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The purpose of this note is to give a straightforward unified
proof of the tautness of Alexander-Spanier cohomology in the
cases where it is known to be valid and to give a necessary
condition that every closed (arbitrary) subspace be taut with
respect to zero dimensional cohomology.

Let F denote a contravariant functor from the category of topologi-
cal spaces to the category of abelian groups. A subspace A of a
topological space X is said to be taut with respect to F if the canonical
map lim{F(U)}->F(A) is an isomorphism (the direct limit is taken over
the family of all neighborhoods of A in X, the family being directed
downward by inclusion). The subspace A is taut in X if it̂  is taut with
respect to the Alexander-Spanier cohomology theory H for every
dimension and every coefficient group (for notation and terminology
dealing with H see [6]).

This concept of tautness has proved to be important. In [6] and [7]
it is shown that a closed subspace of a paracompact Hausdorff ^pace is
taut, and this is used to deduce a strong excision property for H. This
tautness property is also used in [6] to derive the continuity property for
H. In [4] it is shown that an arbitrary subspace of a metric space is taut
with respect to Cech cohomology, and this is used to obtain a general
duality in spheres. Since the Cech cohomology is isomorphic to H [3],
every subspace of a metric space is taut. In [2] it is shown that every
neighborhood retract of X is taut in X, and this is used to prove a
generalized homotopy property for compact spaces. In [1] tautness is
considered for sheaf cohomology and used in proving the Vietoris-Begle
mapping theorem.

We shall prove a simple lemma which gives a sufficient condition for
tautness. This sufficient condition is enough to establish tautness in all
the various cases where it is known.

Let % be a collection of subsets of X and A a subset of X. The star
of A with respect to % denoted by st(A, °U), is defined to be the union of
those elements of °U whose intersection with A is nonempty. An open
covering of A in X is a collection °U of open sets of X such that
A Cst(A, °U).

The following seems to be the main fact underlying tautness (see [2]
and [6]).
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LEMMA. Let A be a subspace of X and suppose that for every open
covering °U of A in X there are an open covering VofA in X and a function
(not necessarily continuous) f: st(A, V)-> A such that:

(1) /(a) = a for all a G A.
(2) For each V E V with V fl A ^ 0 there is U 6 °U such that

VUf(V)CU.
Then A is taut in X.

Proof (Recall the notation is as in [6].) An arbitrary q-
dimensional cohomology class of A is represented by a g-cochain
cp ECq(A) such that Scp = 0 on °Uq+2 n Aq+2 where °U is an open covering
of A in X. Choose Y and / with respect to this °U to satisfy (1) and
(2). Then f*<p E Cq(st(A, Y)) is a q-cochain such that Sf*<p = f*8cp,
and, by (2), the latter vanishes on{VET\VnA/ 0}q+2. Thus, f*cp
represents an element of Hq(st(A, V)), and, by (1), its restriction to A is
the element of Hq(A) represented by cp. Therefore, the canonical map
lim{Hq(£/)}-»Hq(A) is an epimorphism.

Let U be a neighborhood of A. An element of Hq(U) whose
restriction to A is 0 is represented by a q-cochain cp E Cq(U) such that
Scp = 0 on °U^+2 where °Ui is an open covering of U and such that there is
a (q ~ l)-cochain cp' E Cq~\A) with cp \ A = Scp' on % ?+1 n Aq+1 where
°U2 is an open covering of A in X. Let °U = {Ux n U2\ Ux E °Ul and
U2 E °U2}- Then °U is an open covering of A in X such that Scp = 0 on
°Uq+2 and cp \ A = Scp' on °Uq+l n Aq+1. Let Y and / satisfy (1) and (2)
with respect to this °U. It follows from (1) and (2) using the Fundamental
Lemma 9.1 of [5] that cp |st(A, Y) and f*(cp \A) represent the same
element of H«(st(A,r». Since f*(cp\A) = f*8cp'= 8f*cp' on
{V E V | V n A / 0}«+1, we see that /#(<p | A) represents 0 in
Hq (st(A, Y)). Therefore, ? | st(A, J ) represents 0 in Hq (st(A, y)), and
the canonical map limjiiP(U)} —»Hq(A) is a monomorphism.

THEOREM 1. In ^ac/i of the following cases A is taut in X.
(1) A is compact and X is Hausdorff.
(2) A is closed and X is paracompact Hausdorff.
(3) A is arbitrary and every open subset of X is paracompact

Hausdorff.
(4) A is a neighborhood retract of X.

Prqof. In each of the first three cases it is easy to verify that if °U is
any open covering of A in X there is an open covering V of A in X such
that the collection {st(V, Y)\ V E V and V n A / 0 } is a refinement of
<%. If / : st(A, T)-> A is defined so that f{a) = a for a E A and so that
for every x E st(A, Y) there isV'EY with JC and /(x) both in V, then r
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and / satisfy (1) and (2) of the Lemma with respect to °U (see Lemma 1 on
p. 316 of [6]). Therefore, A is taut in X.

In the fourth case let r: N-+A be a retraction of an open
neighborhood N of A to A. If °U is an open covering of A in X let
V = {U n rl(U n A)\ U e °U}. Then V is an open covering of A in
X Define / : st(A, V)^A by / = r | st(A, r ) . Then y and / satisfy
(1) and (2) of the Lemma with respect to °U and so A is taut in X.

The following result is a necessary condition for tautness of every
closed (arbitrary) subspace with respect to H°. It can be used to provide
examples where tautness fails to hold.

THEOREM 2. If X is a space such that every closed (arbitrary)
subspace is taut with respect to H°, then X is normal (completely normal).

Proof. We present the proof in the completely normal case, the
normal case being analogous. To show X is completely normal it
suffices to show that if E and F are subsets of X such that E n F = 0 =
E H F then E and F can be separated by open sets in X. Given such E
and F let A = E U F. Then A is a subspace of X and E and F are both
open and closed in A. Let <p be the 0-cocycle on A which is 0 on E and
1 on F. Assuming A is taut in X, there is an open neighborhood W of A
in X and a 0-cocycle i|f on W such that i/t\A = cp. Since a 0-cocycle
is a locally constant function, U = {x E W\ i/r(x) = 0} and V =
{JC E W| i/r(jc) = 1} are disjoint open sets in W, hence in X, which
separate E and F.
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