Pacific Journal of Mathematics

HOMOLOGICAL DIMENSIONS AND MACAULAY RINGS Gerson Louis Levin and Wolmer Vasconcelos

HOMOLOGICAL DIMENSIONS AND MACAULAY RINGS

G. Levin and W. V. Vasconcelos

Abstract

This paper shows some instances where properties of a local ring are closely connected with the homological properties of a single module. Particular stress is placed on conditions implying the regularity or the Cohen-Macaulay property of the ring.

First it is proved that the regularity of the local ring R is equivalent to the finiteness of the projective or injective dimensions of a nonzero module $m A$, where m is the maximal ideal of R and A a finitely generated R-module. Next it is shown that over Gorenstein rings the finiteness of the projective or injective dimension are equivalent notions. Then, using some change of rings, a theorem is strengthened on embedding modules of finite length into cyclic modules over certain Macaulay rings. Finally, to mimic the equivalent statement for projective dimension, it is shown that the annihilator of a module finitely generated and having finite inactive dimension must be trivial if it does not contain a nonzero divisor.

The rings considered in this paper will be assumed commutative and noetherian and as a general proviso all unspecified modules will be assumed finitely generated. For the notations and basic facts used here [2] is the standing reference.

1. A homological characterization of regular local rings. Among the local rings the regular ones are characterized as those having finite global dimension (see [2]). If the maximal ideal of the local ring R is denoted by m and $k=R / m$ is the corresponding residue field, it is even possible to test the regularity of R by looking at the projective dimensions of m or k only. Theorem 1 of this section shows that it is enough to consider any power of m, in fact any module of the form $m A$.

We take for granted the basic things on minimal projective resolutions of modules, just recalling that it means the following: An exact sequence

$$
\cdots \xrightarrow{d} X_{1} \xrightarrow{d} X_{0} \longrightarrow A \longrightarrow 0
$$

where the X_{i} are free $d\left(X_{i}\right) \subset m X_{i-1}$. It is then said to be a minimal projective resolution of the module A. It follows easily then that A has finite projective dimension if there exists an integer n so that $\operatorname{Tor}_{i}^{R}(k, A)=0$ for all $i>n$.

We will prove Theorem 1 from the following lemma:

Lemma. Let $C_{i}, i=0,1, \cdots$ be a complex of R-modules such that $d\left(C_{i}\right) \subset m C_{i-1}$ for all i 's and such that $H_{p}(m C)=H_{p-1}(m C)=0$ for some integer p. Then $m C_{p}=0$.

Proof. Let L_{p} be the kernel of $d: C_{p} \rightarrow C_{p-1}$. Then the kernel of the induced map $m C_{p} \rightarrow m C_{p-1}$ is just $L_{p} \cap m C_{p}$. Hence

$$
H_{p}(m C)=\left(L_{p} \cap m C_{p}\right) / m d\left(C_{p+1}\right) .
$$

By assumption $d\left(C_{p+1}\right) \subset L_{p} \cap m C_{p}$ but since $H_{p}(m C)=0$, this says that $d\left(C_{p+1}\right) \subset m d\left(C_{p+1}\right)$ and thus, by the Nakayama lemma, $d\left(C_{p+1}\right)=0$. Since $H_{p-1}(m C)=0$, the same argument shows that $d\left(C_{p}\right)=0$. So $H_{p}(m C)=m C_{p}=0$.

Theorem 1.1. Let R be a local ring with maximal ideal m and suppose there exists an R-module A such that $m A$ is different from 0 and has finite projective dimension. Then R is a regular local ring.

Proof. Let $\left\{X_{i}\right\}, i=0,1, \cdots$ be a minimal resolution of k. Then

$$
\operatorname{Tor}_{i}(k, m A)=H_{i}(X \otimes m A) .
$$

Since the X_{i} are all free modules, $X \otimes m A$ may be regarded as a subcomplex of $X \otimes A$. In fact, $X \otimes m A=m(X \otimes A)$.

By definition of a minimal resolution, $d\left(X_{i}\right) \subset m X_{i-1}$ for all i, and thus $d \otimes 1\left(X_{i} \otimes A\right) \subset m\left(X_{i-1} \otimes A\right)$ for all i. We can then apply the lemma with $C=X \otimes A$. Namely, since $m A$ has finite projective dimension, $\operatorname{Tor}_{i}(k, m A)=0$ for large i. But

$$
\operatorname{Tor}_{i}(k, m A)=H_{i}(X \otimes m A)=H_{i}(m(X \otimes A))
$$

and so, $m\left(X_{i} \otimes A\right)=0$ for large i, a hypothesis which is substained only if $X_{i}=0$. The regularity of R follows then from [2].

Obviously the same procedures, using Ext now, work just as well for finite injective dimension.
2. Modules over Gorenstein rings and a special case of a conjecture. Let R be a local ring and A a nonzero, finitely generated R-module of finite injective dimension. This dimension is then necessarily equal to the codimension of R [2]. In [4] it was conjectured that R is then, a Macaulay ring, a contention we have been able to prove only in dimension one. This we shall do in this section, but first we make some remarks.

Say $d=$ codimension $R=\operatorname{inj} . \operatorname{dim} . A$. Then for an R-module B. $\operatorname{Ext}^{d}(B, A) \neq 0$ if and only if m is associated to B. In fact, if x is an
element of m which is a nonzero divisor with respect to B, the exact sequence

$$
0 \longrightarrow B \xrightarrow{x} B \longrightarrow B / x B \longrightarrow 0
$$

gives rise to the epimorphism $\operatorname{Ext}^{d}(B, A) \xrightarrow{x} \operatorname{Ext}^{d}(B, A) \longrightarrow 0$, and thus, by the Nakayama lemma, one has $\operatorname{Ext}^{d}(B, A)=0$. Conversely, if m is associated to B we can see that $\operatorname{Ext}^{d}(B, A) \neq 0$. Reasoning along these lines we see that the length of the longest B-sequence, which we call the depth of B, is given by $d-r$ where r is the largest integer for which $\operatorname{Ext}^{r}(B, A) \neq 0$. In the current fashion we shall denote the depth of B by $\operatorname{Prof}_{R} B$. In particular we have that the depth of any module is at most equal to the codimension of the ring. Now it is a long standing conjecture that this happens only when R is a Macaulay ring. When codimension $R=0$ it follows immediately that R is Artinian. We give a proof of the case $d=1$ as a consequence of the following lemma.

Lemma. Let $f: R \rightarrow R^{\prime}$ be a local homomorphism of local rings making R^{\prime} a finitely generated R-module. For any R^{\prime}-module A

$$
\operatorname{Prof}_{R} A=\operatorname{Prof}_{R^{\prime}} A .
$$

Proof. By induction on $\operatorname{Prof}_{R} A$. It is obvious that we may assume $R \cong R^{\prime}$. If m, the maximal ideal of R, is associated to A, i.e. if $\operatorname{Prof}_{R} A=0$, then there exists $a \neq 0$ in A with $m a=0$ or $m R^{\prime} a=0$. Since $m R^{\prime}$ is primary for the maximal ideal m^{\prime} of R^{\prime} we have that $\left(m^{\prime}\right)^{n} \cong m R^{\prime}$ for some integer n. Thus $\left(m^{\prime}\right)^{n} a=0$ and obviously m^{\prime} is associated to A, i.e. $\operatorname{Prof}_{R^{\prime}} A$ is also 0. If m is not associated to A let $x \in m$, and so also an element of m^{\prime}, be a nonzero divisor of A. Thus by induction $\operatorname{Prof}_{R} A / x A=\operatorname{Prof}_{R^{\prime}} A / x A$ and the conclusion follows.

Theorem 2.1. Let R be a local ring and A a finitely generated R-module of injective dimension one. Then R is a Macaulay ring.

Proof. It is not hard to see that to test the finiteness of the injective dimension of a module A over a local ring R it is enough to check the nullity of $\operatorname{Ext}^{n}(k, A)$ for high n 's. Thus it follows that inj. $\operatorname{dim}_{\cdot{ }_{R}} A=\operatorname{inj} . \operatorname{dim}_{\cdot \bar{R}} \bar{A}$, where \bar{R} and \bar{A} denote the respective completions of R and A with respect to the m-adic topology. Assume thus that R is a complete local ring. Suppose, by way of contradiction, that Krull $\operatorname{dim} R>1$ and let p be a prime ideal such that $\operatorname{dim} R / p>1$. Let S be the integral closure of R / p. By [8] S is a finitely generated R / p - and so R-module. Besides it is a local ring. Since S is integrally closed of $\operatorname{dim}>1, \operatorname{Prof}_{s} S \geqq 2$, which is a contradiction by the previous lemma.

Before stating the next result we remark that if A is an R module over the local ring R and Prof $A<$ codimension R, and

$$
0 \longrightarrow L \longrightarrow F \longrightarrow A \longrightarrow 0
$$

is an exact sequence with F free, then $\operatorname{Prof} L=1+\operatorname{Prof} A$.
Gorenstein rings [4] in the local case are those rings R with finite self-injective dimension. Thus, clearly, any module of finite projective dimension has also finite injective dimension. The converse is proved in

Theorem 2.2. Let R be a local Gorenstein ring. Then any module of finite injective dimension also has finite projective dimension.

Proof. Let A be such a module and map a free module over it

$$
\begin{equation*}
0 \longrightarrow L \longrightarrow F \longrightarrow A \longrightarrow 0 \text {. } \tag{1}
\end{equation*}
$$

Thus L also has finite injective dimension. If $\operatorname{Prof} A<$ codimension R by the previous remark $\operatorname{Prof} L=1+\operatorname{Prof} A$. We can then assume that A already has maximum Prof. Our claim is then that (1) splits, i.e. that A is free. Taking $\operatorname{Hom}(A$,$) of the above sequence we get$ $0 \rightarrow \operatorname{Hom}(A, L) \rightarrow \operatorname{Hom}(A, F) \rightarrow \operatorname{Hom}(A, A) \rightarrow \operatorname{Ext}^{1}(A, L)$. Since L has finite injective dimension and Prof $A=$ codimension R we get from the initial remarks of this section that $\operatorname{Ext}^{1}(A, L)=0$ and the conclusion follows.
3. Change of local rings and a generalization of a theorem of Auslander. Given a homomorphism of two rings, $f: R \rightarrow S$, the S-modules can be considered, via f, as R-modules. For an S-module A the change of rings problem consists in comparing the various homological invariants attached to A (e.g. projective dimension, injective dimension) relative to both R and S. Usually it is the case that any such information relative to S is easier to relate to R than the other way around. Here we examine a case where nevertheless a complete answer is possible and use the method employed to generalize a theorem of [1].

Let R be a local ring and x a nonzero divisor in $m-m^{2}$. Put $S=R /(x)$ and let A be a finitely generated S-module.

Theorem 3.1. inj. dim. ${ }_{R} A=1+\mathrm{inj} . \operatorname{dim} .{ }_{s} A$.
Proof. Since proj. $\operatorname{dim} .{ }_{R} S=1$, the spectral sequence [5]

$$
\operatorname{Ext}_{S}^{p}\left(\operatorname{Tor}_{q}^{R}(S, m), A\right) \longrightarrow \operatorname{Ext}_{R}^{n}(m, A)
$$

yields the exact sequence

$$
\begin{aligned}
& \cdots \operatorname{Ext}_{S}^{n-2}\left(\operatorname{Tor}_{1}^{R}(S, m), A\right) \longrightarrow \operatorname{Ext}_{S}^{n}(S \otimes m, A) \longrightarrow \operatorname{Ext}_{R}^{n}(m, A) \\
& \longrightarrow \operatorname{Ext}_{s}^{n-1}\left(\operatorname{Tor}_{1}^{R}(S, m), A\right) \cdots .
\end{aligned}
$$

But $\operatorname{Tor}_{1}^{R}(S, m)=0$ for x is not a zero divisor and thus we have the isomorphism

$$
\begin{equation*}
\operatorname{Ext}_{S}^{n}(m / x m, A)=\operatorname{Ext}_{R}^{n}(m, A) \tag{2}
\end{equation*}
$$

Before proceeding with the proof we need a lemma to be found in [6]:

Lemma. If $x \in m-m^{2}$ we have the decomposition

$$
m / x m=m /(x) \oplus(x) / x m
$$

Proof. Let x, x_{2}, \cdots, x_{r} be a minimal generating set for m and let $U=x m+\left(x_{2}, \cdots, x_{r}\right)$. Then $U+(x)=m$ and $U \cap(x)=x m$ by the independence $\bmod m$ of the x 's. This shows that the inclusion $0 \rightarrow(x) / x m \rightarrow m / x m$ splits, whence the conclusion.

Replacing $m / x m$ by this direct sum decomposition in (1) and bearing in mind that to test injective dimension it is enough to consider m or k in the Ext functors, we get that the injective dimensions of A (with respect to R and S) are both finite or both infinite. The equality mentioned follows from the identification with the codimensions.

Remarks. By considering a similar spectral sequence we could prove the corresponding statement for projective dimension. This is however done, by elementary means, in Nagata's book [8].

If R is a local Gorenstein ring and

$$
0 \longrightarrow R \longrightarrow E_{0} \longrightarrow \cdots \longrightarrow E_{d} \longrightarrow 0
$$

is a minimal injective resolution of R, it is proved in [4] that E_{d} is really the injective envelope of the R-module k. This fact, coupled with a theorem of Bourbaki, is used by Auslander in [1, Th. C] to embed modules of finite length into cyclic modules over certain Gorenstein rings. He proves that this can always be done over integrally closed Gorenstein rings of Krull dimension >1. We will give a construction which enables us to substitute Macaulay for Gorestein in the previous statement.

We shall construct now, for any local Macaulay ring R, a finitely generated module A with finite injective dimension and such that the last nonzero term in a minimal resolution of A is simply $E(k)$, the
injective envelope of k.
Let $R_{i}=R /\left(x_{1}, \cdots, x_{i}\right), i=0,1, \cdots, d$, where x_{1}, \cdots, x_{d} form a system of parameters contained in $m-m^{2}$. Let A be the injective envelope of k over the ring R_{d}. Then A is finitely generated and has finite injective dimension over R, by repeated application of Theorem 3.1. We claim that A has the other desired property which is equivalent to saying that $\operatorname{Ext}_{R}^{d}(k, A)$ is one-dimensional over k. Using the formula (1) we get

$$
\operatorname{Ext}_{R}^{n}(k, A)=\operatorname{Ext}_{R_{1}}^{n}(k, A) \bigoplus \operatorname{Ext}_{R_{1}}^{n-1}(k, A)
$$

Letting $n=d$ we get for arbitrary i

$$
\operatorname{Ext}_{R}^{d}(k, A)=\operatorname{Ext}_{R_{i}}^{d-i}(k, A)
$$

because inj $\operatorname{dim}_{R_{i}} A=d-i$. This works as long as $d-i>0$ and for the remaining case it is easy to verify directly, using the injectiveness of A over R_{d} and the decomposition provided by the lemma, that $\operatorname{Ext}_{R_{d-1}}^{1}(k, A)=\operatorname{Hom}(k, A)=k$, and we have what we wanted.

Now we can copy the proof of [1, Th. C] to get
Theorem 3.2. Let R be an integrally closed Macaulay ring such that any maximal ideal has rank >1. Then any module M of finite length can be embedded in a cyclic module of which it is an essential extension.
4. The annihilator of a module of finite injective dimension. It was established in [3] that the annihilator of a finitely generated module over a local ring, with finite projective dimension, is either trivial or contains a nonzero divisor. The corresponding statement for injective dimensions is still true although the proof is considerably more involved. The difficulty stems from the diversity of injective modules compared with the projective ones. The purpose of this section is to prove the following

Theorem 4.1. Let R be a local ring and A a finitely generated R-module. If A has finite injective dimension then its annihilator is either trivial or contains a nonzero divisor.

Proof. We are going to show that a reduction can be made to the dimension one case but first let us take care of a trivial situation. Denote by I the annihilator of A. Assume I to be nontrivial and consisting entirely of zero divisors. This means that the annihilator J of I in R is nonzero. Suppose some prime ideal p of (0) contains both I and J. In this case $J_{p} \neq R_{p}$ and so $I_{p} \neq(0)$ also. But A_{p} is a nonzero module of finite injective dimension over R_{p}, a ring
of codimension 0 , i.e. A_{p} is an injective module and thus R_{p} is Artinian by a previous remark. But then it is clear that A_{p} is a faithful $R_{p^{-}}$ module being a direct sum of faithful modules. Now we make the reduction to the dimension one case. For that we need a lemma.

Lemma (Abhyankar-Hartshorne). Let I and J be nonzero ideals in a commutative ring such that $I . J=(0)$. Then the length of the maximal R-sequence in $I+J$ is at most one.

Proof (Kaplansky). In general we call the length mentioned above for an arbitrary ideal K, the grade of K. In the above conditions the lemma says that grade $(I+J) \leqq 1$. Can assume that $I \cap J=(0)$ for otherwise, if $0 \neq x \in I \cap J$ then $x(I+J)=(0)$ thus showing grade $(I+J)=0$. Can even assume that R has a unique maximal ideal. Let $a=i+j, i \in I$ and $j \in J$, be a nonzero divisor; clearly $i \neq 0, j \neq 0$. Also, $i \notin R(i+j$) for an equation $i=r(i+j)$ gives ($1-r) i=r j$, a contradiction whether r is a unit or not. Finally $(I+J) i \cong R(i+j)$, i.e. grade $(I+J) \leqq 1$.

In order to apply this to our question let J^{\prime} be the annihilator of J in R. Then $I \cong J^{\prime}$, and $J . J^{\prime}=(0)$. By the lemma, grade $\left(J+J^{\prime}\right) \leqq 1$, in fact $=1$, for otherwise I and J would be inside the same minimal prime. Let p be a grade one prime containing $J+J^{\prime}$; it is easily seen that R_{p} has codimension one. We claim that $J_{p} \neq(0)$-thus implying that I_{p}, which in not zero, consists entirely of zero divisors. Otherwise $J_{p}^{\prime}=R_{p}$ which is impossible. This is the required reduction. We can then make a fresh start and assume that A has injective dimension one over the local ring R, of maximal ideal m. We also know that, by Theorem 2.1 that R has Krull dimension one. This fact will be useful to see what is happening. There are two cases to cope with.

Case 1. m is not associated to A.
Here the only primes associated to A are the minimal primes of R containing I. Let

$$
\begin{equation*}
0 \longrightarrow A \longrightarrow E_{0} \longrightarrow E \longrightarrow 0 \tag{1}
\end{equation*}
$$

be a minimal injective resolution of $A . \quad E_{0}$ is a direct sum of copies of $E(R / p)=$ the injective envelope of R / p, for the various primes of rank 0 containing $I . E$ on the other hand is a direct sum of copies of $E(R / m)$. Let p_{1}, \cdots, p_{r} be the above mentioned minimal primes. We can then pick x in some other minimal prime (one containing J) but not in $p_{1} \cdots p_{r}$. Map the exact sequence (1) into itself by the multiplication induced by x and look at the kernels and cokernels
sequence (where ${ }_{x} N$ denotes the kernel of $N \xrightarrow{x} N$)

$$
0 \longrightarrow{ }_{x} A \longrightarrow{ }_{x} E_{0} \longrightarrow{ }_{x} E \longrightarrow A / x A \longrightarrow E_{0} / x E_{0} \longrightarrow E / x E \longrightarrow 0 \text {. }
$$

Since x is not in any of the p 's it acts as a unit on any $E(R / p)$ and thus

$$
{ }_{x} E=A / x A .
$$

But ${ }_{x} E$ is an injective $R /(x)$ module [4] and thus $0 \neq A / x A$ is a finitely generated injected module over $R /(x)$. But as was remarked before, $R /(x)$ is then an Artinian ring, which is a contradiction for x was taken in a minimal prime.

Case 2. m is associated to A.
With the same notations of Case 1, a minimal injective resolution of A now looks like

$$
\begin{equation*}
0 \longrightarrow A \longrightarrow E_{0} \oplus E(k)^{r} \longrightarrow E(k)^{s} \longrightarrow 0 \tag{2}
\end{equation*}
$$

where the integers r and s are determined by $r=\operatorname{dim}_{k} \operatorname{Hom}(k, A)$ and $s=\operatorname{dim}_{k} \operatorname{Ext}^{1}(k, A)$. Since m is associated to $A, r>0$. Let p be a prime not represented in E_{0}, i.e. p is a minimal prime containing J. From (2) we get the exact sequence

$$
\begin{align*}
0 \longrightarrow \operatorname{Hom}(R / p, A) & \operatorname{Hom}\left(R / p, E_{0} \oplus E(k)^{r}\right) \\
& \operatorname{Hom}\left(R / p, E(k)^{s}\right) \longrightarrow 0,
\end{align*}
$$

for $\operatorname{Ext}^{1}(R / p, A)=0$ since $\operatorname{Prof} R / p=1$. Another way to write (3) is

$$
0 \longrightarrow{ }_{p} A \longrightarrow{ }_{p} E_{0} \oplus_{p} E(k)^{r} \longrightarrow{ }_{p} E(k)^{s} \longrightarrow 0 .
$$

But ${ }_{p} E_{0}=0$ for p is not contained in any of the primes of E_{0}. Thus we get

$$
0 \longrightarrow{ }_{p} A \longrightarrow{ }_{p} E(k)^{r} \longrightarrow E(k)^{s} \longrightarrow 0
$$

or, in other words, that ${ }_{p} A$ is a nonzero module of finite length and injective dimension one over the ring R / p. From the duality theory [7] it follows that $r=s$.

Define $\rho(C)$ for any R-module of finite length to be

$$
\rho(C)=\text { length } \operatorname{Hom}(C, A)-\text { length } \operatorname{Ext}^{1}(C, A) .
$$

It is easy to see that if $0 \rightarrow C^{\prime} \rightarrow C \rightarrow C^{\prime \prime} \rightarrow 0$ is an exact sequence of modules of finite length, then $\rho(C)=\rho\left(C^{\prime}\right)+\rho\left(C^{\prime \prime}\right)$. So since any such module is an extension of simple modules, i.e. of k 's, we have that $\rho(C)=0$ or that length $\operatorname{Hom}(C, A)=$ length $\operatorname{Ext}^{1}(C, A)$.

Let A_{0} be the largest submodule of A of finite length, i.e. the
largest submodule of A annihilated by some power of m. Also let x be a nonzero divisor in R such that $x A_{0}=0$. Consider the exact sequence

$$
0 \longrightarrow A_{0} \longrightarrow A \longrightarrow \bar{A} \longrightarrow 0 \text {. }
$$

By hypothesis $\bar{A} \neq 0$ for A is not of finite length and it is clear that m is not associated to \bar{A}. The exact sequence induced by multiplications by x gives

$$
0 \longrightarrow A_{0} \longrightarrow{ }_{x} A \longrightarrow{ }_{x} \bar{A} \longrightarrow A_{0} \longrightarrow A / x A \longrightarrow \bar{A} / x \bar{A} \longrightarrow 0 \text {. }
$$

But ${ }_{x} \bar{A}=(0)$ and thus length $\left(A_{0}\right)+$ length $(\bar{A} / x \bar{A})=$ length $(A / x A)$. On the other hand the exact sequence

$$
0 \longrightarrow R \xrightarrow{x} R \longrightarrow R /(x) \longrightarrow 0
$$

gives easily that $\operatorname{Hom}(R /(x), A)=A_{0}$ and $\operatorname{Ext}^{1}(R /(x), A)=A / x A$. But $R /(x)$ has finite length and so $\rho(R /(x))=0$ which implies length $(\bar{A} / x \bar{A})=0$, a contradiction by the Nakayama lemma.

References

1. M. Auslander, Remarks on a theorem of Bourbaki, Nagoya Math. J. 27 (1966), 361369.
2. M. Auslander and D. A. Buchsbaum, Homological dimension in local rings, Trans. Amer. Math. Soc. 85 (1957), 390-405.
3. -, Codimension and multiplicity, Ann. of Math. 68 (1958), 625-657.
4. H. Bass, On the ubiquity of Gorenstein rings, Math. Zeitchr. 82 (1963), 8-28.
5. H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, 1956.
6. I. Kaplansky, Homological dimensions of rings and modules, Univ. of Chicago, 1959 (mimeographed notes).
7. E. Matlis, Injective modules over noetherian rings, Pacific J. Math. 8 (1958), 511528.
8. M. Nagata, Local rings, Interscience, New York, 1962.

Received December 7, 1966. This work was partially done while the first author was a NASA Trainee at the University of Chicago and the second author held an ONR Postdoctoral Research Associateship at Cornell University.

Courant Institute, N. Y. U.
Rutgers University

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. Royden

Stanford University
Stanford, California
J. Dugundis

Department of Mathematics
Rice University
Houston, Texas 77001
Richard Arens
University of California
Los Angeles, California 90024

J. P. Jans

University of Washington
Seattle, Washington 98105

ASSOCIATE EDITORS

E. F. Beckenbach
B. H. Neumann
F. Wolf
K. Yosida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
$\stackrel{*}{*}{ }^{*} \stackrel{*}{*}$ MMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION TRW SYSTEMS
NAVAL WEAPONS CENTER

Abstract

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California 90024.

Each author of each article receives 50 reprints free of charge; additional copies may be obtained at cost in multiples of 50 .

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $\$ 8.00$; single issues, $\$ 3.00$. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $\$ 4.00$ per volume; single issues $\$ 1.50$. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners of publishers and have no responsibility for its content or policies.
Pacific Journal of Mathematics
Vol. 25, No. 2 October, 1968
Martin Aigner, On the tetrahedral graph 219
Gregory Frank Bachelis, Homomorphisms of annihilator Banach algebras 229
Phillip Alan Griffith, Transitive and fully transitive primary abelian groups 249
Benjamin Rigler Halpern, Fixed points for iterates 255
James Edgar Keesling, Mappings and dimension in general metric spaces 277
Al (Allen Frederick) Kelley, Jr., Invariance for linear systems of ordinary differential equations 289
Hayri Korezlioglu, Reproducing kernels in separable Hilbert spaces 305
Gerson Louis Levin and Wolmer Vasconcelos, Homological dimensions and Macaulay rings 315
Leo Sario and Mitsuru Nakai, Point norms in the construction of harmonic forms 325
Barbara Osofsky, Noncommutative rings whose cyclic modules have cyclic injective hulls 331
Newton Tenney Peck, Extreme points and dimension theory 341
Jack Segal, Quasi dimension type. II. Types in 1-dimensional spaces 353
Michael Schilder, Expected values of functionals with respect to the Ito distribution 371
Grigorios Tsagas, A Riemannian space with strictly positive sectional curvature 381
John Alexander Williamson, Random walks and Riesz kernels 393

