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CHAPTER 4 — RADAR NAVIGATION

RADARSCOPE INTERPRETATION

In its position finding or navigational application, radar may serve the
navigator as a very valuable tool if its characteristics and limitations are
understood. While determining position through observation of the range
and bearing of a charted, isolated, and well defined object having good
reflecting properties is relatively simple, this task still requires that the
navigator have an understanding of the characteristics and limitations of his
radar. The more general task of using radar in observing a shoreline where
the radar targets are not so obvious or well defined requires considerable
expertise which may be gained only through an adequate understanding of
the characteristics and limitations of the radar being used.

While the plan position indicator does provide a chartlike presentation
when a landmass is being scanned, the image painted by the sweep is not a
true representation of the shoreline. The width of the radar beam and the
length of the transmitted pulse are factors which act to distort the image
painted on the scope. Briefly, the width of the radar beam acts to distort the
shoreline features in bearing; the pulse length may act to cause offshore
features to appear as part of the landmass.

The major problem is that of determining which features in the vicinity of
the shoreline are actually reflecting the echoes painted on the scope.
Particularly in cases where a low lying shore is being scanned, there may be
considerable uncertainty.

An associated problem is the fact that certain features on the shore will
not return echoes, even if they have good reflecting properties, simply
because they are blocked from the radar beam by other physical features or
obstructions. This factor in turn causes the chartlike image painted on the
scope to differ from the chart of the area.

If the navigator is to be able to interpret the chartlike presentation on
his radarscope, he must have at least an elementary understanding of the
characteristics of radar propagation, the characteristics of his radar set,
the reflecting properties of different types of radar targets, and the ability
to analyze his chart to make an estimate of just which charted features
are most likely to reflect the transmitted pulses or to be blocked from the
radar beam. While contour lines on the chart topography aid the
navigator materially in the latter task, experience gained during clear
weather comparison of the visual cross-bearing plot and the radarscope
presentation is invaluable.
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vertical surface of the vegetation and the horizontal beach may form a sort of
corner reflector.

(d) Lagoons and inland lakes usually appear as blank areas on a PPI
because the smooth water surface returns no energy to the radar antenna. In
some instances, the sandbar or reef surrounding the lagoon may not appear
on the PPI because it lies too low in the water.

(e) Coral atolls and long chains of islands may produce long lines of
echoes when the radar beam is directed perpendicular to the line of the
islands. This indication is especially true when the islands are closely
spaced. The reason is that the spreading resulting from the width of the radar
beam causes the echoes to blend into continuous lines. When the chain of
islands is viewed lengthwise, or obliquely, however, each island may
produce a separate pip. Surf breaking on a reef around an atoll produces a
ragged, variable line of echoes.

(f) Submerged objects do not produce radar echoes. One or two rocks
projecting above the surface of the water, or waves breaking over a reef, may
appear on the PPI. When an object is submerged entirely and the sea is
smooth over it, no indication is seen on the PPI.

(g) If the land rises in a gradual, regular manner from the shoreline,
no part of the terrain produces an echo that is stronger than the echo
from any other part. As a result, a general haze of echoes appears on
the PPI, and it is difficult to ascertain the range to any particular part of
the land.

Land can be recognized by plotting the contact. Care must be exercised
when plotting because, as a ship approaches or goes away from a shore
behind which the land rises gradually, a plot of the ranges and bearings to the
land may show an “apparent course and speed. This phenomenon is
demonstrated in figure 4.1. In view A the ship is 50 miles from the land, but
because the radar beam strikes at point 1, well up on the slope, the indicated
range is 60 miles. In view B where the ship is 10 miles closer to land, the
indicated range is 46 miles because the radar echo is now returned from
point 2. In view C where the ship is another 10 miles closer, the radar beam
strikes at point 3, even lower on the slope, so that the indicated range is 32
miles. If these ranges are plotted, the land will appear to be moving toward
the ship.

In figure 4.1, a smooth, gradual slope is assumed, so that a consistent plot
is obtained. In practice, however, the slope of the ground usually is irregular
and the plot erratic, making it hard to assign a definite speed to the land
contact. The steeper the slope of the land, the less is its apparent speed.
Furthermore, because the slope of the land does not always fall off in the
direction from which the ship approaches, the apparent course of the contact

need not always be the opposite
simple demonstration.

(h) Blotchy signals are return
each hill returns a good echo a
high receiver gain is used, the p
deep shadows.

(i) Low islands ordinarily produ
other foliage grow on the island
the horizontal surface of the wa
reflector with the vertical surfac
give good echoes and can be d
islands.

Figure 4.1 - Apparent cou
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nsiderable differences between the PPI
tion. This effect in conjunction with the
distortion of the PPI display can cause

SE LENGTH DISTORTION

other targets close to shore may merge with
This merging is due to the distortion effects
lse length. Target images on the PPI always
ount equal to the effective horizontal beam

lways are distorted radially by an amount at
length (164 yards per microsecond of pulse
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ecause of beam width distortion, a straight,
n appears crescent-shaped on the PPI. This
r beam widths. Note that this distortion
 the beam axis and the shoreline decreases.
SHIP TARGETS

With the appearance of a small pip on the PPI, its identification as a ship
can be aided by a process of elimination. A check of the navigational
position can overrule the possibility of land. The size of the pip can be used
to overrule the possibility of land or precipitation, both usually having a
massive appearance on the PPI. The rate of movement of the pip on the PPI
can overrule the possibility of aircraft.

Having eliminated the foregoing possibilities, the appearance of the pip at
a medium range as a bright, steady, and clearly defined image on the PPI
indicates a high probability that the target is a steel ship.

The pip of a ship target may brighten at times and then slowly decrease in
brightness. Normally, the pip of a ship target fades from the PPI only when
the range becomes too great.

RADAR SHADOW

While PPI displays are approximately chartlike when landmasses are
being scanned by the radar beam, there may be sizable areas missing
from the display because of certain features being blocked from the
radar beam by other features. A shoreline which is continuous on the
PPI display when the ship is at one position may not be continuous
when the ship is at another position and scanning the same shoreline.

The radar beam may be block
obstruction such as a promont
as a cove or bay, appearing o
may not appear when the ship
shadow alone can cause co
display and the chart presenta
beam width and pulse length
even greater differences.

BEAM WIDTH AND PUL

The pips of ships, rocks, and
the shoreline image on the PPI.
of horizontal beam width and pu
are distorted angularly by an am
width. Also, the target images a
least equal to one-half the pulse
length).

Figure 4.2 illustrates the effec
length on the radar shoreline. B
or nearly straight, shoreline ofte
effect is greater with the wide
increases as the angle between
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Figure 4.2 - Effects of ship’s position, beam width, and pulse length on radar shoreline.
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both mountains. Distortion owing to radar
confusion than any other cause. The small

 it is in the radar shadow.
in bearing caused by beam width distortion.
eninsula. The shoreline distortion is greater
between the radar beam and the shore is

he more westerly shore.
mall peninsula. Her pip has merged with the
 distortion.
ith the shoreline and forms a bump. This

gth and beam width distortion. Reducing
ip to separate from land, provided the ship is
TC could also be used to attempt to separate
SUMMARY OF DISTORTIONS

Figure 4.3 illustrates the distortion effects of radar shadow, beam width,
and pulse length. View A shows the actual shape of the shoreline and the
land behind it. Note the steel tower on the low sand beach and the two ships
at anchor close to shore. The heavy line in view B represents the shoreline on
the PPI. The dotted lines represent the actual position and shape of all
targets. Note in particular:

(a) The low sand beach is not detected by the radar.
(b) The tower on the low beach is detected, but it looks like a ship in a

cove. At closer range the land would be detected and the cove-shaped area
would begin to fill in; then the tower could not be seen without reducing the
receiver gain.

(c) The radar shadow behind
shadows is responsible for more
island does not appear because

(d) The spreading of the land
Look at the upper shore of the p
to the west because the angle
smaller as the beam seeks out t

(e) Ship No. 1 appears as a s
land because of the beam width

(f) Ship No. 2 also merges w
bump is caused by pulse len
receiver gain might cause the sh
not too close to the shore. The F
the ship from land.

Figure 4.3 - Distortion effects of radar shadow, beam width, and pulse length.
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RECOGNITION OF UNWANTED ECHOES AND EFFECTS

The navigator must be able to recognize various abnormal echoes and
effects on the radarscope so as not to be confused by their presence.

Indirect (False) Echoes

Indirect or false echoes are caused by reflection of the main lobe of the
radar beam off ship’s structures such as stacks and kingposts. When such
reflection does occur, the echo will return from a legitimate radar contact to
the antenna by the same indirect path. Consequently, the echo will appear on
the PPI at the bearing of the reflecting surface. This indirect echo will appear
on the PPI at the same range as the direct echo received, assuming that the
additional distance by the indirect path is negligible (see figure 4.4).

Characteristics by which in
summarized as follows:

(1) The indirect echoes will us
(2) They are received on subs

bearing of the radar contact may
(3) They appear at the same r
(4) When plotted, their movem
(5) Their shapes may indicate
Figure 4.5 illustrates a massive

landmass.

Figure 4.4 - Indirect echo. Figure 4.5 - Indirect ech
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choes

e-trace echoes) are echoes received from a
r than the radar range setting. If an echo from a
following pulse has been transmitted, the echo
the correct bearing but not at the true range.

l except under abnormal atmospheric conditions,
efraction is present. Second-trace echoes may
their positions on the radarscope on changing

eir hazy, streaky, or distorted shape; and their

target pip is detected on a true bearing of
On changing the PRR from 2000 to 1800

arget is detected on a bearing of 090˚ at a
4.9). The change in the position of the pip
-trace echo. The actual distance of the target
he PPI plus half the distance the radar wave
Side-lobe Effects

Side-lobe effects are readily recognized in that they produce a series of
echoes on each side of the main lobe echo at the same range as the latter.
Semi-circles or even complete circles may be produced. Because of the low
energy of the side-lobes, these effects will normally occur only at the shorter
ranges. The effects may be minimized or eliminated through use of the gain
and anticlutter controls. Slotted wave guide antennas have largely eliminated
the side-lobe problem (see figure 4.6).

Multiple Echoes

Multiple echoes may occur when a strong echo is received from another
ship at close range. A second or third or more echoes may be observed on
the radarscope at double, triple, or other multiples of the actual range of the
radar contact (see figure 4.7).

Second-Trace (Multiple-Trace) E

Second-trace echoes (multipl
contact at an actual range greate
distant target is received after the
will appear on the radarscope at
Second-trace echoes are unusua
or conditions under which super-r
be recognized through changes in
the pulse repetition rate (PRR); th
erratic movements on plotting.

As illustrated in figure 4.8, a
090˚ at a distance of 7.5 miles.
pulses per second, the same t
distance of 3 miles (see figure
indicates that the pip is a second
is the distance as indicated on t
travels between pulses.
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Figure 4.6 - Side-lobe effects. Figure 4.7 - M

Figure 4.8 - Second-trace echo on 12-mile range scale. Figure 4.9 - Position of second-trace echo on 12
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and other structures may cause a reduction in
eyond these obstructions, especially if they
If the angle at the antenna subtended by the
egrees, the reduction of the intensity of the
ction may be such that a blind sector is

n in the intensity of the beam beyond the
s illustrated in figure 4.11, can be produced.
small targets at close range may not be

much greater ranges may be detected.

ission.
Figure 4.10 illustrates normal, indirect, multiple, and side echoes on a PPI
with an accompanying annotated sketch.

Electronic Interference Effects

Electronic interference effects, such as may occur when in the vicinity of
another radar operating in the same frequency band as that of the observer’s
ship, is usually seen on the PPI as a large number of bright dots either
scattered at random or in the form of dotted lines extending from the center
to the edge of the PPI.

Interference effects are greater at the longer radar range scale settings. The
interference effects can be distinguished easily from normal echoes because they
do not appear in the same places on successive rotations of the antenna.

Blind and Shadow Sectors

Stacks, masts, samson posts,
the intensity of the radar beam b
are close to the radar antenna.
obstruction is more than a few d
radar beam beyond the obstru
produced. With lesser reductio
obstructions, shadow sectors, a
Within these shadow sectors,
detected while larger targets at 

From the Use of Radar at Sea, 4th Ed. Copyright 1968, The Institute of Navigation, London. Used by perm

Figure 4.10 - Normal, indirect, multiple, and side echoes.
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w minutes.
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Spoking

Spoking appears on the PPI as a number of spokes or radial lines. Spoking
is easily distinguished from interference effects because the lines are straight
on all range-scale settings and are lines rather than a series of dots.

The spokes may appear all around the PPI, or they may be confined to a
sector. Should the spoking be confined to a narrow sector, the effect can be
distinguished from a ramark signal of similar appearance through
observation of the steady relative bearing of the spoke in a situation where
the bearing of the ramark signal should change. The appearance of spoking
is indicative of need for equipment maintenance.

Sectoring

The PPI display may appear
phenomenon is usually due to t
adjustment.

Serrated Range Rings

The appearance of serrated ra
maintenance.

PPI Display Distortion

After the radar set has bee
immediately to the whole of the
CRT. Usually, this static electric
display, lasts no longer than a fe

Hour-Glass Effect

Hour-glass effect appears as
display near the center of the
appearance to the expanded ce
by a nonlinear time base or the
same instant as the transmiss
narrow rivers or close to shore.

Overhead Cable Effect

The echo from an overhead po
always at right angles to the lin
recognized, the echo can be wro
steady bearing. Avoiding action
bearing and moving to the same
This phenomenon is particularly
Straits of Messina. See figure 4.1

Figure 4.11 - Shadow sectors.
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its source, i.e., the radar antenna. Maximum
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sed to obtain stronger echoes from radar
ed for more positive identification of radar
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distinctive indications on the radarscopes of
cons. There are two general classes of these
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AIDS TO RADAR NAVIGATION

Various aids to radar navigation have been developed to aid the navigator
in identifying radar targets and for increasing the strength of the echoes
received from objects which otherwise are poor radar targets.

RADAR REFLECTORS

Buoys and small boats, particularly those boats constructed of wood, are
poor radar targets. Weak fluctuating echoes received from these targets are
easily lost in the sea clutter on the radarscope. To aid in the detection of these
targets, radar reflectors, of the corner reflector type, may be used. The corner
reflectors may be mounted on the tops of buoys or the body of the buoy may
be shaped as a corner reflector, as illustrated in figure 4.13.

Each corner reflector illustrat
perpendicular flat metal surface

A radar wave on striking an
reflected back in the direction of
energy will be reflected back to
makes equal angles with all the
are assembled in clusters to ins

RADAR

While radar reflectors are u
targets, other means are requir
targets. Radar beacons are t
frequency band which produce
ships within range of these bea
beacons:racon which provides b
target andramarkwhich provides
ramark installation is detected a
be available also.Figure 4.13 - Radar reflector buoy.

Figure 4.14 
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w in widespread use. They respond to both 3

the PPI as a radial line originating at a point
radar beacon or as a Morse code signal

nd the beacon (see figures 4.15 and 4.16).
ges or leading lines. The range is formed by

other with a separation in the order of 2 to 4
the “paint” received from the front and rear

ped with racons which are suspended under
or safe passage.
n reception is limited by line of sight.

Coded racon signal.
Racon

Racon is a radar transponder which emits a characteristic signal when
triggered by a ship’s radar. The signal may be emitted on the same frequency
as that of the triggering radar, in which case it is automatically superimposed
on the ship’s radar display. The signal may be emitted on a separate
frequency, in which case to receive the signal the ship’s radar receiver must
be capable of being tuned to the beacon frequency or a special receiver must
be used. In either case, the PPI will be blank except for the beacon signal.

“Frequency agile” racons are no
and 10 centimeter radars.

The racon signal appears on
just beyond the position of the
displayed radially from just beyo

Racons are being used as ran
two racons set up behind each
nautical miles. On the PPI scope
racons form the range.

Some bridges are now equip
the bridge to provide guidance f

The maximum range for raco

Figure 4.15 - Racon signal.

Figure 4.16 - 



the ramark signal on the scope. The ramark
radial line from the center. The radial line may

ies of dashes, a series of dots, or a series of dots
 4.18).

al appearing as a dashed line.
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Ramark

Ramarkis a radar beacon which transmits either continuously or at intervals.
The latter method of transmission is used so that the PPI can be inspected

without any clutter introduced by
signal as it appears on the PPI is a
be a continuous narrow line, a ser
and dashes (see figures 4.17 and

Figure 4.17 - Ramark signal appearing as a dotted line. Figure 4.18 - Ramark sign



161

ORE RANGES
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e ship’s actual position is obtained through
ging ranges last.
ring fix, the accuracy of the radar fix is

cut of the intersecting position lines (range
objects selected should provide range arcs
90˚ as is possible. In cases where two

te or nearly opposite directions, their range

gent bearings and radar range.
RADAR FIXING METHODS

RANGE AND BEARING TO A SINGLE OBJECT

Preferably, radar fixes obtained through measuring the range and bearing
to a single object should be limited to small, isolated fixed objects which can
be identified with reasonable certainty. In many situations, this method may
be the only reliable method which can be employed. If possible, the fix
should be based upon a radar range and visual gyro bearing because radar
bearings are less accurate than visual gyro bearings. A primary advantage of
the method is the rapidity with which a fix can be obtained. A disadvantage
is that the fix is based upon only two intersecting position lines, a bearing
line and a range arc, obtained from observations of the same object.
Identification mistakes can lead to disaster.

TWO OR MORE BEARINGS

Generally, fixes obtained from radar bearings are less accurate than those
obtained from intersecting range arcs. The accuracy of fixing by this method
is greater when the center bearings of small, isolated, radar-conspicuous
objects can be observed.

Because of the rapidity of the method, the method affords a means for
initially determining an approximate position for subsequent use in more
reliable identification of objects for fixing by means of two or more ranges.

TANGENT BEARINGS

Fixing by tangent bearings is one of the least accurate methods. The use
of tangent bearings with a range measurement can provide a fix of
reasonably good accuracy.

As illustrated in figure 4.19, the tangent bearing lines intersect at a range
from the island observed less than the range as measured because of beam
width distortion. Right tangent bearings should be decreased by an estimate
of half the horizontal beam width. Left tangent bearings should be increased
by the same amount. The fix is taken as that point on the range arc midway
between the bearing lines.

It is frequently quite difficult to correlate the left and right extremities of the
island as charted with the island image on the PPI. Therefore, even with
compensation for half of the beam width, the bearing lines usually will not
intersect at the range arc.

TWO OR M

In many situations, the more
nearly simultaneous measurem
objects. Preferably, at least thr
number of ranges which it is f
dependent upon the time require
In many situations, the use of m
introduce excessive error becau

If the most rapidly changing ra
less progress along the intende
less lag in the radar plot from th
measuring the most rapidly chan

Similar to a visual cross-bea
dependent upon the angles of
arcs). For greater accuracy, the
with angles of cut as close to
identifiable objects lie in opposi

Figure 4.19 - Fixing by tan
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and observed before the angles of cut have
ating the range arc of the new object with
ave provided reliable fixes affords more
 object.

 METHODS

rsecting range arcs, the usual case is that
conspicuous objects, which are well situated
e not available. The navigator must exercise
e interpretation to estimate which charted
If initially there are no well defined features
ble uncertainty as to the ship’s position, the

r bearings of features tentatively identified as

lated radar-conspicuous objects.
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arcs, even though they may intersect at a small angle of cut or may not
actually intersect, in combination with another range arc intersecting them at
an angle approaching 90˚, may provide a fix of high accuracy (see figure
4.20). The near tangency of the two range arcs indicates accurate
measurements and good reliability of the fix with respect to the distance off
the land to port and starboard.

Small, isolated, radar-conspicuous fixed objects afford the most reliable
and accurate means for radar fixing when they are so situated that their
associated range arcs intersect at angles approaching 90˚.

Figure 4.21 illustrates a fix obtained by measuring the ranges to three well
situated radar-conspicuous objects. The fix is based solely upon range
measurements in that radar ranges are more accurate than radar bearings even
when small objects are observed. Note that in this rather ideal situation, a point
fix was not obtained. Because of inherent radar errors, any point fix should be
treated as an accident dependent upon plotting errors, the scale of the chart, etc.

While observed radar bearings were not used in establishing the fix as such,
the bearings were useful in the identification of the radar-conspicuous objects.

As the ship travels along its tra
afford good fixing capability until
arcs have degraded appreciab
objects should be selected to pro
new object should be selected
degraded appreciably. Incorpor
range arcs of objects which h
positive identification of the new

MIXED

While fixing by means of inte
two or more small, isolated, and
to provide good angles of cut, ar
considerable skill in radarscop
features are actually displayed.
displayed and there is considera
navigator may observe the rada

Figure 4.20 - Radar fix.

Figure 4.21 - Fix by small, iso
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undancy—but not to such extent that too
 aid or means in too little time.
radar set.

ncluding the shipping situation.
ith radarscope interpretation.
n lines.

ION OF RANGE ARCS

ous objects permit preconstruction of range
adar fixing. This preconstruction is possible
red to the same point on each object, or nearly

g the transit. With fixed radar targets of lesser
rally, must continually change the centers of the
 interpretation of the radarscope.
e navigator may also preconstruct a series

ar-conspicuous objects. The degree of
d bearing lines is dependent upon acceptable
arcs and lines added to the chart. Usually,
itical part of a passage or to the approach to
a step towards their more positive identification. If the cross-bearing fix does
indicate that the features have been identified with some degree of accuracy,
the estimate of the ship’s position obtained from the cross-bearing fix can be
used as an aid in subsequent interpretation of the radar display. With better
knowledge of the ship’s position, the factors affecting the distortion of the
radar display can be used more intelligently in the course of more accurate
interpretation of the radar display.

Frequently there is at least one object available which, if correctly
identified, can enable fixing by the range and bearing to a single object
method. A fix so obtained can be used as an aid in radarscope interpretation
for fixing by two or more intersecting range arcs.

The difficulties which may be encountered in radarscope interpretation
during a transit may be so great that accurate fixing by means of range arcs is
not obtainable. In such circumstances, range arcs having some degree of
accuracy can be used to aid in the identification of objects used with the
range and bearing method.

With correct identification of the object observed, the accuracy of the fix
obtained by the range and bearing to a single object method usually can be
improved through the use of a visual gyro bearing instead of the radar
bearing. Particularly during periods of low visibility, the navigator should be
alert for visual bearings of opportunity.

While the best method or combination of methods for a particular
situation must be left to the good judgment of the experienced navigator,
factors affecting method selection include:

(1) The general need for red
much is attempted with too little

(2) The characteristics of the 
(3) Individual skills.
(4) The navigational situation, i
(5) The difficulties associated w
(6) Angles of cut of the positio

PRECONSTRUCT

Small, isolated, radar-conspicu
arcs on the chart to expedite r
because the range can be measu
so, as the aspect changes durin
conspicuous, the navigator, gene
range arcs in accordance with his

To expedite plotting further, th
of bearing lines to the rad
preconstruction of range arcs an
chart clutter resulting from the
preconstruction is limited to a cr
an anchorage.



ontour method is most feasible when the
e shoreline, thus enabling a more accurate
ces.
ngular template on the bottom side of which
tervals. The radials are drawn from a small
radar fix when the template is fitted to the
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CONTOUR METHOD

The contour method of radar navigation consists of constructing a land
contour on a transparent template according to a series of radar ranges and
bearings and then fitting the template to the chart. The point of origin of the
ranges and bearings defines the fix.

This method may provide means for fixing when it is difficult to
correlate the landmass image on the PPI with the chart because of a lack
of features along the shoreline which can be identified individually. The
accuracy of the method is dependent upon the navigator’s ability to
estimate the contours of the land most likely to be reflecting the echoes
forming the landmass image on the PPI. Even with considerable skill in
radarscope interpretation, the navigator can usually obtain only an
approximate fit of the template contour with the estimated land contour.
There may be relatively large gaps in the fit caused by radar shadow
effects. Thus, there may be considerable uncertainty with respect to the

accuracy of the point fix. The c
land rises steeply at or near th
estimate of the reflecting surfa

Figure 4.22 illustrates a recta
radials are drawn at 5-degree in
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Figure 4.22 - Transparent template used with contour method.
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r to identify radar-inconspicuous object.
IDENTIFYING A RADAR-INCONSPICUOUS OBJECT

Situation:

There is doubt that a pip on the PPI represents the echo from a buoy, a
radar-inconspicuous object. On the chart there is a radar-conspicuous object,
a rock, in the vicinity of the buoy. The pip of the rock is identified readily on
the PPI.

Required:

Identify the pip which is in doubt.

Solution:

(1) Measure the bearing and distance of the buoy from the rock on the
chart.

(2) Determine the length of this distance on the PPI according to the
range scale setting.

(3) Rotate the parallel-line cursor to the bearing of the buoy from the rock
(see figure 4.23).

(4) With rubber-tipped dividers set to the appropriate PPI length, set one
point over the pip of the rock; using the parallel lines of the cursor as
a guide, set the second point in the direction of the bearing of the
buoy from the rock.

(5) With the dividers so set, the second point lies over the unidentified
pip. Subject to the accuracy limitations of the measurements and
normal prudence, the pip may be evaluated as the echo received from
the buoy.

Note:
During low visibility a radar-conspicuous object can be used similarly to

determine whether another ship is fouling an anchorage berth.
Figure 4.23 - Use of parallel-line curso
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or to find course and speed made good.
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FINDING COURSE AND SPEED MADE GOOD BY PARALLEL-LINE 

Situation:

A ship steaming in fog detects a prominent rock by radar. Because of the
unknown effects of current and other factors, the navigator is uncertain of the
course and speed being made good.

Required:

To determine the course and speed being made good.

Solution:

(1) Make a timed plot of the rock on the reflection plotter.
(2) Align the parallel-line cursor with the plot to determine the course

being made good, which is in a direction opposite to the relative
movement (see figure 4.24).

(3) Measure the distance between the first and last plots and using the
time interval, determine the speed of relative movement. Since the
rock is stationary, the relative speed is equal to that of the ship.

Note:
This basic technique is useful for determining whether the ship is

being set off the intended track in pilot waters. Observing a radar-
conspicuous object and using the parallel-line cursor, a line is drawn
through the radar-conspicuous object in a direction opposite to own
ship’s course.

By observing the successive positions of the radar-conspicuous object
relative to this line, the navigator can determine whether the ship is being set
to the left or right of the intended track. Figure 4.24 - Use of parallel-line curs
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USE OF PARALLEL-LINE CURSOR FOR ANCHORING

Situation:

A ship is making an approach to an anchorage on course 290˚. The
direction of the intended track to the anchorage is 290˚. Allowing for the
radius of the letting go circle, the anchor will be let go when a radar-
conspicuous islet is 1.0 mile ahead of the ship on the intended track. A
decision is made to use a parallel-line cursor technique to keep the ship on
the intended track during the last mile of the approach to the anchorage and
to determine the time for letting go. Before the latter decision was made, the
navigator’s interpretation of the stabilized relative motion display revealed
that, even with change in aspect, the radar image of a jetty to starboard could
be used to keep the ship on the intended track.

Required:

Make the approach to the anchorage on the intended track and let the
anchor go when the islet is 1.0 mile ahead along the intended track.

Solution:

(1) From the chart determine the distance at which the head of the jetty
will be passed abeam when the ship is on course and on the intended
track.

(2) Align the parallel-line cursor with the direction of the intended track,
290˚ (see figure 4.25).

(3) Using the parallel lines o
from the center of the P
movement line for the hea
direction of the intended t

(4) Make a mark at 290˚ and
this mark “LG” for letting g

(5) Make another mark at 29
this mark “1”.

(6) Subdivide the radial betw
This subdivision may be l
mark to the 0.5 mile gradu

(7) If the ship is on the intend
radar image of the head o
track, the image of the je
deviates from the intende
away from the RML. Corr
the jetty on the RML.

(8) With the ship being kept o
of the jetty on the RML, th
of the intended track prov
“1” just touches the leadin
1 mile to go. When the m
of the latter pip, there is 0
go when the mark labeled
pip of the islet.
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Figure 4.25 - Use of parallel-line cursor for anchoring.
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hen abeam if the vessel was to pass the
ine is drawn through this mark. The
center of the display to this parallel line is
iralty Manual of Navigation).

ct tracking on a parallel line would be on a
nd the beam bearing of the object).

maneuver is made to insure that the object
ck line taking into account the advance and
PARALLEL INDEXING

Parallel Indexing has been used for many years. It was defined by William
Burger in theRadar Observers Handbook(1957, page. 98) as equidistantly
spaced parallel lines engraved on a transparent screen which fits on the PPI
and can be rotated. This concept of using parallel lines to assist in navigation
has been extensively used in Europe to assist in maintaining a specified
track, altering course and anchoring. It is best suited for use with a stabilized
radar. When using an unstabilized radar, it can pose some danger to an
individual that is unaware of problems inherent in this type of display.

With the advent of ARPA with movable EBLs (Electronic Bearing Lines)
and Navigation Lines, parallel indexing on screen can be accomplished with
greater accuracy. Index lines that are at exact bearings and distances off can
be displayed with greater ease. A number of diagrams are included on the
pages that follow to explain the use of parallel indexing techniques as well as
its misuse.

Cross Index Range (“C”)

The distance of an object w
navigation mark. A parallel l
perpendicular distance from the
theCross Index Range (1964, Adm

Dead Range (“D”)
The distance at which an obje

new track line (ahead of or behi

Wheel Over Point (“W”)
The point at which the actual

being “indexed” is on the new tra
transfer of the vessel.
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THE FRANKLIN CONTINUOUS RADAR PLOT TECHNIQUE

The Franklin Continuous Radar Plot technique provides means for
continuous correlation of a small fixed, radar-conspicuous object with own
ship’s position and movement relative to a planned track. The technique, as
developed by Master Chief Quartermaster Byron E. Franklin, U.S. Navy,
while serving aboard USS INTREPID (CVS-11), is a refinement of the
parallel-cursor (parallel-index) techniques used as a means for keeping own
ship on a planned track or for avoiding navigational hazards.

Ranges and bearings of the conspicuous object from various points,
including turning points, on the planned track are transferred from the chart
to the reflection plotter mounted on a stabilized relative motion indicator. On
plotting the ranges and bearings and connecting them with line segments, the
navigator has a visual display of the position of the conspicuous object
relative to the path it should follow on the PPI (see figure 4.26).

If the pip of the conspicuous object is painted successively on the
constructed path (planned relative movement line or series of such lines), the
navigator knows that, within the limits of accuracy of the plot and the radar
display, his ship is on the planned track. With the plot labeled with respect to
time, he knows whether he is ahead or behind his planned schedule. If the
pips are painted to the left or right of the RML, action required to return to
the planned track is readily apparent. However, either of the following rules
of thumb may be used: (1) Using the DRM as the reference direction for any
offsets of the pips, the ship is to the left of the planned track if the pips are
painted to the left of the planned RML; the ship is to the right of the planned
track if the pips are painted to the right of the planned RML. (2) While
facing in the direction of travel of the conspicuous object on the PPI, the ship
is to the left or right of the planned track if the pips are painted left or right of
the planned RML, respectively.

Through taking such corrective action as is necessary to keep the
conspicuous object pip on the RML in accordance with the planned time
schedule, continuous radar fixing is, in effect, accomplished. This fixing has
the limitation of being based upon the range and bearing method, more
subject to identification mistakes than the method using three or more
intersecting range arcs.

Except for the limitations of being restricted with respect to the range
scale setting and some PPI clutter produced by the construction of the
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Figure 4.26 - The Franklin continuous radar plot technique.
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TRUE MOTION RADAR RESET IN RESTRICTED WATERS

When using true motion displays, the navigator should exercise care in
deciding when and where to reset own ship’s position on the PPI. While
navigating in restricted waters, he must insure that he has adequate warning
ahead; through sound planning, he must avoid any need for resetting the
display at critical times.

The following is an example of resetting a true motion display for a ship
entering the River Tyne. The speed made good is 6 knots. The navigator
desires to maintain a warning ahead of at least 1 mile (see figure 4.27).

At 1000
Own ship is reset to the south on the 3-mile range scale to display area

A so that Tynemouth is just showing and sufficient warning to the north
is obtained for the turn at about 1030.

At 1024
Own ship is reset to the southeast on the 1.5-mile range scale to display

area B before the turn at 1030.

At 1040
Own ship is reset to the east

out early to avoid a reset in the
Shields.

At 1055
Own ship is reset to the north

carried out early before the ben
the bend at Tyne Dock near the

At 1117
Own ship is reset to the east 

At 1133
Own ship is reset to the nort

carried out before the bend at H
ship is making good a southwes

At 1200
Own ship is reset to the south
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Figure 4.27 - Resetting a true motion display.
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RADAR DETECTION OF ICE

Radar can be an invaluable aid in the detection of ice if used wisely by the
radar observer having knowledge of the characteristics of radar propagation
and the capabilities of his radar set. The radar observer must have good
appreciation of the fact that ice capable of causing damage to a ship may not
be detected even when the observer is maintaining a continuous watch of the
radarscope and is using operating controls expertly.

When navigating in the vicinity of ice during low visibility, a continuous
watch of the radarscope is a necessity. For reasonably early warning of the
presence of ice, range scale settings of about 6 or 12 miles are probably
those most suitable. Such settings should provide ample time for evasive
action after detection. Because any ice detected by radar may be lost
subsequently in sea clutter, it may be advisable to maintain a geographical
plot. The latter plot can aid in differentiating between ice aground or drifting
and ship targets. If an ice contact is evaluated as an iceberg, it should be
given a wide berth because of the probability of growlers in its vicinity. If ice
contacts are evaluated as bergy bits or growlers, the radar observer should be
alert for the presence of an iceberg. Because the smaller ice may have calved
recently from an iceberg, the radar observer should maintain a particularly
close watch to windward of the smaller ice.

ICEBERGS

While large icebergs may be detected initially at ranges of 15 to 20 miles
in a calm sea, the strengths of echoes returned from icebergs are only about
1/60 of the strengths of echoes which would be returned from a steel ship of
equivalent size.

Because of the shape of the iceberg, the strengths of echoes returned
may have wide variation with change in aspect. Also, because of shape

and aspect, the iceberg may ap
Tabular icebergs, having flat t
rise as much as 100 feet abov
radar targets.
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because of irregularities in the s
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may be detected at ranges as
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Growlers, extending at most
extremely poor radar targets. B
action, as well as small, growler
of ice that can be encountered.

In a rough sea and with sea
large enough to cause damage
with expert use of receiver ga
dangerous growlers in waves ov

In a calm sea growlers are no
miles.
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becomes difficult to distinguish the division
nd ground and cultural returns.
in a lack of balance in the grey tonal

greatly degrading the interpretive quality.
oming” of all bright returns adversely
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origin.
of weak to medium returns. The result will
lity where there are few bright targets
e of definitive target patterns on the scope.
cursors, heading flashes, and range markers
ashes, and markers which may obscure

mera focus will result in extremely fuzzy or
RADAR SETTINGS FOR RADARSCOPE PHOTOGRAPHY

Radar settings are an important factor in preparing good quality
radarscope photography. A natural tendency is to adjust the radar image so
that it presents a suitable visual display, but this, almost invariably, produces
poor photographic results. Usually the resulting photograph is badly
overexposed and lacking in detail. Another tendency is to try to record too
much information on one photograph such that the clutter of background
returns actually obscures the target images. In both cases, the basic problem
is a combination of gain and intensity control. A basic rule of thumb is if
imagery looks right to visual inspection, it will probably overexpose the
recording film. As a rule of thumb, if the image intensity is adjusted so that
weak returns are just visible, then a one sweep exposure should produce a
reasonably good photograph.

The following list of effects associated with various radar settings can be
used as an aid in avoiding improper settings for radarscope photography:

(1) Excessive brightness produces an overall milky or intensely bright
appearance of the images. Individual returns will bloom excessively

and appear unfocused. It
between land and water, a

(2) Improper contrast results
gradations on the scope, 

(3) High gain results in “blo
affecting the image resolu
a “hot spot” at the sweep 

(4) Low gain results in a loss
be poor interpretive qua
illuminated due to absenc

(5) Excessively bright bearing
result in wide cursors, fl
significant images.

(6) Improper radarscope or ca
blurred imagery.
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NAVIGATIONAL PLANNING

Before transiting hazardous waters, the prudent navigator should develop
a feasible plan for deriving maximum benefit from available navigational
means. In developing his plan, the navigator should study the capabilities
and limitations of each means according to the navigational situation. He
should determine how one means, such as cross-bearing fixing, can best be
supported by another means, such as fixing by radar-range measurements.

The navigator must be prepared for the unexpected, including the
possibility that at some point during the transit it may be necessary to direct
the movements of the vessel primarily by means of radar observations
because of a sudden obscurity of charted features. Without adequate
planning for the use of radar as the primary means for insuring the safety of
the vessel, considerable difficulty and delay may be incurred before the
navigator is able to obtain reliable fixes by means of radar following a
sudden loss of visibility.

An intended track which may be ideal for visual observations may impose
severe limitations on radar observations. In some cases a modification of this
intended track can afford increased capability for reliable radar observations
without unduly degrading the reliability of the visual observations or
increasing the length of the transit by a significant amount. In that the
navigator of a radar-equipped vessel always must be prepared to use radar as
the primary means of navigating his vessel while in pilot waters, the
navigator should effect a reasonable compromise between the requirements
for visual and radar fixing while determining the intended track for the
transit.

The value of radar for navigation in pilot waters is largely lost when it is
not manned continuously by a competent observer. Without continuous
manning the problems associated with reliable radarscope interpretation are
too great, usually, for prompt and effective use of the radar as the primary
means of insuring the safety of the vessel. The continuous manning of the
radar is also required for obtaining the best radarscope presentation through
proper adjustments of the operating controls as the navigational situation
changes or as there is a need to make adjustments to identify specific
features.

With radar being used to support visual fixing during a transit of
hazardous waters, visual observations can be used as an aid in the
identification of radar observations. Through comparing the radar plot with
the visual plot, the navigator can evaluate the accuracies of the radar
observations. With radar actually being used to support visual fixing, the
transition to the use of radar as the primary means can be effected with lesser

difficulty and with greater safety
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difficulty imposed by viewing the PPI at one
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In planning for the effective use of radar, it is advisable to have a definite
procedure and standardized terminology for making verbal reports of radar and
visual observations. At points on the track where simultaneous visual and radar
observations are to be made, the lack of an adequate reporting procedure will
make the required coordination unduly difficult. Reports of radar observations
can be simplified through the use of appropriate annotations on the chart and
PPI. For example, a charted rock which is identified on the PPI can be designated
as “A”; another radar-conspicuous object can be designated as “B,” etc. With the
chart similarly annotated, the various objects can be reported in accordance with
their letter designations.

SPECIAL TECHNIQUES

In that the navigator of a radar-equipped vessel always must be prepared to
use radar as his primary means of navigation in pilot waters, during the planning
for a transit of these waters it behooves him to study the navigational situation
with respect to any special techniques which can be employed to enhance the use
of radar. The effectiveness of such techniques usually is dependent upon
adequate preparation for their use, including special constructions on the chart or
the preparation of transparent chart overlays.

The correlation of the chart and the PPI display during a transit of
confined waters frequently can be aided through the use of a transparent
chart overlay on which properly scaled concentric circles are inscribed as a
means of simulating the fixed range rings on the PPI. By placing the center
of the concentric circles at appropriate positions on the chart, the navigator is
able to determine by rapid inspection, and with close approximation, just
where the pips of certain charted features should appear with respect to the
fixed range rings on the PPI when the vessel is at those positions. This

technique compensates for the
scale and the chart at another sc
charted features with respect
transparency as the center of the
track, certain possibilities for un

Identifying Echoes
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