

Parameter C++ Program exact

ϑpref -0.747703 -0.747703
k1 ≡ argmax{k} (|R(k)|) 0.0124401 0.01276

k2 ≡ |µ| 0.00484116 0.00484116
k3 ≡ argmax{k} (OSI(k)) 0.0175376 0.0178287

OSIc(k1) 0.596224 0.606767
OSIc(k2) 0.337576 0.307671
OSIc(k3) 0.668642 0.679553
OSI(k1) 0.253289 0.255566
OSI(k2) 0.152857 0.148103
OSI(k3) 0.269673 0.265418

Table 3.6: Test run for the neuron located at y = (300, 121). A comparison
between values calculated with the C++ program and exact results calculated
with Mathematica. Both agree within ≈ 1%. The RF considered here is the
one shown in Fig. 3.1C and Fig. 3.2A. Therefore some of the values here
are also given in Tab. 3.1. Angles are measured in rad, spatial frequency is
measured in µm−1.

parallelized. The program ”calculate map.cpp” contains code which calculates
a single strip of an OPM. We used this methods to calculate large OPMs on a
cluster computer. Tab. 3.7 summarizes the parameters used. The parameters
scale and points are discussed above. The parameter boxlim is the side length
of the OPM which is calculated. Its value is given in µm. The OPMs calculated
by this code have a square shape. The parameter length is the number of pixels
per side in which the OPM is stored.
For the parameters given in Tab. 3.7, the scaling factor is S = 8.2, therefore
Λc = 1206 µm The entire OPM calculated is thus boxlim/Λc = 27564/1206 ≈
22.86Λc wide. We make sure to avoid boundary effects by cutting off 80px
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from each edge. Thus the final map created has a width of 4096 × 4096px2

(length− 160 = 4096) measured in 22.86× 4096/4256 ≈ 22.00Λ.

Parameter Name in Program Typical Value

σs [µm] sigmas 20
σr [µm] sigmar 70
r [µm] r 170
r′ [µm] rd 170
α in rad alpha 0
α′ in rad alphad 7*pi/180

η eta 0
Size of RF in µm scale 5000

Size of matrix for the RF points 256
Max. number of RGCs used MAX 99950

Side length of the square [µm] boxlim 27564
Side length of the square [px] length 4256

Path data storage path ”./”
Random Seed seed 1

Table 3.7: Typical parameters for the program written for this thesis to cal-
culate orientation preference maps.
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aperiodic rgc mosaics and opms

“Die gegenwärtige Welt eröffnet uns einen so
unermeßlichen Schauplatz von Mannigfaltigkeit,
Ordnung, Zweckmäßigkeit und Schönheit, man mag
diese nun in der Unendlichkeit des Raumes, oder in
der unbegrenzten Teilung desselben verfolgen, daß
selbst nach den Kenntnissen, welche unser schwacher
Verstand davon hat erwerben können, alle Sprache,
über so viele und unabsehlich große Wunder, ihren
Nachdruck, alle Zahlen ihre Kraft zu messen, und
selbst unsere Gedanken alle Begrenzung vermissen,
so, daß sich unser Urteil vom Ganzen in ein
sprachloses, aber desto beredteres Erstaunen auflösen
muß.”

Immanuel Kant: “Kritik der reinen Vernunft” [91]
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4. Aperiodic RGC mosaics and OPMs

4.1 introduction

Orientation preference of primary visual cortical neurons is organized into a
functional map across the surface of the cortex. These maps have been ob-
served in cats [34, 151], tree shrews [18], galagos [184], ferrets[25, 177] and
many primates [126], including humans [185]. Orientation preference maps
(OPMs) are aperiodic with a typical scale [94, 95]. They contain topological
defects [16, 17, 120, 126, 161, 181] on a cellular level [130] which can be used to
quantify the statistical properties of these maps [96, 98]. Remarkably, OPMs
show universal statistical properties, indicating a common underlying origin
for these different species. Most theories to account for the observed univer-
sality rely on intracortical neurocircuitry creating neural orientation tuning
which self-organizes into OPMs (e.g. [47, 101, 127, 161, 180, 181]). However,
a very simple model has recently been proposed [132] interpreting OPMs as a
geometric effect.
ON/OFF center ganglion cells in the retina with distinct center-surround re-
ceptive fields project to the lateral geniculate nucleus (LGN) of the thalamus.
Thalamic receptive fields mirror retinal receptive fields in shape, size and spa-
tial distribution [28, 29] and project directly into the cortex. Orientation
preference of cortical neurons is created by an elongated receptive field with
distinct ON and OFF subregions [141]. This receptive field can be modeled
as a linear sum of center-surround geniculate receptive fields [79, 80]. A loca-
tion on the surface of the cortex corresponds to a specific position in visual
space. This is called retinotopy [38, 45, 163, 166] and allows two neighboring
retinal/thalamic ON and OFF center cells to project to neighboring neurons
in the cortex. Most nearest neighbor cells are ON/OFF pairs [174]. Assum-
ing cortical neurons to sample exclusively from geniculate projections in their
vicinity [2], this creates receptive fields dominated by a single ON and OFF
subregion [143]. These dipoles resemble cortical receptive fields. Consequently,
orientation preference across the surface of the cortex should mirror the dipole
distribution of the ON/OFF center ganglion cell mosaic in the retina [143,
153, 154]. Since this model builds on previous studies by Soodak, we refer to
it as the Soodak-Ringach model. Without any order in the ganglionic mo-
saic, it is difficult to account for the typical scale of OPMs. As solution, Paik
and Ringach [131, 132] suggested to model ON and OFF cell mosaics as two
hexagonal lattices. Superposing two lattices creates an interference effect, a
so-called Moiré-Pattern. This pattern is mapped into the cortex and creates
a map with a typical scale, set by the scale of the Moiré-Pattern.
Although this model creates OPMs which on first sight look realistic, there are
two major drawbacks. Firstly, OPMs created by the Soodak-Ringach model
have statistical properties and power spectra distinct from experimentally ob-
served ones. This is what we showed in the previous chapter. Secondly, the
ganglion cell mosaic is not hexagonal. Instead of using noisy hexagonal lat-
tices [143], ganglion cell mosaics in agreement with experimental data have
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successfully been simulated using pairwise interacting point processes [48, 76,
186]. These mosaics are non-random but aperiodic: there is no long-range
order which would be necessary to create a Moiré-Interference pattern. The
explicit long range order is a key difference between a hexagonal lattice and
a PIPP mosaic [76]. OPMs calculated from PIPP mosaics do not express a
typical scale due to the absent correlation between ON and OFF lattice [76,
143, 144]. These two findings challenge the assumptions of hexagonal mosaics
and the Moiré nature of OPMs and lead to the question: can one find an
aperiodic RGC mosaic whose ON/OFF dipoles generate an OPMs and which
shows the same statistical properties as experimentally observed mosaics [48,
76]?
To answer this question we start with model OPMs, generated as maximum
entropy ensemble [148] from experimentally observed cat marginal power spec-
tra. We develop a method to reverse-engineer a ganglion cell mosaic of which
the dipoles correlate with a seeding model OPM. The reverse-engineering algo-
rithm presented in this chapter builds on previous work on pairwise interacting
point processes (PIPPs) [48, 76]. We present a parsimonious extention of this
PIPP model because it is known to fit the data. Nonetheless it is an extention
to obtain OPMs with typical columns spacing. Since there is no direct way
of enforcing a certain dipole correlation function in a PIPP, the approach of
encoding the correlation in the pairwise interaction seems obvious. After the
presentation of the algorithm, we show that it is possible to find an aperiodic
ganglion cell mosaic which generates OPMs with typical column spacing. We
analyze the statistical properties of the ganglion cell mosaics obtained and find
that distance-statistics agree well with experimentally observed mosaics. A
requirement for creating an OPM from the ganglion cell mosaic is the angular
correlation of ON/OFF dipoles, corresponding to the angular correlation of
the OPM. A recent poster presentation at the SfN 2012 Meeting finds angular
correlation [133], however, it is unclear how. After quantifying the correlation
function of our model mosaics, we compare the results with experimental data
from cat beta cell mosaics [172, 186], which are considered to seed OPMs [143,
144]. We find that experimentally observed beta cell mosaics do not have any
long-range angular correlations. In summary, this work shows that ganglion
cell mosaics do not have the necessary spatial statistics to generate OPMs.

4.2 results

The model

Should it be the case that the OPMs are already embedded in the mosaic
of ganglion cells? To illustrate the train of thought we show a ganglion cell
mosaic from a cat retina [173], Fig. 4.1A. Two very prominent features are
the area centralis, the region of greatest ganglion cell density, corresponding
to the greatest visual acuity. A second one is the visual streak, a horizontal
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Figure 4.1: A Retina of a cat’s left eye with cell positions indicated as dots,
measured in a cresyl-violet stained mount [173]. Indicated are two distinct
anatomical features, the visual streak and the area centralis (see text). The
red and blue circles show the position of two ganglion cell mosaics which
we use later. B Cortical magnification factor of the cat in mm2 cortex per
deg2 visual field [166]. The indicated point corresponds to the mosaics used
(see text). C OPM of a cat primary visual cortex [187]. D Defining dipoles,
neighboring ON/OFF pairs closer than a distance d. The indicated ON cells
has two OFF cells in its vicinity, thus creating two dipoles. The color encodes
the dipole orientation. The dipole position is half way between ON and OFF
cell. (b) This particular mosaic of ON/OFF cells creates an OPM. (c) The
OPM created by the mosaic in (b).

line of relatively high ganglion cell density [146]. Both are indicated in the
figure and both features are important below. We have also indicated two
points, about 5 mm from the area centralis below the visual streak. They
show the position of the ganglion cell mosaics which we use later. The retinal
ganglion cells’ position in visual space is mapped into the cortex by cortical
magnification, Fig. 4.1B. The value of cortical magnification depends on the
position in the visual field. The elevation is given in angle above the horizon
(the visual stroke). The origin (zero elevation, zero azimuth) is the center
of gaze, corresponding to the area centralis. In the primary visual cortex,
orientation preference maps can be observed Fig. 4.1C. The cortical magni-
fication factor for the published mosaics which we discuss later is indicated in
B. Ganglion cell somata and their dendritic trees are arranged in an aperiodic
and non-random mosaic [174]. There is no evidence that different cell types,
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as ON and OFF center cells, have a spatial relationship [76], except that their
somata and dendrites do not overlap. However, within one class of neurons,
each cell is surrounded by an exclusion zone in which it is unlikely to find
another one [48, 76].
We assume a pair of ON/OFF ganglion cells to form a dipole if their distance
is smaller than d, a free parameter in this model. A dipole is defined as a
vector going from ON to OFF center RGC. The dipole’s position is defined
as half way between both cells. The dot’s color corresponds to the angular
orientation. This is shown in Fig. 4.1D (a). Empty circle show ON center
cells, filled circles show OFF center cells. In the vicinity of a specific ON
center cell, two OFF center cells can be found. This defines two dipoles. In
Fig. 4.1D (b), we show the dipoles calculated for a mosaic generated with
the algorithm presented in the next section. Already visually, the dipoles’
orientation changes more or less smoothly and generates an OPM. Fig. 4.1D
(c) shows the corresponding OPM created by this mosaic.

An OPM modulated PIPP

Retinal ganglion cells are not distributed randomly. They form an aperiodic
mosaic with distinct statistical properties. The properties have been analyzed
in detail, specifically regarding the density recovery profiles, autocorrelation
function, nearest neighbor distance distribution, topological disorder (mea-
sured by the number of edges of voronoi polygons) and the expectation value
of finding a cell within a certain distance [48, 76]. This thorough investiga-
tion allowed to simulate mosaics with realistic statistical properties, using a
Pairwise Interacting Point Process (PIPP), a method of generation a spatial
distribution of points. It is called a Pairwise interacting process, because the
interaction of points is determined by an interaction function between pairs.
The product of the interaction functions for a specific location for all possible
pairs of points gives the probability of finding a point at this particular spot.
In the model presented here, this works as follows. A number of ganglion cells
is randomly distributed and subsequently subjected to an update rule which
is repeated for all cells several times until the result converges. A number of
nON ON and nOFF OFF center RGCs are positioned in a patch of the retina
of finite size x× y. The ganglion cells’ positions xiON and xiOFF are initialized
randomly. Following the initialization, the ON ganglion cell i is selected. A
new candidate position is assigned randomly and accepted with probability

pi =

nON∏
j=1,i 6=j

h11(|xiON − xjON|) ·
nOFF∏
j=1

h12(|xiON − xjOFF|) · hκ(xiON,x
j
OFF).
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4. Aperiodic RGC mosaics and OPMs

After updating all ON cell’s positions, the procedure is repeated for the OFF
center cells, here for the cell number i

pi =

nOFF∏
j=1,i 6=j

h22(|xiOFF − xjOFF|)
nON∏
j=1

h12(|xjON − xiOFF|) · hκ(xjON,x
i
OFF).

In our simulations, we performed both the ON and the OFF loop 50 times.
The functions h11, h12 and hκ are chosen as

h12(r) =

{
0 if r ≤ δ
1 if r > δ

h22(r) =

{
0 if r ≤ δ
1− exp

(
−
∣∣∣ r−δφ ∣∣∣α) if r > δ

hκ(x,y) =

{
1− exp

(
κ(cos(arg(x− y)− θ

(x+y
2

)
)− 1)

)
if r ≤ d

1 if r > d

where θ(x) is an OPM used to seed the process. The function h22(r) describes
the self-interaction of different ON, respectively OFF center RGCs. This func-
tion generates an exclusion zone around every RGC in which it is unlikely to
find another one. The parameter φ is the width and α the slope of the tran-
sition distance δ of the interaction function. The function h12 captures the
interaction between ON and OFF center RGCs. In this case, the somata can-
not overlap. The function hκ employs the OPM. If κ is zero, the OPM does
not influence the positioning of the dipoles. In this limit, the PIPP reproduces
the methods proposed by Eglen et al. [48]. If κ is large, the angle between ON
and OFF ganglion cells is strongly influenced by the OPM. This interaction
function aligns dipoles in a way that they reproduce an OPM. We refer to this
method as a modulated PIPP (mPIPP). To seed the ganglion cell mosaics, we
use OPMs generated with a Gaussian random field, specifically the method
proposed in [148]. Instead of using a model marginal amplitude spectrum,
we average the spectra of 13 cat OPMs and generate the maximum entropy
ensemble for the observed marginal amplitude spectrum. This is shown in
Fig. 4.2. Fig. 4.2A shows a Gaussian random OPM and Fig. 4.2B the as-
sociated amplitude spectrum. The process of generating a Gaussian random
field works as follows. A marginal amplitude spectrum is chosen. A complex
matrix is filled with Gaussian entries for real and imaginary part. This matrix
is subsequently multiplied with the amplitude spectrum and inversely trans-
formed. The Gaussian OPM is the phase of the result. The experimental
power spectra are shown in Fig. 4.2C. Pink curves show all marginal power
spectra used, the purple drawn line is the mean. All power spectra have been
scaled in x so that the maximum is located at 1. For a comparison, Fig. 4.2D
shows the amplitude spectrum of a cat’s OPM. Using this marginal amplitude
spectrum and the same Gaussian random map construction, we obtain an
OPM as shown in Fig. 4.2E with the spectrum as in Fig. 4.2F. This is a
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Figure 4.2: A A Gaussian random OPM, generated with the algorithm pre-
sented in [148]. The parameter used for the spectrum’s width is β = 5. B
The amplitude spectrum of the map in A. C Shown in pink are the marginal
power spectra of 13 cat OPMs. The purple drawn line is the average of the
maps. All cat maps have been normalizes so that the maximum coincides at
k/kc=1. D An example amplitude spectrum of a cat’s OPM. E A Gaussian
OPM generated with the marginal amplitude spectrum in C. This is a section
of the OPM which is used to modulate the PIPP. F The amplitude spectrum
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fragment of the map used to modulate the PIPP process. It has more high
frequency contributions than the original map because the averaged spectrum
is slightly wider than a single cat OPM spectrum. It should be noted that the
pinwheel density for Gaussian random maps is too large. Nevertheless, we use
this method as an approximation for real maps with finite bandwidth.
To evaluate angular correlation, we use the measure proposed by Fisher and
Lee [55, 56]. It is equivalent to the Pearson product-moment correlation coef-
ficient for the sine of the angles, respectively the sine of the angle’s covariance,
normalized with its standard deviation. The circular correlation function is
defined as follows. For n dipoles in a retinal patch, there are n(n− 1)/2 pairs
of dipoles with different distances. We calculate these dipoles and save the
distance and the angle of both dipoles in a list. Next, the length is binned from
0 to the size of the diagonal of the rectangular retinal section (the greatest
possible distance between two dipoles) in 20 equidistant bins and every dipole
pair assigned to the corresponding bin. We store the values pi = (θi, φi) which
are the two angles for a each pair of dipoles which falls within this bin. The
index i is in the range i = 1, . . . , t where t is the number of dipoles in this
distance bin. The circular correlation for the group k is defined as

Ck =

∑
sin(θi − θj) sin(φi − φj)√∑

sin2(θi − θj)
√∑

sin2(φi − φj)
. (4.1)

Each summation is in the range 1 ≤ i < j ≤ p. A simple statistical error
estimation can be done by calculating the standard deviation of the sum in
the nominator and denominator and using propagation of error. We define
the standard error as

err1 =
1

p
std (sin(θi − θj) sin(φi − φj))

err2 =
1

p
std
(
sin2(φi − φj)

)
err3 =

1

p
std
(
sin2(θi − θj)

)
.

The function std() calculates the standard deviation. Note that we calculate
the standard error in terms of p, the number of dipole pairs and not the
number of terms in the sums in Eqn. (4.1). We find this estimation more
conservative because there are only p independent dipole pairs which can be
used to calculate the circular correlation. Subsequently, we use standard error
propagation to calculate the error

sk =

√(
err1√
m2m3

)2

+

(
m1m3

(m2m3)3/2

err2

2

)2

+

(
m1m2

(m2m3)3/2

err3

2

)2

. (4.2)

for bin k. The numbers mi are the mean for the sums in Eqn. (4.1) for which
erri is the standard error.
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Secondly, we also implemented a more sophisticated error measure. We used
jackknifing to estimate the error as proposed by Fisher [6, 55]. Briefly, for
every bin the p dipole pairs are assigned to g = 5 groups with p/g dipole pairs
in each. Then, we carry out calculation Eqn. (4.1), however, ignoring one of
the groups. The standard error can be estimated by

sk =

√√√√ 1

g − 1

g∑
i=1

(C − Ci)2

where Ci are the results of the jackknife estimation. It seems that his measure
substantially underestimates the error. A likely reason is that the total num-
ber of dipole pairs is very limited. Thus, these jackknife estimated correlations
are very similar to the correlation calculated by all dipole pairs. Because of
the more conservative error estimation and the substantially smaller computa-
tional effort, we calculate error estimates using propagation of errors. A third
option of error estimation, similarly a form of resampling, is bootstrapping.
We did not implement this alternative.
The calculation of the correlation function for rectangular patches of retina
creates large errors for very small distances (only few dipoles are very close)
and large errors for large distances (only dipoles at the edges of the retina
patch can contribute). Between the extremes, the error is smaller. Using the
model OPM for the described modulated PIPP gives mosaics as shown in
Fig. 4.3. Fig. 4.3A shows a mosaic calculated for κ = 0 ((a)) and κ = 28
(Fig. (b)). A dipole is defined as a vector from ON to OFF. Colored dots
are located at the center of these vectors, illustrating dipole positions. The
color of the dots indicates the dipole orientation. Black and white dots in-
dicate OFF, respectively ON mosaic. Underlying the mosaic is the OPM
used to modulate the PIPP. In the case κ = 0 the OPM did not influence
the mosaic. This reproduces the original PIPP [48]. For κ = 28, the dipoles
are clearly aligned with the OPM. Fig. 4.3B shows the dipole correlation
function, Eqn. (4.1), for the maps in A. As expected, there is no correlation
in the κ = 0 map, but clear long range order for κ = 28. The errors are
estimated using standard error propagation, Eqn. (4.2), as discussed above.
A RGC mosaic which can generate an OPM has a substantial correlation on
the scale of ≤ 0.3Λ. This is shown in (b) for κ = 28. Fig. 4.3C shows
the distance distribution between ON and OFF center cells. In respect to
this distribution, there is now significant difference between large and small κ
for single mosaics. Calculating these distributions for a substantially greater
number of RGCs yields the plots shown in Fig. 4.3D. Here we can find a
larger ON-OFF nearest neighbor distribution function. Pairs of cells tend to
align close to the lower cutoff δ = 20 µm to form stable dipoles. For the dis-
tribution of ON and OFF center cells, there is no significant difference. The
parameters used for this simulation are the same as proposed by Eglen et al.
[48] and summarized in Tab. 4.1. The cells have been distributed using the
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Figure 4.3: A The result of the modulated PIPP. Ganglion cells are indicated
as empty (ON) and filled (OFF) dots. Dipoles are indicated as colored dots.
The color corresponds to the preferred angle as indicated. The underlying
OPM is the map which modulates the PIPP. Dipoles have been calculated for
d = 80 µm. B Angular correlation calculated with Eqn. (4.1) for 20 bins for
the mosaic shown in A. Empty bins are not shown. The error is estimated
with Eqn. (4.2). C Nearest neighbor distance distribution of all cells (top) and
of ON-ON and OFF-OFF nearest neighbors (bottom). Green is the ON-ON
distance, blue is OFF-OFF distance. D shows the same ON/OFF distance
distribution as C but with data from ≈ 10000 RGCs. The top row (a) shows
a simulation for κ = 0, the bottom row (b) shows a simulation for κ = 28.
We used the parameters for the m623 mosaic, summarized in Tab. 4.1.
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Name φ [µm] α δ [µm] size [µm] number ON number OFF

m623 h11 112.79 3.05
m623 h22 65.46 8.11
m623 h12 20

m623 size x 860
m623 size y 920
m623 cells 74 82

w81s1 h11 67.94 7.81
w81s1 h22 66.27 5.40
w81s1 h12 18

w81s1 size x 620
w81s1 size y 820
w81s1 cells 65 70

Table 4.1: Parameters used for the PIPP to reproduce mosaics with the same
statistical properties as the two mosaics m623 and w81s1, shown in Fig. 4.4.
Values are copied from [48].

parameters for mosaic m623. To summarize, the proposed modulated PIPP
generates aperiodic mosaics of ON and OFF center cells of which the dipoles
correspond to an OPM. Each ON/OFF mosaics alone does not have substan-
tial long range order, yet they generate OPMs with realistic power spectra.
In the next section, we analyze cat X-cell mosaics with respect to ON/OFF
dipole correlation. Should the ganglion cell mosaic seed the OPM, we should
find this correlation, similarly as it appears in Fig. 4.3B (b).

Correlation in Cat Data

In this section we use cat beta cell mosaics published in [174] (w81s1) and
[186] (m623). To our knowledge, these mosaics are the only ones published.
These are also the ones used by Eglen et al. to construct the PIPP with the
parameters given in Tab. 4.1. [48]. The mosaics, neighbor distance distri-
butions, dipoles and angular correlations are shown in Fig. 4.4. Fig. 4.4A
shows the mosaic m623 and Fig. 4.4B mosaic w81s1. (a) shows the mosaics,
copied from [48]. (b) shows the distance distribution of the ON/OFF center
cells. Red is the distance between nearest neighbors, green is ON-ON and blue
is OFF-OFF distance. Fig. 4.4C shows the identified ganglion cell ON-OFF
dipoles for mosaic m623. (a) shows the dipoles found with a critical distance of
d = 50 µm. (b) shows the dipoles found with a critical distance of d = 80 µm.
Of course, an increasing number of dipoles can be found as the critical distance
becomes greater. Fig. 4.4D shows the dipoles found for the mosaic w81s1.
Fig. 4.4E shows the angular correlation function for both mosaics. (a) shows
the angular correlation for dipoles identified with d = 50 µm, (b) shows the
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Figure 4.4: A Data for the mosaic m623 [186]. (a) shows the ganglion cell
mosaic used (copied from [48]). Black/white symbols indicate OFF/ON center
cells. (b) shows the distance distribution between nearest neighbors (red)
and ON-ON (green), OFF-OFF pairs (blue). B The same as in A for the
mosaic w81s1 [174]. C shows the dipoles identified in the mosaics. The bars
are 100 µm. (a) shows the dipoles (colored dots) calculated for a distance
d = 50 µm, (b) shows the dipoles calculated for a distance of d = 80 µm.
The red circles show the same position in the mosaics and how increasing d
increases the number of identified dipoles.

correlation function for dipoles identified with d = 80 µm. The dashed line
shows the zero correlation line. Errors are estimated with error propagation.
This figure illustrates that there is no measurable correlation in the reported
mosaics. How much correlation would we expect? To answer this question,
we calculate the region of an OPM to which these mosaics correspond. The
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center of mosaic w81s1 was located 19◦ below the mid line of the visual streak,
4mm from the area centralis [186]. For the definition of these terms and for
an illustration where this point is located, see Fig. 4.1A. We need to reex-
press this value in degree visual field to get the cortical magnification factor,
Fig. 4.1B. Firstly, the coordinates are(

4 mm cos(19◦)
4 mm sin(19◦)

)
=

(
1.3 mm
3.8 mm

)
in respect to a coordinate system of which the x-axis goes along the visual
streak and the area centralis sets the origin. In the cat retina, 1 mm corre-
sponds to 4.4 deg visual angle [7, 10]. Thus(

1.3 mm
3.8 mm

)
→
(

5.9◦

17.2◦

)
.

The cortical magnification for elevation 5.9◦ and azimuth 17.2◦ is shown in
Fig. 4.1B and about 0.15mm2

deg2
. Thus, we can calculate the factor between

surface on the retina and on the cortex for the mosaic w81s1.√
0.15

mm2
c

deg2 · 4.4
deg

mmr
= 1.7

mmc

mmr

Here mmr means mm on the retina and mmc means mm on the cortex. The
typical scale of a cat OPM is Λ = (1.0 ± 0.1) mmc on the cortex [138]. This
value corresponds to Λr = (0.59± 0.06) mmr.
The mosaic m623 has been obtained from 5mm eccentricity and 5.5 deg below
the mid line of the visual streak. This corresponds to the point (2.1◦, 22.6◦) in
the visual field, which has the same cortical magnification (within the readout
error of Fig. 4.1B) and thus Λr = (0.59 ± 0.06) mmr. Remembering the
results from Fig. 4.3, we should find a strong angular correlation at least
until ≈ 200 µm. This is not the case. In fact, the experimental data is
consistent with the absence of angular correlations. In the next section, we
calculate an upper boundary for the value κ.

Figure 4.4: D shows the same as C for the mosaic w81s1. E (a) shows the
circular correlation calculated for a distance of d = 50 µm for both mosaics.
Circular correlation is calculated as described in the text. The line shows the
expected scale for dipole correlation, 1Λ. For details, see text. (b) shows the
circular correlation for d = 80 µm. The errors in b are substantially smaller
because more dipoles can be used to calculate this figure. Errors are calculated
by propagation of uncertainty as discussed in the text.
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Figure 4.5: A Angular correlation function in comparison to data. The pink
dots shows 100 realizations of the modulated PIPP. The pale pink dots show
the values obtained. The black drawn line is the average, the dashed lines show
±1σ. The gray drawn lines show the curve through the maximum/minimum
values obtained. The red dots show the correlation for m623. The parameters
used are summarized in Tab. 4.1. (a) calculated for κ = 8, (b) for κ = 28. B
The mean correlation function for different values of κ, encoded as color and
shown in the legend. The red drawn line is Eqn. (4.3), the theoretical corre-
lation function for a maximum entropy ensemble with a amplitude spectrum
parameter β = 5 [148].
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Comparison between PIPP and Data

The cat data shows no indication for a dipole angular correlation. To set a
constraint on the tuning parameter κ, we compare the cat data with several
realizations of PIPP mosaics. This is done as follows. We choose a cortical
magnification factor ξ and a parameter κ. A simulation is initialized by se-
lecting a random position on a simulated OPM [148], calculated as described
above. Around this spot, we use a rectangular region of which the size is set by
ξ to modulate the PIPP. The values for the PIPP are fixed (and summarized
in Tab. 4.1). Once the mosaic is generated, we calculate the dipole corre-
lation function. This procedure is repeated 100 times. The cat correlation
function is subsequently compared to this data. This is shown in Fig. 4.5A.
Pink dots show the circular correlation calculated for 100 independent modu-
lated PIPP runs with the m623 parameter set. The gray drawn line connects
the maximum and the minimum values. The dashed gray lines mark ±1σ.
The drawn black line is the average of the simulations. The data for mosaic
m623 with errors estimated by propagation of errors is shown in red. In the
case κ = 0, Fig. 4.5A (a), we find the experimental data consistent with the
simulations. Fig. 4.5A (b) shows the same modulated PIPP, however, the
parameter κ = 28. In this case we find a strong correlation for dipole distances
. 0.3Λ. In the case of κ → ∞, we should expect the dipoles’ orientation to
align exactly with the modulating PIPP. The correlation function should thus
approach the correlation function of OPMs. This is shown in Fig. 4.5B. The
different colors show the mean correlation of 100 modulated PIPP runs for
different κ. The red drawn line shows the OPM correlation function for a
Gaussian map with marginal amplitude spectrum

Pβ(k) = A|k|βe−|k|
2B

where

A = 2
Γ
(

2+β
2

)1+β

Γ
(

1+β
2

)2+β

B = 2
Γ
(

2+β
2

)2

Γ
(

1+β
2

)2 .

These values are chosen to have the amplitude spectrum normalized and to
set the expected value to one, 〈k〉 =

∫
P (k)kdk = 1. The correlation function

here is defined for a complex field as C(r) = 〈z(x)z̄(x + r)〉. The phase of this
complex field is the OPM. Note that this definition is different to the measure
used here. The result [148] is

C(r) = 1F1

(
2 + β

2
; 1;− r2

4B

)
. (4.3)
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4. Aperiodic RGC mosaics and OPMs

Here, 1F1 is the confluent hypergeometric function of the first kind. Since both
measures of angular correlation are similar, we expect both measures to give
similar results. The red line in the figure is Eqn. (4.3) calculated for β = 5
(see Fig. 4.2). We find that for increasing κ the dipole correlation function
approaches the OPM’s correlation function. Since the experimental data is
consistent with no correlation at all, we can estimate a greatest possible κ
consistent with the observed absence of correlation.
Firstly, we calculate the mean and the standard deviation from the 100 in-
dependent realizations of the modulated PIPP. This way, we get a prediction
Cmc
i and a standard deviation σmc

i for every bin i. These values are compared
to the experiment Cdata

i . Subsequently, we calculate the average deviation
from this prediction in units of standard deviations.

〈σ〉 =

√√√√ 1

n

n∑
i

(Cmc
i − Cdata

i )2

(σmc
i )2 . (4.4)

Secondly, we calculate the associated probability of finding this value

p = 1− erf

(
〈σ〉√

2

)
. (4.5)

The result is shown in Fig. 4.6 for 30 bins. The contour plots, Fig. 4.6A
(a) and Fig. 4.6A (b) show 〈σ〉 calculated with the free parameters κ and
cortical magnification. The row below shows the associated probability as
calculated with Eqn. (4.5). The cortical magnification which we estimated
from the literature is indicated by the red line. Fig. 4.6A shows the results
for the mosaic m623, Fig. 4.6B shows the results for w81s1. We find that
for small cortical magnifications, a wider range of κ is allowed as compared to
larger cortical magnifications (see (a) left hand side is more blue than right
hand side and (b): left hand side is more orange than right hand side). The
reason is as follows: If a small region on the retina corresponds to a large
region on the cortex, a relatively large area of an OPM is represented by a
relatively small mosaic. Therefore despite the strong correlation of OPM with
the dipole angle, the angular correlation is relatively small because nearby
dipoles can have very different orientations.
For mosaic w81s1, we find that κ < 5 for which the deviation between Monte-
Carlo and experimental data is small and uniform. For increasing κ, the
deviation 〈σ〉 increases continuously. For mosaic m623, the quality of the
estimation is rather κ independent. This might be an indication that the
PIPP is not as good in simulating a mosaic with a great spatial extend as
m623. Considering the inhomogeneity of the RGC density on a retina as
shown in Fig. 4.1A, it is reasonable to assume that as PIPP is better suited
for the simulation of small retinal patches where a uniform density is a good
approximation.
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Figure 4.6: Comparison of modulated PIPP correlation functions with exper-
imental data. A (a) Shown is the average deviation between experiment and
simulation 〈σ〉 as calculated with Eqn. (4.4). A (b) The probability of finding
the deviation in (a) accidentally. This value is calculated with Eqn. (4.5). B
The same plots as Fig. A for mosaic m623. The red dashed line indicates the
theory value for cortical magnification.

4.3 discussion and conclusion

In this chapter we presented a novel method to reverse-engineer a ganglion
cell mosaic from a model OPM. The reverse-engineering algorithm builds on
previous work on pairwise interacting point processes [48, 76]. After the pre-
sentation of the algorithm, we showed that it is possible to find an aperiodic
ganglion cell mosaic which generates OPMs with a typical column spacing.
We analyzed the statistical properties of the obtained ganglion cell mosaics
and found that distance-statistics agree well with experimentally observed mo-
saics. This is not very surprising because our modification did only address
angular correlations. The rest of the PIPP’s interaction functions generate
realistic mosaic similar to the unmodified one. We also defined a parame-
ter κ which is a natural measure for dipole-OPM influence. For κ → 0, the
presented PIPP reproduces the results presented by [48] which is no angular
correlation between dipoles, thus no OPM with a typical scale can be created.
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4. Aperiodic RGC mosaics and OPMs

For κ → ∞, every dipole angle is very specifically chosen. In this case, there
is a long range correlation mirroring the OPM’s angular correlation. Gener-
ally, it is a requirement for creating an OPM from the ganglion cell mosaic
to have angular ON/OFF dipole correlations. After quantifying the correla-
tion function of our model data, we compared the results with experimental
data from cat beta cell mosaics [172, 186]. The reason for using beta cells is
that they are supposed to have a major influence on the OPM formation [143,
144]. Alternatively, one might use Y cells or parasol/midget cell mosaics for a
primate retina. At this point, there is no reason to think of one pathway over
the other so that it is a reasonable assumption that all of them contribute to
the OPM formation.
The mosaics which we used are not mosaics of receptive field centers but of
ganglion cell’s somata. We could not find any correlation in retinal beta cell
mosaics. Thus, it is unlikely to find them in receptive field center positions,
however, it should be checked. A statistical analysis of the tuning parameter
κ showed a large region inconsistent with data, in fact we can exclude κ > 5.
This chapter shows that, within certain assumptions, ganglion cell mosaics do
not have the necessary spatial statistics to generate OPMs.
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conclusions

“Nothing shocks me. I’m a scientist.”

Indiana Jones
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5. Conclusions

5.1 conclusion and perspective

In this thesis we analyzed a new model to account for the universal occurrence
of cortical orientation preference maps. Se-Bum Paik and Dario Ringach pro-
posed that ON and OFF center ganglion cell mosaics form two hexagonal lat-
tices with a different lattice constant, shifted against each other by an angle.
This creates an interference effect, a Moiré-Pattern. This pattern is mapped
into the cortex and creates a map with a typical scale, set by the scale of
the Moiré-Pattern. The emergence of a typical scale in this simple geometric
model motivated us to conduct a more thorough investigation. The effect of
lattice noise on an OPM in the linear feed-forward model has not been well
understood. Furthermore, it was not clear if and how the interference model
can reproduce the universal properties of OPMs found in different species.
We addressed both questions by calculating OPMs, their power spectra and
the pinwheel-density analytically. We showed that the pinwheel-density of
ρ = 2

√
3 is too large to fit observations in different species. For increasing

noise on the ganglion cell mosaic, we showed that the peaks of the Moiré-
Modes in the amplitude spectrum are absorbed into a Gaussian background
which is inconsistent with experimental data. We also showed that the hexag-
onal OPMs predicted by the Soodak-Ringach model can be created by self-
organization alone. In summary, we presented a series of model predictions
which firstly, challenge previous arguments for this model and secondly, stand
in contrast to experimental observations. This part of the thesis shows that
hexagonal and noisy lattices are unlikely to drive OPM formation.
Stephen Eglen et al. have shown independently that the ganglion cell mosaic is
substantially better described by a pairwise interacting point process without
long range order than by a hexagonal and noisy lattice. Such a point process
generates uncorrelated ON and OFF mosaics. With uncorrelated ON/OFF
mosaic, however, it is difficult to account for the typical scale of OPMs. In the
second part of the thesis, we asked the question: Which are the properties of
ganglion cell mosaics which create realistic OPMs? Can we design a modified
PIPP which generates OPMs from two aperiodic lattices? We approached this
question by reverse engineering. We calculated model OPMs which we used to
seed a PIPP. Thus, we obtained mosaics of which the ON/OFF dipoles’ angles
correlate strongly with the seeding OPM. Next, we quantified the statistical
properties of these mosaics. We found that distance statistics are almost un-
affected by our modification. Secondly, we found a strong angular correlation
of ON/OFF pairs. We showed that this correlation is necessary because it
mirrors the correlation of the underlying OPM. Using published cat beta cell
mosaics, we could not find any such correlation in experimental data. We used
the missing evidence in the experiment to calculate a constraint on a tuning
parameter κ which captures how strongly a ganglion cell mosaic and the OPM
interact. In this part of the thesis we showed that observed mosaics do not
have the properties to create OPMs.
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This thesis presents a series of arguments and observations which lead to the
conclusion that this newly proposed model is insufficient to understand the
emergence of OPMs. Which are the consequences of this finding? Instead
of geometric reasons, crucial features of the spatial layout as the periodic-
ity with typical scale are likely to be formed by cortical self-organization i.e.
experience-dependent mechanisms. Current challenges for self-organization
models, as the observed finite bandwidth of the amplitude spectrum, might
be the effect of retino-thalamic bias. In this sense, it is worth incorporat-
ing perturbative effects into self-organization models. Should the white-noise
bias from ON/OFF dipoles on self-organized OPM formation not contribute
substantially, it is difficult to uphold the idea that retino-thalamic input is
important. Understanding the interplay between a retino-thalamic bias and
self-organization is crucial and the next logical step following this thesis.

89



5. Conclusions

5.2 zusammenfassung und ausblick

In dieser Arbeit wurde ein neuartiges Modell untersucht, um das universelle
Auftreten von Orientierungskarten zu erklären und zu modellieren. Se-Bum
Paik und Dario Ringach schlugen vor, die Mosaike retinaler ON und OFF cen-
ter Zellen als hexagonale Gitter zu modellieren. Mit verschiedener Gitterkon-
stante und/oder gegeneinander verdreht, würde dies einen Interferenzeffekt
verursachen, ein sog. Moiré Muster. Dieses Muster würde in den Kortex
projiziert und könnte eine Orientierungskarte mit typischer Skala erzeugen.
Diese Beobachtung motivierte uns, eine genauere Untersuchung anzustellen.
Die Auswirkungen von Störungen auf das retinale Zellmosaik waren in diesem
Modell nicht gut verstanden. Es war außerdem nicht klar, wie und ob dieses
Modell die universellen Eigenschaften von Orientierungskarten reproduzieren
könnte. Beide Fragen wurden in dieser Arbeit adressiert, indem wir Orien-
tierungskarten, ihre Spektren und die Dichte von Pinwheels exakt berech-
neten. Wir zeigten, dass die Pinwheel Dichte von ρ = 2

√
3 zu groß ist, um

die Beobachtungen in verschiedenen Spezies zu erklären. Wir zeigten, dass für
zunehmendes Gitterrauschen die scharfen Moiré-Peaks des Spektrums in einen
Gaussischen Untergrund absorbiert werden. Ein solcher Untergrund wurde
experimentell nicht beobachtet. Wir zeigten außerdem, dass die vom Modell
vorhergesagten hexagonalen Orientierungskarten exklusiv durch Selbstorgan-
isation erstellt werden können. Wir präsentierten also eine Reihe von Mod-
ellvorhersagen, die (erstens) frühere Argumente für dieses Modell relativieren
und (zweitens) im Gegensatz zu experimentellen Daten stehen. Dieser Teil der
Arbeit zeigte, dass hexagonale ON/OFF center Zellmosaike ungeeignet sind,
die Bildung von Orientierungskarten zu erklären.
Stephen Eglen und Mitarbeiten haben unabhängig zu dieser Arbeit gezeigt,
dass die genannten Ganglionzellmosaike besser durch paarweise wechselwirk-
ende Punktprozesse ohne langreichweitige Ordnung beschrieben werden können
als durch hexagonale Gitter. Solche Punktprozesse erzeugen unkorrelierte
ON und OFF Mosaike. Mit unkorrelierten Mosaiken ist es jedoch schwer,
die typische Skala einer Orientierungskarte zu generieren. Im zweiten Teil
dieser Arbeit adressierten wir also die folgenden Fragen: Erstens, was sind die
Eigenschaften von Ganglionzellmosaiken, die realistische Orientierungskarten
erzeugen. Zweitens, können wir einen paarweise wechselwirkenden Punkt-
prozess erzeugen, der ein aperiodisches Mosaik erzeugt aus dem sich eine Ori-
entierungskarte erstellen lässt? Wir sind diese Fragen durch Nachkonstruktion
nachgegangen. Wir berechneten Modell-Orientierungskarten und verwende-
ten sie, um einen paarweise wechselwirkenden Punktprozess zu modulieren.
Wir erhielten damit Mosaike, deren ON/OFF Dipole stark mit der Modell-
Orientierungskarte korrelierten. Im nächsten Schritt quantifizierten wir die
statistischen Eigenschaften dieser Mosaike. Wir entdeckten, dass die Ab-
standsstatistik durch unsere Modifikation nahezu unverändert geblieben ist.
Außerdem fanden wir eine starke Winkelkorrelation von ON/OFF Dipolen.
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Wir zeigten, dass diese Korrelation notwendig ist, denn sie spiegelt die Ko-
rrelation der darunterliegenden Orientierungskarte wieder. Wir versuchten an-
schließend, eine solche Korrelation in publizierten Daten von Katzen Netzhäuten
zu finden. In den experimentellen Daten war kein Hinweis auf Korrelation zu
finden. Wir nutzen die Abwesenheit einer Winkelkorrelation um eine Ein-
schränkung für einen Tuningparameter κ zu geben, den wir in dieser Arbeit
definierten und der beschreibt, wie stark ON/OFF center Zellmosaike und
Orientierungskarte wechselwirken. In diesem Teil der Arbeit zeigten wir, dass
Ganglionzellmosaike nicht die Eigenschaften haben, um Orientierungskarte zu
erzeugen.
Diese Arbeit präsentiert eine Reihe von Argumenten und Beobachtungen, die
zum Schluss führen, dass das untersuchte Modell unzureichend ist um das
Auftreten von Orientierungskarten zu erklären. Was sind die Konsequenzen?
Anstelle von geometrischen Gründen werden die essentiellen Eigenschaften von
Orientierungskarten vermutlich durch kortikale Selbstorganisation geformt.
Aktuelle Schwierigkeiten dieser Selbstorganisationmodelle (wie beispielsweise
die endliche Bandbreite des Orientierungskartenspektrums) könnten ein Effekt
von retinalem Input sein. In diesem Sinne ist es lohnenswert, perturbativen
Input in Selbstorganisationsmodellen zu studieren. Das Wechselspiel zwischen
retinalem Input und kortikaler Selbstorganisation ist also der nächste sinnvolle
Punkt um nach dieser Arbeit anzusetzen.
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während meines Studiums; selbes gilt für das FOKUS Programm und den
DAAD.

92



bibliography

[1] D L Adams and J C Horton. “Shadows cast by retinal blood vessels
mapped in primary visual cortex.” In: Science 298 (2002), pp. 572–
576.

[2] J M Alonso, W M Usrey, and R C Reid. “Rules of connectivity between
geniculate cells and simple cells in cat primary visual cortex.” In: The
Journal of Neuroscience 21 (2001), pp. 4002–4015.

[3] K W Alt, C Jeunesse, and C H Buitrago-Téllez. “Evidence for stone
age cranial surgery.” In: Nature 387 (1997), pp. 360–361.

[4] I Amidror. The Theory of the Moire Phenomenon, Volume I. 2nd ed.
Springer, 2009, p. 551. isbn: 9781848821804.

[5] A Anishchenko et al. “Receptive field mosaics of retinal ganglion cells
are established without visual experience.” In: The Journal of Neuro-
physiology 103 (2010), pp. 1856–1864.

[6] J N Arvesen. “Jackknifing U-statistics.” In: The Annals of Mathemat-
ical Statistics 40 (1969), pp. 2076–2100.

[7] H B Barlow, R Fitzhugh, and S W Kuffler. “Change of organization in
the receptive fields of the cat’s retina during dark adaptation.” In: The
Journal of Physiology 137 (1957), pp. 338–354.

[8] R Bellman. A Brief Introduction to Theta Functions. Holt (June 1961),
1961, p. 78. isbn: 0030103606.

[9] J Bernstein. Elektrobiologie: Die Lehre von den elektrischen Vorgängen
im Organismus auf moderner Grundlage dargestellt. Braunschweig:
Friedrich Vieweg und Sohn, 1912, p. 280. url: http://vlp.mpiwg-
berlin.mpg.de/library/data/lit39671?.

[10] P O Bishop, W Kozak, and G J Vakkur. “Some quantitative aspects of
the cat’s eye: axis and plane of reference, visual field co-ordinates and
optics.” In: The Journal of Physiology 163 (1962), pp. 466–502.

[11] H T Blair, A C Welday, and K Zhang. “Scale-invariant memory rep-
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[62] S V Girman, Y Sauvé, and R D Lund. “Receptive field properties of
single neurons in rat primary visual cortex.” In: Journal of Neurophys-
iology 82 (1999), pp. 301–311.
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