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Regular homotopy and total curvature I:
circle immersions into surfaces

TOBIAS EKHOLM

We consider properties of the total absolute geodesic curvature functional on circle
immersions into a Riemann surface. In particular, we study its behavior under regular
homotopies, its infima in regular homotopy classes, and the homotopy types of spaces
of its local minima.

53C42; 53A04, 57R42

1 Introduction

An immersion of manifolds is a map with everywhere injective differential. Two
immersions are regularly homotopic if there exists a continuous 1—parameter family of
immersions connecting one to the other. The Smale—Hirsch i—principle [8; 4] says
that the space of immersions M — N, dim(M) < dim(/V) is homotopy equivalent to
the space of injective bundle maps 7'M — TN . In contrast to differential topological
properties, differential geometric properties of immersions do not in general satisfy
h—principles, see [3, (A) on page 62]. In this paper and the sequel [2], we study
some aspects of the differential geometry of immersions and regular homotopies in
the most basic cases of codimension one immersions. We investigate whether or not
it is possible to perform topological constructions while keeping control of certain
geometric quantities.

Let ¥ be a Riemann surface, ie, an orientable 2—manifold with a Riemannian metric,
and let ¢: S! — X be an immersion of the circle parameterized by arc length. If
¢: S' > UX, where UX is the unit tangent bundle of X, denotes the natural lift of
¢, then the h—principle mentioned above implies that the map ¢ +— ¢ induces a weak
homotopy equivalence between the space of circle immersions into X and the space
of continuous circle maps into U 2. In particular, regular homotopy classes of circle
immersions into ¥ are in one to one correspondence with the homotopy classes of
(free) loops in UX.
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460 Tobias Ekholm

The total absolute geodesic curvature k of a circle immersion ¢ into a Riemann surface
is given by the integral

k() = / kgl ds.

where kg is the geodesic curvature of ¢, and where ds denotes the arc length element
along c¢. We study properties of the functional « on the space of circle immersions,
starting with the following question. If ¢o and c; are regularly homotopic circle
immersions into a Riemann surface, what is the infimum, over all regular homotopies
¢, 0 <t <1, connecting cy to c1, of maxo<s<1 k(cy)?

Theorem 1.1 answers this question for the simplest Riemann surfaces of constant
curvature. We use the following notational conventions: All Riemann surfaces are
assumed to be complete unless otherwise explicitly stated. If ¥ is a Riemann surface
then K: ¥ — R denotes its Gaussian curvature function. For topological spaces X
and Y, we write X &~ Y to indicate that X is homeomorphic to Y.

Theorem 1.1 Let ¥ be a Riemann surface and let cg,cq: S! — X be regularly
homotopic.

(a) If ¥ has constant curvature K = 0 (the completeness assumption then implies
Sa~R2, Sa SR, or =~ T?), orif X ~ R? and has constant curvature
K < 0, then there exists a regular homotopy c;, 0 <t < 1, connecting cq to c;
with

k(c;) <max{x(cg),k(c1)}, 0=t=<1.

(b) If X is the 2—sphere with a constant curvature metric (with K > 0) then, for any
€ > 0, there exists a regular homotopy c;, 0 <t < 1, connecting co to ¢y such
that

k(c;) <max{x(cg),k(c1),2m +¢€}, 0=<t=<1.

Moreover, if ¢g: S! — X runs m times around a geodesic and c¢;: S! — %
runs m + 2 times around a geodesic then any regular homotopy ¢;, 0 <t <1,
connecting c¢g to ¢y has an instant ¢z, 0 < v < 1, with

k(cy) > 2m.
Theorem 1.1 is proved in Section 5.3. The proof of (b) uses Arnol’d’s J~ —invariant
for immersed curves on the sphere, see Arnol’d [1], Inshakov [5] and Tchernov [9].

In Remark 5.1 we present a metric on R2 with K < 0 for which the conclusion in (a)
does not hold.

The proof of Theorem 1.1 also gives information about infima of «. To state these
results we first introduce some notation. If ¥ is a flat Riemann surface then parallel
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translation gives a trivialization of U X and the free homotopy classes of curves in U X
are in natural one to one correspondence with 7{(X) x Z, where (%) encodes the
homotopy class of a circle immersion and Z its tangential degree. Thus, if ¥ ~ R?,
then we denote a regular homotopy class of circle immersions by the integer m which
equals the tangential degree of any of its representatives, and, similarly, if ¥ ~ S! x R
or ¥ &~ T2, then we denote a regular homotopy class by (£, m) € 7(X) x Z, where &
and m is the homotopy class in ¥ and the tangential degree, respectively, of any of
its representatives. If X is the 2—sphere then there are exactly two regular homotopy
classes: one represented by a simple closed curve, the other by such a curve traversed
twice. Finally, if « is a regular homotopy class of curves in a Riemann surface then let
K(a) = infeeq k(C).

Theorem 1.2

(a) Let X be a Riemann surface with K(p) <0 for all p € ¥ and assume that either
Y is closed or ¥ ~ R?. Then the infimum K («) is attained at some curve in
the regular homotopy class « if and only if « is representable by (a multiple of)
a closed geodesic. Moreover, if K(p) = K < 0 is constant and ¥ ~ R? then
k(m), m € Z, satisfies

R 2 form =0,
k(m) =
a(lm|+1) form #0.

(b) Let ¥ be a Riemann surface of constant curvature K = 0 (the completeness
assumption then implies ¥ ~ R?, ¥ ~ S! xR, or ¥ ~ T'?). Then the infimum
k((§€,m)) is attained at some curve in the regular homotopy class (§,m) €
m1(X) x Z if and only if £ # * or m # 0, where * denotes the homotopy class

of the constant loop. Moreover, k((§,m)), (§,m) € 71(X) x Z, satisfies
27 for (§,m) = (x,0),
2 (|m|) otherwise.

K((5.m)) = {

(c) Let X be the 2—sphere with any metric and let « be a regular homotopy class of
circle immersions into X. Then the infimum k(&) equals 0 and is attained at
some curve in «.

Theorem 1.2 is proved in Section 5.1.

A curve in a Riemann surface ¥ with K(p) # 0 for all p € X, which is a local
minimum of k is in fact a closed geodesic, see Proposition 2.2 (a). For flat Riemann
surfaces this is not the case. Here any local minimum of « is a locally convex curve,
see Proposition 2.2 (b). We say that a curve c is locally convex if kg > 0 everywhere
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for some orientation of c. If kg > 0 everywhere, we say that c is strictly locally convex.
In the terminology of Gromov [3, page 8], strictly locally convex curves are called free
curves.

The following result describes the homotopy types of the spaces of local minima of «
for a flat Riemann surface. (Here we think of circle immersions as oriented unit speed
curves parameterized by arc length.)

Theorem 1.3 On a flat Riemann surface ¥ (the completeness assumption implies
T~ R, S SR, or £~ T?), the space Qg ) of (strictly) locally convex curves
of regular homotopy class (§,m) € m{(X) x Z satisfies

%) if (§,m) = (%,0),
Qemy =2 if £ # % andm = 0,
UX ifm+#0,

where ~ denotes weak homotopy equivalence.

Theorem 1.3 is proved in Section 5.2.
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2 First variation and local minima

In this section we compute the first variation of total absolute geodesic curvature.
We use the result to classify local minima. Since the absolute value function is not
differentiable at zero, the first variation is expressed as a statement about differences
rather than as a statement about derivatives.

2.1 First variation of total absolute geodesic curvature

Let c: [0, L] — ¥ be an immersion into a Riemann surface, parameterized by arc
length. Let e; be the unit tangent vector field of ¢ and let e, be a unit vector field
along ¢ everywhere orthogonal to e;. We consider variations w: [0, L] x (—4,8) —> X
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of ¢ with the following three properties: w(s,0) = c(s), dew(s,0) = a(s)ex(s),
where d. denotes differentiation with respect to the second variable, for some function
a: [0, L] — R, and the curves we(s) = w(s, €) (€ fixed) are immersions for € € (—4, §).
We also introduce the sign function o: R — R as follows

1 for x > 0,
o(x)=140 for x =0,

—1 forx <O.
Lemma 2.1 For ¢ € (-4,9),

K(we) —K(c) =€ (/{k Lo, o(kg) (&t +aK) ds)

+ |e| (/ |éZ+aK|ds) + O(e?),
{kg=0}

4’¢ and where O(€?) denotes a function such that €?O(e?) — 0 as € — 0

where & = ds2
forall a > —2.

Proof To simplify notation, let %—‘; =w and %—‘: = ®'. Let V denote the Levi—Civita
connection and let Vg = V;; and V¢ = V. If dt denotes the arc length element of
the curve w, and kg (s, €) denotes the geodesic curvature of we at s then

‘(Vsd),td))‘

|kg|dr:‘kg(s,e)||d)| ds = |.|2 ds,
1)

where ¢ denotes rotation by 7. Assuming kg(s,0) # 0 and remembering that c is
parameterized by arc length, we compute

e (Ikg (5. 0)]|01) = (0elo| ) leg| + 0 cg) (9e (Vs @.10))
= —2(Ve o, ) llg| +0(ke) ((VeVs 6,16) + (Vs 6,1V 6))
— —2(V, 0. @) kgl
+0(kg) (Vs Vs @ 16) + (R, )i, 10) + (Vs &,1V5 o)),
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where R is the curvature tensor. Noting that o’ = aey, Vyey = kgey, and Ve, =
—kge;, we conclude

Dellcg (s, 0)| = 20tk lkg | + 0 g (6 — k2 + Ker — k)
2-1) - o(kg)(éz + Ka).
A similar calculation at s where kg (s,0) = 0 gives
de (kg (s, 0)|@]) = & + Ka.
Hence for such s,
(2-2) kg (s, €)||@]| = |e]|@ + Ka| + O(€?).

The result follows by integration of (2—1) and (2-2). O

2.2 Local minima of «

Proposition 2.2 Let ¥ be a Riemann surface.

(a) If K(p) #0 forall p € X, then an immersion ¢: S' — ¥ is a local minimum
of « if and only if it is a geodesic.

(b) If X is flat then an immersion ¢: S' — ¥ is a local minimum of k if and only if
it is a locally convex curve.

In particular, in both cases (a) and (b), any local minimum of k is a global minimum in
its regular homotopy class.

Proof Consider case (a). A curve ¢: S' — X is a geodesic if and only if keg(s)=0
for all s € S! and geodesics are global minima of k. Let ¢: S! — X be a local
minimum of «. Note that U = {s € S!: kg (s) # 0} is open. Assume U is nonempty.
Then there exists a nonempty open subinterval J C U . For any variation w(s, €) of ¢
with . = ae; where a: S — R is supported in J we have

/ o(kg)ids =0.
J

Thus, since ¢ is a local minimum, we conclude from Lemma 2.1 that

/ o(kg)aK ds =0.
J

This contradicts K(p) # 0 for all p € X. Tt follows that U is empty and thus ¢ is a
geodesic.
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Consider case (b). Let ¢: S! — X be a local minimum. We show that kg cannot
change sign along ¢. Assume it does, then there exist two disjoint open subintervals J
and J_ of S! such that kg >0 on J4 and kg <0 on J_. Let A4 be a subinterval of
S containing both J4 and J_. Let a: A — R be a function such that @ is supported
in small subintervals of J4 U J_ and such that & = r # 0, where r is a non-zero
constant, between Jy and J_. For a variation w of ¢ with dew = ae,, Lemma 2.1
implies that
Kk (we) —k(c) = £2re + O(€?).

This contradicts ¢ being a local minimum. Consequently, k, does not change sign
along ¢ and c is locally convex.

It remains to show that ¢ is a global minimum. Fix a unit speed parametrization of
¢ so that kg(s) >0 forall s € S 1. As in Section 1, we construct an orthonormal
trivialization of 7'% by parallel translation with respect to the flat metric. This identifies
the unit tangent bundle UY of ¥ with ¥ x S! and the regular homotopy class of ¢
is determined by its homotopy class in ¥ and the degree of 7, 0¢: S! — S, where
7y T x ST — ST, (Recall that ¢: S! — U X denotes the natural lift of the unit speed
curve ¢.) Moreover, k(c) is simply the length of the curve 75 o¢. Now, kg(s) > 0 for
all s € S! implies that the length of 7, o ¢ equals 27 times the degree of 7, o¢ and it
follows that local minima are global minima also in this case. |

Remark 2.3 Proposition 2.2 does not hold for arbitrary Riemann surfaces. Consider
for example the boundary of a convex body in R® which agrees with the standard
2—sphere except that it has a flat region near the north pole. Any locally convex curve
in this flat region is a local minimum of k but it is certainly not a global minimum in
its regular homotopy class.

3 Curvature concentrations and approximations

In this section we define piecewise geodesic curves with curvature concentrations and
show that circle immersions can be approximated by such curves without increasing
the total absolute geodesic curvature.

3.1 Piecewise geodesic curves with curvature concentrations

Let ¥ be a Riemann surface. A piecewise geodesic curve in X is a continuous curve
c: S — ¥ which is a finite union of geodesic segments. More formally such a curve
¢ can be described as follows. Consider a finite collection of geodesics ¢;: [0, 1] — X,
Jj=1,....m, with ¢j(1) = ¢j4+1(0) for each j (here ¢+ = cy). Let I; be [0, 1]
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thought of as the domain of ¢; and let 7,41 = I;. Then the space obtained by
identifying 1 € I; with 0 € I; 1 is acircle S ! which can be considered as the domain
of a continuous map ¢: S! — ¥ such that if p € S! is the image of p’ € I; under
the quotient projection then ¢(p) = ¢;(p’). We say that the points p € S! with two
preimages under the quotient projection are the vertices of the piecewise geodesic
curve ¢. We will often deal with images of vertices and we call also these image points
vertices of ¢, when no confusion can arise.

Let UX denote the unit tangent bundle of ¥. Note that at each vertex c(p) of
a piecewise geodesic curve ¢ as above, there is an incoming unit tangent vector
¢j(1)/I¢j(1)] € UgpyT and an outgoing unit tangent vector ¢j41(0)/[¢j+1(0)] €
Uep)Z. A piecewise geodesic curve with curvature concentrations is a piecewise
geodesic curve ¢ together with a vertex curve y: [0, 1] — U (p) X for each vertex p
which connects the incoming— to the outgoing unit tangent of ¢ at p and which satisfies
the following condition: y is a continuous piecewise geodesic curve (with finitely
many geodesic arcs) in the fiber circle U, ()X equipped with the metric induced by the
Riemannian metric on . We use the abbreviations PGC—curve to denote piecewise
geodesic curves with curvature concentrations, and we often write (¢1, Y1, ..., Cm, Ym)
for a PGC—curve with geodesic segments ¢; and vertex curves y;. We say that the
length /(y;) of the vertex curve y; is the curvature concentration of the PGC—curve
c at the vertex c(p) = ¢j(1) = ¢j4+1(0), and that the piecewise geodesic curve with

geodesic arcs ¢y, . .., ¢y 1s the underlying curve of c.
We note that any PGC—curve ¢ = (¢1, ¥1,--.,Cm, ¥Ym) in 2 has a natural continuous
lift ¢: S' — U which consists of the usual lifts ¢; of ¢j, j = 1,...,m, connected

by the curves yj, j =1,...,m, in the fibers of UX — X over vertices of ¢. The lift
¢ of ¢ is thus a piecewise smooth curve. In particular, its derivative is smooth except
for finitely many jump discontinuities where the curve has left and right derivatives. If
¢ is a PGC—curve we consider ¢: S' — UX as a parameterized curve with its natural
arc length parametrization scaled by a suitable factor so that its domain becomes the
unit circle.

Definition 3.1 The rotal absolute geodesic curvature of a PGC—curve

¢=(C1, V15> Cm;>¥Ym)
m
is k() =Y _1(y).
=1
where /(y;) is the length of the vertex curve y; .
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Let Pgc(S!, ) denote the set of all PGC—curves in ¥. We define the distance between
two elements 5 and ¢ in Pgc(S!, ) to be the C%—distance (with respect to the metric
on U X induced from the metric on X) between their lifts b and ¢ endowed with
parameterizations proportional to arc length, as discussed above. A PGC—homotopy
is a continuous 1—parameter family of PGC—curves or equivalently a continuous map
from the interval to Pgc(S!, ).

3.2 Approximation

If ¥ is a Riemann surface then let Inm(S'!, X) denote the space of circle immersions
into ¥ with the C%—topology. Let c: S! — X be a circle immersion, let 7 =
(Po, - - -, pm) be a partition of S! and let |7| = max; d(p;, Pj+1) (d is the distance
function on S! and we use the convention p,, 1 = po). If || is sufficiently small
then we associate a PGC—curve ¢”" to ¢, as follows: ¢” is the PGC—curve with
underlying piecewise geodesic curve consisting of the shortest geodesic segments
between ¢(p;) and c¢(pj+1), and with vertex curves y; which are the shortest arcs
in Ug(p;)X connecting the incoming- to the outgoing unit tangent of the underlying
piecewise geodesic curve. We note that max; /(y;) — 0 and |k(c) —«(c™)| — 0 as
|| — 0.

If /2 A—Imm(S!,X) is a continuous family of circle immersions parameterized by
a compact space A and if € > 0 is arbitrary, then there exists § > 0 such that for all
partitions 7= with || <8, f™: A — Pgc(S', X), defined by (1) = (f(A))T,isa
continuous family of PGC—curves, and there exists an e—small homotopy connecting
the family of continuous curves f : A - UX to the family of continuous curves
[T A US.

Lemma 3.2 Let ¢o: S! — X be a circle immersion into a Riemann surface with
K <0, K >0, or K= 0 everywhere. Then there exists a regular homotopy c;,
0 <t =<1, of ¢¢ such that

(3-1) k(ct) <k(co), O0<t=1,

and such that the PGC—curve ¢ (defined using any sufficiently fine partition ),
satisfies

(3-2) k(cT) = k(co).

Moreover, if ¢ is not a local minimum of k then the non-strict inequalities in (3—1) and
(3-2) can be replaced by strict inequalities.
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Proof Assume K # 0 everywhere. Then Proposition 2.2 implies that cq is a local
minimum if and only if ¢ is a geodesic. Hence, if ¢ is not a geodesic then there exists
a k—decreasing regular homotopy connecting ¢y to some curve c;. For sufficiently
fine partition 7, the curve cf then satisfies (3-2).

Assume K = 0. If ¢ is not locally convex then the above argument can be repeated.
Recall from Section 1 that parallel translation in the flat metric gives U = ¥ x S! and
let m5: UX — S denote the projection. If ¢ is locally convex it is elementary to see
that for sufficiently fine partitions 7, 7, o ¢™ is monotone and thus k(™) =k(c). O

Remark 3.3 Lemma 3.2 does not hold for general metrics. Consider for example R?
with coordinates (x, y) and a metric given by

ds* = eXP(Z (\/x2 +y2— 1)3)(dx2 +dy?)

in a small neighborhood of ¢ = {x2 4+ y2 = 1}. Then K(x, y) <0 for x> + y? > 1
and K(x, y) > 0 for x2 4+ 2 < 1 and the geodesic curvature of ¢ is identically equal
to 1. Let b be any curve which is a C!-small perturbation of ¢. Assume that b
meets ¢ transversely in 2m points. These intersection points subdivide b and ¢ into
unions of arcs ¢ = You U ¥in and b = Bou U Bin, Where Bour C {x? + »2 > 1} and
Bin C {x2 + y2 < 1} and where the endpoints of an arc in i, (Your) agree with the
endpoints of some arc in Boy (Bin). Let qut, j=1,...,m,be the m regions bounded

by an arc in By and an arc in y;, and let Qijn, j=1,...,m be the m region bounded

by an arc in y,y and an arc in Bi,. Then the Gauss—Bonnet theorem implies that

m 2m

kgds—/ kgds—i—Z/_ KdA+Zaj=2nm,
ﬂoul Yin P Q] C—
j=1 Jj=1

out

m 2m

kgds—/ kgds+2/j KdA+) aj=2wm,
ﬂin . Q! .
j=1 in j=1

Yout

where «; is the exterior angle at the j th intersection point between b and c. Thus

k(b) E/bkg ds > /kg ds =k (c).

By approximation we conclude that for any PGC—curve e which lies in a sufficiently
small tubular neighborhood of ¢, k(e) > «(c).

Algebraic € Geometric Topology, Volume 6 (2006)



Regular homotopy and total curvature 1 469

4 Curvature non-increasing homotopies, smoothing, and lo-
cally convex curves

In this section we construct special PGC—homotopies of PGC—curves on flat Riemann
surfaces and on the hyperbolic plane which decrease the total absolute geodesic curva-
ture of a given initial curve and which ends at a curve of certain standard shape. We
construct similar special PGC—homotopies of curves on the 2—sphere with a constant
curvature metric. We show that these special PGC—homotopies can be smoothed to
regular homotopies, increasing the total curvature arbitrarily little. We also study the
space of locally convex curves on flat surfaces.

4.1 Flat surfaces

Let  be a Riemann surface. Let IT: £ — X be a smooth covering map and endow )
with the pull-back metric. Define a [ift of a PGC—curve ¢ in X to be a PGC—curve b
in ¥ such that b is a lift of ¢ with respect to the induced covering I[Iy: UX — U X.

Let ¢ be a PGC—curve in & with lift b in & andlet b;, 0<7<1,bea PGC-homotopy
of b with the following properties: the start-point bt(oz) and endpoint b;(w) of b;
satisfy II(bs () = (s (w)) and HU(b,(a)) = HU(b,(a))) for all ¢, where bt(a)
and b, (w) are the outgoing— and incoming tangent vectors of b; at b;(«) and bs(w),
respectively. Then b; induces a PGC—homotopy ¢; of ¢ by transporting geodesw
segments of b; in T to geodesic segments of ¢; in 3 with the projection IT: T3,
and by transporting vertex curves of b; to vertex curves of ¢; with the induced projection
My: U $ — UX. (Note that the conditions on the PGC-homotopy b; holds if l;t is a
closed curve for each ¢.)

Lemma 4.1 Let ¥ be a Riemann surface with constant curvature K = 0 and let ¢ be
a PGC—curve in X. Then there exists a PGC—homotopy c;, 0 <t < 1, with ¢y = c,
with k(c;) < k(cg), for all t, and with the following property: the underlying curve of
¢y is a geodesic and any curvature concentration of ¢; equals .

Proof Consider the case ¥ = R?. We claim that any PGC—curve which does not have
underlying curve a line segment admits a PGC—homotopy which does not increase
k and which decreases the number of vertices with curvature concentration not a
multiple of 7. Together with an obvious inductive argument this shows that any PGC—
curve is PGC—homotopic through an homotopy with properties as above to a curve
with all curvature concentrations integral multiples of . Noting that any curvature
concentration at a vertex of magnitude mm, m a positive integer, can be split up into
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m vertices each with curvature concentration = by a PGC—homotopy preserving « we
conclude that the claim implies the lemma when ¥ = R?.

Consider the claim. If the underlying curve of a PGC—curve is not a line segment
then it has three consecutive line segments connected by two vertices with curvature
concentrations which are not integral multiples of 7. At such a vertex the curvature
concentration is either the sum of the exterior angle of the underlying curve and a
multiple of 27 or the sum of the interior angle of the curve and an odd multiple of
7. We call the former type of vertices exterior and the latter interior. We also need to
distinguish two types of configurations of the three consecutive segments. We say that
the configuration is convex if all three segments are contained in the closure of one of
the half planes determined by the line containing the middle segment, otherwise we
say it is non-convex. To establish the claim, consider three consecutive segments e,
ey, e3 as above connected at vertices v; and v,. We separate the cases:

Case 1 If both v and v, are exterior, then move v, along e until it reaches the next
vertex following it. It is straightforward to check that this PGC—homotopy preserves «
in the convex case and decreases k in the non-convex case.

Case 2 If vy is exterior and v, interior, then move v{ backwards along e; until it
reaches the vertex preceding it. This PGC—homotopy preserves k in the non-convex
case and decreases it in the convex case.

Case 3 Assume that both v; and v, are interior. If the configuration is convex, then
move v, along es until it reaches the vertex following it. This is a k—preserving
PGC-homotopy. If the configuration is non-convex, consider the lines /; containing e; .
Assume first that /; and /3 are not parallel. Note that the segments e; and e3 lie in
different components of R? — /5. If the point /; N /3 lies in the component of R? —/,
which contains e3 then move vy along /{ to /{ N /3. Otherwise, move v, along /3 to
the intersection point. This PGC—homotopy strictly decreases «. In the case that /
and /3 are parallel, start by moving v; as described above. Note that this decreases
k. Thus we may change e3 slightly without increasing k past k(cg) so that /; and /3
intersect. We then apply the above.

Note that in either case, the PGC—homotopy described reduces the number of vertices
with curvature concentration not an integral multiple of 7. The claim follows.

Consider the non-simply connected case. Since X is a flat Riemann surface, there
is a covering map IT: R? — ¥ with deck transformations which are translations of
R2. Let b be a lift of ¢. If b is closed, we apply the above result to construct a
PGC—homotopy b;, 0 < ¢ < 1, with properties as in the formulation of the lemma.
The induced PGC-homotopy ¢;, 0 < ¢ < 1, of ¢ then satisfies the lemma. If b is
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non-closed we lift it in the middle of some segment and apply the construction above
to the lift. If at some stage of the PGC—homotopy a moving vertex passes the endpoint
of the lifted curve, we stop the PGC—homotopy and choose the midpoint of the next
segment of the curve in the direction the vertex is moving and then proceed. Note
that this construction applies as long as the underlying curve has at least three distinct
geodesic segments. Thus, to complete the proof it remains only to study curves with
two line segments and two vertices.

Let b be the lift of a curve ¢ with two vertices. Let vy and v; be the endpoints of the
lift » and let / be the straight line segment in R? connecting vg to vy. Let eg and e;
be the straight line segments of » with one endpoint at vy and at vy, respectively. Let
e be the segment of b connecting the endpoint of ey which is not equal to v to the
endpoint of e; not equal to v;. Since we lift ¢ at a midpoint of a geodesic segment it
follows that e passes the midpoint p of /.

Let wy and w; be the vertices where ¢, and ¢ meet and where ¢; and e meet,
respectively. Choose an orienting basis (€, f ) of the plane where ¢ is a unit vector
in direction of e oriented from vy to v; and where f is a vector perpendicular to
¢ oriented so that the direction vector of e has positive f component. If A(r,s, 1)
is a triangle with corners at r, s,t € R? we write a(r;r,s,t) and B(r;r,s,t) for the
exterior— respectively interior angle of A(r, s, ) at the corner r.

We consider separate cases. Consider first the case when both wy and w; are exterior
vertices. Rotate the line containing e in the positive directions around p, and rotate the
lines containing e and e in the negative direction around vy and vy, respectively, so
that angles change at linear speed. More precisely if wf) and w/ denotes the intersection
points between the rotated line containing e and the rotated line containing ey and eq,
respectively. Then B(p; p, w}, vj) = (1=1)B(p; p,wj,vj), j =0,1. Note that the
segments in the triangles A(p, w’,v;), j = 0, 1, which are not parallel to / give a
PGC-homotopy b; of b which via the projection IT induces a PGC—homotopy c¢; of
c. Moreover,

d
(€)= () = 2(B(p: p.vo. wo) + B(vo: p. vo. wo)) > 0.
and the curvature concentrations of ¢; are integral multiples of 2.

Consider second the case when both wy and w; are interior angles. In this case we
repeat the construction above with the important difference that we rotate also the
lines containing ey and e; in the positive direction. Again the projection gives a
PGC-homotopy ¢; of ¢ and we have

d
= ((er) () = 2(=a(vo: p. vo. wo) + B(p: p. vo. wo)).
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but a(vo: p, vo, wo) = B(p: p.vo.wo) + B(wo: p.vo. wo) and hence «(c;) < k(c).
Again c¢q has the desired form.

Finally, if one of wqy and w; is an exterior vertex and the other one is an interior vertex,
then any one of the above procedures may be used. The result is a PGC—homotopy
which does not change «: the sum of the interior angle and the exterior angle at wg
and w, is constantly equal to & . This finishes the proof in the non-simply connected
case. |

Lemma 4.2 If ¢y and ¢ are two PGC—homotopic PGC—curves on a Riemann surface
as in Lemma 4.1 then there exists a PGC—homotopy ¢;, 0 <t < 1, connecting them
such that

K (cr) = max{k(co), k(c1)},
forallt.

Proof After Lemma 4.1 it is sufficient to consider the case when ¢y and c¢; both
have underlying curves geodesics and all curvature concentrations equal to 7. Any
vertex curve is thus either a positive or a negative m—rotation. It is easy to see that
neighboring vertex curves of different orientations cancel. The lemma follows. a

4.2 The hyperbolic plane

The counterpart of Lemma 4.1 for curves in the hyperbolic plane differs from the flat
case in an essential way: the limit curve which arises as the end of a x—decreasing
PGC-homotopy, is not a PGC—curve in the hyperbolic plane, in fact it often has infinite
length. To deal with this phenomenon we define a generalized PGC—curve in the
hyperbolic plane as a PGC—curve which is allowed to have vertices at infinity. More
concretely, consider the disk model of the hyperbolic plane,

2 4(dx12 + dx%)
A=

and add to it the circle at infinity dD. Define a generalized PGC—curve as a piecewise

smooth curve in D = D U dD which consists of geodesic segments (ie, arcs of circles

meeting dD at right angles), which is allowed to have vertices on dD, and which have

vertex curves at all vertices connecting the incoming— to the outgoing unit tangent.

Note that the length of any vertex curve at a vertex on dD is an odd multiple of .

We extend « to generalized PGC—curves by defining it as the sum of the lengths of all
vertex curves (the sum of all curvature concentrations).

(4-1) D={x=(x1.x) eR? |x| <1}, ds

To connect generalized PGC—curves to PGC—curves we measure the distance between
generalized PGC—curves as the C°—distance between their lifts in U D with respect to
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the metric on U D induced by the Euclidean metric on the plane. Using this metric we
define a generalized PGC—homotopy as a continuous 1—parameter family of generalized
PGC—curves. Moreover, it is clear that the following approximation result holds: if
by, A € A is any continuous family of generalized PGC—curves parameterized by a
compact space A and if € > 0 is arbitrary then there exists a family of PGC—curves
¢, A € A, such that the distance between b) and c; is less than € and such that
|k (b)) —K(cy)| <€ forevery A € A.

Lemma 4.3 Let ¥ ~ R? be a Riemann surface of constant curvature K < 0 and let ¢
be a PGC—curve in X. Then there exists a generalized PGC—homotopy ¢;, 0 <t <1,
with ¢o = ¢, with k(c;) a non-increasing function of t, and with the following property:
¢y is a generalized PGC—curve with all its vertices on the circle at infinity, and with all
curvature concentrations equal to .

Proof Note that « is invariant under scaling. Therefore we may assume that K = —1.
Then ¥ = D, where D is as in (4-1). Let ¢ be a PGC—curve in X. Consider a vertex
curve y of ¢ at the vertex p € D. Let ey be the incoming geodesic arc of ¢ at p. We
consider two cases separately.

Case 1 Assume that /(y) = a +n2x where 0 <a < 7 and n > 0. In this case the
vertex curve is, modulo 2 —rotations, the exterior angle of the curve. We push the
endpoint of e; backwards along e; until we reach its start-point. At this moment we
have reduced the number of non-infinite vertices of ¢ with curvature concentrations not
a multiple of 7z by one. To see that this generalized PGC—homotopy does not increase
k we calculate with notation as in Figure 1,

a’—{—ﬂ/:a—i—/ KdA <a,
Q

and hence « does not increase.

Figure 1: Removing an exterior angle
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Case 2 Assume that /(y) = a + n2nx where m <a <27 and n > 0. In this case the
vertex curve is, modulo 2m —rotations, the complementary angle to the exterior angle.
We push the vertex in the positive direction along e; until it hits 0D, thereby reducing
the number of non-infinite vertices by one. To see that this PGC—homotopy does not
increase ¥ we calculate with notation as in Figure 2,

o/—l—ﬁ/=oz—|—/ KdA <a,
Q

and hence « does not increase.

Figure 2: Removing an interior angle

Repeating this argument a finite number of times we remove all non-infinite vertices of
¢. To finish the proof we note that any vertex curve at infinity has length 7 4 2mm,
for some integer m > 0, and that the 2w m—concentration can be pushed along one of
the geodesics which ends at the infinite vertex so that it lies in D (not in dD). Finally,
such a curvature concentration of magnitude 2w m in the finite part of the disk can
be split up and pushed to 2m curvature concentrations at infinity, each of length .
In Figure 3 this is illustrated for m = 1. (If the multiplicity of the geodesic on the
left hand picture in Figure 3 is k, then the multiplicity between the two curvature
concentrations on the right hand side is k + 2.) a

Our next goal is to deform any generalized PGC—curve with its vertices at infinity to a
standard form. To this end, we distinguish two different vertices at infinity: let x be
a vertex on dD of a generalized PGC—curve with incoming geodesic segment along
the geodesic ¢; and outgoing geodesic segment along the geodesic ¢,. Note that c¢;
subdivides D into two components. Let D be the component with inward normal
v along ¢; such that if n(x) is the outward normal of dD at x then n(x),v(x) is a
positively oriented basis of R?. Let D_ be the other component. If ¢; = ¢, then we say
X is a degenerate vertex. Assume that x is a non-degenerate vertex and that the vertex
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Figure 3: Splitting a curvature concentration

curve at x is a positive (negative) sr —rotation. Then we say that x is an over-rotated
vertex if ¢, lies in D_ (D), otherwise we say it is an under-rotated vertex.

We say that a generalized PGC—curve of tangential degree (Whitney index) m in the
hyperbolic plane is in standard position if it has the form of the curve in Figure 4, where
if, |m| # 0, all vertex curves have length = and have the same orientation. Clearly any
two PGC—homotopic generalized PGC—curves in standard position are PGC—homotopic
through such curves.

Figure 4: A curve in standard position

Lemma 4.4 If ¢y and c; are two PGC—homotopic PGC—curves in the hyperbolic plane
each with at least one curvature concentration not an integral multiple of m, then there
exists a PGC—homotopy ¢;, 0 <t < 1, from c¢( to c¢1 such that

K (ct) < max{k(co), k(c1)},
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forall t.

Proof Using Lemma 4.3, we deform any given PGC—curve to a generalized PGC—
curve with all its vertices at infinity and all curvature concentrations equal to = without
increasing « . In fact, the condition that some curvature concentration is not an integral
multiple of & implies that « is decreased by this deformation. It is thus sufficient to
show that any generalized PGC—curve with all its vertices at infinity and all curvature
concentrations equal to # may be deformed to a curve in standard position by a
generalized PGC—homotopy which increases « arbitrarily little.

Note that any generalized PGC—curve with all its vertices at infinity which has only
two infinite vertices is automatically in standard position. Assume inductively that any
such curve with < m vertices can be brought to standard position by a PGC—homotopy
which increases « arbitrarily little and consider a curve with m vertices.

If the curve has an under-rotated vertex then this vertex can be removed using the
method of Case 1 in the proof of Lemma 4.3. The inductive assumption finishes the
proof in that case. We thus assume that the curve does not have any under-rotated
vertices.

Consider a curve which satisfies this assumption and which has two curvature concen-
trations of opposite signs. Such a curve must have two vertices @ and b with curvature
concentrations of opposite signs which are connected by a geodesic arc C. Let A and
B Dbe the other geodesics with endpoints at @ and b, respectively. Since every vertex is
over-rotated, it follows that C separates A from B. Push the second endpoint of B
which is not equal to b until it is very close to ¢ and the endpoint of 4 which is not
equal to a until it is very close to b. With this done, push the curvature concentrations
inwards along C and cancel them increasing « arbitrarily little. The initial phase of
the latter homotopy is shown in Figure 5.

Figure 5: Canceling opposite concentrations

Finally, assume that there are no under-rotated vertices and that all of the vertices have
curvature concentrations of the same sign. In this case we pick a first vertex and move
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the second toward it, eventually creating a small geodesic. We then move the third
vertex toward the second and so on. We claim that either this process creates a standard
curve or it creates an under-rotated vertex. To see this, let p; be the first vertex which
has not been moved. There are two cases, either p; can be moved without passing
pj+2 - In this case the construction continues. Or, p; must pass pji, in which case
an under-rotated vertex at p;j 4 is created. The claim and the lemma follow. |

4.3 Constant curvature spheres

Lemma 4.5 Let X be the 2—sphere with a constant curvature metric and let ¢ be a
PGC—curve in X. Then there exists a PGC—homotopy ¢y, 0 <t < 1, with co = ¢, with
k(cy) a non-increasing function of t, and with the following property: the underlying
curve of ¢y is a geodesic and any curvature concentration of ¢y equals .

Proof As in Lemma 4.3, scaling invariance of « implies we may assume K = 1. We
claim that any PGC—curve ¢ which does not have underlying curve a geodesic admits a
PGC-homotopy which does not increase k and which decreases the number of vertices
with curvature concentration not a multiple of 7. As in the proof of Lemma 4.1 this
finishes the proof.

Let po denote the start and p; denote the endpoint of a geodesic e of ¢. Let ey and
e, be the other geodesic segments connecting to po and pq, respectively, and let p,
denote the other vertex of e,. Let G; be the great circle in which e; has its image. If
g is a geodesic on X we let /(g) denote its length. We must consider two separate
cases. In the first case /(e;) # mn for all integers m > 0. In this case we deform
the curve by moving p; along G, in such a way that the length /(y) of the vertex
curve Yy at po decreases. We stop this deformation the first time pq hits p, or one
of the points in Gy N G,, or, when /(yy) = nm, for some integer n. At this instant we
obtain a curve with the number of vertices with curvature concentration not an integral
multiple of = one smaller than the corresponding number for c.

A straightforward case by case check shows that this deformation does not increase
k. More precisely, there are 16 subcases to check. They arise as follows. First
l(ey) =a+2mxm, 0 <a < where m > 0 is even or odd, second the tangent vectors
of eg and e, at py and pq, respectively, points into different components of ¥ — G
or into the same component, third and fourth the lengths of the vertex curve y; at
pj satisfies /(yj) =a+2am, 0 <a <m, where m > 0 is even or odd, j =0, 1.
However, the fact that k¥ does not increase follows in all of these subcases from one of
the following two computations.

Algebraic € Geometric Topology, Volume 6 (2006)



478 Tobias Ekholm

First, with notation as in Figure 6, we calculate
,3/+(7r—(oc—o/))+7r—,3+/ KdA =2n.
Q

Thus,
AK=((¥/+,3/)—(O(+,3)=—/;2Kd/1<0.

Second, with notation as in Figure 7, we calculate

Figure 6: Removing a vertex I

,3+(JT—,3/)+(7T—(04—0/))+/QKdA=2n.

Thus,
AK=(O[/—|-,3/)—(0[—|-,3)=/ KdA—2(a—-d') <0,
Q

where the last inequality follows since 2(a —a') = fI‘ K dA where T is the angular
region between the geodesics connecting antipodal points and intersecting at an angle
a—a', and since Q CT.

In the second case /(e1) = nx for some integer n > 0. In this case we rotate e
in such a way that the length of at least one of the vertex curves at the endpoints of
e decreases. The process stops when one of the vertex curves becomes an integral
multiple of 7. This finishes the proof. |
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Figure 7: Removing a vertex II

Lemma 4.6 Let ¢y and ¢; be any two PGC—homotopic curves on a Riemann surface
Y asin Lemma 4.5. Then there exists a PGC—homotopy ¢y, 0 <t < 1, connecting cg
to ¢; with

k(cy) <minfx(co), x(c1),2m},

forall t.

Proof Lemma 4.5 shows that it is enough to consider two curves with the properties of
c1 there. We first show how to deform such a curve to a multiple of a closed geodesic.
Fix a first vertex p and the orientation of the great circle of its incoming geodesic.
Move the second vertex ¢ to the antipodal point of the first and rotate the arc which
connects p and ¢ an angle m. Note that after the rotation, the orientation of the arc
agrees with the fixed one. If the orientation of the vertex curves at p and g are the
same then this rotation removes two vertices and decreases « . If the two vertex curves
have opposite orientations this rotation does not change « and one vertex with vertex
curve of length 27 is created. Splitting this new born vertex into two and repeating the
above argument removes them. In this way, we eventually remove all vertices.

To finish the proof we need only show how to increase the number of times a curve
encircles a geodesic by 2 not increasing « by more than 2. We use the following
procedure. Create two curvature concentrations of length 7 and of opposite orientations
keeping « not larger than 27 . Applying the procedure described above, we arrive at a
curve which goes two more times around the geodesic. |
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4.4 Curves with self-tangencies on the sphere

A generic circle immersion into a surface has only transverse double points. In generic
regular homotopies there appear isolated instances of triple points and self-tangencies.
The self-tangencies are of two kinds direct when the tangent vectors at the tangency
point agree and opposite when they do not. Let ¥ denote the 2—sphere with a constant
curvature metric throughout this subsection.

Lemma 4.7 Any circle immersion c: S' — X with an opposite self-tangency satisfies
k(c) > 2m.

Proof Since ¢ is not a geodesic we may decrease « (¢) by a small deformation, keeping
the self-tangency, see the proof of Proposition 2.2. Let b be the curve resulting from
such a deformation. Fix a partition 7 of the circle such that the PGC—approximation
b™ of b satisfies x(b™) < k(c), see Lemma 3.2. Let b be a PGC—curve close to b”
which contains two segments of the same geodesic close to the self-tangency point of
¢ and such that K(I;) <k(c).

Apply the deformation in the proof of Lemma 4.5 to b with the endpoint of one of
the self-tangency segments as p;. Note that as this process reaches the endpoint of
the other self-tangency segment, the PGC—curve constructed must contain a geodesic
segment with at least one vertex curve of length 7. Since the process does not increase
k and since the lift of a PGC—curve is closed, it follows that K(I;) > 2 and therefore
k(c) > 2m. m]

In order to prove Theorem 1.1 (b) we are going to apply Arnol’d’s J ™~ —invariant of
immersed curves on S?. Arnol’d introduced his invariant for circle immersions in the
plane, see [1]. Its existence for curves on more general surfaces was established by
Inshakov [5] and Tchernov [9]. The existence of the J~ —invariant stems from the
following fact: if ¢y and c; are two self-transverse regularly homotopic curves on
S? then the algebraic numbers of opposite self-tangencies in any two generic regular
homotopies ¢;, 0 <t < 1, connecting them are equal. This number is called the
relative J ™~ —invariant of ¢ and ¢, we will denote it AJ ™ (cg, ¢1). To compute the
algebraic number of self-tangencies each self-tangency moment is equipped with a
sign as follows: it is a positive moment if it increases the number of double points of
the curve, otherwise it is negative.

Lemma 4.8 Let k > 0 be an integer and consider the circle immersions S' — %

which go k and k 4 2 times respectively around a geodesic (a great circle). Let c¢q and
¢y be any small perturbations of these curves. Then |AJ " (¢o, c1)| = 2.
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Proof Any sufficiently small perturbation of a curve going around a geodesic can be
thought of as a multi-graph over the 0—section in a tubular neighborhood of a great
circle. This implies that there exist deformations without opposite self-tangencies
connecting any two such perturbations. To compute AJ ™ (cg, ¢1) it is thus sufficient
to pick two perturbations and count the algebraic number of opposite self-tangencies
in one regular homotopy connecting them. In Figure 8, the first picture illustrates a
curve in a neighborhood of the north pole which is obtained by shrinking a perturbed
multiple of the equator and in the first deformation one kink is pulled over the south

pole. The lemma follows from Figure 8. |
— —
~1
~1
- -

Figure 8: Computation of AJ™

4.5 Smoothing PGC-homotopies

The PGC-homotopies in Lemma 4.1, Lemma 4.3 and Lemma 4.5 have very special
forms. We show that such PGC—homotopies can be made smooth in a standard way,
increasing the total curvature arbitrarily little.

Consider first two unit vectors vj, € R? and voy € R? and let y be a geodesic in
St connecting vi, to voy and let § > 0 be given. Fix a family of reference curves
b (Vin, Vour. ¥) inside the unit disk such that b agrees with the straight line in direction
Vin (Vout) near the endpoints. The tangent map of b is homotopic to y with endpoints
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fixed and the total curvature of b exceeds the length of y by at most §. Clearly there
exists such families which depend continuously on the data for all § > 0.

We first discuss smoothing of a fixed PGC—curve. Let ¢ = (¢1, ¥1,...,Cm, Ym) be a
PGC—curve such that all vertex curves are immersions. For sufficiently small € > 0,
we define an e—smoothing of ¢ as follows. Fix a disk of radius € > 0 around each
vertex of ¢. Under the inverse of the exponential map at a vertex the curve ¢ looks
like the model discussed above. More precisely, in the tangent space of the surface
% at a vertex p we have an incoming unit tangent vector vi, and an outgoing one
Vout» and we glue in the curve b(vin, Vout» y) in this tangent space. We then scale the
glued in curve by € and map it back into X with the exponential map at p. Applying
this procedure at each vertex we get a smoothing ¢ of ¢. Note that x(¢) can be made
arbitrarily close to x(c) by choosing § and € sufficiently small. (The deviation from
the flat case is measured by a curvature integral over a region with area going to 0 with
€.) We illustrate this smoothing process in Figures 9 and 10.

NN

Figure 9: Smoothing of exterior angle

Figure 10: Smoothing of interior angle

We next note that all PGC—homotopies in the proofs of Lemma 4.1, Lemma 4.3 and
Lemma 4.5 have one of the following forms
e One geodesic segment of a PGC—curve moves along a consecutive segment.

¢ Two curvature concentrations of magnitude = and with opposite orientations
are created or annihilated somewhere along a PGC—curve.

e A homotopy of the form presented in the last part of Lemma 4.1.
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We call such PGC—homotopies simple.

Lemma 4.9 Letcs, 0 <t <1, be a simple PGC—homotopy between two PGC—curves
co and cy; with immersed vertex curves. Then, for any € > 0 there exists a regular
homotopy ¢; connecting the € —smoothings ¢y and ¢ with

max k(¢;) < max K(c;) + 10e.
0<t<1 0<

Proof The proof is straightforward. Consider a PGC—homotopy of the first type.
We define ¢; as the e—smoothing of ¢; for ¢ outside a neighborhood of 1. Inside a
neighborhood of 1 we may again use local flat models and define ¢; by composing
with the exponential map. A picture of such a local model is shown in Figure 11. For

Figure 11: A regular homotopy near two meeting vertices

the local model of a simple homotopy of the second type, see Figure 12.

/

N\

Figure 12: Creation of curvature concentrations

For simple homotopies of the third kind one may simply take ¢; to equal the e—
smoothing of ¢; for all ¢. a
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4.6 Locally convex curves on flat surfaces

Let X be a flat Riemann surface (X ~ T2, ¥ ~ S! xR, or X ~ R?). For pE,
veUpyXZ,and (§,m) € m(X) X Z let Qg m)(p.v) (Q(s,m)(p, v)) denote the space
of all (strictly) locally convex circle immersions c¢: S' — X of regular homotopy
class (¢, m), see Section 1, such that ¢(1) = p and ¢(1) = v. (As usual we use the
C?—topology on the space of circle immersions.)

Lemma 4.10 The spaces Qg ,)(p,v) and Q(E’m) (p,v) are weakly contractible.

Proof We start in the simply connected case, ¥ = R?. Let F denote Q,,(p,v) or
ﬁm(p, v). Let I': S” — F be a continuous map from the n—sphere, I'(x) =cy: S! —
R?. We think of S as an interval [0, L] with endpoints identified. Thus cx(0) = p
and ¢x(0) = v, for some fixed point p, some unit vector v, and all x € S”. To prove
the lemma we must extend I' continuously to the (n + 1)—ball B"*+1.

Fix a small € > 0 and a unit vector w such that (v, w) = 0 and such that in the
orientation of the plane induced by the basis w, v the tangential degree of the curves
cx are positive. We claim that there exist continuous maps ¢;: S” — R, j = 1,2, with
0 < t1(x) < tp(x) < L, and with the following properties: ¢ (¢;(x)) lies in the short
sub-arc A¢ of S1 between (cos€)v + (sin€)w and (cos 2€)v + (sin2€)w, éx(t2(x))
lies in the short sub-arc B, between (cos€)v — (sin€)w and (cos 2¢)v — (sin 2¢)w,
t1(x) lies in the component of ¢3! (A¢) closest to 0, and #,(x) lies in the component
of é;l (B¢) closest L.

In the strictly locally convex case this claim is obviously true: consider preimages
under ¢x of fixed points in A¢ and B¢ to define #1(x) and #,(x), respectively. To
see that it holds also in the non-strictly locally convex case we argue as follows. By
continuity, the subset A C S” x S!,

A = {(x.1): éx(7) € int(A4e)},

where int(X') denotes the interior of X', is open. In particular, for each x € S” there
exists ry > 0 such that
(&' (nt(4e))
YEB(x,rx)
contains an interval /.. Cover S” by balls B(x,ry) with this property. This cover
has a Lebesgue number § > 0. Triangulate S” by simplices which are so small that
for every vertex in the triangulation, the union of all simplices in which this vertex lies
is a subset of diameter less than §. It is then straightforward to construct #;: S” — R:
if v is a vertex take #{(v) as any point in I/, where x is some point such that the
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union of all simplices containing v lies in B(x, ry). By contractibility of the interval
we can now inductively extend this function over higher dimensional skeleta of the
triangulation. In the final step we get the desired function on S”.

Let g, be the intersection point of the tangent lines to ¢y at ¢y (¢1(x)) and cx (2(x)).
Define an initial deformation of the curves ¢ in the family which pushes cx toward
the piecewise linear curve obtained by replacing ¢y ([0, 1 (x)]) Ucx ([t2(x), L]) with the
curve ¢ (71 (x))gx U cx(t2(x))gx, where ab denotes the line segment between a and
b. To stay in the space of pointed curves we also translate and slightly rotate the curves
to ensure that they pass through p with the right tangent, see Figure 13. Clearly, this

-~«—— push

Figure 13: An initial deformation

deformation can be made continuous in x and chosen in such a way that the resulting
curves, still denoted ¢, are strictly locally convex at ¢x(0) = p for each x € S”.

The next step is to deform the curves so that the marked point is a global minimum
of the height function in direction w. To this end, let 7: §" - R, j =1,2,0<
T1(x) < T>(x) < L be continuous functions on S” such that ¢x(77(x)) (¢x(T2(x)))
lies in an n—arc C, ending at w (beginning at —w ) in the orientation of S ! determined
by ¢x and such that Ty (x) (T>(x)) lies in the component of ¢! (Cp) closest to 0
(to L). In the strictly locally convex case such functions are easily constructed using
suitable points in the preimage ¢ !(+w). In the non-strictly locally convex case,
such functions can be constructed using the same arguments that were used in the
construction of the functions #;, j =1, 2, just given. Let w;(x) = ¢x(71(x)) and let
w2 (x) = —¢x(T2(x)).

Pick M > 0 such that the minimum point ¢y (¢) in the w—direction of any curve
Cx, x € 8", satisfies {(w, cx(¢) — p) > —%M. Pick n > 0 sufficiently small so that
the intersection point r of the lines in direction wy(x) and w,(x) passing through
cx(T1(x)) and cx(T>(x)) respectively satisfies (w,r —cx(q)) < —20M . Consider
the subdivision of the source circle of cx into two arcs Dj(x) and D,(x) as follows:
the endpoints of the arcs are 77 (x) and 7>(x), D;(x) contains the marked point, and
D, (x) does not contain it.
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For 0 <s < %, define cgx as the curve which consists of the following four pieces: the
curve ¢x(D,(x)), the line segment /! in direction wy (x) starting at cx (77 (x)) and
such that the projection of this segment to a line in the w—direction has length 10s M ,
a suitably scaled version of the translate of the curve cx (D1 (x)) along /), which is
tangent to the line through ¢, (7> (x)) in direction w,(x), and finally the line segment
[2 in direction —w,(x) connecting the scaled and translated cx (D1 (x)) to cx(D2(x))
at cx(7>(x)), see Figure 14. In the case when F' is a space of strictly convex curves

Figure 14: Making the marked point a global extremum

we replace the straight line segments in cgx(¢) above with slightly curved circular arcs.
(In fact, since S” is compact we can take these arcs to have curvature smaller than
minyegn minscpo,1](|kg(¢)]).) Finally, to have the curves mapping the marked point
to p we also compose with a suitable translation.

The second step in the deformation takes all the curves in the family to curves with
image in a large circle. Let C be a circle through p with tangent v at p. Let D
be the bounded component of the plane with boundary C. If the radius of C is
sufficiently big then we may choose C so that all curves ¢ Lx has image in D and
C ﬂc%X([O,L]) = C%X(O). For 0 <s <1 let Cs4byx
convex curves which is the union of a curve in C starting at p and ending at the
intersection point of the negative tangent half-line of ¢ 1x at c 1 L(sL), follows this

be the continuous family of
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half-line, and then goes along ¢, .. For s = 1, we get a curve wrapping around C,
2
see Figure 15. The construction is continuous in x and therefore gives a continuous

Figure 15: Making a locally convex curve circular

extension of the map I': S” — F over B"T! as desired. (Again, in the case of strictly
locally convex curves we replace the tangent half-line with a very slightly curved
circular arc.)

We next consider the non-simply connected case. In this case we have a covering
IT: R2 — X where the deck transformations are translations. We lift the curves cx
at the marked point. In the case when F is the space of non strictly locally convex
curves a similar local deformation as the initial deformation above makes all curves
strictly locally convex at the marked point. Let by denote the lifted curves. We have
bx(0) =0, bx(L) = ¢, bx(0) = v=>bx(L).

Let /y and /; be the straight lines through 0 and ¢ respectively with tangent vector
v. By strict local convexity, for one of the unit vectors w orthogonal to v, we have
(bx(t), w) > 0 for ¢ in a (punctured) neighborhood of 0 and for ¢ in a (punctured)
neighborhood of L. For convenience, assume that (g, w) > 0 (otherwise change
coordinates in R? so that ¢ = 0). We construct Tj: S" =R, j=1,2, analogous to the
functions with the same names above, in a similar way as above so that BX(TI X)) ~w
and so that BX(TZ (x)) ~ —w. As above, we add straight line segments to b, so that
bx(0) (or bx(q)) is the global minimum of the height function in direction w and so
that b, intersects the region between the two lines /o and /; in an arc.

Pick two circles Cy and C,; through 0 and ¢, respectively, both with tangents v at
these points. Let Do and D, be the bounded components of the plane which are
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bounded by Cy and Cy, respectively. If the circles have sufficiently large radii then
bx([0, L]) C Dy for each x and by intersects Dy — D, in an arc. Let C be the
boundary of the convex hull of Cy and C,. As above, we deform b, using its negative
tangent half-line. For 0 <s < v where t is the smallest number such that the negative
tangent half-line at by (7) intersects C in a point in Cy. We let bgx be a part of C
followed by the negative tangent half-line, in turn followed by the rest of b, . For s > 7
we let byx be the curve with initial part as above followed by a curve in Cy, in turn
followed by the tangent half-line, and finally the rest of bx. At s = L we find that
every curve in the family is a curve which is a segment in C followed by a curve with
image in Cg4, see Figure 16. In the case of strictly locally convex curves it is easy to

Figure 16: The final stage of a deformation of the lift of a locally convex curve

modify the deformation described so that it keeps all curves strictly locally convex.
This finishes the proof. |

Lemma 4.11 The inclusion Q(S,m) C ¢,m) induces surjections

7 (Qe.my) = 70 (L))

on homotopy groups, for all r.

Proof The proof of Lemma 4.10 homotopes an arbitrary family of (based) locally
convex curves to a family of strictly locally convex curves. Hence we need only
consider what happens to the base point. Let I': S" — Q¢ ,,) be a family of curves.
First use the initial deformation of the proof above to make all curves strictly locally
convex in a neighborhood of 1 € S!. With this accomplished we lift all curves in the
family to R?, by lifting at ¢(1). (If n > 2 then we can lift the whole family in this way
however when n = 1 the start- and endpoints of our lifts may differ by a translation.)
Now apply the procedure of the proof of Lemma 4.10. Note that (in the case n = 1)
the procedure behaves well with respect to translations. Hence, any I': " — Qg )

can be homotoped to a map I'’: S” — Q(S,m). This finishes the proof. a
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5 Proofs

In this section we prove the theorems stated in Section 1.

5.1 Infima

Proof of Theorem 1.2 Consider first case (c). A well-known theorem of Lyusternik
and Fet [7] says that the 2—sphere with any metric (actually any closed Riemannian
manifold) has a non-constant simple closed geodesic, see also Jost [6, Section 5.5].
This geodesic traversed once and twice respectively gives representatives with k = 0
for both regular homotopy classes on the 2—sphere.

In case (b) it is easy to construct a locally convex curve in any regular homotopy class
(&,m) with & # x or m # 0. Note that the class (*, 0) can neither be represented by
a closed geodesic nor by a locally convex curve. Hence «(c) can be decreased for
each ¢ of regular homotopy class (*, 0). Moreover, the curvature decreasing procedure
in the proof of Lemma 4.1 gives in this case a PGC—curve with underlying curve a
geodesic segment. Since the lift of that PGC—curve is closed it must have at least two
curvature concentrations of magnitude 7. Hence k(*,0) > 27 . Approximating a
segment traversed twice with two vertex curves which are rotations 7 and —z we find
that K (*,0) = 2.

Finally, in case (a), it follows as above that the infimum is not attained in classes not
representable by geodesics. To find the infima in case ¥ ~ R? we apply Lemma 4.3
to conclude that it is enough to find the minimal k of a generalized PGC—curve in
standard form in a given regular homotopy class. It is straightforward to check that
a curve in standard form representing the regular homotopy class m has two vertex
curves of length m if |m| =0 and |m| + 1 vertex curves of length 7 otherwise. O

5.2 Locally convex curves

Proof of Theorem 1.3 Let v be a (covariantly) constant unit vector field on 3. Let
Qg,m)(v) and Qg ;) (v) denote the space of strictly locally convex—, respectively,
locally convex curves ¢ with ¢(1) = v. Consider the evaluation maps e(c) = c¢(1),

e: Q(E,m)(v) — X ande: Qg pm(v) —> Z.

These maps are clearly Serre fibrations: using translations we can lift any map from
an n—disk into X. The fibers of these fibrations are Qg ,,)(p, v) and Qg ) (p, v),
respectively, which are both weakly contractible by Lemma 4.10. Hence

7 (Qe.my () ~ 717 (2) & 700 (R (. m) (1))
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with isomorphisms induced by evaluation.

Assume m # 0 and consider the fibration
e/: Q(E,m) g Sl,

¢’(¢) = ¢(0). This is a Serre fibration since ¢: S' — S is a covering map (here it is
essential that the curves are strictly locally convex). Since the fiber of ¢’ is Q(g,m)(v)
we find that R

7 (Qgm) = 7 (UE),
with isomorphism induced by the evaluation map. Since 7, (UX) =0 if r > 1 we
conclude from Lemma 4.11 that 7z (g ) = 7k (SAZ(S’m)) for all k.

We finally consider 1 = 0. In this case the space under consideration is the space
of closed geodesics in a fixed homotopy class. If £ ~ S! x R any element in such a
space is uniquely determined by its intersection with R x {1} and 7 g1(c(1)), where
mgi: S xR — S! is the natural projection. Thus Q(g,0) >~ X. Similar arguments
give the same result when X ~ T'2. O

5.3 Regular homotopies

Proof of Theorem 1.1 Consider first case (a). If X is flat and both ¢¢ and ¢; are
closed geodesics or locally convex curves then the theorem follows from Theorem 1.3.
In all other cases we may first decrease the total curvature a little by Proposition 2.2
and then approximate by a PGC—curve as in Lemma 3.2. In the flat case the theorem
then follows from Lemma 4.1, which allows us to deform both curves to a standard
form without increasing «, Lemma 4.2 which allows us to connect these curves, and
Lemma 4.9 which allows us to smooth the entire homotopy keeping control of «. In
the case of negative curvature the theorem follows in a similar way from Lemmas 4.3,
4.4 and 4.9.

In case (b) we argue in the same way to prove the first statement using Lemmas 3.2,
4.5, 4.6 and 4.9. The second statement follows from Lemma 4.8 which shows that any
regular homotopy ¢;, 0 < ¢ < 1, connecting the two multiple geodesics of different
multiplicities must have an instant ¢; which is a curve with an opposite self-tangency
and Lemma 4.7 which shows that «(c;) > 2. |

We end the paper by demonstrating that Theorem 1.1 (a) does not hold for Riemann
surfaces with metrics of non-constant curvature with K < 0.

Remark 5.1 Consider the upper half-plane with coordinates (x, ), y > 0 and metric

ds* = ezf(y)(afx2 +dy?),
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where f: (0,00) — R is a (weakly) convex function such that its derivative f” satisfies
f’(y) = 0 for y € [1,2]U[3,4], and such that its second derivative " satisfies
f"(y) >0 for y € (0,1) U (4,00) and such that f(y) = —log(y) for y in some
neighborhood of 0 and of oco.

Let Ag =Rx[1,2], A1 =Rx[3,4],and B=Rx(0,00)—(AgUA;). Then K(p)=0
for p e AgU Ay and K(p) <0 for p € B. Let ¢y and ¢ be convex curves in Aq
and A, respectively. Then ¢y and c¢; are regularly homotopic. We claim that for
every regular homotopy ¢;, 0 <7 <1 connecting cg to cy, there exists an instant c;
with «(c;) > 2m. To see this note that as long as the curve ¢; stays in Ag it must
remain convex, otherwise ¥ > 27. In particular, the curve must remain embedded.
Let ¢y be the last moment when the curve lies completely inside the closure of Ag.
Since embeddedness is an open condition we see that ¢; is embedded for all t > 7,
sufficiently close to #y. Note that ¢;, N dA¢ 7# &. Pick some line / parallel to 04,
and close to a point in ¢s, N 04 and such that ¢y, intersects it transversely in two
points. (The existence of such a line follows from Sard’s lemma.) Then also ¢; meets /
transversely for t sufficiently close to 7y. Applying the Gauss—Bonnet theorem to the
two curves bounded by the bounded segment of / cut out by ¢; and the two remaining
pieces of ¢; we find «(cy) > 2.
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