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ON A TAUBERIAN THEOREM FOR ABEL SUMMABILITY

OTTO SZASZ

1. Introduction. In 1928 the author proved the following theorem [2, Section

2 ] :

T H E O R E M A. If p > 1 and

n

(1.1) Σ v P l«vl P =0(n) , n - ^ o o ;

then Abel summability of the series Σ n = 0 an to s implies its convergence to s.

The theorem is the more general the smaller p is; it does not hold for p — 1

[2, Section 1; 1, pp.119,122]. However, for this case Re'nyi proved the following

theorem:

T H E O R E M B. //

i n

l im ~ Σ ^ | α v I = / < 00

exists, then Abel summability of Σn=0 an to s implies convergence of the series

to s.

2. Generalization. We give a simpler proof and at the same time a slight

generalization of Theorem B

THEOREM 1. Assume that

n

(2.1) Vn= Σ v\av\ =0(n) ,

v- 1

and that

(2-2) I y . - ί ,„_><>,
m n
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118 OTTO SZASZ

for every sequence m — mn9 such that mn/n —> 1 as n —> °°. Then Abel summa

bility to s of ΣΛ=o an implies its convergence to s.

Property (2.2) is called slow oscillation of the sequence Vn/n.

Proof of Theorem 1. We write

n n

v=0 v-0

It is easy to verify that, for k — 0,1,2, , we have

(2-3) an_l-Orn+k=-JL-<fra.k-trn_l)-1±.-i (k + 1 - v)

It is known [see 2, Section 2] that if for a finite s we have

00

lim Σ anχΓl = 5 ,

then (2.1) implies σn —> s thus, if

(2.4) l . u . b . Iσ^.! — σn+k I = en ,
k>o

then en —» 0.

We now choose

(2.5) k =kn = [ne π

1 / 2 ] , so t h a t us < π e ^ 2 < k + 1

it follows, in view of (2.4), that

k + 1

In view of (2.3) our theorem will be proved if we show that

1 k

1
0 , π —> oo #
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Now

1

k + 1

+
(" + V) W

o

k + 1 - v 1 . ,
< - {Vn+k - V B - ! ) ,

n + v n

and

(2.6)
1
~
n

+ fe ft - 1
Γ

n + k n n — 1

} k Vn+k |

n -\- k n — 1 n π + f e n n ~ " l

using (2.2) and (2.5), we see that

(2.7) - (Vn+k - K π _ 1
as —

π
0 and π

and thus Theorem 1 is proved.

Re'nyi observed that the Theorems A and B are overlapping. We now show that

Theorem 1 includes not only Theorem B,but also Theorem A. Clearly (2.1) follows

from (1.1) by Holder's inequality. Furthermore,

n+k

vn+k-vn= Σ v H <
I n+k

Σ
\v=n+l

l/p

= k(P-i)/p 0[(n

hence,

~Vn)=-0 (fl -°[(Γ 0 as > 0 .
n

It now follows from (2.6) that (2.2) holds; thus (1.1) implies (2.1) and (2.2), which

proves our assertion.

An example of a sequence Vn > 0, and increasing, for which (2.2) holds,
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while n~ι Vn t oo, is

Vn = n log n , n > 2 ,

because

n + k n \ n) n

3. A more general result. A generalization of Theorem A is the following

[see 5, p.56] :

THEOREM A ' . If for some p > 1, we have

(3-D Σ ^P(kl ~ O P =0(π) , n - ^ oo,
v-\

then the Abel summability of Σ^=o an implies its convergence to the same value.

An analogue to Theorem 1 is the theorem:

THEOREM 2 Assume that

n

(3.2) un = Σ W k l - α v ) =O(n) ,
2 ^ = 1

αAiG? that

1 1 m
(3.3) -Vm~-Un—>0 as > 1 , n —> oo .

m n n

If now Σn=0 an is Abel summable to s, then it converges to s.

Proof of Theorem 2. We have

n n

hence [see 5, the Lemma on p. 52] Abel summability of Σ^=o an implies its

summability (C,l). From (2.3) we have
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sn-l n+k T

k T 1

1 k

κ τ χ £
from (2.4) and (2.5) we obtain

fe + 1
en

1/2

Using the same argument as in the proof of Theorem 1, replacing Vn by Un, we

find that

(3.4) lim sup sn < s .
π-oo

We next employ the identity, similar to (2.3),

1
+ T T T Σ (fe ^ v ) απ-v, k = o, l, 2, ,

and the inequality

av >. av ~~ \av I

The same reasoning as before now yields

(3.5) lim inf sn > s .

Finally (3.4) and (3.5) prove Theorem 2.

It is clear from the proof that condition (3.3) can be replaced by

as
n

4. An equivalent result. A glance at the proof of Theorem 1 shows that the

following lemma holds:
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LEMMA l // Vn is positive and monotone increasing, and if

(4.1) Vn = 0{n) , as n —> oo ,

and (2.2) holds, then

1 , N m
(4.2) - ( ^ - V n ) — » 0 , as »1, n^oo.

rc n

We now prove the inverse:

LEMMA 2. // Fn > 0, and increasing, and if (4.2) holds, then (4.1) and (2.2)

Proof. We write

Kι = n ω π , ωn > 0 ,

and

(4.3)

Let

~Vn) = ω l ι - ω n + ( - - l

max ω v -

then pn

/ϊp<C0 ltp<CC9 then FR = O(τι). Suppose now that p — o°; then there

are infinitely many indices m — /ŵ  , so that ωm — pm for m — m^ ,v— 1,2,3, ••

For these m and for n < m, from (4.3) we get

(44) ft K)

We now choose

so that

Pm
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then, using (4.4), we have

1
" (Vm ~Vn

1/2

n

in contradiction to the assumption (4.2). It follows that (4.1) holds; finally (2.2)

follows from (4.1), (4.2), and (4.3). This proves Lemma 2.

We now prove the following theorem:

T H E O R E M 3. Let Un — Σ J = 1 v{ I a v I — av)\ if

- ' - )—> - —> —>oo
n n

and if Σ^=o an is Abel summable9 then Σ^=o an is convergent to the same value.

Proof of Theorem 3. In view of Lemma 2, Theorem 3 includes Theorem 2; it

also includes Theorem 1, because of Lemma 2, and of the inequality

Um~Un<2(Vm ~Vn) , m>n.

Conversely, by Lemma 2, (4.5) implies (3.2) and (3.3), so that Theorem 3 is

equivalent to Theorem 2, and is thus valid.

To show that Theorem 1 is actually more general than Theorem B we give an

example of a sequence ωn so that nωn is increasing, ωn is slowly oscillating

and ωn — 0(1), but lim ωn does not exist. Let

n

ωn — Σ v~lev i where ev = ± 1 ;
v-\

choose £ v — + 1 as long as ωn < 3; v — 1, 2, , n u say. Choose ev — —\ as

long as ωn ί> 2; v — 1 + n\9 2 + n\9 * * , 2̂> s a y? a n ( l s o o n ^ is clear that

ωn — 0(1), and that lim ωn does not exist. Furthermore, for n < ^ ! , ω Λ t , for
Λ ι ^ ^ ~ 2̂> ω n ^ > a nd so on. Now

(n+l)ω ~nω = n(ω ~ ω ) + ω > - - ! = -

hence nωn t . Finally

Λ 1 TO - n m
£ o r

V
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hence ωn is slowly oscillating.

5 Another equivalent result. We first establish the following lemma.

LEMMA 3. Suppose that Un > 0 and increasing, with UQ — 0, and let

(5.1) bn = ~ (t/B - t/ n -i) , n > 1 , b0 = 0
n

n
(5.2) Bn = 2 6 V > π > 0 .

v = 0

Then whenever k — A (τz) is so chosen that k/n—*0, as n >0°, the two statements

(5.4) Bn + k-Bn—>0

are equivalent.

Proof. From (5.1) we have

n n+k

Now

V-̂  1 x-^ 1 / \

Bn+k~Bn= Σ ί > v < - Σ vbv=-(Un+k-Un);
v=n+l n v=n+l n

thus (5.3) implies (5.4). Furthermore,

1
Bn + k Bn > Γ (tfn + fe

n -f k

hence (5.4) implies (5.3). This proves the lemma.

We note that
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and

n - l

Un = nBn ~" X

It is an immediate consequence of Lemma 3 that Theorem 3 is equivalent to

the following theorem (for a direct proof see [4, Theorem IV] )•

THEOREM 4. //

π + fe

\a>v I — av) — > 0 , as — —> 0 • o o
n

then Abel summabilitγ of Σ w = 0 an implies convergence of the series to the same

value,

A generalization of this theorem to Dirichlet series and to Laplace integrals,

on different lines, is given in [ 3 ] .
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